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NANOPARTICLES OF CERIUM OXIDE 
TARGETED TO AN AMYLOID-BETA 

ANTIGEN OF ALZHEIMER'S DISEASE AND 
ASSOCIATED METHODS 

RELATED APPLICATION 

This application claims priority from copending provi
sional application Ser. No. 61/383,773, which was filed on 17 
Sep. 2010, and which is incorporated herein by reference in 
its entirety. 

STATEMENT OF GOVERNMENT RIGHTS 

The invention claimed herein was made with at least partial 
support from the U.S. Government. Accordingly, the govern
ment may have certain rights in the invention, as specified by 
law. 

FIELD OF THE INVENTION 

The present invention relates to the field of neurological 
diseases and, more particularly, to a cerium oxide nanopar
ticulate composition useful in treatment of Alzheimer's dis
ease. 

BACKGROUND OF THE INVENTION 

Current therapies for Alzheimer disease (AD) provide 
moderate symptomatic delay at various stages of the disease, 
but do not arrest the disease progression, and hence, new 
approaches to the disease management are urgently needed. 

In recent years, cerium oxide nanoparticles have been stud
ied as possible potent antioxidant agents that might be able to 
exert neuroprotective effects. We herein disclose the specific 
design of a targeted nanoceria-based formulation suitable for 
AD therapy. The test results obtained indicate the present 
composition is useful for selective delivery of immunonano
particles to A~ (amyloid-beta) plaques with concomitant res
cue of neuronal survival and neurite dystrophy. The formula
tion appears to work by regulating the expression of the 
BDNF signal transduction pathway. 

Oxidative stress and amyloid-beta (A~) are considered 
major etiological and pathological factors initiating and pro
moting neurodegeneration in Alzheimer's disease (AD) due 
to the production of free radicals (1-6). To date, use of mul
tiple doses of antioxidants has met with only! limited success 
in abolishing these pathological conditions (7). 

Recently, we have discovered that cerium oxide nanopar
ticles (CNPs) are redox active and biocompatible with both 
superoxide dismutase (8) and catalase mimetic activity (9). 
Among the lanthanide series of elements, cerium is distinc
tive in that it has two partially filled sub shells of electrons, 4 f 
and 5d, with many excited substates, resulting in a valence 
structure that undergoes significant alterations depending on 
the chemical environment (10-13 ). A predominant +3 oxida
tion state on the surface of CNPs is responsible for the nano
particles' unique antioxidant properties (14, 15). We have 
shown that a single dose ofCNPs prevents retinal degenera
tion induced by peroxides (16). In vitro, one low dose main
tained radical scavenging and protective effects for long dura
tions and multiple insults, suggesting the possibility of its 
regenerative activity. Therefore, CNPs have been investigated 
as possible nanopharmacological composition for use against 
diseases associated with oxidative stress (17-22). 

Previously, on anAD human in vitro model, we have con
firmed the anti-oxidant properties of CNPs. We have also 

2 
demonstrated that CNPs do not act as mere anti-oxidant 
agents, but that they seem regulate signal transduction path
ways involved in neuroprotection (23) To date, no early biom
arkers for AD have been identified, therefore the appearance 
of symptoms is indicative of the full-blown disease. 

The present disclosure concerns a novel approach wherein 
a CNP formulation comprises specifically targeted nanopar
ticles able to direct only to such targets as the brain areas of 
neurodegeneration and to exert specific effects counteracting 

10 neurite dystrophy and inhibiting disease progression. The 
presently disclosed composition is active at significantly 
lower dosages and in a single administration as opposed to 
free nanoparticles. This improvement was achieved by the 
synthesis of CNPs through the development of an improved 

15 method for the conjugation of anti-amyloid ~ antibodies to 
the nanoparticles with selective delivery to A~ plaques and a 
concomitant increase of neuronal survival. 

20 
SUMMARY OF THE INVENTION 

With the foregoing in mind, the present invention advan
tageously provides a composition of polyethylene glycol 
(PEG) coated nanoparticles of Cerium oxide having an anti
body bound thereto, the antibody being specific for an antigen 

25 associated with a predetermined disease condition. Prefer
ably, the nanoparticles are amine functionalized prior to coat
ing, so as to promote coating by the PEG. In a preferred 
embodiment of the invention, the antibody is specifically 
targeted against an amyloid-beta antigen associated with a 

30 neurodegenerative disease. The nanoparticles are approxi
mately from 3-5 nm in size prior to coating with PEG. The 
composition may be contained in a manufactured medication 
biologically acceptable for administration to a patient exhib
iting symptoms of the predetermined disease. Accordingly, a 

35 method of treatment for the predetermined disease condition 
includes administration of the composition to a patient in 
need thereof. 

More specifically, the present invention provides for a 
composition specifically targeted to a neurodegenerative dis-

40 ease, said composition comprising amine functionalized 
nanoparticles of Cerium oxide coated with polyethylene gly
col and bearing an antibody specific for an antigen associated 
with the neurodegenerative disease. As noted above, this 
composition may also be contained in a manufactured medi-

45 cation biologically acceptable for administration to a patient 
exhibiting symptoms of the neurodegenerative disease. 
Included in this preferred embodiment of the invention is a 
method of treatment for a neurodegenerative disease, the 
method comprising administering this variation of the com-

50 position to a patient in need thereof. 
A more specific yet embodiment of the present invention 

includes a composition immunologically targeted to Alzhe
imer's disease (AD), the composition comprising amine 
functionalized nanoparticles of Cerium oxide coated with 

55 polyethylene glycol and bearing an antibody specific for an 
amyloid-beta antigen associated with AD. This composition 
may be contained in a manufactured medication biologically 
acceptable for administration to a patient suffering from AD. 
This particular embodiment also includes a method oftreat-

60 ment for Alzheimer's disease, the method comprising admin
istering the composition to a patient suffering from AD. 

BRIEF DESCRIPTION OF THE DRAWINGS 

65 Some of the features, advantages, and benefits of the 
present invention having been stated, others will become 
apparent as the description proceeds when taken in conjunc-
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tion with the accompanying drawings, presented for solely 
for exemplary purposes and not with intent to limit the inven
tion thereto, and in which: 

FIG. 1 presents the characterization of nanoceria: (A) 
HRTEM image of microemulsion nanoparticles showing 5 

control particle size distribution (3-5 nm) consistent to our 
group's well established synthesis procedure (42). The large 
d spaced planes (111) primarily easily focused at 300 kV is 
indicated in micrographs. Smaller d spacing planes (220,311) 
are not marked for clear representation of micrographs. The 10 

inset shows the selected area electron diffraction pattern of 
nanoparticle captured at low magnification confirming the 
crystalline nature and fluorite structure of CNPs by calcula
tion of each diffraction ring diameter (D.=RD). (B) The 
amine functionalization of CNPs was confirmed by XPS. In 15 

the XPS two 0 ( 1 s) peak corresponding two different valance 
state of ceria (Ce3

+ corresponds to 531.5 eV and Ce4
+ corre

sponds to 530.6 eV) and other two confirms the functional
ization. Peak 1 is 0---C bond that connects epichlorohydrin to 
the cerium oxide (534.00 eV) and peak 2 is epichlorohydrin's 20 

epoxy group (533.35 eV). (C) Shows change in the appear
ance of CNPs (yellow) after amine functionalization (light 
yellow) and PEG-conjugation (dark brown); (D) UV-VIS 
absorbance of ceria, NH2 -functionalized ceria and PEG 
coated CNPs, showing the shift in the absorbance maximum 25 

to red and blue shift after amine functionalization (38.45 nm) 
and PEG-conjugation (33.41 nm) (E) FTIR spectra of PEG 
conjugated cerium oxide nanoparticle confirming presence of 
PEG on CNPs; (F) SOD mimetic activity of PEG-CNPs as 
compared to control, showing that surface PEG-CNPs is still 30 

active and scavenges the radical efficiently. 
FIG. 2: SMFS measurements ofA~-protein with bare CNP 

in aqueous medium; deflection-extension spectrum (A) and 
corresponding force-extension of A~ with silicon substrate 
(B), interaction force of A~ with bare ceria nanoparticle (C), 35 

amine functionalized CNPs (D), PEG-conjugated CNPs (E), 
Force histogram of A~ with bare CNPs (F) and amine func
tionalized GNPs (G). Multiple SMFS were conducted for 
force and histogram on each sample. The total number of 
force and length values analyzed were n=204 (for F) and 40 

n=320 (for G). 
FIG. 3 Plaque presence is evaluated by ThT staining in 

control (B), A~ treated (E) cells and A~-CNP-Ab (H). The 
ability of the conjugate to recognize the plaque is evaluated by 
TRITC labeled anti rabbit secondary antibody in control (C), 45 

A~-treated (F) cells and A~-CNP-Ab-treated cells (I). The 
ability of CNP-Ab to target only the plaque is shown in L, that 

4 
right the neuritic length in control, A~ treated cells and A~
CNP-Ab-treated cells. The neurite length was determined as 
neurite length/0 soma. Data are means±SE, N=4, p=0.000, 
***ps0.0005. *,expressed vs control value. 

FIG. 5 Subcellular localization of the neuronal differentia
tion markers ~-tubulin III (~-TubIII) (green) and PPAR~/5 
(red) in control (A, B; C), A~-treated (D, E, F) cells and 
A~-CNP-Ab (G, H, I) treated cells. In C, F and I the merged 
images are shown. Bar=l 7 nm. In the bottom western blotting 
and densitometric analyses for PPAR~/5 in control (CTR), 
A~-treated (A~) cells and A~-CNP-Ab-treated cells. Band 
relative densities were determined against most evident band 
of PVDF membrane Comassie Blu stained. Data are 
means±SE, N=3, p=0.009, *ps0.05. *,calculated vs control 
value. 

FIG. 6 The upper panels show immunofluorescence analy-
sis for NF-H 200 in control (A, D),A~-treated (B, E) cells and 
A~-CNP-Ab (C, F) treated cells. D, E, and F are higher 
magnification pictures. Bar= 17 µm. Nuclei were stained with 
DAPI. Panels below show immunofluorescence analysis for 
GAP43 in control (G, L), A~-treated (H, M) cells and A~
CNP-Ab (I, N) treated cells. L, M, and N are higher magni
fication pictures. Bar= 17 µm. Nuclei were stained with DAPI. 

FIG. 7 Panel A shows western blotting and densitometric 
analyses for TrkB, P75NTR and cytoplasmatic pro-BDNF, in 
control (CTR), A~-treated (A~) cells and A~-CNP-Ab
treated cells Band relative densities, were determined against 
most evident band of PVDF membrane Comassie Blu 
stained. Data are means± SE, N=3, for TrkB p=0.04, *ps0.05. 
For P75NTR p=0.004, **ps0.005; For pro-BDNF p=0.005, 
**ps0.005 The* is calculated vs control (CTR) value. Panel 
B shows western blotting and densitometric analyses for 
extracellular and soluble pro-BDNF form assayed by immu
noprecipitating the culture media from control, A~-treated 
and A~-CNP-Ab-treated cells. The immunoprecipitation 
assay was performed allowing the collected media to be 
absorbed on Protein A Sepharose A CL-4B followed by a 
precipitation step with a specific anti-BDNF antibody Band 
relative densities were determined using TotalLab software 
(ABEL Science-Ware srl, Italy) and values were given as % 
over control. Data are means±SE, N=3, p=0.009, *ps0.05* is 
calculated vs control value. Panel C shows western blotting 
and densitometric analyses for p-ERKl,2 and p-ERK5, in 
control, A~-treated cells andA~-CNP-Ab-treated cells. Band 
relative densities, were determined against most evident band 
of PVDF membrane Comassie Blu stained. Data are 
means±SE, N=3, for p-ERKl: A~ vs CTR p=0.004, 

is the merge ofH and I. The nuclei are stained with DAPI in 
control (A), A~ treated (D) cells and A~-CNP-Ab-treated 
cells (G). Bar=l 7 nm. 50 **ps0.005; A~-CNP-Ab vs CTR p=0.001, **ps0.005. For 

p-ERK2: A~ vs CTR p=0.001, **ps0.005. A~-CNP-Ab vs 
CTR p=0.016, *ps0.05. For p-ERK5: A~ vs CTR p=0.012, 
*ps0.05; A~-CNP-Ab vs CTR p=0.000, ***ps50.0005. *is 
calculated vs control value. 

FIG. 4 Panel A shows cell viability evaluated by MTS 
assay, in control (CTR), A~ treated (A~) cells andA~-CNP
Ab-treated cells. Data are means±SE, N=6, p=0.025, 
*ps0.05; *,expressed vs control value. Panel B shows apop
totic cell death, evaluated as nucleosome concentration in 55 

control (CTR), A~ treated (A~) cells andA~ -CNP-Ab-treated 
cells. Data are means±SE, N=3, p=0.001, **ps0.005*, 
expressed vs control value. Panel C shows cell death, evalu
ated by DAPI nuclear staining and by counting condensed 
nuclei in control, A~ treated cells and A~-CNP-Ab-treated 60 

cells Data are means±SE, N=3, p=0.03, *ps0.05; *, 
expressed vs control value. Bar=l 7 um. Panel D: Phase
contrast microscopy in control (CTR), A~ treated (A~) cells 
and A~-CNP-Ab-treated cells. Bar 17 nm; On the left the 
neurite number in control, A~ treated cells andA~-CNP-Ab 65 

treated cells is reported. Histograms report n°-neurites/n°
cells. Data are means±SE, N=3, p=0.024, *ps0.05. On the 

FIG. 8 shows the diffraction pattern of nanoceria showing 
typical peak broadening indicative of nanocrystalline par
ticles. 

FIG. 9 depicts the results of Energy dispersive X-ray spec
troscopy illustrating the elemental composition which con
firms that CNPs are essentially free of impurities. 

FIG. 10 portrays the conjugation of Anti-~-amyloid anti
body with NH2 terminal PEG CNP. 

FIG. 11 shows the ligation of the specific antibody against 
A~ to the nanoparticles allows the CNPs-Ab to specifically 
recognize the plaque, having minimum or no interaction with 
nearby neuronal cells. This notion is supported by the effects 
observed when the same antibody, utilized for the ligation, is 
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utilized alone to treat the cells after the A~ challenge; in fact, 
it identifies the plaque (A, B, C) but having minimum or no 
effect of cell viability (D). 

FIG. 12 presents preliminary experimental results showing 
the effects on cell viability of PEG-CNP or NH2-CNP admin
istered alone or after A-beta challenge indicated that PEG
CNP are more effective than NH2-CNP in promoting neu
ronal survival. Nevertheless CNPs-PEG-Ab were found to be 
more effective as compared to PEG-CNP. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

The present invention will now be described more fully 
hereinafter with reference to the accompanying drawings, in 
which preferred embodiments of the invention are shown. 

Unless otherwise defined, all technical and scientific terms 
used herein are intended to have the same meaning as com
monly understood in the art to which this invention pertains 
and at the time of its filing. Although various methods and 
materials similar or equivalent to those described herein can 
be used in the practice or testing of the present invention, 
suitable methods and materials are described below. How
ever, the skilled should understand that the methods and 
materials used and described are examples and may not the 
only ones suitable for use in the invention. 

Moreover, it should also be understood that any tempera
ture, weight, volume, time interval, pH, salinity, molarity or 
molality, range, concentration and any other measurements, 
quantities or numerical expressions given herein are intended 
to be approximate and not exact or critical figures unless 
expressly stated to the contrary. Accordingly, where appro
priate to the invention and as understood by those of skill in 
the art, it is proper to describe the various aspects of the 
invention using approximate or relative terms and terms of 
degree commonly employed in patent applications, such as: 
so dimensioned, about, approximately, substantially, essen
tially, consisting essentially of, comprising, and effective 
amount. 

Further, any publications, patent applications, patents, and 
other references mentioned herein are incorporated by refer
ence in their entirety as if they were part of this specification. 
However, in case of conflict, the present specification, includ
ing any definitions, will control. In addition, the materials, 
methods and examples given are illustrative in nature only 
and not intended to be limiting. 

Accordingly, this invention may be embodied in many 
different forms and should not be construed as limited to the 
illustrated embodiments set forth herein. Rather, these illus
trated embodiments are provided so that this disclosure will 
be thorough, complete, and will fully convey the scope of the 
invention to those skilled in the art. Other features and advan
tages of the invention will be apparent from the following 
detailed description, and from the claims. 
Methods 
Synthesis and characterization of CNPs CNPs of approxi
mate size of 3-5 nm were synthesized by a microemulsion 
method describe elsewhere (36). After preparation, the par
ticles were washed with acetone and water for six to eight 
times to remove the surfactant and other impurities. High 
resolution transmission electron microscopy (HRTEM), with 
FEI Tecnai F30 having an energy dispersive X-ray (EDX) 
analyzer, was carried out to study the size and morphology of 
the nanoparticles. 
Amine Functionalization of CNPs 

Prepared CNPs were suspended in 0.1 M NaOH solution 
and stirred for 5 minutes. Five milliliters of distilled epichlo-

6 
rohydrin and 0.5 mL of2 M NaOH were added and stirred at 
room temperature. The nanoparticles were then recovered by 
centrifugation and washed with water several times. Next, the 
nanoparticles were suspended in water and 30% ammonium 
hydroxide solution was added and stirred for several hours. 
Finally, the resulting amine functionalized nanoparticles 
were recovered by centrifugation, washed with water (three to 
four times), and dried (37). 

A 5400 PHI ESCA (XPS) spectrometer was used to obtain 
10 XPS data to confirm the amine functionalization. The base 

pressure during XPS analysis was 10-10 Torr and Mg-Ka 
X-radiation (1253.6 eV) at a power of350 watts was used. 
Preparation of PEG-CNPs 

Polyethylene glycol (PEG) spacers with carboxy and 
15 amine terminals and having a spacer arm of 18.1 A were 

selected for the study. We chose bi-functional PEG, so that 
one end can connect to an amine functionalized nanoparticle 
and the other end to the antibody. The carboxy terminal of the 
bi-functionalized PEG molecule was coupled to the amine 

20 functionalized CNPs using EDC and Sulfa NHS coupling 
chemistry. 1 mg/ml CA(PEG)4 was dissolved in 0.05M NaCl, 
pH 6 buffer. 2 mM EDC and 5 mM Sulfa-NHS were added to 
the CA(PEG)4 solution and stirred at room temperature. 
Amine functionalized CNPs were resuspended in sodium 

25 phosphate buffer, added to the reaction mixture and stirred. 
The molar ratio of amine functionalized ceria:CA(PEG)4 was 
1 :4, used for the reaction. PEG-CNPs were recovered by 
centrifugation, washed with water (three to four times), and 
dried. UV-Visible spectroscopy and Fourier transform infra-

30 red (FTIR) spectra were obtained to confirm the PEG mol
ecule on the nanoparticle surface using PerkinElmer 
Lamda750S and PerkinElmer Spectrum, respectively. Super
oxide dismutase (SOD) mimetic activity of the PEG-conju
gated CNP was estimated using SOD Assay kit (Sigma-Ald-

35 rich Corp., St. Louis, Mo., USA) according to the 
manufacturer instructions. 
Conjugation of A~ Antibody with PEG-CNP 

In the first step, sodium azide and other salt were removed 
from the anti A~ antibody by centrifuging through 10 kD 

40 cut-offCentricon® (Millipore Inc.). The antibody (1 mg/ml 
concentration) was diluted in NaCl, pH 6 buffer. 2 mM EDC 
and 5 mM Sulfa-NHS were added to the antibody solution 
and stirred at room temperature. PEG-CNPs were resus
pended in sodium phosphate buffer, added to the reaction 

45 mixture and stirred. The molar ratio of amine functionalized 
antibody to PEG-CNPs used for the reaction was about 1:5. 
PEG-ceria nanoparticles were recovered by centrifugation, 
washed with water (three to four times), and re-suspended in 
distilled water. The concentration of ceria after antibody con-

50 jugation was assayed by UV-Visible spectroscopy. Bradford 
assays were performed to confirm antibody conjugation to the 
PEG-ceria nanoparticle. 
Cell Cultures 

SH-SY5Y cells (ATCC) were seeded at about 1xl04 cells/ 
55 cm2 and cultured for 7 divisions (DIV) in PBS-free RPMI 

1640 differentiating medium containing N2 supplement in 
order to promote neuronal differentiation. 
A~ Fibril Formation 

A~(25-35) is frequently used in investigating A~ proper-
60 ties as a less expensive and more easily handled substitute for 

the native full-length peptide, A~(l-42). Indeed, A~(25-35) 
mimics the toxicological and aggregation properties of the 
full-length peptide, though these characteristics are 
enhanced; i.e., the shorter peptide is more toxic to cultured 

65 neurons, exhibits earlier toxicity, causes more severe mem
brane protein oxidation, and aggregates faster than the native 
A~(l-42) (38). 
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The amyloid fibrils were obtained as previously described 
(39). Specifically, theA~(25-35) stock solution (500 µM) was 
prepared dissolving A~ in PBS-free differentiating medium 
containing N2 supplement (pH 7.4) and stored at -20 C. 0 • The 
amyloid fibrils were obtained incubating A~(25-35) stock 5 

solution at 37° C. for 8 days. 

the results were expressed as neurite number vs. the total cell 
number. The neurite length was determined by comparing the 
neurite length with the mean diameter (0) of cell soma and 
reported as neurite length/soma (0). 
Immunofluorescence 

Control and treated cells, grown on coverslips, were fixed 
in 4% paraformaldehyde in PBS for 20 min at RT and per
meabilized in PBS containing 0.1 % Triton X-100 for 5 min at 
RT. Cells were then incubated with mouse anti-~-tubulin III 
(1:300) and anti PPAR~ (1:100) diluted in PBS containing 
3% BSA overnight at 4 ° C. The immunolocalization of GAP-
43 and heavy neurofilament (NF-H) was performed by per
meabilizing the fixed cells with absolute methanol for 10 min 
at -20° C. After that, cells were rehydrated with PBS for 5 
min and incubated with anti-GAP 43 (1 :300) and anti-NF-H, 
(1 :200) antibodies, overnight at 4 ° C. After extensive wash
ings with PBS, cells were treated with fluorescein-labeled 
anti-mouse or Trite-labeled anti-rabbit IgG secondary anti
bodies (1:100 in PBS containing 3% BSA) for 30 min at RT. 
Nuclei were counterstained with DAPI (300 ng/ml). After 
extensive washings, coverslips were mounted with Vectash
ield mounting medium and photographed in a fluorescence 
microscope (AXIOPHOT, Zeiss). 

Fluorimetric Assay 
The amyloid polymerization status was checked by the 

thioflavin T (Th T) fluorescence method before each treatment 
( 40). ThT binds specifically to amyloid fibrils, and such bind- 10 

ing produces a shift in its emission spectrum and an increase 
in the fluorescent signal, which is proportional to the amount 
of amyloid formed (41-43). Following incubation, A~ in 20 
mM Tris HCI Buffer, pH 8.0, and 1.5 µM ThT in a final 
volume of 2 ml were analyzed. Fluorescence was monitored 15 

by spectrofluorimetry at an excitation wavelength of 450 nm 
and an emission wavelength of 485 nm, as previously 
described ( 41 ). 
Treatments 

Differentiated cells were treated withA~25-35 (12.5 µM, 20 

f.c.) for 24 h. For nanoparticles treatment, cells were sub
jected for 4 h to acute challenge with A~25-35, and were 
treated with an effective dose (200 nM, f.c.) of cerium oxide 
nanoparticles conjugated to anti-A~ antibody (CNPs-Ab ). Western Blot 
A~ Plaque Detection 25 

In order to asses if the ligation of antibody to the nanopar
ticles allows them to bind specifically to A~ plaques, double 
immonoflorescence staining was performed. Briefly, cells, 
grown on coverslips, were fixed in 4% paraformaldehyde in 
PBS for 10 min at RT. Cells were then incubated with 0.05% 30 

Cells were washed in ice-cold PBS and homogenized in 
ice-cold RIPA buffer (10 mM Hepes, pH7.4, 10 mM KC!, 1.5 
mM MgCl2 , 1 mM EDTA, 1 mM dithiothreitol) with a pro
tease inhibitor mixture (100 mg/ml phenylmethylsulfonyl 
fluoride, 2 mg/ml aprotinin, 2 mM leupeptin, and 1 mg/ml 
pepstatin). The lysate was subjected to centrifugation at 
600xg for 30 min at 4 ° C., and the supernatant was collected. solution of ThT and Trite-labeled antirabbit IgG secondary 

antibody (1:100), for 20 min at RT. Nuclei were counter
stained with DAPI (300 ng/ml). After extensive washings, 
coverslips were mounted with Vectashield mounting medium 
and photographed in a fluorescence microscope (AXIO
PHOT, Zeiss). 
Cell Viability and Death 

Cells, plated in 24 multiwell plates, were incubated after 
treatments for 2 h with Cell Titer 96 AQueous One Solution, a 
imetric viability test method based on 3-(4,5-dimethylthi
azol-2-y 1)-5-(3-carboxymethoxyphenil)-2-( 4-sulfophenyl )-
2H-tetrazolium (MTS). The quantity offormazan formed, as 
a function of viability, was measured at 490 nm using an 
ELISA plate reader. All MTS assays were performed in trip
licate. 

After A~ exposure, cells on coverslips were fixed in 4% 
paraformaldehyde at room temperature for 10 min, then 
stained with DAPI (300 ng/ml) for 20 min and examined 
under UV illumination using a fluorescence microscope. To 
quantify the apoptotic process, nuclei with both fragmented 
or condensed DNA and normal DNA were counted. Five 
fields/coverslips were counted. Data, from 3 different experi
ments, are expressed as a percentage of the total cells counted. 
For apoptosis detection, cells were seeded in 24-well plates at 
a density of lxl04 cells/cm2

. Control and treated cells were 
analyzed for apoptosis using the cell death detection ELISA 
kit for the nucleosome detection. Absorbances at 405 nm with 
respect to 4 90 nm were recorded according to manufacturer's 
directions. 
Morphometry 

Control and treated cells, grown on coverslips, were fixed 
in 4% paraformaldehyde in PBS for 20 min at RT. After 
washings, coverslips were mounted with Vectashield® and 
phase-contrast observations were performed by an AXIO
PHOT Zeiss microscope, equipped with a micrometric ocular 
lens. The processes longer than the cell body mean diameter 
(0), which should be regarded as neurites, were counted and 

Samples (25-50 µg/lane) were analyzed by 10% SDS-PAGE, 
transferred to PVDF membranes, and blocked in Tris-buff
ered saline containing 5% non fat milk, and 0.1 % Tween20®. 

35 Membranes were incubated with different primary antibod
ies, anti-PPAR~ (1:1000), anti-BDNF (1:200), anti TrkB 
(1:200) anti p-75 NTR (1:100), anti p-ERKl,2 (1:200), anti
ERKl,2 (1:1000), anti-p-ERK5 (1:200) overnight at 4° C. 
and then probed with horseradish peroxidase-conjugated 

40 mouse or rabbit secondary antibodies (1: 1000). Immunore
active bands were visualized by chemiluminescence. Band 
relative densities, against most evident band of PVDF mem
brane Comassie Blu stained, were determined using 
Tota!Lab® software (ABEL Science-Ware srl, Italy) and val-

45 ues were given as relative units. 
Immunoprecipitation Assay 

The immunoprecipitation assay was performed to estimate 
the amount of brain-derived neurotrophic factor (BDNF) pro
tein in the culture media obtained from control and treated 

50 cells. To immunoprecipitate BDNF, a solution of 100 µg 
Protein A SepharoseA CL-4B was added to an equal amount 
(1000 µg of total protein) of supernatant samples collected 
from each condition. The suspension obtained was allowed to 
shake for 2 hat 4° C. and incubated with 5 µg of anti-BDNF 

55 primary antibody overnight at 4 ° C. The immunoprecipitates 
were then collected by centrifugation and the supernatant 
aspirated and discarded. Resuspended pellets were subjected 
to 15% SDS-PAGE, transferred to PVDF membranes and 
probed with specific anti BDNF antibody. After incubation 

60 with horseradish peroxidase-conjugated rabbit secondary 
antibodies (1: 1000), the immunoreactive bands were visual
ized by chemiluminescence. Band relative densities were 
determined using Tota!Lab® software (ABEL Science-Ware 
srl, Italy) and values were given as percentage over control. 

65 Statistics 
Experiments were performed at least in triplicate. Data 

were represented as means±Standard Errors. Where appro-
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priate, one-way ANOVA test followed by Scheffe's post hoc 
test analysis was performed using SPSS software. P values 
less than 0.05 were considered statistically significant. 
Results 

10 
PEG attachment with CNPs decreases the nonspecific inter
action and its importance is discussed later. 
CNPs-Ab Targeting Plaques 

In FIG. 3 while control cells are negative to the thioflavine 
Functionalization and Characterization of CNPs 

FIG. 1 shows the characterization of synthesized CNPs. In 
FIG. l(A) depicts a TEM image showing well dispersed 
nanoparticle with a size distribution ranging approximately 
between 3-5 nm, (inset: X-ray diffraction pattern). The dif
fraction pattern showed typical peak broadening indicative of 
nanocrystalline particles (Suppl materials, Figure Sl). X-ray 
spectroscopy illustrates the elemental composition which 
confirms that CNPs are free from any impurities (Suppl mate
rials, Figure S2). FIG. lB represents the high resolution XPS 
spectra of amine functionalized CNP, showing the evidence 

5 T staining (B), the green fluorescence shows the presence of 
A~ plaque in A~-treated cells with (H) or without nanopar
ticles (E). The nuclei, stained with DAPI (D, G), show cell 
aggregation in the areas closed to theA~ plaque, while control 
cells appear dispersed (A). In the same figure the ability of 

10 CNPs-Ab to bind theA~ plaques is assessed by double immu
nostainining of thT and anti-rabbit Trite-labeled secondary 
antibody (C, F, IL merge) which specifically recognizes the 
antibody bound to the nanoparticles. Trite-antibody labels 
only cells treated with both A~ plaque and CNP-Ab (I, L 

of complex formation. Peak 1 shows an 0---C bond and 
represents the epichlorohydrin molecule attachment to the 
nanoparticle (534.00 eV) and peak 2 corresponds to epichlo
rohydrin's epoxy group (533.35 eV). The other two peaks are 
due to the presence of mixed valence state of cerium atom 
(Ce+3: 531.5 eV, Ce+4: 530.6 eV). FIG. lC shows the change 

15 merge) not the control (C) and A~-treated (F) cells. There
fore, the ligation of the specific antibody against A~ to the 
nanoparticles allows the CNPs-Ab to specifically recognize 
the plaque, having minimum or no interaction with nearby 
neuronal cells. This is supported by the effects observed when 

20 the same antibody used in the ligation is utilized alone to treat 
the cells after the A~ challenge (Suppl materials, Fig. S4 ); in 
fact, it identifies the plaque (A, B, C) but having minimum or 
no effect on cell viability (D). 

in the color of CNPs (dark yellow) after amine functionaliza
tion (light yellow) and PEG-conjugation (brown). Panel D 
presents the UV-Visible spectroscopy data showing a shift in 
the absorption spectrum of CNP following functionalization 25 

withNH2 (38.45 nm) and PEG (33.41 nm). The FTIRspectra 
(Panel E) of PEG-CNP, confirming the PEG conjugation; 
SOD mimetic activity of PEG coated CNP is presented in 
Panel F. 

Cell Viability and Death 
Preliminary experiments (Suppl materials, Fig S5) the 

effects on cell viability of PEG-CNP or NH2--CNP admin
istered alone or after A~ challenge indicated that PEG-CNP 
are more effective than NH2-CNP in promoting neuronal 
survival due to the decrease in non-specific interaction in 

The conjugation of Anti-~-amyloid antibody with NH2 
terminal PEG CNP is illustrated in scheme (Suppl materials 
Fig S3). The antiA~ antibody was attached to the PEG-CNP 
using EDC/Sulfo NHS coupling reaction; the table shows the 
amount of antibody (µg/ml) in 5 mM PEG-CNP and CNP
NH2 estimated by Bradford assay. 

30 PEG CNP. CNPs-PEG-Ab were found to be more effective as 
compared to PEG-CNP. Therefore, in all subsequent experi
ments only the PEG-CNPs-Ab (CNPs-Ab) were used. Cell 
viability, evaluated by MTS assay, in control and treated cells 
is shown in FIG. 4, panel A. A~ treatment leads to significant 

Single Molecular Force Spectroscopy ofCNPs 
35 reduction in cell viability. CNPs-Ab revert this effect to the 

control values. In the same figure (panel B) apoptotic cell 
death, evaluated as nucleosome concentration, is shown. A~ 
treatment induces a significant increase in apoptotic cell 

We selected A~l-42 as a model protein to find out the 
interaction of the protein with bare and functionalized CNPs. 
FIG. 2 shows the single molecular force microscopy (SMFS) 
measurements carried out using a Succinimmide functional- 40 

ized Silicone nitrite AFM tip (spring constant 0.01 Nim and 
tip radious of curvature 10 nm) coated with AF protein with 
bare CNPs. The figure shows the deflection-extension spec
trum (A) and the corresponding force-extension (B) of A~ 
with silicon. FIGS. (C), (D) and (E) show the interaction of 45 

A~ with bare, NH2 and PEG functionalized CNPs, respec
tively. Attraction force of interaction was found in case of 
bare CNPs with the A~ protein. The force histogram of A~ 
with CNPs shows that the force of the interaction is in the 
range of 10-250pN (204 force curve analyzed) (F). The inter- 50 

action force of A~ is found to be higher with amine function
alized nanoparticles (2D) and force histogram shows (2G) 
that the amount ofinteraction is in the range of 250pN-500pN 
(320 force carve analyzed), greaterthan the bare CNPs, which 
indicates increased non specific interaction to the protein. 55 

Interestingly, minimum or no interaction has been observed 
with PEG-CNPs (2E). The interaction force is in the order: 
NH2-CNP>Bare CNP> PEG-CNP. This is explained in terms 
of zeta potential of the bare and functionalized nanoparticle. 
As the zeta potential is changed from positive to negative 60 

(NH2-CNP (+16 mV)<Bare CNPs (-10 mV)<PEG-CNP 
(-37 mV)), it minimizes the interaction with the partially 
negatively charged C-terminal part of the ~-amyloid protein 
and the CNPs. Schematic diagram of CNP interaction with 
AFM probe functionalized withA~protein is consistent with 65 

our earlier studies dealing with tranferrin conjugated CNPs 
(24). It is noteworthing that the SMFM data suggested that 

death, while after CNPs-Ab treatment no significant differ
ences are observed with respect to the control. Panel C shows 
the nuclear fragmentation in control and treated cells, evalu-
ated by DAPI nuclear staining. Consistently with the apop
totic assay, A~ treatment leads to an increase in apoptotic 
nuclei, while CNPs-Ab almost restores the control condition. 
These results, taken together, indicate that the CNPs-Ab play 
a protective effect against the A~ cytotoxic insult. 
Cell Morphology 

FIG. 4, panel D, shows the contrast phase microscopy and 
the graphic representation of neurite length and number in 
control and treated cells. Control cells (CTR) show an evident 
neuronal clustering and neuronal aggregation, A~ treatment 
induced an evident neurite loss (A~). CNPs-Ab protects cells 
from neurite atrophy (A~-CNP-Ab ). The graphical represen
tation of number of neurite (left side), and of neurite length 
(right side) shows that A~ treatment significantly decreases 
neurite number and also the neurite length, while CNPs-Ab 
protect the neurites fromA~-mediated neuronal damage. 
Immunofluorescence 

Since we have previously demonstrated that A~ treatment 
affected the expression of peroxisome proliferator activated 
receptor ~ (PPAR~), which is a transcription factor in neu
ronal differentiation (25), and in neuronal maturation (26-
27), in the following experiments we analyzed the cytoskel
etal organization and the PPAR~/1\ expression and 
localization in control and treated cells. In FIG. 5, double 
immunostaining for 13-tubulin III, a marker of early neuronal 
differentiation and PPAR~/1\ is shown. In control cells, ~-tu-
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antibody with amine functionalized CNPs. The SMFP data 
showed that the attachment of PEG to CNPs reduces non
specific interactions with A~ proteins and protects the anti
oxidant properties of the CNPs while targeting the plaques. In 

bulin III (CTR) localizes at cytoplasmatic and neurite level, 
while PPAR~/o is mainly localized to the nuclei (CTR, 
merge). After A~ treatment the neurite network is no more 
evident (A~) and the PPAR~/o is mainly localized to the 
cytoplasm (A~ merge). 

In the ~-treated cells following CNPs-Ab an evident pres
ervation of neuritenetwork (A~-CNP-Ab merge) as well as of 
the PPAR~/o nuclear localization is observed (A~-CNP-Ab 
merge), thus indicating protection of neurites by nanoceria. 
Regarding PPAR~/o protein levels, A~ treatment signifi
cantly downregulates the protein, while CNPs-Ab revert 
PPAR~/o protein levels to the control (FIG. 5 bottom). 

5 the presently disclosed composition PEG acts as a spacer 
which also provides flexibility to the conjugated antibody to 
interact with its ligand with minimal steric hinderance. 

Moreover, PEG coating will also provide the following 
advantages apart from the specific targeted delivery: (i) caus-

10 ing high disparity of nanoparticles; (ii) protecting nanopar
ticles from agglomerating and being cleared out from the 
system, (iii) minimizing the attachment of opsonin protein 
and suppressing uptake by macrophages, and (iv) increasing In FIG. 6 the heavy neurofilament 200 (NF-H) and GAP-43 

localization in control and treated cells is shown.NF-His a 
marker of neuronal terminal maturation, while GAP-43 is an 15 

axonal marker. In control cells a wide neuronal network is 
observed (A and D, G and L), while in A~-treated cells the 
network is completely lost (B and E, H and M). After CNPs
Ab treatment an evident preservation of the neurites is 
observed (C and F, I and N), thus confirming the neuropro
tective effects by the presently disclosed nanoceria composi
tion in counteracting neuronal dystrophy. 

blood circulation time (31 ). 
The immunofluorescence results obtained indicate the spe-

cific targeting of nanoceria to A~ plaques without diffusion to 
the cell cytoplasm. It is noteworthy that the specific formula
tion now proposed is effective at a significantly lower con
centration than bare CNPs which may decrease the potential 

Signal Transduction Pathways 

20 drug side-effects. Moreover CNPs-Ab other than exerting 
non-specific antioxidant effects, seem to modulate at transla
tional level proteins crucial for the neuronal signal transduc
tion pathway leading to survival, such as TrkB and p-ERK5, 
which appeared significantly upregulated, and the proapop-Finally, since neuronal morphology and plasticity are cor

related to the brain derived neurotrophic factor (BDNF) sig
nal transduction pathway, we assayed the BDNF, its receptors 
such as TrkB and p75, and the extracellular signal regulated 
kinases such as ERKl,2 and ERK5. Upon A~ challenge, the 
cytoplasmatic levels of BDNF immature form (pro-BDNF) 
show to be upregulated (FIG. 7 panel B); The same results are 30 

obtained by the immunoprecipitation assay of the culture 
media (FIG. 7 panel B), indicating that A~ injury leads to a 
strong accumulation of pro-BDNF in the extracellular matrix. 
This significant increase in pro-BDNF may be responsible for 
the promotion of the neuronal death and atrophy, as it is 
known that the immature form of BDNF induces neuronal 
apoptosis via activation of a receptor complex of p7 5NTR and 
sortilin (28). This view is supported by the results obtained for 

25 totic signaling proteins such as BDNF/p75/p-ERK1 ,2, which 
appeared down-regulated. Consistently with the increase of 
the survival and plasticity pathways, the neuronal cytoskel
eton, strongly damaged by A~ challenge, appeared com-
pletely preserved inA~-treated cells in presence ofCNPs-Ab. 

Nanoparticles have been largely employed to deliver vari-
ous types of drugs ranging from coenzyme QlO (32), to 
protein antigens (33), plasmid DNA (34) and several other 
molecules. Specific nanoparticles were demonstrated to pen
etrate the blood-brain barrier (BBB) without altering its per-

35 meability and to be circulating in the blood for a long time 
(35). However, the inventive nanoceria composition dis
closed herein demonstrates the use of functionalized self 
targeting nanoceria bound to a specific carrier for counteract-

p 7 5NTR protein in our experimental condition (FIG. 7 panel 
A). In fact, as for pro-BDNF, A~ increases p75NTR protein 40 

levels while concomitantly triggering a decrease of the spe
cific receptor TrkB involved in the action of mature and 
cleaved form ofBDNF. Moreover A~ induces the active form 
of ERKl,2 (p-ERKl,2) (FIG. 7 panel C), known to be 
involved in apoptosis promotion. InA~-treated cells follow- 45 

ing CNPs-Ab a reduction but not a complete reversion of 
pro-BDNF levels is observed, while the levels of the mature 
form are reverted to the control values. In the same time, 
CNPs-Ab, significantly increase TrkB as well as the p-ERK5, 
involved in neuronal survival, with concomitant decrease of 50 

ERK! ,2, suggesting an activation of the neuronal survival 
pathway BDNF/TrkB/ERK5. 
Discussion 

It has been previously reported that GNPs protect neurons 
from free radical-mediated insult initiated by UV light, 55 

H2 0 2 , irradiation, and excitotoxicity (29-30). Our previous 
results have documented the anti-oxidant and protective role 
of bare cerium oxide nanoparticle in a human AD in vitro 
model. 

In this work we have carefully designed and formulated a 60 

targeted pegylated nanoceria-based molecule suitable as 
therapy for AD. Design ofa specifically targeted nanoparticle 
avoids diffusion to other areas and in the cell cytoplasm. The 
conjugation ofCNPs with an antibody against A~ 1-42 makes 
possible a targeted delivery ofCNPs to theA~ plaques. 65 

In this composite nanoparticle we have also used the 18.1 
A length bi-functional PEG as a spacer to conjugate anti A~ 

ing brain pathologies characterized by oxidative stress, and 
has shown to be effective in counteracting disease progres
sion by improving neuronal viability while decreasing neu-
ronal death and neurite atrophy. 

Accordingly, in the drawings and specification there have 
been disclosed typical preferred embodiments of the inven
tion and although specific terms may have been employed, the 
terms are used in a descriptive sense only and not for purposes 
of limitation. The invention has been described in consider
able detail with specific reference to these illustrated embodi
ments. It will be apparent, however, that various modifica
tions and changes can be made within the spirit and scope of 
the invention as described in the foregoing specification and 
as defined in the appended claims. 
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That which is claimed: 

16 
glycol and bearing an antibody specific for an antigen asso
ciated with the neurodegenerative disease; wherein the PEG 
comprises a bifunctional molecule comprising a carboxy ter
minal and amine terminal, the carboxy terminal being con
nected to an amine group on the nanoparticles and an amine 
terminal being connected to the antibody as follows: 

Ce02-NHCO-[CH2CH20Jn ---{:H2CH2NH-anti
body. 

1. A composition comprising polyethylene glycol (PEG) 10 

coated nanoparticles of Cerium oxide having an antibody 
bound thereto, the antibody being specific for an antigen 
associated with a predetermined disease condition, wherein 
the PEG comprises a bifunctional molecule comprising a 
carboxy terminal and amine terminal, the carboxy terminal 15 

being connected to an amine group on the nanoparticles and 

7. The composition of claim 6, contained in a manufactured 
medication biologically acceptable for administration to a 
patient exhibiting symptoms of the neurodegenerative dis
ease. 

8. A method of treatment for a neurodegenerative disease, 
the method comprising administering the composition of 
claim 6 to a patient in need thereof. 

9. A composition immunologically targeted to Alzheimer's 
disease (AD), said composition comprising amine function
alized nanoparticles of Cerium oxide coated with polyethyl
ene glycol and bearing an antibody specific for an amyloid-

an amine terminal being connected to the antibody as follows: 

Ce02-NHCO-[CH2CH20]"---{:H2CH2NH-anti
body. 

2. The composition of claim 1, wherein said nanoparticles 
are amine functionalized to promote coating by the PEG. 

3. The composition of claim 1, wherein said antibody is 
specifically targeted against an amyloid-beta antigen associ
ated with a neurodegenerative disease. 

4. The composition of claim 1, wherein the nanoparticles 
are approximately from 3-5 nm in size prior to coating with 
PEG. 

5. The composition of claim 1, contained in a manufactured 
medication biologically acceptable for administration to a 
patient exhibiting symptoms of the predetermined disease. 

6. A composition specifically targeted to a neurodegenera
tive disease, said composition comprising amine functional
ized nanoparticles of Cerium oxide coated with polyethylene 

20 beta antigen associated with AD, wherein the PEG comprises 
a bifunctional molecule comprising a carboxy terminal and 
amine terminal, the carboxy terminal being connected to an 
amine group on the nanoparticles and an amine terminal 
being connected to the antibody as follows: 

25 
Ce02-NHCO-[CH2CH20Jn ---{:H2CH2NH-anti

body. 

10. The composition of claim 9, contained in a manufac
tured medication biologically acceptable for administration 

30 to a patient suffering from AD. 
11. A method of treatment for Alzheimer's disease, the 

method comprising administering the composition of claim 9 
to a patient suffering from AD. 

* * * * * 
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