STARS

University of Central Florida

UCF Patents

Technology Transfer

8-20-2013

Methods and products for biasing cellular development

Kiminobu Sugaya University of Central Florida

Angel Alvarez University of Central Florida

Amelia Marutle University of Central Florida

Find similar works at: https://stars.library.ucf.edu/patents University of Central Florida Libraries http://library.ucf.edu

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation

Sugaya, Kiminobu; Alvarez, Angel; and Marutle, Amelia, "Methods and products for biasing cellular development" (2013). *UCF Patents*. 370. https://stars.library.ucf.edu/patents/370

US008513017B2

(12) United States Patent

Sugaya et al.

(54) METHODS AND PRODUCTS FOR BLASING CELLULAR DEVELOPMENT

- (75) Inventors: Kiminobu Sugaya, Winter Park, FL
 (US); Amelia Marutle, Orlando, FL
 (US); Angel Alvarez, Orlando, FL (US)
- (73) Assignee: University of Central Florida Research Foundation, Inc., Orlando, FL (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 13/330,957
- (22) Filed: Dec. 20, 2011

(65) **Prior Publication Data**

US 2012/0156785 A1 Jun. 21, 2012

Related U.S. Application Data

- (62) Division of application No. 11/258,603, filed on Oct. 24, 2005, now Pat. No. 8,080,420.
- (60) Provisional application No. 60/621,483, filed on Oct. 22, 2004.
- (51) Int. Cl.

C12N 15/00	(2006.01)
C12N 5/07	(2010.01)
C12N 5/071	(2010.01)

- (52) U.S. Cl. USPC 435/455; 435/377; 435/325; 435/368
- (58) Field of Classification Search None See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

6,787,355			Miller et al.
7,390,659	B2	6/2008	Jessell et al.
7,618,621		11/2009	Sugaya et al.
7,635,467		12/2009	Sugaya et al.
7,687,505	B2	3/2010	Sugaya et al.
7,736,892	B2	6/2010	Weiss et al.
2002/0127715	A1	9/2002	Benvenisty et al.
2003/0175958	A1	9/2003	Reed et al.

(10) Patent No.: US 8,513,017 B2

(45) **Date of Patent:** Aug. 20, 2013

2003/0224411	A1	12/2003	Stanton et al.
2004/0241854	A1	12/2004	Davidson et al.
2005/0245475	A1	11/2005	Khvorova et al.

OTHER PUBLICATIONS

Zhao et al. Proc. Natl. Acad. Sci. USA, 100, 15, 9005-9010, 2003.* Zheng et al., Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears, Nature Neuroscience, Jun. 2000, vol. 3, No. 6, pp. 580-586.

Helms et al., Overexpression of MATH1 Disrupts the Coordination of Neural Differentiation in Cerebellum Development, Molecular and Cellular Neuroscience, 2001, vol. 17 pp. 671-682.

Li et al., Pluripotent stem cells from the adult mouse inner ear, Nature Medicine, Oct. 2003, vol. 9, No. 10, pp. 1293 1299.

Richards et al., Protein stability: still an unsolved problem, Cellular and Molecular Life Sciences, 1997, vol. 53, pp. 790-802.

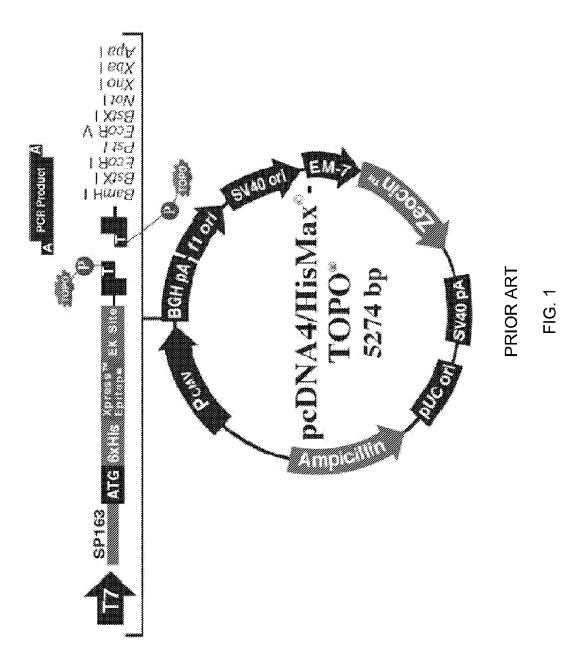
Warchol et al., Regenerative Proliferation in Inner Ear Sensory Epithelia from Adult Guinea Pigs and Humans, Science, Mar. 1993, vol. 259, pp. 1619-1622.

pRK5 sequence and plasmid map, http://www.addgene.org/ pgvec1?f=v&cmd=viewvecseq&from=&soid=5506&view=Draw, Addgene Inc., 2003-2007, downloaded Feb. 27, 2008.

Akazawa et al., A Mammalian Helix-Loop-Helix Factor Structurally Related to the Product of Drosophila Proneural Gene atonal Is a Positive Transcriptional Regulator Expressed in the Developing Nervous System. The Journal of Biological Chemistry, 1995, vol. 270, No. 15, pp. 8730-8738.

Zhao et al., The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain, Proc Natl Acad Sci, Jul. 2003, 100 (15):9005-9010.

* cited by examiner


Primary Examiner — Nancy T Vogel

(74) Attorney, Agent, or Firm — Timothy H. Van Dyke; Beusse Wolter Sanks Mora & Maire, P.A.

(57) **ABSTRACT**

Methods are described that bias cells, such as potent and multipotent stem cells, by transfection with a nucleic acid sequence, to differentiate to a desired end-stage cell or a cell having characteristics of a desired end-stage cell. In particular embodiments, human neural stem cells are transfected with vectors comprising genes in the homeobox family of transcription factor developmental control genes, and this results in a greater percentage of resultant transformed cells, or their progeny, differentiating into a desired end-stage cell or a cell having characteristics of a desired end-stage cell.

9 Claims, 14 Drawing Sheets

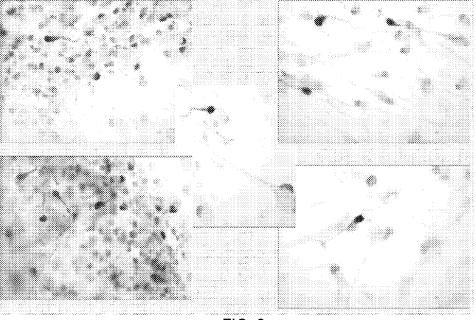


FIG. 2

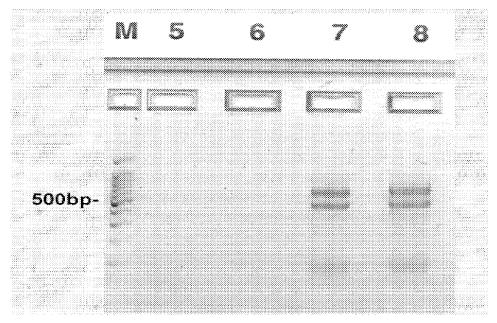


FIG. 3

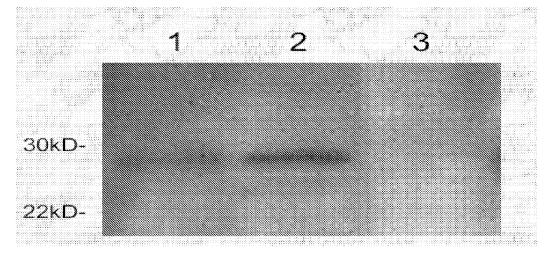


FIG. 4

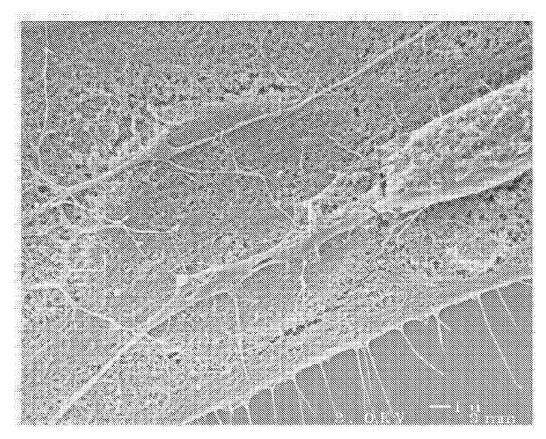


FIG. 5

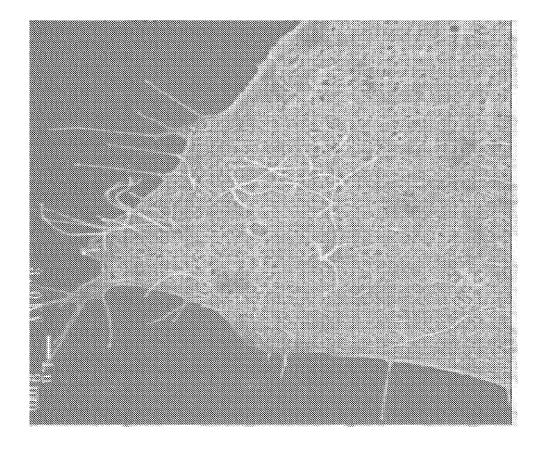


FIG. 6

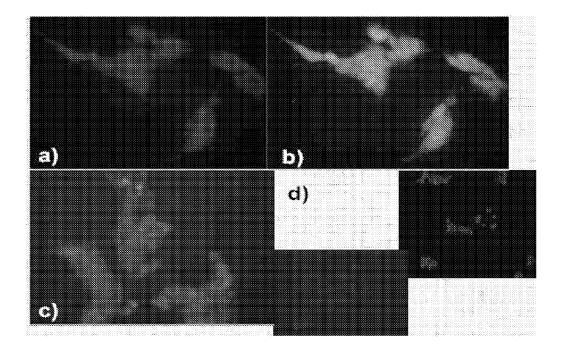
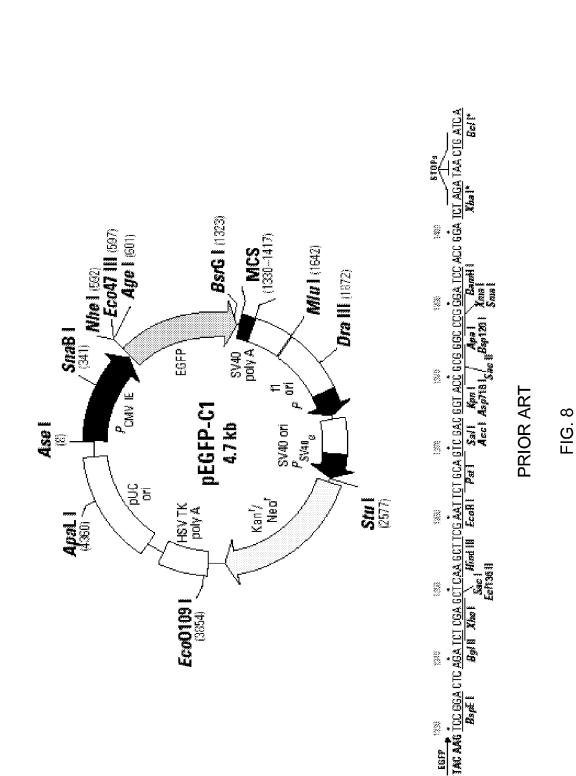



FIG. 7

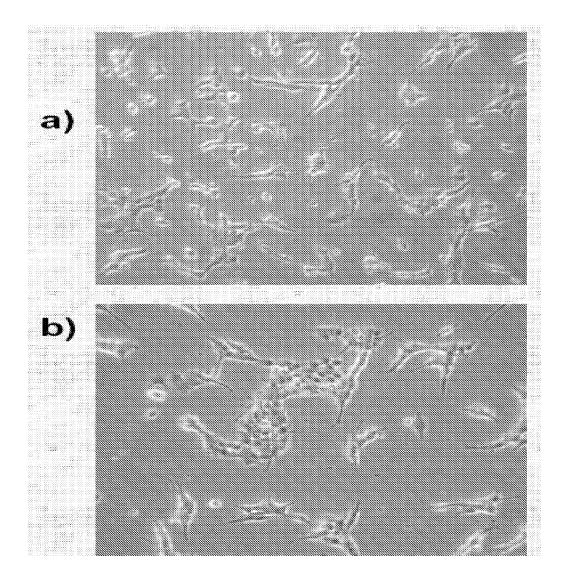


FIG. 9

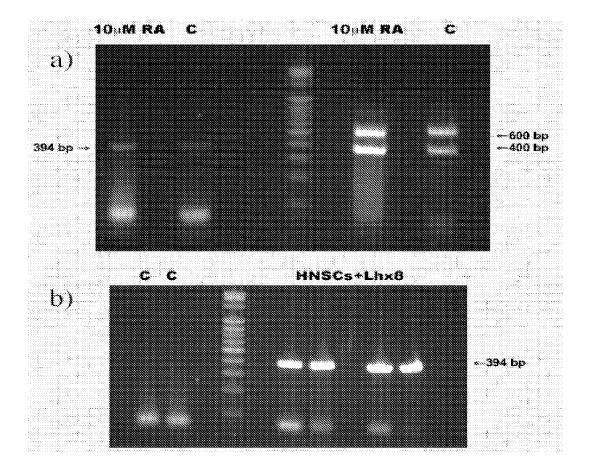


FIG. 10

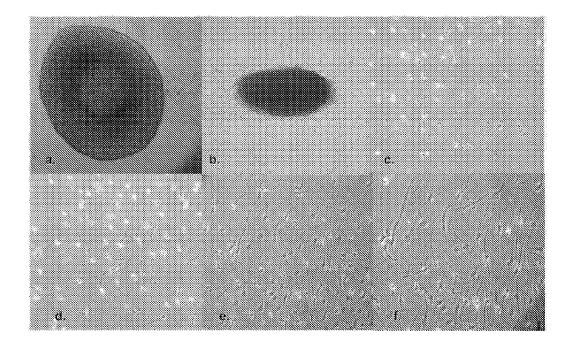


FIG. 11

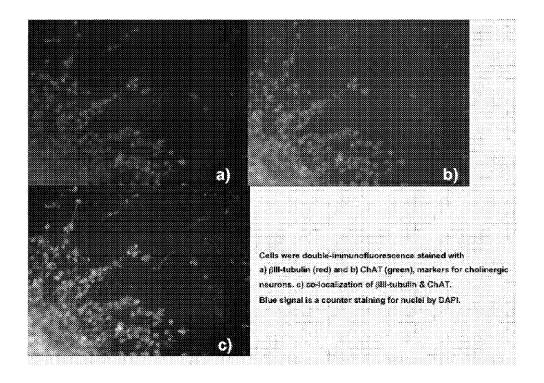


FIG. 12

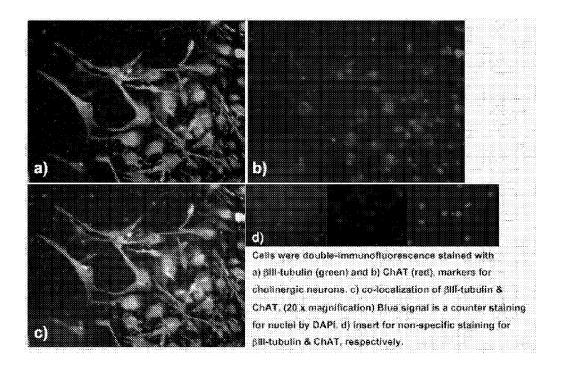


FIG. 13

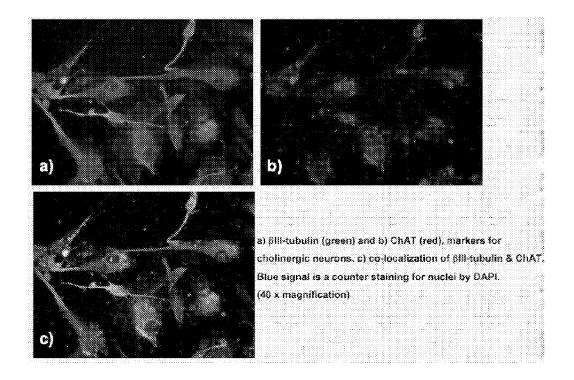


FIG. 14

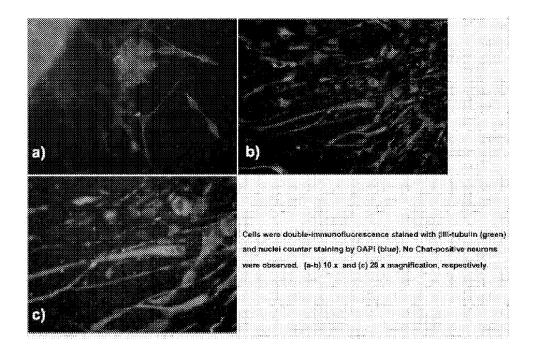


FIG. 15

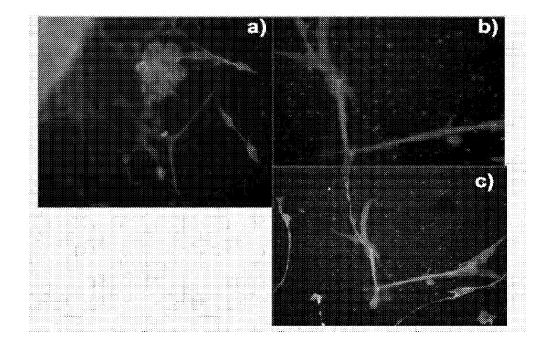


FIG. 16

METHODS AND PRODUCTS FOR BIASING CELLULAR DEVELOPMENT

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Ser. No. 60/621, 483 filed Oct. 22, 2004; and is a divisional application of U.S. application Ser. No. 11/258,603, filed Oct. 24, 2005 now U.S. Pat. No. 8,080,420, which are hereby incorporated in their ¹⁰ entirety.

FIELD OF INVENTION

The present invention is directed to methods and systems ¹³ directed to altering the differentiation of a cell, more particularly to biasing a multipotent stem cell by transfecting the cell with a nucleic acid sequence comprising a desired gene, the gene being expressed so that the cell, or its progeny, differ-20 entiate to a desired end-stage cell.

BACKGROUND

Proper cellular function and differentiation depends on ²⁵ intrinsic signals and extracellular environmental cues. These signals and cues vary over time and location in a developing organism (i.e., during embryogenesis), and remain important in developing and differentiating cells during post-natal growth and in a mature adult organism. Thus, in a general ³⁰ sense, the interplay of the dynamically changing set of intracellular dynamics (such as manifested by intrinsic chemical signaling and control of gene expression) and environmental influences (such as signals from adjacent cells) determine cellular activity. The cellular activity so determined is known ³⁵ to include cell migration, cell differentiation, and the manner a cell interacts with surrounding cells.

The use of stem cells and stem-cell-like cells of various types for cell replacement therapies, and for other cell-introduction-based therapies, is being actively pursued by a num- 40 ber of researchers. Embryonic stems cells from a blastocyst stage are frequently touted for their pluripotency-that is, their ability to differentiate into all cell types of the developing organism. Later-stage embryonic stem cells, and certain cells from generative areas of an adult organism, are identi- 45 fied as more specialized, multipotent stem cells. These cells include cells that are able to give rise to a succession of a more limited subset of mature end-stage differentiated cells of particular types or categories, such as hematopoietic, mesenchymal, or neuroectodermal end-stage differentiated cells. For 50 example, a multipotent neural stem cell may give rise to one or more neuron cell types (i.e., cholinergic neuron, dopaminergic neuron, GABAergic neurons), which includes their specific cell classes (i.e., a basket cell or a chandelier cell for GABAergic neurons), and to non-neuron glial cells, such as 55 astrocytes and dendrocytes.

Further along the path of differentiation are cells derived from multipotent stem cells. For example, derivatives of a localized, non-migrating neuroectodermal type stem cell may migrate but, compared to their multipotent parent, have more limited abilities to self-renew and to differentiate (See Stem Cell Biology, Marshak, Gardner & Gottlieb, Cold Spring Harbor Laboratory Press, 2001, particularly Chapter 18, p. 407). Some of these cells are referred to a neuron-restricted precursors ("NRPs"), based on their ability, under appropriate conditions, to differentiate into neurons. There is evidence that these NRPs have different subclasses, although this may

reflect different characteristics of localized multipotent stem cells (Stem Cell Biology, Marshak et al., pp 418-419).

One advantage of use of mulitpotent and more committed cells further along in differentiation, compared to pluripotent embryonic stem cells, is the reduced possibility that some cells introduced into an organism from such source will form a tumor (Stem Cell Biology, Marshak et al., p. 407). However, a disadvantage of cells such as cell types developed from multipotent stem cells, for instance, embryonic progenitor cells, is that they are not amenable to ongoing cell culture. For instance, embryonic neural progenitor cells, which are able to differentiate into neurons and astrocytes, are reported to survive only one to two months in a cell culture.

Generally, it is known in the art that the lack of certain factors critical to differentiation will result in no or improper differentiation of a stem cell. Researchers also have demonstrated that certain factors may be added to a culture system comprising stem cells, such as embryonic stem cells, so that differentiation to a desired, stable end-stage differentiated cell proceeds. It also is known in the art to introduce and express a transcription factor gene, Nurr1, into embryonic stem cells, and then process the cells through a five-step differentiation method (Kim, Jong-Hoon et al., Dopamine Neurons Derived from Embryonic Stem Cells Function in an Animal Model of Parkinson's Disease, Nature, 418:50-56 (2002)), resulting in differentiated cells having features of dopaminergic cells. However, the starting cell for this was an embryonic stem cell, and the differentiation process through to a cell having the features of a dopaminergic neuron, requires substantial effort that includes the addition and control of endogenous factors. In addition, because the starting cell is an early-stage embryonic stem cell having pluripotency, there is a relatively higher risk that some cells implanted from this source will become tumerogenic.

Also, without being bound to a particular theory, it is believed that to the extent a particular method of differentiation results in a greater percentage of cells that are dedicated or predetermined to differentiate to a desired functional cell type (i.e., a cholinergic neuron), this reduces the chance of tumor formation after introduction of cells derived from such method. As disclosed herein, embodiments of the present method that utilize multipotent stem cells as the starting material provide an increased percentage of cells predisposed (i.e., biased) to or differentiated to a desired cell type. This is believed to provide for reduced risk of tumor formation equivalent to or superior to the use of more differentiated cells such as NRPs.

There are many possible applications for methods, compositions, and systems that provide for improved differentiation of stem cells to a desired functional, differentiated cell. For example, not to be limiting, millions of people suffer from deafness and balance defects caused by damage to inner ear hair cells (IEHCs), the primary sensory receptor cells for the auditory and vestibular system after exposure to loud noises, antibiotics, or antitumor drugs. Since IEHCs rarely regenerate in mammals, any damage to these organs is almost irreversible, precludes any recovery from hearing loss, and results in potentially devastating consequences. Current therapies utilizing artificial cochlear implants or hearing aids may partially improve but not sufficiently restore hearing. Therefore, cell therapy to replace the damaged IEHC may be one of the most promising venues today. In the past, IEHC production from progenitor cells from the vestibular sensory epithelium of the bullfrog {Cristobal, 1998 #28} and possible existence of IEHC progenitors in mammalian cochlea sensory epithelia {Kojima, 2004 #29} has been reported. However limited quantity of IEHC progenitor prevents clinical

40

application of this type of cell to treat deafness. Thus novel technology to produce IEHCs from other cell sources is needed.

While stem cells are known to be the building blocks responsible for producing all of a body's cells, the specific differentiation process towards to IEHC linage is not clear. Embryonic stem cells transplanted into the inner ear of adult mice or embryonic chickens did not differentiate into IEHCs {Sakamoto, 2004 #19}. Neural stem cells (NSCs) grafted into the modiolus of cisplatin-treated cochleae of mice only differentiated into glial or neuronal cells within the cochleae {Tamura, 2004 #18}. In order to produce IEHCs from these stem cells, modification or direction of the cell fate decision may be needed.

Another possible application for methods, compositions, and systems of the present invention is biasing Human Neural Stem Cells ("HNSCs") to differentiate to cholinergic neurons, or to cells having characteristics of cholinergic neurons. Such biasing would provide for an improved percentage of 20 such stem cells in a culture vessel to differentiate to this desired end-stage nerve cell. Improvements to the percentage of cells that are known to be biased to differentiate to this end-stage neuron cell, or to cells having characteristics of a cholinergic neuron, may lead to improvements both in 25 research and treatment technologies for diseases and conditions that involve degeneration or loss of function of cholinergic neurons. Alzheimer's disease is one example of a malady known to be associated with degeneration of the long-projecting axons of cholinergic neurons. 30

Thus, there is a need in the art to improve the compositions, methods and systems that provide biased and/or differentiated cells from stem cells or stem-cell-like cells. More particularly, a need exists to obtain a higher percentage of desired cells from a pre-implantation cell culture, such as starting ³⁵ from multipotent stem cells and obtaining a higher percentage of cells committed to differentiate to a specified type of functional nerve cell, such as cholinergic neurons or inner ear hair cells. The present invention addresses these needs.

BRIEF DESCRIPTION OF THE FIGURES

FIGS. **1-16** are appended hereto, are part of the specification, and are described herein and/or on the figures themselves.

FIG. **3** Math 1 full length mRNA was amplified by RT-PCR and digested with Apai, which cuts position 441 of Hath1ORF. Expecting fragment sizes are 441 bp and 624 bp. M: 100 bp marker; 5, 6, without transfection (control); 7, 8: transfected with mammarian expression vector containing 50 Hath2.

FIG. 9: Phase contrast micrographs of LA-N2 cells. FIG. 9*a*: LA-N2 cells grow in clusters as adherent fibroblasts-like cells, occasionally cells extend short processes and form neuronal-like networks. FIG. 9*b*: LA-N2 cells treated with 10-6 55 μ M retinoic acid.

FIG. 10: Lhx8 expression in the LA-N-2 and HNSCs cells. FIG. 10*a*: Shows gene expression with RT-PCR analysis of LA-N-2 cells treated with ten μ M RA showed an increased expression of Lhx8 (394 bp) and ChAT (splice variants ~600 60 and 400 bp, respectively, compared with non-treated cells. FIG. 10*b*: represents RT-PCR analysis of Lhx8 expression in HNSCs 48 hours post-transfection.

FIG. **11**: In vitro differentiation of Lhx8-transfected HNSCs. HNXCs transfected with Lhx8 (a) in co-culture with 65 LA-N-2 cells and serum-free conditions differentiated mostly neurons with long extended processes after 10-14 days (b-f).

FIG. 12: Differentiated HNSCs/Lhx8 in co-culture with LA-N-2 cells. Cells were double-immunofluorescence stained with (a) β III-tubulin (red) and (b) ChAT (green), markers for colinergic neurons (c) two localization of β III-tubulin and ChAT. Blue signal is a counter staining for nuclei by DAPI.

FIG. 13: Differentiated HNSCs/LHX8 in co-culture with law and 2 cells. Cells were double immunofluorescence stained with (a) β III-tubulin (green) and (b) CHAT (red), markers for colinergic neurons (c) co-localization of β IIItubulin and CHAT. (20× magnification) blue signal is a counter staining for nuclei for DAPI. (d) insert for non0specific staining for c β III-tubulin and CHAT, respectively.

FIG. 14 Differentiated HNSCs/Lhx8 in co-culture with LA-N-2 cells. A) βIII-tubulin (green) and b) ChAT (red), markers for cholinergic neurons, c) co-localization of βIIItubulin & ChAT. Blue signal is a counter staining for nuclei by DAPI (40× magnification).

FIG. **15** Differentiated non-transfected HNSCs in co-culture with LA-N-2 cells. Cells were double-immunofluorescence stained with β III-tubulin (green) and nuclei counter staining by DAPI (Blue). No Chat-positive neurons were observed. (a-b) 10× and (c) 20× magnification, respectively.

FIG. **16** Differentiated non-transfected HNSCs in co-culture with LA-N-2 cells. Cells were double-immunofluorescense stained with (a-b) β III-tubulin (green) and (c) GFAP (red) markers for neurons and astrocytes, respectively. Blue signal is a counter staining for nuclei by DAPI.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

In reviewing the detailed disclosure which follows, and the specification more generally, it should be borne in mind that all patents, patent applications, patent publications, technical publications, scientific publications, and other references referenced herein are hereby incorporated by reference in this application in order to more fully describe the state of the art to which the present invention pertains.

Reference to particular buffers, media, reagents, cells, culture conditions and the like, or to some subclass of same, is not intended to be limiting, but should be read to include all such related materials that one of ordinary skill in the art would recognize as being of interest or value in the particular context in which that discussion is presented. For example, it is often possible to substitute one buffer system or culture medium for another, such that a different but known way is used to achieve the same goals as those to which the use of a suggested method, material or composition is directed.

It is important to an understanding of the present invention to note that all technical and scientific terms used herein, unless defined herein, are intended to have the same meaning as commonly understood by one of ordinary skill in the art. The techniques employed herein are also those that are known to one of ordinary skill in the art, unless stated otherwise. For purposes of more clearly facilitating an understanding the invention as disclosed and claimed herein, the following definitions are provided.

DEFINITIONS

Stem cells are undifferentiated cells that exist in many tissues of embryos and adult organisms. In embryos, blastocyst stem cells are the source of cells that differentiate to form the specialized tissues and organs of the developing fetus. In adults, specialized stem cells in individual tissues are the source of new cells, replacing cells lost through cell death due to natural attrition, disease, or injury. Stem cells may be used as substrates for producing healthy tissue where a disease, disorder, or abnormal physical state has destroyed or damaged normal tissue.

Five defining characteristics of stem cells have been 5 advanced (from Weiss et al., 1996). That is, stems cells generally are recognized as having the ability to:

- 1. Proliferate: Stem cells are capable of dividing to produce daughter cells.
- 2. Exhibit self-maintenance or renewal over the lifetime of 10 the organism: Stem cells are capable of reproducing by dividing symmetrically or asymmetrically to produce new stem cells. Symmetric division occurs when one stem cell divides into two daughter stem cells. Asymmetric division occurs when one stem cell forms one 15 new stem cell and one progenitor cell. Symmetric division is a source of renewal of stem cells. This permits stem cells to maintain a consistent level of stem cells in an embryo or adult mammal.
- 3. Generate large number of progeny: Stem cells may pro- 20 duce a large number of progeny through the transient amplification of a population of progenitor cells.
- 4. Retain their multilineage potential over time: The various lines of stem cells collectively are the ultimate source of differentiated tissue cells, so they retain their 25 ability to produce multiple types of progenitor cells, which in turn develop into specialized tissue cells.
- 5. Generate new cells in response to injury or disease: This is essential in tissues which have a high turnover rate or which are more likely to be subject to injury or disease, 30 such as the epithelium or blood cells.

Thus, key features of stem cells include their capability of self-renewal, and their capability to differentiate into a range of end-stage differentiated tissue cells.

By "neural stem cell" (NSC) is meant a cell that (i) has the 35 potential of differentiating into at least two cell types selected from a neuron, an astrocyte, and an oligodendrocyte, and (ii) exhibits self-renewal, meaning that at a cell division, at least one of the two daughter cells will also be a stem cell. Generally, the non-stem cell progeny of a single NSC are capable of 40 differentiating into neurons, astrocytes, Schwann cells, and oligodendrocytes. Hence, a stem cell such as a neural stem cell is considered "multipotent" because its progeny have multiple differentiative pathways. Under certain conditions an NSC also may have the potential to differentiate as another 45 non-neuronal cell type (e.g., a skin cell, a hematopoietic cell, a smooth muscle cell, a cardiac muscle cell, a skeletal muscle cell, a bone cell, a cartilage cell, a pancreatic cell or an adipocyte).

By "Human Neural Stem Cell" ("HNSC") is meant a neural stem cell of human origin. A HNSC may be of fetal origin, or adult origin from a neural source, or may be derived from other cell sources, such as by de-differentiating a cell of mesenchymal origin. As to the latter, for example see U.S. application serial number 2003/0219898, which is incorpostrated by reference, inter alia, specifically for this teaching. HNSCs of the invention are distinguished from natural HNSCs by their adaptation for proliferation, migration and differentiation in mammalian host tissue when introduced thereto. 60

By a "population of cells" is meant a collection of at least ten cells. A population may consist of at least twenty cells, or of at least one hundred cells, or of at least one thousand or even one million cells. Because the NSCs of the present invention exhibit a capacity for self-renewal, they can be 65 expanded in culture to produce a collection of large numbers of cells.

By "potent cell" is meant a stem cell that has the capability to differentiate into a number of different types of end-stage cell types, and to self-renew, and may include stem cells classified as pluripotent, multipotent, or cells more differentiated than multipotent (i.e., a dedicated progenitor) under different stem cell classification schemes.

By "a presumptive end-stage cell" is meant a cell that has acquired characteristics of a desired end-stage cell type, but which has not been conclusively identified as being the desired end-stage cell. A presumptive end-stage cell possesses at least two, and often more, morphological and/or molecular phenotypic properties of the desired end-stage cell.

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, for example, Molecular Cloning A Laboratory Manual, 3rd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 2001); DNA Cloning, Volumes I and II (D. N. Glover ed., 1985); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al., U.S. Pat. No. 4,683,195; Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Methods In Enzymology, Vols. 154 and 155 (Wu et al. eds.), Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook Of Experimental Immunology, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).

U.S. Patent Application Nos. 2003/0219898, 2003/ 0148513, and 2003/0139410 are incorporated by reference to the extent they are not inconsistent with the teachings herein. The first two of these patent applications describe multiple uses of increased potency cells obtained from the taught methods, and in particular, the implantation of stem cells for different therapeutic treatments of neurological trauma and degenerative conditions. The third patent application is directed to the use of certain compounds to stimulate proliferation and migration of stem cells. Those skilled in the art will readily appreciate that the cells of the present invention could be obtained, or their effectiveness enhanced, by combining with the teachings of the aforementioned patent applications, without undue experimentation.

The present invention is directed to compositions, methods and systems that provide for increased percentage of neural stem cells and other multipotent or potent stem cells to become committed, or predisposed, to differentiate to a desired end-stage differentiated nerve cell. More particularly, the present invention utilizes the introduction into such a stem cell of a nucleic acid sequence comprising a developmental control gene. A developmental control gene as used in the present invention may encode a transcription factor, cellsurface molecule, or a secreted signal molecule (See Fundamental Neuroscience, Zigmond, Bloom, Landis, Roberts and Squire, Academic Press, 1999, Chapter 15). Examples below provide details of the introduction of three transcription factor type genes-Lhx8 and Gbx1 that improve differentiation of human neural stem cells (HNSCs) to cells having characteristics of cholinergic neurons, and Hath1 that improves differentiation of HNSCs to cells having characteristics of inner ear hair cells (IEHCs). The effectiveness of these single-gene introductions to such cells is unexpected and surprising in view of the subtlety and complexity of differentiation of multipotent stem cells to cells such as neural cells like cholinergic nerve cells and inner ear hair cells. Other development control genes having capability to achieve similar desired results are disclosed.

The present invention advances the art by demonstrating the utility, in multipotent stem cells, of introducing for 10 expression a nucleic acid sequence that comprises a desired developmental control gene. One example of such introducing is transfection by a vector comprising the nucleic acid sequence. After such introducing, the introduced developmental control gene is expressed in the cell (or its progeny), at 15 least transiently. By so altering a multipotent stem cell, the present invention provides for more consistent differentiation to a desired functional cell type, such as a cholinergeric nerve cell. In doing so, this is believed to reduce known risks of this type of cell transplantation, such as the risk of tumor growth 20 upon implantation of cells from pluripotent embryonic cell cultures.

Thus, in some embodiments the present invention is directed to biasing a multipotent cell such that the cell becomes programmed, or biased, to differentiate into a 25 desired cell type under appropriate external conditions. This is done in some embodiments so that in a pre-implantation cell culture a greater percentage of cells are either pre-disposed to differentiate to and/or do differentiate to a desired cell type. More particularly, in certain embodiments of this 30 biasing, the cell is transformed so it expresses a certain factor that biases the same cells to differentiate to a desired cell type upon a later implantation to a particular tissue in a living organism. In such embodiments, this improves a differentiation ratio so that a higher percentage of cells introduced into 35 a particular cell medium, a tissue culture, or a living organism in a particular location differentiate into the end-stage differentiated cell type that is desired. Without being bound to a particular theory, this is believed to increase the probability of success and overall effectiveness, and to decrease the risks 40 associated with implantation of cells obtained from embryonic stem cells or embryonic-cell-like cells.

While not meant to be limiting as to the type of nucleic acid sequence introduced, examples herein utilize introduction to a cell of a nucleic acid sequence comprising a homeobox 45 gene. This is a gene group that includes a number of known developmental control genes. A homeobox gene is a gene containing an approximately 180-base-pair segment (the "homeobox") that encodes a protein domain involved in binding to (and thus regulating the expression of) DNA. The 50 homeobox segment is remarkably similar in many genes with different functions. However, specific homeobox genes are known to operate at different stages, and in different tissue environments, to yield very different specific results. For example, in relatively early embryological development in 55 the vertebrate embryo, expression of genes of the Hox family of homeobox genes appears to affect development of the brain based on position along the anterior/posterior axis. This is believed to control identity and phenotypic specializations of individual rhombomeres. (Fundamental Neuroscience, Zig- 60 mond et al., p. 435). Later in development, LIM homeobox gene expression is associated with the projection pattern of developing primary motor neurons, and more generally, expression of a particular combination of LIM homeobox genes appears to be related to motor neuron subtype identity 65 and to targeting specificity (Fundamental Neuroscience, Zigmond et al., p. 507). Also, some LIM homeobox genes appear

to affect developmental progression, rather than fate, of motor neurons, which suggests a role of cell-to-cell signaling in the embryo to fully effectuate the differentiation in vivo (Fundamental Neuroscience, Zigmond et al., pp. 443-444). These highly specialized and variable roles for homeobox genes in general, and for LIM family homeobox genes more particularly, demonstrate the subtle, specific, and highly variable effects that these genes may have on cell and tissue development and differentiation.

Further with regard to function of homeobox genes, these genes encode transcriptional regulators that play critical roles in a variety of developmental processes. Although the genetic and developmental mechanisms that control the formation of forebrain cholinergic neurons are just beginning to be elucidated, it is known that the vast majority of forebrain cholinergic neurons derive from a region of the subcortical telencephalon that expresses the Nkx2-1 homeobox gene.

It has recently been reported that Nkx2-1 appears to specify the development of the basal telencephalon by positively regulating transcription factors such as the LIM-homeobox genes Lhx8 (also known as L3 or Lhx7) and Gbx1, which are associated with the development of cholinergic neurons in the basal forebrain (Zhao et al., 2003; Asbreuk et al., 2002, Waters et al., 2003).

In the spinal cord, IsL1, Lhx1, Lhx3 and Lhx4 have been shown to be important for the development of spinal cord cholinergic neurons (Pfaff et al., 1996; Sharma et al., 1998; Kania et al., 2000). Given that the spinal cord cholinergic neurons are reported to require multiple LIM-homeobox genes for their development, it is expected that Lhx8 is not the only LIM-homeobox gene that is required in generating telencephalic cholinergic neurons. Other candidates are Lhx6 and IsL1, which are also expressed in the basal telencephalon (Marin et al., 2000). Also, it is suggested that Dlx1/2 and Mash, though not directly regulating Lhx8, participate in controlling the number of cholinergic neurons that are formed in the telencephalon (Marin et al., 2000).

Thus, at a minimum, developmental control genes that may be used in the present invention to transfect cells to bias those cells (or their progeny) to differentiate to a desired end-stage cell type, here that cell type being cholinergic neurons, include, but are not limited to Lhx8, Gbx1, Lhx6, IsL1, Dlx1/2 and Mash.

The Human Neural Stem Cells (HNSCs), such as discussed in the examples below, are obtained from cultures that were started from clones obtained from human fetal brain tissue. One lineage was obtained by isolating individual cells from neurospheres of a fetal brain tissue sample obtained from Cambrex, and ultimately identifying one multipotent stem cell for clonal propagation. A second lineage was obtained by isolating a desired multipotent cell from a 9-week old fetal brain (Christopher L. Brannen and Kiminobu Sugaya, Neuroreport 11, 1123-8 (2000)). The HNSCs so obtained were maintained in serum-free medium, and have been demonstrated to have the capability to differentiate into neurons and glial cells such as astrocytes and dendrocytes.

The following examples are provided to further disclose the genesis, operation, scope and uses of embodiments of the present invention. These examples are meant to be instructive, and illustrative, and not to be limiting as to the scope of invention as claimed herein. These examples are to be considered with the referred to drawings.

EXAMPLE 1

This example demonstrates that transfection of a human neural stem cell with Hath1 results in the transfected cell (or its progeny) differentiating into a cell having markers of an inner ear hair cell (IEHC). Hath1 (in humans) and Math1 (in mice) are basic helix-loop-helix transcription factors (and homologs of the Drosophila gene atonal) that are expressed in inner ear sensory epithelia. Since embryonic Math1-null mice failed to generate cochlear and vestibular hair cells, it appears to be required for the generation of inner ear hair cells (Bermingham N A, Hassan B A, Price S D, Vollrath M A, Ben-Arie N, Eatock R A, Bellen H J, Lysakowski A, Zoghbi H Y. 1999. Math1: An essential gene for the generation of inner ear hair cells. Science 284 (June 11): 1837-1841). Fate determination of mammalian IEHC is generally completed by birth. However, overexpression of Math1 in postnatal rat cochlear explant cultures resulted in production of extra hair cells from columnar epithelial cells located outside the sen- 15 sory epithelium, which normally give rise to inner sulcus cells. Math1 expression also facilitated conversion of postnatal utricular supporting cells into hair cells (Zheng, GL, Gao Wq. 2000. Overexpression of Hath1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neuro- 20 science June; 3(6):580-6). In vivo, Math1 overexpression leads to the appearance of immature hair cells in the organ of Corti and new hair cells adjacent to the organ of Corti in the interdental cell, inner sulcus, and Hensen cell regions, indicating nonsensory cells in the mature cochlea retain the com- 25 petence to generate new hair cells after over expression of Math1 (Kawamoto K, Ishimoto S, Minoda R, Brough D E, Raphael Y. 2003. Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci June 1; 23(11):4395-400). Based on the above-summarized work, it 30 was hypothesized that Hath1 may be necessary, and sufficient as a single introduced gene for expression in a multipotent neural stem cell, to positively affect differentiation to an IEHC, or to a cell having characteristics of an IEHC.

A Hath1 gene (SEQ ID NO:4) was amplified from the 35 *homo sapiens* BAC clone RP11-680J17 by PCR and then cloned it into a mammalian expression directional cloning vector, pcDNAHismax TOPO TA (See FIG. 1; 6× His tag disclosed as SEQ ID NO: 16). Upon the insertion of the Hath1 gene expressible sequence into the directional cloning vector, 40 the expressible sequence was operatively linked to the CMV promoter, and was also positioned upstream (with regard to reading) of a polyadenylation transcription termination site. The clone was confirmed by sequencing of the insert.

An established a non-serum HNSC culture system was 45 utilized to investigate the differentiation of human neural stem cells (HNSCs) within a defined condition. (Christopher L. Brannen and Kiminobu Sugaya, Regeneration and Transplantation, 11:5, 1123-1128 (2000)). The serum-free supplemented growth medium consisted of HAMS-F12 (Gibco, 50 BRL, Burlington, ON), antibiotic/antimycotic mixture (1:100, Gibco), B27 (1:50, Gibco), human recombinant FGF-2 and EGF (20 ng/ml each, R and D Systems, Minneapolis, Minn.), and heparin (5 ug/ml, Sigma, St. Louis, Mo.). Cells were maintained in 20 ml of this medium at 37° C. in a 55 5% CO₂ humidified incubation chamber.

The mammalian expression vector containing Hath1 gene was transfected into HNSCs by using the Neuroporter Kit (Gene Therapy Systems, Inc. San Diego, Calif.) and Hath 1 gene expression was confirmed by RT-PCR. These Hath1- 60 transfected HNSCs were differentiated for 7 days by the depletion of mitotic factors (FGF-2, EGF) from the culture media. After the differentiation the cells were fixed for immunocytochemistry and Electron Microscopy.

The immunocytochemistry revealed the existence of cells 65 expressing calretinin, a hair cell marker, which were immunoreactive in this culture. These calretinin immunopositive

cells resembled morphology of IEHC. The calretinin expression in the culture was also confirmed by Western blot, which showed single band specific to calretinin molecular weight (29 kD). Further electron microscopy analysis of the cells also showed a typical IEHC morphology. These results indicate that HNSCs transfected with a vector comprising a Hath1 gene differentiate into IEHCs or into cells having characteristics of IEHCs. Comparisons with non-transfected controls using Western blot and room temperature PCR showed the presence of Hath1 protein and Hath1 mRNA in cells transfected with Hath1, but not in the controls.

Thus, embodiments of the present method provide for improved approaches to obtain IEHCs, or cell having characteristics of IEHCs, that are derived from HNSCs. Embodiments of the present invention provide a higher percentage of a population of cells biased, or disposed, to differentiate to IEHCs, or to cells having characteristics of IEHCs. The HNSCs utilized in this example are readily and continuously cultured in serum-free culture medium. Without being limited, in vitro and in vivo studies and trials using cells so obtained from HNSCs may include electrophysiological assessment of the cells and investigation of functional recovery after transplantation of the cells into the animal model of deafness. Positive findings in such pre-clinical studies may advance the art farther toward treatment of deafness via cell transplantation therapy using IEHCs produced from HNSCs. Material and Methods

Hath 1 Transfection

The human Hath1 gene (SEQ ID NO:1) is amplified from the *Homo sapiens* BAC clone RP11-680J17 by PCR, using a forward primer (5'-TCCGATCCTGAGCGTCCGAGCCTT-3', SEQ ID NO:14) and reverse primer (5'-GCTTCTGTCAC-CTTCCTAACTTGCC-3', SEQ ID NO:15). The PCR amplification is conducted in 20 μ l volumes containing the BAC clone (100 ng), 1× amplification buffer, 1 μ M of each primer, dNTP Mix (250 μ M), and Taq DNA Polymerase (2.5 U). The PCR condition is 95° C. (30"), 59° C. (30"), 72° C. (60") for 35 cycles, with an initial denaturation of 95° C. (5') and final elongation of 72° C. (15'). The PCR amplified fragment is cloned into a directional pcDNAHismax TOPO TA vector and the clone is confirmed by sequencing of the insert.

The gene expression of Hath1 is assessed by RT-PCR with the following condition: 95° C. (60"), 56° C. (60"), 72° C. (60") for 35 cycles, with an initial denaturation of 95° C. (5') and final elongation of 72° C. (15'). The Hath1 gene is transfected into Human Neural Stem Cells (HNSCs) using the Neuroporter Kit. The Neuroporter kit utilizes a lipid-based transfection system for the use with cultured primary neurons, neuronal cell lines, and glial cells. DNA and Neuroporter are used in a ratio of 10 µg DNA/75 µl Neuroporter, utilizing 37.5 µl per well in a 6-well plate and with total volumes of 1.5 mL growth media per well. 10 µg of DNA is added to DNA Diluent to make a total volume of 125 µl; this is incubated for 5' at room temperature. 75 µl of the Neuroporter Reagent is added to serum-free media to make a final volume of 125 µl. These solutions are incubated for 10 minutes to allow Neuroporter/DNA complexes to form, and then added directly to the HNSCs in a 6-well plate. One day later, the media is replaced with fresh growth media; one day later, this is replaced with differentiation media (Basal Medium Eagle) to induce spontaneous differentiation. The cells are cultured for 1-2 weeks in a basal differentiation medium containing Eagle's salts and L-glutamine, which is not supplemented with FGF-2 or EGF, and is serum-free. RT-PCR

TRIzol reagent is used to extract RNA for RT-PCR and protein for a Western Blot. $6 \,\mu$ l of the template RNA is added

5

to 1× Reaction Mix, 1 µM of each Hath1-specific primer, and 1 µl of the RT-Platinum® Taq Mix. The total volume of the solution is 20 µl. The RT-PCR condition is 94° C. (15"), 59° C. (30"), 72° C. (60") for 40 cycles, with an initial denaturation of 55° C. (30') and 94° C. (5').

Immunocytochemistry The cells are fixed with 4% paraformaldehyde for 30' at

room temperature, washed in phosphate-buffered saline (PBS, pH 7.2), then blocked with 3% normal goat serum in PBS containing 0.05% Triton-X100 for 1 hour. The cells are 10 incubated with primary antibody calretinin overnight at 4° C., with a dilution factor of (1:2000) in PBS containing 0.05% Triton-X100.

Following PBST washing, the cells are incubated with secondary antibody biotinylated anti-rabbit made in goat in PBS containing 0.05% Triton-X100 (PBST), with a dilution factor of 1:200. This incubation takes 1 hour. The cells are washed with PBST, and incubated with ABC reagent for 1 hour. Following a PBS wash and staining with DAB for 5-8', the cells are washed with PBS and distilled water, then stained 20 with methyl green (5'). The cells are washed with water, ethanol, and xylene, coverslipped with permount, and ready for viewing with microscopy.

Western Blot

A Western Blot is performed to assay protein expression. 25 The protein is extracted with TRIzol reagent. 15 µl of the protein is loaded with the size marker on a PVDF membrane and run at 200 V and 110 mA/gel for 50'. The transfer is run overnight at 15V, 170.0 mA at 4° C. The membrane is then washed with PBST 2×10' while rotating, and blocked with 30 3% milk for 60'. This is washed 2×10' with PBST and blocked with the primary antibody calretinin (1:500) overnight at 4° C. After washing 3×5' with PBST the membrane is incubated with the secondary antibody (1:2000) and shaken for 1 hour. For detection, 7.5 mL of ECL solution is warmed to room 35 temperature and 187.5 µl of solution B is added to solution A. 7.5 mL is added to the membrane at RT for 5'. The membrane is then placed in an x-ray film cassette and exposed as needed for chemilumescent detection. 40

Electron Microscopy

Cells were fixed with 3% glutaraldehyde with cacodyate buffer 0.1M, and dehydrated with a series of alcohols beginning with 50% up to 100% absolute ethanol followed by hexamethyldislazne (HMDS). The cultured cells were allowed to air-dry at room temperature. The specimens were 45 attached to aluminum stubs using double sided carbon coated tape, sputter-coated with Platinum and palladium using the Cressington 208 HR High Resolution Coater. Samples were viewed with a Jeol 6320F Field Emission Microscope (high resolution images) and recorded with a digital camera. 50 Samples were also viewed with the Hitachi Variable pressure microscope in V-P mode (variable pressure mode) and digitals were captured.

Results

A non-serum HNSC culture system was utilized (Christo- 55 pher L. Brannen and Kiminobu Sugaya, Regeneration and Transplantation, 11:5, 1123-1128 (2000)). This culture system provides for the differentiation and expansion of HNSCs in vitro in the absence of serum. This system provides for the observation of differentiation of HNSCs within a defined 60 condition. These HNSCs have been cultured in a medium consisting of DMEM/F12, antibiotic-antimycotic mixture (1:100), B-27 supplement (1:50), human recombinant FGF-2 and EGF (20 ng/ml each), and heparin (5 µg/ml). These cells have been maintained at 37° C. in a 5% CO2 humidified 65 incubation chamber for more than 3 years in the lab. These cells are CD133- (a stem cell marker, which is known to be

expressed in stem cells) positive, and GFAP- and BIII-tubulin-negative before differentiation. Upon differentiation, various differentiated cells typically express glial fibrillary acidic protein (GFAP), or ßIII-tubulin, which are glial and neuronal markers, respectively.

Preferential differentiation of HNSCs into IEHCs can be induced in vitro by the transfection of Hath1. The human Hath1 gene was amplified from the Homo sapiens BAC clone RP11-680J17 by PCR and cloned into a directional pcDNA-Hismax TOPO TA vector. This was confirmed by sequencing of the insert. After confirming expression of the gene by RT-PCR, the Neuroporter kit was utilized to tranfect HNSCs. These HNSCs were known to be viable and capable of differentiation, aggregrating in neurospheres when multipotent. Once they began the process of differentiation, they left their neurospheres. After allowing 7 days for differentiation, these cells were either stained for hair cell specific markers or assayed for protein expression. Via immunocytochemistry, the hair cell marker calretinin was identified on certain cells (FIG. 2). Via RT-PCR, the expression of this protein XX clarify which figure or protein? was also verified (FIG. 3).

The presence of the actual protein calretinin on the cell surface was determined via Western Blot. Seven days for differentiation was allowed before any analysis of the cells. Protein was isolated from the cells and calretinin was identified in the cell isolate (FIG. 4).

Using Transmission Electron Microscopy, cells transfected with Hath1 and grown to allow for differentiation were visualized. A subset of the cells exhibited distinct hair-like projections. These were the actual hairs from the transfected HNSCs that differentiated into cells having this characteristic feature of IEHCs (FIGS. 5 and 6). Discussion

In order to replace damaged IEHCs, a renewable source must be created. The HNSCs cultured in serum-free medium were shown to have the ability to become transfected by Hath1 and then differentiate in vitro into IEHCs, or cells having characteristics of IEHCs. In the present example, transfection with and expression of Hath1 appears to be an essential step in the genesis from HNSCs to IEHCs, or cells having characteristics of IEHCs.

Before transfection, HNSCs do not express Hath1. Following transfection with the Neuroporter Kit, they express this gene in their DNA as verified by RT-PCR. They also produce the hair cell specific marker calretinin as verified by immuncytochemistry and Western Blot. Furthermore, actual hairs from the transfected cells can be visualized through electron microscopy. Thus, characteristics of IEHCs are shown by these data, and it appears that these cells either are end-stage IEHCs or are presumptive IEHC cells in that they have at least two characteristics of IEHCs.

Cells expressing IEHC markers and differentiating into cells with hairlike extremities have been generated in this example. These methods, and the cells produced by the methods of the present invention, as shown in this example, advance the art of differentiating multipotent stem cells toward obtaining end-stage neuron-type cells.

EXAMPLE 2

Introduction

A cholinergic deficit is one of the primary features of Alzheimer's disease (AD), where there is a marked degeneration of long-projecting axons of cholinergic neurons in the basal forebrain and target areas in the hippocampus and cerebral cortex. Recent progress in stem cell technologies suggests the probability of using neuroreplacement strategies in AD therapy, although several hurdles are implicated: i) is it possible to generate large numbers of cholinergic neurons stem cells; and ii) can long-projecting cholinergic neurons be replaced? Toward improving the ability to conduct 5 research in the area of cell implantation and replacement therapies, and toward achieving desired results in later-developed therapies, embodiments of the present invention are directed to bias human neural stem cells (HNSCs) to differentiate to cells having characteristics of cholinergic neurons 10 through genetic manipulation of endogenous neural precursors in situ.

The LIM-homeobox gene Lhx8 has been reported to be crucial for the proper development of basal forebrain cholinergic neurons in mouse (Zhao et al., 2003; Mori et al., 2004). 15 Lhx8 is expressed in progenitor and postmitotic cells, suggesting that it may have an important role in specification of neural precursor cells and maintenance of phenotype in differentiating and mature neurons. Furthermore, previous studies using the human neuroblastoma cell line, LA-N-2, have 20 demonstrated that treatment with retinoic acid (RA) further enhances cholinergic characteristics of these cells, thus providing a good in vitro model of cholinergic neurons (Crosland, 1996).

The present example utilizes an in vitro assay cell co- 25 culture model with plated RA-differentiated LA-N-2 cells and membrane inserts containing Lhx8-transfected HNSCs, to assess whether the Lhx8-transfected HNSCs adopt a cholinergic neuronal fate. The rationale behind this co-culture model is that HNSCs are influenced by intrinsic as well as 30 extracellular factors in the microenvironment and therefore, able to respond by differentiating into specific cell types according to the environmental cues to which they are exposed. Culture of RA-differentiated LA-N-2 in basal media under a serum-free condition, results in the release of factors 35 to the Lhx8-transfected HNSCs in co-culture. It should be noted that there is no cell-to-cell contact in this co-culture system. Thus it is reasonable to assume that any modification of the cell fate of the genetically modified HNSCs by the cholinergic-differentiated LA-N-2 cells would come from 40 membrane permeable endogenous factor(s) released from the cholinergic-differentiated LA-N-2 cells. Materials & Method

HNSCs culture: Human NSCs were originally purchased from BioWhittaker, Walkersville, Md. These cells have been 45 expanded and passaged in a serum-free culture medium containing bFGF and EGF in our laboratory for over three years (Brannen & Sugaya, 2000). The HNSCs were cultured at a density of 50 spheres in 75 cm² culture flasks (Corning, Cambridge, Mass.) in 20 ml of a serum-free supplemented growth 50 medium consisting of HAMS-F12 (Gibco, BRL, Burlington, ON), antibiotic-antimycotic mixture (1:100, Gibco), B27 (1:50, Gibco), human recombinant FGF-2 and EGF (20 ng/ml each, R&D Systems, Minneapolis, Minn.) and heparin (5 $\mu g/ml,$ Sigma, St. Louis, Mo.) incubated at 37° C. in a 5% $\,$ 55 $\,$ CO² humidified incubation chamber (Fisher, Pittsburg, Pa.). To facilitate optimal growth conditions, HNSCs were sectioned into quarters every 2 weeks and fed by replacing 50% of the medium every 4-5 days.

LA-N-2 human neuroblastoma culture: LA-N-2 cells were 60 obtained from Dr. Jan Blusztajn (Boston University, Mass.). The cells were cultured in Leibovitz L-15 medium (Gibco, BRL, Burlington, ON) containing 10% fetal calf serum and antibiotic-antimyotic mixture (Gibco) in a humidified incubator at 37° C. without CO2. The medium was replaced every 65 3 days. For treatment with retinoic acid (RA), the cells were sub-plated at a density of $0.5-1 \times 10^{6}$ cells/plate using 0.25%

trypsin/1 mM EDTA (Gibco, BRL) and allowed to attach overnight. A fresh stock of 4 mM all-trans retinoic acid RA (Sigma, St. Louis, Mo.) was prepared in 100% ethanol under amber lighting. RA solution was diluted into culture media (final concentration. 10^{-6} M) and we replaced the media in the cells with the RA-containing media. The media was changed every 48 h during the differentiation of the cells, which was complete after 7-14 days.

Lhx8 subcloning: The mouse cDNA clone for Lhx8 (SEQ ID NO: 7, a kind gift from Dr Westphal, NIH, Bethesda, Md.) was inserted into the EcoR1 site of the pcDNA 3.1/Zeo mammalian expression vector (Invitrogen). Insertion was subsequently confirmed by restriction digestion and sequence analysis. This mouse Lhx8 (SEQ ID NO: 7) has high homology to the human sequence (70-80%).

Transfection: HNSCs were placed in 6-well poly-lysine coated plates and transfected with 4 µg pcDNA 3.1/Lhx8 plasmid using the Neuroporter transfection system (Gene Therapy Systems, see description in Example 1). Upon the insertion of the Lhx8 gene expressible sequence into the directional cloning vector, the expressible sequence was operatively linked to the CMV promoter, and was also positioned upstream (with regard to reading) of a polyadenylation transcription termination site. Lhx8 expression was confirmed after 48 hrs by RT-PCR using primers designed from the gene cDNA sequence; 5'TGCTGGCATGTCCGCT-GTCT' 3 (SEQ ID NO: 12, upper primer) and 5'CTG-GCTTTGGATGATTGACG'3 (SEQ ID NO: 13, lower primer). To initiate differentiation, HNSCs were placed in serum-free basal medium, and allowed to differentiate for 10-15 days in culture.

Co-cultures of transfected HNSCs and RA-treated LA-N-2 cells: HNSCs (\sim 5×10⁴) transfected with pcDNA 3.1/Lhx8 and non-transfected HNSCs (controls) were transferred into cell culture inserts with an appropriate pore size and suspended in basal media (in the absence of FGF-2 and EGF and without the addition of other extrinsic differentiation factors) over differentiated LA-N-2 cells plated in 6-well plates. For immunocytochemical analyses of HNSCs, the culture insert was removed after 10-20 days of co-culture and the HNSCs were fixed with 4% paraformaldehyde overnight at 4° C. Also, transfected HNSCs were cultured without the presence of differentiated LA-N-2 cells to assess the need for and effectiveness of the co-culturing.

Immunocytochemistry:

Following fixation, HNSCs were briefly washed 3×5 min in Phosphate buffered saline (PBS), then blocked with 3% normal donkey serum in PBS containing 0.05% Tween 20 (PBS-T) and incubated with goat IgG polyclonal anti-human ChAT (1:500, Chemicon), mouseIgG2b monoclonal anti-human βIII-tubulin (1:1000, Sigma) or rabbit anti-human glial filament protein (GFAP) (1:1000, Sigma) overnight at 4° C. The corresponding secondary antibodies (donkey anti-goat, donkey anti-mouse, and donkey anti-rabbit, respectively) conjugated to rhodamine or FITC (Jackson IR Laboratories, Inc.) were added for a 2 hr incubation at RT in the dark. Cells were then washed with PBS (3×5 min) and mounted with Vectashield with DAPI (Vector Laboratories, Calif.) for fluorescent microscopic observation. LA-N-2 cells were similarly treated to prepare for microscopic observations. Results

LA-N-2 cells treated with RA expressed Lhx8, β III-tubulin, and ChAT. This is demonstrated in FIGS. 7A-D. FIG. 7A shows LA-N-2 cells stained red indicating the presence of β III-tubulin. FIG. 7B shows LA-N-2 cells stained green indicating the presence of ChAT. FIG. 7C shows LA-N-2 cells stained green indicating the presence of NGF (blue stain indicating counter-staining for nuclei by DAPI). FIG. 7D (insert) shows non-specific staining for ChAT.

In vitro, HNSCs expressing the LIM homeobox gene, Lhx8, differentiated into mainly BIII-tubulin and ChAT-positive cells, in co-culture with LA-N-2 cholinergic cells. For the 5 transfected HNSCs cultured without the presence of differentiated LA-N-2 cells, there was no significant difference from the non-transfected HNSCs with regard to the number of cells differentiating to cells having characteristics of cholingeric cells. This demonstrated the need under these experi-10 mental conditions for the differentiated LA-N-2 cells (and the factors released by them).

Non-transfected HNSCs differentiated into mainly ßIIItubulin and GFAP positive cells in co-culture with LA-N-2 cholinergic cells.

With regard to percentage differences between non-transfected cells and transfected cells, in one trial less than two percent of non-transfected cells, and over 40 percent of transfected cells, were observed at the end of the trial to have characteristics of cholinergic neurons.

CONCLUSIONS AND COMMENTS

Expression of the LIM-homeobox gene Lhx8 triggers HNSCs to adopt a cholinergic neural lineage. Cells having the 25 noted characteristics of cholinergic neurons either are cholinergic neurons or presumptive cholinergic neurons in that they have at least two characteristics of cholinergic neurons.

LA-N-2 cells in co-culture with HNSCs expressing Lhx8, suggest that the microenvironment is also important for the 30 differentiation and survival of cholinergic neurons.

The present invention may provide utility by biasing human neural stem cells through genetically manipulation so that the cells so manipulated may be used in research, including as cells transplantable, such as in experiments, and thera- 35 pies, including regarding replacing damaged cholinergic neurons.

As to the efficiency of biasing to a desired cell type, and to observing cells having characteristics of a desired end-stage cell type, without being bound to a particular theory, it is 40 believed that the factors that increase the efficiency of biasing by transfection include: 1) inherent properties of the cell to be transfected; 2) inherent efficiency of the selected vector or method of transfection; 3) relative percentage of cells in which the introduced nucleic acid sequence enters the 45 nucleus compared to remains in the cytoplasm; and 4) number of copies of the nucleic acid sequence that are available for expression in the cell. Methods of transfection are wellknown in the art, and the use and modification of known approaches to transfection of a cell with a nucleic acid 50 sequence to be expressed therein to improve the percentage of biasing are within the scope of the present invention.

Thus, it is appreciated that in some embodiments of the present invention, a multipotent stem cell is transfected with a desired developmental control gene, and the expression of 55 the Lhx8 genes are transfected are as described above in the gene during in vitro culture biases the differentiation of that cell to a desired end-stage differentiated cell. In other embodiments, the multipotent stem cell may be transfected in vivo with a developmental control gene whose expression biases transfected cells to differentiate into a desired end- 60 stage cell. In any of such embodiments, accessory cells may provide factors that are needed for, or that assist with, the differentiation of the transfected cell. These accessory cells, such as the co-cultured LA-N-2 cells in the above example, need not be in contact with the transfected cells, demonstrat- 65 ing here that the factors are membrane permeable. These factors may include the same factor that is expressed by the

transfected gene, or may be other factors known in the art or later determined to be useful in achieving a desired differentiation.

Also, it is appreciated that multipotent stem cells may be cultured without an accessory cell, and may receive factors by direct addition of factors to the culture medium, or such factors may be released by cells at a site of implantation, or may be added to a site of implantation.

EXAMPLE 3

Using the same vector formation and transfection methods as in Example 2, the Human Lxh8 gene (SEQ ID NO: 6) is transfected into HNSCs. Transfected NHSC cells are cultured in a first treatment that includes LA-N-2 cells that are treated with RA and that express both Lhx8 and ChAT. A co-culture control comprises NHSCs that are not transfected but that are in the same culture vessel as LA-N-2 that are treated with RA $_{20}$ and that express both Lhx8 and ChAT. For the first treatment and the co-culture control, HNSC cells are placed in cell culture inserts with an appropriate pore size and suspended in basal media (in the absence of FGF-2 and EGF and without the addition of other extrinsic differentiation factors) over differentiated LA-N-2 cells plated in 6-well plates.

Immunochemistry follows the same procedure as in Example 2 above.

Results indicate that HNSCs transfected with the Human Lxh8 gene (SEQ ID NO: 6) also are predisposed, or biased, to differentiate into cells that have characteristics of cholinergic neurons. Observable results include cells that are positive for βIII-tubulin and ChAT.

EXAMPLE 4

An additional development control gene, Gbx1 sequence (SEQ ID NO: 9), is transfected into HNSCs and is evaluated as to its capacity to bias HNSCs to differentiate to cholingeric cells, or to cells having characteristics of cholinergic cells. The Gbx1 cDNA sequence (SEQ ID NO: 9) is inserted into the enhanced green fluorescent protein (EGFP) vector pEGFP-C1 ((BDBiosciences Clontech) at the EcoR1 site within the vector's multiple cloning site, which is 3' of a CMV promoter and the EGFP gene (See FIG. 8; sequence disclosed as SEQ ID NO: 17). Further, in that a question remains as to whether the percentage of biasing is related directly to the percentage of transfection of cells in population of cells exposed to a transfecting vector, the human Lhx8 cDNA (SEQ ID NO:6) independently also is inserted into a second pEGFP-C1 vector. This allows for visualization of both vectors, each bearing an expressible sequence for a different developmental control gene, in cells in respective cell populations into which these vectors are transfected.

Culture methods of the HNSCs into which the Gbx1 and Example 2.

This experiment provides an estimate of the ratio of HNSCs that become cholinergic neurons based on percent transfected of the population. Compared to non-transfected control HNSCs, the transfected cells have characteristics of the desired end-stage differentiated cell type, that is, a cholinergic neuron.

This demonstrates that a number of development control genes, particularly transcription factor genes, may be introduced into a HNSC to bias that cell (or its progeny) to differentiate to a cell having the characteristics of a desired endstage differentiated neural cell type.

20

EXAMPLE 5

Cell sorting technology is combined with the above-described embodiments of the present invention, particularly the vectors of Example 4, to improve the yield and selection 5 of desired cells having the bias to differentiate to a desired end-stage cell (or having already so differentiated). For example, not to be limiting, the introduction of genetic marking such as described above, using EFGP, and the use of Fluorescent Activated Cell Sorter (FACS) techniques is utilized to sort and select cells that have been transfected with the desired developmental control gene (which is linked to a marker on the vector). The FACS technology is well known in the art (See, for example, U.S. patent application number 2002/0127715 A1.)

Using FACS, HNSCs that are transfected with a vector bearing both EFGP and either Gbx1 or Lhx8 are sorted and thereby concentrated. This adds to the utility and effectiveness of the biasing by reducing the number and percentage of cells that are not transfected.

The above examples utilize specific sequences of genes incorporated into respective vectors and introduced into HNSCs. However, the present invention is not meant to be limited to the specifics of these examples. First, in addition to Math1, Hath1, Lxh8 and Gbx1, other developmental control 25 genes of interest include Lhx6, IsL1, Dlx1/2 and Mash. Examples of cDNA sequences, and corresponding translated polypeptide and protein sequences, of these and other developmental control genes are readily obtainable from the Gen-Bank online database (See ncbi.nlm.nih.gov/entrez/ 30 query.fcgi.), and these are hereby incorporated by reference for that purpose.

Also, as to the nucleic acid sequences comprising the genes of interest, specific sequences of which are provided in the above examples and in the above paragraph, it is appreciated 35 that substantial variation may exist in a nucleic acid sequence for a gene, yet a polypeptide or protein may nonetheless be produced in a cell from one of a number of such variant nucleic acid sequences, wherein such polypeptide or protein has a desired effect on the cell comparable to a polypeptide or 40 protein produced from one of the nucleic acid sequences specified in the above examples. That is, variations may exist in a nucleic acid sequence for a gene yet the variations nonetheless function effectively when substituted for a nucleic acid sequence of a specified gene. 45

Accordingly, embodiments of the present invention also include and/or employ nucleic acid sequences that hybridize under stringent hybridization conditions (as defined herein) to all or a portion of a nucleic acid sequence represented by any of the SEQ ID Nos. 1-13, or their complements, or to 50 sequences for IsL1, Dlx1/2, Mash, or their complements. The hybridizing portion of the hybridizing nucleic acid sequences is typically at least 15 (e.g., 20, 25, 30, or 50) nucleic acids in length. The hybridizing portion of the hybridizing nucleic acid sequence is at least 80%, e.g., at least 95%, or at least 55 98%, identical to the sequence of a portion or all of a nucleic acid sequence encoding one of genes identified by the noted Sequence ID numbers, or one of their complements. Hybridizing nucleic acids of the type described herein can be used, for example, as a cloning probe, a primer (e.g., a PCR primer), 60 or a diagnostic probe, as well as for a gene transfected into a cell as described in the examples above.

Hybridization of the oligonucleic acid probe to a nucleic acid sample typically is performed under stringent conditions. Nucleic acid duplex or hybrid stability is expressed as 65 the melting temperature or Tm, which is the temperature at which a probe dissociates from a target DNA. This melting

temperature is used to define the required stringency conditions. If sequences are to be identified that are related and substantially identical to the probe, rather than identical, then it is useful to first establish the lowest temperature at which only homologous hybridization occurs with a particular concentration of salt (e.g., SSC or SSPE).

Then, assuming that 1% mismatching results in a 1° C. decrease in the Tm, the temperature of the final wash in the hybridization reaction is reduced accordingly (for example, if sequences having >95% identity with the probe are sought, the final wash temperature is decreased by 5° C.). In practice, the change in Tm can be between 0.5° C. and 1.5° C. per 1% mismatch. Stringent conditions involve hybridizing at 68° C. in 5×SSC/5×Denhardt's solution/1.0% SDS, and washing in 0.2×SSC/0.1% SDS at room temperature. Moderately stringent conditions include washing in 3×SSC at 42° C. The parameters of salt concentration and temperature can be varied to achieve the optimal level of identity between the probe and the target nucleic acid. Additional guidance regarding such conditions is readily available in the art, for example, by Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, N.Y.; and Ausubel et al. (eds), 1995, Current Protocols in Molecular Biology, (John Wiley & Sons, N.Y.) at Unit 2.10.

The above-specified sequences are not meant to be limiting. For example, provided herein are additional identified sequences for Math1 (SEQ ID Nos:2 and 3), and Hath1 (SEQ ID NO:5). Numerous other similar sequences are known and searchable at GenBank. Also, the methods and compositions disclosed and claimed herein for other sequences may be practiced with Gbx1 (SEQ ID NO:9) and sequences similar to it.

Further, the sequences for introduced genes and polypeptides or proteins expressed by them may also be defined in terms of homology to one of the sequences provided in the above examples and discussion. In the context of the present application, a nucleic acid sequence is "homologous" with the sequence according to the invention if at least 70%, preferably at least 80%, most preferably at least 90% of its base composition and base sequence corresponds to the sequence specified according to the invention. According to the invention, a "homologous protein" is to be understood to comprise proteins which contain an amino acid sequence at least 70% of which, preferably at least 80% of which, most preferably at least 90% of which, corresponds to the amino acid sequence disclosed in (Gish and States, 1993); wherein corresponds is to be understood to mean that the corresponding amino acids are either identical or are mutually homologous amino acids. The expression "homologous amino acids" denotes those which have corresponding properties, particularly with regard to their charge, hydrophobic character, steric properties, etc. Thus, a protein may be from 70% up to less than 100% homologous to any one of the proteins expressed by one of the disclosed introduced genes.

Homology, sequence similarity or sequence identity of nucleic acid or amino acid sequences may be determined conventionally by using known software or computer programs such as the BestFit or Gap pairwise comparison programs (GCG Wisconsin Package, Genetics Computer Group, 575 Science Drive, Madison, Wis. 53711). BestFit uses the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2: 482-489 (1981), to find the best segment of identity or similarity between two sequences. Gap performs global alignments: all of one sequence with all of another similar sequence using the method of Needleman and Wunsch, J. Mol. Biol. 48:443-453 (1970). When using a sequence alignment program such as BestFit, to determine

the degree of sequence homology, similarity or identity, the default setting may be used, or an appropriate scoring matrix may be selected to optimize identity, similarity or homology scores. Similarly, when using a program such as BestFit to determine sequence identity, similarity or homology between 5 two different amino acid sequences, the default settings may be used, or an appropriate scoring matrix, such as blosum45 or blosum80, may be selected to optimize identity, similarity or homology scores.

Alternatively, as used herein, "percent homology" of two 10 amino acid sequences or of two nucleic acids is determined using the algorithm of Karlin and Altschul (Proc. Natl. Acad. Sci. USA 87:2264-2268, 1990), modified as in Karlin and Altschul (Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993). Such an algorithm is incorporated into the NBLAST and 15 XBLAST programs of Altschul et al. (J. Mol. Biol. 215:403-410, 1990). BLAST nucleic acid searches are performed with the NBLAST program, score=100, wordlength=12, to obtain nucleic acid sequences homologous to a nucleic acid molecule of the invention. BLAST protein searches are per- 20 formed with the XBLAST program, score=50. wordlength=3, to obtain amino acid sequences homologous to a reference polypeptide. To obtain gapped alignments for comparison purposes, Gapped BLAST is utilized as described in Altschul et al. (Nucleic Acids Res. 25:3389- 25 3402, 1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) are used. See ncbi.nlm. nih.gov.

Further, in addition to the homology, as indicated in certain 30 claims (i.e., for some embodiments), is a requirement that the homologous or hybridizable nucleic acid sequence or polypeptide or protein functions analogously to the specified sequence of which it is homologous or with which it is hybridizable. That is, the homologous or hybridizable variant func-35 tions to achieve the same result, i.e., to increase the probability of a transfected cell, or the percentage of a number of cells, that are biased to differentiate to a cell, or cells, respectively, having characteristics of a desired end-stage differentiated cell.

While the transfection into HNSCs in the above examples uses the Neuroporter approach (Gene Therapy Systems, Inc. San Diego, Calif.), it is appreciated that any known or laterdeveloped method of introduction of a nucleic acid sequence may be employed in the methods and systems, and to produce 45 the compositions, of the present invention. For example, and not to be limiting, introduction of a nucleic acid sequence may be effectuated by stable or transient transfection, lipofection by methods other than Neuroporter, calcium phosphate treatment, electroporation, infection with a recombi- 50 nant viral vector, and the use of vectors comprising a plasmid construct. Generally and collectively, these methods are considered to be included in the term "means to transfect," in the term "step for transfecting." Also, the use of the particular promoter and polyadenylation transcription termination site 55 are not meant to be limiting, as many promoter and transcription termination sites are known and used routinely in the art.

As to the use of different means to transfect, and in view of the above discussion of the relative percentage of cells biased to cells having characteristics of a desired end-stage cell type, 60 it is appreciated that types of transfection, cells that are transfected, and other factors, including post transfection conditions, affect the percentage of cells ultimately biased. In view of these factors, and considering the importance of the specific developmental control genes that are introduced to a cell 65 in certain embodiments of the present invention, in some embodiments the percentage of transfected cells biased

exceeds 40 percent, in other embodiments the percentage of transfected cells biased exceeds 50 percent, in other embodiments the percentage of transfected cells biased exceeds 65 percent, and in other embodiments the percentage of transfected cells biased exceeds 70 percent. However, it also is appreciated that determination of the percentage of cells that are in fact transfected in a given container of cells may be difficult to assess, the performance of the present invention in certain embodiments may be expressed in an alternative manner. That is, in some embodiments of the present invention in which a number of cells has been exposed to a selected method or means of transfection for the purpose of introducing a desired developmental control gene (such as Lhx8), the percentage of total cells that are biased to a desired end-stage cell type, or to a cell having characteristics of a desired endstage cell type, is at least 35 percent, in other embodiments such percentage of total cells exceeds 50 percent, and in other embodiments such percentage of total cells exceeds 70 percent

Further, it is appreciated that embodiments of the present invention are described as follows:

- 1. A neural stem cell, including a human neural stem cell, comprising an introduced nucleic acid sequence having an expressible developmental control gene, the expression of said gene being effective to increase the probability of differentiation of said cell to a desired neural cell type.
- 2. A neural stem cell, including a human neural stem cell, comprising an introduced nucleic acid sequence having an expressible developmental control gene, the expression of said gene being effective to increase the probability of differentiation of said cell to a cell having characteristics of a cholinergic neuron.
- 3. A neural stem cell, including a human neural stem cell, comprising an introduced nucleic acid sequence having an expressible developmental control gene, the expression of said gene being effective to increase the probability of differentiation of said cell to a cell having characteristics of an inner ear hair cell.
- 4. A neural stem cell, including a human neural stem cell, comprising an introduced nucleic acid sequence having an expressible developmental control gene, the expression of said gene being effective to increase the probability of differentiation of said cell to a cell having characteristics of a dopaminergic neuron.

The developmental control gene in the above first description of embodiments of the present invention may be selected from the group consisting of Math1, Hath1, Lhx8, Gbx1, Lhx6, IsL1, Dlx1/2, Mash and Nurr1. The developmental control gene in the above second description of embodiments of the present invention may be selected from the group consisting of Lhx8, Gbx1, Lhx6, IsL1, Dlx1/2, and Mash. The developmental control gene in the above third description of embodiments of the present invention may be selected from the group consisting of Math1 and Hath1. Finally, the developmental control gene in the above fourth description of embodiments of the present invention may be Nurr1, Pitx3 (SEQ ID NO: 13) or other later-identified specific genes.

Also, it is appreciated that the present invention, particularly for the genes Math1, Hath1, Lhx8, Gbx1, Lhx6, IsL1, Dlx1/2, and Mash, may be utilized in potent cells, that is, in cells that are considered to fall within the definitions of pluripotent, of multipotent, and of progenitor cells (i.e., more differentiated than multipotent yet capable of limited selfrenewal).

Based on the above examples and disclosure, in view of the knowledge and skill in the art, it also is appreciated that embodiments of the present invention also are used for any homeobox gene, so that a homeobox gene is transfected to a stem cell to effect a biasing of the stem cell to differentiate to a desired end-stage cell, or to a cell having characteristics of the end-stage cell. The stem cell may be a pluripotent or a ⁵ multipotent stem cell; alternatively invention embodiments transfecting homeobox genes may be practiced with progenitor cells as described herein. Cells so biased by these genes following the methods of the present invention also are considered to fall within the scope of embodiments of the present ¹⁰ invention.

EXAMPLE 6

Nkx2-5 Biases the Differentiation Toward the Development of Cardiac Cells

According to another embodiment, transfection with Nkx2-5 (SEQ ID NO: 12) biases the differentiation toward the development of cardiac cells. See FIG. **17**. Red=human 20 specific Troponin I, Green=Human cells. Following transfection, multipotent stem cells were cocultured with rat cardiomyocytes that provide environmental signals to allow the transfected cells to develop properly.

Further, and more generally, embodiments of the present 25 invention may be practiced by transfecting a stem or a progenitor cell with a nucleic acid sequence comprising a development control gene, so that the transfecting is effective to bias the cell to differentiate to a desired end-stage cell, or to a cell having characteristics of the end-stage cell. 30

Also, it is appreciated that the methods of the present invention may be applied to the daughter cells of multipotent cells, which may have begun some stages of differentiation but are still capable of being biased by transfection of appropriate developmental control genes as described herein, but 22

by virtue of initiating differentiation (or being less self-renewing) may by some opinions therefore not be considered to be multipotent cells. For the purposes of this invention, such daughter cells, which may be found in culture with the multipotent stem cells from which they arose, are termed "biasable progeny cells."

It is appreciated that embodiments of the present invention also may be defined and claimed with regard to the polypeptide or protein sequences expressed as a result of the transfections disclosed and discussed above. For example, not to be limiting, the peptide sequences, disclosed as the translation sequences in the attached Sequence Listing pages, and their expression in a transfected cell, are used to identify and/or characterize a characteristic and/or result of embodiments of the present invention. Translation sequences are obtainable from the respective GenBank database data entries for cDNAs as described herein, and those database entries are incorporated by reference for such information.

While a number of embodiments of the present invention have been shown and described herein in the present context, such embodiments are provided by way of example only, and not of limitation. Numerous variations, changes and substitutions will occur to those of skilled in the art without materially departing from the invention herein. For example, the present invention need not be limited to best mode disclosed herein, since other applications can equally benefit from the teachings of the present invention. Also, in the claims, meansplus-function and step-plus-function clauses are intended to cover the structures and acts, respectively, described herein as performing the recited function and not only structural equivalents or act equivalents, but also equivalent structures or equivalent acts, respectively. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims, in accordance with relevant law as to their interpretation.

SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 23 <210> SEQ ID NO 1 <211> LENGTH: 2144 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 1 60 togaccoacy cytocycoca cycytocyga totocyayty agagygygag gytoagagya 120 qqaaqqaaaa aaaaatcaqa ccttqcaqaa qaqactaqqa aqqtttttqt tqttqttqt copportat coccttoott gaactoogtt gccagcacot cotctaacac ggcacotcog 180 agccattgca gtgcgatgtc ccgcctgctg catgcagaag agtgggctga ggtaaaagag 240 ttqqqqqacc accatcqcca tccccaqccq caccacqtcc cqccqctqac qccacaqcca 300 cctgctaccc tgcaggcgag agaccttccc gtctacccgg cagaactgtc cctcctggat 360 ageacegace caegegeetg getgacteee actitgeagg geetetgeae ggeaegegee 420 gcccagtatc tgctgcattc tcccgagctg ggtgcctccg aggccgcggc gccccgggac 480 gaggetgaca gecagggtga getggtaagg agaagegget gtggeggeet cageaagage 540 cccqqqcccq tcaaaqtacq qqaacaqctq tqcaaqctqa aqqqtqqqqt tqtaqtqqac 600 gagettgget geageegeea gegageeeet teeageaaae aggtgaatgg ggtacagaag 660 720 caaaqqaqqc tqqcaqcaaa cqcaaqqqaa cqqcqcaqqa tqcacqqqct qaaccacqcc

US 8,513,017 B2

23

ttcgaccage tgegeaacgt tatccegtee tteaacaacg acaagaaget gteeaaatat

gagaccetae agatggeeca gatetaeate aaegetetgt eggagttget geagaeteee

aatgteggag ageaacegee geegeeeaca getteetgea aaaatgaeea eeateaeett

cgcaccgcct cctcctatga aggaggtgcg ggcgcctctg cggtagctgg ggctcagcca

-continued

gccccgggag ggggcccgag acctaccccg cccgggcctt gccggactcg cttctcaggc 1020 ccagetteet etgggggtta eteggtgeag etggaegett tgeaetteee ageettegag 1080 gacagggccc taacagcgat gatggcacag aaggacctgt cgccttcgct gcccgggggc 1140 1200 atcctgcagc ctgtacagga ggacaacagc aaaacatctc ccagatccca cagaagtgac ggagagtttt ccccccactc tcattacagt gactctgatg aggccagtta ggaaggcaac 1260 ageteeetga aaactgagae aaccaaatge eetteetage gegegggaag eeeegtgaea 1320 aatateeetg caccetttaa tttttggtet gtggtgateg ttgttageaa egaettgaet 1380 toggaogget geagetette caateceett cetectacet teteetteet etgtatgtag 1440 atactgtatc attatatgta cctttacgtg gcatcgtttc atggtccatg ctgccaatat 1500 getgetaaaa tgtegtatet etgeetetgg tetgggttte aettatttta taeettggga 1560 gttcatcctt gcgtgttgcg ctcactcaca aataagggag ttagtcaatg aagttgtttc 1620 cccaactgct tgagacccgc attgggtact ttactgaaca cggactattg tgttgttaaa 1680 atgcaggggc agataagagt atctgtagag cttagacacc aagtgtgtcc agcagtgtgt 1740 ctagcggacc cagaatacac gcacttcatc actggccgct gcgccgcctt gaagaaactc 1800 aactgccaat gcagagcaac ttttgatttt aaaaacagcc actcataatc attaaactct 1860 ttgcaaatgt ttgtttttgc aaatgaaaat taaaaaaaaa catgtagtgt caaaggcatt 1920 tggtcaattt tattttgctt tgttaacatt agaaaagtta tttattattg cgtatttgga 1980 cccattteta ettaattgee tttttttae atttetaet egagategtt ttatttgat 2040 ttagcaaatc cagttgccat tgctttatgt atgtatgctc ttttacaaat gataaaataa 2100 2144 <210> SEQ ID NO 2 <211> LENGTH: 2118 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 2 60 acctggtgtg cgatctccga gtgagagggg gagggtcaga ggaggaagga aaaaaaatca qaccttqcaq aaqaqactaq qaaqqttttt qttqttqttq ttcqqqqqctt atccccttcq 120 ttgaactggg ttgccagcac ctcctctaac acggcacctc cgagccattg cagtgcgatg 180 tcccgcctgc tgcatgcaga agagtgggct gaggtaaaag agttggggga ccaccatcgc 240 catecccade eqeaceacqt eceqeeqetq acqccacage cacetqetac cetqcaqgeq 300 agagacette cegtetacee ggeagaaetg teeeteetgg atageaeega eecaegegee 360 tggctgactc ccactttgca gggcctctgc acggcacgcg ccgcccagta tctgctgcat 420 teteecgage tgggtgeete egaggeegeg gegeeeeggg acgaggetga eageeagggt 480 gagetggtaa ggagaagegg etgtggegge etcageaaga geeeegggee egteaaagta 540 cgggaacagc tgtgcaagct gaagggtggg gttgtagtgg acgagcttgg ctgcagccgc 600 cagcgagccc cttccagcaa acaggtgaat ggggtacaga agcaaaggag gctggcagca 660 aacgcaaggg aacggcgcag gatgcacggg ctgaaccacg ccttcgacca gctgcgcaac 720

24

780

840

900

<211> HENG <212> TYPE: <213> ORGAN		usculus				
<400> SEQUE	ENCE: 3					
tcgacccacg	cgtccgccca	cgcgtccgga	tctccgagtg	agaggggggag	ggtcagagga	60
ggaaggaaaa	aaaaatcaga	ccttgcagaa	gagactagga	aggtttttgt	tgttgttgtt	120
cggggcttat	ccccttcgtt	gaactgggtt	gccagcacct	cctctaacac	ggcacctccg	180
agccattgca	gtgcgatgtc	ccgcctgctg	catgcagaag	agtgggctga	ggtaaaagag	240
ttgggggacc	accatcgcca	tccccagccg	caccacgtcc	cgccgctgac	gccacagcca	300
cctgctaccc	tgcaggcgag	agacetteee	gtctacccgg	cagaactgtc	cctcctggat	360
agcaccgacc	cacgcgcctg	gctgactccc	actttgcagg	gcctctgcac	ggcacgcgcc	420
gcccagtatc	tgctgcattc	tcccgagctg	ggtgcctccg	aggccgcggc	gccccgggac	480
gaggctgaca	gccagggtga	gctggtaagg	agaagcggct	gtggcggcct	cagcaagagc	540
cccgggcccg	tcaaagtacg	ggaacagctg	tgcaagctga	agggtggggt	tgtagtggac	600
gagettgget	gcagccgcca	gcgagcccct	tccagcaaac	aggtgaatgg	ggtacagaag	660

caaaqqaqqc tqqcaqcaaa cqcaaqqqaa cqqcqcaqqa tqcacqqqct qaaccacqcc

720

<210> SEQ ID NO 3 <211> LENGTH: 2144 <212> TYPE: DNA <213> ORGANISM: Mus musculus

gttatcccgt ccttcaacaa cgacaagaag ctgtccaaat atgagaccct acagatggcc 780 cagatetaca teaacgetet gteggagttg etgeagaete ceaatgtegg agageaaceg 840 ccgccgccca cagetteetg caaaaatgae caecateace ttegeacege etecteetat 900 gaaggaggtg cgggcgcctc tgcggtagct ggggctcagc cagccccggg agggggcccg 960 agacetaeee egeeegggee ttgeeggaet egetteteag geeeagette etetgggggt 1020 tactcggtgc agetggaege tttgeaette ceageetteg aggaeaggge eetaacageg 1080 atgatggcac agaaggacct gtcgccttcg ctgcccgggg gcatcctgca gcctgtacag 1140 gaggacaaca gcaaaacatc tcccagatcc cacagaagtg acggagagtt ttccccccac 1200 teteattaea gtgaetetga tgaggeeagt taggaaggea acageteeet gaaaaetgag 1260 acaaccaaat gcccttccta gcgcgcggga agccccgtga caaatatccc tgcacccttt 1320 aatttttggt ctgtggtgat cgttgttagc aacgacttga cttcggacgg ctgcagctct 1380 tccaatcccc ttcctcctac cttctccttc ctctgtatgt agatactgta tcattatatg 1440 tacctttacg tggcatcgtt tcatggtcca tgctgccaat atgctgctaa aatgtcgtat 1500 ctctgcctct ggtctgggtt tcacttattt tataccttgg gagttcatcc ttgcgtgttg 1560 cgctcactca caaataaggg agttagtcaa tgaagttgtt tccccaactg cttgagaccc 1620 gcattgggta ctttactgaa cacggactat tgtgttgtta aaatgcaggg gcagataaga 1680 gtatctgtag agettagaca ccaagtgtgt ccagcagtgt gtctagegga cccagaatae 1740 acgcacttca tcactggccg ctgcgccgcc ttgaagaaac tcaactgcca atgcagagca 1800 acttttgatt ttaaaaacag ccactcataa tcattaaact ctttgcaaat gtttgttttt 1860 gcaaatgaaa attaaaaaaa aacatgtagt gtcaaaggca tttggtcaat tttattttgc 1920 tttgttaaca ttagaaaagt tatttattat tgcgtatttg gacccatttc tacttaattg 1980 ccttttttt acattttcta ctcgagatcg ttttattttg atttagcaaa tccagttgcc 2040 attgetttat gtatgtatge tettttacaa atgataaaat aaaeteggaa aaaaaaaaaa 2100 2118 aaaaaaaaa aaaaaaaa

-continued

US 8,513,017 B2

25

US 8,513,017 B2

27

-continued

ttcgaccage tgegeaacgt tatecegtee tteaacaaeg acaagaaget gteeaaatat	780
gagaccctac agatggccca gatctacatc aacgctctgt cggagttgct gcagactccc	840
aatgtoggag agcaacogoo googoocaca gottootgoa aaaatgacca coatcacott	900
cgcaccgcct cctcctatga aggaggtgcg ggcgcctctg cggtagctgg ggctcagcca	960
gccccgggag ggggcccgag acctaccccg cccgggcctt gccggactcg cttctcaggc	1020
ccagetteet etgggggtta eteggtgeag etggaegett tgeaetteee ageettegag	1080
gacagggccc taacagcgat gatggcacag aaggacctgt cgccttcgct gcccgggggc	1140
atcctgcagc ctgtacagga ggacaacagc aaaacatctc ccagatccca cagaagtgac	1200
ggagagtttt ccccccactc tcattacagt gactctgatg aggccagtta ggaaggcaac	1260
ageteeetga aaactgagac aaccaaatge eetteetage gegeggggaag eeeegtgaca	1320
aatateeetg caccetttaa tttttggtet gtggtgateg ttgttageaa egaettgaet	1380
toggaogget geagetette caateceett ectectaeet teteetteet etgtatgtag	1440
atactgtatc attatatgta cctttacgtg gcatcgtttc atggtccatg ctgccaatat	1500
getgetaaaa tgtegtatet etgeetetgg tetgggttte acttatttta taeettggga	1560
gttcatcett gcgtgttgcg ctcactcaca aataagggag ttagtcaatg aagttgtttc	1620
cccaactgct tgagacccgc attgggtact ttactgaaca cggactattg tgttgttaaa	1680
atgcagggggc agataagagt atctgtagag cttagacacc aagtgtgtcc agcagtgtgt	1740
ctageggace cagaatacae geaetteate actggeeget gegeegeett gaagaaaete	1800
aactgccaat gcagagcaac ttttgatttt aaaaacagcc actcataatc attaaactct	1860
ttgcaaatgt ttgtttttgc aaatgaaaat taaaaaaaaa catgtagtgt caaaggcatt	1920
tggtcaattt tattttgctt tgttaacatt agaaaagtta tttattattg cgtatttgga	1980
cccatttcta cttaattgcc tttttttac attttctact cgagatcgtt ttattttgat	2040
ttagcaaatc cagttgccat tgctttatgt atgtatgctc ttttacaaat gataaaataa	2100
actoggaaaa aaaaaaaaa aaaaaaaaa aaaaaaaaaa aaaa	2144
<pre><210> SEQ ID NO 4 <211> LENGTH: 1572 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (1497)(1497) <223> OTHER INFORMATION: a, c, g, t, unknown or other <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (1504)(1504) <223> OTHER INFORMATION: a, c, g, t, unknown or other <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (1526)(1526) <223> OTHER INFORMATION: a, c, g, t, unknown or other <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (1526)(1526) <223> OTHER INFORMATION: a, c, g, t, unknown or other <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (1564)(1564) <223> OTHER INFORMATION: a, c, g, t, unknown or other <220> FEATURE:</pre>	
<400> SEQUENCE: 4 gtcctctgca cacaagaact tttctcgggg tgtaaaaact ctttgattgg ctgctcgcac	60
	100

gegeetgeee gegeeeteea ttggetgaga agacaegega eeggegegag gagggggttg 120 ggagaggggg ggggggggagae tgagtggege gtgeegett ttaaagggge geagegeett 180 cagcaaeegg agaageatag ttgeaegega eetggtgtgt gateteegag tggggggg 240

US 8,513,017 B2

29

agggtcgagg agggaaaaaa aaataagacg ttgcagaaga gacccggaaa gggccttttt

tttggttgag ctggtgtccc agtgctgcct ccgatcctga gcgtccgagc ctttgcagtg

caatgtcccg cctgctgcat gcagaagagt gggctgaagt gaaggagttg ggagaccacc

ategecagee ceageegeat cateteeege aacegeegee geegeegeag ceacetgeaa

-continued

ctttgcaggc gagagagcat cccgtctacc cgcctgagct gtccctcctg gacagcaccg 540 acceaegege etggetgget eccaetttge agggeatetg eaeggeaege geegeeeagt 600 atttgctaca ttcccccggag ctgggtgcct cagaggccgc tgcgccccgg gacgaggtgg 660 720 acqqccqqqq qqaqctqqta aqqaqqaqca qcqqcqqtqc caqcaqcaqc aaqaqccccq 780 ggccggtgaa agtgcgggaa cagctgtgca agctgaaagg cggggtggtg gtagacgagc tqqqctqcaq ccqccaacqq qccccttcca qcaaacaqqt qaatqqqqtq caqaaqcaqa 840 gacggctagc agccaacgcc agggagcggc gcaggatgca tgggctgaac cacgccttcg 900 accagetgeg caatgttate cegtegttea acaaegacaa gaagetgtee aaatatgaga 960 ccctqcaqat qqcccaaatc tacatcaacq ccttqtccqa qctqctacaa acqcccaqcq 1020 gaggggaaca gccaccgccg cctccagcct cctgcaaaag cgaccaccac caccttcgca 1080 ccgcggcctc ctatgaaggg ggcgcgggca acgcgaccgc agctggggct cagcaggctt 1140 ccggagggag ccagcggccg accccgcccg ggagttgccg gactcgcttc tcagccccag 1200 cttctgcggg agggtactcg gtgcagctgg acgctctgca cttctcgact ttcgaggaca 1260 gcgccctgac agcgatgatg gcgcaaaaga atttgtctcc ttctctcccc gggagcatct 1320 tgcagccagt gcaggaggaa aacagcaaaa cttcgcctcg gtcccacaga agcgacgggg 1380 aattttcccc ccattcccat tacagtgact cggatgaggc aagttaggaa ggtgacagaa 1440 gcctgaaaac tgagacagaa acaaaactgc cctttcccag tgcgcgggaa gccccgnggt 1500 taangateee egeaceettt aattingget etgegatggt egitgtitag eaaegaettg 1560 1572 gctncagatg gt <210> SEQ ID NO 5 <211> LENGTH: 1065 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEOUENCE: 5 60 atgtcccgcc tgctgcatgc agaagagtgg gctgaagtga aggagttggg agaccaccat 120 cgccagcccc agccgcatca tctcccgcaa ccgccgccgc cgccgcagcc acctgcaact ttqcaqqcqa qaqaqcatcc cqtctacccq cctqaqctqt ccctcctqqa caqcaccqac 180 240 ccacqcqcct qqctqqctcc cactttqcaq qqcatctqca cqqcacqcqc cqcccaqtat ttgctacatt ccccggagct gggtgcctca gaggccgctg cgccccggga cgaggtggac 300 ggccgggggg agctggtaag gaggagcagc ggcggtgcca gcagcagcaa gagccccggg 360 ccggtgaaag tgcgggaaca gctgtgcaag ctgaaaggcg gggtggtggt agacgagctg 420 ggetgeagee gecaacggge ceettecage aaacaggtga atggggtgea gaageagaga 480 cggctagcag ccaacgccag ggagcggcgc aggatgcatg ggctgaacca cgccttcgac 540 cagctgcgca atgttatccc gtcgttcaac aacgacaaga agctgtccaa atatgagacc 600 ctgcagatgg cccaaatcta catcaacgcc ttgtccgagc tgctacaaac gcccagcgga 660 ggggaacagc caccgccgcc tccagcctcc tgcaaaagcg accaccacca ccttcgcacc 720 geggeeteet atgaaggggg egegggeaae gegaeegeag etggggetea geaggettee 780

300

360

420

			-conti	nued		
ggagggagcc agcggccgac	cccgcccggg	agttgccgga	ctcgcttctc	agccccagct	840	
tctgcgggag ggtactcggt	gcagctggac	gctctgcact	tctcgacttt	cgaggacagc	900	
gccctgacag cgatgatggc	gcaaaagaat	ttgtctcctt	ctctccccgg	gagcatcttg	960	
cagccagtgc aggaggaaaa	cagcaaaact	tcgcctcggt	cccacagaag	cgacgggggaa	1020	
ttttcccccc attcccatta	cagtgactcg	gatgaggcaa	gttag		1065	
<210> SEQ ID NO 6 <211> LENGTH: 2393 <212> TYPE: DNA <213> ORGANISM: Homo	sapiens					
<400> SEQUENCE: 6						
agaggcaaga ggctagcggc	tggaccactt	gtgctggagt	ggtaaagaac	tatcatgaat	60	
ccatttactg aaagtgtcca	tttctgaact	caccctaaag	aggacaaaca	ccgcaaagta	120	
gttaaaagtc aggcattcgc	gtcggacgtc	tgggtttgaa	ttctgccctg	gcttgactgg	180	
aaacgcttcc cctatttctt	ccgtagcgga	ccgggagagc	ttactggcgc	tctgcgaacc	240	
ggctggaaag aaacaccgag	tcactcgtac	agactcttgg	tcgcagaact	tggctttccg	300	
ctattggtcc tccagaaccg	cttgaaacaa	ctggccccag	ctggcgcatc	agaccgcagt	360	
gaggaatgcc gcgggggcggg	tggcgaaggc	agggtctgcc	cgccagtgga	ttcccgggtg	420	
tcccgcgtgg agcaggcttg	cccagctggg	aagcccatca	aacctcagtc	ttggcccaca	480	
gtgggagaga gaccagtggg	tcccagacgg	aggccctcgc	ccgcttttgg	cgacctccac	540	
tggcgtgaat aaaagcaccc	ctctcttacc	ctcagaaact	gtgggtagca	aggtataaaa	600	
cggagtctgg gaccggtaag	tcccaaggtg	agcccgtata	cagctctgcc	atctctgagg	660	
ggttatgcag attctgagca	ggtgtcaggg	gctcatgtca	gaggagtgcg	ggcggactac	720	
agccctggcg gccgggagga	ctcgcaaagg	cgccggggaa	gagggactgg	tgagccccga	780	
gggagcgggg gacgaggact	cgtgctcctc	ctcggccccg	ctgtccccgt	cgtcctcgcc	840	
ccggtccatg gcctcgggct	ccggctgccc	tcctggcaag	tgtgtgtgca	acagttgcgg	900	
cctggagatc gtggacaaat	accttctcaa	ggtgaatgac	ctatgctggc	atgtccggtg	960	
tctctcctgc agtgtttgca	gaacctccct	aggaaggcac	accagctgtt	atattaaaga	1020	
caaagacatt ttctgcaaac	ttgattattt	cagaaggtat	ggaactcgct	gctctcgatg	1080	
tgggagacac atccattcta	ctgactgggt	ccggagagcc	aaggggaatg	tctatcactt	1140	
ggcatgcttt gcctgctttt	cctgcaaaag	gcaactttcc	acaggagagg	agtttgcttt	1200	
ggtggaagag aaagtcctct	gcagagtaca	ttatgactgc	atgctggata	atttaaaaag	1260	
agaagtagaa aatgggaatg	ggattagtgt	ggaaggtgcc	ctcctcacag	agcaagatgt	1320	
taaccatcca aaaccagcaa	aaagagctcg	gaccagcttt	acagcagatc	agcttcaggt	1380	
tatgcaagca caatttgctc	aggacaacaa	cccagatgca	cagacactcc	agaaattggc	1440	
agaaaggaca ggcttgagca	gacgtgtgat	acaggtgtgg	tttcagaatt	gtagagcacg	1500	
ccacaagaaa cacgtcagtc	ctaatcactc	atcctccacc	ccagtcacag	cagtcccacc	1560	
ctccaggctg tctccaccca	tgttagaaga	aatggcttat	tctgcctacg	tgccccaaga	1620	
tggaacgatg ttaactgcgc	tgcatagtta	tatggatgct	cattcaccaa	caactcttgg	1680	
actccagccc ttgttacccc	attcaatgac	acaactgcca	ataagtcata	cctaattctt	1740	
ttttcaggga tagacttgat	taaggatata	aatttgtcat	ttattatgta	taaaatacca	1800	

ttgaaaagat attactgtta atttttatt taacacctaa agcatttcca acatcacttt 1860

US 8,513,017 B2

33

-continued

gctgcccagg	tatgtatcta	tagttggcct	gcaagacact	tttattaatt	cttcattttt	1920
tgtaaaactt	atgtttacaa	gaagaaaaca	aatcaaaaca	ttttttgtat	tgtctggaaa	1980
tagttcactc	tagtgtgtat	ctgttaattt	atttgtcatc	aaaagagcac	tttgcctaaa	2040
agaaaggact	gacaagtgtg	caaaatgttt	acaatctttt	gtgaaattgt	agtttatcat	2100
tagtttgtat	ctgtaagtta	ttgtaataaa	tattacctgt	attttttgtt	atatacaact	2160
ttatactttg	aagcttgtat	ctgtgaattt	gcaactgaaa	tttattttgc	caatgttttc	2220
tgaatgaact	gaataaagct	tctgttgtag	catgccatgc	aaacacatta	ttgtgtttgt	2280
ggttgatgaa	ttatggctgt	aaataacact	atagtttaat	aagcccacca	ttctgagttt	2340
attaaacatt	ttccattctt	gtgaaaattt	caaaaaaaaa	aaaaaaaaaa	aaa	2393

<210> SEQ ID NO 7 <211> LENGTH: 1500 <212> TYPE: DNA <213> ORGANISM: Mus musculus

<400> SEQUENCE: 7

gaattcggca d	cgagcttcag	gaaaagactt	ttccccccac	tcccctcct	ctctgcgagg	60
ttccaccctc t	tggaaaacac	aactttccct	ctttttctgg	agggacaggc	cttagtgtgg	120
ctgagagagg a	aagaacagtg	ggtcagagag	tggttacgtc	actgtggcct	ttttggaaca	180
agacacactg g	gtggcatcgc	tgtcctgcct	gttagctttc	cttggccttt	gggggcggag	240
gaggggacac t	tgcggacacc	cacagcetet	gaccctgctg	gagctggtat	gtgacgagca	300
gccctcgggc d	catgtattgg	aagagcgatc	agatgtttgt	gtgtaagctg	gagggaaagg	360
agatgccgga g	gctggcggtt	ccccgcgaga	tgtgccccgg	gctcatgtcg	gaggagtgcg	420
ggcggcctgc a	agctggcgcc	gggaggaccc	gcaaaggctc	tggggaagaa	ggactggtga	480
atcccgaggg a	agccgggggac	gaggactcct	getectecte	gggcccgctt	tccccgtcgt	540
cctcgcccca g	gtccatggcc	tcgggtccga	tgtgcccgcc	aggcaagtgt	gtgtgcagca	600
gctgcggcct g	ggagattgtg	gacaaatacc	tcctcaaggt	gaatgactta	tgctggcatg	660
tccgctgtct d	ctcctgcagt	gtctgcagaa	cgtccctggg	aaggcacacg	agctgctaca	720
ttaaggataa a	agatattttc	tgtaaactcg	attacttcag	acggtatggg	acccgctgtt	780
cccgctgtgg d	caggcacatc	cactcgactg	actgggtccg	cagggcaaag	ggcaacgtgt	840
atcacctggc d	ctgctttgcc	tgettttett	gcaagaggca	gctgtccacg	ggagaggagt	900
tegeettggt g	ggaggagaag	gtcctctgta	gagtgcactt	tgactgcatg	ctggacaatc	960
tgaagagaga a	agtggagaac	ggtaatggga	ttagtgtgga	aggagccctt	ctcacagagc	1020
aagacgtcaa t	tcatccaaag	ccagccaaaa	gageteggae	cagcttcaca	gccgatcagc	1080
tccaggttat g	gcaagcacag	ttcgctcagg	acaacaaccc	agatgcacag	accctccaga	1140
aactggcaga a	aaggacaggc	ttaagcagac	gtgtcataca	ggtgtggttt	cagaactgca	1200
gggcccgcca t	taagaaacac	gtcagcccaa	accattcttc	ctcggccccc	gtcacagctg	1260
teccetecte e	caggctgtcc	ccacccatct	tggaagaaat	ggcttattct	gcctacgacc	1320
cccaggatga d	cgggatgctg	actgcgcact	catacttgga	tgctcaccaa	caactcctgg	1380
actccagccc t	ttgttacccc	atccaatgac	ccagctgcca	ataagtcata	cctaattcct	1440
tctttcaggg a	atagaaatga	ttgaggttat	aaacttgtca	ttttattatg	tataaaaata	1500

<210> SEQ ID NO 8 <211> LENGTH: 751

-continued

			0011011	1404		
<212> TYPE: DNA <213> ORGANISM: Mus m	usculus					
<400> SEQUENCE: 8						
tgttttgtag ctcaccaaca	actcctggac	tccagccctt	gttaccccat	ccaatgaccc	60	
agctgccaat aagtcatacc	taattccttc	tttcagggat	agaaatgatt	gaggttataa	120	
acttgtcatt tattatgtat	aaaataccat	tgagaagata	ttaatgttaa	tttttattt	180	
aacactcaaa gcatttcgaa	catcctctcg	ctgcccaggt	atgtatctag	agttggcctg	240	
caagacactt ttattgattc	ttcattttgg	tttttttg	taaaacttat	gtttacaaag	300	
aagaaaacaa gtcaaaacat	tttttttgt	attgtctgga	gatagttggc	tcgagtgtgt	360	
gtctattaac ttatttgtca	ccaaaagagc	actttgcctg	aaaggcagga	ctgatcgtgt	420	
gcaaaacgtt tacaatcctt	tgtgaaactg	tagtttatca	ttagtttgta	cctgtaagtt	480	
attgttataa atattatctg	tattttttgt	catatacaac	tttatacctt	gaagcttgta	540	
tctgtgaatt tgcaactgaa	atttatttg	ccagtgtttt	cgggacaagc	tgaaggcacg	600	
tccgttgtag catgccgcgc	acacccacgg	ggtgcctgca	cttggagttc	tagctgtaaa	660	
taacactcta gtttacaaag	cctaccatcc	taagttcatt	aaacactttg	catccttgtg	720	
aaagttgctg cccacttctc	ttctgtgtgt	a			751	
<210> SEQ ID NO 9 <211> LENGTH: 1452 <212> TYPE: DNA <213> ORGANISM: Mus m <400> SEQUENCE: 9	usculus					
ggagcaagtg aagcgtaatt	tgaggaagat	ggatgagtcc	ggagggcgac	acccccaacc	60	
cgcccgcccg cccctccct	ccttatgagc	gagagagcgc	ggcgccggag	ccacactgcg	120	
cagagecege geeeegeege	cacctcggcc	cgcgcgcccg	cagcgagcca	tgcgtgtccg	180	
cgcgggggcgc acggcggggc	ccgggcagcg	ccatgcagag	agcggcaggc	ggcggcgccc	240	
ccggggggcag cggcgggagc	agcggcggcc	ccggcgccgc	cttctccatc	gactcgctca	300	
tegggeegee geegeegege	tcgggccacc	tgctctacac	cggctacccc	atgttcatgc	360	
cctaccggcc gctcgtgttg	ccgcaggcgc	tggcccccgc	gccgctgccc	gccggcctgc	420	
cgccgctcgc cccgctcgcc	tcgttcgccg	gccgcctgag	caataccttc	tgcgcgggggc	480	
tgggccaggc ggtgccctcg	atggtggcgc	tgaccactgc	gctgcccagc	ttcgcagagc	540	
ccccggacgc ctactacggg	cccccggagc	tcgccgccgc	cgccgcctcc	accgcctcgc	600	
gaagcaaccc ggagcccgcg	gcccggcgca	ctgacggagc	gctggacgct	gaggagctgc	660	
tgcccgcgcg cgagaaagtg	actgaacctc	cgccgccccc	gcctccgcac	ttctctgaga	720	
ctttcccgag tctaccggca	gaggggaagg	tgtacagctc	agatgaagag	aagctagagc	780	
ccccagcagg agacccagca	ggcagcgagc	aggaggaaga	gggctcaggc	ggtgacagcg	840	
aggacagett eetggacagt	tctgcagggg	gcccaggggc	tcttctggga	cctaaaccga	900	
agctaaaggg aagcccgggg	actggcgctg	aggaggggac	accagtggcc	acaggggtca	960	
ccacgcctgg ggggaaaagc	cgaaggcggc	gcacagcctt	caccagcgag	cagcttttgg	1020	
agctggagaa ggagtttcac	tgcaagaaat	acctgagtct	gacagagcgc	tcccagatcg	1080	
cccacgccct caagctcagt	gaggtgcagg	tgaagatctg	gtttcagaac	cgccgggcca	1140	
agtggaagcg catcaaggct	ggcaatgtga	gcagtcgttc	tggggagccg	gtgagaaacc	1200	

ccaagattgt agtgcccata cctgtgcacg tcaacaggtt tgctgtgcgc agccagcacc 1260

<210> SEQ ID NO 11 <211> LENGTH: 1406 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

tgctccggga gaggccagcg tattcccggg acacaagact atttggcctg agactgttct 1440 agagacctca gg 1452 <210> SEQ ID NO 10 <211> LENGTH: 1632 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 10 60 gacgggtgcg cgggcgggcg gcggcaccat gcagggaagc tgccaggggc cgtgggcagc gccgctttct gccgcccacc tggcgctgtg agactggcgc tgccaccatg ttccccagcc 120 ctgctctcac gcccacgccc ttctcagtca aagacatcct aaacctggaa cagcagcagc 180 gcagcetgge tgeegeegga gagetetetg ecegeetgga ggegaecetg gegeeeteet 240 cctgcatgct ggccgccttc aagccagagg cctacgctgg gcccgaggcg gctgcgccgg 300 geeteecaga getgegegea gagetgggee gegegeette aceggeeaag tgtgegtetg 360 cettleeege egeceeegee ttetateeae gtgeetaeag egaceeegae eeageeaagg 420 accctagagc cgaaaagaaa gagctgtgcg cgctgcagaa ggcggtggag ctggagaaga 480 cagaggegga caacgeggag eggeeeeggg egegaeggeg gaggaageeg egegtgetet 540 tetegeagge geaggtetat gagetggage ggegetteaa geageagegg taeetgtegg 600 cccccgaacg cgaccagctg gccagcgtgc tgaaactcac gtccacgcag gtcaagatct 660 ggttccagaa ccggcgctac aagtgcaagc ggcagcggca ggaccagact ctggagctgg 720 tgggggtgcc cccgccgccg ccgccgcctg cccgcaggat cgcggtgcca gtgctggtgc 780 gcgatggcaa gccatgccta ggggactcgg cgccctacgc gcctgcctac ggcgtgggcc 840 900 tcaatcocta cggttataac gootaccoog ootatcoggg ttacggoggo goggootgoa geoetggeta cagetgeact geogettace cegeogggee tteeccageg cageoggeea 960 ctgccgccgc caacaacaac ttcgtgaact tcggcgtcgg ggacttgaat gcggttcaga 1020 gccccgggat tccgcagage aactcgggag tgtccacgct gcatggtatc cgagcctggt 1080 agggaaggga cccgcgtggc gcgaccctga ccgatcccac ctcaacagct ccctgactct 1140 1200 cggggggggaga agggggttccc aacatgaccc tgagtcccct ggattttgca ttcactcctg cggagaccta ggaacttttt ctgtcccacg cgcgtttgtt cttgcgcacg ggagagtttg 1260 tqqcqqcqat tatqcaqcqt qcaatqaqtq atcctqcaqc ctqqtqtctt aqctqtcccc 1320 1380 ccaqqaqtqc cctccqaqaq tccatqqqca cccccqqttq qaactqqqac tqaqctcqqq cacgcagggc ctgagatctg gccgcccatt ccgcgagcca gggccgggcg cccgggcctt 1440 tgctatctcg ccgtcgcccg cccacgcacc cacccgtatt tatgttttta cctattgctg 1500 1560 1620 1632 aaaaaaaaa aa

37

aacagatgga gcaaggagcc cggccctgac cgagctcccc ggaccggaag tcacaggatc

tgaacctgtg gccgcccaag actcactggg tactgcagcc tagaggggcc tgttgaaccc

-continued

US 8,513,017 B2

1320

1380

US 8,513,017 B2

39

-continued

gagcgcccga	gcggagaggc	ggcccgggag	caggggggggg	gcccccactc	cggccgggtg	60
cccggcccct	ggcccctgcc	tgccctctag	atcgccgccg	cagccgccgc	tactgggagt	120
ctgcctgttg	caggacgcac	tagccctccc	tccatggagt	tcggcctgct	cagcgaggca	180
gaggcccgga	gccctgccct	gtcgctgtca	gacgctggca	ctccgcaccc	ccagctccca	240
gagcacggct	gcaagggcca	ggagcacagc	gactcagaaa	aggcctcggc	ttcgctgccc	300
ggcggctccc	cagaggacgg	ttcgctgaaa	aagaagcagc	ggcggcagcg	cacgcacttc	360
accagccagc	agctacagga	gctagaggcg	accttccaga	ggaaccgcta	ccccgacatg	420
agcacgcgcg	aggagattgc	cgtgtggacc	aacctcaccg	aggcccgcgt	gcgggtgtgg	480
ttcaagaacc	ggcgcgccaa	atggcggaag	cgcgagcgca	gccagcaggc	cgagctatgc	540
aaaggcagct	tcgcggcgcc	gctcgggggg	ctggtgccgc	cctacgagga	ggtgtacccc	600
ggctactcgt	acggcaactg	gccgcccaag	gctcttgccc	cgccgctcgc	cgccaagacc	660
tttccattcg	ccttcaactc	ggtcaacgtg	gggcctctgg	cttcgcagcc	cgtcttctcg	720
ccacccagct	ccatcgccgc	ctccatggtg	ccctccgccg	cggctgcccc	gggcaccgtg	780
ccagggcctg	gggccctgca	gggcctgggc	gggggccccc	ccgggctggc	tccggccgcc	840
gtgtcctccg	gggccgtgtc	ctgcccttat	gcctcggccg	ccgccgccgc	cgcggctgcc	900
gcctcttccc	cctacgtcta	tcgggacccg	tgtaactcga	gcctggccag	cctgcggctc	960
aaagccaaac	agcacgcctc	cttcagctac	cccgctgtgc	acgggccgcc	cccggcagcc	1020
aaccttagtc	cgtgccagta	cgccgtggaa	aggcccgtat	gagcggcccc	gcccgtagat	1080
catccccgag	ggcggggggca	acgattcaca	gcctccgcgg	actggggtca	ttttgactgg	1140
cttgctcccg	ccccagggtc	tgaaaggggt	gtttgggcag	ctggggggca	ccggctcagg	1200
agagggcctt	cccctcccag	ccctgagggg	tggactaggc	cctacacaca	gaccgcgccc	1260
ctgggactaa	agccaggaac	agggaccagc	tccccggggg	ccaactcacc	cttggcccat	1320
cccgccttct	ccaggcttcc	cctccctcgt	tttcaaagat	aaatgaaata	aacgtgcgcg	1380
gactgtcaaa	aaaaaaaaaa	aaaaaa				1406
<220> FEAT	TH: 20 : DNA NISM: Artif: URE: R INFORMATIO	-		ificial Sequ	lence: Synth	etic.
<400> SEQU	ENCE: 12					
tgctggcatg	tccgctgtct					20
<220> FEAT	TH: 20 : DNA NISM: Artif: URE: R INFORMATI(_		ificial Sequ	lence: Synth	etic
<400> SEQU	ENCE: 13					
ctggctttgg	atgattgacg					20
<210> SEQ <211> LENG <212> TYPE	TH: 24					

40

< < <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

<220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer <400> SEQUENCE: 14 teegateetg agegteegag eett 24 <210> SEQ ID NO 15 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer <400> SEQUENCE: 15 gettetgtea cettectaae ttgee 25 <210> SEQ ID NO 16 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic 6xHis taq <400> SEQUENCE: 16 His His His His His 1 5 <210> SEQ ID NO 17 <211> LENGTH: 94 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic polynucleotide <400> SEQUENCE: 17 tacaagteeg gaeteagate tegageteaa gettegaatt etgeagtega eggtaeegeg 60 ggcccgggat ccaccggatc tagataactg atca 94 <210> SEQ ID NO 18 <211> LENGTH: 351 <212> TYPE: PRT <213> ORGANISM: Mus musculus <400> SEQUENCE: 18 Met Ser Arg Leu Leu His Ala Glu Glu Trp Ala Glu Val Lys Glu Leu 1 5 10 15 Gly Asp His His Arg His Pro Gln Pro His His Val Pro Pro Leu Thr 20 25 30 Pro Gln Pro Pro Ala Thr Leu Gln Ala Arg Asp Leu Pro Val Tyr Pro 35 40 45 Ala Glu Leu Ser Leu Leu Asp Ser Thr Asp Pro Arg Ala Trp Leu Thr 50 55 60 Pro Thr Leu Gln Gly Leu Cys Thr Ala Arg Ala Ala Gln Tyr Leu Leu 65 70 75 80 His Ser Pro Glu Leu Gly Ala Ser Glu Ala Ala Ala Pro Arg Asp Glu 85 90 95 Ala Asp Ser Gln Gly Glu Leu Val Arg Arg Ser Gly Cys Gly Gly Leu 100 105 110

Ser Lys Ser Pro Gly Pro Val Lys Val Arg Glu Gln Leu Cys Lys Leu

Pro 145 Ala Asp Ser Ser	130 Ser Asn	-					_				_	_	_	_	
Pro 145 Ala Asp Ser Ser	130 Ser Asn	-					120					125			
145 Ala Asp Ser Ser	Asn	Ser	vai	Val	Val	Asp 135	Glu	Leu	Gly	Суз	Ser 140	Arg	Gln	Arg	Ala
Asp Ser Ser			Lys	Gln	Val 150	Asn	Gly	Val	Gln	Lys 155	Gln	Arg	Arg	Leu	Ala 160
Ser	Gln	Ala	Arg	Glu 165	Arg	Arg	Arg	Met	His 170	Gly	Leu	Asn	His	Ala 175	Phe
Ser		Leu	Arg 180	Asn	Val	Ile	Pro	Ser 185	Phe	Asn	Asn	Aab	Lys 190	Lys	Leu
	Lys	Tyr 195	Glu	Thr	Leu	Gln	Met 200	Ala	Gln	Ile	Tyr	Ile 205	Asn	Ala	Leu
	Glu 210	Leu	Leu	Gln	Thr	Pro 215	Asn	Val	Gly	Glu	Gln 220	Pro	Pro	Pro	Pro
Thr 225	Ala	Ser	СЛа	ГЛа	Asn 230	Aab	His	His	His	Leu 235	Arg	Thr	Ala	Ser	Ser 240
Tyr	Glu	Gly	Gly	Ala 245	Gly	Ala	Ser	Ala	Val 250	Ala	Gly	Ala	Gln	Pro 255	Ala
Pro	Gly	Gly	Gly 260	Pro	Arg	Pro	Thr	Pro 265	Pro	Gly	Pro	Суз	Arg 270	Thr	Arg
Phe	Ser	Gly 275	Pro	Ala	Ser	Ser	Gly 280	Gly	Tyr	Ser	Val	Gln 285	Leu	Aap	Ala
Leu	His 290	Phe	Pro	Ala	Phe	Glu 295	Asp	Arg	Ala	Leu	Thr 300	Ala	Met	Met	Ala
Gln 305	Lys	Asp	Leu	Ser	Pro 310	Ser	Leu	Pro	Gly	Gly 315	Ile	Leu	Gln	Pro	Val 320
Gln	Glu	Asp	Asn	Ser 325	Lys	Thr	Ser	Pro	Arg 330	Ser	His	Arg	Ser	Asp 335	Gly
Glu	Phe	Ser	Pro 340	His	Ser	His	Tyr	Ser 345	Asp	Ser	Asp	Glu	Ala 350	Ser	
<210 <211	> LE	ENGTI	I: 3												
<212 <213				Mus	mus	culus	3								
<400	> SH	QUEI	NCE:	19											
			Leu												
Met 1	Ser	Arg		Leu 5	His	Ala	Glu	Glu	Trp 10	Ala	Glu	Val	Lys	Glu 15	Leu
Met		-		5					10				-	15	
Met 1	Asp	His	His 20	5 Arg	His	Pro	Gln	Pro 25	10 His	His	Val	Pro	Pro 30	15 Leu	Thr
Met 1 Gly Pro Ala	Asp Gln	His Pro 35	His 20 Pro	5 Arg Ala	His Thr	Pro Leu	Gln Gln 40	Pro 25 Ala	10 His Arg	His Asp	Val Leu	Pro Pro 45	Pro 30 Val	15 Leu Tyr	Thr Pro
Met 1 Gly Pro Ala	Asp Gln Glu 50	His Pro 35 Leu	His 20 Pro Ser	5 Arg Ala Leu	His Thr Leu	Pro Leu Asp 55	Gln Gln 40 Ser	Pro 25 Ala Thr	10 His Arg Asp	His Asp Pro	Val Leu Arg 60	Pro Pro 45 Ala	Pro 30 Val Trp	15 Leu Tyr Leu	Thr Pro Thr
Met 1 Gly Pro Ala Pro	Asp Gln Glu 50 Thr	His Pro 35 Leu Leu	His 20 Pro Ser Gln	5 Arg Ala Leu Gly	His Thr Leu Leu 70	Pro Leu Asp 55 Cys	Gln 40 Ser Thr	Pro 25 Ala Thr Ala	10 His Arg Asp Arg	His Asp Pro Ala 75	Val Leu Arg 60 Ala	Pro Pro 45 Ala Gln	Pro 30 Val Trp Tyr	15 Leu Tyr Leu Leu	Thr Pro Thr Leu 80
Met 1 Gly Pro Ala Pro 65	Asp Gln Glu 50 Thr Ser	His Pro 35 Leu Leu Pro	His 20 Pro Ser Gln Glu	5 Arg Ala Leu Gly Leu 85	His Thr Leu To Gly	Pro Leu Asp 55 Cys Ala	Gln 40 Ser Thr Ser	Pro 25 Ala Thr Ala Glu	10 His Arg Asp Arg Ala 90	His Asp Pro Ala 75 Ala	Val Leu Arg 60 Ala Ala	Pro 45 Ala Gln Pro	Pro 30 Val Trp Tyr Arg	15 Leu Tyr Leu Leu Asp 95	Thr Pro Thr Leu 80 Glu
Met 1 Gly Pro Ala Pro 65 His	Asp Gln Glu 50 Thr Ser Asp	His Pro 35 Leu Leu Pro Ser	His 20 Pro Ser Gln Glu Glu	5 Arg Ala Leu Gly Leu 85 Gly	His Thr Leu Leu Gly Glu	Pro Leu Asp 55 Cys Ala Leu	Gln Gln 40 Ser Thr Ser Val	Pro 25 Ala Thr Ala Glu Arg 105	10 His Arg Asp Arg Ala 90 Arg	His Asp Pro Ala 75 Ala Ser	Val Leu Arg 60 Ala Ala Gly	Pro 45 Ala Gln Pro Cys	Pro 30 Val Trp Tyr Arg Gly 110	15 Leu Tyr Leu Leu Asp 95 Gly	Thr Pro Thr Leu 80 Glu Leu

Pro Ser Ser Lys Gln Val Asn Gly Val Gln Lys Gln Arg Arg Leu Ala

												COIL	tını	leu	
145					150					155					160
Ala Ası	n A	la	Arg	Glu 165	Arg	Arg	Arg	Met	His 170	Gly	Leu	Asn	His	Ala 175	Phe
Asp Glı	n L		Arg 180	Asn	Val	Ile	Pro	Ser 185	Phe	Asn	Asn	Asp	Lys 190	Lys	Leu
Ser Ly:		yr 95	Glu	Thr	Leu	Gln	Met 200	Ala	Gln	Ile	Tyr	Ile 205	Asn	Ala	Leu
Ser Glu 210		eu	Leu	Gln	Thr	Pro 215	Asn	Val	Gly	Glu	Gln 220	Pro	Pro	Pro	Pro
Thr Ala 225	a S	er	Суз	ГЛа	Asn 230	Asp	His	His	His	Leu 235	Arg	Thr	Ala	Ser	Ser 240
Tyr Glu	ı G	ly	Gly	Ala 245		Ala	Ser	Ala	Val 250		Gly	Ala	Gln	Pro 255	
Pro Gly	y G		Gly 260		Arg	Pro	Thr	Pro 265		Gly	Pro	Суа	Arg 270		Arg
Phe Sei		ly		Ala	Ser	Ser	-		Tyr	Ser	Val			Asp	Ala
Leu Hi:	s Pl	75 he	Pro	Ala	Phe		280 Asp	Arg	Ala	Leu		285 Ala	Met	Met	Ala
290 Gln Ly:		ap	Leu	Ser		295 Ser	Leu	Pro	Gly	-	300 Ile	Leu	Gln	Pro	
305 Gln Glı	ı A	ap	Asn	Ser	310 Lys	Thr	Ser	Pro	Arg	315 Ser	His	Arg	Ser	Asp	320 Gly
Glu Phe		_		325	-				330			-		335	-
	2		340				-1-	345	E		· L		350		
<210> \$ <211> I <212> 5 <213> (LEN IYP: DRG	GTH E : ANI	I: 35 PRT SM:	54 Homo	o sal	piens	5								
<211> I <212> 7 <213> (<400> \$	LEN FYP: DRG	GTH E : ANI UEN	I: 35 PRT SM: ICE:	54 Homo 20											
<211> I <212> 7 <213> (LEN FYP: DRG	GTH E : ANI UEN	I: 35 PRT SM: ICE:	54 Homo 20				Glu	Trp 10	Ala	Glu	Val	Lys	Glu 15	Leu
<211> I <212> 7 <213> (<400> 8 Met Sei	LEN TYP: DRG SEQ r A:	GTH E: ANI UEN rg is	I: 35 PRT SM: ICE: Leu	54 Homo 20 Leu 5	His	Ala	Glu		10					15	
<211> I <212> 7 <213> (<400> 5 Met Sep 1	LEN TYP: DRG SEQ r A: p H	GTH E: ANI UEN rg is ro	I: 35 PRT SM: ICE: Leu His 20	Homo 20 Leu 5 Arg	His Gln	Ala Pro	Glu Gln	Pro 25	10 His	His	Leu	Pro	Gln 30	15 Pro	Pro
<211> I <212> : <213> (<400> : Met Sen 1 Gly Asp Pro Pro	LENG TYP: DRG SEQ r A: p H. p H. 3	GTH E: ANI UEN rg is ro 5	I: 35 PRT SM: ICE: Leu His 20 Gln	Homo 20 Leu 5 Arg Pro	His Gln Pro	Ala Pro Ala	Glu Gln Thr 40	Pro 25 Leu	10 His Gln	His Ala	Leu Arg	Pro Glu 45	Gln 30 His	15 Pro Pro	Pro Val
<211> I <212> : <213> (<400> : Met Sen 1 Gly Asp Pro Pro Tyr Pro	LENG IYP: DRG SEQ r A: p H 3 SEQ P: 3	GTH E: ANI UEN rg is ro 5 ro	I: 39 PRT SM: ICE: Leu His 20 Gln Glu	Homo 20 Leu 5 Arg Pro Leu	His Gln Pro Ser	Ala Pro Ala Leu 55	Glu Gln Thr 40 Leu	Pro 25 Leu Asp	10 His Gln Ser	His Ala Thr	Leu Arg Asp 60	Pro Glu 45 Pro	Gln 30 His Arg	15 Pro Pro Ala	Pro Val Trp
<211> I <212> 7 <213> (<400> 5 // (// (// (// (// (// (// (//	LENG TYP: DRG SEQ r A: o H: 3 0 P: 3 1 0 P:	GTH E: ANI UEN rg is ro 5 ro	I: 39 PRT SM: ICE: Leu His 20 Gln Glu Thr	54 Homo 20 Leu 5 Arg Pro Leu Leu	His Gln Pro Ser Gln 70	Ala Pro Ala Leu 55 Gly	Glu Gln Thr 40 Leu Ile	Pro 25 Leu Asp Cys	10 His Gln Ser Thr	His Ala Thr Ala 75	Leu Arg Asp 60 Arg	Pro Glu 45 Pro Ala	Gln 30 His Arg Ala	15 Pro Pro Ala Gln	Pro Val Trp Tyr 80
<211> I <212> 7 <213> (<400> 5 Met Sen 1 Gly Asp Pro Pro Tyr Pro 50 Leu Ala 65	LENG TYP: DRG SEQ r A: p H. d p H. 3! d p P: a P: a P:	GTH E: ANI UEN rg is ro 5 ro ro is al	I: 39 PRT SM: ICE: Leu His 20 Gln Glu Thr Ser	Homo 20 Leu 5 Pro Leu Leu Pro 85	His Gln Pro Ser Gln 70 Glu	Ala Pro Ala Leu 55 Gly Leu	Glu Gln Thr 40 Leu Ile Gly	Pro 25 Leu Asp Cys Ala	10 His Gln Ser Thr Ser 90	His Ala Thr Ala 75 Glu	Leu Arg Asp 60 Arg Ala	Pro Glu 45 Pro Ala Ala	Gln 30 His Arg Ala Ala	15 Pro Pro Ala Gln Pro 95	Pro Val Trp Tyr 80 Arg
<211> I <212> 7 <213> (<400> 5 // (400> 5 // (// (// (// (// (// (// (//	LENG TYP: DRG SEQ T A: D P: 3 D P: 3 D P: 3 D P: 3 L H L H L V L V L V	GTH E: ANI rg is ro ro ro is al	I: 39 PRT SM: ICE: Leu His 20 Gln Glu Thr Ser Asp 100	Homo 20 Leu 5 Pro Leu Leu Pro 85 Gly	His Gln Pro Ser Gln 70 Glu Arg	Ala Pro Ala Leu Gly Leu Gly	Glu Gln Thr 40 Leu Ile Gly Glu	Pro 25 Leu Asp Cys Ala Leu 105	10 His Gln Ser Thr Ser 90 Val	His Ala Thr Ala 75 Glu Arg	Leu Arg Asp 60 Arg Ala Arg	Pro Glu 45 Pro Ala Ala Ser	Gln 30 His Arg Ala Ala Ser 110	15 Pro Ala Gln Pro 95 Gly	Pro Val Trp Tyr 80 Arg Gly
<211> I <211> (212) (<213> (<400> (Met Sen 1 Gly Asp 1 Pro Pro 50 Leu Ala 65 Leu Leu Asp Glu	LENG TYP: JORG SEQ P H J P J J P P J J D P J J D P J L L L L S L	GTH E: ANI rg is ro ro is al er 15	I: 35 PRT SM: ICE: Leu His 20 Gln Glu Thr Ser Asp 100 Ser	Homo 20 Leu Pro Leu Leu Pro 85 Gly Lys	His Gln Pro Ser Gln 70 Glu Arg Ser	Ala Pro Ala Leu Gly Leu Gly Pro	Glu Gln Thr 40 Leu Ile Gly Glu Glu 20	Pro 25 Leu Asp Cys Ala Leu 105 Pro	10 His Gln Ser Thr Ser 90 Val Val	His Ala Thr Ala 75 Glu Arg Lys	Leu Arg 60 Arg Ala Arg Val	Pro Glu 45 Pro Ala Ala Ser Arg 125	Gln 30 His Arg Ala Ala Ser 110 Glu	15 Pro Ala Gln Pro 95 Gly Gln	Pro Val Trp Tyr 80 Arg Gly Leu
<pre><211> I <211> [<212> ? <213> (<400> ? Met Sen 1 Gly Asp Pro Pro Tyr Pro 50 Leu Ana 65 Leu Leu Asp Glu Ala Sen Cys Lys</pre>	LENG TYP: JRG SEQ r A: SEQ r P: SEQ r P: SEQ r P: SEQ r P: SEQ r P: SEQ r P: SEQ r P: SEQ r P: SEQ r A: SEQ r P: SEQ r A: SEQ r A: SE R A: SE R A: SE R A: SE R A: SE R A: SE R A: SE R A: SE SE R A: SE R A: SE R A: SE SE R A: SE R A: SE R A: SE SE SE SE R A: SE SE R A: SE R A: SE R A: SE SE R A: SE R A: SE R A: SE SE R A: SE R A: SE SE SE SE R A: SE SE SE SE SE SE SE SE SE SE SE SE SE	GTH E: ANI UEN rg is ro ro ro is al er 15 eu	I: 35 PRT SM: ICE: Leu His 20 Gln Glu Thr Ser Asp 100 Ser Lys	54 Homo 20 Leu Pro Leu Leu Leu Leu Gly Gly	His Gln Pro Ser Gln 70 Glu Arg Ser Gly	Ala Pro Ala Leu 55 Gly Leu Gly Pro Val 135	Glu Gln Thr 40 Leu Ile Gly Glu Glu 120 Val	Pro 25 Leu Asp Cys Ala Leu 105 Pro Val	10 His Gln Ser Thr Ser 90 Val Val Asp	His Ala Thr Ala 75 Glu Arg Lys Glu	Leu Arg 60 Arg Ala Arg Val Leu 140	Pro Glu 45 Pro Ala Ala Ser Arg 125 Gly	Gln 30 His Arg Ala Ala Ser 110 Glu Cys	15 Pro Ala Gln Gly Gln Ser	Pro Val Trp Tyr 80 Arg Gly Leu Arg
<pre><211> I <212> ? <213> (<400> ? Met Sen 1 Gly Asp Pro Pro Tyr Pro 50 Leu Ala 65 Leu Leu Asp Glu Ala Sen 13(Gln Arg 13()</pre>	LENG TYPE SEQ SEQ P A SEQ P A SEQ P A	GTH E: ANI UEN rg is ro 5 ro is al er 15 eu 1a	I: 35 PRT SM: SM: Leu His 20 Gln Glu Thr Ser Asp 100 Ser Lys Pro	54 Homo 20 Leu Pro Leu Leu Leu Leu Gly Ser	His Gln Pro Ser Gln Glu Arg Ser Gly Ser 150	Ala Pro Ala Leu Gly Leu Gly Pro Val 135 Lys	Glu Gln Thr 40 Leu Ile Gly 120 Val Gln	Pro 25 Leu Asp Cys Ala Leu 105 Pro Val	10 His Gln Ser Thr Ser 90 Val Val Asp	His Ala Thr Ala 75 Glu Arg Lys Glu Glu 155	Leu Arg 60 Arg Ala Arg Val Leu 140 Val	Pro Glu 45 Pro Ala Ala Ser Ala Ser Gly Gln	Gln 30 His Arg Ala Ala Ser 110 Glu Cys Lys	15 Pro Ala Gln Gly Gln Ser Gln	Pro Val Trp Tyr 80 Arg Gly Leu Arg Arg

	_											con	tin	ued	
			180					185					190		
Гла	Lys	Leu 195	Ser	Гла	Tyr	Glu	Thr 200	Leu	Gln	Met	Ala	Gln 205	Ile	Tyr	Ile
Asn	Ala 210	Leu	Ser	Glu	Leu	Leu 215	Gln	Thr	Pro	Ser	Gly 220	Gly	Glu	Gln	Pro
Pro 225	Pro	Pro	Pro	Ala	Ser 230	Суз	Lys	Ser	Asp	His 235	His	His	Leu	Arg	Thr 240
Ala	Ala	Ser	Tyr	Glu 245	Gly	Gly	Ala	Gly	Asn 250	Ala	Thr	Ala	Ala	Gly 255	Ala
Gln	Gln	Ala	Ser 260	Gly	Gly	Ser	Gln	Arg 265	Pro	Thr	Pro	Pro	Gly 270	Ser	Сүз
Arg	Thr	Arg 275	Phe	Ser	Ala	Pro	Ala 280	Ser	Ala	Gly	Gly	Tyr 285	Ser	Val	Gln
Leu	Asp 290	Ala	Leu	His	Phe	Ser 295	Thr	Phe	Glu	Asp	Ser 300	Ala	Leu	Thr	Ala
Met 305	Met	Ala	Gln	ГЛа	Asn 310	Leu	Ser	Pro	Ser	Leu 315	Pro	Gly	Ser	Ile	Leu 320
Gln	Pro	Val	Gln	Glu 325	Glu	Asn	Ser	Lys	Thr 330	Ser	Pro	Arg	Ser	His 335	Arg
Ser	Aap	Gly	Glu 340	Phe	Ser	Pro	His	Ser 345	His	Tyr	Ser	Aap	Ser 350	Asp	Glu
Ala	Ser														
<213	8> OF		SM:	Homo	o saj	pien	3								
<400	12 21	COLEI	ICE :	21											
					His	Ala	Glu	Glu	Trp 10	Ala	Glu	Val	Lys	Glu 15	Leu
Met 1	Ser	Arg	Leu	Leu 5	His Gln				10				-	15	
Met 1 Gly	Ser Asp	Arg His	Leu His 20	Leu 5 Arg		Pro	Gln	Pro 25	10 His	His	Leu	Pro	Gln 30	15 Pro	Pro
Met 1 Gly Pro	Ser Asp Pro	Arg His Pro 35	Leu His 20 Gln	Leu 5 Arg Pro	Gln	Pro Ala	Gln Thr 40	Pro 25 Leu	10 His Gln	His Ala	Leu Arg	Pro Glu 45	Gln 30 His	15 Pro Pro	Pro Val
Met 1 Gly Pro Tyr	Ser Asp Pro Pro 50	Arg His Pro 35 Pro	Leu His 20 Gln Glu	Leu 5 Arg Pro Leu	Gln Pro	Pro Ala Leu 55	Gln Thr 40 Leu	Pro 25 Leu Asp	10 His Gln Ser	His Ala Thr	Leu Arg Asp 60	Pro Glu 45 Pro	Gln 30 His Arg	15 Pro Pro Ala	Pro Val Trp
Met 1 Gly Pro Tyr Leu 65	Ser Asp Pro Pro 50 Ala	Arg His Pro 35 Pro Pro	Leu His 20 Gln Glu Thr	Leu 5 Arg Pro Leu Leu	Gln Pro Ser Gln	Pro Ala Leu 55 Gly	Gln Thr 40 Leu Ile	Pro 25 Leu Asp Cys	10 His Gln Ser Thr	His Ala Thr Ala 75	Leu Arg Asp 60 Arg	Pro Glu 45 Pro Ala	Gln 30 His Arg Ala	15 Pro Pro Ala Gln	Pro Val Trp Tyr 80
Met 1 Gly Pro Tyr Leu 65 Leu	Ser Asp Pro 50 Ala Leu	Arg His Pro 35 Pro Pro His	Leu His 20 Gln Glu Thr Ser	Leu 5 Pro Leu Leu Pro 85	Gln Pro Ser Gln 70	Pro Ala Leu 55 Gly Leu	Gln Thr 40 Leu Ile Gly	Pro 25 Leu Asp Cys Ala	10 His Gln Ser Thr Ser 90	His Ala Thr Ala 75 Glu	Leu Arg Asp 60 Arg Ala	Pro Glu 45 Pro Ala Ala	Gln 30 His Arg Ala Ala	15 Pro Pro Ala Gln Pro 95	Pro Val Trp Tyr 80 Arg
Met 1 Gly Pro Tyr Leu 65 Leu Asp	Ser Asp Pro 50 Ala Leu Glu	Arg His Pro 35 Pro Pro His Val	Leu His 20 Gln Glu Thr Ser Asp 100	Leu 5 Pro Leu Pro 85 Gly	Gln Pro Ser Gln 70 Glu	Pro Ala Leu 55 Gly Leu Gly	Gln Thr 40 Leu Ile Gly Glu	Pro 25 Leu Asp Cys Ala Leu 105	10 His Gln Ser Thr Ser 90 Val	His Ala Thr Ala 75 Glu Arg	Leu Arg Asp 60 Arg Ala Arg	Pro Glu 45 Pro Ala Ala Ser	Gln 30 His Arg Ala Ala Ser 110	15 Pro Ala Gln Pro 95 Gly	Pro Val Trp Tyr 80 Arg Gly
Met 1 Gly Pro Tyr Leu 65 Leu Asp Ala	Ser Asp Pro 50 Ala Leu Glu Ser	Arg His Pro 35 Pro Pro His Val Ser 115	Leu His 20 Gln Glu Thr Ser Asp 100 Ser	Leu 5 Arg Pro Leu Leu 85 Gly Lys	Gln Pro Ser Gln Glu Arg	Pro Ala Leu 55 Gly Leu Gly Pro	Gln Thr 40 Leu Ile Gly Glu Glu 120	Pro 25 Leu Asp Cys Ala Leu 105 Pro	10 His Gln Ser Thr Ser 90 Val Val	His Ala Thr Ala 75 Glu Arg Lys	Leu Arg Asp 60 Arg Ala Arg Val	Pro Glu 45 Pro Ala Ala Ser Arg 125	Gln 30 His Arg Ala Ala Ser 110 Glu	15 Pro Ala Gln Pro 95 Gly Gln	Pro Val Trp Tyr 80 Arg Gly Leu
Met 1 Gly Pro Tyr Leu 65 Leu Asp Ala Cys	Ser Asp Pro 50 Ala Leu Glu Ser Lys 130	Arg His Pro 35 Pro Pro His Val Ser 115 Leu	Leu His 20 Gln Glu Thr Ser Asp 100 Ser Lys	Leu Pro Leu Leu Bro 85 Gly Lys Gly	Gln Pro Ser Gln Glu Arg Ser	Pro Ala Leu Gly Leu Gly Pro Val 135	Gln Thr 40 Leu Ile Gly 120 Val	Pro 25 Leu Asp Cys Ala Leu 105 Pro Val	10 His Gln Ser Thr Ser 90 Val Val Asp	His Ala Thr Ala 75 Glu Arg Lys Glu	Leu Arg 60 Arg Ala Arg Val Leu 140	Pro Glu 45 Pro Ala Ala Ser Arg 125 Gly	Gln 30 His Arg Ala Ala Ser 110 Glu Cys	15 Pro Pro Ala Gln Pro 95 Gly Gln Ser	Pro Val Trp Tyr 80 Arg Gly Leu Arg
Met 1 Gly Pro Tyr Leu 65 Leu Asp Ala Cys Gln 145	Ser Asp Pro 50 Ala Leu Glu Ser Lys 130 Arg	Arg His Pro 35 Pro Pro His Val Ser 115 Leu Ala	Leu His 20 Gln Glu Thr Ser Ser Lys Pro	Leu Arg Pro Leu Leu Pro 85 Gly Lys Gly Ser	Gln Pro Ser Gln Glu Arg Ser Gly Ser	Pro Ala Leu Gly Leu Gly Pro Val 135 Lys	Gln Thr 40 Leu Ile Gly 120 Val Gln	Pro 25 Leu Asp Cys Ala Leu 105 Pro Val	10 His Gln Ser Thr Ser 90 Val Val Asp Asn	His Ala Thr Ala 75 Glu Arg Lys Glu Gly 155	Leu Arg 60 Arg Ala Arg Val Leu 140 Val	Pro Glu 45 Pro Ala Ala Ser Arg 125 Gly Gln	Gln 30 His Arg Ala Ala Ser 110 Glu Cys Lys	15 Pro Pro Ala Gln Ser Gln Ser	Pro Val Trp Tyr 80 Arg Gly Leu Arg 160
Met 1 Gly Pro Tyr Leu 65 Leu Ala Cys Gln 145 Arg	Ser Asp Pro 50 Ala Leu Glu Ser Lys 130 Arg Leu	Arg His Pro 35 Pro Pro His Val Ser 115 Leu Ala	Leu His 20 Gln Glu Thr Ser Ser Lys Pro Ala	Leu Pro Leu Leu Pro 85 Gly Lys Gly Ser Asn 165	Gln Pro Ser Gln Glu Arg Ser Gly Ser 150	Pro Ala Leu Gly Leu Gly Pro Val 135 Lys Arg	Gln Thr 40 Leu Gly Glu Glu Glu Gln Glu	Pro 25 Leu Asp Cys Ala Leu 105 Pro Val Val Arg	10 His Gln Ser Thr Ser 90 Val Val Asp Asp Asn Arg 170	His Ala Thr Ala 75 Glu Arg Glu Glu 155 Arg	Leu Arg 60 Arg Ala Arg Val Leu 140 Val Met	Pro Glu 45 Pro Ala Ala Ser Alg 125 Gly Gln His	Gln 30 His Arg Ala Ala Ala Ser 110 Glu Cys Lys Gly	15 Pro Ala Gln Pro 95 Gly Gln Ser Gln Leu 175	Pro Val Trp Tyr 80 Arg Gly Leu Arg 160 Asn
Met 1 Gly Pro Tyr Leu 65 Leu Asp Ala Cys Gln 145 Arg His	Ser Asp Pro 50 Ala Leu Glu Ser Lys 130 Arg Leu Ala	Arg His Pro Pro Pro His Val Ser 115 Leu Ala Ala	Leu His 20 Gln Glu Thr Ser Lys Pro Ala Asp 180	Leu Pro Leu Leu Pro 85 Gly Lys Gly Ser Asn 165 Gln	Gln Pro Ser Gln Arg Glu Ser Gly Ser 150 Ala	Pro Ala 55 Gly Leu Gly Pro Val 135 Lys Arg Arg	Gln Thr 40 Leu Gly Glu Glu Glu Glu Gln Glu Asn	Pro 25 Leu Asp Cys Ala Leu 105 Pro Val Val Arg Val 185	10 His Gln Ser Thr Ser Val Val Val Asp Asn Arg 170 Ile	His Ala Thr Ala Glu Lys Glu Gly 155 Arg Pro	Leu Arg 60 Arg Ala Arg Val Leu 140 Val Met Ser	Pro Glu 45 Pro Ala Ala Ser Arg 125 Gly Gln His Phe	Gln 30 His Arg Ala Ala Ala Ser 110 Glu Cys Lys Gly Asn 190	15 Pro Ala Gln Gly Gly Gln Ser Gln Leu 175 Asn	Pro Val Trp Tyr 80 Arg Gly Leu Arg 160 Asn Asp

_

21	a Leu)	Ser	Glu	Leu	Leu 215	Gln	Thr	Pro	Ser	Gly 220	Gly	Glu	Gln	Pro
Pro Pro 225	> Pro	Pro	Ala	Ser 230	Суз	Lys	Ser	Asp	His 235	His	His	Leu	Arg	Thr 240
Ala Ala	a Ser	Tyr	Glu 245	Gly	Gly	Ala	Gly	Asn 250	Ala	Thr	Ala	Ala	Gly 255	Ala
Gln Gli	n Ala	Ser 260	Gly	Gly	Ser	Gln	Arg 265	Pro	Thr	Pro	Pro	Gly 270	Ser	Сув
Arg Th:	275 Arg	Phe	Ser	Ala	Pro	Ala 280	Ser	Ala	Gly	Gly	Tyr 285	Ser	Val	Gln
Leu Asj 29		Leu	His	Phe	Ser 295	Thr	Phe	Glu	Asp	Ser 300	Ala	Leu	Thr	Ala
Met Me 305	: Ala	Gln	Lys	Asn 310	Leu	Ser	Pro	Ser	Leu 315	Pro	Gly	Ser	Ile	Leu 320
Gln Pro	> Val	Gln	Glu 325	Glu	Asn	Ser	Lys	Thr 330	Ser	Pro	Arg	Ser	His 335	Arg
Ser Asj	Gly	Glu 340	Phe	Ser	Pro	His	Ser 345	His	Tyr	Ser	Asp	Ser 350	Asp	Glu
Ala Se:	2													
<210> 2 <211> 2 <212> 2	LENGT	H: 3!												
<213> (s sal	piens	3								
Met Gli	-			Ara	Cive	Gln	Glv	I.011	Mat	Cor	Glu	Glu	Cive	Cly
1	1 110	Deu	5		cyb	0111	Ory	10	nee	DCI	oru	oru	15	GIY
Arg Th:	Thr	Ala 20	Leu	Ala	Ala	Gly	Arg 25	Thr	Arg	Lys	Gly	Ala 30	Gly	Glu
Arg Th: Glu Gly		20					25					30		
	7 Leu 35	20 Val	Ser	Pro	Glu	Gly 40	25 Ala	Gly	Asp	Glu	Asp 45	30 Ser	Сүз	Ser
Glu Gly Ser Se:	7 Leu 35 Ala	20 Val Pro	Ser Leu	Pro Ser	Glu Pro 55	Gly 40 Ser	25 Ala Ser	Gly Ser	Asp Pro	Glu Arg 60	Asp 45 Ser	30 Ser Met	Cys Ala	Ser Ser
Glu Gly Ser Set 50 Gly Set	7 Leu 35 Ala Gly	20 Val Pro Cys	Ser Leu Pro	Pro Ser Pro 70	Glu Pro 55 Gly	Gly 40 Ser Lys	25 Ala Ser Cys	Gly Ser Val	Asp Pro Cys 75	Glu Arg 60 Asn	Asp 45 Ser Ser	30 Ser Met Cys	Cys Ala Gly	Ser Ser Leu 80
Glu Gly Ser Se: 50 Gly Se: 65	/ Leu 35 f Ala f Gly e Val	20 Val Pro Cys Asp	Ser Leu Pro Lys 85	Pro Ser Pro 70 Tyr	Glu Pro 55 Gly Leu	Gly 40 Ser Lys Leu	25 Ala Ser Cys Lys	Gly Ser Val Val 90	Asp Pro Cys 75 Asn	Glu Arg 60 Asn Asp	Asp 45 Ser Ser Leu	30 Ser Met Cys Cys	Cys Ala Gly Trp 95	Ser Ser Leu 80 His
Glu Gly Ser Se: 50 Gly Se: 65 Glu Il	y Leu 35 Ala Gly Val G Cys	20 Val Pro Cys Asp Leu 100	Ser Leu Pro Lys 85 Ser	Pro Ser Pro 70 Tyr Cys	Glu Pro 55 Gly Leu Ser	Gly 40 Ser Lys Leu Val	25 Ala Ser Cys Lys Cys 105	Gly Ser Val Val 90 Arg	Asp Pro Cys 75 Asn Thr	Glu Arg 60 Asn Asp Ser	Asp 45 Ser Ser Leu Leu	30 Ser Met Cys Cys Gly 110	Cys Ala Gly Trp 95 Arg	Ser Ser Leu 80 His His
Glu Gly Ser Se: 50 Gly Se: 65 Glu Il Val Arg	/ Leu 35 Ala Gly Val Cys Cys Cys Cys 115 g Arg	20 Val Pro Cys Asp Leu 100 Tyr	Ser Leu Pro Lys 85 Ser Ile	Pro Ser Pro 70 Tyr Cys Lys	Glu Pro 55 Gly Leu Ser Asp	Gly 40 Ser Lys Leu Val Lys 120	25 Ala Ser Cys Lys Cys 105 Asp	Gly Ser Val Val Arg Ile	Asp Pro Cys 75 Asn Thr Phe	Glu Arg 60 Asn Asp Ser Cys	Asp 45 Ser Leu Leu Lys 125	30 Ser Met Cys Cys Gly 110 Leu	Cys Ala Gly Trp 95 Arg Asp	Ser Ser Leu 80 His His Tyr
Glu Gly Ser Se: 50 Gly Se: 65 Glu Il Val Ar; Thr Se: Phe Ar;	/ Leu 35 c Ala c Gly d Cys l Cys 115 g Arg	20 Val Pro Cys Asp Leu 100 Tyr Tyr	Ser Leu Pro Lys Ser Ile Gly	Pro Ser Pro 70 Tyr Cys Lys Thr	Glu Pro 55 Gly Leu Ser Asp Asp	Gly 40 Ser Lys Leu Val Lys 120 Cys	25 Ala Ser Cys Lys Cys 105 Asp Ser	Gly Ser Val Val Arg Ile Arg	Asp Pro Cys 75 Asn Thr Phe Cys	Glu Arg 60 Asn Asp Ser Cys Gly 140	Asp 45 Ser Leu Leu Lys 125 Arg	30 Ser Met Cys Cys Gly 110 Leu His	Cys Ala Gly Trp 95 Arg Asp Ile	Ser Ser Leu 80 His His Tyr
Glu Gly Ser Se: 50 Gly Se: 65 Glu Il Val Ary Thr Se: Phe Ary 13 Ser Th:	/ Leu 35 c Ala c Gly a Val g Cys 115 g Arg c Asp	20 Val Pro Cys Asp Leu 100 Tyr Tyr Trp	Ser Leu Pro Lys 85 Ser Ile Gly Val	Pro Ser Pro Tyr Cys Lys Thr Arg 150	Glu Pro 55 Gly Leu Ser Asp Arg 135 Arg	Gly 40 Ser Lys Leu Val Lys 120 Cys Ala	25 Ala Ser Cys Lys Cys Cys Cys Ser Lys	Gly Ser Val Val Arg Ile Arg Gly	Asp Pro Cys Asn Thr Phe Cys Asn 155	Glu Arg 60 Asn Asp Ser Cys Gly 140 Val	Asp 45 Ser Leu Leu Lys 125 Arg Tyr	30 Ser Cys Cys Gly Leu His His	Cys Ala Gly Trp 95 Arg Asp Ile Leu	Ser Ser Leu 80 His His Tyr His Ala 160
Glu Gly Ser Se: 50 Gly Se: Glu Il Val Arg Thr Se: Phe Arg 135 Ser Th: 145	<pre>/ Leu 35 c Ala c Gly d Cys l15 c Cys l15 g Arg c Asp c Asp e Ala</pre>	20 Val Pro Cys Asp Leu 100 Tyr Tyr Tyr Cys	Ser Leu Pro Lys Ser Ile Gly Val Phe 165	Pro Ser Pro 70 Tyr Cys Lys Thr Arg 150 Ser	Glu Pro 55 Gly Leu Ser Asp Arg 135 Arg Cys	Gly 40 Ser Lys Leu Val Lys 120 Cys Ala	25 Ala Ser Cys Lys Cys 105 Asp Ser Lys Arg	Gly Ser Val Val Arg Ile Arg Gly Gln 170	Asp Pro Cys 75 Asn Thr Phe Cys Asn 155 Leu	Glu Arg 60 Asn Asp Ser Cys Gly 140 Val Ser	Asp 45 Ser Leu Leu Lys 125 Arg Tyr Thr	30 Ser Met Cys Cys Gly 110 Leu His Gly	Cys Ala Gly Trp 95 Arg Asp Ile Leu Glu 175	Ser Ser Leu 80 His His Tyr His Ala 160 Glu
Glu Gly Ser Se: 50 Gly Se: 65 Ulu Ilu Val Ary Thr Se: Phe Ary 133 Ser Th: 145 Cys Pho	7 Leu 35 c Ala c Gly d Cys 115 d Cys 115 c Cys 115 c Asp c Asp e Ala a Leu	20 Val Pro Cys Asp Leu 100 Tyr Tyr Trp Cys Val 180	Ser Leu Pro Lys 85 Ser Ile Gly Val Phe 165 Glu	Pro Ser Pro 70 Tyr Cys Lys Thr Arg 150 Ser Glu	Glu Pro 55 Gly Leu Ser Asp 135 Arg Cys Lys	Gly 40 Ser Lys Leu Val Lys 120 Cys Ala Lys Val	25 Ala Ser Cys Lys Cys Cys Ser Lys Asp Ser Lys Arg Leu	Gly Ser Val Val Arg Gly Gly Cys	Asp Pro Cys 75 Asn Thr Phe Cys Asn 155 Leu Arg	Glu Arg 60 Asn Ser Cys Gly 140 Val Ser Val	Asp 45 Ser Leu Leu Lys 125 Arg Tyr Thr His	30 Ser Cys Cys Gly 110 Leu His Gly Tyr 190	Cys Ala Gly 7rp 95 Arg Asp Leu Clu 175 Asp	Ser Ser Leu 80 His His Tyr His Ala 160 Glu Cys

											_	con	τın [.]	ued	
Ala 225	Lys	Arg	Ala	Arg	Thr 230	Ser	Phe	Thr	Ala	Asp 235	Gln	Leu	Gln	Val	Met 240
Gln	Ala	Gln	Phe	Ala 245	Gln	Asp	Asn	Asn	Pro 250	Asp	Ala	Gln	Thr	Leu 255	Gln
Lys	Leu	Ala	Glu 260	Arg	Thr	Gly	Leu	Ser 265	Arg	Arg	Val	Ile	Gln 270	Val	Trp
Phe	Gln	Asn 275	Сүз	Arg	Ala	Arg	His 280	Lys	Lys	His	Val	Ser 285	Pro	Asn	His
Ser	Ser 290	Ser	Thr	Pro	Val	Thr 295	Ala	Val	Pro	Pro	Ser 300	Arg	Leu	Ser	Pro
Pro 305	Met	Leu	Glu	Glu	Met 310	Ala	Tyr	Ser	Ala	Tyr 315	Val	Pro	Gln	Asp	Gly 320
Thr	Met	Leu	Thr	Ala 325	Leu	His	Ser	Tyr	Met 330	Asp	Ala	His	Ser	Pro 335	Thr
Thr	Leu	Gly	Leu 340	Gln	Pro	Leu	Leu	Pro 345	His	Ser	Met	Thr	Gln 350	Leu	Pro
Ile	Ser	His 355	Thr												
<210 <211	.> LE	ENGTH	H: 30												
<212 <213				Mus	mus	culu	s								
<400)> SH	EQUEI	ICE :	23											
Met 1	Tyr	Trp	Lys	Ser 5	Asp	Gln	Met	Phe	Val 10	Сүз	ГÀа	Leu	Glu	Gly 15	Lya
Glu	Met	Pro	Glu 20	Leu	Ala	Val	Pro	Arg 25	Glu	Met	Суз	Pro	Gly 30	Leu	Met
Ser	Glu	Glu 35	Сув	Gly	Arg	Pro	Ala 40	Ala	Gly	Ala	Gly	Arg 45	Thr	Arg	ГЛа
Gly	Ser 50	Gly	Glu	Glu	Gly	Leu 55	Val	Asn	Pro	Glu	Gly 60	Ala	Gly	Asp	Glu
Asp 65	Ser	Суз	Ser	Ser	Ser 70	Gly	Pro	Leu	Ser	Pro 75	Ser	Ser	Ser	Pro	Gln 80
Ser	Met	Ala	Ser	Gly 85	Pro	Met	Суз	Pro	Pro 90	Gly	Lys	Суз	Val	Суз 95	Ser
Ser	Суз	-	Leu 100	Glu	Ile		Asp	-	-			-			Asp
Leu	Cys	Trp 115	His	Val	Arg	CÀa	Leu 120	Ser	Суз	Ser	Val	Cys 125	Arg	Thr	Ser
Leu	Gly 130	Arg	His	Thr	Ser	Cys 135	Tyr	Ile	Lys	Asp	Lys 140	Aap	Ile	Phe	Cys
Lys 145	Leu	Asp	Tyr	Phe	Arg 150	Arg	Tyr	Gly	Thr	Arg 155	Суз	Ser	Arg	Суз	Gly 160
Arg	His	Ile	His	Ser 165	Thr	Asp	Trp	Val	Arg 170	Arg	Ala	ГЛа	Gly	Asn 175	Val
Tyr	His	Leu	Ala 180	Суз	Phe	Ala	Суз	Phe 185		Суз	Lys	Arg	Gln 190	Leu	Ser
Thr	Gly	Glu 195	Glu	Phe	Ala	Leu	Val 200	Glu	Glu	Lys	Val	Leu 205	Суа	Arg	Val
His	Phe 210	Asp	Сув	Met	Leu	Asp 215		Leu	Lys	Arg	Glu 220	Val	Glu	Asn	Gly
Asn 225		Ile	Ser	Val			Ala	Leu	Leu	Thr 235		Gln	Asp	Val	Asn 240
445					230					235					∠40

_													COII	CIII	ueu	
Hi	.s	Pro	Lys	Pro	Ala 245	Lys	Arg	Ala	Arg	Thr 250	Ser	Phe	Thr	Ala	Asp 255	Gln
L∈	eu	Gln	Val	Met 260	Gln	Ala	Gln	Phe	Ala 265	Gln	Asp	Asn	Asn	Pro 270	Asp	Ala
Gl	.n	Thr	Leu 275	Gln	Lys	Leu	Ala	Glu 280	Arg	Thr	Gly	Leu	Ser 285	Arg	Arg	Val
11		Gln 290	Val	Trp	Phe	Gln	Asn 295	Суз	Arg	Ala	Arg	His 300	Lys	Lys	His	Val
S∈ 30		Pro	Asn	His	Ser	Ser 310	Ser	Ala	Pro	Val	Thr 315	Ala	Val	Pro	Ser	Ser 320
Ar	g	Leu	Ser	Pro	Pro 325	Ile	Leu	Glu	Glu	Met 330	Ala	Tyr	Ser	Ala	Tyr 335	Asp
Pr	0	Gln	Asp	Asp 340	Gly	Met	Leu	Thr	Ala 345	His	Ser	Tyr	Leu	Asp 350	Ala	His
Gl	.n	Gln	Leu 355	Leu	Asp	Ser	Ser	Pro 360	Сүз	Tyr	Pro	Ile	Gln 365			

35

What is claimed is:

1. A method of biasing differentiation of a neural stem cell comprising introducing an expression construct comprising an Lhx8 and/or Gbx1 gene sequence into the neural stem cell, wherein expression of the Lhx8 and/or Gbx1 gene sequences are effective to bias the neural stem cell to a desired end-stage cell type, or to a presumptive end-stage cell having characteristics of the desired end-stage cell type, in vitro, wherein the desired end-stage cell type is a cholinergic neuron.

2. An isolated cell produced by the method of claim 1.

3. A method of biasing differentiation of a neural stem cell in vitro comprising:

- a. providing the neural stem cell;
- b. preparing a nucleic acid sequence comprising a promoter operatively linked to an expressible sequence that comprises an Lhx8 and/or Gbx1 gene sequence, the nucleic acid sequence comprising a transcription termiation site; and
- c. transfecting said neural stem cell with said nucleic acid sequence, in vitro;

wherein expression of the expressible sequence results in biasing the neural stem cell to a desired end-stage cell type, or $_{45}$ to an presumptive end-stage cell having characteristics of the desired end-stage cell type, in vitro, wherein the desired endstage cell type is cholinergic neuron.

4. An isolated cell produced by the method of claim 3.

5. A method of biasing differentiation of one or more cells $_{50}$ in a population of cells comprising neural stem cells, comprising:

a. providing the population of cells in a vessel;

b. adding to the vessel one or more copies of a nucleic acid sequence comprising an Lhx8 and/or Gbx1 gene sequence under conditions to express said gene sequence;

wherein expression of the gene sequence in one or more cells transfected, in vitro, with a copy of the nucleic acid sequence is effective to bias the one or more cells to a desired end-stage cell type, or to an presumptive end-stage cell having characteristics of the desired end-stage cell type, in vitro, wherein the desired end-stage cell type is a cholinergic neuron.

6. The method of claim 5, the population of cells additionally comprising one or more biasable progeny cells.

7. The method of claim 5, the neural stem cells comprising human neural stem cells.

8. An isolated cell produced by the method of claim 5.

9. A method of modifying a neural stem cell to bias differentiation of said neural stem cell toward a desired end-stage differentiated cell in vitro comprising the step of:

introducing a nucleic acid sequence into said neural stem cell, in vitro, the nucleic acid sequence comprising a promoter operatively linked to a developmental control gene selected from the group consisting of an Lhx8 and Gbx1 gene sequence; wherein expression of the developmental biasing gene increases probability of said potent cell to differentiate into a desired end-stage differentiated cell, in vitro, wherein the desired end-stage cell type is cholinergic neuron.

* * * * *