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PROJECTING A PLURALITY OF FUNCTIONS 
INTO THE WAVELET DOMAIN 

REPRESENTING THE INTEGRAL AS THE SUM OF A SERIES 
OF CONTRIBUTING PRODUCTS THAT INCLUDE BASIS 

COEFFICIENTS AND ONE INTEGRAL COEFFICIENT 

• PLACING BASIS FUNCTIONS IN A BASIS FUNCTION TREE 
AND PLACING BASIS COEFFICIENTS OF EACH FUNCTION 

IN A BASIS COEFFICIENT TREE 

+ 
DETERMINING THE INTEGRAL COEFFICIENT 

APPEARING IN EACH CONTRIBUTING PRODUCT 

+ 
ELIMINATING THE CONTRIBUTING PRODUCT FROM 

THE SUM OF THE SERIES OF CONTRIBUTING PRODUCTS 
IF THE INTEGRAL COEFFICIENT IS ZERO 

+ 
ADDING THE CONTRIBUTING PRODUCT TO 

THE SUM OF THE SERIES OF CONTRIBUTING PRODUCTS 
IF INTEGRAL COEFFICIENT IS NONZERO 

• ( END ) 

FIG. 1 
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Equation (22) 

~ 

CN is non-zero if: c!' is: 

Basis functions bpN-1and bN are both 
c!' =lr-11 wavelet basis functions of the same type and support 

Basis functions bpN-1and bN are both c!' = 1 
the mother scaling function 

Basis functions bpN-1 is a scaling basis function c!' . cv-1 = +1-'2! x 
and bN is one of its parent basis functions j is the scale of bN 

Basis function bpN-1is a scaling basis function and CN = 0 
bN is a wavelet basis function of the same support 

Basis function bpN-1is a wavelet basis function and c!' = 0 
bN is a child scaling basis function of the same support 

Basis function bpN-1is a wavelet basis function and c!' = 0 
bNis a wavelet basis function of different type and the same support 

Basis function bpN-1is a wavelet basis function and c!' = 0 
bN is one of its parent basis functions. 

FIG. 15 
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struct augtree 
de: mother scaling coefficient; 
node: pointer to struct augnode; 

end 
struct augnode 

w[3]: wavelet coefficients; 
parentsum: signed parent summation; 
ch[4]: child pointers; 

end 

FIG. 17 
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algorithm FunctionProductintegral (Wi, W2, .•• , WN); 
u = W1.dc x W2.dc x ... x WN.dc; 
traverseAugTrees (1, W 1.node, W2.node, ... , WN.node); 

end 

routine traverseAugTrees (cum, wi, w2, ••• , wN); 
Rank wi, ... ,wN so that wi, ... ,wk are not null and wk+i, ... ,wN are null; 
if k < 2 then return; 
for i = 1 to N, update w;.parentsum; 
cum= cum x [ II~k+1 w;.parentsum ]; 
u = u +[cum x getProductlntegral (wi, ... , wk)]; 
for i = 0 to 3 

traverseAugTrees (cum, w 1.ch[i], ... wk.ch[i]); 

routine getProductlntegral (wi, ... , Wm) 
if m = 1 return O; 
return [ (wm.parentsum x getProductlntegral (wi, ... , Wm_ 1)) 

+ (wm.\lf[O] x getWaveletProduct (0, 1, 2, Wi, ... , Wm_1)) 
+ (wm.\lf[l] x getWaveletProduct (1, 0, 2, Wi, ... , Wm_1)) 
+ (wm.\lf[2] x getWaveletProduct (2, 0, 1, w 1

, ••• , Wm_1))]; 

routine getWaveletProduct (a, b, c, Wi, ... , Wm) 
ifm = 1 return w 1.\lf[a]; 
return [ (wm.\lf[a] x Ilf~t w;.parentsurn) 

+ (wm.parentsum x getWaveletProduct (a, b, c, wi, ... , Wm_ 1)) 

+ (4i x Wm.\lf[a] x getProductlntegral(wi, ... , Wm_ 1)) 

+ (2i x Wm.\lf[b] x getWaveletProduct (c, b, a, Wi, ... , Wm_1)) 

+ (2i x Wm.l!f[C] x getWaveletProduct (b, a, c, Wi, ... , Wm_1))]; 

FIG. 19 
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algorithm FunctionProductlntegral (Wi, W2, .•• , WN); 
u = W1.dc x W2.dc x ... x WN.dc; 
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traverseAugTrees (1, W 1.node, W2.node, ... , WN.node); 
4 end 
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routine traverseAugTrees (cum, w1, w2, ••• , wN); 
Rank w1, ... ,wN so that w 1, ••• ,wk are not null and wk+1, ••• ,wN are null; 
if k < 2 then return; 
for i = 1 to N, update Wj.parentsum; 
cum= cum X [ Ili=k+l Wj.parentsum ]; 
u = u +[cum x getProductintegral (w1, ... , wk)]; 
for i = 0 to 3 

traverseAugTrees (cum, w1.ch[i], ... wk.ch[i]); 

routine getProductlntegral (wi, ... , Wm) 
if m = 1 return O; 

Y[l ]. { $, \Jf[O], \Jf[l ], \Jf[2], cum} 
= {O, W1.\j![O], W1.\j![l], W1.\j![2], W1.parentsum} 

for i = 2 to (m - 1) 
Y[i].cum = Wj.parentsum x Y[i - 1].cum; 

Y[i].$ = getP(i); 
Y[i].\Jf[O] = getW (0, 1, 2, i); 
r[i].\j![l] = getW (1, 0, 2, i); 
Y[i].\Jf[2] = getW (2, 0, 1, i); 

return getP(m); 

routine getP (i) 
if i = 1 return O; 
return [w;.parentsum x Y[i - l].$ + 

+ (wi.\Jf[O] x Y[i - l].\Jf[O]) 
+ (wi. \Jf[l] x Y[i - 1]. \Jf[l]) 
+ (w;.\Jf[2] x r[i - l].\Jf[2])]; 

routine getW (a, b, c, i) 
ifi = 1 return Y[l].\j![a]; 
return [(wi.\Jf[a] x .g.r[i - 1].cum) 

+ (wi.parentsum x Y[i - 1].\Jf[a]) 
+ (4i x wi·\Jf[a] x r[i - 1).$) 
+ (2j x (Wj.\jf[b] x Y[i - 1].\j![C] + Wj.\jf[C] x W""[i - l].\j![b]))]; 

FIG. 20 
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struct table 3/[N] 

end 

<j>: magnitude; 
\jf[O]: magnitude; 
\Jf[l]: magnitude; 
\j/[2]: magnitude; 
cum: cumulative parentsum; 
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algorithm FunctionProduct (Wo, Wi. W2, ... , WN-1) 2900 
W0.dc = ~1 .dc x W2.dc x ... x WN_ 1.dc; ;_.J 
getCoeffic1ents(l, Wo.node, w,.node, W2.node,, ... , WN-1.node); 

end 

routine getCoefficients (cum, w0, wi, w2, •.. , WN-I) 
Rank W1, ... ,wN-I so that w,, ... , wk are not null and Wk+t, ... ,wN-I are null; 
if k = 0 then return; 
for i = 1 to (N - 1), update w;.parentsum; 
cum= cum x [ II~~i+i wh.parentsum ]; 
updateParents (w0, cum x getProductlntegral(w1, ••• , wk)); 
w0.\jJ[O] =cum x getW (0, 1, 2, k); 
w0.\jJ[l] =cum x getW (1, 0, 2, k); 
w0.\jJ[2] =cum x getW (2, 0, 1, k); 
for i = 0 to 3 

getCoefficients (cum, w0 .ch[i], w1.ch[i], ... wkch[i]); 

routine updateParents (w0, val) 
w0.dc = w0.dc + val; 
for scale j = 0, 1, ... , w0.scale-1 

11 lies in the quadrant (k, 1) of its parent wp at scale j 
Ww\f/[O] = Wp.\jJ[O] +(sign (0, k, 1) x 2i x val); 
Wp.\f/[1] = Wp.\f/[l] +(sign (1, k, 1) x 2i x val); 
Wp.\f/[2] = Wp.\f/[2] +(sign (2, k, I) x 2i x val); 

routine getProductlntegral (w1, ••• , Wm) 
if m = 1 return O; 

W-[1].{~, \f/[O], \f/[l], \f/[2], cum}= {O, wJ.{w[O], \f/[l], \f/[2], w 1.parentsum}} 
for i = 2 to (m - 1) 

W-[i].cum = w;.parentsum x W-[i - 1].cum; 
W-[i].~ = getP(i); 
W-[i].\f/[O] = getW (0, 1, 2, i); 
W-[i].\f/[l] = getW (1, 0, 2, i); 
W-[i].\f/[2] = getW (2, 0, 1, i); 

return getP(m); 

routine getP (i) 
if i = 1 return O; 

return [w;.parentsum x W-[i - lH + (w;.\f/[O] x W-[i - 1].\f/[O]) 
+ (w;.\f/[l] x W-[i- 1].\f/[l]) + (w;.\lf[2] x W-[i - l].\~[2])]; 

routine getW (a, b, c, i) 
ifi = 1return2T[l].\jJ[a]; 

return [(w;.\f/[a] x W-[i - 1].cum) + (w;.parentsum x W-[i - 1].\f/[a]) 
+ (4i x w;.\f/[a] x ST°[i - lH) 
+ (2j X (W;.\f/(b] X Y'""(i - 1].\f/(C] + W;.\f/(C) X ST°[i - l].\f/(b]))]; 

FIG. 29 
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SYSTEMS AND METHODS FOR GRAPHICAL 
RENDERING 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

2 
traverse direct paths through the plurality of wavelet trees to 
determine the integral of the product of the functions repre
sented by the wavelet trees, along which direct paths an 
integral coefficient may be nonzero. 

This application claims priority to U.S. provisional appli
cation entitled, "Generalized Wavelet Product Integral For 
Rendering Dynamic Glossy Objects," having Ser. No. 
60/830,654, filed Jul. 13, 2006, which is entirely incorporated 
herein by reference. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

In another embodiment, a computer readable medium con
figured to determine an integral coefficient, which is the inte
gral of the product of a plurality of basis functions, includes 
logic configured to determine whether the basis functions of 
the plurality lie in nodes of a basis function tree that are on a 

10 single direct path through the basis function tree, logic con
figured to set the integral coefficient to zero if the single direct 
path exists, logic configured to determine a basis function 
type of a basis function appearing in the product of the basis 

This disclosure was made with government support under 
grant number 0312724 awarded by the National Science 
Foundation. The government has certain rights in the inven
tion. 

15 
functions if the single direct path does not exist, logic con
figured to set the integral coefficient to zero ifthe basis func
tion type of the basis function appearing in the product is a 
wavelet basis function, and logic configured to set the integral 
coefficient to a value if the basis function type of the basis 

20 function appearing in the product is a scaling basis function. 
BACKGROUND Other systems, devices, methods, features, and advantages 

of the disclosed systems and methods for determining the 
integral of the product of a plurality of functions will be 
apparent or will become apparent to one with skill in the art 

Mathematics is a powerful tool that can be used to create 
models, among other things. When a real world system is 
represented using a mathematical model, the solution to the 
mathematical model often represents an answer to a problem 
in the real world system. In some cases, due to the nature of 
the system, the mathematical model includes a series of func
tions that are multiplied together and integrated, or simply 
multiplied together. One example of such a mathematical 
model is a light transport model that represents the physics of 
light moving within a three-dimensional scene. The light 
transport model describes the radiance of objects in the scene 

25 upon examination of the following figures and detailed 
description. All such additional systems, devices, methods, 
features, and advantages are intended to be included within 
the description and are intended to be protected by the accom
panying claims. 

30 

BRIEF DESCRIPTION OF THE FIGURES 

as a function of parameters such as the viewpoint of the 
observer, the texture of the objects, and the lighting itself. 

The present disclosure may be better understood with ref
erence to the following figures. Matching reference numerals 

35 
designate corresponding parts throughout the figures, and 

In cases in which the mathematical model is complex and 
time-consuming to solve, an approximation of the model can 
be employed to simplify, for example, rendering a graphical 
scene. However, the approximation may underestimate or 
ignore some variables of the model, and therefore the contri- 40 

bution of corresponding elements to the overall system. For 
example, most computer graphics rendering processes rely on 
simplified or approximated versions of the light transport 
model, but the lighting of the scenes rendered using such 
models is not realistic. Some simplified versions of the light 45 

transport model require objects in the scene to be static. 
Others cannot approximate the specular highlights that high
frequency lighting creates on glossy materials. Still others are 
physically accurate but are too slow for real-time rendering. 

To date, a need exists for systems and methods for deter- 50 

mining the integral of the product of a plurality of functions, 
or for determining the product of a plurality of functions. For 
example, such a need exists in the art of computer graphics 
rendering, where such systems and methods can be employed 
with reference to the light transport model. 

SUMMARY 

55 

components in the figures are not necessarily to scale. 
FIG. 1 is a block diagram illustrating an embodiment of a 

method for determining the integral of the product of a plu
rality of functions. 

FIG. 2 is a diagram illustrating a two-dimensional, non
standard Haar basis set having a resolution n of 3. 

FIG. 3 is a diagram illustrating the two-dimensional, non
standard Haar basis set having a resolution n of 2. 

FIG. 4 is a diagram illustrating restricted basis functions of 
the two-dimensional, nonstandard Haar basis set as shown in 
FIG. 3. 

FIG. 5 illustrates four example functions represented in the 
wavelet domain. 

FIG. 6 is a diagram illustrating a wavelet domain represen
tation of the integral of the product of the example functions 
of FIG. 5. 

FIG. 7 is a diagram illustrating an example basis function 
tree for the basis set as shown in FIG. 2. 

FIG. 8 is a diagram illustrating an example basis coefficient 
tree. 

FIG. 9 is a diagram illustrating example products of two 
basis functions, and an example equation for calculating such 
products. 

FIG. 10 is a diagram illustrating example products of more 
than two basis functions, and example equations for calculat
ing such products. 

In one embodiment, a computer readable medium is con
figured to determine the integral of the product of a plurality 60 

of functions. The computer readable medium includes logic 
configured to project each function of the plurality of func
tions into the wavelet domain, logic configured to encode 
basis coefficients of each function in a wavelet tree, each 
function being encoded in at least one wavelet tree such that 
the plurality of functions are represented in the wavelet 
domain by a plurality of wavelet trees, and logic configured to 

FIG. 11 is a table that tabulates the basis function type of 
the basis function appearing in the product of a plurality of 

65 basis functions. 
FIG. 12 is a block diagram illustrating an embodiment of a 

method of determining an N'h order integral coefficient CN. 
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FIG. 13 is a block diagram illustrating an embodiment of a 
method for determining a basis function type of a basis func
tion appearing in the product of a plurality of basis functions. 

FIG. 14 is a block diagram illustrating a general-purpose 
computer system that can be used to implement embodiments 5 
of the systems and methods disclosed herein. 

FIG. 15 is a table illustrating seven cases that facilitate 
determining the N'h order integral coefficient CN. 

FIG.16 is a block diagram illustrating another embodiment 
of a method for determining the integral of the product of a 

10 
plurality of functions. 

FIG. 17 illustrates an example wavelet tree in pseudo code. 
FIG. 18 is a block diagram illustrating an embodiment of a 

method for traversing direct paths through a plurality of 
wavelet trees to determine the integral of the product of the 
functions represented by the wavelet trees. 

FIG. 19 illustrates in pseudo code an example tree-traversal 
algorithm for determining the integral of the product of a 
plurality of functions, and embodiments of component rou
tines. 

15 

FIG. 20 illustrates in pseudo code an optimized tree-tra- 20 

versa! algorithm for determining the integral of the product of 
a plurality of functions, and embodiments of component rou
tines. 

4 
functions, and for determining the product of a plurality of 
functions. In some embodiments, the systems and methods 
can be used to render scenes using a computer, including 
dynamic glossy objects in real time, as is also described in a 
paper by the inventors, Sun et al., entitled "Generalized Wave
let Product Integral for Rendering Dynamic Glossy Objects", 
ACM Transactions on Graphics (SIGGRAPH '06) 25, 3, 
955-966, which is incorporated by reference herein in its 
entirety. 

FIG. 1 is a block diagram illustrating an embodiment of a 
method 100 for determining the integral of the product of a 
plurality offunctions. The integral of the product of the plu
rality of functions is represented using equation (1): 

u = JfI F;(v)d/v 
i=l 

(1) 

where u is the integral of the product of the plurality of 
functions, N is the total number of functions contributing to 
the product being integrated, and F,(v) generically denotes 
the i'h function in the product being integrated, i being any FIG. 21 illustrates in pseudo code anintermediate table that 

can be employed by the algorithm of FIG. 20. 25 
integer from 1 to N. 

In block 102, each of the plurality of functions F,(v) is 
projected into the wavelet domain. Projecting the functions 
into the wavelet domain comprises, for example, performing 
a wavelet transform on each function. The wavelet transform 

FIG. 22 is an embodiment of a system for determining the 
integral of the product of a plurality of functions. 

FIG. 23 is a diagram illustrating light and objects in an 
example scene. 

FIG. 24 is a block diagram illustrating an embodiment of a 
30 method of rendering a graphical scene in which the radiance 

of a point x in the scene is determined by integrating the 
product of a plurality of functions contributing to a light 
transport model of the scene. 

FIG. 25 is a block diagram illustrating an embodiment of a 
system of rendering a graphical scene in which the radiance of 35 

a point x in the scene is determined by integrating the product 
of a plurality of functions contributing to a light transport 
model of the scene. 

FIG. 26 is a block diagram illustrating an embodiment of a 
method for approximating the integral of the product of a 40 

plurality of functions. 

projects the function F,(v) onto a wavelet basis set ~· The 
wavelet basis set ~ includes a plurality of basis functions 
b h( v). As a result of the wavelet transform, each function F ,( v) 
is expressed as the sum of a series of basis functions bh(v) 
scaled by corresponding basis coefficients f, h as shown in 
equation (2): · 

M 

F;(v) = ~ [fi.h · bh(v)] 
h=l 

(2) 

where bh(v) is a h'h basis function in the wavelet basis set~' 
f, his the basis coefficient corresponding to the h'h basis func
ti~n, and M is the number of basis functions bh(v) used to 

FIG. 27 is a block diagram illustrating an embodiment of a 
method for determining the basis coefficients of a vector 
representing the product of a plurality of functions in the 
wavelet domain. 

FIG. 28 is a block diagram illustrating an embodiment of a 
method for traversing direct paths through a plurality of 
wavelet trees to determine the basis coefficients of a vector 
representing the product of the corresponding functions in the 
wavelet domain. 

45 represent the function F,(v) in the wavelet domain. Replacing 
the function F,(v) in equation (1) with its wavelet domain 
representation shown in equation (2) yields the wavelet 
domain representation of the integral of the product of the 
plurality of functions, as shown in equation (3): 

FIG. 29 illustrates in pseudo code an example tree-traversal 
algorithm for determining the basis coefficients of a vector 
representing the product of a plurality of functions in the 
wavelet domain, and embodiments of component routines. 

50 

FIG. 30 is an embodiment of a system for approximating 55 

the integral of the product of the plurality of functions. 
FIG. 31 is a block diagram illustrating an embodiment of a 

method of rendering a graphical scene by approximating a 
radiance of a point x in a scene. 

FIG. 32 is a block diagram illustrating an embodiment of a 60 

system for rendering a graphical scene by approximating a 
radiance of a point x in a scene. 

DETAILED DESCRIPTION 

(3) 

The wavelet transform can be a nonstandard Haar wavelet 
transform, in which case the wavelet basis set ~ can be a 
two-dimensional, nonstandard Haar basis set. Such a wavelet 
transform and basis set are described by Stollnitz, et al. in 
"Wavelets for Computer Graphics: A Primer," IEEE Com
puter Graphics and Applications (1995), 15, 3, 76-84, which 
is incorporated by reference in its entirety herein. Projecting 
each function F,(v) onto the two-dimensional, nonstandard 
Haar basis set by performing the nonstandard Haar wavelet 

Described below are embodiments of systems and methods 
for determining the integral of the product of a plurality of 

65 transform simplifies evaluating the integral of the product of 
the plurality of functions because only nonzero basis coeffi
cients f,_h and nonzero N'h order integral coefficients CN con-
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tribute to the integral and when two-dimensional, nonstand
ard Haar basis functions are used to represent the functions 
F,(v), many of the basis coefficients f, h and the N'h order 
integral coefficients CN are zero, as desc~ibed in detail below. 
Therefore, from this point forward, the term wavelet trans
form generally refers to the nonstandard Haar wavelet trans
form, the term basis function bh, generally refers to a two
dimensional, nonstandard Haar basis function and the term 
basis set B generally refers to the two-dimensional, nonstand
ard Haar basis set and the basis functions, of this basis set, 10 

unless otherwise indicated. Because the wavelet transform is 
known in the art and is explained in the Stollnitz reference 
incorporated above, a discussion of the wavelet transform is 
omitted here. However, a brief explanation of the basis set is 15 
provided below. 

i/J~(x, y) = 

-continued 

-1 if (o<x< ~)and (o<y< ~) - -2 - -2 

-1 if(~< x s 1) and(~ sys 1) 

if ( 0 s x s ~) and(~< y s 1) 

if(~ <xs 1) and (osys ~) 
0 else 

Each of the remaining basis functions in the basis set 200 is 
a dilated and spatially translated version of one of the mother 
basis functions. The mother basis functions can be dilated by 
a scale j and can be spatially translated with respect to an x-y 
coordinate system by spatial translations k and I. The scale j 
can be any integer from 0 to (n-1), n being the resolution of 
the basis set 200. Each spatial translation k and 1 can be any 

The two-dimensional, nonstandard Haar basis set B 
includes a plurality of basis functions, the number of basis 
functions varying with the resolution n of the basis set. For 
example, FIG. 2 is a diagram illustrating a basis set 200, 
having a resolution n of 3 and a total of eighty-four basis 
functions. In FIG. 2, each square diagram represents one of 
the basis functions. The basis function is positive where the 
diagram is white, is negative where the diagram is black, and 
is zero where the diagram is gray. For simplicity, a magnitude 

20 integer from Oto (Y-1). Each combination <j,k,l> is a unique 
support that indicates a size and location of the basis function 
in the diagram, the size being a function of the scale j and the 
location being a function of the spatial translations k, I. 

For each support <j,k,l>, four normalized basis functions 
25 are defined, one for each of the basis function types. A scaling 

basis function cjJ d for the support <j ,k,l> is expressed in terms 
of the mother scaling basis function cp0 by: 

of the basis function is ignored in the diagrams, but if shown, 
the magnitude would project out of or into the page. Each of 
the basis functions is normalized such that the magnitude of 
the basis function is one, and therefore the basis set 200 is an 30 
orthonormal basis set. 

<h((x,y)~Y<j>0(Yx-k,Yy-l) (4) 

Three wavelet basis functions 1jJ 1:, 1.j!2:, 1.j! 3k; for the support 
<j,k,l> are expressed in terms of their respective mother 
wavelet functions 1.jJ 1°, 1.jJ 2 °, and 1.jl3 ° by: Generally speaking, the basis set 200 includes four basis 

function types: scaling basis functions generally denoted by 
cp, and three different wavelet basis functions generally 
denoted by 1-!Ji, 1.jl2 , and 1.jl3 . A mother basis function is defined 35 

for each of the four basis function types. As illustrated in FIG. 

(5) 

(6) 

2, the mother basis functions include a mother scaling basis 
function cp0 and three different mother wavelet basis functions 
1.jJ 1°, 1.jJ 2 °, and 1.jl3 °. Each of the mother basis functions takes a 
unique shape within the diagram. The equations of the mother 40 

basis functions are provided below: 

'h,f(x,y)~Y1j!3 °(Yx-k,Yy-l) (7) 

The basis set 200 therefore includes one basis function for 
each basis function type at each support <j,k,l>, the basis 
function type indicating the shape of the basis function within 
the diagram, and the support indicating the size and location 
of the basis function within the diagram. 

{ 
1 if (0 s x s 1) and (0 sys 1) 

!/Jo(x, y) = 0 
else 

l
-1 

i/Jg(x, y) = -1 

0 

if ( 0 s x s ~) and (0 s y s 1) 

if(~ < x s 1) and (0 sys 1) 

else 

if (Os x s 1) and (o sys~) 

if (Osxs 1) and(~ <ys 1) 

else 

Although the two-dimensional, nonstandard Haar basis set 
45 Bis described above with reference to the basis set 200 shown 

in FIG. 2, a person of skill would understand that the basis set 
B can have greater or fewer basis functions depending on the 
resolution n. For example, FIG. 3 is a diagram illustrating the 
two-dimensional, nonstandard Haar basis set 300 having a 

50 resolution n of 2. The principles described with reference to 
the basis set 200 generally apply to the basis set 300, and to 
any other such basis set B regardless of the resolution n. 

The basis set B includes a subset of restricted basis func
tions. The restricted basis function subset includes 2nx2n 

55 basis functions from the basis set, including the mother scal
ing basis function cp 0 and all of the wavelet basis functions 
1jJ 1:, 1.j! 2:, 1.j!3:. In other words, the restricted basis function 
subset includes all basis functions in the basis set except for 
the scaling basis functions <Pd having scales j greater than 

60 zero. For example, the restricted basis function subset 400 of 
the two-dimensional, nonstandard Haar basis set 300 is 
shown in FIG. 4. 

Returning to block 102 of FIG. 1, the nonstandard Haar 
wavelet transform projects the functions F,(v) onto restricted 

65 basis functions of the basis set. Because the wavelet transform 
projects the function F,(v) onto the restricted bases, the wave
let domain representation of the function F,(v) in equation (2) 
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is the sum of a series of rxr restricted basis functions bh 
scaled by 2nx2n corresponding basis coefficients f, h' where n 
is the resolution. Therefore, from this point forward, the term 
basis function bh generally refers to one of the restricted basis 
functions and the term basis coefficient f, h generally refers to 
either the mother scaling coefficient or" one of the wavelet 
coefficients. 

8 
tation of the integral u shown in equation (3). An N'h order 
basis product pN is defined as the product ofN arbitrary basis 
functions bg: 

N 

P;/1-"2· .. . bN = n bg(v) 
g=l 

(8) 

FIG. 5 illustrates four example functions represented in the 
wavelet domain. For exemplary purposes, the functions F,(v) 
are shown in terms of the restricted basis functions bh of the 
subset 400 shown in FIG. 4, although in most cases a basis set 
B of higher resolution is used. In example 502 the function 

10 and an N'h order integral coefficient CN is defined as the 
integral of the N'h order basis product pN: 

F 1(v) is represented as sixteen basis coefficients f1 1 to f1 16 

scaling the sixteen restricted basis functions b1 to
0

b16. The 
same is true for examples 504, 506, and 508, which illustrate 15 

functions F2 (v), F3 (v), and F 4 (v), respectively. 
The meaning of the wavelet domain representation of the 

function F,(v) will now be described. The mother basis func
tions are defined for the support <0,0,0>, which covers the 
entire diagram. Therefore, the basis coefficients of the mother 20 

basis functions provide information about the entire function 
F ,( v). Specifically, the shape of the mother scaling basis func
tion cp0 represents an average over the entire diagram, and the 
shapes of the mother wavelet functions 1.jJ 1 °, 1.jJ2 °, and 1.jl3 ° 
represent horizontal, vertical, and diagonal steps, respec- 25 

tively, from the mother scaling basis function cp0 over the 
entire diagram. Therefore, the basis coefficient of the mother 
scaling basis function cp 0 provides information about an aver
age of the function F,(v), while the basis coefficients of the 
wavelet basis functions 1.jJ 1 °, 1.jJ 2 °, and 1.jl3 ° provide informa- 30 

tion about horizontal, vertical and diagonal differences from 
average, respectively, over the entire function. 

Supports <j,k,l> that are less than the entire diagram rep
resent distinct portions of the function F,(v) represented by 
the diagram. Therefore, the basis coefficients of basis func- 35 

tions for supports <j,k,l> other than <0,0,0> provide infor
mation about the portion of the function F,(v) represented by 
the support, and the basis function type indicates the type of 
information that is provided. Specifically, the basis coeffi
cients of the wavelet basis functions 1.jl1k;, 1.j!2k;, 1.j!3k; provide 40 

information about horizontal, vertical, and diagonal differ
ences, respectively from the average over the portion of the 
function F,(v) represented by the support. The scaling basis 
functions <Pd do not have basis coefficients because the wave-
let transform represents the function F,(v) in terms of the 45 

restricted bases, as discussed above. 

= Jfr bg(v)d/v 
g=l 

(9) 

Substituting equation (9) into equation (3), the integral of the 
product of the plurality of functions is expressed in the wave
let domain according to equation (10): 

(10) 

= [Ju · h.i · ... · fN.i · c~1 .hi. ... h1 ] + 

[!1.2 · h.i · ... · !N.i · c~»b 1 .... b;] + · · · + 

[f1.M. fi.M. ···. fN.M-1. C~M.bM• .bM-1] + 

[f1.M . fi.M . · · ·. fN.M . C~M .bM. .bM] 

In other words, the integral of the product of the plurality of 
functions u is represented in the wavelet domain as the sum of 
a series of contributing products. Each contributing product 
in the series is the product of multiple basis coefficients and 
one N'h order integral coefficient CN, the multiple basis coef
ficients including one basis coefficient f, h from each of the N 

While the basis coefficients of basis functions at finer or 
higher scales j provide information about smaller portions of 
the function F,(v), the information that is provided is more 
detailed or resolved. For example, in FIG. 2, the wavelet basis 
function 1.jJ

200 
1 has a support that is smaller than the support of 

the mother wavelet basis function 1.jl3 °, indicating that a basis 
coefficient of the wavelet basis function 1.jl

300
1 provides infor

mation about a smaller portion of the function F,(v) than the 
basis coefficient of the mother wavelet function 1.jl

300
1

; how
ever, the diagonal difference from average represented by the 
basis coefficient of the wavelet basis function 1.jl

300 
1 is more 

resolved than the diagonal difference from the average rep
resented by the basis coefficient of the mother wavelet func
tion 1.jl3 °, as visually indicated by the increased resolution in 
the diagram. 

functions, and the N'h order integral coefficient CN being the 
integral of the product of the basis functions bh(v) that corre
spond to those basis coefficients f, h· One contributing prod-

50 uct appears in the series for each combination of N basis 
coefficients f, h having one coefficient from each of the N 
functions, su~h that a total of MN contributing products 
appear in the series. It should be noted that in the basis 
coefficient f, h' h is an integer from 1 to M and i is an integer 

55 from 1 to N, M being the number of basis functions bh used to 
represent the function F,(v) and N being the number of func
tions F,(v) whose product is being integrated. 

With reference back to FIG.1, in block104 the integral u of 
the product of the plurality of functions is represented in the 
wavelet domain as the sum of a series of contributing prod
ucts, each contributing product including a plurality of basis 
coefficients and one integral coefficient. Such a representa
tion is achieved by simplifying the wavelet domain represen-

FIG. 6 is a diagram illustrating the wavelet domain repre
sentation of the integral u of the product of the example 

60 functions of FIG. 5. In example 600, the example functions 
F v F 2 , F 3 , and F 4 of examples 502, 504, 506, and 508 are 
inserted into equation (10). The integral u of the product of the 
functions is represented in the wavelet domains the sum of a 
series of 164 contributing products, but for illustrative pur-

65 poses, only three of these contributing products 602, 604, and 
606 are shown in example 600. Each product 602, 604, and 
606 includes four basis coefficients 608, one from each of the 
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functions Fu F2 , F3 , and F 4 , and one 4th order integral coef
ficient 610, which is the integral of the basis functions that 
correspond to the basis coefficients 608. For example, the 
four basis coefficients 608 in the product 602 are the basis 
coefficient f1 1 from the function F 1 , the basis coefficient f2 1 

from the fun~tion F 2 , the basis coefficient f3 1 from the fun~
tion F 3 , and the basis coefficient f4 1 from 

0

the function F 4 . 

Each of these basis coefficients corre~ponds to the basis func
tion labeled b1 in FIG. 4, which is the mother scaling basis 
function cp 0

, as shown in FIG. 4. Therefore, the 4th order 10 

integral coefficient 610 in the product 602 is the integral of the 
product of four mother scaling basis functions cp0

, as shown in 
example 612 of FIG. 6. The example product 604 is the 
product forthe combination of basis coefficients that includes 
the basis coefficient f1 6 from the function F 1 , the basis coef- 15 

ficient f2 2 from the fun°ction F 2 , the basis coefficient f3 11 from 
the functionF 3 , and the basis coefficientf4 7 from the function 
F 4 . Therefore, as shown in example 614° of FIG. 6, the 4th 

order integral coefficient 610 in the product 604 is the integral 
of the product of the basis functions labeled b6 , b2 , b11 , and b7 20 

in FIG. 4. The example product 616 follows the same form. 
In block 106, the basis functions are organized in a basis 

function tree, and the basis coefficients of each function are 
placed in a basis coefficient tree. The basis function tree is 
described first, because its organization informs the organi- 25 

zation of the basis coefficient tree. 
The basis function tree organizes basis functions based on 

parent-child relationships among the basis functions. The 
mother scaling function cp0 is defined as the parent of all other 
basis functions, and is defined as the immediate parent of the 30 

mother wavelet functions 1.jJ 1°, 1.jJ 2°, and 1.jl3 °. For all other 
basis functions, the basis function is a parent basis function of 
a child basis function if the scale j of the parent basis function 
is less than the scale j of the child basis function and the 
support <j,k,l> of the parent basis function completely covers 35 

the support <j ,k,l> of the child basis function, meaning the 
parent basis function is positionally located in the diagram 
with respect to the x-y coordinate system in every (x, y) 
position occupied by the child basis function. The parent 
basis function of support <j,k,l> is an immediate parent of the 40 

child basis function if the child basis function has scale G + 1) 
and is located at spatial positions (2k, 21), (2k+l, 21), (2k, 
21+1), and (2k+l, 21+1). Based on the definitions above, a 
child basis function may have more than one immediate par
ent basis function, and further, the immediate parent basis 45 

functions may be a different mother basis function type than 
the child basis function. For example, with reference to FIG. 
2, the scaling basis function cp00 

1 is one of the immediate 
parent basis functions of the wavelet basis function 1.jl

100
2

, 

because the scale of the wavelet basis function 1.jJ
100

2 is one 50 

greater than the scale of the scaling basis function cp00 
1

, and 
the support of the scaling basis function cp00 

1 completely 
covers the support of the wavelet basis function 1.jJ

100
2

. 

For example, FIG. 7 is the diagram illustrating an example 
basis function tree 700 for the basis set 200 shown in FIG. 2. 55 

The mother scaling basis function cp0 lies in a root 702 of the 
tree 700, indicating its status as the parent of all basis func
tions in the set 200. A mother node 704 immediately depends 
from the root 702 and includes the three mother wavelet 
functions 1jJ 1 °, 1jJ 2 °, and 1jJ 3 °, indicating their status as the 60 

immediate children of the mother scaling basis function cp0
. 

Below the mother node 704 in which the three mother wavelet 
functions 1jJ 1°,1.jJ2 °, and 1.jl3 ° lie, basis functions are organized 
in child nodes 706, each child node 706 corresponding to a 
unique support <j,k,l> and including the four basis functions 65 

that are defined for the support. The four basis functions in the 
child node 706 are generally represented by bd, where b 

10 
generally denotes a basis function, j denotes the scale of the 
basis function, and (k, 1) denotes the spatial translation. For 
example, the basis functions in child node 710 are represented 
by the symbol b 1

1 u indicating the node includes all four basis 
functions defined on the support <l, 1, 1 >, as shown in the key 
712. 

Because the child nodes 706 are organized according to 
parent-child relationship, any basis function in any child node 
706 is an immediate child basis function of the basis functions 
in the node from which the child node 706 depends. For 
example, each basis function in the child node 710 is the 
immediate child basis function of each of the mother wavelet 
functions in the mother node 704. Further, if any basis func
tion in a child node 706 is a parent basis function, its corre
sponding child basis functions are located in child nodes 706 
depending from it, and if the basis function in the child node 
706 is an immediate parent basis function, its corresponding 
immediate child basis functions are located in the child nodes 
706 immediately depending from it. For example, in FIG. 7 
the child node 710 has four child nodes 706 immediately 
depending from it, indicating that each of the four basis 
functions defined on the support <1,1,1> is an immediate 
parent basis function of each of the basis functions defined on 
supports <2,2,2>, <2,3,2>, <2,2,3>, and <2,3,3>. 

As shown, the basis function tree 700 includes all of the 
basis functions of the basis set 200 shown in FIG. 2, which has 
a resolutionn of3. Of course, the basis function tree 700 may 
have greater or fewer child nodes 706 depending on the reso
lution n. 

A direct path through the basis function tree 700 connects 
the node in which a child basis function lies to the node in 
which its parent basis function lies. The direct path traces 
from the child basis function to the parent basis function 
passing through any nodes including the immediate parent 
basis functions. For example, in FIG. 7, a direct path 714 
exists from the child basis function 1jJ 111 

2 in the child node 716 
to the mother scaling function cp0 at the root 702. The child 
basis function 1.jl 111

2 in the child node 716 has as immediate 
parents all of the basis functions in the child node 718, includ
ing basis functions <Pao 1 , 1jJ 

100
1

, 1.jl
200

1
, and 1.jl3 0

1
, which in tum 

have the mother wavelet functions 1.jJ 1 °, 1.jJ}J, and 1.jl3 ° in the 
mother node 704 as immediate parents, which in tum having 
the mother scaling function cjJ 0 in the root 702 as an immediate 
parent. However, the direct path need not extend all the way to 
the mother scaling function cp 0 in the root 702. For example, 
the scaling basis function cp 11

1 is a child basis function of the 
mother wavelet function 1.jl2 °, as indicated by the direct path 
720 connecting the child node 710 to the mother node 704. 

The basis coefficient tree has the same nodes as the corre
sponding basis function tree. However, instead of organizing 
basis functions according to parent-child relationship, the 
basis coefficient tree organizes basis coefficients. Each basis 
coefficient is in the node of the basis coefficient tree that 
corresponds to the node occupied by its corresponding basis 
function in the basis function tree. Therefore, the basis coef
ficient tree has the same nodes positioned with respect to each 
other in the same manner as the basis function tree. Unlike the 
basis function tree, however, in the basis coefficient tree the 
child nodes include at most three basis coefficients, the child 
scaling functions not having basis coefficients because the 
wavelet transform projects the function onto the restricted 
bases. 

For example, FIG. 8 is a diagram illustrating an example 
basis coefficient tree 800, which organizes the basis coeffi
cients for the function F 1 (v) shown in example 502 of FIG. 5. 
Because the basis coefficient f1 1 corresponds to the mother 
scaling basis functioncp 0

, the basis coefficient f1 •1 lies ina root 
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child, or the two basis functions lie in the same node of the 
basis function tree, meaning the two basis functions have the 
same support. Otherwise, when the support of neither basis 
function completely covers the support of the other basis 
function, the product P2 of two basis functions is zero, as 
shown in examples 916, 917, and 918. In other words, the 
product P2 of two basis functions is zero ifthe supports of the 
two basis functions are completely disjoint. 

In cases in which the product P2 is not zero, the sign, 

802 of the basis coefficient tree 800. The basis coefficients 
f1 2 , f1 3 , and f1 4 correspond to the three mother wavelet 
fu°nctio"ns 1.jJ 1 °,1.jl~ 0, and 1.jl3 °, and therefore these basis coeffi
cients lie in a mother node 804 that immediately depends 
from the root 802. Below the mother node 804, basis coeffi
cients are organized in child nodes 806, each child node 806 
corresponding to a unique support <j,k,l> and including the 
three basis coefficients that correspond to the wavelet basis 
functions 1jJ 1k;, 1.j!2k;, 1.j!3k; defined for the support. For 
example, the child node 810 in the basis coefficient tree 800 
includes the three basis coefficients f1 14, f1 15 , and f1 16 that 
corresponds to the three wavelet basis

0

functions1jJ 1 
1

: 1.jJ 2 
1

, 

1.jl3111 defined for the support <l, 1, l>in the child node nd~f 
FIG. 7. 

10 magnitude, and basis function of the product P2 can be deter
mined from the characteristics of the two basis function being 
multiplied together. For example, the product of two identical 
wavelet basis functions of the same support is the scaling 

As shown, the basis coefficient tree 800 includes one basis 15 

coefficient for each restricted basis function of the basis set 

basis function of the same support, scaled by a magnitude Y, 
as shown in examples 901, 902, and 903 and in equation (12). 

(12) 
shown in FIG. 4. Of course, the basis coefficient tree 800 may 
have greater or fewer child nodes 806 depending on the reso
lution n of the basis set, and usually a basis set of higher 
resolution will be used. 

The product of two different wavelet basis functions of the 
same support is the third wavelet basis function of the same 

20 support, scaled by a magnitude Y, as shown in examples 904, 
905, and 906 and in equations (13): With reference back to block 106 of FIG. 1, the basis 

coefficients of the function F,(v) are placed in the basis coef
ficient tree. In some embodiments, one basis coefficient tree is 
defined for each function F,(v), such that a total of N basis 
coefficients trees are defined for the N functions whose prod- 25 

uct is being integrated. In other embodiments, a greater num
ber of basis coefficient tree can be used. 

In block 108, the Nth order integral coefficients CN are 
determined, one Nth order integral coefficient CN appearing in 
each contributing product in the sum of the series of contrib- 30 

uting products that determines the integral u. As mentioned 
above, only contributing products that include nonzero Nth 

order integral coefficients CN contribute to the result u in 
equation (10), but when two-dimensional, nonstandard Haar 
basis functions are used to represent the functions F ,(v ), many 35 

of the Nth order integral coefficients CN are zero. If the integral 
coefficient is zero, the entire contributing product is zero and 
does not contribute to the integral. If the integral coefficient is 
not zero, its value should be determined so that the contribu
tion of the contributing product to the integral u is considered. 40 

For example, in FIG. 6 eachoftheexampleproducts 602, 604, 
and 606 includes four basis coefficients and one 4th order 
integral coefficients C4

. If the 4th order integral coefficient is 
zero, the product 602, 604, or 606 does not contribute to the 
integral u. Therefore, a set of principles for determining the 45 

Nth order integral coefficient CN are described below with 
reference to FIGS. 9-13. 

FIG. 9 is a diagram illustrating example products of two 
basis functions, and an example equation for calculating such 
products.As shown in equation (11 ), a product P2 of two basis 50 

functions b1 and b2 is another basis function br scaled by a 
sign+/-, which may be positive or negative, and a magnitude 
IP2 1, which may be zero: 

(11) 55 

(13) 

The product of a scaling basis function of a given support 
and a wavelet basis function of the same support is the wavelet 
basis function of the same type and support, scaled by a 
magnitude Y, as shown in examples 907, 908, and 909 and in 
equation (14): 

(14) 

The product of two scaling basis functions of the same 
support is the scaling basis function of the same support, 
scaled by amagnitudeY, as shown in examples 910, 911, and 
912 and in equation (15): 

(15) 

The product of a child basis function and a parent basis 
function is the child basis function, scaled by a sign+/- and a 
magnitude '2!, where the sign is the same as the sign of the 
portion of the support of the parent basis function that the 
support of the child basis function covers, and where the 
magnitude '2! is a function of the scale j of the parent basis 
function, as shown in examples 913, 914, and 915 and in 
equation (16): 

(16) 

For example, in example 913, the sign of the product is 
negative, because the support of the child basis function cov
ers a portion of the support of the parent basis function that is 
negative, where the diagram is black. The magnitude of the 
product is one, because the scale j of the parent basis function 
is zero. However, in example 915, the sign of the product is 
positive, because the support of the child basis function cov-
ers a portion of the support of the parent basis function that is 
positive, where the diagram is white. 

The examples shown in FIG. 9 illustrate basis functions of 

The product P2 of the two basis functions is not zero ifthe 
support of one of the basis functions completely covers the 
support of the other basis function, as shown in examples 901 
through 915. As mentioned above, the support of one basis 
function completely covers the support of another basis func
tion if the one basis function is positionally located in the 
diagram with respect to the x-y coordinate system in every ( x, 

60 the basis set 200 as shown in FIG. 2, but the principles 
outlined generally apply to all basis functions, including basis 
functions that are not shown in FIG. 2. Additionally, the 
principles outlined generally can be applied to determine the y) position occupied by the other basis function. In other 

words, the product P2 of two basis functions is non-zero ifand 
only if either there is a direct path in the basis function tree 65 

between the nodes occupied by the two basis functions, 
meaning the two basis functions are related as parent and 

product of more than two basis functions, as described below. 
FIG. 10 is a diagram illustrating example products of more 

than two basis functions, and example equations for calculat
ing such products. Just as with the product P2 of two basis 
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functions, a product pg of g basis functions bu ... bg_ 1 , bg is 
another basis function bF" scaled by a sign, which may be 
positive or negative, and a magnitude IPgl, whichmaybezero, 
as shown in equation (17): 

(17) 

The product pg of g basis functions can be calculated by 
multiplying two of the basis functions together to produce a 
product P2

, as described above with reference to FIG. 9. The 10 
product P2 can then be multiplied by the next basis function in 
the set of g basis functions. After (g-2) products have been 
calculated, the set of g basis functions is reduced to a set of 
two basis functions: one being the product pg-I and the other 
being the basis function bg, as shown in equation (18), below: 15 

pg~( +f-lpg- 1 lbp1J-1)·bg ~+!-IPglbp1J (18) 

The product pg is zero if the product P2 of any two basis 
functions in the set of g basis functions is zero. As described 

20 
above, the product P2 of any two basis functions is non-zero if 
the two basis functions are related as parent and child or if the 
two basis functions have the same support. Therefore, the 
product pg is non-zero if and only if each basis functions in the 
set of g functions lies in a node that is on a direct path through 25 
the basis function tree to the node occupied by every other 
basis function in the set of g basis functions. In other words, 
the product pg is non-zero if and only if all of the basis 
functions lie in nodes that are on a single direct path through 
the basis function tree. Otherwise, the product pg of g basis 30 

functions is zero. 
For example, an arbitrary set of basis functions 1020 is 

shown in example 1004 ofFIG.10. The basis functions lie on 
a single direct path 614 through the basis function tree 600 in 
FIG. 6. Therefore, the product 1022 of the set of basis func- 35 

tions 1020 is not zero, as shown in FIG. 10. 
Determining the product pg is facilitated by placing the 

basis functions in a ranking order. Basis functions having 
finer scales are positioned in earlier positions in the ranking 
order than basis functions having coarser scales, and among 40 

basis functions having the same scale, wavelet basis functions 
of a given scale are positioned in earlier positions in the 
ranking order than the scaling basis function of that scale. As 
a result, a basis function having a finest scale j

0 
of the set of g 

functions appears in an earliest position in the ranking order. 45 

It should be noted that the term "finer scale" means a scale 

14 
functions in the ranking order does facilitate determining the 
sign, the magnitude IPgl, and the basis function bF" of the 
product pg. 

In cases in which the product pg is not zero, the magnitude 
of the product pg can be determined using equation (19): 

(19) 

where 

is the determined by taking the sum of the scale of each basis 
function in the set of g functions and then subtracting the 
finest scale j

0 
appearing in the set of g functions. As noted 

above, the finest scale j
0 

is the scale of at least the basis 
function appearing in the earliest position 1026 in the ranking 
order. The sign can be determined by multiplying together a 
series of signs, the series of signs including one sign for each 
parent basis function in the product pg, the sign for the parent 
basis function being the sign of the portion of the support of 
the parent basis function that is covered by its child basis 
functions. It should be noted that a negative magnitude effects 
a reversal of the colors in the diagram because, as mentioned 
above, the diagram is white where the magnitude is positive, 
black where the magnitude is negative, and gray where the 
magnitude is zero. 

For example, in example 1006, the set of basis functions 
1020 includes five basis functions having a scale j of 2, two 
basis functions having a scale j of 1, and two basis functions 
having a scale j ofO. The finest scale j

0 
appearing in the set of 

basis functions 1020 is j of 2, which is the scale of the basis 
function in the earliest position 1026. Therefore, the magni-
tude of the product 1028 is IPn1=2CC2 + 2+ 2 + 2+ 2 + 1+ 1+ 0 + 0 l-2 l. A 
negative portion of the support of the parent basis function 
1jJ 

100 
1 is covered by the supports of its child basis functions. A 

positive portion of the support of the parent basis function 
1jl

300
1 is covered by the supports of its child basis functions. A 

positive portion of the support of the parent basis function 1jJ 1 ° 
is covered by the supports of its child basis functions, and a 
positive portion of the support of the parent basis function cp 0 

is covered by the supports of its child basis functions. There
fore, the sign of the product 1028 is negative, or(-)-(+)-(+)· 

that is numerically greater than another "coarser scale", the 
terms finer and coarser denoting the resolution with which 
such basis functions are able to represent entities in the wave
let domain. 50 ( + )=(-). 

For example, the set of basis functions 1020 is organized in 
an arbitrary order in example 1004, and the same set ofbasis 
functions 1020 is organized in the ranking order in example 
1006. An arrow 1024 moves in the direction of earlier posi
tions in the ranking order, and terminates at an earliest posi
tion 1026 occupied by one of the basis functions having the 
finest scale j

0
, which in the set 1020 happens to be a scale j of 

2. In the example 1006, the earliest position 1026 in the 
ranking order is the position that is farthest to the left on the 
page, although any position on the page can be defined as the 
earliest position as long as the basis functions are positioned 
relative to each other according to the rule defined above. 

Because the multiplication of basis functions is commuta
tive, organizing the set of g basis functions in the ranking 
order does not change the product pg, as can be seen by 
comparing the product 1022 in example 1004 with the prod
uct 1028 in example 1006. However, organizing the basis 

The basis function bp< of the product pg can be determined 
by isolating the subset of m basis functions having the finest 
scale j

0
, and taking the product pm of the basis functions in the 

subset. In cases in which the product pg is not zero, the basis 
55 function bF" appearing in the product pg is the same as the 

basis function bF" appearing in the product pm of the subset of 
m basis functions having the finest scale j

0
• This result occurs 

because the product of a child basis function and a parent 
basis function is the child basis function, scaled by a sign and 

60 a magnitude, as explained above with reference to examples 
913 through 916 of FIG. 9. 

For example, in example 1006, the finest scale j
0 

in the set 
ofbasis functions 1020 is a scale ofL of2, and the subset 1030 
includes all of the basis functions having this scale. In 

65 example 1008, the product of the basis functions in the subset 
1030 is taken. The basis function 1032 of the product 1034 
that results is the scaling basis function cjJ 11 

2 and therefore the 
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basis function 1036 of the product 1028 is also the scaling 
basis function cp 11

2
, as shown in example 1006. 

Alternatively, the basis function bP' appearing in the prod
uct pg of g basis functions can be determined from the sup
ports <j,k,l> and basis function types of the basis functions in 5 

the subset of m basis functions having the finest scale j
0

• In 
cases in which the product pg is not zero, the support of the 
basis function b P' appearing in the product pg is the same as 
the support of them basis functions having the finest scale j

0
• 

Note that each basis function in the subset of m basis func- 10 

16 
single direct path through the basis function tree, the product 
pN is nonzero, as shown in block 1208. 

In cases in which the product pN is nonzero, the N'h order 
integral coefficient CN is also nonzero if the basis function 
type of the basis function by appearing in the product pN is a 
scaling basis functions cp, according to equation (21). Other
wise, the basis function type is one of the wavelet basis 
functions 1jJ v 1.jJ2, or 1.jl3 and the N'h order integral coefficient 
CN is zero, according to equation (20). Therefore, in block 
1210, the basis function type of the basis function by appear-

tions having the finest scale jo has the same support<jo,k,l>; ing in the product pN is determined. In block 1212, it is asked 
otherwise, at least two basis functions would not lie on a whether the basis function type of the basis function by 
direct path through the basis function tree and their product P

2 
appearing in the product pN is a scaling basis function cp. 

would necessarily be zero, causing the product pg of the set of FIG. 13 is a block diagram illustrating an embodiment of a 
g basis functions to also be zero. 15 

method 1300 for determining the basis function type of the 
The basis function type of the basis function b P' appearing 

basis function by appearing in the product pN. In block 1302, in the product pg can be determined from the parities of three 
numbers,eachnumbercorrespondingtoonewaveletfunction the N basis functions bh that appear in the product pN are 
type and being the aggregate number of times the wavelet placed in the ranking order, such as the ranking order 
function type appears in the subset of m basis functions hav- 20 described with reference to FIG.10. In block 1304, a subset of 
ing the finest scale j

0
• FIG. 11 is a table that tabulates the basis m basis functions bh having a finest scale Lare isolated from 

function type of the basis function bP' appearing in the prod- the N basis functions that appear in the product pN. In block 
uct pg as a function of the parity of the aggregate number of 1306, the aggregate number of times each of the three wavelet 
each wavelet function type in the subset of m basis functions function types appears in the subset of m basis functions are 
having the finest scale j

0
• It should be noted that, for the 25 counted. In block 1308, the parity of each of the three aggre-

purposes of this disclosure, the parity of zero is considered to gate numbers is compared. In block 1310, it is asked whether 
be even. the parities of the three aggregate numbers are the same. If the 

For example, in example 1006, each basis function in the parities of any of the three aggregate numbers is different 
subset ofbasis functions 1030 having the finest scale j 0 has the from the other numbers, then the basis function by of the 
support <2,1,1>, and therefore the basis function 1036 30 product pN is one of the wavelet basis functions, as shown in 
appearing in the product 1028 has the support <2, 1, 1 >. The block 1312. Specifically, the basis function b Y of the product 
subset of basis functions 1030 includes three basis functions is the wavelet basis function that corresponds to the aggregate 
of wavelet function type 1jJ v one basis function of wavelet number having a parity that differs from the other two aggre-
function type 1.jl2, and one basis function of wavelet function 35 gate numbers. If the parities of each of the three numbers are 
type 1jJ 3 · The aggregate number of wavelet function type 1jJ i is the same, the basis function by of the product pN is the scaling 
three, and the parity of this aggregate number is odd. The 

basis function cp, as shown in block 1314. 
aggregate number of wavelet function type 1.jJ2 is one, and the 
parity of this aggregate number is odd. The aggregate number Returning to FIG. 12, ifthe basis function type of the basis 
of wavelet function type 1.jl3 is one, and the parity of this function by appearing in the product pN is not the scaling 
aggregate number is odd. Therefore, according to FIG. 11 the 40 basis function type, the N'h order integral coefficient CN is 
basis function type of the product pg is the scaling basis zero, as shown in block 1214. If the type is the scaling basis 
function cp, which is the basis function 1036 appearing in the function type, the N'h order integral coefficient CN is nonzero, 
product 1028 in example 1006. as shown in block 1216. In such a case, the nonzero value of 

Regarding the integral of basis functions, the integral of the N'h order integral coefficient CN is found using equation 
any one of the wavelet basis functions 1.jlv 1.jl2, or1.jl3 is zero, as 45 (22), which results from combining equations (19) and (21): 
shown in equation (20): 

ff11'k/dxdrO (20) 

However, the integral of a scaling basis function cjJ is 2-1, as 
50 

shown in equation (21): 

ff<h/dxdr2-1 (21) 

Returning to block 108 of FIG. 1, the N'h order integral 
coefficient CN is determined for each contributing product 55 

appearing in the wavelet domain representation of the integral 
u. FIG. 12 is a block diagram illustrating an embodiment of a 
method 1200 for determining the N'h order integral coeffi
cient CN, the method employing the principles described 
above with reference to FIGS. 7-11. In block 1202, it is 60 

determined whether the N basis functions b h that appear in the 
product pN lie in nodes on a single direct path through the 
basis function tree. If the N basis functions bh do not lie in 
nodes on a single direct path, the product pN of the N basis 
functions is zero, as shown in block 1204. In such case, the 65 

N'h order integral coefficient CN is also zero, as shown in 
block 1206. If the N basis functions bh do lie in nodes on a 

(22) 

In equation (22), 

~ 
j 

is the sum of the scales of the N basis functions and j
0 

is the 
finest scale of the N functions. The sign is determined by 
multiplying together a series of signs, the series of signs 
including one sign for each parent basis function in the prod
uct pN, the sign for the parent basis function being the sign of 
the portion of the support of the parent basis function that is 
covered by its child basis functions, as described above. 

The methods 1200and1300 can be implemented by com
puter. In such case, a system and/or a computer readable 
medium can be employed, the system and/or computer read-
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able medium comprising logic configured to perform the 
steps of the method 1200and/or1300, as described in further 
detail below. 

With reference back to FIG. 1, if the Nth order integral 
coefficient CN is zero, the product that includes the Nth order 
integral coefficient CN is eliminated from the sum of the series 

18 
cessor 1402 can be any custom made or commercially avail
able processor, a central processing unit (CPU), an auxiliary 
processor among several processors resulting from the com
puter 1401, a semiconductor based microprocessor (in the 
form of a microchip or chip set), a microprocessor, or gener
ally any device for executing software instructions. 

The memory 1403 can include any one or combination of 
volatile memory elements (e.g., random access memory 
(RAM, such as DRAM, SRAM, SDRAM,etc.))andnonvola-

of contributing products in block 110. In block 112, ifthe Nth 

order integral coefficient CN is nonzero, the product that 
includes the Nth order integral coefficient CN is added to the 
sum of the series of contributing products. For example, in 
example 600 of FIG. 6 the integral of the product of the 
functions is represented as the sum of the series of contribut
ing products that includes products 602, 604, and 606. In 
product 602, the basis coefficients correspond to basis func
tions that lie on a single direct path through the basis function 
tree, as shown in example 612. The number of each wavelet 
function type appearing in the subset of finest scale basis 
functions is zero, and according to FIG. 11 the basis function 
type of the basis function bp1 of the product P61 •61 •61 •61

4 is the 
scaling basis function cp. Therefore, the 4th order integral 
coefficient C61 •61 .d

1
.d

1
4 in the product 602 is not zero, meaning 

the product 602 contributes to the integral and should not be 
eliminated from the series of contributing products. 

10 tile memory elements (e.g., ROM, hard drive, tape, CD ROM, 
etc.). Moreover, the memory 1403 may incorporate elec
tronic, magnetic, optical, or other types of storage media. 
Note that the memory 1403 can have a distributed architec
ture, where various components are situated remote from one 

15 another, but can be accessed by the processor 1402. 
The software in memory 1403 may include one or more 

separate programs, each of which comprises an ordered list
ing of executable instructions for implementing logical func
tions. In the example of FIG. 14, the software in the memory 

In product 604, the basis coefficients correspond to basis 
functions that do not lie on a single direct path through the 
basis function tree, as shown in example 614. Therefore, the 
product of the basis function is zero, and the corresponding 

20 1403 includes one or more components of the systems and 
methods disclosed here, and a suitable operating system 
1406. The operating system 1406 essentially controls the 
execution of other computer programs, such as the systems 
and methods disclosed herein, file and data management, 

25 memory management, and communication control and 
related services. 

The systems and methods disclosed herein may be a source 
program, executable program (object code), script, or any 
other function comprising a set of instructions to be per-

4th order integral coefficient in the product 604 is zero, mean
ing the product 604 does not contribute to the integral and can 
be eliminated from the series of contributing products. 30 formed. When a source program, the program needs to be 

translated via a compiler, assembler, interpreter, or the like, 
which may or may not be included within memory 1403, so as 
to operate properly in connection with the operating system 
1406. 

In product 606, the basis coefficients correspond to basis 
functions that lie on a single direct path through the basis 
function tree. Therefore, the product of the basis function is 
nonzero. However, the aggregate numbers of each wavelet 
function type are not all of the same parity, as shown in 35 

example 616. Therefore, the 4th order integral coefficient 
appearing in the product 606 is zero, meaning the product 606 
does not contribute to the integral and can be eliminated from 
the series of contributing products. 

In some embodiments, the systems and methods disclosed 40 

herein can be implemented in software, firmware, hardware, 
or combinations thereof. Furthermore, the components of the 
systems and methods can reside on one computer system, or 
can be distributed among more than one computer system. In 
some embodiments, the systems and methods are imple- 45 

mented in software, as an executable program or programs, 
and are executed by a special or general-purpose digital com
puter, or combination of computers, such as a personal digital 
assistant (PDA) or personal computer (PC). 

The peripherals 1404 may include input devices, for 
example but not limited to, a keyboard, mouse, scanner, 
microphone, etc. Furthermore, the peripherals 1404 may also 
include output devices, for example but not limited to, a 
printer, display, facsimile device, etc. Finally, the peripherals 
1404 may further include devices that communicate both 
inputs and outputs, for instance but not limited to, a modula-
tor/demodulator (modem; for accessing another device, sys
tem, or network), a radio frequency (RF) or other transceiver, 
a telephone interface, a bridge, a router, etc. 

If the computer 1401 is a PC, workstation, or the like, the 
software in the memory 1403 may further include a basic 
input output system (BIOS). The BIOS is a set of essential 
software routines that initialize and test hardware at startup, 
start the operating system 1406, and support the transfer of 
data among the hardware devices. The BIOS is stored in the 
ROM so that the BIOS can be executed when the computer 
1401 is activated. 

When the computer 1401 is in operation, the processor 
1402 is configured to execute software stored within the 
memory 1403, to communicate data to and from the memory 
1403, and to generally control operations of the computer 
1401 in accordance with the software. The systems and meth
ods disclosed herein, in whole or in part, but typically the 
latter, are read by the processor 1402, and perhaps buffered 
within the processor 1402, and then executed. 

It should be noted that the systems and methods disclosed 
herein can be stored on any computer readable medium for 
use by or in connection with any computer related system or 
method. In the context of this document, a "computer-read-

Reference is now made to FIG. 14, which is a block dia- 50 

gram illustrating a general-purpose computer system 1400 
that can be used to implement embodiments of the systems 
and methods disclosed herein. Generally, in terms of hard
ware architecture, the computer 1401 includes a processor 
1402, memory 1403, and one or more input or output (I/O) 55 

devices or peripherals 1404 that are communicatively 
coupled via a local interface 1405. The local interface 1405 
can be, for example but not limited to, one or more buses or 
other wired or wireless connections, as is known in the art. 
The local interface 1405 may have additional elements (omit- 60 

ted for simplicity), such as controllers, buffers, drivers, 
repeaters, and receivers, to enable communications. Further, 
the local interface 1405 may include address, control, and 
data connections to enable appropriate communications 
among the aforementioned components. 65 able medium" can be any means that can store, communicate, 

propagate, or transport the program for use by or in connec
tion with the instruction execution system, system, or device. 

The processor 1402 is a hardware device for executing 
software, particularly that stored in memory 1403. The pro-
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2. Both b F"-1 and b Nare both the mother scaling function. In 
this case, cn=l. 

3. bp°"-1 is a scaling basis function, and bNis a parent basis 
function ofbp°"-1. In this case, CN=±YxcN-l where j is 
the scale of bN and where the sign is the sign of the 
portion of the support ofb N that is covered by the support 
ofbp°"-1. 

The computer-readable medium can be, for example but not 
limited to, an electronic, magnetic, optical, electromagnetic, 
infrared, or semiconductor system, system, device, or propa
gation medium. A non-exhaustive example set of the com
puter-readable medium would include the following: an elec
trical connection having one or more wires, a portable 
computer diskette, a random access memory (RAM), a read
only memory (ROM), an erasable programmable read-only 
memory (EPROM, EEPROM, or Flash memory), and a por
table compact disc read-only memory (CDROM). 

Otherwise, the basis function type of the product pN is a 
wavelet basis function and therefore, the N'h order integral 

10 coefficient CN is zero. In such case, one of the following rules 
describes the ranked basis product pN=pN- 1·bN: 

In an alternative embodiment, in which the systems and 
methods disclosed herein are implemented in hardware, they 
can be implemented with any or a combination of the follow
ing technologies, which are each well known in the art: a 

15 
discrete logic circuit(s) having logic gates for implementing 
logic functions upon data signals, an application specific 
integrated circuit(s) (ASIC) having appropriate combinato
rial logic gates, a programmable gate array(s) (PGA), a field 
programmable gate array(s) (FPGA), etc. 

20 
Any process descriptions or blocks in flowcharts should be 

understood as representing modules, segments, or portions of 
code which include one or more executable instructions for 
implementing specific logical functions or steps in the pro
cess. As would be understood by those of ordinary skill in the 

25 
art of software development, alternate implementations are 
also included within the scope of the disclosure. In these 
alternate implementations, functions may be executed out of 
order from that shown or discussed, including substantially 
concurrently or in reverse order, depending on the function-

30 
ality involved. 

4. bp°"-1 and bN have identical supports. bp°"-1 is a scaling 
basis and bN is a wavelet basis function. In this case, 
1pN1=4ixcN-l and br is a wavelet basis function of the 
same type and support as bN 

5. bp°"-1 and bNhave identical supports. bp°"-1 is a wavelet 
basis function, bN is a child scaling basis function. In this 
case, 1pN1=Yx1pN-1 1 and br is a wavelet basis function 
of the same type and support as bp°"-1. 

6. bp°"-1 and bN have identical supports. Each are wavelet 
basis functions of different basis function types. In this 
case, 1pN1=Yx1pN-1 1 and br is the wavelet basis func
tion of the third type and the same support. 

7. bp°"-1 is a child basis function and bN is its parent basis 
function. bp°"-1 is a wavelet basis function. In this case, 
1pN1=±YxpN-1 1 wherej is the scale ofbNand the sign is 
the sign of the portion of the support ofbN that is covered 
by the support ofbp°"-1. bris a wavelet basis function of 
the same type and support bp°"-1. 

FIG. 16 is a block diagram illustrating another embodiment 
of a method 1600 for determining the integral of the product 
of a plurality of functions. Like the method 100, the method 
1600 is employed with reference to equation (10) above. 
Therefore, the method 1600 determines the integral u of a 

Implementing the method 100 described above using a 
computer may be computationally expensive, for example, on 
the order ofO(MNN), where Mis the number of basis func
tions used to represent each function and N is the number of 
functions whose product is being integrated. FIG.15 is a table 
illustrating seven cases that facilitate determining the N'h 
order integral coefficient CN using a recursive approach. The 
seven cases are used to construct tree-traversal algorithms for 
determining the integral u of the product of the plurality of 
functions. The tree-traversal algorithms may be relatively less 
computationally complex than the method 100, and therefore 
relatively faster when implemented by computer. 

35 plurality of functions that includes N functions F,(v), i being 
an integer from 1 to N. 

In block 1602, each of the plurality of functions F,(v) 
whose product is being integrated is projected into the wave
let domain. Projecting the functions F,(v) into the wavelet 

40 domain comprises, for example, performing the wavelet 
transform on each function to project the function onto the 
basis set B. The wavelet transform is the two-dimensional, 
non-standard Haar transform and the basis set is the two-

The seven cases of FIG. 15 apply in cases in which the 
product of more than two functions N is being integrated. In 

45 
such cases, the N'h order integral the coefficient CN can be 
determined by placing the basis functions appearing in the 
product pN in the ranking order, determining a product pN- 1 of 
the first (N-1) basis functions appearing in the ranking order, 
and comparing the basis function type and scale of the prod-

50 
uct pN- 1 to the basis function type and scale of the basis 
function bN. In such a case, the N'h order integral coefficient 
CN is the integral of the N'h order basis product pN: 

dimensional, non-standard Haar basis set. Each of the func
tions F,(v) is then represented in the wavelet domain as the 
series ofbasis coefficients f, h scaling basis functions bh of the 
basis set B. Specifically, 

0

the basis functions bh are the 
restricted basis functions of the basis set and the basis coef
ficients f, h are the wavelet coefficients of the wavelet basis 
functions°i.jJ 1°, 1.jJ 2 °, and 1.jJ3 ° (except forthe basis coefficient of 
the mother scaling function cp0

). 

In block 1604, the basis coefficients f, h of each function 
F,(v) are encoded in a wavelet tree W,. Th~wavelettree W, is, 
for example, a tree-shaped data structure that stores the basis 
coefficients f, h of one function F,(v), organizing the basis 
coefficients ~ccording to the parent-child relationships 

(23) 55 

where pN- 1 is the product of the first (N-1) basis functions 
appearing in the ranking order and bN is the N'h basis function 
appearing in the ranking order. 

The N'h order integral coefficient CN is non-zero if and only 
ifthe basis function type of the product pN is a scaling basis 
function, which only occurs if one of the following cases hold 
for the ranked basis product pN=pN- 1 ·bN: 

1. bp°"-1 and bNarewaveletbasis functions of the same type, 
and both have identical support. In this case, CN=1pN- 1 1. 

described above with reference to the basis function tree 700 
and the basis coefficient tree 800. The wavelet tree W, has the 
coefficient of the mother scaling function cp0 at a root of the 

60 tree, and nodes w, depend from the root. Each node w, 
includes the basis coefficients f, h of the restricted basis func
tions bh defined for the support <j, k, l>, and each node points 
to its four immediate child nodes having supports <j+l, k, l>. 
For example, a mother node depending from the root stores 

65 the mother wavelet coefficients, and four immediate child 
nodes having supports <l, k, l> depend from the mother node. 
The basis coefficients f,_h stored in the nodes w, are wavelet 
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coefficients, because each of the restricted basis functions bh 
is of a wavelet type except for the mother scaling function cp0

, 

the coefficient of which is stored in the root. Each node w, also 
has a variable that stores a signed parent summation of the 
node. 

FIG. 17 illustrates an example wavelet tree W, in pseudo 
code 1700. In line 1, the data structure augtree is defined, the 
data structure augtree being one wavelet tree W,. In line 2, a 
variable de is defined to store the mother scaling coefficient. 
In line 3, a pointer node is defined to point to a data structure 
augnode, which stores one node w, of the wavelet tree W,. In 
line 5, the data structure augnode is defined. In line 6, an array 
1jJ [3] is defined to store the three wavelet coefficients of the 
node w,. In line 7, a variable parentsum is defined to store the 
signed parent summation of the node w,, which is described 
below. In line 8, an array of four pointers ch[ 4] is defined, the 
pointers of the array pointing to the node's four immediate 
child nodes w,, each of which also is stored using the data 
structure augnode. 

A person of skill may note that the wavelet tree W, is 
similar to other data structures for encoding wavelet coeffi
cients, such as the quadtree structure described by Berman et 
al. in "Multiresolution painting and compositing", In Proc. 
SIGGRAPH '94, 85-90, 1994, or the zero-tree structure 
described by Shapiro in "Embedded image coding using 
zerotrees of wavelet coefficients", IEEE Transactions on Sig
nal Processing SP, 41 (December), 3445-3462, 1993, both of 
which are incorporated by reference in their entireties. 

With reference back to FIG. 16, in block 1604 the basis 
coefficients f, h of the function F,(v) are encoded in the wave
let tree W,. In some embodiments, each function F,(v) is 
encoded into its own wavelet W, such that one wavelet tree W, 
results for each of the N functions whose product is being 
integrated, i being an integer from 1 to N. In other embodi
ments, each function F,(v) may be encoded in a plurality of 
wavelet trees W,. 

In block 1606, non-linear approximation is performed on 
each function F,(v) to discard insignificant basis coefficients 
f, h· Non-linear approximation is known in the art, and there
f~re a detailed discussion is omitted here. For example, non
linear approximation is described in Devore, "Nonlinear-ap
proximation," Acta Numerica 7, 51-150 (1998). Generally, 
however, non-linear approximation presupposes that if a 
basis coefficient f, h is insignificant with respect to a given 
threshold, then all 

0

of the basis coefficients corresponding to 
basis functions of higher scales j are also likely to be insig
nificant with respect to that threshold. Therefore, the insig
nificant basis coefficients f, h can be discarded. 

In embodiments in which the non-linear approximation is 
performed after the basis coefficients f, h are encoded, the 
insignificant basis coefficients are discarded by removing the 
insignificant basis coefficients from the wavelet tree W,. In 
other embodiments, the non-linear approximation is per
formed before the basis coefficients f, h are encoded into the 
wavelet tree W,. In such embodiments; the insignificant basis 
coefficients f, h are discarded by only encoding the significant 
basis coeffici~nts into the wavelet tree W, without encoding 
the insignificant basis coefficients. In such an embodiment, 
blocks 1604 and 1606 of FIG. 16 are reversed. In still other 
embodiments the non-linear approximation is omitted. In 
embodiments in which the non-linear approximation is omit
ted, determining the integral u of the plurality of functions 
F,(v) is relatively more computationally complex and is rela
tively slower; however, the value determined for the integral 
may be more accurate. In still other embodiments, the non
linear approximation is performed on some but not all of the 

22 
wavelet trees W,, such that some of the functions F,(v) are 
approximated but others are not. 

In block 1608, the integral u of the product of the plurality 
of functions F,(v) is determined by traversing direct paths 
through the wavelet trees W, that represent the functions, 
along which direct paths the N'h order integral coefficients CN 
may be non-zero. Traversing direct paths through the wavelet 
trees W, comprises synchronously traversing a plurality of 
wavelet trees W,, the wavelet trees W, storing the basis coef-

10 ficients of the functions whose product is being integrated, at 
least one wavelet tree being traversed for each function F,(v) 
whose product is being integrated. For example, exactly N 
wavelet trees W, are synchronously traversed in embodiments 
in which each function F,(v) is represented by exactly one 

15 wavelet tree W,. 
As the wavelet trees W, are traversed, a set of nodes 

[ w 1 , ... , w N] are synchronously processed. The set of nodes 
[w1 , ... , wN] includes one node w, from each of the wavelet 
trees W,. The term "traversing direct paths through the wave-

20 let trees W,'' denotes that the nodes w, that are synchronously 
processed correspond to nodes in the basis function tree that 
lie on a single direct path through the basis function tree, as 
described above with reference to FIG. 7. In other words, 
within the set of nodes [wu ... , wN], no two nodes w, 

25 correspond to nodes of the basis function tree that are not on 
a direct path with each other. Alternatively stated, no two 
nodes W, correspond to supports <j,k,l> that are completely 
disjoint from each other. Instead, for any two nodes W, in the 
set of nodes [w 1 , ... , wN], the supports <j,k,l> to which the 

30 nodes W, correspond are either the same or are related as 
parent and child. In other words, for any two nodes W, in the 
set, the support <j, k, I> of one of the nodes W, completely 
covers the support <j, k, I> of the other node w,. 

Traversing the wavelet trees W, only on the direct paths 
35 employs the principles described above: the N'h order integral 

coefficient CN of basis functions may be nonzero if each of the 
basis functions lie on a single direct path through the basis 
function tree; however, the N'h order integral coefficient CN is 
zero if the basis functions do not lie on a single direct path 

40 through the basis function tree. Recall that the integral u of the 
product of the plurality of functions F ,(v) is the sum of a series 
of contributing products, as shown in equation (10). Each 
contributing product includes one basis coefficient from each 
function F,(v) and one N'h order integral coefficient CN, 

45 which is the integral of the corresponding basis functions. 
Because the basis coefficients are stored in nodes w, of the 
wavelet trees W,, the integral u can be determined by syn
chronously processing one node w, from each wavelet tree 
W,. However, synchronously processing nodes w, from dis-

50 parate wavelet trees W, that do not correspond to nodes on a 
single direct path through the basis function tree is of little 
value, because in such case, the N'h order integral coefficient 
CN is necessarily zero. Therefore, confining the traversal to 
direct paths through the wavelet trees W, while avoiding the 

55 indirect paths enables accumulating contributing products 
that could contribute to the integral u while avoiding those 
that necessarily do not contribute to the integral u. As a result, 
traversing the wavelet trees W, on direct paths determines the 
integral u with the same accuracy but with fewer computa-

60 tions than other systems and methods. 
FIG. 18 is a block diagram illustrating an embodiment of a 

method 1800 for traversing direct paths through a plurality of 
wavelet trees W, to determine the integral u of the product of 
the plurality of functions F,(v), which can be employed in 

65 block 1608 ofFIG.16. In block 1802, the integral u is initially 
incremented with the contribution of the roots of the wavelet 
trees W,. The contribution of the roots is determined by mu!-
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ti plying together the mother scaling coefficient cjJ stored in the 
root of each wavelet tree W,, because in such case the N'h 
order integral coefficient CN is one. In block 1804, a set of 
nodes [ w u ... , w N] is synchronously processed. The set of 
nodes [w1 , ... , wN] includes one node w, from each of the 

24 

wavelet trees W,. No two nodes w, in the set correspond to 
supports <j, k, l> that are completely disjoint from each other, 
because the wavelet trees W, are traversed on direct paths. In 
block 1806, a contribution to the integral u is determined for 
the set of nodes [w1 , ... , wN]. In some embodiments, the 10 

contribution of the set of nodes [ w u ... , w N] is determined by 
separating the nodes into a group of null nodes and a group of 
the non-null nodes, determining a contribution of the null 
nodes, and determining a contribution of the non-null nodes. 
The contribution of the null nodes is limited to the contribu- 15 

value of the mother scaling coefficient de as its signed parent 
summation. For all other nodes w,, the signed parent summa
tion is the signed parent summation of it's immediate parent 
node p, plus the sum of the wavelet coefficients stored in the 
immediate parent node p,, scaled by the magnitude of the 
product of two basis functions, one in the node w, and the 
other in the immediate parent node p,, as shown in equation 
(23): 

w; · parentsum = p; · parentsum + 2i-l [(p; ·a:· sign(O, q" q1)) + (23) 

(p;-/3·sign(l, q,, q1)) + (p; ·y·sign(2, q,, q1))] 

where p, is the immediate parent of the node w,, p,.a is the 
wavelet coefficient in the parent node p, corresponding to the 
basis function of type 1jJ up,.~ is the wavelet coefficient in the 
parent node p, corresponding to the basis function of type 1jl 2 , 

p,.y is the wavelet coefficient in the parent node p, correspond-

tion of their parent nodes, which is not ignored even though 
the nodes themselves are null. The contribution of the non
null nodes is determined either by recursively expanding the 
non-null nodes to calculate the contribution of subsets of the 
non-null nodes, or by iterating through the non-null nodes to 
build a table that accumulates the magnitude of the contribu
tion of the non-null nodes. Regardless ofhow the contribution 
of the set of nodes [ w u ... , w N] is determined, in block 1808 
the integral u is incremented with the contribution determined 
in block1806. In block1810, asetofchildnodes [w1 , ... , wN] 

20 ing to the basis function of type 1jl3 , ('lJc, q,) is the quadrant of 
the immediate parent node p, that is covered by the node w ,, as 
described below with reference to equation (24), and sign is 
an array described below with reference to equation (25). 

The node w, corresponds to a unique support <j,k,l> that 
25 covers a quadrant ('lJc, q1) of it's immediate parent node p,, 

where the values 'lk and q, are: is synchronously processed. The set of child nodes [ w 1 , ... , 

wN] includes one node w, from each of the wavelet trees W,, 
the one node being the immediate child of the node most 
recently processed. Because the child nodes w, immediately 
depend from the most recently processed nodes, the wavelet 30 

trees W, are traversed along direct paths. The contribution of 
the set of child nodes [ w u ... , w N] may then be determined 

qk =k mod 2 and q1=l mod 2 (24) 

The quadrant ( 'lJc, q1) is used to determine the sign of the 
signed parent summation in conjunction with the array sign 
that stores the signs of the four quadrants of the three mother 
wavelet functions 1jJ 1°,1jl 2 °, and 1jl3 ° respectively, as shown in 
equation (25): in the manner described above, and the integral may be incre

mented, and the process may be repeated for subsequent sets 
of child nodes until the last set of nodes is reached. 

In at least some embodiments, traversing direct paths 
through wavelet trees W, in block 1608 of FIG. 16 comprises 
applying a tree-traversal algorithm to the wavelet trees. FIG. 
19 illustrates in pseudo code 1900 an example tree-traversal 
algorithm 1902 for determining the integral u and embodi
ments of component routines, such as routine 1904, routine 
1906, and routine 1908. The algorithm 1902 is defined as 
FunctionProductlntegral in line 1. The algorithm 1902 
accepts as input a set of wavelet trees (W 1 , ... , W N), one for 
each function F,(v) whose product is being integrated. In line 
2, the integral u is initially incremented to the product of the 
mother scaling coefficients, by multiplying together the vari
able W,.dc of each wavelet tree in the set (Wu ... , W N). In 
such case, the N'h order integral coefficient CN is one, because 
regardless of N the integral coefficient of a series of mother 
scaling functions cp 0 is one and need not be determined to 
increment the integral u. In line 3, a routine traverseAugTrees 
is called, which is the routine 1904. The routine 1904 is 
configured to simultaneously process a set of nodes 
(w u ... , wN) that includes onenodew, from each wavelet tree 
W,, and to increment the integral u as a result ofits processing 
of the set of nodes. For its initial call, the routine 1904 pro
cesses the set of nodes (W 1 .node, ... , W Nnode ), which are 
the mother nodes that include the mother wavelet coefficients. 
The routine 1904 then iteratively calls itself to capture the 
contributions oflater sets of nodes, traversing the set of wave
let trees (Wu ... , W N) from the top down along direct paths 
through the wavelet trees. 

35 
sign[3][2][2]~{1, -1, 1, -1; 1, 1, -1, -1; 1, -1, -1, 1} (25) 

A person of skill may note that the variable w,.parentsum is 
inspired by Ng in "Triple product wavelet integrals for all
frequency relighting", ACM Transactions on Graphics (SIG
GRAPH '04) 23, 3, 477-487, which is incorporated by refer-

40 ence herein in its entirety. 
An accumulated parent summation is stored in a variable 

cum. Specifically, the variable cum is initially set to one, 
which is the N'h order integral coefficient CN of a series of 
mother scaling functions cp 0

, regardless of N. As the set of 
45 wavelet trees (W 1 , ... , W N) are traversed, the accumulated 

parent summation is incremented as described below. 
The routine 1904 will now be described. In line 1, the 

routine 1904 is defined as traverseAugTrees, accepting as 
inputs the variable cum and the sets of nodes (w 1 , ... , wN). In 

50 line 2, the nodes of the set (w u ... , wN) are reorganized into 
a two sets of nodes: one being a set of non-null nodes 
( w 1 , . . . , wk) and the other being a set of null nodes 
(wk+l' ... , wN). Up to this point, the subscript i has denoted 
that a specific wavelet tree W, corresponds to a specific func-

55 tion F,(v), or alternatively that a specific node w, is a node of 
a specific wavelet tree W,. For the remainder of the discussion 
of the algorithm 1902, the subscript i merely indicates 
whether the node w, is null or non-null, with non-null nodes 
having subscripts w1 to wk and null nodes having subscripts 

60 wk+l to wN It is likely that some of the nodes w, are null in 
embodiments in which non-linear approximation is per
formed. 

Before the routine 1904 is described in detail, the signed 
parent summation of the node w,, which is stored in the 65 

variable parentsum of the node w,, is described. The mother 
node w, that holds the mother wavelet coefficients has the 

In line 3, the routine 1904 returns if at most one of the nodes 
in the set (wu ... , wN) is null. In such case the N'h order 
integral coefficient CN is zero, because each node w, only 
includes wavelet coefficients and the integral of each wavelet 
basis functions 1jJ u 1jl2 , and 1jl3 is zero. 
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The set of non-null nodes (w 1 , ... , wk) can contribute to the 
integral u, however, the contribution of the set of null nodes 
(wk+l' ... , wN) is limited to the contribution of their parent 
nodes p,. Therefore, the contribution of the nodes (w1 , ... , 

wN)to the integral u is determined by first updating the signed 5 

parent summation w,.parentsum for each node (w u ... , w N) 
in line 4, updating the accumulated parent summation cum 
with the contributions of only the null nodes (w k+l' ... , w N) 

26 
integral u, and embodiments of component routines, such as 
the routine 2004, the routine 2006, the routine 2008, and the 
routine 2010.As shown, the algorithm2002 is the same as the 
algorithm 1902 and the routine 2004 is the same as the routine 
1904 described above. However, the routine getProductlnt
egral 2006 differs from the routine getProductlntegral 1906. 
Specifically, instead of recursively expanding the nodes w, 
from the top down to determine the N'h order integral coeffi
cients CN, the routine getProductlntegral 2006 employs an 
intermediate table T [NJ, an embodiment of which is illus
trated with example pseudo code 2100 in FIG. 21. 

In line 1 of FIG. 21, the table T [NJ is defined to have N 
records, the fields of which are described with reference to a 
subset of nodes. In line 2, the field cjJ is defined, which stores 

in line 5, and calling a routine getProductlntegral to deter
mine the contributions of the non-null nodes (w u ... , wk) in 10 

line 6. The integral u is then incremented with the product of 
the accumulated parent summation cum and the return of 
getProductlntegral, described below, such that the contribu
tions of both the non-null nodes and the parents of the null 
nodes are captured. 15 the magnitude of the product of a subset of the nodes w, that 

have a scaling basis function cjJ appearing in the product. In 
line 3, the field 1.jJ[OJ is defined. The field 1.jJ[OJ stores the 
magnitude of the product of a subset of the nodes w, that have 

In lines 7 and 8, the routine traverseAugTrees 1904 then 
iteratively calls itself four times to independently process the 
next four sets of nodes, which are the immediate child nodes 
of the non-null nodes. In other words, the routine 1904 calls 
itself for the nodes (w 1 . ch[i], ... , w k.ch[i]) in a loop, where 20 

ch[iJ is the pointer to the child node and i is an integer from 0 
to 3. 

The routine getProductlntegral 1906, which is called by the 
routine 1904 to determine the contribution of the non-null 
nodes (w u ... , wk), recursively calculates the non-zero N'h 25 

order integral coefficients CN using the first three cases of 
FIG.15. In line 1, the routine 1906 accepts a plurality ofnodes 
w, as input, initially processing the set of non-null nodes 
(w u ... , wk). In lines 3-6 the routine 1906 recursively calls 
itself and three instances of a routine getWaveletProduct 30 

1908, passing in one fewer nodes with each call, andreturning 
the sum of the four routines scaled by variables of the node not 
passed in for the call. Specifically, the routine 1906 is scaled 
by the parents um of the node w, not passed in and each return 
of the routine 1908 is scaled by one of the three wavelet 35 

coefficients of the node w, not passed in. In line 2, the routine 
returns zero if only one node w, is passed in. 

The routine getWaveletProduct 1908 uses cases 4, 6, and 7 
of FIG. 15 to evaluate the magnitude of the product where the 
type of the basis function appearing in the product is one of 40 

the wavelet basis functions. In line 1, the routine getWavelet
Product 1908 accepts as input a plurality of nodes w, and three 
input parameters a, b, and c that differentiate the three differ
ent wavelet types. In lines 3-7, the routine getWaveletProduct 
1908 recursively calls the routine getProductlntegral 1906 45 

and three instances of itself, passing in one fewer nodes with 
each call, and returning the sum of the four routines scaled by 
variables of the node not passed in for the call, plus the 
parentsum variables of the fewer nodes scaled by one of the 
wavelet coefficients of the node not passed in for the call. In 50 

line 2, the routine getWaveletProduct 1908 returns one of the 
wavelet coefficients if only one node w, is passed in. 

The embodiment of the tree-traversal algorithm Function
Productlntegral 1902 may have a computational complexity 

a wavelet basis function of type 1.jJ 1 appearing in the product. 
In line 4, the field 1.jJ[lJ is defined. The field 1.jJ[lJ stores the 
magnitude of the product of a subset of the nodes w, that have 
a wavelet basis function of type 1.jJ2 appearing in the product. 
In line 5, the field 1.jJ[2J is defined. The field 1.jJ[2J stores the 
magnitude of the product of a subset of the nodes w, that have 
a wavelet basis function of type 1.jl3 appearing in the product. 
In line 6, the field cum is defined. The field cum stores the 
accumulated parent summation of the subset, meaning the 
sum of the parentsum variables of each node w, in the subset. 

The routine getProductlntegral 2006 incrementally builds 
the table T by iterating through the set of non-null nodes 
(w 1 , ... , wk). In line 2, the routine 2006 returns zero if only 
one node w, is input into the routine. In lines 3-4, a first record 
in the table T [1 J is updated with the basis coefficients of the 
node w 1 . A field T [1 J. cjJ is set to zero because the node w 1 

does not include a basis coefficient for the scaling basis func
tion. A field T [1 J .1.jJ [OJ is updated with the wavelet coefficient 
for the basis function of type 1.jlu the field T [lJ.1.jJ[lJ is 
updated with the wavelet coefficient for the basis function of 
type 1.jJ2 , and the field T [1J.1.jJ[2J is updated with the wavelet 
coefficient for the basis function of type 1.jl3 . Additionally, the 
field T [lJ.cum is set to the signed parent summation of the 
node w u because as mentioned above, the field cum accumu
lates the signed parent summations of a subset of nodes. In 
lines 5-10, the routine 2006 iterates through all of the remain
ing nodes w, except for the last node, updating a record [iJ in 
the table T for each node. The field T [iJ .cum accumulates the 
signed parent summations of the nodes in the subset 
(w1 , ... , w,) by multiplying the signed parent summation 
parentsum of the node w, by the value of the accumulated 
parent summation cum stored in the previous record, T [ i-1 J. 
cum. The field T [iJ.cp is updated with a value returned from a 
routine getP, and the fields T [iJ.1.jJ[OJ, T [iJ.1.jJ[lJ, and T [iJ.1.jJ 
[2J are each respectively updated with a value returned from 
a routine get W, both of which routines are described below. In 
line 11, the routine 2002 returns the value of getP for the last 
node wk' as described below. 

The routine getp(i) 2008 is defined on line 1 to accept the 
integer i as input. In line 2, the routine returns zero ifthe value 
of i is one. In line 3-6, the routine 2008 returns a magnitude of 
the product of the subset of the nodes (w u ... , w,) ifthe basis 
function appearing in the product is the scaling basis function. 
Recall that a product of two basis functions is a scaling basis 
function if a child scaling basis function is multiplied by its 
parent basis function or if a wavelet basis function is multi-

on the order of O(m4N), where mis the number of significant 55 

basis coefficients f, h retained after the nonlinear approxima
tion, and N is the m'.unber offunctions F,(v) whose product is 
being integrated. By eliminating repetitive operations, the 
algorithm 1902 can be optimized such that the computational 
complexity is on the order of O(mN). For example, the 60 

embodiment of the routine getProductlntegral 1906 traverses 
the wavelet trees W, from the top down, recursively expand
ing the nodes w, to calculate the product of one fewer nodes, 
but in other embodiments of the routine the recursive expan
sion is eliminated to increase the speed of the algorithm. 65 plied by itself. Therefore, the routine 2008 returns the sum of 

the signed parent summation w,.parentsum multiplied by the 
stored magnitude of the product of scaling basis function type 

For example, FIG. 20 illustrates in pseudo code 2000 an 
optimized tree-traversal algorithm 2002 for determining the 
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FIG. 24 is a block diagram illustrating an embodiment of a 
method of rendering a graphical scene in which the radiance 
of a point x in the scene is determined by integrating the 
product of a plurality of functions contributing to a light 

in the preceding record T [i-1].cp, and each of the wavelet 
coefficients, w 1 .1.jJ[O], w 1 .1.jJ[l], and w 1 .1.jJ[O], multiplied by 
each of the stored magnitudes of the same wavelet type in the 
preceding record, T[i-1].1.jJ[O], T[i-1].1.jJ[l], and T[i-1].1.jJ[2], 
respectively. 

The routine getW(a, b, c, i) 2010 is defined on line 1 to 
accept the integer i as input and three input parameters a, b, 
and c that differentiate the three different wavelet types. In 
line 2, the routine 2010 returns the wavelet coefficient of type 
a if the value of i is 1. In lines 3-6, the routine 2010 returns a 
magnitude of the product of the subset of the nodes (w v ... , 
w,) ifthe basis function appearing in the product is the wave-

5 transport model of the scene. The method 2400 will be 
described with reference to the example scene 2300 shown in 
FIG. 23. In block 2402, the plurality of functions that con
tribute to the light transport model of the scene 2300 are 
determined. The plurality of functions include, for example, a 

10 distant environment lighting function L( cjJ ), a bidirectional 
reflectance distribution function (BRDF) p(x, cp+-+8), a local 
visibility function OL(x, cjJ ), a cosine term (D·cp) anda plurality 
of dynamic occlusion functions O,(x, cjJ ). The distant environ-let basis function of type a. 

As mentioned above, the computational complexity of 
each of the tree-traversal algorithms is linearly related tom, 
the number of significant basis coefficients retained after the 
non-linear approximation is performed. For example, the 
algorithm 1902, which is recursive, may have a computa
tional complexity on the order of O(m4N), and the algorithm 
2002, which employs the table, may have computational 
complexity on the order of O(mN). Of course, the computa
tional complexity of the algorithm affects the speed with 
which the integral u is determined, and therefore reducing the 
computation complexity is desirable. 

15 ment lighting function L( cjJ) represents distant environment 
lighting as a function of a vector cp, the vector cjJ representing 
the incident direction of the light. The BRDF p(x, cp+-+8) 
models the interaction of the incident light L with the surface 
2304 of the object 2302. The local visibility function OL(x, cjJ) 

20 represents the local visibility at the point x due to self-occlu
sion. The cosine term (D·cp) represents Lambert's law: the 
exitant radiance B is directly proportional to the dot product 
of a vector D and the vector cp, the vector D being a vector that 
is normal to the surface 2304 of the object 2302 at the point x. 

25 Each dynamic occlusion function O,(x, cjJ) represents the 
dynamic occlusion at the point x caused by an i'h neighboring 
object2306 in the scene 2300, wherei can be any integer from 
1 to g, g being the total number of neighboring objects 2306 
that contribute to the light transport model. Three neighbor-

The computational complexity can be further controlled by 
varying the traversal depth of the tree-traversal algorithm. 
Traversing at higher traversal depths denotes traversing sub
sets of nodes that have relatively lower scales and are located 
relatively closer to the root of the wavelet tree, while travers
ing at lower transversal depths denotes traversing subsets of 
nodes that include relatively higher scales and are located 
relatively farther from the root node. In some embodiments, 
the traversal depth of the algorithm may be controlled, such 
that the need for fast computation can be balanced against the 

35 
need for accurate computation on a case by case basis. 

30 ing objects 2306 are shown in FIG. 23 for illustrative pur
poses, although greater or fewer neighboring objects could be 
included. 

FIG. 22 is an embodiment of a system 2200 for determin
ing the integral u of the product of a plurality of functions 
F,(v). The system includes logic 2202 configured to project 
the functions F,(v) of the plurality of functions into the wave-

40 
let domain, logic 2204 configured to encode basis coefficients 
f, h of each function in a wavelet tree W,, logic 2206 config
u~ed to perform non-linear approximation on the functions 
F,(v) to discard insignificant basis coefficients f, h' and logic 
2208 configured to traverse direct paths through

0 

the wavelet 
trees W,, where the N'h order integral coefficients CN may be 

45 

non-zero, to determine the integral u of the product of the 
functions F,(v) represented by the wavelet trees W,. 

In some embodiments, the systems and methods described 
above are employed by graphics rendering applications to 

50 
re-light and shade objects in a scene. Typically, the graphics 
rendering application models objects in the scene, and the 
lighting and shading of the objects is determined using a light 
transport model that simulates the interaction oflight with the 
objects. FIG. 23 is a diagram illustrating an example scene 

55 
2300. An object 2302 in the scene 2300 has a point x on a 
surface 2304 of the object, and a radiance B exiting the point 
xis a function of a direction of view 8. Generally, determining 
the radiance of the point x requires integrating the product of 
a plurality of functions that contribute to the model, as shown 

60 
in equation (26): 

g (26) 

In some embodiments, the cosine term (D·cp) can be com
bined with the local visibility OL(x, cjJ) term as shown in 
equation (27): 

g 

B(x, 8) = L L(\O)p(x, \0 ..... 8JCh(x, \Oln o,(x, \O)d/\O 
s i=l 

(27) 

where OL(x,cp) represents the combined local visibility func
tion OL(x, cp) and cosine term (D·cp). For a fixed point x and 
direction of view 8, equation (27) is simplified to equation 
(28): 

B = f L(\O)P(\O)OL(\O)n O;(\O)d/\O 
i=l 

(28) 

Thus, the exitant radiance B at the fixed point xis the integral 
of the product of g+3 functions, g being the number of neigh
boring objects 2306 that could dynamically occlude and cast 
a shadow upon the point x. To determine the exitant radiance 
B, the product of the functions is integrated with respect to all 
incident directions cjJ surrounding the point x. 

For example, in FIG. 23 acubemap S surroundsthepointx, 
and in equation (27) the integral is taken over the cubemap S. 
However, in equation (28) the integral is taken over one face 
2308 of the cubemap S. Therefore, to determine the exitant 
radiance Busing equation (28), the integral is taken six times, 
once for each face 2308 of the cubemap S, and the six itera-s(x,8)= L L(\O)P(X,\0 .... 8)0L(x.\O)(D·\O)n o,(x.\O)d/\O 

s ~ 65 tions are summed together. In such an embodiment, each 
function that contributes to the light transport model of the 
scene is represented as a cube map function 2310, and in block 
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2402 determining the plurality of functions comprises deter
mining the cubemap functions. 

30 

Example cubemaps functions 2310 are shown in FIG. 23, 
where the distant environment lighting function L( cjJ) is rep
resented by the cubemap function 2312, the BRDF p(cp) is 
represented by the cubemap function 2314, the local visibility 
function C\(cp) is represented by the cubemap function 2316, 
and three dynamic occlusion functions 0 1 ( cjJ ), 0 2 ( cjJ ), and 
0 3 (cp) are represented by the cubemap functions 2318, 2320, 
and 2322, respectively, one for each neighboring object 2306 10 

in the scene 2300. Again, three neighboring objects 2306 are 
illustrated by way of example. Although the cubemaps func
tions 2310 can be determined in a variety of ways that are 
known or will later be known to a person of skill in the art, one 
example embodiment of determining the cubemap functions 15 

is described below. 

about 200 sample points being collected per concentric circle. 
The spherical sampling scheme samples the visibility of the 
region surrounding each scene entity in the form of concentric 
spheres. The centers of the concentric spheres may coincide 
with the centers of the concentric circles. Twenty concentric 
spheres may be used, the radius of the concentric spheres 
varying from about 0.2 R to about 6 R, R being the radius of 
the bounding sphere. Each concentric sphere is sampled at 
about 6x9x9. Such a sampling scheme is similar to the object 
occlusion field described in Zhou, et al., "Precomputed 
shadow field for dynamic scenes," ACM Transactions on 
Graphics (SIGGRAPH '05), 24, 3, 1196-1201, which is incor
porated by reference herein in its entirety. The difference 
between the radiuses of neighboring concentric circles and 
spheres, in the planar and spherical sampling schemes respec
tively, increases linearly with increasing distance from the 

In the example embodiment, data is collected about the 
scene by sampling the objects and lighting within the scene. 
The sampled data is then processed to create the cubemap 
functions 2310. The sampled data may compiled interactively 
or in advance of run-time, and in cases in which the sampled 
data is compiled in advance, the cubemap functions 2310 may 
be pre-computed in advance or computed interactively. 

The lighting cubemap function 2312 is interactively deter
mined from interactively sampled data of the high dynamic 
range illumination, as described in Debevec et al., "Recover
ing high dynamic range radiance maps from photographs," In 
Proc. SIGGRAPH '97, 369-378, which is incorporated by 
reference herein in its entirety. For example, the illumination 
may be sampled at a resolution of 6x64x64, where 6 denotes 
the number of faces 2308 of the cubemap and 64x64 denotes 
the number of samples taken per face. Sampling the illumi
nation at a resolution that is the same as the resolution used to 
sample the visibility and BRDF may be desirable because, 
sampling at a higher resolution merely captures basis coeffi
cients of a finer scale that will not contribute to the light 
transport model if comparable basis coefficients are not cap
tured for other functions. 

The BRDF cubemap function 2314 is interactively deter
mined from pre-computed data. Prior to run-time, the pre
computed data is tabulated by, for example, sampling Phong 
BRDF's with a resolution in 8,x cjJ of up to (6x64x64)x(6x 
64x64), where 8 r is a reflection vector of the direction of view 
8 about the vector D that is normal to the surface. The Phong 
BRDF's can have a shininess of up to, for example, 200. In 
some embodiments, the pre-computed BRDF data can be 
gathered as described in the Ng paper previously incorporated 
by reference. At run-time, the BRDF cubemap 2314 is inter
actively interpolated from the tabulated data. 

projection of the object center on the virtual ground plane. 
The local visibility cubemap function 2316 and the 

dynamic occlusion cubemap functions 2318, 2320, and 2322 
20 are pre-computed from the sampled data by rasterizing the 

coarse model using graphics hardware. Each cubemap is ras
terized at a resolution of 6x64x64. In some embodiments, 
multiple objects 2302, 2306 in the scene 2300 share the same 
geometry and visibility field, in which case each of the objects 

25 is represented by the same cubemap function 2310. For 
example, if a scene includes multiple identical chairs, the 
cubemap function 2310 of the chair is determined only once. 

As can be seen from equation (28), the light transport 
model is a specific implementation of equation (10). Equation 

30 (10) generically represents determining the integral u of the 
product of a plurality of functions including N generic func
tions F,(v). In equation (28), the N functions F,(v) are the 
functions that contribute to the light transport model, includ
ing the distant environment lighting function L(cp), the bi-

35 directional reflectance distribution (BRDF) function p( cjJ ), the 
local visibility function combined with the cosine term OL( cjJ ), 
and a plurality of dynamic occlusion functions O,(x, cp), 
where i is an integer from 1 to g. 

Because the light transport model is known in the art, a 
40 through discussion of the model is omitted. However, a per

son of skill would understand that the above equations of the 
light transport model are merely examples, and in other 
embodiments, the model may take other forms. For example, 
in some embodiments some of the functions that contribute to 

45 the light transport model may be omitted, or additional func
tions may be included. Additionally, the cosine term (D·cp) 
need not be combined with the local visibility function OL(x, 
cjJ ). It also should be noted that the equations above are defined 
in terms of a global coordinate system, although other coor-

50 dinate systems could be employed. Further, a variety of con
ventions can be employed for integrating over all incident 
directions, as required by equation (27). In the illustrated 
embodiment the cubemap S is employed, but in other 
embodiments other conventions such as a hemisphere can be 

The local visibility cubemap function 2316 is pre-com
puted using pre-computed data, and the dynamic occlusion 
cubemap functions 2318, 2320, and 2322 are determined 
interactively using pre-computed data. For each object 2302, 
2306 in the scene 2300, a local visibility field of the object is 
sampled at points x on its surface 2304. A global visibility 
field is sampled in nearby surrounding regions, such as on a 
virtual ground plane of the object that is a lower plane of a 
bounding box of the object. Sampling the global visibility 
field is accomplished using schemes such as a planar sam
pling scheme and/or a spherical sampling scheme. The planar 60 

sampling scheme samples the visibility in the form of con
centric circles on each object's virtual ground plane. The 
center of each concentric circle is the projection of the object 
center on the virtual ground plane, the radius of the concentric 
circles varying from about 0.05 rto about 10 r, rbeing a radius 65 

of the projection of the object on the virtual ground plane. For 
example, one hundred concentric circles may be used, with 

55 employed. Additionally, the functions that contribute to the 
light transport model need not be represented as cubemap 
functions 2310, or the cubemap functions can be determined 
in manners other than those described in the example embodi
ment above. 

Once the functions that contribute to the light transport 
model are determined in block 2402, the method 2400 is 
similar to the method 1600. This is because the method 1600 
was employed with reference to equation (10) and because 
the light transport model of equation (28) is a specific imple
mentation of equation (10), as described above. In block 
2404, each of the plurality offunctions that contribute to the 
light transport model is projected into the wavelet domain, as 
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described above with reference to block 1602 of FIG. 16. In 
embodiments in which the functions are represented as cube
maps 2310, the sampling resolution used to determine the 
cubemap function may determine the resolution n of the basis 
set B onto which the cubemap function is projected. For 
example, in embodiments in which the sampling resolution of 
6x64x64 is used, the basis set B may have a resolutionn of7, 
although other resolutions may be used. 

In block 2406, the basis coefficients of each function are 
encoded in a wavelet tree W,. In embodiments in which the 
functions are represented as cubemap functions 2310, encod
ing the basis coefficients of the functions in the wavelet trees 
W, comprises encoding the basis coefficients of each face 
2308 of each cubemap function 2310 in a separate wavelet 
tree W,. Thus, six wavelet trees W, are encoded for each 
cubemap function 2310, one per face 2308 of the cubemap 
function 2310. In other embodiments, each function can be 
represented with greater of fewer wavelet trees W,. 

32 
channels at a single point x. In such case, traversing the 
wavelet trees W, comprises iteratively traversing the wavelet 
trees to determine three color values for the point x. There
fore, the tree traversal is iterated six times, once per face of the 
cubemap to determine the first color, and the six iterations are 
repeated for the second and third color value. As a result, the 
tree-traversal is iterated eighteen times per point x, once per 
cubemap face 2308 per color channel. In some embodiments, 
the depth to which the wavelet trees W, are traversed is inter-

10 actively controlled, the purpose of which is described below. 
In block 2412, the scene is rendered. Because graphics 

rendering is known, a thorough discussion is omitted here. 
Rendering generally comprises, for example, using a graph
ics rendering application to rasterize the scene using graphics 

15 hardware. The graphics rendering application sets the color of 
the point x using the color values determined in block 2410. 
The algorithm then iterates for the next point x, each visible 
point x being processed, a plurality of points x producing 

In block 2408, non-linear approximation is performed on 
each function to discard insignificant basis coefficients, as 20 

described above with reference to block 1606 of FIG. 16. In 

objects, and a plurality of objects producing the rendered 
scene. 

The method 2400 can be used to interactively render 
dynamic, high-glossy objects 2302 with realistic, all-fre
quency shadows. The shadows cast by neighboring objects 
2306 on the object 2302 appear in the rendered scene due to 

some embodiments, the non-linear approximation block 
2408 is performed before the encoding block 2406, the non
linear approximation block 2408 is performed on only a sub
set of the functions, or the non-linear approximation block 
2408 is omitted completely. In embodiments in which all
frequency lighting is desirable, the distant environment light
ing function L( cjJ) is approximated using a relatively larger 
number of basis coefficients than the other functions, such 
that the high-frequency components of the lighting are rep
resented. For example, in embodiments in which about 60 to 
120 basis coefficients are retained per face 2308 of the cube
map functions 2314 to 2322, up to 300 basis coefficients may 
be retained per face 2308 of the lighting cubemap function 
2312, each face corresponding to one wavelet tree W,. 

25 the dynamic occlusion functions O,(x,cp), even ifthe objects 
are moving. The shadows cast on an object 2302 by itself also 
appear in the scene, due to the local visibility function OL( cjJ ). 
Further, the shadows cast on the virtual ground plane of the 
objects are represented, because the visibility on the virtual 

30 ground plane was considered in creating the cubemap func
tions. The BRDF p(cp) enables reproducing the lighting 
affects caused by materials and textures in the scene, includ
ing glossy materials, and the distant environment lighting 
function L( cjJ) can describe all-frequency lighting, such that 

35 specular highlights and non-diffuse shadows, including mate
rial specific highlights and shadows, appear in the rendered 
scene. Both the lighting and the direction of view can be 
varied, and the objects can be interactively manipulated. Note 
that any or all of the above-described effects can be simulta-

In block 2410, the radiance B of the point x, which is the 
integral of the product of the functions that contribute to the 
light transport model, is determined by traversing direct paths 
through the wavelet trees W,, where the N'h order integral 
coefficients CN may be nonzero, as described above with 
reference to block 1608 of FIG. 6. For example, traversing 
direct paths through the wavelet trees W, may comprise per
forming the method 1800 described above with reference to 
FIG. 18 or applying a tree-traversal algorithm to the wavelet 
trees W,, such as either the algorithm 1902 or the algorithm 45 

2002 described above with reference to FIG. 19 and FIG. 20. 

40 neously or individually produced, because each of the above
described functions simultaneously contributes to the integral 
B. Therefore, the method 2400 has applicability in fields such 
as industrial lighting and computer gaming, among others, in 
which fields interactive lighting is desirable. 

Further, the speed of rendering and/or richness of the 
lighted scene can be interactively controlled by varying the 
traversal depth. Limiting the traversal to relatively higher 
(lower scale) nodes w, in the wavelet trees W, reduces the 
computational complexity, which is related, such as linearly 

In embodiments in which the functions are represented as 
cubemap functions 2310, traversing the wavelet trees W, may 
determine the radiance of the point x overone face 23 08 of the 
cubemap S. In some such embodiments, each function is 
represented by a plurality of wavelet trees W, as a result of the 
faces 2308 of the cubmap functions 2310 being encoded in 
separate wavelet trees W,. In such cases, traversing the wave
let trees W, comprises traversing sets of wavelet trees to 
determine the radiance B over face 23 08, each set correspond
ing to one face 2308 of the cubemap and each set including 
one wavelet tree W, for each function. In other words, the 
wavelet trees W, that correspond to a given face 2308 are 
traversed to determine the radiance B per face, and the six 
radiances B per face 2308 are summed to determine the 
radiance B over the entire cubemap S. 

To render the point x in block 2412 the graphics rendering 
application may require three colors, one for each of three 
independent color channels. However, the radiance B over the 
entire cubemap S may represent one color value for the point 
x. This is because, for example, the lighting function L( cjJ) and 
BRDF function p( cjJ) may be different for different color 

50 related, to the number of nodes w, processed. However, in 
cases in which the traversal depth is limited, the relatively 
lower (higher scale) nodes w, may not be traversed, and there
fore the contributions of these nodes to the lighting of the 
scene are not considered. Because the lower nodes w, corre-

55 late to higher scales, generally representing more resolved or 
higher-frequency information, not traversing the lower nodes 
w, may eliminate higher-frequency components of shadows 
and view-dependent specularities from the light transport 
model and therefore the rendered scene. Conversely, travers-

60 ing relatively lower nodes w, enables the contributions of 
relatively more basis coefficients to be considered, the addi
tional basis coefficients including higher-frequency and/or 
more resolved lighting information. Therefore, the rendered 
scene may have more detail but may take longer to render due 

65 to the increased complexity of determining the lighting. 
FIG. 25 is a block diagram illustrating an embodiment of a 

system of rendering a graphical scene in which the radiance B 
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of a point x in the scene is determined by integrating the 
product of a plurality of functions contributing to a light 
transport model of the scene. The system 2500 includes logic 
2502 configured to determine a plurality of functions that 
contribute to a light transport model of a scene, logic 2504 
configured to project the functions of the plurality of func
tions into the wavelet domain, logic 2506 configured to 
encode basis coefficients of each function in a wavelet tree, 
logic 2508 configured to perform non-linear approximation 

34 
into more than two sets, each of the sets having one or more 
functions, and that one or more of the sets can be fixed or can 
vary. The remainder of the discussion is directed to an 
embodiment in which all of the functions F,(v) are fixed 
except for one function that is permitted to vary, as shown in 
equations (32) to (34). In such an embodiment, the relative 
computational complexity is further decreased, and the rela
tive speed of computation is further increased. 

on the functions to discard insignificant basis coefficients, 10 

logic 2510 configured to traverse direct paths through the 
wavelet trees to determine the integral of the product of the 
functions that contribute to the light transport model, and 
logic 2512 configured to render the scene. 

In block 2602, the plurality of functions F,(v) whose prod
uct is being integrated are factored into a set of fixed functions 
and one variable function as shown in equation (32): 

N [N-! l (32) 

u = f o F;(v)d/v = f o F;(v) . FN(v)d/v FIG. 26 is a block diagram illustrating a method 2600 for 15 

approximating the integral of the product of a plurality of 
functions. The method 2600 is relatively less computationally 
complex and is relatively faster than the method of other 
embodiments; however, the method approximates the inte
gral more so than the methods of other embodiments. 

In equation (32), the set of fixed functions is the set [F 1 

20 
(v), ... , F N-I (v)], and the one varying function is the function 
F~v). In block 2602, the plurality of functions F,(v) whose prod

uct is being integrated are factored into sets of functions. 
Generally speaking, the plurality of functions F,(v) includes 
N functions, and the N functions can be factored into a plu
rality of sets. For example, in equation (29) the N functions 25 

are factored into two sets, a first set having functions F ,( v) for 

In block 2604, a first vector T is determined. The first 
vector T represents the product of the set of fixed functions 
[F 1 (v), ... , F N-I (v)] in the wavelet domain as a series ofbasis 
coefficients (tu ... , tM) or alternatively as the sum of the 
series of basis coefficients th scaling corresponding basis 
functions bh as shown in equation (33) i from 1 top, anda second set having functions F,(v) fori from 

(p+l) to N: 

(29) 

For each set, the product of the functions F,(v) in the set can 
be represented in the wavelet domain as a vector T. Continu
ing the above example, the product of the functions of the first 
set can be represented as a vector T 1 and the product of the 
functions of the second set can be represented as a vector T 2 , 

as shown in equation (30): 

P N 

T1 = n F;(v) and T1 = n F;(v) 

(30) 

i=l i=p+l 

In cases in which the products of the functions in the set are 
represented as vectors, the integral u of the product of the 
functions is the integral of the product of vectors, or alterna
tively, the inner product of the vectors. For example, the 
integral of the product of the functions shown in equation (29) 
can alternatively be expressed as shown in equation (31 ): 

u=f(T1 ·T2 )dv=(T1,T) (31) 

30 
N-1 M 

T = (t1 , ... , th, ... , tM) where n F; =~[th· bh(v)] 
(33) 

i=l h=l 

In equation (33), th is the basis coefficient corresponding to 

35 the h'h basis function in the basis set ~' and Mis the number 
of basis functions used to represent the product of the set 
functions in the wavelet domain. The first vector T is deter
mined using a method 2700 described below with reference to 
FIG. 27, which is a block diagram illustrating an embodiment 

40 of a method for determining the basis coefficients of a vector 
representing the product of a plurality of functions in the 
wavelet domain. In some embodiments, determining the first 
vector T comprises pre-computing the first vector T prior to 
run-time. The first vector T can be pre-computed because the 

45 functions whose product is represented by the first vector T 
are fixed in advance of run-time. 

In block 2606, a second vector Fis determined. The second 
vector F is the wavelet domain representation of the one 
varying function F~v), expressing the function F~v) as a 

50 series ofbasis coefficients (f1 , ... , fM), or alternatively as the 
sum of a series of basis coefficients fh scaling corresponding 
basis functions bh, as shown in equation (34): 

where T 1 and T 2 are the vectors defined in equation (29), and 55 

<T 1 ,T 2> denotes the inner product of the vectors. 

M 

F= (Ji, ... , fh, ... , JM) where FN(v)= ~[fh·bh(v)] 
h=l 

(34) 

The integral u can be approximated by fixing at least one of 
the vectors in advance while allowing at least one of the 
vectors to vary. In cases in which at least one of the vectors is 
fixed, approximating the integral is relatively less computa- 60 

tionally complex, and therefore relatively faster, than in cases 
in which none of the vectors are fixed. For example, in equa
tion (31 ), the vector T 1 can be fixed while the vector T 2 varies, 
or vice versa. 

Determining the second vector F can comprise, for example, 
projecting the one varying function F ~v) into the wavelet 
domain by performing a wavelet transform, encoding the 
basis coefficients (f1 , ... , fM) of the second vector F in a 
wavelet tree W N' and performing non-linear approximation 
on the one varying function F ~v), as described above with 

Although in equations (29) through (31) the N functions 
are factored into two sets and one of the sets is fixed, a person 
of skill would understand that the N functions can be factored 

65 reference to blocks 1602 through 1606 of FIG. 16. In some 
embodiments, determining the second vector F comprises 
computing the second vector F at run-time. Computing the 
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second vector at run time, such as interactively or in real-time, 
may be desirable because the function F ~v) is permitted to 
vary, in which case the second vector F varies also. 

36 
-continued 

[fi.M. fi.M. · · ·. fN-!,M. C~k,bM,bM, ... ,bM l 
In block 2608, the inner product of the first vector T and the 

second vector Fis determined to approximate the integral u of 5 

the product of the functions represented by the vectors, as 
shown in equation (35): 

In other words, the k'h basis coefficient tk of the vector Tis 
the sum of a series contributing of products. Each contribut
ing product in the series is the product of multiple basis 
coefficients f,_h and one N'h order integral coefficient CN, the 
multiple basis coefficients including one basis coefficient f,_h 

(35) 

In equation (35), the integral u is an approximation because 
the first vector Tis fixed and does not vary. However, because 
the first vector T is fixed, approximating the integral u using 
the method 2600 is relatively less computationally complex, 
and therefore relatively faster, than other methods. For 
example, in embodiments in which the first vector T is pre
computed in advance of run-time, the method 2600 can be 
employed to approximate the integral u interactively and/or in 
real-time. In such embodiments, both the second vector F and 
the inner product of the vectors are computed interactively 
and/or in real-time. 

FIG. 27 is a block diagram illustrating a method 2700 for 
determining the basis coefficients of a vector representing the 
product of the functions in the wavelet domain. For illustra
tive purposes, the method 2700 is described with reference to 
an example embodiment, in which the plurality of functions is 
the set of fixed functions [F1(v), ... , FN_1(v)] shown in 
equation (33). However, a person of skill would understand 
that the method 2700 generally determines a vector that rep
resents the product of a plurality of functions in the wavelet 
domain, independent of the method 2600 and regardless of 
the functions whose product is being represented. 

As shown in equation (33), the product of a plurality of 
functions F,(v) can be expressed as a series of basis coeffi
cients (t1 , ... , tM) scaling corresponding basis functions. The 
series ofbasis coefficients (tu ... , tM) constitutes a vector that 
represents the product of the plurality offunctions F ,(v) in the 
wavelet domain. The basis coefficients (t1 , ... , tM) of the 
vector T can be determined by projecting the vector onto the 
basis functions of the basis set B. In such case, the k'h basis 
coefficient tk of the vector Tis determined by taking the dot 
product of the vector T and the corresponding basis function 
bk of the basis set Bas shown in equation (36): 

(36) 

10 from each of the N-1 functions, and the N'h order integral 
coefficient CN being the integral of the product of the basis 
functions bh that correspond to those basis coefficients f,_h 
along with the basis function bk that corresponds to basis 
coefficient tk being calculated. It should be noted that h is an 

15 

20 

integer from 1 to M and i is an integer from 1 to (N-1 ), M 
being the number of basis functions bh used to represent a 
function F,(v) and (N-1) being the number of functions F,(v) 
whose product is represented by the vector T. 

Because the similarities between equation (37) and equa-
tion (10) are immediately apparent, the differences between 
these equations are now described. Equation (10) determines 
the integral u of the product of a plurality of functions F,(v), 
while equation (37) determines one basis coefficient tk of a 

25 vector T that represents the product of a plurality of functions 
F,(v) in the wavelet domain. Although either equation gener
ally applies to any number of functions, equation (10) is 
expressed in terms of a plurality of functions F,(v) that 
includes N functions, and equation (37) is expressed in terms 

30 ofa plurality of functions F,(v) that includes N-1 functions. 
Both equations require taking the sum of a series of contrib
uting products, each contributing product one including one 
basis coefficient f,_h from each function F,(v) and one N'h 
order integral coefficient CN. In equation (10), each contrib-

35 uting product in the series includes N basis coefficients and in 
equation (3 7), each contributing product in the series includes 
(N-1) basis coefficients. While the number of basis coeffi
cients in a contributing product depends on the equation, in 
either case the contributing product includes the N'h order 

40 integral coefficient CN. This means that the order of the N'h 
order integral coefficient CN matches the number of basis 
coefficients in equation (10), but is one greater than the num
berofbasis coefficients in equation (3 7). In equation (10), the 

Replacing the vector Tin equation (36) with the product of the 
45 

plurality of functions from equation (33) yields equation (3 7): 

N'h order integral coefficient CN is the integral of the N basis 
functions that correspond to the basis coefficients appearing 
in the product. The N'h order integral coefficient CN in equa-

~ r-fi·;-~'!_~!:~~=~~'---- J-;-,z·:/j;/:'!!._'!r;;;·-- d v 1 U l , 1 Ji , N-1 1 N-1 J 
hN-1=1 

= [fl,l ·h,1 · ... ·fN-!,! "C~k•b!,b!, .. ,b1l + 

[f1,2. h,1. · · ·. fN-!,!. C~k,b2,h1, .. ,bl l + ... + 

[f1,M. fi.M. ···. fN-!,M-!. C~k,bM,bM ,. .. ,bM-1] + 

(37) 

tion (37) is similar except that the basis function bk corre
sponding to the basis coefficient tk being determined is also 
included. Thus, while the two equations represent different 

50 problems, the efficient solution to both lies in determining the 
N'h order integral coefficient CN. In both cases the principles 
described above with reference to FIGS. 1-15 are applied. 

Returning to the method 2700, in block 2702 each function 
F,(v) whose product is to be represented in the wavelet 

55 domain is projected into the wavelet domain. In the example 
embodiment, the plurality of functions includes the functions 
F,(v) of the set of fixed functions [F 1(v), ... , FN_ 1(v)]. 
Projecting the functions F,(v) into the wavelet domain com
prises, for example, performing the wavelet transform on 

60 each function, as described above with reference to block 
1602 of FIG. 16. Each function F,(v) of the set is then repre
sented as the series of basis coefficients f,_h scaling basis 
functions bh. 

In block 2704, the basis coefficients f, h of each function 
65 F,(v) are encoded in a wavelet tree. Encoding the basis coef

ficients f,_h is described above with reference to block 1604 of 
FIG. 16, and the wavelet trees W, are described above with 
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reference to FIG. 17. In some embodiments, each function 
F,(v) is encoded into one wavelet tree W,, although in other 
embodiments each function F,(v) can be represented using 
more than one wavelet tree. In the example embodiment, each 
function F,(v) of the set of fixed functions [F 1 (v), ... , 
F N-l (v)] is encoded, and if one wavelet tree is used to repre
sent each function in the set, then (N-1) wavelet trees W, 
result. 

38 
direct paths determines the basis coefficients tk of a vector T 
with the same accuracy but with fewer computations than 
other systems and methods. 

FIG. 28 is a block diagram illustrating an embodiment of a 
method 2800 for traversing direct paths through a plurality of 
wavelet trees W, to determine the basis coefficients tk of a 
vector T representing the product of the functions F,(v) in the 
wavelet domain, which can be employed in block 2708 of 
FIG. 27. In block 2802, a basis coefficient in a root of an In block 2706, non-linear approximation is performed on 

each wavelet tree W, to discard insignificant basis coefficients 
f,_h. Non-linear approximation is described above with refer
ence to block 1606 of FIG. 16. In some embodiments, the 
non-linear approximation block 2706 is performed before the 
encoding block 2704, the non-linear approximation block 
2704 is performed on only a subset of the functions F,(v), or 
the non-linear approximation block 2704 is omitted com
pletely. 

10 output wavelet tree W0 is initially incremented with contri
butions of basis coefficients in roots ofinput wavelet trees W,. 
The contribution to the root of the output wavelet tree W0 is 
determined by multiplying together the mother scaling coef-

In block 2708, the wavelet trees W, are traversed on direct 
paths, along which an N'h order integral coefficient CN may be 
non-zero, to determine the basis coefficients tk of the vector T 
representing the product of the functions F,(v) in the wavelet 
domain. Traversing direct paths through the wavelet trees W, 

15 ficient stored in the root of each input wavelet tree W,, 
because in such case the N'h order integral coefficient CN is 
one. In block 2804, a set of nodes [w u ... , wN_1 ] of the input 
wavelet trees W, are synchronously processed. The set of 
nodes [w1 , ... , wN_ 1 ] includes one node w, from each of the 

20 input wavelet trees W,. No two nodes w, in the set correspond 
to supports <j, k, l> that are completely disjoint from each 
other, because the input wavelet trees W, are traversed on 
direct paths. In block 2806, contributions of the set of nodes 
[w 1 , ... , wN_ 1] to the basis coefficients tkof output nodes w0 is generally described above with reference to block 1608 of 

FIG. 16. However, unlike the embodiment of FIG. 16 in 
which the integral u is incremented as the wavelet trees W, are 
traversed, in this embodiment the basis coefficients tk of the 
vector Tare determined. For example, an output wavelet tree 
W0 may be encoded as the input wavelet trees W, are tra
versed, the output wavelet tree W 0 having nodes w 0 into 
which the corresponding basis coefficients tk of the vector T 
are encoded. Therefore, in this embodiment, traversing direct 
paths comprises synchronously traversing a plurality of 
wavelet trees W,, the wavelet trees W, storing the basis coef-

35 
ficients of the functions [F 1 (v), ... , FN-l (v)] whose product 

25 of the output wavelet tree W 0 are determined. In some 
embodiments, the contribution of the set of nodes [ w 1 , ... , 

wN_ 1 ] is determined by separating the nodes into a group of 
null nodes and a group of non-null nodes, determining a 
contribution of the null nodes, and determining a contribution 

30 of non-null nodes. The contribution of null nodes is limited to 

is being represented in the wavelet domain, simultaneously 
processing a set of nodes [ w u ... , w N-ll that includes one 
node w, from each wavelet tree W,, incrementing affected 
basis coefficients tk, and encoding the basis coefficients tk in 40 

output nodes w0 of an output wavelet tree W0 . For example, 
(N-1) wavelet trees W, may be synchronously traversed in 
embodiments in which each function [F 1 (v), ... , FN_ 1(V)] is 
represented by exactly one wavelet tree W,. 

As described above, the term "traversing direct paths 45 

through the wavelet trees W,'' denotes that the nodes w, that 
are synchronously processed correspond to nodes in the basis 
function tree that lie on a single direct path through the basis 
function tree, as described above with reference to FIG. 7. 
Traversing the wavelet trees W, only on the direct paths 50 

employs the principles described above: the N'h order integral 
coefficient CN of basis functions may be nonzero if each of the 
basis functions lie on a single direct path through the basis 
function tree; however, the N'h order integral coefficient CN is 
zero if the basis functions do not lie on a single direct path 55 

through the basis function tree. Recall that each basis coeffi
cient tk is the sum of a series of contributing products, as 
shown in equation (3 7), each contributing product including 
one basis coefficient from each function [F 1(v), ... , FN_ 1(v)] 
and one N'h order integral coefficient CN, which is the integral 60 

of the corresponding basis functions and the basis function bk 
whose basis coefficient tk is being determined. Confining the 
traversal to direct paths through the wavelet trees W, while 
avoiding the indirect paths enables accumulating contributing 
products that could contribute to the basis coefficient tk while 65 

avoiding those that necessarily do not contribute to the basis 
coefficient tk. As a result, traversing the wavelet trees W, on 

the contribution of their parent nodes, which is not ignored 
even though the nodes themselves are null. The contribution 
of the non-null nodes is determined by iterating through the 
set of nodes to build a table that accumulates the magnitude of 
the contribution of the non-null nodes. In block 2808, basis 
coefficients tk of output nodes w0 are incremented with con
tributions of the set of nodes [w1 , ... , wN_1]. In some 
embodiments, both the basis coefficients tk of both the output 
node w 0 and the parent of the output node w 0 are updated. In 
block 2810, a set of child nodes is synchronously processed. 
The set of child nodes includes one node w, from each of the 
input wavelet trees W,, the one node w, being the immediate 
child of the node most recently processed. Because the child 
nodes immediately depend from the most recently processed 
nodes, the input wavelet trees W, are traversed along direct 
paths. The contribution of the set of child nodes may then be 
determined in the manner described above, and the basis 
coefficients tk of the output nodes w 0 may be incremented, and 
the process may be repeated for subsequent sets of child 
nodes until the last set of nodes is reached. 

In at least some embodiments, traversing direct paths 
through the wavelet trees W, in block 2708 of FIG. 27 com
prises applying a tree-traversal algorithm to the wavelet trees. 
FIG. 29 illustrates in pseudo code 2900 an example tree
traversal algorithm 2902 for determining the basis coeffi
cients of a vector representing the product of a plurality of 
functions in the wavelet domain, and embodiments of com
ponent routines such as a routine 2904, a routine 2906, a 
routine 2908, a routine 2910, and a routine 2912. The algo
rithm 2902 is defined as FunctionProduct in line 1, accepting 
as input a set of wavelet trees (W 0, ... , W N- 1). The wavelet 
trees (Wu ... , W N- 1) include one wavelet tree for each 
function in the set of fixed functions [F 1(v), ... , FN_ 1 (v)] 
whose product is being represented in the wavelet domain. 
The wavelet tree W 0 is an output wavelet tree into which basis 
coefficients determined by the algorithm 2902 are encoded, 
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the basis coefficients being the basis coefficients tk of the 
vector T representing the product of a plurality of functions in 
the wavelet domain. 

In line 2, the product of the mother scaling coefficients of 
each of the fixed functions (F 1(v), ... , F N- 1(v)) are encoded 
in the variable W0 .dc, which is determined by taking the 
product of the variables W,.dc for wavelet trees W, for i from 
1 to (N-1). In line 3, the routine getCoefficients 2904 is 
called. The routine 2904 is configured to simultaneously pro
cess a set of nodes (w u ... , w N- 1 ) that includes one node w, 
from each wavelet tree W, and to encode the result of pro
cessing the nodes in the corresponding node w 0 of the output 
wavelet tree W 0. For its initial call, the routine 2904 processes 
the set of mother nodes (W 1 .node, . . . , W N- l .node) that 
include the mother wavelet coefficients. The routine 2904 
then iteratively calls itself to process sets of nodes corre
sponding to higher scales and located at lower traversal 
depths, traversing the set of wavelet trees (Wu ... , W N- 1 ) 

along the direct paths to determine and encode the basis 
coefficients in the output nodes w0 . It is worth noting that in 
a single call to the algorithm 2902, all of the basis coefficients 
of the vector are determined and encoded in the output wave-
let tree W0 . 

The routine getCoefficients 2904 is defined in line 1 to 
accept as input the variable cum, and a set of nodes (w0 , ... , 

w N-1). When the routine is initially called in line 3 of algo
rithm 2902, the value one is passed into the routine for the 
variable cum. Note that the variable cum is described above 
with reference to the pseudo code 1900 and 2000, and there
fore a complete discussion is omitted here. In line 2, the nodes 
of the set of nodes (w1 , ... , wN_ 1) are reorganized into a two 
sets of nodes: one being a set of non-null nodes (w u ... , wk) 
and the other being a set of null nodes (w k+u ... , w N- 1). Up 
to this point, the subscript i has denoted that a specific wavelet 
tree W, corresponds to a specific function F,(v), or alterna
tively that a specific node w, is a node of a specific wavelet tree 
W,. For the remainder of the discussion of the algorithm 2902, 
the subscript i merely indicates whether the node w, is null or 
non-null, with non-null nodes having subscripts w 1 tow k and 
null nodes having subscripts w k+l to w N-l · It is likely that 
some of the nodes w, are null in embodiments in which non
linear approximation is performed. 

In line 3, the routine 2904 returns if all of the nodes in the 

40 
being processed. In line 2, the output node w0 of the output 
wavelet tree W 0 is updated with a variable val, which is the 
product of the variable cum and the return of the routine 
getProductlntegral 2908 described below. In other words, 
output node w0 is updated with the contributions of the non
null nodes (w u ... , wk) in the set of nodes currently being 
processed, and the contributions of the parents of the null 
nodes (wk+l' ... , wN_ 1 ) in the set currently being processed. 
In lines 5-7, the three basis coefficients tk in the parent of the 

10 output node w0 are also updated with the product of the 
variable val, a sign, and the magnitude of a parent basis 
function multiplied by an immediate child basis function. 

The routine getProductlntegral 2908 is the exact same as 
the routine getProductlntegral 2006 described above. Further, 

15 the routines that it calls, including the routine getp(i) 2910 
and the routine getW(i) 2912, are the exact same as the rou
tines getP(i) 2008 and getW(i) 2010 described above. There
fore, the reader is referred to the prior discussion. Note that 
the output of the algorithm 2902 is the wavelet tree W 0 , and 

20 the nodes w0 of the wavelet tree W0 include the basis coeffi
cients tk of the vector T that represents the product of the 
plurality of functions (F1(v), ... , FN_ 1(v)) in the wavelet 
domain. 

The computational complexity of the algorithm 2902 is the 
25 order ofO(nm), where mis the number of basis coefficients 

retained after the non-linear approximation and N is the num
ber of functions F,(v) whose product is being represented in 
the wavelet domain. Note that the algorithm 2902 determines 
all of the basis coefficients in a single call and need not be 

30 applied iteratively. 
FIG. 30 is a block diagram illustrating a system 3000 for 

determining the wavelet domain representation of the product 
of a plurality of functions. The system 3000 includes logic 
3002 configured to factor a plurality offunctions into a set of 

35 fixed functions and one varying function, logic 3004 config
ured to determine a first vector that represents the product of 
the fixed functions in the wavelet domain, logic 3006 config
ured to determine a second vector that represents the one 
varying function in the wavelet domain, and logic configured 

40 to determine an inner product of the first vector and the 
second vector. 

As shown, the logic 3004 configured to determine a first 
vector that represents the product of the fixed functions in the 
wavelet domain may include logic 3012 configured to project 

45 the functions of the set of fixed functions into the wavelet 
set (w u ... , wN_ 1) are null. This is because if all of the nodes 
are null, then all of the nodes of higher scales at lower tra
versal depths will also be null as a result of the non-linear 
approximation. In line 4, the variable w,.parentsum is updated 
for each node in the set (w u ... , w N- 1). The variable parent
sum is described above with reference to the pseudo code 
1900 and 2000, and therefore a complete discussion is omit- 50 

ted here. In line 5, the variable cum is updated for the set of 
null nodes (wk+l' ... , wN_ 1). In line 6, the routine update
Parents 2906 is called, as described in detail below. In lines 
7-9, the three wavelet coefficients 1.jJ[O], 1.jJ[l], and 1.jJ[2] of the 
output node w 0, are updated with the value of cum multiplied 55 

by the return of the routine getW(i) 2912. In lines 10-11, the 
routine 2904 then iteratively calls itself to four times to inde
pendently process the next four sets of nodes, which are the 
immediate child nodes of the non-null nodes. In other words, 
the routine 2904 calls itself for the nodes (w 1 . ch[i], ... , wk. 60 

ch[i]) ina loop, where ch[i] is the pointer to the child node and 

domain, logic 3014 configured to encode basis coefficients of 
each fixed functions in a wavelet tree, logic 3016 configured 
to perform non-linear approximation on each fixed function, 
and logic 3018 configured to determine basis coefficients of a 
vector by traversing direct paths through the wavelet trees. 

Described above are systems and method for determining 
the integral u of the product of a plurality of functions, with 
reference to FIGS. 1-22. Such systems and methods are 
applied to determine the radiance B of a point x in a scene 
using a light transport model of the lighting and objects in a 
scene, with reference to FIGS. 23-25. Also described above 
are systems and methods for approximating the integral of the 
product of a plurality of functions by fixing at least some of 
the functions whose product is being integrated, with refer
ence to FIGS. 26-30. Such systems and method for approxi
mating the integral are employed to approximate the radiance 
B of the point x in the scene, with reference to FIGS. 31-32 
below. 

i is an integer from 0 to 3. 
The routine updateParents 2906 is defined in line 1 to 

accept as inputs the output node w 0 corresponding to the set of 
nodes (w1 , ... , wN_ 1 ) currently being processed, and the 65 

variable cum multiplied by the return of getProductlntegral 
2908 for the non-null nodes (w 1 , ... , wk) of the set currently 

FIG. 31 is a block diagram illustrating an embodiment of a 
method 3100 for rendering a graphical scene by approximat
ing the radiance B of a point x in the scene using a light 
transport model of the scene. The scene is a scene such as the 
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scene 2300 described above with reference to FIG. 23, and the 
light transport model of the scene is represented, for example, 
in equation (28), which is repeated below: 

(28) 

10 
In block 3102, a plurality of functions F,(cp) that contribute to 
the light transport model of the scene are determined. For 
example, the functions F,(cp) can include the distant environ
ment lighting function L(cp), the BRDF p(cp ), the local visibil-
ity function OL( cjJ ), and one or more dynamic occlusion func- 15 

tions O,(cp). Determining the plurality of functions F,(cp) is 
described above with reference to block 2402 of FIG. 24. In 
some embodiments, determining the functions F ,( cjJ) com
prises determining cubemap functions 2310, such as from 20 
sampled data in the scene, as discussed above. The sampled 
data may be compiled interactively or in advance of run-time, 
and in cases in which the sampled data is compiled in 
advance, the cubemap functions 2310 may be pre-computed 

42 

N-1 M 

T = (t1 , ... , th, ... , tM) where n F; =~[th· bh(\O)] 
(39) 

i=l h=l 

Therefore, determining the first radiance transfer vector T 
comprises determining a series of basis coefficients (tv ... , 
tM). Using the method 2700 described above with reference to 
FIG. 27, determining the series of basis coefficients (tv ... , 
tM) generally comprises projecting each function F ,( cjJ) in the 
set of fixed functions [F 1 ( cjJ ), ... , F N-I ( cjJ )] into the wavelet 
domain (block 2702), encoding each function F ,( cjJ) in a wave
let tree W, (block 2704), subjecting each function F,(cp) to 
non-linear approximation (block 2706), and traversing the 
wavelet trees W, along direct paths to determine the basis 
coefficients of the vector (block 2708). Traversing the wavelet 
trees W, along direct paths may comprise performing the 
method 2800 described above with reference to FIG. 28 or 
applying the tree-traversal algorithm 2902, described above 
with reference to FIG. 29. In such case, the output wavelet 
tree W 0 of the tree-traversal algorithm 2902 stores the basis 
coefficients (tv ... , tM) of the first radiance transfer vector T. 

In embodiments in which the functions F ,( cjJ) are cubemap 
functions 2310, the first radiance transfer vector T corre
sponds to one face 2308 of the cubemap S. Therefore, deter
mining the first radiance transfer vector T comprises deter
mining a set of first radiance transfer vectors [T 1, ... , T 6], 

each vector T, of the set corresponding to one face of the 
cubemap S. 

In some embodiments, determining the first radiance trans
fer vector T comprises pre-computing the first radiance trans-

or may be computed interactively. However, all of the cube-
25 

map functions 2310 do not need to be determined at the same 
time. More specifically, the cubemap functions 2310 that 
correspond to the functions that are fixed can be pre-deter
mined, while the cubemap function that corresponds to the 30 

one varying function can be determined interactively. For 
example, in embodiments in which the lighting is permitted to 
vary but the other functions are fixed, the distant environment 
lighting function L( cjJ) may be determined interactively, while 
the BRDF p(cp), the local visibility function OL(cp), and the 
one or more dynamic occlusion functions O,( cjJ) may be com
puted in advance. 

35 fer vector T prior to run-time, although in other embodiments 

In block 3104, the functions that contribute to the light 
transport model are factored into a set of fixed functions 
[F,(cp), ... , F N-I (cp )] andonevaryingfunctionF ~<P ), as shown 
in equation (38): 

40 

the first radiance transfer vector T is computed interactively. 
Also, in some embodiments, determining the first radiance 
transfer vector T comprises determining a plurality of first 
radiance transfer vectors T corresponding to distinct sets of 
fixed functions [F 1 ( cjJ ), ... , F N-I ( cjJ )] . For example, if the 
lighting function L( cjJ) is permitted to vary, the functions in the 
set of fixed functions are different than if the BRDF p( cjJ) is 
permitted to vary. Especially in embodiments in which the 

(38) 
45 first radiance transfer vector T is pre-computed but the one 

varying function F ~ cjJ) is selected interactively, it may be 
desirable to determine a plurality of first radiance transfer 
vectors T corresponding to distinct sets of fixed functions 

50 
[F1(cp), ... , FN_1(cjl)] so that regardless ofthefunctionF~cp) 

Factoring the functions is generally described above with 
reference to block 2602 ofFIG. 26. In some embodiments, the 
one varying function F ~ cjJ) is pre-determined and is 
unchangeable, but in other embodiments the one varying 
function F ~ cjJ) is determined interactively, such as in 
response to user input. For example, in one embodiment a 55 

user can select an object in the scene, and in response to the 
selection, the dynamic occlusion function O,( cjJ) of the object 
is allowed to vary while the other functions are fixed. 

interactively selected to vary, the corresponding first radiance 
transfer vector Tis already pre-computed and ready for use in 
real-time. In embodiments in which the functions F,(cp) are 
cubemap functions 2310, determining the plurality of first 
radiance transfer vectors T comprises determining a plurality 
of sets of first radiance transfer vectors [T v ... , T 6], each 
vector T, of the set corresponding to one face 2308 of the 
cubemap S, and each set [T v ... , T 6 ] of the plurality of sets 

60 
corresponding to one of the potential sets of fixed functions 

[F 1 (cp ), ... 'F N-1C<P)J. 
In block 3106, a first radiance transfer vector T is deter

mined. Determining the first radiance transfer vector T is 
generally described above with reference to block 2604 of 
FIG. 26. The first radiance transfer vector T represents the 
product of the setoffixedfunctions [F 1 (cp ), ... , F N-iC<P)l in the 
wavelet domain as a series of basis coefficients (t1, ... , tM), 65 

or alternatively, as a series of basis coefficients th scaling a 
series of basis functions bh, as shown in equation (39): 

In block 3108, a second radiance transfer vector Fis deter
mined. The second radiance transfer vector F represents the 
one varying function F ~ cjJ) in the wavelet domain as a series 
of basis coefficients (fv ... , fM), or alternatively, as a series 
ofbasis coefficients fh scaling a series ofbasis functions bh, as 
shown in equation (40): 
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M 

F =(Ji, ... , fh, ... , JM) where FN(v) = 2= [fh- bh(\O)] 
h=l 

(40) 

Determining the second radiance transfer vector F is gener
ally described above with reference to block 2606 of FIG. 26 
and can comprise projecting the one varying function F ~ cjJ) 
into the wavelet domain by performing a wavelet transform, 
encoding the basis coefficients (f1 , ... , fM) of the second 
vector F in a wavelet tree W,, and performing non-linear 
approximation on the one varying function F ~ cjJ ). 

44 
to one face 2308 of the cubemap S and the sum of the inner 
products representing the radiance B over the entire cubemap 
S. 

In block 3112, the scene is rendered, as described above 
with reference to block 2412 of FIG. 24. The radiance B for 
the point x determined in block 3110 is used by the graphics 
rendering application to set the color of the point x. In at least 
some embodiments, the radiance B of the point x represents 
one color value for the point, but to render the scene the 

10 graphics rendering application requires three color values, 
one for each of three independent color channels. Therefore, 
in such embodiments the above blocks are iterated to inde
pendently process each of the three independent color chan-

In embodiments in which the functions F ,( cjJ) are cubemap 
functions 2310, the second radiance transfer vector T corre- 15 
sponds to one face 2308 of the cubemap function. Therefore, 
determining the second radiance transfer vector T comprises 
determining a set of second radiance transfer vectors 
[F1 , ... , F6], each vector F, of the set corresponding to one 
face 2308 of the cubemap function. 20 

nels, such that three color values are available to the graphics 
rendering application for the point x. The above steps are also 
iterated for each visible point x before the final scene is 
rendered, because a plurality of points x are combined to 
produce objects, and a plurality of objects are combined to 
produce the rendered scene. 

The method 3100 can be employed to generate all-fre
quency shadows in real-time. In embodiments in which the 
first radiance transfer vector T is pre-computed but the second 
radiance transfer vector F is determined interactively, the 
method 3100 can be considered a method of just-in-time 
radiance transfer (JRT), unlike prior pre-computed radiance 
transfer (PRT) methods, such as those disclosed by Sloan et 

In at least some embodiments, determining the second 
radiance transfer vector F comprises iteratively determining 
the second radiance transfer vector F in response to changing 
conditions in the scene 2300. While the first radiance transfer 
vector T can be fixed because the functions [T 1 ( cjJ ), . . . , 25 

TN- I ( cjJ)] represented by the vector T do not change, the same 
al. in "Precomputed radiance transfer for real-time rendering 
in dynamic-low-frequency lighting environments," ACM 
Transactions on Graphics (SIGGRAPH '02) 21, 3, 527-536, 

is not true for the second radiance transfer vector F, which 
represents the one varying function F ~ cjJ ). Therefore, it may 
be desirable to determine the first radiance transfer vector T 
once, while determining the second radiance transfer vector F 
iteratively and interactively, in response to changing condi
tions in the scene 2300. 

In block 3110, an inner product of the first radiance transfer 
vector T and second radiance transfer vector F is determined. 
Taking the inner product of the first radiance transfer vector T 
and second radiance transfer vector F approximates the radi
ance B of the point x, as shown by re-writing equation (38) in 
terms of equation (39) and equation ( 40): 

B= (41) 

30 which is incorporated by reference herein in its entirety. 
Allowing only one function to vary is reasonable in some 

cases, such as in lighting design systems, in which the 
designer typically adjusts only one variable at a time. For 
example, the designer may experiment with the lighting by 

35 varying the lighting function L( cjJ) without varying the direc
tion of view 8 or the objects 2302, 2306 in the scene 2300. The 
designer may also render the scene from different directions 
of view 8 while maintaining the current lighting L( cjJ) and 
objects 2302, 2306 in the scene 2300. In other cases, the 

40 designer may change the location of one object 2302 or 2306 
in the scene 2300 while holding the lighting function L( cjJ) and 
direction of view 8 constant. As long as only one varying 
function F ~cp) is selected, the method 3100 can be employed 
to generate all-frequency shadows in real-time. 

45 Because the method 3100 employs pre-computed data on 
individual objects 2302, 2306 in the scene 2300 instead of 
pre-animated models of the scene as a whole, the objects in 
the scene can be manipulated interactively, such as by clon
ing, scaling, and/ or translating the objects. Even in such cases 

50 of interactive manipulation, the method 3100 can be is 
employed to render the objects with all-frequency shadows in 
real-time. Glossy materials are also supported, such that 
dynamic high-glossy objects can be rendered in real-time 

In equation ( 41 ), the radiance B is an approximation because 
the first radiance transfer vector T is fixed and does not vary. 
However, because the first radiance transfer vector Tis fixed, 
approximating the radiance Busing the method 3100 is rela
tively less computationally complex, and therefore relatively 
faster, than other methods. For example, in embodiments in 
which the first radiance transfer vector Tis pre-computed and 
the second radiance transfer vector F is determined interac- 55 

tively, the method 3100 can be employed to approximate the 
radiance B interactively and/or in real-time by taking the 
inner product of the two vectors interactively and/or in real
time. 

with realistic, all-frequency shadows. 
The method 3100 supports interactively changing the func-

tion selected as the one varying function F~cp). In embodi
ments in which a plurality of first radiance transfer vectors T 
are pre-computed in block 3106 for different sets of fixed 
functions [F 1 ( cjJ ), ... , F N-I ( cjJ )], the one varying function 

In embodiments in which the functions F ,( cjJ) are cubemap 
functions 2310, the inner product of the first radiance transfer 
T vector and second radiance transfer vector F corresponds to 
one face 2308 of the cubemap S. Therefore, determining the 
inner product comprises determining inner products of a set 
of first radiance transfer vectors [T 1 , ... , T 6 ] and a set of 
second radiance transfer vectors [Fu ... , F 6] and summing 
the inner products together, each inner product corresponding 

60 F ~ cjJ) can be changed in real-time without repeating block 
3106. For example, ifthe distant environment lighting func
tion L( cjJ) is selected as the one varying function F ~ cjJ ), ren
dering the scene for a variety of lighting conditions in real
time reduces to iteratively determining the second radiance 

65 transfer vector F of the lighting function in real-time and 
taking the inner product of the two radiance transfer vectors T 
and F in real-time, because the first radiance transfer vector T 
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for the set affixed functions [p( cjJ ), OL( cjJ ), 0 1 ( cjJ ), ••• , Og( <P )] 
was determined in advance. If the one varying function F ~ cjJ) 

is interactively changed from the distant environment lighting 
function L( cjJ) to the first dynamic occlusion function 0 1 ( cjJ ), 
rendering the scene for the moving object in real-time reduces 
to iteratively determining the second radiance transfer vector 
F of the dynamic occlusion function in real-time and taking 
the inner product of the two radiance transfer vectors in 
real-time, because the first radiance transfer vector T for the 

- 10 set affix functions [L ( cjJ ), p( cjJ ), OL ( cjJ ), 0 2 ( cjJ ), ••• , Og( cjJ )] was 
pre-computed in advance. 

FIG. 32 is a block diagram illustrating an embodiment of a 
system 3200 for rendering a graphical scene by approximat
ing the radiance of the point x in a scene using a light transport 

15 
model of the scene. The system 3200 includes logic 3202 
configured to determine a plurality of functions that contrib
ute to a light transport model of a scene, logic 3204 config
ured to factor the plurality of functions into a set of fixed 
functions and one varying function, logic 3206 configured to 20 
determine a first radiance transfer vector for the set of fixed 
functions, logic 3208 configured to determine a second radi
ance transfer vector for the one varying function, logic 3210 
configured to determine the inner product of the first and 
second radiance transfer vectors, and logic 3212 configured 25 
to render the scene. 

While particular embodiments of systems and methods for 
determining the integral of the product of a plurality of func
tions, and for determining the product of a plurality of func
tions, have been disclosed in detail in the foregoing descrip- 30 
ti on and figures for purposes of example, those skilled in the 
art will understand that variations and modifications may be 
made without departing from the scope of the disclosure. All 
such variations and modifications are intended to be included 
within the scope of the present disclosure, as protected by the 35 
following claims. 

At least the following is claimed: 
1. A non-transitory computer readable medium configured 

to determine the integral of the product of a plurality of 40 

functions, the computer readable medium comprising: 
logic configured to project each function of the plurality of 

functions into the wavelet domain; 
logic configured to encode basis coefficients of each func

tion in a wavelet tree, each function being encoded in at 45 

least one wavelet tree such that the plurality of functions 
are represented in the wavelet domain by a plurality of 
wavelet trees; and 

logic configured to traverse direct paths through the plu
rality of wavelet trees to determine the integral of the 50 

product of the functions represented by the wavelet 
trees, along which direct paths an integral coefficient 
may be nonzero. 

2. The non-transitory computer readable medium of claim 
1, wherein the logic configured to project the function into the 55 

wavelet domain includes logic configured to perform a two
dimensional nonstandard Haar wavelet transform on the 
function. 

3. The non-transitory computer readable medium of claim 
1, wherein the wavelet tree is a tree-shaped data structure that 60 

organized the basis coefficients according to parent-child 
relationships among basis functions, a parent basis function 
having a scale that is less than a scale of a child basis function 
and a support that completely covers a support of the child 
basis function, and an immediate parent basis function having 65 

a scale that is one less than the scale of the child basis func
tion. 

46 
4. The non-transitory computer readable medium of claim 

3, wherein the wavelet tree includes: 

a root that stores a mother scaling coefficient of the func
tion; 

a mother node that stores three mother wavelet coefficients 
of the function, the mother node depending from the 
root; and 

at least one set of four child nodes, the set corresponding to 
one scale and each child node of the set corresponding to 
one support, the three wavelet coefficients defined for 
the one support being stored in the child node, each child 
node immediately depending from a node that corre
sponds to its immediate parent basis functions. 

5. The non-transitory computer readable medium of claim 
1, wherein the logic configured to traverse direct paths 
through the wavelet trees comprises: 

logic configured to synchronously process a set of nodes 
that includes one node from each wavelet tree; 

logic configured to determine a contribution of the set of 
nodes to the integral; 

logic configured to increment the integral; and 

logic configured to synchronously process a child set of 
nodes. 

6. The non-transitory computer readable medium of claim 
5, wherein no two nodes in the synchronously processed set 
correspond to supports that are completely disjoint from each 
other, and each node in the child set of nodes is an immediate 
child of the most recently processed node in the wavelet tree. 

7. The non-transitory computer readable medium of claim 
5, wherein the logic configured to determine a contribution of 
the set of nodes comprises: 

logic configured to separate the set of nodes into a group of 
null nodes and a group of non-null nodes; 

logic configured to determine a contribution of parents of 
the null nodes; and 

logic configured to determine a contribution of the non
null nodes. 

8. The non-transitory computer readable medium of claim 
7, wherein the logic configured to determine the contribution 
of the non-null nodes is configured to recursively expand the 
nodes to determine contributions of subsets of the nodes. 

9. The non-transitory computer readable medium of claim 
7, wherein the logic configured to determine the contribution 
of the non-null nodes is configured to iteratively build a table 
that accumulates contributions of subsets of the nodes. 

10. The non-transitory computer readable medium of claim 
of 1, further comprising logic configured to perform non
linear approximation on at least some of the functions to 
discard insignificant basis coefficients. 

11. A non-transitory computer readable medium config
ured to determine an integral coefficient, the integral coeffi
cient being the integral of the product of a plurality of basis 
functions, the computer readable medium comprising: 

logic configured to determine whether the basis functions 
of the plurality lie in nodes of a basis function tree that 
are on a single direct path through the basis function tree; 

logic configured to set the integral coefficient to zero if the 
single direct path exists; 

logic configured to determine a basis function type of a 
basis function appearing in the product of the basis func
tions ifthe single direct path does not exist; 
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logic configured to set the integral coefficient to zero if the 
basis function type of the basis function appearing in the 
product is a wavelet basis function; and 

logic configured to set the integral coefficient to a value if 
the basis function type of the basis function appearing in 
the product is a scaling basis function. 

12. The non-transitory computer readable medium of claim 
11, wherein the logic configured to determine whether the 
basis functions lie in nodes on a single direct path through the 
basis function tree comprises logic configured to determine if 10 

every two basis functions in the plurality are either related as 
parent and child or have the same support. 

13. The non-transitory computer readable medium of claim 
11, wherein: 

the basis function tree organizes basis functions according 
to parent-child relationships, a parent basis function 
having a scale that is less than a scale of a child basis 
function and a support that completely covers a support 

15 

of the child basis function, and an immediate parent 20 

basis function having a scale that is one less than the 
scale of the child basis function, the basis function tree 
including: 
a root that includes a mother scaling basis function, 

48 
14. The non-transitory computer readable medium of claim 

11, wherein the logic configured to determine the basis func
tion type of the product of the plurality of basis functions 
comprises: 

logic configured to place the basis functions in a ranking 
order; 

logic configured to determine a subset of the plurality of 
basis functions, each basis function of the subset having 
a finest scale that appears in the plurality of basis func
tions; 

logic configured to count three aggregate numbers, the 
aggregate number being the number of times one of the 
three wavelet function types appears in the subset; 

logic configured to compare a parity of each of the three 
aggregate numbers; 

logic configured to set the basis function type to a scaling 
basis function if the parities of each of the three aggre
gate numbers is the same; and 

logic configured to set the basis function type to one of the 
wavelet basis functions if the parities of the three aggre
gate numbers are not the same. 

15. The non-transitory computer readable medium of claim 
14, wherein the logic configured to place the basis function in 
the ranking order includes logic configured to organize basis 
functions so that basis function having finer scales are before 

a mother node depending from the root that includes 
three mother wavelet coefficients, and 

at least one set of four child nodes, the set corresponding 
to one scale, each child node of the set corresponding 

25 basis functions having coarser scales, and among the subset 
of basis functions having the finest scale, wavelet basis func
tions are before scaling basis functions. 

to one support and including three wavelet basis func
tions defined on the support, and each node immedi
ately depending from a node that includes its imme
diate parent basis functions; and 

the single direct path exists if every two basis functions in 
the plurality are either related as parent and child or have 
the same support. 

16. The non-transitory computer readable medium of claim 
14, wherein the logic configured to set the basis function type 

30 to one of the wavelet basis functions ifthe parities of the three 
aggregate numbers are not the same is configured to set the 
basis function type to the wavelet basis function that corre
sponds to the aggregate number having a parity that differs 
from the parities of the other two aggregate numbers. 

* * * * * 
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