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Briefdescnptionofageno:Talimagereconstructionalgonlhm 

~LoadtheeurrentCB (conebeiun)projeetfonintocomputer 

memory. SuppDSC that the mid P"int of the CB projectiom; currently 

storedinmemoryisy(s0). 

fillm.l!1. Preprocening. Compute numerically the derivative 

(dt/lqJD,(y(qJ.tnL. forallreQUiredP 

~Findingfllmilie•oflinesfod"dtering.Usingvecrors 

t'.>"i(s,.9m)(seeequation(10)andthcfollowingparagraph},identifythe 

requiredfamiliesoflines.Then,chooseadiscretesett>flinesfromeach 

family. 

~Preparingforfiltering.Paramctenzepointsonthesaid 

linesselectedin$tep30bypolarang!e.Usingintcrpolation,compute 

thedenvativeoftheCBdataatpolntsonthesaidlinestha1correspond 

todiscretevaluesofthepolarangle. 

~Fillering.Foreachlineident.JfiedinStep30convr>lvethedata 

fortha!linecomputedinStep40withfilterllsinr. 

film..§l1. Back-proje~lion.foreach reconslructit>npoi:ntx, back· 

projectthefiltereddatllfoundinStep50aocr>rdingtoequatit>n(ll)). 

Then gr> tr> Step 10, Wlless there are no uew CB prnjections to process 

mimagereronstructionatalltberequiredpoints x have been 

completed. 
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Fig. 2 
Brief description of a general image reconstruction algorithm 

Step 10. Load the current CB (cone beam) projection into computer 

. memory. Suppose that the mid point of the CB projections currently . 
stored in memory is y(s0 ). 

l 
Step 20. Preprocessing. Compute numerically the derivative 

(a I 8q)D,(y(q),/3) 1.... for all required /3 . 

l 
Step 30. Finding families of lines for filtering. Using vectors 

a.1.(s,tl"') (see equation (10) and the following paragraph), identify the 

required families of lines. Then, choose a discrete set oflines from each 

family. 

l 
Step 40. Preparing for filtering. Parameterize points on the said 

lines selected in Step 30 by polar angle. Using interpolation, compute 

the derivative of the CB data at points on the said lines that correspond 

to discrete values of the polar angle. 

1 
Step 50. Filtering. For each line identified in Step 30 convolve the data 

for that line computed in Step 40 with filter l/sinr. 

i 
Step 60. Back-projection. For each reconstruction pointx, back-

project the filtered data found in Step 50 according to equation (l 0). 

- Then go to Step I 0, unless there are no new CB projections to process 

or image reconstruction at all the required points x have been 

completed. 

! 
Reconstructed 

image 
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Fig. 3 
Step 20. Preprocessing 

Step 21. Choose a rectangular grid of points x,.j that covers the 

plane DP(s0 ) • 

l 
Step 22. For each xi.J find the unit vector fl..j which points from 

y(so) towards the point x,,j on the plane. 

l 
Step 23. Using the CB data D1 (y(q),/J) for a few values of q 

close to s0 find numerically the derivative 

(a 1 aq)D,(y(q).P1•1 ) !q~ .. for all P .. 1 . 

l 
Step 24. Store the computed values of the derivative in computer 

memory. 

1 
Step 25. The result of Step 24 is the pre-processed CB data 

\fl(so, /J,,J). 

t 
Step 30 



U.S. Patent Aug. 3, 2004 Sheet 4 of 7 US 6, 771, 733 B2 

Fig. 4 
Step 30. Finding two sets of lines for filtering 

Step 31. Choose a discrete set of values of the parameter s2 

inside the interval I that corresponds to the trajectory of the x-
ray source C . 

l 
Step 32. For each selected s2 find the vector y(s2), which is 

tangent to C at y(s2). 

l 
Step 33. For each selected s2 find the line, which is obtained by 

intersecting the plane through y(s0 ), y(s2), and parallel to 

y(s2 ), with the plane DP(s0 ). 

l 
Step 34. The collection of lines constructed in Step 33 is the 
required first set of lines I,(s2). 

l 
Step 35. Let w be the polar angle in the plane perpendicular to 
y(s0 ) and e(w) be the corresponding unit vector perpendicular 

to y(s0 ). 

l 
Step 36. For a discrete set of values {J), find lines obtained by 
intersecting the plane through y(s0 ) and parallel to y(s2 ), e(w), 

with the plane DP(s0 ). 

1 
Step 37. The collection of lines constructed in Step 36 is the 
required second set of lines Li ( m) . 

l 
Step 40 
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Step 40. Preparation for filtering 

; Step 41. Fix a line L from the said sets of lines obtained in Step 
30. 

! 
Step 42. Parameterize points on that line by polar angle r in the 

plane through y(s0 ) and L. 

l 
Step 43. Choose a discrete set of equidistant values r. that will 

be used later for discrete filtering in Step 50 

l 
Step 44. For each Yt find the unit vector {J"' which points from 

y(s0 ) towards the point on L that corresponds to r •. 

l 
Step 45. For all Pt, using the pre-processed CB data l.J!(s0 ,/3;,) 

for a few values of Pi.j close to fl1t. and an interpolation 

technique, find the value l.f'{s0 ,/J4 ). 

l 
Step 46. Store the computed values of 'f'(s0,/3l) in computer 

memory. 

l 
Step 47. Repeat Steps 41-46 for all lines li(s2 ) and li(O) 

identified in Step 30. This way the pre-processed CB data 
- '¥(s0 ,/J1t.) will be stored in computer memory in the form -

convenient for subsequent filtering along the said lines identified 
in Step 30. 

l 
Step 50 
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Step 50. Filtering 

- Step 51. Fix a line from the said families of lines identified in 
' Step 30. 

l 
Step 52. Compute FFT of the values of the said pre-processed CB 

data lf'(s0,pk) computed in Step 40 along the said line. 

l 
Step 53. Compute FFT of the filter 1/siny 

l 
Step _54. Multiply the results of Steps 52 and 53. 

1 
Step 55. Take the inverse FFT of the result of Step 54. 

l 
Step 56. Store the result of Step 55 in computer memory. 

l 
Step 57. Repeat Steps 51-56 for all lines in the said families of 

lines. As a result we get the filtered CB data ct>1(s0,j1k) and 
,_ 
-

<1>2 ( s0 , /31:) that correspond to the families of lines L. and Li, 
respectively. 

i 
Step 60 
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Fig. 7 Step 60. Back-projection 

Step 61. Fix a reconstruction point x. 

Step 62. Find the projection x of x onto the plane DP(s0 ) and the 

unit vector p(.f0 ,.x), which ~oints from y{.r8 ) towards x. 

Step 63. From cuch family orlines select several lines and points on 

the said lines that are close lo the said projection x. This will give a 

. rew values of 1t•1(s0 .P,l and <t> 1{s0 ,p,) for P. close to P<.r0 ,.x). 

Step 64. Using interpolation. find the values <I>i£.r0 ,p(.r0 ,x))·and 

<1> 2(.r0 , /j(.r.,.x)) from the said values of ¢1 1(s0 ,p,) and ¢l,(s0 ,/J,), 

respectively, for {J, close to /J(.f0 ,.x). 

Step 65. Compute the contributions from the said filtered CB dara 

<b 1(s0 ,/l(T0 , x)) and <!> 2 ( s0 , /J(s0 , .x)) to the image being reconstructed 

at the point J: by dividing <1>1(.r0,/J(s0 ,x)) and <l>1(.r0 ,/J(s0,x)) by. 

-811' 2 j .x - y{s0 ) I and multiplying by constants c.,(.r,.r) found from 

equal ion (I I). 

S1ep 66. ;\dd the said contributions to the image being reconstructed 

at the point .x according lo a pre-selected scheme for rliscretization of 

the integral in equation ( 10) (e.g., the Trapezoidal scheme). 

Step 6 7. Go to Slep 61 and choose a diffcrenl reconstruction point x. 

Go to Step 10 

<X>mpleted at all the 

required points.r? 

The reconstructed 
image is complete 

US 6, 771, 733 B2 
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METHOD OF RECONSTRUCTING IMAGES 
FOR SPIRAL AND NON-SPIRAL COMPUTER 

TOMOGRAPHY 

2 
rithms. However, even under the ideal circumstances they 
produce an approximate image that may be similar to but 
still different from the exact image. In particular, Approxi
mate algorithms can create artifacts, which are false features 

This invention relates to computer tomography, and in 
particular to processes and systems for reconstructing three
dimensional images from the data obtained by spiral and 
non-spiral scans, and this invention is a continuation-in-part 

5 in an image. Under certain circumstances these artifacts 
could be quite severe. 

of U.S. application Ser. No. 10/143,160 filed May 10, 2002, 
now U.S. Pat. No. 6,574,299 entitled: Exact Filtered Back 10 

Projection (FBP) Algorithm For Spiral Computer 
Tomography, which claims the benefit of U.S. Provisional 
Application No. 60/312,827 filed Aug. 16, 2001, and this 
invention claims the benefit of priority to U.S. Provisional 
Application No. 60/379,547 filed May 10, 2002, all by the 15 

same inventor, and by the same assignee as the subject 
application, which are all incorporated by reference. 

BACKGROUND AND PRIOR ART 

To date, there are no known algorithms that can combine 
the beneficial attributes of Exact and Approximate algo
rithms into a single algorithm that is capable of replicating 
an exact image under the ideal circumstances, uses small 
amounts of computer power, and reconstructs the exact 
images in an efficient manner (i.e., using the FBP structure). 
Here and everywhere below by the phrase that the algorithm 
of the invention reconstructs an exact image we will mean 
that in theory the algorithm is capable of reconstructing an 
exact image. Since in real life any data contains noise and 
other imperfections, no algorithm is capable of reconstruct
ing an exact image. 

Over the last thirty years, computer tomography (CT) has 
gone from image reconstruction based on scanning in a 
slice-by-slice process to spiral scanning. From the 1970s to 
1980s the slice-by-slice scanning was used. In this mode the 
incremental motions of the patient on the table through the 
gantry and the gantry rotations were performed one after 
another. Since the patient was stationary during the gantry 
rotations, the trajectory of the x-ray source around the 
patient was circular. Pre-selected slices through the patient 
have been reconstructed using the data obtained by such 
circular scans. From the mid 1980s to present day, spiral 
type scanning has become the preferred process for data 
collection in CT. Under spiral scanning a table with the 
patient continuously moves through the gantry that is con
tinuously rotating about the table. At first, spiral scanning 

35 
has used one-dimensional detectors, which receive data in 
one dimension (a single row of detectors). Later, two
dimensional detectors, where multiple rows (two or more 
rows) of detectors sit next to one another, have been intro
duced. In CT there have been significant problems for image 

40 
reconstruction especially for two-dimensional detectors. In 
what follows the data provided by the two-dimensional 
detectors will be referred to as cone-beam (CB) data or CB 
projections. 

Image reconstruction has been proposed in many U.S. 
20 patents. See for example, U.S. Pat. Nos. 5,663,995 and 

5,706,325 and 5,784,481 and 6,014,419 to Hu; U.S. Pat. 
Nos. 5,881,123 and 5,926,521 and 6,130,930 and 6,233,303 
to Tam; U.S. Pat. No. 5,960,055 to Samaresekera et al.; U.S. 
Pat. No. 5,995,580 to Schaller; U.S. Pat. No. 6,009,142 to 

25 Sauer; U.S. Pat. No. 6,072,851 to Sivers; U.S. Pat. Nos. 
6,173,032 and 6,459,754 to Besson; U.S. Pat. No. 6,198,789 
to Dafni; U.S. Pat. Nos. 6,215,841 and 6,266,388 to Hsieh. 
However, none of the patents overcome all of the deficien
cies to image reconstruction referenced above. 

30 

In addition to spiral scans there are non-spiral scans, in 45 
which the trajectory of the x-ray source is different from 
spiral. In medical imaging, non-spiral scans are performed 
using a C-arm device. 

For three-dimensional (also known as volumetric) image 
reconstruction from the data provided by a spiral and 50 

non-spiral scans with two-dimensional detectors, there are 
two known groups of algorithms: Exact algorithms and 
Approximate algorithms, that each have known problems. 
Under ideal circumstances, exact algorithms can provide a 
replication of an exact image. Thus, one should expect that 55 

exact algorithms would produce images of good quality 
even under non-ideal (that is, realistic) circumstances. 
However, exact algorithms can be known to take many hours 
to provide an image reconstruction, and can take up great 
amounts of computer power when being used. These alga- 60 
rithms can require keeping considerable amounts of cone 
beam projections in memory. Additionally, some exact algo
rithms can require large detector arrays to be operable and 
can have limits on the size of the patient being scanned. 

SUMMARY OF THE INVENTION 

A primary objective of the invention is to provide a 
general scheme for creating improved processes and systems 
for reconstructing images of objects that have been scanned 
in a spiral or non-spiral fashions with two-dimensional 
detectors. 

In the general setting application of the invented scheme 
requires finding of a weight function, which would lead to 
the required inversion algorithm. As a particular case, we 
show how this general scheme applies to a C-arm scan with 
the closed x-ray source trajectory and gives us a new, 
theoretically exact and efficient (i.e., with the convolution
based FBP structure) reconstruction algorithm. 

In this particular case we demonstrate how that weight 
function is found. In addition, we show that the algorithms 
disclosed in the parent patent Ser. No. 10/143,160 filed May 
10, 2002, entitled: Exact Filtered Back Projection (FBP) 
Algorithm For Spiral Computer Tomography, which claims 
the benefit of U.S. Provisional Application No. 60/312,827 
filed Aug. 16, 2001, all by the same inventor, and by the 
same assignee as the subject application, which are all 
incorporated by reference, also fit into the proposed general 
scheme by demonstrating the appropriate vectors and coef
ficients. 

Further objects and advantages of this invention will be 
apparent from the following detailed description of the 
presently preferred embodiments. 

BRIEF DESCRIPTION OF THE FIGURES 

FIG. l shows a C-arm scan assembly that can be used with 
the subject invention. 

FIG. 2 shows an overview of the basic process steps of the 
Approximate algorithms possess a filtered back projection 

(FBP) structure, so they can produce an image very effi
ciently and using less computing power than Exact alga-

65 invention. 
FIG. 3 is a five substep flow chart for preprocessing, 

corresponding to step 20 of FIG. 2. 
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FIG. 4 is a seven substep flow chart for finding two sets 
of lines for filtering, corresponding to step 30 of FIG. 2. 

FIG. 5 is a seven substep flow chart for preparation for 
filtering, corresponding to step 40 of FIG. 2. 

FIG. 6 is a seven substep flow chart for filtering, corre- 5 

sponding to step 50 of FIG. 2. 

FIG. 7 is a seven substep flow chart for back-projection, 
corresponding to step 60 FIG. 2. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

10 

Before explaining the disclosed embodiments of the 
present inventions in detail it is to be understood that the 
invention is not limited in its application to the details of the 15 

particular arrangements shown since the invention is capable 
of other embodiments. Also, the terminology used herein is 
for the purpose of description and not of limitation. 

y(s):=dy/ds; 
y(s):=d2 y/ds2

. 

4 

Given the focal point y(s) (also referred to as source 
position), let DP(s) denote a plane where a virtual fiat 
two-dimensional detector can be located for the purpose of 
measuring the cone-beam projection corresponding to the 
focal point y(s). 
Introduce the Sets 

Crit(s,x):={ aE~_i_(s,x):II(x,a) is tangent to C or II(x,a) 
contains an endpoint of C} 

Ireg(x):={ sEl:Crit(s,x) is a subset of but not equal to 
~_i_(s,x)} 

Crit(x) := LJ Crit(s, x). (5) 

,cf 

Sometimes Crit(s,x) coincides with ~195 (s,x). This happens, 
for example, if ~(s,x) is parallel to y(s) or the line through 

For purposes of clarity, several definitions of terms being 
used in this invention will now be described. 20 y(s)EC and x contains an endpoint of C. If aES2\Crit(x) we 

say that such a is non-critical. 
Beam can be defined as a beam of particles (such as x-ray 

particles) that experience for the most part non-scattering 
interactions as they pass along straight lines through the 
medium (such as patient) to be scanned. Thus, an individual 
particle emitted by a source either is absorbed by the 25 

medium or travels all the way through it unabsorbed. 

Cone beam can be defined as any conical shaped beam 
(i.e. not necessarily with round cross-section). 

The two-dimensional detector (or, detector) can be 30 
defined as any device on which the cone beam is incident 
and which is capable of measuring intensity of the beam as 
a two-dimensional function (e.g., at a two-dimensional array 

Fix any XER3\C where f needs to be computed. The main 
assumptions about the trajectory C are the following. 

Property Cl. (Completeness condition) Any plane through x 
intersects C at least at one point. 

Property C2. The number of directions in Crit(s,x) is uni
formly bounded on Ireg(x). 

Property C3. The number of points in II(x,a)nC is uni
formly bounded on S2\Crit(x). 

Property Cl is the most important from the practical point of 
view. Properties C2 and C3 merely state that the trajectory 
C is not too exotic (which rarely happens in practice). 

of points). 

This invention is a continuation-in-part of U.S. applica
tion Ser. No. 10/143,160 filed May 10, 2002, entitled: Exact 
Filtered Back Projection (FBP) Algorithm For Spiral Com
puter Tomography, which claims the benefit of U.S. Provi
sional Application No. 60/312,827 filed Aug. 16, 2001, all 

An important ingredient in the construction of the inversion 

35 formula is weight function n0(s,x,a),sElreg(x),aE~_i_(s,x)\Crit 
(s,x). Define 

by the same inventor, and by the same assignee as the 40 

subject application, which are all incorporated by reference. 
no(s, x, a:) 

n(s, x, a:)= nr (x, a:) 

(6) 

(7) 

The invention will now be described in more detail by first 
describing the main inversion formula followed by the novel 
algorithm. First we introduce the necessary notations. In equation (6) and everywhere below 
C is a smooth curve in R3: 45 

I~R3,l3s~y(s)ER3, (1) ~ 
j 

Here I c R is a finite union of intervals. S2 is the unit sphere 
in R3, and 50 denotes the summation over all sj such that y(s)ECnII(x,a). 

The main assumptions about n0 are the following. 

(2) 

x-y(s) 
f3(s, x) := Ix- y(s)I' x EU, s E /; 

(3J 55 

CT(x, t;) := {z E R3 : (z-x)·t; = 0). (4) 

Additionally, f is the function representing the distribution 60 

of the x-ray attenuation coefficient inside the object being 
scanned, DJ(y,~) is the cone beam transform off, and ~(s,x) 
is the unit vector from the focal point y(s) pointing towards 
the reconstruction point x. For ~ES2,~_i_ denotes the great 
circle { aES2:a·~=0}. Given XER3 and i;ER3\0, let sj=s/l;l;·x), 65 

j=l,2, ... , denote points of intersection of the plane II(x,1;) 
with C. Also 

Property Wl. nz:(x,a)>O on S2
. 

Property W2. There exist finitely many continuously differ
entiable functions a/s,x)E~_i_(s,x),sdreg(x), such that n(s, 
x,a) is locally constant in a neighborhood of any (s,a), 
where sdreg(x) and 

a: E JF(s, x), a:$ (Ya:, (s, x)) LJ Crit(s, x). 

The inversion formula, which is to be derived here, holds 
pointwise. Therefore, if f needs to be reconstructed for all x 
belonging to a set U, then properties Cl-C3, Wl, and W2, 
are supposed to hold pointwise, and not uniformly with 
respect to XE U. 
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Let a 1(s) and ais) be two smooth vector functions with the 
properties 

Then we can write 

a=a(s,8)=a1(s)cos 8+a2 (s)sin 8. (8) 

Let a_i_(s,8):=~(s,x)xa(s,8). The polar angle 8 is introduced 
in such a way that 

a 
a:~(s, e) = aea:(s, e). 

Denote 

<l>(s,x, 8):=sgn( a")i(s) )n(s,x, a),a=a(s, 8). (9) 

Then the general reconstruction formula is given by 

6 
Here 

s is a real parameter; 

h is pitch of the spiral; 

5 R is distance from the x-ray source to the isocenter. 

It is known in the literature that any point strictly inside the 
spiral belongs to one and only one PI segment (see P. E. 
Danielsson et al. "Towards exact reconstruction for helical 

10 cone-beam scanning of long objects. A new detector 
arrangement and a new completeness condition" in "Proc. 
1997 Meeting on Fully 3D Image Reconstruction in Radi
ology and Nuclear Medicine (Pittsburgh)", eds. D. W. 
Townsend and P. E. Kinahan, yr. 1997, pp. 141-144, and M. 

15 Defrise, F. Nao, and H. Kudo "A solution to the long-object 
problem in helical cone-beam tomography", Physics in 
Medicine and Biology, volume 45, yr. 2000, pp. 623-643). 
Recall that a PI segment is a segment of line endpoints of 

j '\' J Cm(S, X) l2H 8 (10; 
20 

f(x) = - -
8 2 

L. -
1 

--

1 

x -
8 

D1 (y(q), cosyf3(s, x) + 
7r m I x - y(s) o q 

which are located on the spiral and separated by less than 
one pitch in the axial direction. Let s=sh(x) and s=s,(x) 
denote values of the parameter corresponding to the end-
points of the PI segment containing x. We will call In(x):= 
[sh(x),s,(x)] the PI parametric interval. The part of the spiral 

Here 

em 's are the points where cp(s,x,8) is discontinuous; and 

cm(s,x) are values of the jumps: 

25 corresponding to In(x) will be denoted Cpi(x). As C, which 
appears in Section 1, we will take the segment Cpi(x). It is 
clear that any plane through x intersects Cpi(x) at least at one 
point. Also, inside the PI parametric interval there exists s= 
s(x) such that the plane through y(s) and parallel to y(s),y( 

30 

Cm(S, X) := lim (cp(s, X, em+ to) - cp(s, X, em - to)). 
£--70+ 

(11) 

A brief step-by-step description of a general image recon
struction algorithm based on equations (10), (11) is as 35 

follows. 
FIG. 2 shows an overview of the basic process steps 10, 

20, 30, 40, 50, 60 of the invention. The steps will now be 
described. 

s), contains x. 

DERIVATION OF THE INVERSION FORMULAS (24), 
(25) of U.S. parent patent application Ser. No. 10/143,160 
filed May 10, 2002, entitled: Exact Filtered Back Projection 
(FBP) Algorithm For Spiral Computer Tomography, which 
claims the benefit of U.S. Provisional Application No. 
60/312,827 filed Aug. 16, 2001, all by the same inventor, and 
by the same assignee as the subject application, which are all 
incorporated by reference. Let us construct now functions 

40 eJJ:s,x). Denote 
Step 10. Load the current CB (cone beam) projection into 

computer memory. Suppose that the mid point of the CB 
projections currently stored in memory is y(s0). 

Step 20. Preprocessing. Compute numerically the derivative 
(a/aq)DJ(y(q),~)lq=so for all required ~-

Step 30. Finding families of lines for filtering. Using vectors 
a_i_(s,8m) (see equation (10) and the following paragraph), 
identify the required families of lines. Then, choose a 
discrete set of lines from each family. 

45 

Step 40. Preparing for filtering. Parameterize points on the 50 

said lines selected in Step 30 by polar angle. Using 
interpolation compute the derivative of the CB data at 
points on the said lines that correspond to discrete values 
of the polar angle. 

Step 50. Filtering. For each line identified in Step 30 55 

convolve the data for that line computed in Step 40 with 
filter 1/sin y. 

Step 60. Back-projection. For each reconstruction point x 
back-project the filtered data found in Step 50 according 
to equation (10). Then go to Step 10, unless there are no 60 

new CB projections to process or image reconstruction at 
all the required points x have been completed. 

Particular Cases of the General Formula 

Consider a spiral path of the x-ray source 

y 1(s)=R cos(s),Yo(s)=R sin(s),y3 (s)=s(h/2n), h>O. 

65 

(12) 

[/3(s, x) x y(s)] xf3(s, x) 

ei(s,x):= l[f3(s,x)xy(s)]xf3(s,x)I. 

(13) 

By construction, e1(s,x) is a unit vector in the plane through 
y(s) and spanned by ~(s,x),y(s). Moreover, e 1 (s,x)_1_~(s,x). 
Given y(s),sE(sh(x),s,(x))\s(x), find s,anEIPi(x),s,an"s, such 
that the plane through x,y(s), and y(s,an) is tangent to Cpi(x) 
at y(s,an). This is equivalent to solving 

[ (x-y(s,an) )x(x-y(s) )]-y(s,an)=O, s,an"S. (14) 

Existence and uniqueness of the solution s,anEIPi(x) to (14) 
is shown in A Katsevich "Theoretically exact FBP-type 
inversion algorithm for Spiral CT", SIAM Journal on 
Applied Mathematics, Vol. 62, pp. 2012-2026 (2002). It is 
also shown there that s,an(s,x) is smooth with respect to son 
(sh(x),s,(x))\s(x) and is made continuous on [sh(x),s,(x)] by 
setting 

s,an(s,x)=s(x) if s=s(x), (15) 



US 6,771,733 B2 
7 8 

Once s,an=s,an(s,x) has been found, denote similarly to (13) Choose any 1.jJEC=([0,2it]) with the properties 

[,B(s, x) x 0] x,B(s, x) 

e2(s, x) := l[,B(s, x) x 0] x,B(s, x)I' 

(16) 1J!(0)=0; 0<1j!'(t)<1, lE[0,2ot]. (22) 

5 
Suppose s0 ,s1 , and s2 are related by 

where 

E>=sgn(s-s,an(s,x))i)(s,an,x) if sE(sh(x),s,(x))\s(x), 

E>=Ji(s,an) if sE{sh(x),s(x),s,(x)}. (17) 10 

By construction, eis,x) is a unit vector in the plane through 
x,y(s), and tangent to Cn(x) at y(s,aJ· In addition, eis,x) 
_l_~(s,x). Using equation (17) and the inequalities s,an(s,x)> 
s(x) if S<s(x), Stan(s,x)<s(x) if S>s(x), we conclude that 15 

eis,x) is continuous and piecewise smooth with respect to 
s on [ sh(x),s,(x)]. 
Define 

n0 (s,x, a )=sgn( a-_Ji(s) )[ sgn( a·e1 (s,x) )+sgn( a·eo(s,x))]. (18) 20 

It has proven in A Katsevich "Theoretically exact FBP-type 
inversion algorithm for Spiral CT", SIAM Journal on 
Applied Mathematics, Vol. 62, pp. 2012-2026 (2002), that 
in this case nz;(x,a)=2 a.e. on S2 for all sEln(x). Substituting 

25 
into equation (9) and using equation (7) we obtain 

1 (19) 
¢(s, x, 8) = 2: [sgn(a:(s, 8) · e1 (s, x)) + sgn(a:(s, 8) · e2 (s, x))]. 

(23) 

Since 1.jJ(O)=O, s1 =s1 (s0 ,s2 ) is a continuous function of s0 and 
s2 . Equations (22) and (23) imply s1 ;'S2 unless s0 =s1 =s2 . In 
order to avoid unnecessary complications, we will assume in 
what follows 

(24) 

If (24) holds, then S1 =s1 (s0 ,s2 ) is a c= function of S0 and S2 . 

Conditions (22) and (24) are very easy to satisfy. One can 
take, for example, 1.jJ( t)=t/2, and this leads to 

Denote also 

u(s
0

, s
2
) = (y(si) - y(so)) x (y(s2) - y(so)) if 0 < ls2 - sol < 2n:, 

l(y(s1) - y(so)) x (y(s2) - y(so)JI 

y(so) x y(so) 

u(so, s2) = l.Y(so) x y(soJI' 

(25) 

(26) 

Thus, cjJ is discontinuous when a(s,e) is perpendicular to 
either e1(s,x) (and, consequently, y(s)) or eis,x). The inte
gral with respect to y in equation (10) is odd when e~e+n. 
Similarly, the values of the jump of cjJ at two points em and 

30 It is shown in A Katsevich "Improved exact FBP algorithm 
for Spiral CT" submitted for possible publication to the 
journal "Advances in Applied Mathematics" in November 
2001, that such s2 exists, is unique, and depends smoothly on 
s0 . Therefore, this construction defines s2 :=sis0 ,x) and, 

35 consequently, u(s0 ,x):=u(s0 ,sis0 ,x)). Finally, we set em separated by it differ by a factor -1. So, by inserti~g an 
extra factor 2, this integral can be confined to an interval of 
length Jt. This implies that we can take a_i_(s,em)=em(s,x), 
m=l,2, and equation (10) transforms into the inversion 
formulas (24), (25) of U.S. parent patent application Ser. No. 
10/143,160 filed May 10, 2002, entitled: Exact Filtered Back 40 

Projection (FBP) Algorithm For Spiral Computer 
Tomography, which claims the benefit of U.S. Provisional 
Application No. 60/312,827 filed Aug. 16, 2001, all by the 
same inventor, and by the same assignee as the subject 
application, which are all incorporated by reference, (note 45 

that all jumps of cjJ have amplitude 1): 

(20) 

e(s,x) :=i)(s,x)xu(s,x), n0(s,x, a ):=sgn( a·Ji(s) )sgn ( a·e(s,x) ). (27) 

It is proven in A Katsevich "Improved exact FBP algorithm 
for Spiral CT" submitted for possible publication to the 
journal "Advances in Applied Mathematics" in November 
2001, that in this case nz;(x,a)=l on S2 for all sEln(x). 
Substitution into equation (9) and using equation (7) gives 

<l>(s,x,8)=sgn(a(s,8)·e(s,x)). (28) 

So cjJ is discontinuous when a(s,e) is perpendicular to e(s,x). 
Arguing in the same way as before, we immediately obtain 
the inversion formula equation (10) of U.S. parent patent 
application Ser. No. 10/143,160 filed May 10, 2002, entitled: 

where 

1 J 1 (Bkf)(x) := - 2.Jr2 -
1 

_ ( JI x 
(21) 

50 Exact Filtered Back Projection (FBP) Algorithm For Spiral 
Computer Tomography, which claims the benefit of U.S. 
Provisional Application No. 60/312,827 filed Aug. 16, 2001, 
all by the same inventor, and by the same assignee as the 
subject application, which are all incorporated by reference: 

fpf(X) X y S 

l 2rr a I diy 
-D1(Y( q), cosy,B(s, x) + sinye,(s, x)) -,--dis, 

0 aq q=s s1ny 

k = 1,2. 

DERIVATION OF THE EQUATION (10) of parent U.S. 
application Ser. No. 10/143,160 filed May 10, 2002, entitled: 

55 

60 

Exact Filtered Back Projection (FBP) Algorithm For Spiral 
Computer Tomography, which claims the benefit of U.S. 
Provisional Application No. 60/312,827 filed Aug. 16, 2001, 65 

all by the same inventor, and by the same assignee as the 
subject application, which are all incorporated by reference. 

1 J 1 f(x)=-- ---x 
2n:2 

lpilxl Ix - y(s)I 

(29) 

l 2H a I diy -D1(y(q), cosy,B(s, x) + sinye, (s, x)) -,--dis, 
0 aq q=s s1ny 

How To Obtain New Inversion Formulas 

Returning to the case of a general trajectory C, take 
n0(s,x,a)=l. It follows from the completeness condition that 
nz:(x,a)~ 1 on S2

. So equation (10) becomes an inversion 
formula in which the constants cm can easily be determined 
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before a scan knowing the trajectory of the x-ray source C. 
By construction, the inversion formula is theoretically exact. 
In the same way is in U.S. parent patent application Ser. No. 
10/143,160 filed May 10, 2002, entitled: Exact Filtered Back 
Projection (FBP) Algorithm For Spiral Computer 5 

Tomography, which claims the benefit of U.S. Provisional 
Application No. 60/312,827 filed Aug. 16, 2001, all by the 
same inventor, and by the same assignee as the subject 
application, which are all incorporated by reference, one 
immediately sees that the formula admits convolution-based 10 

filtered back-projection implementation. The function cp(s, 
x,8) is discontinuous whenever the plane II(x,a(s,8)) is 
tangent to C or contains endpoints of C, or a(s,8)_1_ek(s,x) for 
some k. This means that, in general, for every point x in a 
region of interest one would have to compute the contribu- 15 

tion from the endpoints to the image. If the trajectory of the 
x-ray source is short (e.g., as in C-arm scanning), this should 
not cause any problems. However, for long trajectories (e.g., 
as is frequently the case in spiral scanning), this is undesir
able. The approach developed in Section 1 allows one to 20 

construct formulas that would not require computing con
tributions from the endpoints. From equations (6)--(11) it 
follows that one has to find the function n0(s,x,a) so that for 
all sdreg the function cp(s,x,8) is continuous when the plane 
II(x,a(s,8)) passes through an endpoint of C. Note that in the 25 

case of C-arm scanning if the trajectory C is closed, such a 
problem does not arise and we obtain an exact FBP-type 
inversion formula. 

Detailed Description of the New General Inversion 
Algorithm 

As an example we will illustrate how the algorithm works 
in the case when the trajectory C of a C-arm is closed and 
n0(s,x,a)=l. The algorithm will consist of the following 
steps 10, 20, 30, 40, 50 and 60 as depicted in FIGS. 2-7. 

Step lO(FIG. 2). Load the current CB projection into com
puter memory. Suppose that the mid point of the CB 
projections currently stored in memory is y(s0). 

Step 20(FIGS. 2-3). Preprocessing. 
Step 21. Choose a rectangular grid of points xii that 

covers the plane DP(s0). 

30 

35 

40 

Step 22. For each xi,j find the unit vector ~i,j which points 
from y(s0) towards the point xii on the plane DP(s0). 

45 
Step 23. Using the CB data DJ(y(q),~) for a few values of 

q close to s0 find numerically the derivative (a/aq)Df 
(y( q),~i)lq~sa for all ~i,j" 

Step 24. Store the computed values of the derivative in 
computer memory. 50 

Step 25. The result of Step 24 is the pre-processed CB 
data 1P(s0,~;)· 

Step 30(FIGS. 2, 4). Finding two sets of lines for filtering. 
Step 31. Choose a discrete set of values of the parameter 

s2 inside the interval I that corresponds to the trajectory 55 

of the x-ray source C. 

Step 32. For each selected s2 find the vector y(s2), which 
is tangent to C at y(s2 ). 

Step 33. For each selected s2 find the line, which is 
60 

obtained by intersecting the plane through y(s0 ), y(s2), 

and parallel to y(s2), with the plane DP(s0). 

Step 34. The collection of lines constructed in Step 33 is 
the required first set of lines L1(s2 ). 

Step 35. Let co be the polar angle in the plane perpen- 65 

dicular to y(s0 ) and e( co) be the corresponding unit 
vector perpendicular to y(s0 ). 

10 
Step 36. For a discrete set of values co, find lines obtained 

by intersecting the plane through y(s0 ) and parallel to 
y(s2), e(w), with the plane DP(s0). 

Step 37. The collection of lines constructed in Step 36 is 
the required second set of lines Li co). 

Step 40(FIGS. 2, 5). Preparation for filtering 
Step 41. Fix a line L from the said sets of lines obtained 

in Step 30. 
Step 42. Parameterize points on that line by polar angle y 

in the plane through y(s0) and L. 
Step 43. Choose a discrete set of equidistant values Yk that 

will be used later for discrete filtering in Step 50. 
Step 44. For each Yk find the unit vector ~k which points 

from y(s0) towards the point on L that corresponds to 

Yk· 
Step 45. For all ~k, using the pre-processed CB data 

1P(s0,~;) for a few values of ~i,j close to ~k and an 
interpolation technique, find the value 1P(s0,~k). 

Step 46. Store the computed values of 1P(s0,~k) in com
puter memory. 

Step 47. Repeat Steps 41-45 for all lines L1(s2 ) and Li8) 
identified in Step 30. 

This way the pre-processed CB data 1P(s0,~k) will be stored 
in computer memory in the form convenient for subsequent 
filtering along the said lines identified in Step 30. 
Step 50(FIGS. 2, 6). Filtering 

Step 51. Fix a line from the said families of lines identified 
in Step 30. 

Step 52. Compute FFT of the values of the said pre
processed CB data 1P(s0,~k) computed in Step 40 along 
the said line. 

Step 53. Compute FFT of the filter 1/sin y 
Step 54. Multiply the results of Steps 52 and 53. 
Step 55. Take the inverse FFT of the result of Step 54. 
Step 56. Store the result of Step 55 in computer memory. 
Step 57. Repeat Steps 51-56 for all lines in the said 

families of lines. As a result we get the filtered CB data 
<I> 1 (s0,~k) and <I>is0 ,~k) that correspond to the families 
of lines L1 and L2 , respectively. 

Step 60(FIGS. 2, 7). Back-projection 
Step 61. Fix a reconstruction point x. 
Step 62. Find the projection x of x onto the plane DP(s0 ) 

and the unit vector ~(s0,x), which points from y(s0 ) 

towards x. 
Step 63. From each family of lines select several lines and 

points on the said lines that are close to the said 
projection x. This will give a few values of <I> 1(s0 ,~k) 
and <I>is0 ,~k) for ~k close to ~(s0 ,x). 

Step 64. Using interpolation, find the values <1>1 (s0,~(s0 , 

x)) and <I>is0 ,~(s0,x)) from the said values of <I> 1(s0 ,~k) 
and <I>is0 ,~k), respectively, for ~k close to ~(s0,x). 

Step 65. Compute the contributions from the said filtered 
CB data <1>1 (s0,~(s0 ,x)) and <I>is0,~(s0 ,x)) to the image 
being reconstructed at the point x by dividing <1>1 (s0,~ 
(s0 ,x)) and <I>is0,~(s0 ,x)) by lx-y(s0)I and multiplying 
by constants cm(s,x) found from equation (11). 

Step 66. Add the said contributions to the image being 
reconstructed at the point x according to a pre-selected 
scheme for discretization of the integral in equation 
(10) (e.g., the Trapezoidal scheme). 

Step 67. Go to Step 61 and choose a different reconstruc
tion point x. 

Additional embodiments of the invented algorithm are 
possible. For example, if the two-dimensional detector is not 
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large enough to capture the required cross-section of the 
cone-beam, one can assume that the missing data are zero or 
use an extrapolation technique to fill in the missing data, and 
then use the invented algorithm for image reconstruction. 
Since the missing data will be found approximately, the 5 
algorithm will no longer be able to provide the exact image. 
The result will be an approximate image, whose closeness to 
the exact image will depend on how accurately the missing 
data are estimated. 

Another embodiment arises when one integrates by parts 
10 

with respect to sin equation (10) in the same way as in U.S. 
parent patent application Ser. No. 10/143,160 filed May 10, 
2002, entitled: Exact Filtered Back Projection (FBP) Algo
rithm For Spiral Computer Tomography, which claims the 
benefit of U.S. Provisional Application No. 60/312,827 filed 
Aug. 16, 2001, all by the same inventor, and by the same 15 

assignee as the subject application, which are all incorpo
rated by reference, to produce a version of the algorithm that 
requires keeping only one cone beam projection in memory 
at a time. An advantage of that version is that no derivative 
of the cone beam data along the trajectory of the radiation 20 

source is required. 
More generally, one can come up with approximate 

algorithms that are based on the back-projection coefficients 
cm(s,x) and directions of filtering a_i_(s,8m), which are found 
from equations (9), (11). Such an approximate algorithm can 25 
either be based directly on equation (10) or the equation, 
which is obtained from it using integration by parts. 

For the purpose of simplifying the presentation we used 
the notion of the plane DP(s0 ), which corresponds to a 
hypothetical virtual fiat detector. In this case filtering is 

30 
performed along lines on the plane. If the detector is not fiat 
(e.g. it can be a section of the cylinder as is the case in spiral 
CT), then filtering will be performed not along lines, but 
along some curves on the detector array. 

Although the invention describes specific weights and 
35 

trajectories, the invention can be used with different weights 
for different or the same trajectories as needed. 

While the invention has been described, disclosed, illus
trated and shown in various terms of certain embodiments or 
modifications which it has presumed in practice, the scope 

40 
of the invention is not intended to be, nor should it be 
deemed to be, limited thereby and such other modifications 
or embodiments as may be suggested by the teachings herein 
are particularly reserved especially as they fall within the 
breadth and scope of the claims here appended. 

I claim: 
1. A method for reconstructing images from detectors, 

comprising the steps of: 
scanning an object in a mode with detectors that receive 

cone beam projections; and 
reconstructing an exact image of the scanned object in an 

efficient manner with a convolution-based filtered back 
projection (FBP) algorithm. 

2. The method of claim 1, wherein the scanning mode 
includes: a nonspiral scanning mode. 

3. The method of claim 1, wherein the scanning mode 
includes: a spiral scanning mode. 

4. The method of claim 1, wherein the reconstructing step 
includes the steps of: 

45 

50 

55 

convolution-based filtering each of the cone beam pro- 60 
jections; and 

back projection updating the image of the scanned object. 
5. A method of computing exact images derived from 

computer tomography with detectors, comprising the steps 
of: 

(a) collecting cone beam data obtained by a two dimen
sional detector in the process of scanning of an object; 

65 

12 
(b) identifying families of lines on a plane DP(s0 ), where 

s0 is a parameter value along the scan path and DP(s0 ) 

is any plane intersecting the cone beam; 

( c) preprocessing of the said data at selected points on said 
families of lines; 

( d) convolution-based filtering the data on said families of 
lines; and 

( e) back projecting said filtered data to update an inter
mediate version of the said exact image; and 

(t) repeating steps (a), (b), (c), (d) and (e) until an exact 
image of the object is completed. 

6. The method of claim 5, wherein the object scan 
includes: a nonspiral object scan. 

7. The method of claim 5, wherein the object scan 
includes: a spiral object scan. 

8. The method of claim 5, wherein step (b) further 
includes the step of: 

choosing a discrete set of lines from each family. 
9. The method of claim 5, wherein the step (c) further 

includes the step of: 

interpolating the derivative of cone beam (CB) data at 
points on the said lines that correspond to discrete 
values of a polar angle. 

10. The method of claim 5, wherein step (e), further 
includes the step of: 

back-projecting the filtered data for each reconstruction 
point according to equation 

1 ~J Cm(s,x) f(x)=-- ---x 
8rr2 m 1 Ix - y(s)I 

l 2rr a I dlr 
-
8 

D1(y(q),cosyf3(s,x)+sinya:~(s,8m)) -,--dis. 
o q q=s smy 

where 

x is a reconstruction point, 

s and q are parameters along the scan path, 

I is the parametric interval that corresponds to the scan 
path, 

y(s) is the source position, 

Df is the cone beam data, 

y is the polar angle, 

~(s,x) is the unit vector pointing from y(s) towards x; 

cp(s,x,8) is the function defined by the equation 

<l>(s,x,8):=sgn(a·Ji(s))n(s,x,a), a=a(s,8); 

y(s)=dy(s)/ds, 
8 is the polar angle in the plane perpendicular to ~(s,x), 

which parameterizes angles a(s,8) belonging to that 
plane, 8 is chosen in such a way that 

a:~(s, 8) = ~a:(s, 8) and a:~(s, 8) = ~a:(s, 8), 

n(s,x,a) is the function defined by the equation 

n(s, x, a:)= no(s, x, a:), 
nr(x, a:) 

n0 (s,x,a) is a weight function, 
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a is a unit vector, 

nr (x, a:)=~ n0 (s1, x, a:), 
j 

13 

sj=s/a,a·x) are values of the parameter along the scan 
path that correspond to points of intersection of the 
plane II(x,a) with the scan path, 

II(x,a) is the plane through x and perpendicular to a, 

~ 
j 

is the summation over all sj such that y(s)ECnII(x,a); 

em's are the points where cp(s,x,e) is discontinuous; 

cm(s,x) are values of the jumps: 

Cm(S, X) := lim (cp(s, X, em+ to) - cp(s, X, em - to)). 
£--70+ 

11. A method of computing images derived from com
puter tomography detectors, comprising the steps of: 

(a) collecting cone beam data from a detector during a 
scan of an object; 

(b) preprocessing said data; 

(c) identifying lines on a plane DP(s0), where s0 is the 
parameter along the scan path and DP(s0) is any plane 
intersecting the cone beam, wherein the step (c) of 
identifying lines includes the steps of 
(ci) Taking the weight function n0(s,x,a), where 

a is a unit vector, 
x is a reconstruction point, 
s=s0 for simplicity of notation, 

with the properties 

n,:(x,a)>O and n(s,x,a) is piece-wise constant, 

where 

nr (x, a:)=~ n0 (s1, x, a:), 
j 

no(s, x, a:) 
n(s, x, a:)= nr (x, a:) , 

5 

10 

15 

20 

25 

14 

a=a(s,e) is a unit vector in the plane perpendicular 
to ~(s,x), 

~(s,x) is the unit vector pointing from y(s) towards x; 
( ciii) Finding values of the polar angle em and the 

corresponding directions a_i_(s,em) where cp(s,x,e) is 
discontinuous; 

( civ) Finding lines obtained by intersecting the planes 
through y(s) and parallel to a_i_(s,em) and ~(s,x) with 
the plane DP(s); 

(d) Computing backprojection coefficients cm(s,x) by the 
formula 

Cm(S, X) := lim (cp(s, X, em+ to) - cp(s, X, em - to)), 
£--70+ 

where em are values of the polar angle where cp(s,x,e) 
is discontinuous; 

( e) shift invariant filtering said preprocessed data along 
said lines; 

(t) back projecting said filtered data using the said back
projection coefficients to form a precursor of said 
image; and 

(g) repeating steps a, b, c, d, e, and f until an image of the 
object is completed. 

12. The method of claim 11, wherein the preprocessing of 
30 step (b) is based on calculating the derivative and includes 

the steps of: 

35 

40 

(bi) choosing a rectangular grid of points X;J that covers 
the plane DP(s0 ); 

(bii) finding a unit vector ~iJ for each X;J which points 
from y(s) towards the point xij on the plane; 

(biii) using the cone beam data DJ(y(q),~) for a few 
values of q close to s0 find numerically the derivative 
1P(s0,~;)=(a/aq)DJ(y(q),~;)lq~sa for all ~i,j; and 

(biv) storing computed values of the derivative in the 
computer memory. 

13. The method of claim 11, wherein the path of the scan 
is open (beginning of the scan path does not coincide with 
the end). 

14. The method of claim 11, wherein the path of the scan 
45 is closed (beginning of the scan path coincides with the end). 

15. The method of claim 11, wherein the weight function 
n0(s,x,a)=l is chosen in the case of the closed scan path. 

16. The method of claim 11, wherein in the case of the 
closed smooth scan path determining the families of the 
lines of step( c) includes the steps of: 

sj=s/a,a·x) are values of the parameter along the scan 
path that correspond to points of intersection of the 50 

plane II(x,a) with the scan path, ( ci) choosing a discrete set of values of the parameter s2 

inside the interval I that corresponds to the trajectory of 
the x-ray source (scan path) C; 

II(x,a) is the plane through x and perpendicular to a, 
a is a non-critical direction, 

~ 
j 

is the summation over all sj such that y(s)ECnII(x,a); 
( cii) Computing the function cp(s,x,e): =sgn( a· 

y(s))n(s,x,a), where 
y(s)=dy(s)/ds, 
y(s) is the source position, 

55 

60 

e is the polar angle in the plane perpendicular to 65 

~(s,x), which parameterizes angles a(s,e) belong
ing to that plane, e is chosen in such a way that 

( cii) finding a vector y(s2 ) for each selected s2 , which is 
tangent to C at y(s2); 

( ciii) finding a line for each selected s2 , which is obtained 
by intersecting the plane through y(s0), y(s2), and 
parallel to y(s2), with the plane DP(s0) which is a first 
set of lines L 1 (s2); and 

( civ) finding lines for a discrete set of values w, obtained 
by intersecting the plane through y(s0 ) and parallel to 
y(s0), e(w), with the plane DP(s0), where 
w is the polar angle in the plane perpendicular to y(s0), 

e( w) is the corresponding unit vector perpendicular to 
y(s0). 

This gives the second set of lines Li w ). 
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17. The method of claim 11, wherein shift-invariant 
filtering of the data for each of the lines of step( e) includes 
the steps of: 

( ei) fixing a line L from the said sets of lines obtained in 
step (c); 5 

( eii) parameterizing points on that line by polar angle y in 
the plane through y(s0 ) and L; 

( eiii) choosing a discrete set of equidistant values yk; 

(eiv) finding the unit vector ~k for each Yk which points 10 
from y(s0) towards the point on L that corresponds to 
yk; 

(ev) finding the value 1P(s0,~k) for all ~k, using the 
pre-processed CB data 1P(s0,~;) of step (b) for a few 
values of ~iJ close to ~k and an interpolation technique, 15 

( evi) calculating FFT(Fast Fourier Transform) of the 
values of the said pre-processed CB data 1P(s0,~k) along 
the said line; 

( evii) calculating FFT of the filter 1/sin y; 
20 

( eviii) multiplying steps ( evi) and ( evii) to form a result; 

( eix) calculating inverse FFT of the result; 
(ex) storing the inverse FFT in the computer memory; and 

(exi) repeating steps (ei) through (ex) for all lines L1(s2 ) 

and Liw) identified in step (c). This gives the filtered 25 

data <I>1 (s0,~k) and <I>is0,~k), respectively. 

16 
18. The method of claim 11, wherein back projecting the 

convolved data of step(f) includes the steps of: 
(fi) fixing a reconstruction point x; 
(fii) finding the projection x of x onto a plane DP(s0) and 

a unit vector ~(s0,x), which points from y(s0) towards 
x; 

(fiii) selecting several lines from each family of lines and 
points on the said lines that are close to the said 
projection x to determine values of <I> 1(s0 ,~k) and 
<I>is0,~k) for ~k close to ~(s0,x), where <I> 1(s0 ,~k) and 
<I>is0,~k) are the filtered data found in step ( e ); 

(fiv) finding the values <I> 1 (s0 ~(s0,x)) and <I>is0 ,~(s0,x)) 
from the said values of <I> 1 (s0,~k) and <I>is0 ,~k), using 
interpolation respectively, for ~k close to ~(s0 ,x); 

(fv) calculating contributions from the said filtered CB 
data <1>1 (s0,~(s0 ,x)) and <I>is0,~(s0 ,x)) to the image 
being reconstructed at the point x by dividing <1>1 (s0,~ 
(s0 ,x)) and <I>is0,~(s0 ,x)) by -8n2 lx-y(s0)I and multi
plying by selected constants cm(s,x); 

(fvi) determining the said contributions to the image being 
reconstructed at the point x according to a Trapezoidal 
scheme; and 

(fvii) repeating steps (fi) through (fvi) for a different 
reconstruction point x. 

* * * * * 
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