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METHOD AND SYSTEM FOR 
PERFORMANCE IMPROVEMENT OF 

PHOTODETECTORS AND SOLAR CELLS 

This invention relates to photon devices and more spe­
cifically to a method and system for improving the perfor­
mance characteristics using electron injection into the 
p-region of photovoltaic detectors and solar cells, and this 
invention claims the benefit of priority to U.S. Provisional 
Patent Application 60/306,377 filed Jul. 18, 2001. 

BACKGROUND OF THE INVENTION 

The Sun is the most powerful UV source, and the living 
species of the Earth's ecosystem are affected by the solar UV 
radiation. The ozone layer and other atmospheric gases 
strongly absorb the UV emission from the Sun, and only 
light with wavelengths longer than 280 nm reaches the 
Earth's surface. The determination of the effects of the solar 
UV light on the terrestrial ecosystem and on human beings 
is an important subject, and has been driving the need for 
reliable and efficient visible-blind UV detectors. 

2 
At present, Magnesium (Mg) is the only technologically 
feasible acceptor in (Al)GaN technology. See S. J. Pearton, 
J. C. Zolper, R. J. Shul, F. Ren, J. Appl. Phys. 86, 1 (1999). 

In p-type (Al)GaN, similar to (Al)GaAs, several types of 
5 deep levels, located 1.1, 1.4, 2.04 e V above the valence band 

edge, were identified. See C. H. Qiu, J. I. Pankove, Appl. 
Phys. Lett. 70, 1983 (1997). These levels are likely related 
to Mg doping and are assumed to be responsible for the 
persistent photoconductivity behavior in III-Nitrides. See C. 

10 H. Qiu, J. I. Pankove, Appl. Phys. Lett. 70, 1983 (1997). 
Various U.S. Patents have been proposed over the years. 

See for example, U.S. Pat. No. 3,864,174 to Akiyama et al.; 
U.S. Pat. No. 3,894,890 to Bauerlein et al.; U.S. Pat. No. 
3,938,178 to Miura et al.; U.S. Pat. No. 4,065,780 to 

15 Ballantyne; U.S. Pat. No. 4,161,814 to Ballantyne; U.S. Pat. 
No. 4,210,464 to Tanaka et al.; U.S. Pat. No. 4,238,694 to 
Kimerling et al.; U.S. Pat. No. 4,275,404 to Cassidy et al.; 
U.S. Pat. No. 4,349,906 to Scifres et al.; U.S. Pat. No. 
4,399,448 to Copeland; U.S. Pat. No. 4,414,558 to Nish-

20 izawa et al.; U.S. Pat. No. 4,454,526 to Nishizawa et al.; 
U.S. Pat. No. 4,585,489 to Hiraki et al.; U.S. Pat. No. 
4,679,063 to White; U.S. Pat. No. 4,833,507 to Shimizu et 
al.; U.S. Pat. No. 5,510,274 to Minato; U.S. Pat. No. 
5,808,352 to Sakamoto; and U.S. Pat. No. 5,858,559 to 

The high-energy cut-off of UV (Al)GaN-based photovol­
taic detectors is generally limited by the large absorption 
coefficient at high energies and the small minority carrier 
diffusion length. As a result, high-energy photons are 
absorbed in the cladding layer rather than in the space­
charge region. Several design changes have been recently 
reported to overcome these limitations including the use of 
p-i-n instead of p-n junctions, employment of AlxGa1_xN 
instead of GaN windows, use of semitransparent recessed 30 

windows, and back-illuminated detector configurations. See 

25 Barbour et al. However, none of the above listed patents 
overcome the problems with the prior art described above. 

SUMMARY OF THE INVENTION 

The primary objective of the invention is to provide a 
method and system for enhancing quantum efficiency, 
response, and spectral range in photon detectors and solar 
cells. G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. 

Marko«, G. Smith, M. Estes, B. Goldenberg, W. Yang, S. 
Krishnankutty, Appl. Phys. Lett. 71, 2154 (1997); T. Li, A 
L. Beck, C. Collins, R. D. Dupuis, J. C. Campbell, J. C. 35 

Carrano, M. J. Schurman, I. A Ferguson, Appl. Phys. Lett. 
75, 2421 (1999); D. J. H. Lambert, M. M. Wong, U. 
Chowdhury, C. Collins, T. Li, H. K. Kwon, B. S. Shelton, T. 

The secondary objective of the invention is to provide a 
method and system for controlling minority carrier diffusion 
length (transport) to improve the performance of optoelec­
tronic devices. 

A preferred method and system for enhancing quantum 
efficiency, response, and spectral range in photon detectors 
and solar cells is injection of electrons into a p-region of a 
photon device over a selected time period and controlling 
minority carrier diffusion length in the photon device to 

G. Zhu, J.C. Campbell, R. D. Dupuis, Appl. Phys. Lett. 77, 
1900 (2000); and J. M. Van Hove, R. Hickman, J. J. 40 

Klaassen, P. P. Chow, P. P. Ruden, Appl. Phys. Lett. 70, 2282 
(1997). broaden spectral range and increase responsivity of the 

photon device. The invention can include periodically Despite the considerable broadening of spectral range and 
the increase in peak responsivity attained due to the new 
designs (as described in the above listed references), a direct 
control of fundamental GaN transport properties, such as 
minority carrier diffusion length, has never been achieved. 
Minority carrier diffusion length is a distance covered by 
minority carriers due to diffusion, without recombination. 

Current GaN-based device technologies include light­
emitting diodes (LEDs), laser diodes, and UV detectors on 
the photonic side. The potential of the wide band gap, 
nitride-based, GaN and AlGaN semiconductors for use in 
optoelectronics has been well documented. See S. J. Pearton, 
J. C. Zolper, R. J. Shul, F. Ren, J. Appl. Phys. 86, 1 (1999). 
However, there are remaining problems. 

As was already mentioned, the main difficulty that has 
been encountered for Schottky or p-n junction photovoltaic 
detectors is the reduced response at high energy, due to the 
large absorption coefficient and the small diffusion length, L, 
in GaN. Carriers are, therefore, generated close to the 
surface and recombine. In order to solve this problem, very 
thin p layers (for light incident on the p side of a p-n 
junction) must be used. 

For optoelectronic device to be produced in the nitride 
semiconductors, improvements in p-type doping are needed. 

45 injecting electrons after several days, where the selected 
time includes approximately 10 seconds to approximately 
1500 seconds. The electrons can be injected under a forward 
bias of the p-n junction, and can increase quantum efficiency 
between approximately 2 to approximately 5 fold. 

50 The photon device can include a p-n junction detector. 
Additionally, the photon device can include a p-n junction 
solar cell. And still furthermore, the photon device can 
include a Schottky barrier detector. 

The method and system can also automatically sense the 
55 performance output of the photon device with a computer 

type logic circuit, and provide a feedback signal to control 
the injection of the electrons. 

Further objects and advantages of this invention will be 
apparent from the following detailed description of a pres-

60 ently preferred embodiment which is illustrated schemati­
cally in the accompanying drawings. 

BRIEF DESCRIPTION OF THE FIGURES 

FIG. 1 a shows a magnified and mixed EBIC (Electron 
65 Beam Induced Current)( dark vertical contrast) and second­

ary electron image of a p-n junction, cleaved perpendicular 
to the growth plane of a GaN/sapphire interface. 
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FIG. lb shows a graph of electron diffusion length versus 
duration of electron injection which represents the depen­
dence of minority carrier diffusion length on duration of 
electron injection (from EBIC line-scan). 

FIG. le shows a graph ofEBIC signal line-scan across the 
p-n junction shown in FIG. la versus linear coordinate in 
X-direction, where the x-axis are the linear coordinates in 
microns (see a scale bar in FIG. la). 

FIG. 2a shows a graph of photoresponse versus wave­
length for a p-side illuminated 500 µm-diameter p-n junction 
detector at zero-bias. Open circles represent the initial 
photoresponse before electron current injection. Open dia­
monds and triangles correspond to the situation 40 minutes 
and 60 hours, respectively, after 80 mA(8 Volts; 20 minutes) 
electron current injection. 

FIG. 2b shows a graph of the p-n junction (FIG. 2a) 
forward current I-V curve . 

FIG. 3 shows a graph of decay of a relative zero-bias 
photoresponse versus time after approximately 5 minutes of 
electron current injection, (approximately 40 mA; approxi­
mately 7 Volts) into an approximately 200 µm-diameter p-n 
junction. The signal is normalized relative to its value 
immediately after an external bias was switched off. 

FIG. 4 shows a preferred layout scheme of a photodetec­
tor array (bold) and its electrical connection to a power 
supply and monitoring circuitry for the invention. Inclined 
arrows represent a quantum of radiation, hv, and thinner 
lines show the additional elements for monitoring and 
enhancement of device performance. 

FIG. 5 shows an electrical schematic scheme for photo­
detector hookup for the invention. 

FIG. 6 is a graph of relative photoresponse versus dura­
tion of forward bias showing the dependence of relative 
photoresponse of 500 µm diameter Schottky barrier photo­
voltaic detector on time of forward bias pulse 
(approximately 2 mA forward current). Note that a relative 
photoresponse increase saturates for time of forward bias 
electron injection exceeding approximately 300 seconds for 
this particular device structure. 

FIG. 7 shows a flowchart scheme of applications for the 
invention. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

Before explaining the disclosed embodiments of the 
present invention in detail it is to be understood that the 
invention is not limited in its application to the details of the 
particular arrangements shown since the invention is capable 
of other embodiments. Also, the terminology used herein is 
for the purpose of description and not of limitation. 

In p-i-n and p-n photodetectors, it is either the p-type or 
the n-type side, which predominantly contributes to the 
photosignal. Assuming that most light absorption takes place 
in the p-side, the expression for the quantum efficiency, n, 
can be presented as equation 1: 

'7=(1-R) 1--e­
l +a:L ( 

-aw ) (1) 

Here R and a can be the reflection and absorption 
coefficients, respectively; W can be the intrinsic (depletion) 
layer width; L can be the minority electron diffusion length 

4 
It has been discovered that in p-GaN (AlxGa1 _xN), elec­

tron injection (for up to approximately 1500 sec) due to an 
external bias increases the minority carrier diffusion length, 
L (see equation (1)). See for example, L. Chernyak, A 

5 Osinsky, V. Fuflyigin, E. F. Schubert, Appl. Phys. Lett. 77, 
875 (2000); L. Chernyak, A Osinsky, A Schulte, Solid State 
Electron. 45, 1687 (2001); L. Chernyak, G. Nootz, A 
Osinsky, Electron. Lett. 37, 922 (2001); and L. Chernyak, A 
Schulte, A Osinsky, J. Graff, E. F. Schubert, Appl. Phys. 

10 Lett. 80, 926 (2002), which are nonessential submatter 
incorporated by reference. 

The controllable changes in the material's transport prop­
erties were attributed to charging of Mg-related centers (Mg 
is a common acceptor used in III-Nitrides) and indicated that 

15 a performance improvement for GaN-based solar blind 
detectors (SBDs) can be achieved by electron injection over 
a reasonably short time (at most approximately 1500 sec). 
This is because the increased diffusion length improves the 
minority carrier collection and eliminates the so-called 

20 "optical dead space" where carriers recombine without 
being collected. See for example, D. J. H. Lambert, M. M. 
Wong, U. Chowdhury, C. Collins, T. Li, H.K. Kwon, B. S. 
Shelton, T. G. Zhu, J. C. Campbell, R. D. Dupuis, Appl. 
Phys. Lett. 77, 1900 (2000), which is nonessential subject 

25 matter incorporated by reference. 
As a result, the quantum efficiency of the detector 

increases as inferred from equation (1). 
A practical significance of electron injection, due to an 

external forward bias, has been demonstrated for an 
30 enhancement of quantum efficiency in GaN p-n junctions 

and Au/p-(Al)GaN Schottky barriers. 
The experiments described here were carried out on a 

GaN wafers with several p-n junctions fabricated according 
to the following sequence of epitaxial layers (from top to 

35 bottom; see FIGS. la, lb, le): approximately 0.6 µm 
p+-GaN, Mg doped, p=approximately 5xl017 cm-3

; 

approximately 0.5 µm n-GaN, Si doped, n=approximately 
lxl017 cm-3

; approximately 1.3 µm n+-GaN, Si doped, 
n=approximately lxl019 cm-3

; sapphire substrate. The p-n 
40 junctions were isolated from each other by etching a trench 

down to n-GaN epi-layer, using chemically assisted ion 
beam etching (rate of approximately 75 nm/min), thus 
creating mesa-structures of -500 and 200 µm in diameter. 
Then-type contact metalization was Ti/Al/Ni/Au, annealed 

45 at approximately 800° C. for approximately 30 seconds. The 
p-type contact metalization was Ni/Au, annealed at approxi­
mately 500° C. for 300 seconds. Resistivities of <(less than) 
approximately 10-5 Ohm cm and <(less than) approximately 
10-3 Ohm cm were obtained for n-type and p-type GaN 

50 contacts, respectively. 
Electron injection into the p-region of p-n junction was 

carried out by forward biasing a p-n junction and passing a 
current ranging from approximately 25 to approximately 80 
mA under an applied voltage from approximately 5 to 

55 approximately 8 Volts. A p-n junction forward current I-V 
curve is presented in the FIG. 2b, and FIG. lb shows an 
increase of Las a result of electron injection (approximately 
1 Ncm2 current density). 

Spectral photoresponse measurements were performed at 
60 zero-bias by illuminating the p-side of the p-n junction. A 

characterization setup comprising a mercury light source 
and a monochromator was used. The excitation beam was 
modulated with a mechanical chopper, and the light-induced 

in the p-side. It is evident from equation (1), that increasing 65 

the minority electron diffusion length can lead to a more 
efficient device. 

change in photoresponse as detected using lock-in tech­
nique. 

To exclude the effects of sample heating on minority 
carrier transport, the photoresponse measurements were 
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delayed by at least approximately 20 minutes after electron 
injection. Previously we have demonstrated an increase of L 
by a factor of approximately 2.5 in the temperature range 
from approximately 20 to approximately 250° C. See for 
example, L. Chernyak, A Osinsky, H. Temkin, J. W. Yang, 5 

Q. Chen, M. A Khan, Appl. Phys. Lett. 69, 2531 (1996), 
which is nonessential subject matter which is incorporated 
by reference. 

Our experiments and estimations indicate that the maxi­
mum electric power of approximately 640 mW, dissipated 10 

around a forward biased p-n junction, leads to a local 
temperature increase not higher than approximately 80° C. 
(approximately 60° C. overheating). This is due to the large 
thermal conductivity of GaN (up to approximately 2 W/cm 
K). See for example, D. I. Florescu, V. M. Asnin, F. H. 15 

Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, I. 
Ferguson, Appl. Phys. Lett. 77, 1464 (2000). 

FIG. 2a shows a spectral response from the p-n junction 
before and after electron injection. In the particular case 
presented here the forward current of approximately 80 mA 20 

(approximately 8 Volts applied voltage) was flown through 
an approximate 500 µm-diameter p-n junction for approxi­
mately 20 minutes. While no changes in p-n junction's I-V 
curves were found after bias, an approximate 250% increase 
of detector's photoresponse at the GaN band edge and a 25 

broader photoresponse spectral range were observed. See for 
example, L. Chernyak, A Schulte, A Osinsky, J. Graff, E. 

6 
observed effect of p-n junction's photoresponse enhance­
ment to an injection-induced increase of minority electron 
diffusion length, L, in the p-region of p-n junction due to a 
charging of the deep Mg-acceptor-related centers [5-8]. See 
for example, L. Chernyak, A Osinsky, V. Fuflyigin, E. F. 
Schubert, Appl. Phys. Lett. 77, 875 (2000); L. Chernyak, A 
Osinsky, A Schulte, Solid State Electron. 45, 1687 (2001); 
L. Chernyak, G. Nootz, A Osinsky, Electron. Lett. 37, 922 
(2001 ); and L. Chern yak, A Schulte, A Osinsky, J. Graff, E. 
F. Schubert, Appl. Phys. Lett. 80, 926 (2002), which are 
nonessential subject matter incorporated by reference. This 
was confirmed by the Electron Beam Induced Current 
measurements. See for example, L. Chernyak, G. Nootz, A. 
Osinsky, Electron. Lett. 37, 922 (2001), which is nonessen­
tial subject matter incorporated by reference. 

From the previous experiments we found that L increases 
up to a factor of approximately 10 due to an electron 
injection into p-GaN under the above described conditions. 
From equation (1), using the values of a=l05 cm-1 [1], 
Linitiaz=l0-

5 cm, Lfinaz=l0-4 cm and W=l0-5 cm, we obtain 
that the quantum efficiency, ri, increases by a factor of 
approximately 2. (See for example, L. Chernyak, A 
Osinsky, V. Fuflyigin, E. F. Schubert, Appl. Phys. Lett. 77, 
875 (2000); L. Chem yak, A Osinsky, A Schulte, Solid State 
Electron. 45, 1687 (2001); and L. Chemyak, G. Nootz, A 
Osinsky, Electron. Lett. 37, 922 (2001)), (See for example, 
L. Chernyak, G. Nootz, A Osinsky, Electron. Lett. 37, 922 
(2001), which is nonessential subject matter incorporated by 
reference). This is in good agreement with the results 

F. Schubert, Appl. Phys. Lett. 80, 926 (2002), which is 
nonessential subject matter which is incorporated by refer­
ence. 

The effect of electron injection-induced enhancement of 
the photoresponse persisted for at least approximately 60 
hours at the level indicated in FIG. 2a. 

In a separate experiment the forward current of approxi­
mately 40 mA (approximately 7 Volts applied voltage) was 
flown through an approximately 200 µm-diameter p-n junc­
tion for approximately 5 minutes. The goal of this experi­
ment was to explore the kinetics of photoresponse relaxation 

30 presented in FIG. 2a. It must be noted that detector's spectral 
range broadens with electron injection. This is very likely 
related to an improved carrier collection at higher energies 
(higher absorption). The impact of electron injection on 
detector's responsivity can be similar to the one achieved 

to its initial value before electron injection. In contrast to the 
spectrally resolved measurements, a total photoresponse was 
measured in this experiment. The results are presented in 
FIG. 3. The signals are normalized relative to the initial 
photoresponse before forward current injection. One can see 
that it takes approximately 60 hours for a signal to expo­
nentially decay by more than a factor of approximately 2 
relative to its value immediately after electron injection [8]. 
See for example, L. Chernyak, A Schulte, A Osinsky, J. 
Graff, E. F. Schubert, Appl. Phys. Lett. 80, 926 (2002), which 
is nonessential subject matter incorporated by reference. 

A photoresponse decay after an electron injection in FIG. 

35 due to a decrease of p-layer thickness in the p-i-n photode­
tector. (See for example, G. Y. Xu, A. Salvador, W. Kim, Z. 
Fan, C. Lu, H. Tang, H. MorkoC<g, G. Smith, M. Estes, B. 
Goldenberg, W. Yang, S. Krishnankutty, Appl. Phys. Lett. 
71, 2154 (1997), which is nonessential subject matter incor-

40 porated by reference.). This is because both approaches 
result in suppression of minority carrier recombination in the 
p-region, by either decreasing the geometrical length or 
increasing the electron diffusion length. 

We note that an approximately 60° C. p-n junction over-
45 heating as a result of forward bias application cannot by 

itself account for the observed effect of photoresponse 
enhancement due to dissociation of Mg-complexes or 
temperature-induced increase of L. (See for example, L. 
Chernyak, A Osinsky, H. Temkin, J. W. Yang, Q. Chen, M. 

50 A Khan, Appl. Phys. Lett. 69, 2531 (1996); and D. I. 
3 is consistent with a decay for the room temperature 
band-to-band photoluminescence transition intensity in 
p-GaN after approximately 1500 seconds of electron injec­
tion into it. See for example, L. Chernyak, A Osinsky, A 
Schulte, Solid State Electron. 45, 1687 (2001), which is 55 

nonessential subject matter incorporated by reference. 

Florescu, V. M. Asnin, F. H. Pollak, A M. Jones, J. C. 
Ramer, M. J. Schurman, I. Ferguson, Appl. Phys. Lett. 77, 
1464 (2000), which are nonessential subject matter which is 
incorporated by reference.) 

This was verified by heating up the p-n junction up to 
approximately 80° C. for approximately 1500 sec (with no 
electron injection) and measuring a zero-bias total photore­
sponse before and after the temperature was raised. No 
change in the photoresponse amplitude was observed. 

The difference in dynamics of photoresponse relaxation in 
FIGS. 2a, and 3 is explained by the different current den­
sities for approximately 500 and approximately 200 
µm-diameter p-n junctions. 

Overall, the experiments on the photoresponse enhance­
ment were carried out on up to 10 different photodetectors, 
and the maximum achieved enhancement was around 10, as 
compared to the situation before external forward bias. Two 
experiments were carried out on the commercial p-i-n GaN 
photodetectors manufactured by SVT Associates, Inc., sub­
sidiary of Blue Latos Microdevices, Inc. We relate the 

60 A practical significance of this invention is related to 
numerous applications of UV photodetectors, from UV 
astronomy, resin curing of polymeric materials, combustion 
engineering, water purification, flame detection and biologi­
cal effects to early missile plume detection, secure space-

65 to-space communications and pollution monitoring.(See for 
example, E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. 
Omnes, P. Gibart, J. Phys.: Condens. Matter 13, 7115 
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(2001), which is nonessential subject matter which is incor­
porated by reference.) Many of these applications require a 
use of photodetector arrays. FIG. 4 shows a typical array 
structure that can use the invention. 

To boost a photoresponse, a current/voltage source 10 can 5 
be connected to the individual photodetectors 12, 14, 16, 18 
of the array as shown in FIG. 4. A short (up to approximately 
1500 seconds) forward bias application (approximately 5 to 
approximately 8 Volts) will increase a photoresponse as 
shown in FIG. 2a. A combination of digital multimeter 20 

10 
(for example, a Keithley 2000) and a logic transistor switch 
30 can be used to measure a photosignal 32 and to periodi­
cally turn on through a feedback loop 34 a current/voltage 
source 10 (for example, a standard current/voltage source 
E3610A by Agilent Technologies, Inc., and the like, can be 
used), to maintain an enhanced photoresponse signal. 15 

A more detailed electrical scheme is shown in FIG. 5. A 
central processor unit (CPU) 50, shown in FIG. 5 can be 
used to periodically apply a short pulse of forward bias. For 
example, a quantum of radiation, hv, is supplied to photo­
diode 60 such as a p-i-n photodiode by SVT Associates. The 20 

resistor 90 can be a 100 ohm resistor such as RadioShack 
model 271-1311, the voltage source+ V 100 can be a E3610A 

8 
We claim: 
1. A method for enhancing quantum efficiency, photore­

sponse and spectral range in photon devices, comprising the 
steps of: 

injecting electrons into a p-region of a photon device over 
a selected time period; and 

controlling minority carrier diffusion length in the 
p-region of the photon device to broaden its spectral 
range and increase quantum efficiency and photore­
sponse. 

2. The method of claim 1, further comprising the step of: 
periodically injecting electrons after several days. 
3. The method of claim 1, wherein the selected time 

includes: 
approximately 10 seconds to approximately 1500 sec­

onds. 
4. The method of claim 1, wherein the step of injection 

further includes the step of injecting under a forward bias of 
one of a p-n junction and a Schottky barrier. 

5. The method of claim 1, further comprising the step of: 
increasing quantum efficiency between approximately 2 

to approximately 5 fold. 
6. The method of claim 1, wherein the photon device 

by Agilent Technologies, hooked up to a photodiode 60 
through switches 70, 80, resistors 90, 120, and terminal 130 
(as shown). The second resistor shown 120 can be a 
RadioShack model 271-1311. The operational amplifier 110 
can be a RadioShack LM741CN, grounded trough 140 as is 
shown, and CPU 50 can be a Dell GXlOO which is interfaced 
with a logic switch 70,80 such as CD4007 Transistor Array 
Package. 

25 
includes: 

30 

In FIG. 5, the logic switch 70,80 is shown in the upper 
position and the photodetector (diode) 60 is hooked up to the 
voltage source 100 for forward bias pulsing. Once a pulse is 
completed, CPU 50 and the switch 70,80 hook up the 
photodiode 60 to the amplifier 110 for a normal detector 35 

operation (lower switch position). Once photodetector's 
response decays to a preset level, CPU 50 and the logic 
switch 70,80 hook up the photodetector 60 back to the 
voltage source 100 (upper switch position) for a new for­
ward bias pulse. 40 

An experimental dependence of photoresponse enhance­
ment on forward bias duration is shown in FIG. 6 for an 
approximately 500-µm diameter Schottky barrier detector. 

It should be noted that the normal photodetector operation 
requires zero or reverse bias. Short (up to approximately 45 

1500 sec) forward bias (approximately 5 to approximately 8 
Volts) application to an AlGaN photodetector, to boost its 
performance constitutes the invention's applications (FIG. 
7). The current/voltage source in FIGS. 4 and 5 can be also 
used for detector's reverse bias under normal operation 50 

conditions, after a short forward bias is completed. 

a p-n junction detector. 
7. The method of claim 1, wherein the photon device 

includes: 
a p-n junction solar cell. 
8. The method of claim 1, wherein the photon device 

includes: 
a Schottky barrier detector. 
9. The method of claim 1, wherein the step of controlling 

includes the steps of: 
sensing performance output of the photon device; and 
providing a feedback signal to control the injecting step. 
10. A performance enhancement system for photon 

device, comprising in combination: 
a photon device having a p-region; 
means for injecting electrons into the p-region of the 

photon device over a selected time period; and 
means for controlling minority carrier diffusion length in 

the photon device to broaden spectral range and 
increase responsivity of the photon device. 

11. The system of claim 10, wherein the injecting means 
includes: 

means for periodically injecting electrons after several 
days. 

12. The system of claim 10, wherein the selected time 
includes: 

approximately 10 seconds to approximately 1500 sec­
onds. 

The invention methods and circuitry can be used not only 
for UV(ultraviolet), but also for visible and IR(infrared) 
detectors (p-n junction and Schottky barrier diodes) as well 
as for solar cells (which are essentially p-n junction diodes 
used under zero bias), based on various II-VI and III-V 
compounds. This is since the latter compounds contain 
numerous point defects in the forbidden gap, which may be 
charged by injecting an electron under bias. 

13. The system of claim 10, wherein the injecting means 

55 
includes: 

While the invention has been described, disclosed, illus- 60 

trated and shown in various terms of certain embodiments or 
modifications which it has presumed in practice, the scope 
of the invention is not intended to be, nor should it be 
deemed to be, limited thereby and such other modifications 
or embodiments as may be suggested by the teachings herein 65 

are particularly reserved especially as they fall within the 
breadth and scope of the claims here appended. 

means for injecting under a forward bias of one of a p-n 
junction and a Schottky barrier. 

14. The system of claim 10, further comprising: 
means for increasing quantum efficiency of the photon 

device between approximately 2 to approximately 5 
fold. 

15. The system of claim 10, wherein the photon device 
includes: 

a p-n junction detector. 
16. The system of claim 10, wherein the photon device 

includes: 
a p-n junction solar cell. 
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17. The system of claim 10, wherein the photon device 
includes: 

a Schottky barrier detector. 
18. The system of claim 10, wherein the photon device 

includes: HgCdTe. s 
19. The system of claim 10, wherein the photon device 

includes: CdTe. 
20. The system of claim 10, wherein the photon device 

includes: CdSe. 
21. The system of claim 10, wherein the photon device 10 

includes: CdS. 
22. The system of claim 10, wherein the photon device 

includes: ZnSe. 
23. The system of claim 10, wherein the photon device 

includes: GaAs. 

10 
24. The system of claim 10, wherein the photon device 

includes: GaN. 

25. The system of claim 10, wherein the photon device 
includes: AlGaN. 

26. The system of claim 10, wherein the photon device 
includes: InGaN. 

27. The system of claim 10, further comprising: 

means for sensing performance output of the photon 
device; and 

means for providing a feedback signal to control the 
injecting means. 

* * * * * 
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