IFF Tactical Electronic Simulation And Test System: Technical Issue Research Status Report

W. B. Mikhael

Find similar works at: https://stars.library.ucf.edu/istlibrary University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation

Mikhael, W. B., "IFF Tactical Electronic Simulation And Test System: Technical Issue Research Status Report" (1991). Institute for Simulation and Training. 111.
https://stars.library.ucf.edu/istlibrary/111

PREP/RED URDER CONTRACT NUMBER N61339-91-C-0100 for
NAVAL TRAINING SYSTEMS CENTER and
NAVAL AIR TEST CENTER

TACTICAL ELECTRONICS SIMUL_ATION TEST SYSTEM

Technical Issue Research Status Report CDRL A003

Decemter 23, 1991

> Institute for Simulation and Training 12424 Restarcil Parkway, Suite 300 Orlando, FL 32.326
> and
> Departinent of Elentrical Engineering
> Universisy of Central Fiorida Orlarido, FL 32816

IFF TACTICAL ELECTRONIC SIMULATION and TEST SYSTEM: TECHNICAL ISSUE RESEARCH STATUS REPORT

Contract No: N61339-91-C-0100 CDRL A003

Reporting Period: June 24, 1991 to December 24, 1991

From: Dr. W. B. Mikhael P.I., E.E. Department Coordinator
Dr. C. Christodoulou P.I., E\&M
Mr. H. Pham, Research Assistant, E\&M
Dr. D. Malocha P.I., Signal Generation
Ms. N. Eisenhauer, Research Assistant, Signal Generation
Dr. M. Belkerdid P.I., Communication Systems Simulation
Mr. G. Koller, Research Assistant, Communication Systems Simulation

Edited by:

TABLE OF CONTENTS

SUMMARY iii

1. EM \& RADAR 0
1.1 INTRODUCTION 1
1.2 RESULTS-Multipath Effects 1
1.2.1 Examples 1
1.2.1.1 Example 1 2
1.2.1.2 Example 2 -37
1.3 RESULTS-Antenna Platform Effects 47
1.3.1 Examples 48
1.3.1.1 Example 1 48
1.3.1.2 Example 2 52
1.3.1.3 Example 3 - A rocket model 56
13.1.4 Example 4 - A Torrus model 57
1.3.1.5 Example 5 - Airplane Geometry 58
1.4 CONCLUSIONS 62
2. SIGNAL GENERATION 63
2.1 Introduction 64
2.2 Delay 65
2.3 Amplitude Control 68
2.4 Amplitude Dispersion 69
2.5 Conclusion -71
Appendix 2.A Navy Tests Briefing 74
Appendix 2.B Component Specifications 89
3. COMMUNICATIONS SYSTEMS MODELING 107
3.1 Introduction 108
3.2 CDMA Environment 109
3.3 CDMA: Equal Power Levels 112
3.4 Multiple Spread Spectrum Synthesis 114
3.5 Conclusions 117
Appendix 3.A Phase Multiplexed Correlation In Multiple Access 121 Spread Spectrum Systems

SUMMARY

This report documents the work performed by the three technical teams: the Electro Magnetic \& Radar team, the Signal Generation team, and the Communications Systems Modeling team.

The EM team acquired ECAC and GEMACS software packages. Terrain data has been requested from DMA. Some modeling and simulation work of different modes of EM propagation over several terrains and antenna platform effects have been performed. Also, the EM \& Radar group performed simulations using GAUGE and GEMACS software packages for several geometries. Both GTD and the method of moments were used.

The Signal Generation and Conditioning team studied the quantitative bounds on path loss as a function of distance, and frequency and delay as a function of distance. Also, they accumulated information from various vendors of hardware in light of the signal generation/detection and conditioning requirements. In addition, the effects of doppler on the frequency and phase shift of a signal and two feasible approaches for signal conditioning hardware are given.

The Communications Systems Modeling team spent a considerable effort studying code acquisition in Direct Sequence Spread Spectrum Systems, data rate = 1, adjacent PN sequence generator's chip rate $=100 \mathrm{chips} / \mathrm{sec}$. , sample rate $=200 \mathrm{~Hz}$. Additive (uncorrelated) Gaussian white noise was added to the channel. BOSS software was used for the simulation work. The communications group simulated a direct sequence spread spectrum receiver operating in a CDMA environment to investigate the system capacity in a manner that can model multipath.

IFF Tactical Electronic Simulation and Test System

1. EM \& Radar

Dr. C. G. Christodoulou

IFF Tactical Electronic Simulation and Test System

\author{

1. EM \& Radar
}

Dr. C. G. Christodoulou

1.1 INTRODUCTION This report presents the analysis and evaluation of two models for the simulation of multipath propagation effects. Also, this report presents the evaluation of GEMACS and its capabilities to simulate platform effects and 3-D radiation patterns.

Multipath effects are caused by the interference of reflected electromagnetic waveform with the primary, direct path waveform at the receiver. This interference may be either constructive or destructive, and it depends on the gain, phase, frequency and polarization of the transmitted wave. Furthermore, parameters such as the geometry of the transmitting and receiving platforms, and the electromagnetic properties of the reflecting surface play a big role in the final result of multipath effects.

In this report, the software package "ECAC" from the Electromagnetic Analysis Compatibility Center in Anapolis, Maryland, was used to determine the degree of attenuation in the signal in a communication link. Several scenarios with complex terrain and sea landscapes were tested and all results are presented herein.

Next, the problem of near field effects were studied using GEMACS. Although we have concentrated our efforts on the Platform effects and modeling of antennas, the problem of coupling between the various antennas and 3-dimensional patterns acn be analyzed using GEMACS.

1.2 RESULTS-Multipath Effects

Both the the Integrated Rough Earth Model (TIREM) and (MIXPATH) models of the ECAC software package were studied. Some of the parameters that we varied were :

- Distance and elevation profiles. These were inputted manually since we have not received yet any actual terrain data.
- Geographic coordinates (Latitude and Longitude) of the transmitter and receiver.
- Environmental parameters of the terrain (permittivity, conductivity, etc.) .
- Antenna heights, their frequency, and polarization
- Antenna gains and transmitter power.
- Topographic profiles between the transmitter and the receiver.

1.2.1 Examples

Two examples are enclosed, one for TIREM and one for MIXPATH.

1.2.1.1 Example 1

In the first example of TIREM, the Propagation loss between the receiver and transmitter is evaluated. A hypothetical terrain shown in Figure 1.1 was used for this example. The model predicts the best mode of propagation, i.e. line-of-sight, diffraction, or atmospheric scatter modes. The modes are selected from the irregular profile shown in Figure 1.1. Figure 1.2 shows the results within the frequency range of 1 to 12 GHz , and Figure 1.3 depicts the changes in the propagation loss as you vary the humidity term.

The input parameters used with this example are :
Transmitter:

$$
\begin{aligned}
& \text { Height }=100 \mathrm{ft} \\
& \text { Polarization }=\text { Vertical } \\
& \text { Power }=100 \mathrm{~W} \\
& \text { Antenna Gain }=30 \mathrm{dBi}
\end{aligned}
$$

Receiver :

$$
\begin{aligned}
& \text { Height }=100 \mathrm{ft} \\
& \text { Antenna Gain }=30 \mathrm{dBi}
\end{aligned}
$$

Medium dry ground was used for the given terrain and a Continental climatic zone.

Pages 6 to 36 show the input and output data formats. The input data are supplied to the computer in the format that appears in screens 1.1 to 24.1 . The results are given in the format shown in screen 25.1 for various frequencies

Fig.1.1 A hypothetical complex terrain

Propagation loss versus frequency Diffraction mode

Fig. 1.2 Losses versus frequency (Diffraction mode)

Propagation Loss versus Frequency Complex Terrain - Very Dry Ground

Fig. 1.3 Propagation losses over a complex terrain with various humidity values

THE TEFF:AIN INTEGF:ATED FOUGH-EAF:TH MODEL (TIFEM) EXAMINES THE TEFFAIN FFOFILE BETWEEN TRANSMITTEF AND FEEEIVER AND GALIULATES THE FROOFAGATION LOSS EY CHOOSING THE FFEDICTION ALGOFITHM THAT BEST FEEFRESENTS THE AGTUAL FFOFAGATION MODE. LINE-OF-SIGHT, DIFFFAACTION, AND TFOFOSFHEF:IE SC:ATTEF: MODES AFE SELEC:TED FOF: EITHEF: SMOOTH OF IFFEGULAF FF:OFILES, AS AFFFOFFIATE. TIFEM IS AFFLICABLE FFOM 20 MHz TO 20 GHz .

TFANSMIT TO EONTINUE

TE:ANSMITTEF: ID:
TF:ANSMITTEF ANTENNA STFUETUFAL HEIEHT:
TF:ANSMITTEF: ANTENNA FOLARIZATION:

TFANSMITTEF: FREEUENE:Y:
TF:ANSMITTEF: FOWEF:
TF:ANSMITTEF ANTENNA GAIN:
TF:ANSMITTEF: ANTENNA MAXIMUM DIMENSION:
[TF:ANSMIT]
$[100],(F T)$
[V] V - VEFTIEAL H - HOFIZONTAL
[1000] (MHZ)
$[100$] (W)
$[30$] (dEi)
$\left[\begin{array}{ll}10\end{array}\right] \quad(F T)$
SEFEEN NUMBEF: $3.1======* * *$ UNIGLASSIFIED

FECEIVEF:	ID:		[FEECEIVEF]					
FECEIVER	ANTENNA	STFUCTUFAL HEIGHT:		100]		FT)
FELEIVEF	ANTENNA	GAIN:	[30]			dBi)
FECEIVEF	ANTENNA	MAXIMUM DIMENSION:	[10]			FT)

ARE YOU EVALUATING A TFOOFOSEATTEF LINK $? \quad[\mathrm{~N}] \quad \mathrm{Y}$ - YES
N - No

IF YES,

ENTEF EITHEF THE CEIF GFOUND TYFE OF THE GROUND C:ONSTANTS:

```
A - SEA WATER (20 DEGREES E) E - VERY DRY GROUND
B - WET GFOUND F - FURE WATER (NOT USED)
C - FRESH WATER (2O DEGREES C) G - IGE (FRESH WATER, - 1 DEGREE E)
D - MEDIUM DFY GFOUND
H - ICE (FRESH WATER, -10 DEGREES (%
```

[IIF GFOUND TYFE: [D]

- OF -

FELATIVE FEFMITTIVITY: [] ELEGTEIGAL EONDUETIVITY: [] (SIEMENS/M)

SLREEN NUMEER: E. $1=====$ **** $^{\text {UNGLASSIFIED }}$

ATMOSFHERII: FARAMETER: INFUTS

ENTER THE SEA-LEVEL ATMOSFHERIL FEFFACTIVITY: [350.] (N-UNITS)

FOF FFEQUENCY GREATEF THAN 1 GHZ
ENTER THE LOGAL SUEFAIE HUMIDITY: [10] (GFAMS/EUEIG METEF)
[2] 1 - TOFOGFAFHIC FILE FROFILE 2 - USER-ENTEFED FROFILE

FOF TOFOGFAFHIC FILE FROFILE:

ENTEF: THE TOFOEFAFHIE DEFAULT ELEVATION (OFTIONAL): [$]$ (FT)
 --
USEF:-ENTEFED FFOOFILE TYFE INFUTS

ENTER THE TYFE OF USEF:-ENTERED FROFILE: [2$]$

1 - EQUALLY-SFACED FROFILE
ENTEF THE DISTANGE BETWEEN frofile FOINTS FOR EQUALLY-SFACED FFROFILE: [] (SM) ENTEF: THE UNITS FOF: ELEVATIONS: [FT]
z - UNEQUALLY-SFADED FFOFILE
ENTEF: TFANSMITTEF: SITE ELEVATION FOR: UNEQUALLY-SFACED FFOFILE (FOINT 1): [3000] (FT)

ENTER THE UNITS FOF: DISTANGES: [SM]

USEF-ENTEFED, UNEQUALLY-SFAEED FFOFILE INFUTS

NTEF DISTANCE EETWEEN FOINTS AND FROFILE ELEVATIONS FOF FOINTS 2 - 3 : DISTANCE UNITS: SM ELEVATION UNITS: FT

DIST:	3	ELEV:	2000	;	DIST:	8	ELEV:	3000
DIST:	ϵ	ELEV:	2200	!	DIST:	2	ELEV:	3200
DIST:	17	ELEV:	2900	,	DIST:	10	ELEV:	2500

[^0]*** THE LAST ELEVATION ENTEFED MUST BE THE FiX SITE ELEVATION ***

ENTEF: THE VAF:IABILITY OFTION:
[1] 1-LONG-TERM FOWER-FADING STATISTIにS
2 - MODELING VAFIABILITY
3 - NO VAFIAEILITY $\because O N S I D E F E D$

1 - CONTINENTAL TEMFERATE
2 - MARITIME TEMFERATE OVER LAND
3 - MAFITIME TEMFEFATE OVEF WATEF:
4 - MARITIME SUBTFOPILAL QVEF: LAND
5 - MEDITEFRANEAN (NOT USED; USE 3 OR 4)
6 - DESERT
7 - EQUATOFIAL
8 - GONTINENTAL SUBTROFIGAL

ENTEF THE ELIMATIE: ZONE: [1]

FFEQUENC:Y INCREMENT / DECFEEMENT INFUTS

ENTEF: THE FINAL FREQUENLY VALUE: [8000] (MHZ) ENTEF THE INGREMENT/DELFEMENT VALUE: [250] (MHZ)

CHOOSE THE TYFE OF ING:EEMENT/DECFEMENT: $[+]+\cdots$--> ADDITION

- --> SUETRACTION * --> MULTIFLIC:ATION / --> DIVISION WHEN INGFEMENTING / DELEEMENTING A FAFAMETER, A FESULTS SGREEN FOR: EAC:H VALID VALUE OF THE FARAMETER IS GENEFATED. IN FULL-SCREEN OUTFUT FOFMAT, THE USER HITS TRANSMIT TO SEE EACH OF THESE RESULTS SLEEENS IN SUCOESSION.

ENTEF: AN X IN THE DESIFED EOXES:

$[x]$ OUTFUT RESULTS TO SLREEN IN FULL-SLREEN FOFMAT
$[\mathrm{X}]$ OUTFUT FESSULTS TO AN ASEII OUTFUT FILE
ENTEF: ASIII file NAME: [Wahid3. OUT
[] OUTFUT FROGILE TO FLOT FILE
ENTEF FLOT File NAME: [Wahid3.flt
$==========================$ SGFEEN NUMEEF: 24.1 $1 .=====* * *$ UNLLASSIFIED
TTF TIFEM INFUT FARAMETEFS
[VEFSION: 1.0]
GENEFAL FAFAMETEFS:

TRANSMITTER FAFAMETEFS:
FECEIVEF FARAMETEFS:

IDENTIFIEF:	TFANSMIT]
ANTENNA HEIEHT:	100. (FT)
SITE ELEVATION:	3000. (FT)
LOCATION:	- - -
MAXIMUM ANT DIM:	10. (FT)
ANTENNA EAIN:	30. (dEi)
FFEEQUENG:	1000. (MHZ)
FOWEF:	100. (W

IDENTIFIER: [FECEEIVEF:]
ANTENNA HEIGHT: 100. (FT)
SITE ELEVATION: 3000. (FT)
LOEATION: - - - - -
MAXIMUM ANT DIM: 10. (FT)
ANTENNA GAIN: 30. (dBi)

FOLAFIZATION: [V]
** TEANSMIT TO EONTINUE **

TTF TIFEM FEESULTS［VEFSION：1．O］

STEFFING FAF：AMETEF：FFEEQUENI：Y
INEFMT／DELFMT VALUE： 250 ．（MHZ）

EUERENT VALUE：AIRESO（MHZ）
INC：RMT／DEC：RMT TYFE：［＋］

OUTFUT F＇AF：AMETEFS：
FROFAİATION MODE：
TX TAKEE－OFF ANGLE：
F：X TAKE－OFF ANGLE：
NEAF：FLD EOUNDAF：Y－TX：
NEAF FLD BOUNDAFY－FX：
FATH LENGTH：
F＇FOFAGATION LOSS：
FFEEESFFACE LOSS：
ABSOFFTION LOSS：
EEAFING（TX－FX）：
SEATTEFING ANELE：
FIELD STFENGTH：
FOWEF：DENSITY：
-68.
DIFFF：AI：TION
FOWEF FADING STATISTICS：

STEFFINS FAFAMETEF：	FF：EQUENİY	EUFFENT VALUE： 1500.
INEFMT／DECFMT VALUE：	こSO．（MHZ）	INEFMT／DEC：FMT TYFE：［＋］

OUTFUT F＇AF：AMETEF：S：
F＇F：OF＇AGATION MODE：
TX TAKE－DFF ANGLE：
F：X TAKEE－OFF ANGLE：
NEAR FLD BOUNDARY－TX：
NEAR FLD EOUNDARY－RX：
F＇ATH LENGTH：
FROFAGATION LOSS：
FF：EE－SFAEE LOSS：
AESOFFTION LOSS：
EEAF：ING（TX－FX）：
SE：ATTEF：ING ANGLE：
FIELD STFENGTH：
FOWEF：DENSITY：

FF：EQUENE：Y
（MHZ）

INEFMMT／DEC：FMT TYFE：［＋］

FOWEF FADING STATISTIL：S：

DIFFFAETION

	． 0	（DEG）	（\％）	1	EASIC LOSS
	－． 1	（DEG）			
：	305.47	（FT）	0.01	；	153.7
：	305.47	（FT）	0.10	；	156.2
	50.	（SM）	1.00	；	159.3
	167.7	（dB）	10.00	；	163.5
	134.1	（dE）	50.00	！	1E7．7
	． 5	（dE）	90.00	！	170.4
	． 00	（DEG）	3.900	；	172．E
	． 355193	（DEG）	ジヨ． 0°	！	174.1
	．00036	（ V / M ）	Эヲ． 39	；	175.4
－ 68.	（dEm	（ $*_{*}^{*}$ 2）	Э＇ヲ．00	；	172．

TTF TIFEM FESULTS［VEFSION：1．0］
STEFFING F＇AFAMETEF：FFEQUENI：Y
IUFFEENT VALUE：AIFTO：9
（MHZ）

INOFMT／DECFMT VALUE：2SO．（MHZ）

OUTFUT F＇AF＇AMETEFS： FFOFAGATION MODE：

DIFFRAC：TION
TX TAKE－DFF ANGLE：
$F: X$ TAKE－OFF ANGLE：
NEAF：FLD EOUNDAF：Y－TX：
NEAF：FLD EOUNDAF：Y－F：X：
FATH LENGTH：
FFOOFAIATION LOSS：
FFEEESFAC：E LOSS：
ABSOFFTION LOSS：
BEARING（TX－FX）：
SEATTEFING ANGLE：
FIELD STFENGTH：
FOWEF：DENSITY：
-68.
50. コニヒ．ЗЭ（FT）

INC：FMT／DEC：FMT TYF＇E：［＋］

FOWEF FADING STATISTICS：

TX TAKE－OFF ANGLE：	．O（DEG）	（\％）	！	EASIE LOSS
FX TAKE－OFF ANGLE：	－． 1 （DEG）			
NEAF：FLD EOUNDAF：Y－TX：	356．35（FT）	0.01	1	154.5
NEAF：FLD EOUNDAF：Y－F：X：	356．З＇（FT）	0.10	；	157.0
FATH LENGTH：	$50 . \quad$（SM）	1.00	1	1EO． 1
FFiOFAIGATION LOSS：	168．7（dB）	10.00	；	164.4
FF：EE－SFAC：E LOSS：	135.4 （dB）	50.00	；	168.7
AESOFFTION LOSS：	． 5 （dE）	90.00	：	171.4
EEARING（TX－FX）：	． 00 （DEG）	99.00	！	173．E
SEATTEFING ANELE：	． 355193 （DEG）	Э＇Э． 90	！	175．2
FIELD STFENGTH：	．00̧8（V／M）	Э゙ヲ． 9	1	17E．5
FOWEF：DENSITY：－E8．	（dEm／M＊＊2）	Э＇゙．00	；	173．

OUTFUT F＇AF：AMETEF：S： FROFAGATION MODE：DIFFRAETION

FOWEF：FADING STATISTIES：

TX TAKE－DFF ANGLE：	．O（DEG）
FXX TAKE－OFF ANGLE：	－． 1 （DEG）
NEAF：FLD EOUNDAF：Y－TX：	407.30 （FT）
NEAF：FLD EOUNDAFY－F：X：	407.30 （FT）
FATH LENGTH：	50．（SM）
FFOFAIGATION LOSS：	－169．4 ${ }^{\text {（ }}$（dE）
FF：EE－SFACE LOSS：	1כE．E（dE）
AESOFFTION LOSS：	．ϵ（dB）
BEAFING（TX－FX）：	．OO（DEG）
SİATTEFING ANGLE：	． 355193 （DEG）
FIELD STFENGTH：	．0003E（V／M）
FOWEF DENSITY：－E7．	（ $d \mathrm{Bm} / \mathrm{M**2}$ ）

TX TAKEE－OFF ANGLE：
$-E 7$.
（ $d B m / M_{*}^{*}+2$ ）
（\％）：BASIC LOSS
－－－－－－－－－－－－－－－－－－－－－－－－－－－－－

0.01	155.1
0.10	$:$
1.00	157.6
10.00	160.8
50.00	165.1
90.00	169.4
99.00	172.1
99.90	174.4
99.95	176.0
99.00	177.3

STEFFING FARAMETER: FREQUENCY DUFRENT VALUE: INC:RMT/DECFMT VALUE: 250.00 (MHZ) INC:FMT/DEC:RMT TYFE: [+]

OUTFUT PARAMETEFS: FROF'AIGATION MODE:

FX TAKE-DFF ANGLE: NEAF FLD EOUNDAFY-TX: NEAF: FLD EOUNDARY-RX: F'ATH LENGTH: FROFAGATION LOSS: FREEESFACE LOSS: AESOFFTION LOSS: BEAFING (TX-FEX): SLATTEFING ANGLE: FIELD STEENGTH: FOWEF: DENSITY:

FOWER FADING STATISTICS:

. 0	(DEG)	(\%)	;	EASIE: LOSS
-. 1	(DEG)			
458.211	(FT)	0.01	!	155.5
458.211	(FT)	0.10	;	158.1
50.0000	(SM)	1.00	;	$1 \in 1.3$
を\%0.0	(dB)	10.00	;	165.E
137.E	(dE)	50.00	!	170.0
. ϵ	(dE)	90.00	;	172.7
. 000000	(DEG)	97.00	;	175.0
. 355193	(DEG)	9.9 .90	!	17E.E
. 00041	(V / M)	99.95	!	178.0
0 (dBm	M**2)	99.00	;	175.0

STEFFING FAF:AMETER: INDEMT/DECFMT VALUE:	$\begin{aligned} & \text { FFEEQUENE: } \\ & 250.00(\mathrm{MHZ}) \end{aligned}$	CUFRE INCFM	VALUE: DECRMT	$: \quad \text { TYFE: }$	$\underset{[+]}{500.00}(\mathrm{MHZ})$
OUTFUT PARAMETERS:	DIFFFALCTION		FOWER FADING		STATISTICS:
FFROFAGATION MODE: D					
TX TAKE-DFF ANGLE:	. 0	(DEGi)	(\%)	;	EASIE LOSS
FX TAKE-DFF ANGLE:	-. 1	(DEG)			
NEAR FLD EOUNDAEY-TX:	: 509.123	(FT)	0.01	!	155.8
NEAF: FLD EOUNDAFY-FX:	: 509.123	(FT)	0.10	;	158.4
FATH LENGTH:	50.0000	(SM)	1.00	;	$1 \in 1 . \epsilon$
FREOFAIGATION LOSS:	-170.4	(dE)	10.00	:	$1 \in \in .0$
FREE-SFACE LOSS:	138.5	(dB)	50.00	:	170.4
ABSOEFTIION LOSS:	. 7	(dE)	90.00	;	173.2
BEAFING (TX-FX):	. 000000	(DEG)	97.00	;	175.5
SE:ATTERING ANGLE:	. 355193	(DEG)	99.90	-	177.1
FIELD STRENGTH:	. 00043	(V/M)	99. 99	-	178.5
FOWEF: DENSITY:	-67.00 ($\mathrm{dBm} / \mathrm{M}$	M**2)	99.00	i	175.5

STEFFING FARAMETER: FFEQUENGY CURFENT VALUE: CESO20, (MHZ) INCFMT/DECFMT VALUE: $250.00(M H Z)$ INCRMT/DECFMT TYFE: $[+]$

OUTFUT FAFAMETERS:
FFROFAIEATION MODE: DIFFFAGTION
TX TAKE-OFF ANGLE:
FX TAKE-OFF ANGLE: NEAF: FLD EOUNDAFY-TX:
NEAE: FLD EOUNDARY-FiX:
FATH LENGTH: FF:OFAIATION LOSS: FFEE-SFACE LOSS: ABSOFFTION LOSS: EEAFING (TX-FEX): SIGATTEFING ANGLE: FIELD STEENGTH: FOWER DENSITY:

FOWER FADING STATISTICS:

OUTFUT FARAMETER:S: FFROFAGATION MODE:
TX TAKE-OFF ANGLE:
EX TAKE-OFF ANGLE:
NEAR FLD EOUNDAFY-TX:
NEAF: FLD GOUNDAFY-FX:
FATH LENGTH:
FROOFAGATION LOSS:
FFEEE-SFAGE LOSS:
AESOFFFTION LOSS:
EEARING (TX-EX):
SC:ATTEFING ANGLE: FIELD STFENGTH: FOWEF DENSITY:

DIFFFACTION

FOWER FADING STATISTIES:

********** TTF TIFEM RESULTS [VEFSSION: 1.0]

STEF'FING F'ARAMETER: INERMT/DECFMT VALUE:	FFEEQUENCY $250.00 \quad(\mathrm{MHZ})$	CUFREENT VALUE:		$8950 \% 00 \%(\mathrm{MHZ})$	
QUTFUT FAF:AMETEFS:			FOWEF:		STATISTICS:
FROFAGATION MODE:	DIFFRALTION				
TX TAKE-OFF ANGLE:	. 0	(DEG)	(\%)	;	EASIC: LOSS
FX TAKE-OFF ANGLE:	-. 1	(DEG)			
NEAF: FLD EOUNDARY-TX:	: 7EЗ.E85	(FT)	0.01	;	$15 \in .3$
NEAF: FLD EOUNDARY-REX:	: 76З.Є85	(FT)	0.10	;	159.0
FATH LENGTH:	50.0000	(SM)	1.00	:	162.3
FREOPAIEATION LOSS:	-171.3	(dB)	10.00	'	$1 \in \in .8$
FFEEE-SFACE LOSS:	142.0	(dB)	50.00	;	171.3
ABSOFFTION LOSS:	. 9	(dB)	90.00	;	174.2
BEAFING (TX-FEX) :	. 000000	(DEG)	99.00	;	176.5
SGATTERING ANGLE:	. 3551.73	(DEG)	99.90	;	178.2
FIELD STEENGTH:	. 00058	(V / M)	99.99	;	179.E
FOWEF DENSITY:	-E4.00 ($\mathrm{dEm} / \mathrm{M}$	M**2)	99.00	;	176.5

STEFFING FAR:AMETER: INC:MT/DELRMT VALUE:	FREQUENL:Y $250.00(\mathrm{MHZ})$	EUFE: INER:	T Value: /DEERMT	TYFE:	$\begin{gathered} 900.00(\mathrm{MHZ}) \\ {[+]} \end{gathered}$
OUTFUT FAFAMETERS:	DIFFRACTION		FOWER FADING		STATISTILS:
FFOOFAGATION MODE: D					
TX TAKE-OFF ANGLE:	. 0	(DEG)	(\%)	;	BASIE LOSS
FX TAKE-DFF ANGLE:	-. 1	(DEG)			
NEAF: FLD EOUNDAFY-TX:	: 814.598	(FT)	0.01	!	156.2
NEAF: FLD EOUNDAFY-FX:	: 814.598	(FT)	0.10	;	159.0
FATH LENGTH:	50.0000	(SM)	1.00	!	162.3
FROFAIGATION LOSS:	8171.3	(dB)	10.00	!	1EE. 8
FREE-SFAIE LOSS:	142.E	(dB)	50.00	;	171.3
AESOFFTION LOSS:	. 9	(dB)	90.00	;	174.2
EEARING (TX-RX) :	. 000000	(DEG)	97.00	;	17E.E
SC:ATTERING ANGLE:	. 355193	(DEG)	99.90	;	178.3
FIELD STRENISTH:	. OOOE 1	(V/M)	99.99	;	179.7
POWEF: DENSITY:	-E4.00 (dEm/	M**2)	99.00	;	176.6

STEFFING FARAMETEF: FREQUENI:Y CUFRENT VALUE: 舞 $25000_{i}(\mathrm{MHZ})$
INC:FMT/DECFMT VALUE: 250.00
(MHZ) NC:FMT/DECFMT TYFE: [+]
FOWEF FADING STATISTICS:

OUTFUT FAFAMETEFS:
FFROFAGATION MODE: DIFFFAGTION
TX TAKE-DFF ANGLE: . 0 (DEG)
FX TAKE-OFF ANİLE:
NEAF: FLD EOUNDAFY-TX:
NEAF: FLD EOUNDAFY-F:X:
F'ATH LENGTH:
FROFAGATION LOSS:
FREE-SFACE LOSS:
ABSORFTION LOSS:
BEARING (TX-FX):
Sİ:ATTERING ANGLE:
FIELD STRENGTH:
FOWEF: DENSITY:
FOWER DENSITY:
$-6 З .00\left(\mathrm{dEm} / \mathrm{M}^{2} * 2\right)$
(\%)
-. 1 (DEG)
8 E5. 510 (FT)
865.510 (FT)
50.0000 (SM) M17186 (dE) 143.1 (dE)
1.0 (dB)
.000000 (DEG)
. 3551.33 (DEG)
.00063 (V/M)
9.90
99.99
9.90
: EASIC: LOSS

 INC:RMT/DECRMT VALUE: $250.00(M H Z)$ INC:FMT/DEC:FMT TYFE: [+]

OUTFUT F'ARAMETEFS: FFOFAGATION MODE: TX TAKE-DFF ANGLE: F: TAKE-OFF ANGLE: NEAF: FLD BOUNDAFY-TX: NEAF: FLD BOUNDAFY-FiX: FATH LENGTH: FROFAGATION LOSS: FREE-SFACE LOSS: AESOFFTION LOSS: BEARING (TX-FX): SIATTEFING ANGLE: FIELD STEENGTH: FOWER DENSITY:

FOWER FADING STATISTICS:
DIFFFACTION

TTF TIFEM FESULTS [VERSION: 1.0]
STEFFING FARAMETER: FFEQUENCY CUFFENT VALUE: 55500.00 , (MHZ) INGEMT/DECFMT VALUE: $250.00(M H Z)$ INCRMT/DEERMT TYFE: [+]

OUTFUT FAFAMMETERS: FROFAGATION MODE:
TX TAKE-OFF ANIGLE: FX TAKE-DFF ANGLE: NEAF: FLD GOUNDAFY-TX: NEAF: FLD BOUNDAFY-FX: FATH LENGTH:
FFROFAIATION LOSS:
FFEEE-SFAIEE LOSS: AESOFFTION LOSS: BEARING (TX-RE): SCATTEFING ANGLE: FIELD STEENGTH: FOWEF: DENSITY:

DIFFRACTION

. 0	(DEG)	(\%)	;	BASIE: LOSS
-. 1	(DEG)			
1120.072	(FT)	0.01	;	158.3
1120.072	(FT)	0.10	;	$1 \in 1.1$
50.0000	(SM)	1.00	!	164.5
173.7:	(dB)	10.00	!	$1 \in 9.1$
145.4	(dB)	50.00	:	173.7
1.1	(dE)	F0. 00	;	17E.E
. 000000	(DEG)	'99.00	;	179.1
. 355193	(DEG)	99. 90	!	180.8
. 00063	(V / M)	-ヲ. $9 \% ~$!	182.3
-63.00 (dEm/	M**2)	99.00	;	179.1

TTF TIFEM FESULTS [VEFSION: 1.0]

STEFFING FPAF:AMETER: INEFMT/DECFMT VALUE:	FFEQUENC:Y 250.00 (MHZ)	EUF: INE:	VALUE: DECRMT	$\text { : EC } \quad \text { TYFE: }$	$\begin{gathered} 000.00(\mathrm{MHZ}) \\ {[+]} \end{gathered}$		
OUTFUT FAFAMETEFS:	DIFFEACTION		FOWEF: FADING		STATISTIES:		
F'ROF'AİATION MODE: D							
TX TAKE-OFF ANGLE:	. 0	(DEG)			(\%)	;	EASIE LOSS
FX TAKE-OFF ANGLE:	-. 1	(DEG)					
NEAF: FLD EOUNDAFY-TX:	: 1221.8.Э	(FT)	0.01	:	159.4		
NEAF: FLD EOUNDAFY-FX:	: 1221.89も	(FT)	0.10	:	162.2		
FATH LENGTH:	50.0000	(SM)	1.00	:	165. $¢$		
FROFAIEATION LOSS:	174.9	(CB)	10.00	:	170.2		
FREE-SFAIE LOSS:	14 E. 1	(dE)	50.00	,	174.8		
AESOFFTION LOSS:	1.2	(dE)	90.00	,	177.8		
EEAFING (TX-FiX):	. 000000	(DEG)	99.00	:	180.3		
SEATTEFING ANGLE:	. 355193	(DEG)	99.90	,	182.1		
FIELD STEENGTH:	. 00060	(V / M)	99.99	,	183.5		
FOWEF DENSITY:	-64.00 (dEm/M	M**2)	93.00	:	180.3		

TTF TIFEM FESUULTS [VEFSION: 1.0]
STEFPING FARAMETER: FREQUENEY CUFRENT VALUE: $\$ 250: 00 \%(M H Z)$

INC:FMT/DECFMT VALUE: 250.00 (MHZ) INCFMT/DECEMT TYFE: [+]

OUTFUT FARAMETEFS:
FF:OFAIGATION MODE:
TX TAKE-DFF ANGLE:
FX TAKE-DFF ANGLE:
NEAR FLD EOUNDARY-TX
NEAF: FLD BOUNDAFY-RX:
FATH LENGTH:
FROFAGATION LOSS:
FFEEESFACE LOSS: ABSOFFFTION LOSS: BEAFING (TX-F:X): SIGTTEFING ANGLE: FIELD STEENGTH: FOWEF DENSITY:

DIFFFALTION

FOWEF FADING STATISTIGS:
(\%) : EASIC LOSS
0.0
0.10
$1 \in Z .8$
$1 \in \in .1$
170.8
175.4
178.4
180.9
182. ϵ
184.1
180.'

STEFFFING FAR:AMETER: FREQUENE:Y
 CUREENT VALUE: $6500.0 \mathrm{Q}(\mathrm{MHZ})$

INCRMT/DECFMT VALUE: $250.00(M H Z)$ INGRMT/DECRMT TYFE: [+]

QUTFUT FAR:AMETEFS:
FREOFAGATION MODE:
TX TAKE-OFF ANGLE:
FX TAKE-DFF ANGLE:
NEAF FLD EOUNDARY-TX:
NEAR FLD EOUNDAFY-RX:
FATH LENGTH:
FREOFAGATION LOSS:
FREEESFALE LOSS:
ABSOFFTION LOSS:
EEARING (TX-FEX):
SC:ATTERING ANGLE:
FIELD STRENGTH:
FOWEF: DENSITY:

DIFFFAC:TION

. 0 (DEG)	(\%)	;	BASIE: LOSS
-. 1 (DEG)			
1323.721 (FT)	0.01	!	160.5
1323.721 (FT)	0.10	!	1 E3. 3
50.0000 (SM)	1.00	;	$16 \in .7$
$\therefore 176.0$ (dE)	10.00	;	171.3
146.8 (dE)	50.00	;	175.9
1.2 (dE)	90.00	;	178.9
. 000000 (DEG)	97.00	;	181.4
. 355193 (DEG)	99.90	:	183.2
.00057 (V/M)	9\%. 97	;	184.7
-64.00 ($\mathrm{dEm} / \mathrm{M} * * 2$)	99.00	;	181.4

QUTFUT FAF:AMETEFS:
FFROFAGATION MODE: DIFFRAETION
TX TAKE-DFF ANGLE: FX TAKE-OFF ANGLE: NEAF FLD EOUNDAF:Y-TX: NEAF: FLD EOUNDAFYY-F:X:
FATH LENGTH: FREOFAIGATION LOSS: FFEES-SFAIE LOSS: ABSOFFTION LOSS: EEAFING (TX-FEX): SIATTEFING ANGLE: FIELD STEENGTH: FOWEF DENSITY:

FOWEF FADING STATISTICS:

STEF'FING FAF:AMETER: FFEEQUEND:Y
250.00 (MHZ) INDEMT/DEEFMT TYFE: [+]

OUTFUT FARAMETEFS: FFOFAGATION MODE:

TX TAKE-OFF ANIGLE:
FX TAFE-DFF ANGLE:
NEAF: FLD EOUNDARY-TX:
NEAF: FLD EOUNDAF:Y-FX:
F.ATH LENGTH:

FFROFAGATION LOSS:
FFEEE-SFAGE LOSS:
AESOFFTIION LOSS:
BEARING (TX-FE):
SCATTEFING ANGLE:
FIELD STRENGTH:
FOWEF: DENSITY:

DIFFFACTION

\qquad


```
*********** TTF TIFEM FESULTS [VEFSION: 1.0 ] ***********
```

STEFFING FAF:AMETER: FREQUENC: CUFFENT VALUE:
INCFMT/DECFMT VALUE:
250.00 (MHZ) INCEMT/DECRMT TYFE: [+]

OUTFUT FAF:AMETEF:S: FROFAIGATION MODE: TX TAKE-DFF ANGLE: EX TAKE-DFF ANGLE: NEAF: FLD EOUNDAF:Y-TX: NEAF: FLD EOUNDAFY-EX: FATH LENGTH: FREOFAEATION LOSS: FFEE-SFACE LOSS: ABSOFFTIION LOSS: EEAFING (TX-REX): SIATTERING ANGLE: FIELD STEENGTH: FOWEF DENSITY:

FOWEF FADING STATISTICS:

DIFFRAICTION

TTF TIFEM FESULTS [VEFSION: 1.0]
STEFFING F'AF:AMETEF:
FFEEQUENE:Y
CUFRENT VALUE:
88000.00 (MHZ)

INGEMT/DEGEMT VALUE: 250.00 (MHZ) INEFMT/DEGFMT TYFE: [+]
OUTFUT FARAMETEF:S:
FREDFAGATION MODE:
DIFFRAETION

TX TAKE-OFF ANGLE:	. 0	(DEG)	(\%)	;	EASIE: LOSS
FX TAKE-OFF ANGLE:	-. 1	(DEG)			
NEAF: FLD EUUNDAFYY-TX:	1E2'9.195	(FT)	0.01	;	163.2
NEAF: FLD EOUNDAE:Y-FX:	162.195	(FT)	0.10	!	$1 \in E .0$
F'ATH LENGTH:	50.0000	(SM)	1.00	;	$1 \in \exists .4$
FREOFAGAT ION LOSS:	178.3	(dB)	10.00	;	174.1
FFEEE-SFALE LOSS:	148.6	(dB)	50.00	;	178.8
AESORFTIION LOSS:	1.4	(dB)	30.00	!	181.9
BEARING (TX-FEX):	. 000000	(DEG)	9.900	!	184.4
SLATTEFING ANGLE:	. 355193	(DEG)	99.90	;	186.2
FIELD STFENGTH:	. 00050	(V / M)	99.99	;	187.6
FOWEE DENSITY:	-ES.00 (0 Em	M**2)	99.00	;	184.4

FOWER FADING STATISTICS:

NEAF: FLD EOUNDAFY-TX:
NEAF: FLD EOUNDAF:Y-FX:
F.ATH LENGTH:

FF:OFAİATION LOSS:
FFEEE-SFAIE LOSS:
AESOFFTION LOSS:
(TX-EX):
FIELD STFENGTH:
-E5.00 ($\mathrm{dEm} / \mathrm{M}_{\mathrm{H} * 2}$)
184.4

GENEF:AL F'AF:AMETEF:S:

TFAANSMITTEF: FAFAMETEF:S:

FEI:EIVEF FAF:AMETEFS:

TF TIFEM FESULTS [VEFSION: 1.0]

| STEFFING FARAMETEF: FREQUENCY | EURFENT VALUE: |
| :--- | ---: | :--- |
| INCFMT/DECFMT VALUE: | 250.00 (MHZ) INCRMT/DEC:FMT TYFE: $[+]$ |

QUTFUT FAFAMETEFS: FFEOFAIEATION MODE:
TX TAKE-DFF ANGLE:
EX TAKE-DFF ANGLE:
NEAF: FLD EOUNDAFY-TX:
NEAF: FLD BOUNDARY-F:X:
FATH LENGTH: FREOFAIEATION LOSS: FFEEE-SFACE LOSS: ABSOFFFTION LOSS: EEARING (TX-FE): SIATTERING ANGLE: FIELD STFENGTH: FOWEF: DENSITY:

FOWER FADING STATISTICS:

DIFFFACTION

. 0 (DEG)	(\%)	;	EASIE: LOSS
-. 1 (DEG)			
1731.020 (FT)	0.01	!	164.0
1731.020 (FT)	0.10	!	166.8
50.0000 (SM)	1.00	!	170.2
17,97 (dB)	10.00	;	174.9
149.1 (dE)	50.00	!	179.7
1.5 (dB)	90.00	;	182.7
. 000000 (DEG)	59.00	;	185.2
. 355193 (DEG)	'9.90	;	187.0
.00048 (V/M)	99.99	;	188.5
$-E E .00$ ($\mathrm{dBm} / \mathrm{M} * * 2$)	99.00	;	185.2

TTF TIFEM FESULTS [VEFSION: 1.0]
STEFFING FAFAMETER: FFEQUENGY CURFENT VALUE: INGEMT/DECRMT VALUE: 250.00 (MHZ) INEFMT/DECFMT TYFE: [+]

QUTFUT FAFAMETEFS:
FFOFAGATION MODE:

DIFFRACTION

EX TAKE-OFF ANGLE:
NEAE: FLD EOUNDAFY-TX:
NEAF: FLD EOUNDAFY-FX:
FATH LENITH:
FFEOFAGATION LOSS: FFEEESFALE LOSS: AESORFTION LOSS: EEARING (TX-F:X): SEATTERING ANGLE: FIELD STRENGTH: FOWEF DENSITY:

. 0 (DEG)	(\%)	;	EASIE: LOSS
-. 1 (DEG)			
1781.932 (FT)	0.01	!	164.4
1781.932 (FT)	0.10	;	167.2
50.0000 (SM)	1.00	!	170.6
180.1, (dE)	10.00	;	175.3
149.4 (dE)	50.00	;	180.1
1.5 (dE)	90.00	;	183.1
. 000000 (DEG)	9.900	;	185.E
. 355193 (DEG)	99.90	;	187.4
. 00047 (V/M)	99.9'	;	188.9
-EE.OO (dEm/M**2)	99.00	;	185.6

STEFFING FAFAMETEF: FREQUENCY	CUFRENT VALUE:	
INCRMT/DECFMT VALUE:	$250.00(M H Z)$	INCFMT/DECFMT TYFE: $[+]$

OUTFUT F'AF:AMETEF:S: FFOOFAEATION MODE: TX TAKE-OFF ANGLE: F:X TAKE-OFF ANGLE: NEAF: FLD EOUNDAF:Y-TX: NEAF: FLD BOUNDAFY-FiX: FATH LENGTH: FROPAGATION LOSS: FFEEE-SFACE LOSS: ABSORFTION LOSS: EEAFING (TX-FX): SEATTEFING ANGLE: FIELD STFENGTH: FOWEF DENSITY:
$250.00(M H Z)$ INE:FMT/DEC:FMT TYFE: [+]

DIFFFACTION

. 0 (DEG)	(\%)	;	EASIE: LOSS
-. 1 (DEG)			
1832.844 (FT)	0.01	;	1E4.7
1832.844 (FT)	0.10	;	167.E
50.0000 (SM)	1.00	;	171.0
(180\%5 5 (dE)	10.00	;	175.7
149.6 (dE)	50.00	;	180. 5
1.5 (dE)	90.00	;	183.5
. OOOOOO (DEG)	95.00	;	186.0
. 355193 (DEG)	-Э. ' $^{\circ}$!	187.8
$.0004 E$ (V/M)	Эヨ. 9	;	189.4
$-\epsilon \in .00$ ($\mathrm{OEm} / \mathrm{M}^{*} * 2$)	Э'゙.00	!	186.0)

OUTFUT FAFAMETEFS:
FROFAGATION MODE:
TX TAKE-DFF ANGLE:
F:X TAKE-OFF ANGLE:
NEAF: FLD EOUNDAF:Y-TX:
NEAF FLD BOUNDAF:Y-F:X:
FATH LENGTH:
FFROFAIEATION LOSS:
FFEEE-SF'ACE LOSS:
ABSOFFFTION LOSS:
SIATTEFING ANGLE:
FIELD STEENGTH:
-66.00 ($\mathrm{dBm} / \mathrm{M} * * 2$)

FOWEF: FADING STATISTICS:
FRACTION
165. 4
168.3
171.7
176.5
181.2
184.3
186.8
188. ϵ
190.1
$18 € .8$

STEFFING FARAMETER: FFEQUENGY EUFRENT VALUE: 9.750 .00 (MHZ) INCRMT/DECFMT VALUE: $\quad 250.00(M H Z)$ INLERMT/DECRMT TYFE: [+]
OUTFUT FAF:AMETEFS:

FOWEF FADING STATISTIES:

FROFAIIATION MODE:
TX TAKE-OFF ANGLE:
FX TAKE-DFF ANGLE:
NEAF: FLD EOUNDAFY-TX:
NEAF: FLD EOUNDAEY-F:X:
FATH LENGTH:
FREOFAIIATION LOSS:
FFEEE-SFALE LOSS:
ABSOFFFTION LOSS:
BEARING (TX-RX): SIATTERING ANGLE:
FIELD STEENIGTH:
FOWEF: DENSITY:

DIFFEACTION

. 0	(DEG)	(\%)	;	EASIC: LOSS
-. 1	(DEG)			
1935.582	(FT)	0.01	!	165.8
1985.582	(FT)	0.10	;	1€8. \in
50.0000	(SM)	1.00	;	172.1
:181. 6.	(dE)	10.00	!	176.8
150.3	(dE)	50.00	!	181.6
1.E	($\mathrm{EB}^{\text {(}}$)	90.00	;	184.7
. 000000	(DEG)	9.9 .00	;	187.2
. 3551.93	(DEG)	99.70	!	189.0
. 00044	(V / M)	99.95	;	190.5
-EE.OO © CEm	M**2)	99.00	;	187.2

TTF TIFEEM FESULTS［VEFSSION：1．0 ］
STEF＇FING F＇AFRAMETEF：FFEQUENI：Y
EUFFFENT VALUE： $26500 \div O O M H Z)$
INEFMT／DECF：MT VALUE：
250.00 （MHZ）INE：FMT／DEC：FMT TYFE：［＋］

OUTFUT F＇AF：AMETEF：S：		F＇OWEF：	INE	STATISTIES：
FF：OF＇AGATION MODE：D	DIFFFAITION			
TX TAKE－OFF ANGLE：	．O（DEG）	（\％）	；	EASII：LOSS
F：X TAKE－OFF ANGLE：	－． 1 （DEG）			
NEAF：FLD EOUNDAF：Y－TX：	$: \quad 2138.319(F T)$	0.01	；	1EE．${ }^{\text {F }}$
NEAF：FLD EOUNDAF：Y－F：X：	$: \quad 2138.319$（FT）	0.10	；	1ヒヲ．7
FATH LENGTH：	50.0000 （SM）	1.00	！	173．2
FROFAGATION LOSS：		10.00	；	178．0
FFEES－SFAEE LOSS：	151.0 （dE）	50.00	；	182.7
ABSOFFTION LOSS：	1.8 （dE）	F0．00	！	185.8
EEAFSNG（TX－FEX）：	． 000000 （DEG）	－3．00	！	188.3
SİATTEFING ANGLE：	． 551.33 （DEG）	＇ヨ＇ヨ． ＇$^{\circ}$	；	190.2
FIELD STEENGTH：	$.0004(\mathrm{~V} / \mathrm{M})$		；	151.7
FOWEF：DENSITY：	-67.00 （ $\mathrm{dEm} / \mathrm{M}^{*}+2$ ）	Э゙．00	；	188.3

$*_{*}^{*} *_{*}^{*} *_{* * *}^{*}$ TTF＇TIF：EM F：ESULTS［VEFSSION： $\left.1.0 \quad\right] * * * * * * * *$
STEFFINE FAFAMETEF：FFEQUENEY CUFFENT VALUE：SYOZ5O．OQ（MHZ）
INGFMT／DEGFMT VALUE：$\quad 250.00$（MHZ）INEFMT／DEGFMT TYFE：［＋］

OUTFUT F＇AF：AMETEF：S：
FFOF＇AGAT ION MODE：
TX TAKE－OFF ANGLE：
F：X TAKE－DFF ANGLE：
NEAF FLD EOUNDAFY－TX：
NEAF：FLD EOUNDAF：Y－F：X：
F＇ATH LENGTH：
F＇OOFAGATION LOSS：
FFEESSFAEE LOSS：
AESIFFTION LOSS：
BEAF：INE（TX－FX）：
SE：ATTEFING ANGLE：
FIELD STFENGTH：
FOWEF：DENSITY：

FOWEF FADING STATISTICS：
DIFFFAIGTION

STEFFING FARAMETER:
INC:FMT/DECFMT VALUE:

FFEEQUENEY
 $250.00(\mathrm{MHZ})$ INEFMT/DECFMT TYFE: [+]

OUTFUT FAF:AMETERS:
FROFAGATION MODE:
TX TAKE-DFF ANGLE:
EX TAKE-DFF ANGLE:
NEAF: FLD BOUNDARY-TX:
NEAF: FLD BOUNDAFY-F:X:
FATH LENGTH:
FROFAGATION LOSS:
FFEEESFACE LOSS:
ABSORFTION LOSS:
BEAFING (TX-FEX):
SGATTEFING ANGLE:
FIELD STFENGTH:
FOWEF: DENSITY:

FOWER DENSIT:

FOWEF FADING STATISTICS:

DIFFFACTION

. 0	(DEG)	(\%)	!	EASIE: LOSS
1	(DEG)			
2240.143	(FT)	0.01	!	1Є7.E
2240.143	(FT)	0.10	;	170.4
50.0000	(SM)	1.00	;	173.9
183.5	(dB)	10.00	;	178.7
151.4	(dE)	50.00	!	183.5
1.9	(dB)	90.00	;	18E.E
. 000000	(DEG)	95.00	;	18.9 .1
. 355173	(DEG)	97.90	;	190.9
. 00040	(V / M)	$9 \ni .99$;	192.5
$-\epsilon 7.00$ (dBm	M**2)	95.00	;	189.1

TTF TIFEM FESUULTS［VEFSION：1．0 ］＊＊＊＊＊＊＊＊＊

OUTFUT FAF：AMETEFS： FF：OFAGATION MODE： TX TAKE－DFF ANGLE： F：X TAFE－DFF ANGLE：
NEAF：FLD EOUNDAF：Y－TX：
NEAF：FLD EOUNDAF：Y－F：X：
FATH LENGTH：
FF：OF＇AGAT ION LOSS：
FFEEE－SFACE LOSS： ABSOFFTION LOSS： EEAF：ING（TX－FEX）： SIATTEF：ING ANGLE： FIELD STEENETH： FOWEF：DENSITY：

DIFFFACTION

TTF TIFEM FESSULTS［VEFSSION：1．0 ］＊＊＊＊＊＊＊＊＊
STEFFING FAF：AMETEF：FFEQUENEY CUFFENT VALUE：N 1950.00 （MHZ） INEFMT／DECFMT VALUE： 250.00 （MHZ）INEFMT／DEGRMT TYFE：［＋］

QUTFUT FAFAMETEFS：
FFOF＇AGATION MODE：
TX TAKE－OFF ANGLE： F：X TAFE－DFF ANGLE： NEAF：FLD EOUNDAFY－TX： NEAF：FLD EOUNDAF：Y－FEX： FATH LENETH：
FFEOFAGATION LOSS： FFEEESFARE LOSS： AESOFFTION LOSS： EEAF：ING（TXー下゙め）： SC：ATTEFING ANGLE： FIELD STEENGTH： FOWEF：DENSITY：

DIFFFACTION

FOWEF FADING STATISTIES：

OUTFUT FAFAMETEFS:
FFOFAGATION MODE: DIFFFALTION
TX TAKE-DFF ANGLE:
FX TAKE-OFF ANGLE: NEAF: FLD BOUNDAFY-TX:
NEAF: FLD BOUNDAFY-F:X: FATH LENGTH: FFROFAIGATION LOSS: FREEE-SFAC: LOSS: ABSORFTION LOSS: EEARING (TX-FEX): SLATTERING ANGLE: FIELD STFENGTH: FOWEF: DENSITY:

FOWEF FADING STATISTIES:

1.2.1.2 Example 2

This is an example on MIXPATH. This model is primarily used when there are discontinuities in the eath surface, i.e., rivers and lakes between ground. In this case, the characteristics of the terrain profile vary so much that only smooth profiles can be used. This model also includes any effects from surface waves. The model is based on Millington's method and it does not consider any effects due to ducting or rain attenuation.
Input Parameters :
Both transmitting and receiving antennas are horizontal dipoles.
Frequency range $=1$ to 10 GHz .
Pages 38 to 46 show the input and output data formats for MIXPATH. The input data are supplied to the computer in the format that appears in screens 1.1 to 34.1. The results are given in the format shown in screen 36.1 .
. $1======* * *$ UNI:LASSIFIED
*** MIXED F'ATH MODEL
THE MIXED F'ATH MODEL (MIXFATH) FFOVIDES FFOFAGATION LOSS FFEDIETIONS FOF: FATHS OVEF: TWO OF: MOFE TYFES OF EAF:TH. THE MODEL IS INTENDED FRIMARILY FOF: USE AT FREQUENEIES AND ANTENNA HEIGHTS WHEFE SUFFACE-WAVE EFFECTS EAUSE THE AMOUNT OF TFANSMISSION LOSS OVEF: THE FROFABATION FATH TO BE HIGHLY DEFENDENT ON THE ELECTFIE:AL CHAFAGTEFISTICS OF THE EAFTH SUFFAEE INVOLVED. THE MODEL IS EASED ON MILLINGTON'S METHOD, WHIEH AF'FLIES ONLY WHEN THE EAFTH SUFFACE IS SMOOTH (ELEVATION IFFEGULAFITIES AFE SMALL EOMFAFED WITH THE WAVELENGTH). THE MIXED FATH MODEL IS NOT AFFLIEABLE TO TFOFOSI:ATTEF OF SFYWAVE FFOFAFATION, NOF DOES IT EONSIDEF THE EFFEGTS OF ATMOSFEFIG AESOFFTION, FAIN ATTENUATION, DUGTING FHENOMENA, DETAILED TOF'OGFAF'HY, OF: FOLIAGE.

TF:ANSMIT TO EONTINUE

E'TEF: TFANSMITTEF: FFEEQUENIIES (MHz):

[^1]$==========================$ SG：EEN NUMEEF：E．
UNILLASSIFIED

SEGMENT INFUT SCFEEN

$\begin{array}{cccc}\text { SEGMENT NO．} & \text { LENGTH } & \text { FEFFACTIVITY } & \text { ECIF：} \\ (1-\exists) & (S M) & (N-U N I T S) & \text { EFEOUND TYFE }\end{array}$

1	［ 5	］	［	301.	］	［	D］
2	［ 30）	］	［	301	J	［	A］
3	［ ES	］	［	301	］	［	D］
4	［	］	［		］	［	］
5	［	］	［		］	［	］
E	［	］	［		］	［	］
7	［	］	［		J	［	$]$
8	［	］	［		］	［	$]$
G	［	］	［		］	［	」

FFOUND TYFE：A－SEA WATEF（2O DEG E）
E－WET GFOOUND
E－VEF：Y DFYY GFOUND
E－FFESH WATEF（ZO DEG
F－FUFE WATEF：（NOT USED）

D－MEDIUM WET GFOUND

曰－IEE（FFESH WATEF，－ 1 DEG E） H－IEE（FFESH WATEF，－ 10 DEG
＊＊＊MUST ENTEF：AT LEAST ONE SEGMENT＊＊＊
$=========================$ SIGEEN NUMEEF：Э．1 $1======* * *$ UNにLASSIFIED＊＊＊

TF：ANSMITTEF：ANTENNA TYFE SELEITION

ENTEF：THE NUMEEF：OF THE TF：ANSMITTEF：ANTENNA TYFE：$[z]$

1 －VEFTIIAL MONOFOLE
3 －HOFIZONTAL YAEI－UDA
5 －EUFTAIN AFF：AY
7 －INVEF：TED L
Э－SLOFING LONG WIFE
11 －AFBITFARILY TILTED DIFOLE
13 －SLOFING DOLIELE FHOMEII：
15 －HEFTTZIAN DIFOLE
17 －TEFMINATED SLOFINE LONG WIFE

ANTENNA	FEED	HEIGHT:	[. 5]	UNITS:	[]	M	-OF:-	[X]	WAVELENGTHS
ANTENNA	LENG	H :	[5]	UNITS:	[]	M	-OF:-	[$x]$	WAVELENITTHS

F:ETUFN TO ANTENNA SELEETION SEFEEN []

MAINBEAM EEAFING INFUT OFTION (ENTEF: AN X IN ONE EOX):

1. $[x]$ - ANTENNA MAINEEAM EEAFING IS ALONG GFEAT-EIFILE FATH BETWEEN THE SITES (NOT NEGESSAF:Y TO ENTEF: A EEAFING) - OF -
2. [] - ANTENNA MAINEEAM EEARING IS FELATIVE TO TFUE NOFTH - OF: -
3. [] - ANTENNA MAINEEAM BEAFING IS FELATIVE TO THE GFEATEIFIGLE FATH EETWEEN THE SITES
```
        ANTENNA EEAF:INIG:
[ ] (DEG)
```

(ENTEFED ONLY IF 2 OF 3 EHOSEN ABOVE)

FEEEIVEF ANTENNA TYFE SELECTION

ENTEF THE NUMBEF：OF THE FECEIVER ANTENNA TYFE：［ 2 ］

1 －VERTIEAL MONOFOLE
3 －HOFIZONTAL YAGI－UDA
5 －IOUFTAIN AFFAY
7 －INVEF：TED L
G－SLOFING LONG WIFE
11 －AFEITFAFILY TILTED DIFOLE
13 －SLOFINF DOUELE FHOMEII：
15－HEFTZIAN DIFOLE
17 －TEFMINATED SLOFINE LONG WIF：E
－－HOFIIZONTAL DIPOLE
4 －VEFTII：AL DIFOLE
E－TEFMINATED SLOFING VEE
8 －TEFMINATED SLOFING FHOMEIC：
10 －HOFIZONTAL LOG－FEFIODIE：
12－HALF FHOMEI：
14 －VEFTIIAL LOI－FEFIODIE：
16 －MANUALLY－ENTEFED GAIN／ISOTFOFIT：
18 －INVEFTED－VEE

MAINEEAM BEAFING INFUT OFTION (ENTEF: AN X IN ONE EOX):

1. $[x]$ - ANTENNA MAINEEAM EEAFING IS ALONG GFEAT-EIFI:LE FATH BETWEEN THE SITES (NOT NECESSAFY TO ENTEF: A EEAF:ING) - OF -
2. [] - ANTENNA MAINEEAM BEARING IS FELATIVE TO TF:UE NOF:TH - OF -
3. [] - ANTENNA MAINEEAM EEAFING IS FELATIVE TO THE GFEATEIFILE FATH EETWEEN THE SITES

ANTENNA EEAFIING:

[
] (DE®)
(ENTEFED ONLY IF 2 OF 3 EHOSEN AEOVE)
$\cdots==========================$ SGEEEN NUMEEF:

FELIABLE GFOUND WAVE EOMMUNIEATION E:ALEULATIONS INFUTS

DATE:
HOUF STAFT:
HOUF: END:
STEF IN HOUFS:
TIME ZONE (FLAIEE X IN ONE EOX):
ENTEF MAN-MADE NOISE DENSITY:

- OF:

ENTEF: NQISE TYFE: [3$]$ TYFES:

F:EQUIFEE SIGNAL-TO-NOISE F:ATIO:
TF:ANSMITTEF: FOWEF:
FOWEF: UNITS:
[12] (mm) [1ヨ'ヨ1] (yyyy)
$\left[\begin{array}{ll}11\end{array}\right](1-24)$
$[13](1-24)$
$\left[\begin{array}{ll}1\end{array}\right](1-23)$
LOI:AL [X] - OF: - UNIVEF:SAL [
[] (dEW/HZ) (INTEGEF)

1: INDUSTFIAL ($-125 \quad d B W / H Z)$
2: FESIDENTIAL $(-13 E d E W / H Z)$
3: FUFAL (-148 dEW/HZ)
4: FEMOTE (-164 dBW/HZ)
[48.]
[400]
[W] W - WATTS
K - KILOWATTS

```
FEGEIVEF TITLE: FX HOF. DIFOLE
FEIEEIVEF: LATITUDE: [ З'F- OG- OO-N] (DD-MM-SS-H)
FEGEIVER: LONGITUDE: [ 075- 32- 00- W] (DDD-MM-SS-H)
```

QUTFUT TO THE SIEEEN FOF FUNS WITHOUT FELIAELE GROUND-WAVE COMMUNIIEATIONS CALCULATIONS WILL OCCUR 14 FFEQUENEIES AND 10 DISTANEE INGEEMENTS AT A TIME. OUTFUT TO THE SLEEEN FOF FUNS WITH FELIABLE GROUND-WAVE COMMUNIC:ATIONS EALCULATIONS WILL OICUF: 12 FREQUENGIES AND 5 DISTANCE INGFEMENTS AT A TIME. THESE OFTIONS ARE FECOMMENDED FDR FUNS WITH FEWEF: THAN THESE SPEGIFIED NUMBERS OF FREQUENCIES AND DISTANCE INCREMENTS.

OUTFUT TO A USER SFEEIFIED FILE IN FFINTED FOFMAT WILL OCCUR IN 132 COLUMN FOFMAT FOF ALL FEEEUUENEIES AND DISTANIES SFELIFIED. THIS GAN THEN EE FFINTED OF: EXAMINED AT A LATEF TIME. THIS OFTION IS REEOMMENDED FOF: MULTIFLE FEEQUENGY FUNS.

ANY LOMEINATION OF OUTFUTS MAY EE SELEITED.
ENTEF: AN X IN THE DESIEED EOXES.
$x]$ OUTFUT RESULTS TO SCFEEN IN FULL-SDREEN FOFMAT
$X]$ OUTFUT RESULTS TO FILE: [mixふに.OUT]
] OUTFUT FESULTS TO FILE IN AUTODIN FOFMAT: [mi © Зc.AUD]

FEE (MHz)

ANTENNA

ANTENNA					
FOWEE:		DAILY			
GAIN		NOISE		FELIAELE	
(dB		(dEW	/ Hz)		
TX	Fix	MIN	MAX	MIN	MA
2.3	2.3	-161.7	-161.8	76.2	
2.3	2.3	-175.7	-175.7	91.0	31
2.3	2.3	-183. ${ }^{\text {c }}$	-183.9	91.8	91
2.3	2.3	-190.0	-190.0	90.2	90
2.3	2.3	-198.1	-198. 1	85.5	85
2.3	2.3	-20E. 1	-20E. 1	80.1	80
2.3	2.3	-212.5	-212.5	74.6	74
2.3	2.3	-216.5	-21E. 5	72.3	72
2.3	2.3	-224.1	-224. 1	6 E .0	$6 \in$
2.3	2.3	-231.5	-231.5	E1. 3	$\epsilon 1$
2.3	2.3	-235. 8	-235.8	58.2	58
2.3	2.3	-241.1	-241.1	55.1	55

ANTENNA					
FOWEE:		DAILY		FEL I ABLE	
GAIN		NOISE		DISTANIE	
(dB		(dEW	/ Hz)		
TX	Fix	MIN	MAX	MIN	MAX
2.3	2.3	-161.7	-161.8	76.2	$7 E .2$
2.3	2.3	-175.7	-175.7	91.0	91.
2.3	2.3	-183. ${ }^{\text {c }}$	-183. ${ }^{\text {¢ }}$	91.8	91.8
2.3	2.3	-190.0	-190.0	90.2	90.2
2.3	2.3	-198.1	-198. 1	85.5	85.5
2.3	2.3	-20E. 1	-20E. 1	80.1	80.1
2.3	2.3	-212.5	-212.5	74.6	74.6
2.3	2.3	-216.5	-21E. 5	72.3	72.3
2.3	2.3	-224.1	-224. 1	6 E .0	$6 \in .0$
2.3	2.3	-231.5	-231.5	E1. 3	$\epsilon_{1.3}$
2.3	2.3	-235. 8	-235.8	58.2	58.2
2.3	2.3	-241.1	-241.1	55.1	55.1

10.0-148. 9
30.0-158. 3
60.0-167.0
100.0-175. 3
200.0-189.3
$400.0-207.2$
700.0-224.8
1000.0-237.7
2000.0-267. 3
$4000.0-303.5$
6000.0-328.5
6000.0-364.7
2.3

FESULTS

IST (SM) 100.0

1.3 RESULTS-Antenna Platform Effects

In this section the capability of "GAUGE" and "GEMACS" computer models to input complicated platforms and predict near fields is presented. Various examples were run for low (method of moments) and high (Geometrical Theory of Diffraction) frequencies. Figure 1.4 explains the organization of GAUGE and GEMACS programs.

Fig. 1.4 Example of GAUGE/GEMACS file interaction

1.3.1 Examples

1.3.1.1 Example 1

Figure 1.5 depicts the geometry of the cube whose scattered fields were evaluated by GEMACS. The moment method was utilized in this example at a frequency of operation of 300 MHz . The result is shown in Figure 1.6. Table 1.1 shows the inputformat for the cube geometry for GAUGE and Table 1.2 shows the input file for GEMACS at 300 MHz for the same cube.

Fig. 1.5 Example of a cube geometry and the normals on each face

Table 1.1 Input geometry for a cube to be processed by GAUGE at 300 MHz in a wire form.

Table 1.2 GEMACS input file for a cube to be run using MOM at 300 MHz

Fig. 1.6 Far Field polar plot using the output file "cubewire.efl" (Scattered field from a cube)

1.3.1.2 Example 2

Example 2 uses the same cube shown in Figure 1.5, exept the Geometrical Theory of Diffraction (GTD) was used at a frequency of 9 GHz . In this case the faces of the cube are modelled as plates instead of a wire structure used in Example 1. The evaluated scattered field from the cube in Figure 1.7. Table 1.3 shows the inputformat for GAUGE using GTD, whereas Table 1.4 depicts the GEMACS input file at 9 GHz .

PT	1	$-.5000 \mathrm{E}-01$	$-.5000 \mathrm{E}-01$	$-.5000 \mathrm{E}-01$
PT	2	$.5000 \mathrm{E}-01$	$-.5000 \mathrm{E}-01$	$-.5000 \mathrm{E}-01$
PT	3	$.5000 \mathrm{E}-01$	$.5000 \mathrm{E}-01$	$-.5000 \mathrm{E}-01$
PT	4	$-.5000 \mathrm{E}-01$	$.5000 \mathrm{E}-01$	$-.5000 \mathrm{E}-01$
PT	5	$-.5000 \mathrm{E}-01$	$-.5000 \mathrm{E}-01$	$.5000 \mathrm{E}-01$
PT	6	$.5000 \mathrm{E}-01$	$-.5000 \mathrm{E}-01$	$.5000 \mathrm{E}-01$
PT	7	$.5000 \mathrm{E}-01$	$.5000 \mathrm{E}-01$	$.5000 \mathrm{E}-01$
PT	8	$-.5000 \mathrm{E}-01$	$.5000 \mathrm{E}-01$	$.5000 \mathrm{E}-01$
PL	1	4	4	3
PL	2	4	5	6
PL	3	4	1	2
PL	4	4	2	3
PL	5	4	3	4
PL	6	4	4	1

Table 1.3 Input geometry for a cube to be processed by GAUGE at

[^2]

Fig. 1.7 Rectangular $d B$ plot of Cubeplat.efl data (Scattered field from a cube)

1.3.1.3 Example 3-A rocket model

This is a model of a rocket formed by merging a cylinder and a cone.

This rocket is form by "merge" option. Commect a cone to a cylinder.

Model of rocket by cylinder + cone

1.3.1.4 Example 4-A Torrus model

This is a torrus model generated by rotating and translating a circle along a 360-degree path.

1.3.1.5 Example 5-Airplane Geometry

The following pages show a sequence of airplane-parts modelling.

1.4 CONCLUSIONS

There is still a lot of work that should be done in the areas of multipath effects and antenna platform effects. Regarding the multipath effects, the models that have been tested do no not consider pulse signals and their dispersion through the atmosphere. The models only give the attenuation of the signal between two communication points. Also, the models are restricted to a number of specific types of antennas. That means that an antenna radiation pattern that includes all platform effects should be entered in this code to simulate real life signals.

As far as the antenna platform effects are concerned, there is still a need for more work with GEMACS to identify the limits of this software package. We have mastered GAUGE and we believe that once the user builds a good library of various canonical geometries, i.e. cones, cylinders etc. and various parts of airplane geometries, then the user can build complicated structures in a short period of time.

IFF Tactical Electronic Simulation and Test System

2. Signal Generation

Dr. D.C. Malocha

2.1 INTRODUCTION

There are many approaches to consider when designing a signal conditioner system. Ideally, we would like to require infinite dynamic control on all of the variables, including amplitude, delay, dispersion, and bandwidth. Unfortunately, it is unrealistic to require these types of constraints, since they are non-realizable. And, therefore, we are left with a less than ideal signal conditioner system. It becomes important then to specify the correct operating ranges for the system and the dynamic range that is available on all of the variables. The signal conditioner should modify the input signal in a way that is controlled by the simulation tools and add a minimum distortion which is both measurable and acceptable to the system under test.

Upon reviewing what might be required for an arbitrary comm-link system, we set some preliminary design goals, including dynamic amplitude control of approximately 150 dB , dynamic delay control between zero and one millisecond, variable amplitude dispersion to less than 11 dB dynamic range over the fractional bandwidth of interest, and variable phase dispersion in the range of tens of nanoseconds. We did not specify any switching delay times because these will be limited by the technology of choice for each of the components to accomplish the signal conditioning.

The approach we have taken is to not limit the input signal to any particular format. Therefore, if a signal conditioner box can be defined and implemented, it should be able to accommodate signals having a range of center frequencies with an acceptable range of fractional bandwidths. This approach is most general in that it can handle conventional AM, FM, or digital transmissions as well as handling spread spectrum system transmissions.

The following sections describe what we have accomplished in this past month. We compiled the information from the vendors (sent to us in the previous month) in this report. We continued to work on quadrature modulation approaches. And finally, we have presented a
briefing to the Navy at UCF's Institute of Simulation and Training on September 12, 1991. During this time, we briefed the Navy personnel on our initial findings and also presented the theoretical work as well as a hardware demonstration of our quadrature modulation research.

2.2 DELAY

Producing variable delay at RF frequencies over a large dynamic range is extremely challenging. The principle motivating factor requiring the use of RF frequencies is the fact that a large absolute bandwidth is necessary for state-of-the-art communication systems. Because of the fairly large RF bandwidths, it is very difficult or impossible to obtain digital-to-analog or analog-to-digital converters that will sample at the required rates.

There are two principle limiting situations with respect to the dynamic range on delay. The direct transmission signal delay is dependent on the distance between transmitter and receiver. This could be a very short distance, as in an air squadron, or very long distances, as in air-to-ground base communication link. The second delay range of interest corresponds to dispersion, which creates a very minor delay variation versus frequency.

Based on the previous months' reports, the delay time between two transponders at a separation distance of one hundred miles is approximately six hundred microseconds. To simulate this delay at RF frequencies is very difficult. Since the velocity of an electromagnetic wave is approximately the same as that in free space, it would require an enormously and prohibitively long delay line to achieve six hundred microseconds of delay. A common approach to obtaining relatively long delays is to convert the electrical signal into acoustic energy. An acoustic wave travels approximately ten thousand times slower than an electromagnetic wave, which condenses the required path length implemented in a given device. An electromagnetic wave delay of miles can be simulated on an acoustic device in inches.

There are several technologies that have been previously used for obtaining various delays acoustically. These include bulk acoustic wave delay lines, surface acoustic wave devices, and the launching of acoustic waves on other types of materials. Depending on the exact requirement, we might include investigation of all of these technologies.

In order to simulate the very long delays, it is proposed at the present time to modify the effective trigger at the signal generation source. This approach allows for digital control of the delay of the generated transmission signal. This has the advantage of achieving very long delays, which are simulated through clocks and gates, easily digitally. The disadvantage of this approach is that the simulation hardware and software tool must be able to be integrated into the actual transmitter hardware. This will require some thought on the hardware layout and the approach to software simulation and hardware drivers from the simulator. However, it is our belief that there presently is no good approach to simulation of variable long delay paths at RF frequencies and bandwidths.

Surface acoustic wave devices have been built with tens of microseconds of delay. Actual device lengths of up to six inches have been previously reported. It would be possible to simulate delays in the tens of microseconds. However, in the simulation process, it would not be possible to achieve an arbitrary variable delay. In a typical surface wave device, there would be multiple outputs that would be spaced at a predetermined interval. For long delays, in the tens of microseconds, it would probably be reasonable to expect four to ten outputs. It would be technically feasible to have more than this number of fixed outputs; however, the cost may increase and a reasonable amount of research might be required.

Another approach for obtaining variable delays may be to use an acoustic charge transport (ACT) device. Acoustic charge transport devices represent a relatively new technology. There have been reports of using these devices for memory applications. The approach uses a surface acoustic wave as a clock to move electronic charge. The only purpose of the surface wave is to provide the clock; it does not do any signal processing. The charge moves in potential wells at
the acoustic velocity. There has been previous work and reports on using an ACT device in a memory configuration. The approach is to freeze the charge into potential wells for the required length of time, and then to dump the charge back into the moving potential wells for clocking out of the signal at the appropriate time. This is a research device and is not commercially available (to our knowledge). There may also be limitations in terms of requirements for cooling of the device to hold the charge for relatively long periods of time. This would be an area for further investigation and research.

In addition to obtaining the long delays, it would also be required to provide relatively short delays as well as phase dispersion, which is a frequency dependent delay. Relatively short delays are feasible with surface acoustic wave devices. A surface wave device can have multiple tapped outputs which are externally controlled via PIN attenuators on each tap. The delay time between taps is on the order of tens of nanoseconds to as low as five nanoseconds. The minimum delay spacing in a single in-line device is proportional to center frequency. Such a device has been previously used in production for proximity fuses. These devices may be off-the-shelf and available, but may not meet the system requirements.

Another approach would be to use parallel devices with a slight fixed delay offset such that the relative delay between taps of two devices would be slightly different. This would allow the minimum delay between taps to be divided by N , where N is the number of parallel devices.

Another technique is to again use acoustic charge transport devices. There are commercially available ACT devices that have programmable taps. The number of taps currently available is 128 with a time delay separation of approximately ten nanoseconds. The device is fully programmable, and, therefore, it would be possible to have 128 discrete delay steps that are relatively close together.

It is believed that using a combination of an external trigger and one or more of the mentioned technologies for simulation of a reasonable set of delayed signal responses is feasible. Although the proposed implementations would not allow for continuous delay steps, it is
believed that the choice of the steps could be judiciously made such that reasonable simulations over a wide range of operating scenarios could be tested. For instance, it may only be possible to test a scenario based on a separation distance of ten miles, fifty miles, one hundred miles, one hundred and fifty miles, etc., in quantized steps. However, it would seem reasonable that interpolation could be accomplished, based on these results, via computer to provide a smooth fit of the data. The exact step size and the system requirements would be integrated into an overall simulator requirement.

2.3 AMPLITUDE CONTROL

We have primarily investigated two different approaches to control of amplitude of the signal. The first has been the use of programmable attenuators. Programmable attenuators may be switched either mechanically or electronically. The second is the use of a voltage variable attenuator. The results of both approaches are presented in Appendices A and B, which describes much of the hardware considerations.

The variable attenuator approach has distinct advantages in its simplicity, low cost, and wide bandwidth. It basically uses electrically controlled mechanical devices, or electronic switches, to switch in a variable amount of attenuation in a fixed impedance transmission line. Attenuation is available from tens of dB s to half dB steps. There are several issues that would require further research even after seeing the manufacturer's specifications. The first issue is the range of accuracy and the reproducibility of the attenuators. Absolute accuracy is desirable; however, software could compensate for known deviations in the amplitude control. Although the attenuation steps may not be exact, if they are reproducible, it would be possible to compensate for these effects in software. However, if these effects are non-reproducible, it would be required a limit be placed on the accuracy of the simulation itself. If mechanical devices are used, the reproducibility of switching is certainly a major question to be investigated.

A second issue is the lifetime of the switches themselves. If they are mechanical devices, the meantime to failure may not be long enough to be practical for real world simulations. The lifetime for mechanical devices might be increased by using a "smart" approach to minimize the required number of switches. Electronic switching should have a much longer lifetime and is probably the preferred approach for long lifetimes and fast switching speeds.

Finally, the attenuators for which we had requested information have a rather long settling time of several milliseconds. This time would be unacceptable for most simulations. Therefore, it may be required to buy faster switching attenuators which, more than likely, would increase the cost of the components.

We also investigated a voltage controllable attenuator. This has some distinct advantages because it is non-mechanical and, therefore, should have a very long lifetime and possibly very fast switching time capabilities. However, there is a disadvantage in that the dynamic range of the attenuator is approximately ten dB . This would require the cascading of many attenuators together. This could raise serious problems in terms of feedback in the system, which would cause spurious oscillations and concern for the amount of signal distortion and noise that may be introduced into the system using this approach. This would certainly be an area for further study.

2.4 AMPLITUDE DISPERSION

Because of the transmitter and receiver operating frequency, it may be necessary to model the effects of the signal propagation through the atmosphere. One effect will be frequency dependent attenuation versus frequency. This amplitude dispersion is caused by frequency dependent atmospheric absorption. Figure 2 of Monthly Report \#1 showed the path loss versus frequency around a center frequency of 1 GHz and at a distance of $\mathrm{d}=150$ miles. The plot shows a linear attenuation (in dB) versus frequency and approximately 2 dB variation over 320 MHz . The slope of the line will decrease as the path length decreases and increase as the path length increases. This should be quite easy to model and simulate in software.

There are several approaches to simulate amplitude dispersion in hardware. One approach is to use a linear, programmable, wideband filter, and another approach is to use multiple linear, fixed, narrow band filters in parallel with a programmable attenuator in series with each filter. The first approach is both elegant and simple in concept; however, it may be very difficult to implement in hardware and may be costly. One device which is programmable at RF frequencies and with reasonable bandwidths is an acoustic charge transport (ACT) programmable filter. Devices operate at center frequencies between approximately $300-400 \mathrm{MHz}$ and have a fractional bandwidth of at least 50%. Current devices provide a 128 tap finite impulse response (FIR) in which each tap can be reprogrammed. Issues would include cost, programming speed, tap weight accuracy, and spurious response generation.

Figure 1. Programmable Amplitude Dispersive Filter

The second approach may be implemented as shown in Figure 2.1. The signal is input to three parallel branches. Each branch contains a programmable attenuator $\left(a_{1}, a_{2}, a_{3}\right)$ and a fixed filter with differing center frequencies. The attenuators can be programmed for the small frequency-dependent-path-loss variations and may also include the required center frequency attenuation. This approach requires more hardware, but may be more easily attainable and have lower risk. The filters must be linear to minimize unwanted distortion. At these RF frequencies,
surface acoustic wave (SAW) filters would probably yield the best performance for the filters. The parallel branches are similar to a conventional filter bank. Since the dynamic range of the attenuator is small, the best component choice would probably be variable, linear amplifiers. Issues would include the power splitter, the relative filter match between components and the filter bandwidth and impulse response length.

2.5 CONCLUSIONS

During these last three months, we have examined the requirements for a signal conditioner system. The signal conditioner that is proposed would not be limited to any particular data format. Rather, the signal conditioner system would be able to input any arbitrary waveform within a given range of center frequencies and within a given range of fractional bandwidths, and the output of the signal conditioner would be a distorted waveform that would include the simulated effects of transmission through a given environment between the transmitter and receiver.

Based on this work, it does appear feasible to build a signal conditioning unit. There are some technical difficulties that would need further study; however, the basic feasibility does appear to be available at the present time.

The primary approach we have taken assumes an intermediate frequency type receiver, which will introduce amplitude and phase dispersion, a variable delay with moderate delay times available, and a variable attenuator to simulate the effects of distance between transmitter and receiver. This approach is based on the fact that current limitations in digital technology do not allow for the required sampling rates of hundreds of megahertz needed to process bandwidths in the tens of megahertz. The signal conditioner box will have limitations with regards to the fractional bandwidth of the transmitted signal and the level of distortion which the signal conditioner may introduce. Details of these effects are dependent on the choice of technology
for implementing the signal conditioner components as well as the center frequency and bandwidth of the signal under test. It is believed that this approach to system implementation will meet a broad class of communications currently used by the Navy.

If a wide range of digital hardware begins to operate at hundreds of megahertz clock frequencies, it may be possible to go to a digital hardware implementation. Digital hardware is primarily limited by the fractional bandwidth of the communication system. If digital teci. provide sampling of analog signals at the rate of one hundred megahertz or more, then it may be possible to use a digital receiver approach to capturing the signal, mixing it to base-band, sampling it, and then breaking the channel into in-phase and quadrature channels for introducing the controlled conditioning of the input signal. The signal would then be digital-to-analog converted and mixed back and re-transmitted at the original carrier frequency. Advantages include adding long delay times via the clock and gates, using relatively inexpensive digital hardware, and using I-Q processing for adding distortion effects.

Considering the limited amount of time and resources which have been allocated to signal conditioning research, it is clearly an area for further research. In addition to the design problems discussed, there are technical problems that will become apparent only when trying to implement the actual hardware. The design approach appears, at this time, to be a direct trade-off between a signal conditioner hardware cost versus its capability. Some components that are available can provide simple functions at a very low cost. However, some of the functions (such as delay) require sophisticated hardware approaches to implement the probable required delay specifications; these approaches use new technologies that currently have a rather high cost. As always, it is anticipated that the cost of these technologies will continue to decrease as time progresses. Therefore, it can be concluded that the possibility of building a signal conditioner hardware system to measure a broad range of communication system formats is possible. However, considerably more research is necessary to accomplish the task.

During this research, we have investigated various quadrature modulation techniques for confining spectral energy while maintaining a uniform modulated time envelope. The spectral confinement reduces out-of-band energy which decreases noise and co-channel interference. In addition, we have demonstrated actual hardware which generates the quadrature modulation, PN sequence for spread spectrum applications. The results obtained compared very well with theoretical predictions. These approaches help to eliminate system filtering which degrades the modulated signal be causing AM and intersymbol interference. Further research will continue on attempts to fully characterize system performance.

Appendix 2.A

NAVY TESTS
BRIEFING

September 12, 1991

Donald C. Malocha
Professor

Nancy L. Eisenhauer
Research Assistant

What Do We Want From A Signal Conditioner?

- Infinite bandwidth (very wide)
- Dynamic amplitude control
- 150 dB dynamic range
- Dynamic delay control
- $0-10 \mathrm{msec}$
- Variable amplitude dispersion
- Broad band
- 10 's of dB dynamic range

What Do We Want (cont.)

- Variable phase dispersion
- Broad band
- 10 's of nsecs
- Signal conditioner is input signal independent
- Distortionless
- Zero time delay for switching components

Path Loss v Distance $\mathrm{f}=1000 \mathrm{Mhz}$

Figure 2.A. 1

Delay v Distance

Figure 2.A. 3

Doppler Frequency Shift

 $f=1000 \mathrm{MHz}$

Frequency Shift Due to Doppler vs. Relative Velocity
Figure 2.A. 4

Approaches

- Implement signal conditioner as a receiver/transmitter
- Passive component based $\left(\mathrm{f}_{0}, \% \mathrm{BW}\right)$ (distortion)
- I.F. signal conditioner (distortion)
- Hardware
- Cost vs. Performance
- Linearity
- Accuracy
- Speed
- Software
- Programmed component corrections

	Input Signal	
f_{o}		
BW		
τ	\Rightarrow $\mathrm{A}_{\mathrm{i}}(\mathrm{f})$ $\varphi_{\mathrm{i}}(\mathrm{f})$	Output Signal f_{o} BW
	$\tau_{\mathrm{o}}+\Delta \tau$	
$\mathrm{A}_{\mathrm{o}}(\mathrm{f})$		
$\varphi_{\mathrm{o}}(\mathrm{f})$		

Signal Conditioner
Component Block Diagram \#1

Signal Conditioner
Component Block Diagram \#2

Amplitude/Phase Dispersion

- ACT device
- Programmable
- Multi-filter SAW
- Amplitude only

Delay

- Delay $<10 \mu \mathrm{sec}$
- SAW delay line
- Proximity fuses
- Required development
- ACT programmable delay line
- $\mathrm{f}_{0} \sim 180 \mathrm{MHz}$
- $\Delta \mathrm{T} \cong 6 \mathrm{nsec}$

Appendix 2.B

COMPONENT SPECIFICATIONS

Donald C. Malocha
Professor

Nancy L. Eisenhauer
Research Assistant

The component specification sheets which follow are a subset of what is believed to be a good representation of devices needed to generate, transmit and detect spread spectrum signals. This is not meant to be an exhaustive set of hardware specifications. The actual hardware will be dependent on the required system specifications. However, there are available system components which allow a large class of potential communication system configurations to be built.

Attenuators

- Programmable
- 10 dB steps
- $\quad \sim 0.7 \mathrm{~dB}$ accuracy
- $\sim 6 \mathrm{~ms}$ switching
- 1 db steps
- $\quad \sim 0.1 \mathrm{db}$ accuracy
- $\sim 6 \mathrm{~ms}$ switching
- $\quad 0.1 \mathrm{db}$ steps
- ?
- Variable amplifier
- Dynamic range $\sim 10 \mathrm{~dB}$

Purpose: To simulate fine attenuation adjustment due to distances between the transmitter and receiver.

Parameters	Specification Limits	Units
Frequency Range	$20-500$	MHz
Linear Attenuation	$0.0-11.0$	dB Min
Range		
Attenuation Flatness	0.7	$\mathrm{~dB} \mathrm{Max} \mathrm{p-p}$
Input 1 dB Compression	10.0	dBm Min
Deviation from Best Fit	± 1.0	dB Max
Line		ms
Switching Speed	$\$$	
Price	$\$ 150.00$	

Programmable Attenuators

Purpose: To simulate rough attenuation adjustment due to distances.

Parameters	Specification Limits	Units
Frequency Range	$\mathrm{DC}-3$	GHz
Attenuation Range	$0-85$	dB (in 1 dB steps)
Attenuation Steps	$1,2,4,8,10,20,40$	dB
Attenuation Accuracy	DC $-500 \mathrm{MHz} \pm .3$ or $.5 \%$	dB
	$500-1000 \mathrm{MHz} \pm .4$ or	dB
	1.0%	dB
	$1000-2000 \mathrm{MHz} \pm .5$ or	dB
	1.0%	
	$2000-3000 \mathrm{MHz} \pm .6$ or	
Switching Speed	1.5%	dB
Repeatability	6	operations/relay
Life (typical)	10 million	
Price	$\$ 872.00$	

TYPICAL APPLICATION

COHERENT PSK DEMODULATOR

FOR FURTHER INFORMATION CALL OR WRITE STANFORD TELECOMMUNICATIONS

ASIC \& Custom Products Group
Direct dial: (408)980-5684 or Operator assist: (408) 748-1010
Fax: (408) 980-1066 Telex: (910) 339-9531
2421 Mission College Blvd. - Santa Clara, CA 95054-1298

STANFORD

- INDEPENDENT CLOCKS, CONTROLS, AND OUTPUTS

E MICROPROCESSOR CONTROL INTERFACE

- COMPOSITE CODE GENERATION CAPABILITIES
- PUNCTUAL, LATE, AND EARLY OUTPUTS FOR CODE TRACKING

30 MHz OPERATION
봄 LOW POWER CMOS

- MILITARY AND COMMERCIAL TEMPERATURE RANGES AVAILABLE

Coder provides the communications industry with a cost-effective and compact solution to code generation. The device's unique architectural design provides a power-efficient, high-speed code generator able to produce any 3 maximal or non-maximal length codes with up to 32 feedback taps per generator, and code lengths up to $2^{32-1}(4,394,967,295)$ bits. Capabilities for modulo-2 addition (EXOR), code modulation, and non-linear composite code generation are also provided in the device. The device can be programmed very easily via the microprocessor interface.

APPLICATIONS

PSEUDO-RANDOM CODE GENERATION
图 GOLD CODE GENERATION

- JPL RANGING CODE GENERATION

园 SYNCOPATED CODE GENERATION

BLOCK DIAGRAM

${ }^{\mathrm{t}}$ S
${ }_{\text {AS }}$
$\mathrm{taH}^{\text {O }}$
${ }^{\text {ther }}$
$\mathrm{t}_{\text {Ls }}$
t_{w}
$\mathrm{t}_{3 \mathrm{H}}$
${ }^{\text {th }}$
$t_{\text {cp }}$
$\mathrm{t}_{\text {Ls }}$
$t_{\text {wa }}$
$\mathrm{t}_{\text {co }}$

Uata Setup time
Address Setup time
Data Hold time
Address Hold time
Load Setup time
Write to Load delay time
STIM to STLD Setup time STIM to STLD Hold time
Max. CLK frequency
CLK pulse width
WRN pulse width
Clock delay, CLK to any output

Clock delay, CLK to any output	5

10

Note: The duty cycle of the CLK signal must be 50% in order to achieve correct timing of the EARLY and LATE signals, since these outputs are latched on the falling edge of the clock and the PUNCT signal is latched on the rising edge.

FOR FURTHER INFORMATION CALL OR WRITE STANFORD TELECOMMUNICATIONS
ASIC \& Custom Products Group
Direct dlal: (408)980-5684 or Operator assist: (408) 748-1010
Fax: (408) 980-1066 Telex: (910) 339-9531
2421 Mission College Blvd. - Santa Clara, CA 95054-1298
© 1989, 1990 Stanford Telecommunications, Inc. 7/90

Frequency Synthesis Products

Typical Applications

V Frequency Synthesizers

- High-Speed Frequency Hopping
- Modulators and Demodulators
- Timing Recovery Circuits
∇ Single Sideband Converters
- Baseband Receivers
- Digital Signal Processois

V Frequency and Phase locked Loops

Basic NCO Block Diagram

Functional Description

The basic principle of operation of an NCO is that an accumulator is used to generate constantly incrementing phase angles, as shown in the block diagram above. These phase angles are then used to address a sine / cosine look-up table to produce the final output signal. By changing the " Δ-phase" number added to the accumulator at each cycle the rate at which the phase angle increments can be varied, thereby changing the frequency of the sine or cosine signal generated.

NCO generate digitized sine and cosine signals with very fine frequency resolution to be used in digital processing applications.

They can also be used in conjunction with a D/A converter in analog frequency generation applications. Most of the NCO devices are designed to operate with an 8 bit microprocessor bus. The STEL-1176, STEL-2172 and STEL-2173 have parallel frequency control interfaces. Although the frequency change is effectively instantaneous after a new Δ-phase word is loaded, the devices all exhibit a latency period between the loading of the new Δ phase value and the instant of frequency change. The latency periods are shown in the table .

Typical Application

V Fast switching $66-74 \mathrm{MHz}$ synthesizer

If the output of the NCO is fed into a video-speed D/A converter, a fast, phase coherent high resolution frequency synthesizer may be realized The spurious components out of the first filter are 50 to 60 dB below the primary output. This signal can then be translated to any desired center frequency by means of a fixed frequency oscillator, a mixer and a bandpass filter.

NCO/Direct Digital Synthesis Product Selection Guide

NCO:	STEL-1130	STEL-1172B	STEL-1173	STEL-1174	STEL-1175	STEL-1176	STEL-1177	STEL-1178	STEL-2172	STEL-2173
Technology	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	ECL	GaAs
Max clock (MHz)	60	50	50	50	60	80	60	50	300	1000
Frequency										
Resolution (Hz)	NA	12×10^{-3}	178×10^{-9}	763	14×10^{-3}	0.1000	14×10^{3}	12×10^{3}	112	0233
Frequency										
Res (bits)	NA	32	48	16	32	$35(\mathrm{BCD})$	32	32	28	32
Phase Res (bits)	NA	10	13	13	13	15(BCD)	13	13	3	10
DAC Res (bits)	12	8	12	12	12	12	12	'2	8	8
Latency (clock cycles)	16/18	34	20	12	17	35	19	19	33	24
Sine and Cosine										
Outputs	NA	Y	N	N	N	N	Y	N	N	N
FM Res (bits)	NA	.	-	.	-	-	16			
PM Res (bits)	NA	-	-	.	12	-	2×12	-	-	2
Worst case spur level (dBc)	NA	. 55	. 75	. 75	. 75	. 72	. 75	.75	45	55
Standard Package	84 pin PLCC	40 pin DIP	48 pin DIP	44 pin PLCC	68 pin PLCC	84 Pin PLCC	84 pin PLCC	68 pin PLCC	156 Din PGA	132 om
(Options available) Hat pack										
Board level products	.	STEL. 1272	STEL. 1278	-	$\begin{aligned} & \text { STEL-1275 } \\ & \text { STEL } 1375 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { STEL- } 1276 \\ & \text { STEL- } 1376 \end{aligned}$	$\begin{aligned} & \text { STEL } \cdot 2^{\prime} \\ & \text { STEL } \cdot 13 \cdots \end{aligned}$		STEL 22\%	STEL 22`3
Chassis Products	.	-	-	99	-	.	.		STEL. 9272	STEL 92-3

STEL-1130
 60 MHz CMOS Quadrature Amplitude Modulator

The STEL-1130 Quadrature
Amplitude Modulator is
intended to be used to amplitude modulate the output of an NCO such as the STEL-1172B and the STEL-1177. The STEL-1130 is cascaded with the outputs of the NCO , resulting in modulated digitized sine and cosine signals suitable for digital to analog conversion or digital signal processing. The STEL-1130 can be used for both unsuppressed carrier and suppressed carrier (single or double sideband) modulation.

Features
v 60 MHz throughput capability
V 12-bit inputs

- Offset binary or two's complement inputs at NCO ports

V Two's complement or unsigned inputs at modulation ports

F Products can be added or subtracted
© 12-bit rounded or truncated products

STEL-1130 Block Diagram

STEL-2173
 1 GHz
 32-bit GaAs MNCO

The STEL-2173 GaAs NCO
provides high resolution
frequency synthesis with virtu-
ally instantaneous frequency
switching. All I/O signals are
ECL compatible to facilitate interfacing with high-speed control circuits and DACs.

Features
V On-chip look-up table
V 1 GHz maximum over commercial operating conditions

V 32-bit frequency resolution
V -55 dBc spurious typical
V 2-bit PM for BPSK or QPSK
V High frequency-update rate
V Evaluation board available (STEL-2273)

STEL-2173 Block Diagram

STEL-2273
 $0-400 \mathrm{MHz}$ DDS with 2-bit PM

The STEL-2273 is a synthesizer board assembly using the STEL-2173 GaAs Numerically Controlled Oscillator (NCO) chip. The board uses the STEL2173 to drive a high-speed 8-bit DAC (TriQuint TQ6112) to generate complementary output signals which can then be lowpass filtered to give continuous output waveforms.

Features

∇ 0-400 MHz output

- 1 GHz clock frequency guaranteed over commercial operating conditions

V 32-bit frequency resolution, $0.23 \mathrm{~Hz} @ 1 \mathrm{GHz}$ clock

- 2-bit phase modulation (BPSK and QPSK)

V 8-bit parallel sine or cosine - 2 units can be used to generate quadrature output signals

Phase coherent instantaneous frequency switching
Up to 62.5 MHz rate for phase or frequency hopping

- ECL inputs for convenient interfacing
v 50Ω inputs and outputs
- High-speed, low glitch GaAs DAC
$\nabla-40 \mathrm{dBc}$ spurious typical
3.5 " by 6 "

STEL-2273 Block Diagram

STEL-1023
 C/A Coder

The STEL-1023 is designed to he used in GPS (Global Positioning Satellite) receivers where it generates the C/A (Clear / Acquisition) code as well as the timing for the X 1 and C / A epochs, the 50 hps naw data, and other functions. The C/A code is one of the two codes used for the synchronization of the GPS receiver to the signal received from the satellites.

The codes are different for each of the satellites in the GPS constellation (for identification purposes), and the different C/A codes can be selected from the microprocessor interface.

Features

V Generates C/A and PRN codes
∇ Generates all timing for GPS
Low power CMOS - 10 mW
Package: 28-pin DIP

- Military and commercial temperature ranges available

STEL-1023 Block Diagram

STEL-1032 PRN Goder

The STEL-1032 Pseudo-
Random Noise (PRN) Code Generator provides the communications industry with a cost effective and compact solution to code generation. The device's unique architectural design provides a power-efficient, high-speed code generator able to produce any 3 maximal or non-maximal length codes with up to 32 feedback taps per generator. The feedback taps selected are stored in the Mask Registers, and any number of taps may be selected.

In this way all possible codes with lengths up to $2^{32}-1$ $(4,294,967,295)$ can be generated. The codes can be started at any selected point. Capabilities for modulo-2 addition (EXOR), code modulation, and non-linear composite code generation are also provided in the device. The output of code generator 0 is also available both late and early by one half of a clock cycle relative to the punctual code. Nonlinear codes can be generated by combining 2 or 3 codes using an internal programmable lookup
table. The device can be programmed very easily via the microprocessor interface.

Features

V 3 PRN code generators
V Independent clocks, controls, and outputs

- Microprocessor control interface
- Composite code generation capabilities
* Chip counter, initialization preset, and epoch truncation capabilities
\boldsymbol{V} Punctual, late, and early outputs for code tracking
v Up to 30 MHz operation
Military and commercial temperature ranges available
Package: 68-pin PLCC

STEL-1032 Block Diagram

104

STEL-2410 Correlator Accumulator

The STEL-2410 is a dual highspeed correlator / accumulator circuit which can be used in many data communications applications. The dual circuits, which are completely independent, can be used to correlate dual data streams such as QPSK demodulated data. The 8 -bit inputs can be in either regular 2's complement code ($\mathrm{OO}_{\mathrm{H}}=z e r o$) or offset 2 's complement code (FF_{11} \doteq minimum negative value, $0 \mathrm{O}_{\mathrm{H}}$ $=$ minimum positive value, no code corresponding to true zero).

The inputs are multiplied by the reference codes and accumulated in 23-bit accumulators, thereby ensuring at least $2{ }^{15}$ cycles of accumulation without overflow. The outputs of the accumulators are viewed through 8 -bit windows for easy microprocessor interfacing, and the significance of each window is controlled by independent multiplexers. The data dumped into each viewport can be set to saturate on overflow, thereby eliminating the
ambiguity caused when the accumulator value exceeds the range seen through the 8 -hit viewport. The device may be used to digitally despread direct sequence spread spectrum signals or may be used as a digital integrate and dump filter.

Features

F Up to 70 MHz accumulation rate
V Dual accumulators for quadrature data applications
∇ 32,768 cycles without overflow between dumps

- Accumulator latch and hold registers
v Saturate on overflow capability
∇ Two's complement or offset two's complement inputs

V Selectable 8-bit output fields
V Package: 68-pin PGA

STEL-2410 Block Diagram

STEL-3310
 Matched Filter
 64-Tap, 11 Mcps

The STEL-3310 is a dual
high-speed digital matched filter / correlator circuit which can be used in many spread spectrum data communications applications operating at up to 11 Mchips per second. The device is designed to be expandable up to 256 taps. The dual channels allow the device to be used directly after the baseband down-converter, the magnitude of the complex signal being computed internally with an approximation algorithm. The built-in threshold comparator allows the user to select the level at which the match is detected, permitting optimum operation over a wide range of signal conditions. The optional front-end processor function is a sliding window filter, which adds the previous data sample to each incoming one. This allows the use of noncoherent sampling at two samples per chip.

Features

- Up to 22 MHz sample rate

Dual filters for quadrature channels
Operates with BPSK and QPSK modulation
V 64 taps per device

- Up to four devices can be cascaded without overflow

V Coefficient latch and hold registers
V Ternary coefficient values $(0, \pm 1)$

- 3-bit offset two's complement inputs
$\nabla 12$ and 13-bit two's complement outputs
V Package: 181-pin PGA

STEL-3310 Block Diagram

IFF Tactical Electronic Simulation and Test System

3. Communications Systems Modeling

Dr. M. Belkerdid

3.1 Introduction

This report summarizes the efforts undertaken under the IFF Tactical Electronic Simulation and Test System (TESTS) research program during the Summer 1991 semester. The research dealt with the viability of the Signal Processing Worksystem by Comdisco. SPW/BOSS is a Block Oriented Software Simulator that is a useful non-real time simulation tool for Direct Sequence Spread Spectrum (DSSS) communication link.

Last spring's reports demonstrated how SPW/BOSS can be used to model communication systems that include encoders, decoders, Pseudo-Noise (PN) generators, modulators, demodulators, and Hilbert transformers in quadrature configurations. The reports also discussed the expansion of the SPW/BOSS library via custom designed modules. These custom modules are written in the C programming language.

This report emphasizes the operation of a DSSS in a Code Division Multiple Access (CDMA) environment. The CDMA environment model, simulated using SPW/BOSS, also allows for the modeling of multipath effects, channel capacity, and the near far problem. This report also presents a technique for the generation of efficient multiple Spread Spectrum waveforms.

A sliding correlator was set up for DSSS system parameter evaluation purposes. Such a correlator is used as a test bed for all DSSS simulation scenarios.

The sliding correlator is a feedback system whose central component is an integrator in the system's feedback path. The output of this integrator for the synchronized case is given by:

$$
\begin{equation*}
Y_{(s y n c h)}=A b_{i}(2 p-1)+\sum_{l=0}^{2 p-2} n\left(l t_{s}\right) a_{l} \tag{1}
\end{equation*}
$$

The equation is similar to the one developed in [2]. For the non-synchronized case, the first term is altered:

$$
\begin{equation*}
Y_{(n o-\text { synch })}=A b_{i} \sum_{l=0}^{2 p-2} a_{j} a_{(j+l)}+\sum_{l=0}^{2 p-2} n\left(l t_{s}\right) a_{l} \tag{2}
\end{equation*}
$$

where A is the signal amplitude, b_{i} is the $i^{\text {th }}$ data bit at the sampler (positive or negative), ($2 \mathrm{p}-1$) is the number of valid samples per interval, l is the phase lag of the cross-correlated codes, $n\left(1 t_{s}\right)$ is
the sampled noise, and a_{l} is the local PN code. To avoid false synchronization, equation 2 should be small compared to equation 1 .

The mean time to acquire a signal is derived in [3] as:

$$
\begin{equation*}
\bar{T}_{a c q}=\left[M\left(\lambda+\frac{1}{2}\right) T_{c}+\frac{\left(\lambda T_{c} P_{F}\right)}{\left(1-P_{F}\right)^{2}}\right]+\left(\frac{\left(1-P_{D}\right)}{P_{D}}\right)\left[2 M\left(\lambda+\frac{1}{2}\right) T_{c}+\frac{\left(\lambda T_{c} P_{F}\right)}{\left(1-P_{F}\right)^{2}}\right] \tag{3}
\end{equation*}
$$

where λ is the area of integration, T_{c} is the period of one chip, P_{D} is the probability of detection, P_{F} is the probability of false alarms, and M is the additional chips examined for an incorrect decision. Equations for P_{F} and P_{D} are found in [4].

3.2 CDMA Environment

Figure 3.1 contains an arrangement of multiple transmitters with data sources and spreading mechanisms comprised of individual, maximum length PN sequence generators of different code lengths. That is, no two transmitters are alike and the orders of the polynomials range from $\mathrm{n}=6$ to $\mathrm{n}=34$, where $\mathrm{N}=2^{\mathrm{n}}-1$ is the length of each sequence. Table 3.1 lists specifications of the transmitters used throughout this paper. In all upcoming examples, user \#1 is assumed to possess the desired message. Therefore, the local code is designed to match the spreading code of transmitter \#1, except for a possible phase shift. To account for near-far conditions, on-line multipliers are mounted at each transmitting branch. The new equations describing the output of the integrator are similar to those given in [2] and are shown below:

$$
\begin{align*}
Y_{(s y n c h)}^{k}= & A^{k} b_{i}^{k}(p-1)+\sum_{l=0}^{p-2} n\left(l t_{s}\right) a_{l}^{k}+\sum_{r=1 ; r=k}^{M} A^{r} b_{(i-1)}^{r} \sum_{l=0}^{p-c-1} a_{l}^{k} a_{(l+c)}^{r}+\sum_{r=1 ; r=k}^{M} A^{r} b_{i}^{r} \sum_{l-p-c}^{p-2} a_{l}^{k} a_{(l+c)}^{r} \tag{4}\\
& Y_{(n o-s y n c h)}^{k}=\sum_{l=0}^{p-1} n\left(l t_{s}\right) a_{l}^{k}+\sum_{r=1}^{M} A^{r} b_{(i-1)}^{r} \sum_{l=0}^{p-c-1} a_{l}^{k} a_{(l+c)}^{r}+\sum_{r=1}^{M} A^{r} b_{i}^{r} \sum_{l-p-c}^{p-2} a_{l}^{k} a_{(l+c)}^{r} \tag{5}
\end{align*}
$$

Figure 3.1 CDMA Transmitter Configuration

Table 3.1: CSC in CDMA (transmitters)

Transmitters	Data PN Order	Data Sampling Frequency	Spreader PN Order	Spreader Sampling Frequency	Processing Gain
1	21	1023	10	1	1023
2	22	1023	9	1	1023
3	23	1023	11	1	1023
4	6	1023	12	1	1023
5	8	1023	27	1	1023
6	15	1023	15	1	1023
7	19	1023	13	2	511.5
8	12	1023	34	16	63.94
9	11	512	20	1	512
10	7	1023	26	4	255.8
11	16	1023	18	1	1023
12	31	2047	8	1	2047
13	33	1023	16	1	1023
14	14	255	23	2	127.5
15	20	1023	29	1	1023
16	25	1023	31	1	1023
17	18	511	25	1	511
18	17	1023	6	1	1023
19	24	1023	30	1	1023
20	30	511	14	2	255.5
21	13	1023	19	2	511.5
22	32	2047	21	1	2047
23	27	1023	7	1	1023
24	34	1023	22	1	1023
25	28	1023	17	2	511.5
26	9	511	33	1	511
27	29	1023	24	1	1023
28	10	511	32	2	255.5

The equations reflect whole chip slippage at the receiver and one lost chip due to integrator reset. The superscript k represents the "desired" user while r depicts the r th interfering transmitter. The variable c is the location of adjacent bits.

As an example, a multiple access system using the first four transmitters of Table 3.1 is modeled. System settings include: no channel noise; an integration period of 1023 chips; whole chip slippage; chip/bit/integrator alignment (with transmitter \#1); and a threshold value of 675. Figure 3.2 b is the despreader output for the case where the transmissions are at equal power levels. For this condition, the receiver accurately obtains synchronization and maintains it. Transmitter \#3 is then boosted (via the on-line multiplier) to simulate a "near" transmitter, while the other three remain at unity as the "far" transmitters. Amplification of \#3 is increased by increments until the system breaks down. Signals 3.2 d and 3.2 e show that with a power factor of six, the system obtains synch but eventually loses it when the integrator output drops to 670 (the threshold was set to 675). Viewing transmitter \#3 as six identical users with unity power, system capacity is roughly nine users.

The nonlinear characteristic of the near-far problem is best explained mathematically. Close inspection of the last two terms of equations (4) and (5) indicate a partial cancelling in the correlation process the code sequences are dissimilar. This cancelling reduces the destructive tendencies of the interfering users. If the codes are identical, however, no cancelling occurs and the negative impact is maximized. The next section determines the number of users allowed onto the system for the ideal case of equal power. In doing so, it demonstrates (by elimination) the damaging effects of the near-far problem.

3.3 CDMA Equal Power Levels

Using the assumptions of the previous example (except here all transmitters have equal power), several simulations are performed. The first model has only two transmitters but an additional one is added for each subsequent simulation. As more transmitters are added, the system

Figure 3.2 Near-Far Waveforms.
weakens until it can no longer operate effectively. The integrator output drops below threshold when the twenty-eighth transmitter is added, (see Figure 3.3). System capacity is now approximately three times larger than it was in the previous example. Nineteen more users are permitted if the near-far problem is removed. Unfortunately, this ideal case is not very realistic. Despreader outputs for various equal powered transmitter combinations are given in Figure 3.4. As predicted, the waveforms resemble noise filled sequences that worsen as the number of transmitters are increased. Zooming in on signal 3.4 b , we find an M-ary type format with values $\pm 4, \pm 2$, and 0 , (see Figure 3.5). This is the result of summing four PN sequences. As the number of transmitters increase, so do the number of M-ary values.

3.4 Multiple Spread Spectrum Synthesis

Multiple spread spectrum waveforms can be generated by specifying their unique spreading codes. These codes can be delayed versions of a single PN code generator. Phase shifted replicas are designed using a delay synthesis technique. There are many methods for creating delayed versions of a PN sequence. One method uses a parallel bank of PN generators with different initial values. Another uses strings of delay elements that are attached to the generator. An even better method (less hardware) uses polynomial theory and modulo two arithmetic to multiply the PN polynomial by the prescribed shift, and then factors it into a polynomial of degree n or less.[5] This is done for each phase shift.

An example will help to clarify the latter approach. Suppose that an eight phase PMG is desired from the following tenth order polynomial:

$$
g(x)=1+X^{2}+X^{3}+X^{6}+X^{8}+X^{9}
$$

The distance between neighboring sequences is calculated as $(\mathrm{N}+1) / \mathrm{L}=1024 / 8=128$. However, one of the codes has a spacing of 127 in order to keep $N=1023$. Polynomials for phase shifted replicas are determined by individually multiplying $\mathrm{g}(\mathrm{x})$ by $\mathrm{X}^{128}, \mathrm{X}^{256}, \mathrm{X}^{384}, \mathrm{X}^{512}, \mathrm{X}^{640}, \mathrm{X}^{768}$, and X^{896} and factoring until the orders of the replicated polynomials are less than or equal to 10 :

Figure 3.3 CDMA Waveforms With 28 Transmitters.

Figure 3.4 CDMA Waveforms With Multiple Transmitters

Figure 3.5 CDMA Waveform With 4 Transmitters (ZOOM)

$$
\begin{aligned}
& g_{1}(x)=g(x)=1+X^{2}+X^{3}+X^{6}+X^{8}+X^{9} \\
& g_{2}(x)=g(x) X^{128}=X^{2}+X^{4}+X^{9} \\
& g_{3}(x)=g(x) X^{256}=X^{7}+X^{8} \\
& g_{4}(x)=g(x) X^{384}=X^{2}+X^{3}+X^{5}+X^{10} \\
& g_{5}(x)=g(x) X^{512}=X^{4}+X^{6} \\
& g_{6}(x)=g(x) X^{640}=X^{3}+X^{5}+X^{9} \\
& g_{7}(x)=g(x) X^{768}=X^{1}+X^{2}+X^{3}+X^{4} \\
& g_{8}(x)=g(x) X^{896}=X^{1}+X^{7}+X^{8}+X^{9}+X^{10}
\end{aligned}
$$

These polynomials are realized in Figure 3.6. To verify that the sequences are indeed shifted by the prescribed amounts, the cross-correlation of signal $g(x)$ with the output of the phase multiplexed generator is shown in Figure 3.7. Note that the correlation peaks occur for lags of $0,128,256,384$, $512,640,768$, and 896 , as expected.

3.5 Conclusion

The following features were not modeled: individual carrier frequencies for all users; random alignments between chips, bits, and the integration process; and differing chip sizes among the spreaders. Inclusion of these items would make the results more realistic, but, would not change performance trends. For simplicity, they were omitted. To graphically illustrate system tendencies for various scenarios, many examples were given. Near-far considerations drop the efficiency even further, as shown in Figure 3.2.

As a final comment, this paper confirms that SPW/BOSS is well suited for spread spectrum simulation. It is now ready to be used as a DSSS simulation test bed for parameter sensitivity analysis. Appendix 3.A contains a paper that is similar to the one published and presented at the 1991 RF Expo (East).

Figure 3.6 Multiple PN Sequence Generator.

Figure 3.7 Sum of Multiple PN Sequences and their Crosscorrelation.
[1] Comdisco Systems, Inc., Signal Processing Worksystem, Software Documentation, Product Number SPW1080, Version 2.7, August 1990.
[2] R. Skaug and J. F. Hjelmstad, SPREAD SPECTRUM IN COMMUNICATION. London, UK: Peter Peregrinus Ltd., 1985.
[3] R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, "Theory of Spread-Spectrum Communications - A Tutorial", IEEE Trans. Comm., vol COM-30, May 1982.
[4] R. C. Dixon, SPREAD SPECTRUM SYSTEMS. New York: Wiley-Interscience, 1984.
[5]G. S. Rawlins, "ARAPID ACQUISITION TECHNIQUE FOR DIRECT SEQUENCE SPREAD SPECTRUM SYSTEMS BY A PN PHASE MULTIPLEXED CORRELATOR." Master's Thesis, University of Central Florida, Orlando, Florida, 1987.

3.A Appendix

Phase Multiplexed Correlation In Multiple Access Spread Spectrum Systems

Glen G. Koller \& Madjid A. Belkerdid

PHASE MULTIPLEXED CORRELATION IN MULTIPLE ACCESS SPREAD SPECTRUM SYSTEMS

By

Glen G. Koller \& Madjid A. Belkerdid
University Of Central Florida
Electrical Engineering Department
Orlando, Florida 32816

Abstract

The relatively new concept of Phase Multiplexed Correlation (PMC) is applied to the Code Division Multiple Access (CDMA) Direct Sequence Spread Spectrum (DSSS) environment to determine coarse acquisition advantages. Prior to the discussion of the PMC, the Conventional Sliding Correlator (CSC) design is reviewed to establish performance guidelines. Both systems are modeled in software where simulated results are compared to predicted calculations.

Introduction

The CSC is a coarse acquisition technique commonly used in DSSS systems. Its concept is based on an integration process that is used to exploit properties of pseudo-noise (PN) sequences. The CSC's simple design leads to an easy implementation but is rather inefficient in that it performs a serial search of the uncertainty region which usually requires a considerable amount of time. Its ability to lock onto a signal gradually deteriorates as transmitters (users) of equal power (as seen by the transmitter) are added and dramatically degrades when high powered interfering transmitters appear. Recall that the "near-far" problem is the situation where multiple transmitters are geographically located at different distances from the receiver. Even when each is transmitting at the same level (equal power), the one closest to the receiver is dominant. Attempts that are made to despread the signal of the furthest transmitter results in an overwhelming power disturbance from the closest transmitter. The disturbance appears as a high cross-correlation of the undesired codes
to the local PN sequence.
It is shown, in an upcoming section, that the CSC can be modified to form the PMC. This new design proves to be advantageous in that the number of cells to be searched to acquire synchronization is reduced to only a fraction of what is required by the CSC. However, the price paid for the improvement is an increase in both channel noise and co-user interference. Fortunately, through flexibility of design, a compromise is possible that allows for some acceleration in acquisition in exchange for moderate performance concessions. Of course, application dictates the optimal mix. As in the case of the CSC, the PMC is tested in the CDMA arena using the Signal Processing Worksystem (SPW) by Comdisco. [1]

Conventional Sliding Correlator

Figure 3A. 1 contains a model of the CSC. ADSSS transmitter and an Additive White Gaussian Noise (AWGN) channel are included to generate realistic input signals to the correlator. For simplicity, the model is baseband which eliminates the need for a carrier. The transmitter consists of a binary random number generator to create the message signal and a PN sequence generator which is used as the spreader. The AWGN channel has controllable mean and variance. At the receiver, the signal is despread by a PN generator that is identical to the transmitting generator except for a possible phase shift, which can be as small as a fraction of a chip. An integration operation is performed on the signal over the interval $\left[0, \mathrm{~T}_{\mathrm{d}}\right]$ to determine the level of correlation. The magnitude at the end of each interval is computed and sent to the comparator for threshold evaluation. A small value at the input of the comparator triggers a pulse from the pulse train which slides the local PN generator. A large value indicates a synchronized condition so no sliding occurs.

As an example, the waveforms of Figure 3A. 2 are generated with the following assumptions: the order of the PN generators is $n=6$; the chip rate is 63 times faster than the data rate (processing gain $=63$); each chip contains two samples; the noise in the channel has zero mean and a variance of 0.5 ; the local generator slips by one-half chip increments; integration is performed per bit with

Figure 3A.1 CSC in a DSSS Setting.

Figure 3A. 2 CSC Waveforms
assumed bit and chip alignments; one chip is lost in each interval due to reset; the threshold of the comparator is set at 95 . Signal 3A.2a is the sequence generated by the transmitting PN generator and 3 A .2 b is the output of the local generator. The receiver code is intentional delayed (misaligned) by one sample (one-half chip) to force the local code generator to slide the entire length of the uncertainty region. Note that the system is incapable of backward motion. Signal 3A.2c is the despreader output. It is a combination of pseudo random waveforms until synchronization occurs, in which it then turns into a sequence that resembles the original data stream. Signal 3A.2d is the original message and can be used to validate 3A.2c. Signal 3A.2e is the control logic that sends the command to the PN generator causing it to slide. Missing teeth in this comb-like signal indicate that either the system is in synch or false alarms have occurred. The area between adjacent peaks corresponds to an interval of integration. Signal 3 A .2 f is the output of the integrator. Its values are relatively small until the system reaches synchronization. The output of the integrator for the synchronized case is:

$$
\begin{equation*}
Y_{(\text {synch })}=A b_{i}(2 p-1)+\sum_{j=0}^{2 p-2} n\left(j t_{s}\right) a_{j} \tag{1}
\end{equation*}
$$

The equation is similar to the one developed in [2]. For the non-synchronized case, the first term is altered:

$$
\begin{equation*}
Y_{(n o-s y n c h)}=A b_{i} \sum_{j=0}^{2 p-2} a_{j} a_{(j+l)}+\sum_{j=0}^{2 p-2} n\left(j t_{s}\right) a_{(j+l)} \tag{2}
\end{equation*}
$$

where A is the signal amplitude, b_{i} is the $i^{\text {th }}$ data bit at the sampler (positive or negative), ($2 p-1$) is the number of valid samples per interval, l is the phase lag of the cross-correlated codes, $n\left(j t_{s}\right)$ is the sampled noise, and a_{j} is the local PN code. To avoid false synchronization, equation 2 should be small compared to equation 1.

The mean time to acquire a signal is derived in [3] as:

$$
\begin{equation*}
\bar{T}_{a c q}=\left[M\left(\lambda+\frac{1}{2}\right) T_{c}+\frac{\left(\lambda T_{c} P_{F}\right)}{\left(1-P_{F}\right)^{2}}\right]+\left(\frac{\left(1-P_{D}\right)}{P_{D}}\right)\left[2 M\left(\lambda+\frac{1}{2}\right) T_{c}+\frac{\left(\lambda T_{c} P_{F}\right)}{\left(1-P_{F}\right)^{2}}\right] \tag{3}
\end{equation*}
$$

where λ is the area of integration, T_{c} is the period of one chip, P_{D} is the probability of detection, P_{F} is the probability of false alarms, and M is the additional chips examined for an incorrect decision. Equations for P_{F} and P_{D} are found in [4].

CSC in CDMA

Figure 3A. 3 contains an arrangement of multiple transmitters with data sources and spreading mechanisms comprised of individual, maximum length PN sequence generators of different code lengths. That is, no two transmitters are alike and the orders of the polynomials range from $n=6$ to $n=34$, where $N=2^{n}-1$ is the length of each sequence. Table $3 A .1$ lists specifications of the transmitters used throughout this paper. In all upcoming examples, user \#1 is assumed to possess the desired message. Therefore, the local code is designed to match the spreading code of transmitter \#1, except for a possible phase shift. To account for near-far conditions, on-line multipliers are mounted at each transmitting branch. The new equations describing the output of the integrator are similar to those given in [2] and are shown below:

$$
\begin{gather*}
Y_{(s y n c h)}^{k}=A^{k} b_{i}^{k}(p-1)+\sum_{j=0}^{p-2} n\left(j t_{s}\right) a_{j}^{k}+\sum_{r=1 ; r-k}^{M} A^{r} b_{(i-1)}^{r} \sum_{j=0}^{p-c-1} a_{j}^{k} a_{j}^{r}+\sum_{r=1 ; r=k}^{M} A^{r} b_{i}^{r} \sum_{j=p-c}^{p-2} a_{j}^{k} a_{j}^{r} \tag{4}\\
Y_{(n o-s y n c h)}^{k}=\sum_{j=0}^{p-2} n\left(j t_{s}\right) a_{(j+l)}^{k}+\sum_{r=1}^{M} A^{r} b_{(i-1)}^{r} \sum_{j=0}^{p-c-1} a_{(j+l)}^{k} a_{j}^{r}+\sum_{r=1}^{M} A^{r} b_{i}^{r} \sum_{j=p-c}^{p-2} a_{(j+l)}^{k} a_{j}^{r} \tag{5}
\end{gather*}
$$

The equations reflect whole chip slippage at the receiver and one lost chip due to integrator reset. The superscript k represents the "desired" user while r depicts the $r^{\text {th }}$ interfering transmitter. The variable c is the point where neighboring bits meet.

As an example, a multiple access system using the first four transmitters of Table 3A. 1 is modeled. System settings include: no channel noise; an integration period of 1023 chips; whole chip slippage; chip/bit/integrator alignment (with transmitter \#1); and a threshold value of 675. Figure 3 A .4 b is the despreader output for the case where the transmissions are at equal power levels. For this condition, the receiver accurately obtains synchronization and maintains it. Transmitter

Figure 3A. 3 CDMA Transmitter Configuration

Table 3A.1: CSC in CDMA (transmitters)

Transmitters	Data PN Order	Data Sampling Frequency	Spreader PN Order	Spreader Sampling Frequency	Processing Gain
1	21	1023	10	1	1023
2	22	1023	9	1	1023
3	23	1023	11	1	1023
4	6	1023	12	1	1023
5	8	1023	27	1	1023
6	15	1023	15	1	1023
7	19	1023	13	2	511.5
8	12	1023	34	16	63.94
9	11	512	20	1	512
10	7	1023	26	4	255.8
11	16	1023	18	1	1023
12	31	2047	8	1	2047
13	33	1023	16	1	1023
14	14	255	23	2	127.5
15	20	1023	29	1	1023
16	25	1023	31	1	1023
17	18	511	25	1	511
18	17	1023	6	1	1023
19	24	1023	30	1	1023
20	30	511	14	2	255.5
21	13	1023	19	2	511.5
22	32	2047	21	1	2047
23	27	1023	7	1	1023
24	34	1023	22	1	1023
25	28	1023	17	2	511.5
26	9	511	33	1	511
27	29	1023	24	1	1023
28	10	511	32	2	255.5

Figure 3A. 4 CDMA Received Waveforms
\#3 is then boosted (via the on-line multiplier) to simulate a "near" transmitter, while the other three remain at unity as the "far" transmitters. Amplification of \#3 is increased, incrementally, until the system breaks down. Signals 3A.4d and 3A.4e show that with a power factor of six, the system obtains synch but eventually loses it when the magnitude of the integrator's output drops to 610 (the threshold was set to 675). Viewing transmitter \#3 as six identical users with unity power, system capacity is roughly nine users.

The nonlinear characteristic of the near-far problem is best explained mathematically. Close inspection of the last two terms of equations (4) and (5) indicate a partial cancelling in the correlation process if the code sequences are dissimilar. This cancelling reduces the destructive tendencies of the interfering users. If the codes are identical, however, no cancelling occurs and the negative impact is maximized. The next section determines the number of users allowed onto the system for the ideal case of equal power. In doing so, it demonstrates (by elimination) the damaging effects of the near-far problem.

CSC in CDMA (Equal Power Levels)

Using the assumptions of the previous example (except here all transmitters have equal power), several simulations are performed. The first model has only two transmitters but an additional one is added for each subsequent simulation. As more transmitters are added, the system weakens until it can no longer operate effectively. The integrator output drops below threshold when the twenty-eighth transmitter is added, (see Figure 3A.5). System capacity is now approximately three times larger than it was in the previous example. Nineteen more users are permitted if the near-far problem is removed. Unfortunately, this ideal case is not very realistic. Despreader outputs for various equal powered transmitter combinations are given in Figure 3A.6. As predicted, the waveforms resemble noise filled sequences that worsen as the number of transmitters are increased. Zooming in on signal 3 A .6 b , we find an M-ary type format with values $\pm 4, \pm 2$, and 0 , (see Figure 3A.7). This is the result of summing four PN sequences. As the number of transmitters

Figure 3A. 5 CDMA Waveforms with 28 Transmitters

Figure 3A. 6 CDMA Waveforms with Multiple Transmitters

Figure 3A. 7 CDMA Waveforms with Multiple Transmitters (ZOOM)
increase, so do the number of M-ary values.

Variations of the CSC

For certain applications, the CSC may be too slow. One method of improvement is to use a parallel bank of correlators with locally generated code spaced apart by an amount equal to the slippage of the local PN generator. This eliminates the uncertainty region which reduces the mean time to acquire synch. Acquisition time is then equal to the amount of time required by the integration process. Such a system is hardware intensive and is usually replaced by a hybrid of the CSC and parallel bank. Other CSC variations can be found in reference [4].

Phase Multiplexed Correlator

Another method of rapid acquisition is proposed in [5]. The new design is a modified CSC whose PN generator is replaced by a phase multiplexed generator (PMG). Compare the model of Figure 3A. 8 to that of Figure 3A.1. The PMG produces L equally spaced, phase shifted replicas of the original maximum length PN sequence. These sequences are added together and used to despread the incoming signal. Internal redundancy of the PMG reduces the uncertainty region by a factor of L, assuming that the P_{D} equals one. The equation for calculating the number of phase shifts can be determined with the equation:

$$
\begin{equation*}
S=(N+1) / L \quad ; \quad L<(N+1) \tag{6}
\end{equation*}
$$

One of the codes contains at least one less chip than the rest of the sequences in order to preserve the relation $\mathrm{N}=2^{\mathrm{n}}-1$. Of course, S cannot be increased without bound since the extra codes produce unwanted noise. Equations for the integrator output in a single transmitter system are given as:

$$
\begin{gather*}
Y_{(s y n c h)}^{k}=A^{k} b_{i}^{k}(p-1)+\sum_{j=0}^{p-2} \sum_{W=1}^{L} n\left(j t_{s}\right) a_{j}^{W}+A^{k} b_{i}^{k} \sum_{j=0}^{p-2} \sum_{W-1 ; W-k}^{L} a_{j}^{k} a_{j}^{W} \tag{7}\\
Y_{(n o-s y n c h)}^{k}=\sum_{j=0}^{p-2} \sum_{W=1}^{L} n\left(j t_{s}\right) a_{(j+l)}^{W}+A^{k} b_{i}^{k^{p}} \sum_{j=0}^{-2} \sum_{W=1}^{L} a_{j}^{k} a_{(j+l)}^{W} \tag{8}
\end{gather*}
$$

Figure 3A. 8 PMC in a DSSS Setting.

As examples, a single transmitter system is modeled with $8,32,64$, and 128 phase generators. Assumptions made include: no channel noise; whole chip slippage; and a comparator threshold level of 930. Surprisingly, the receiver acquires synchronization and maintains it in all four cases. Figures 3 A .9 and 3 A .10 contain despreader and integrator outputs. The seemingly unbounded characteristic of the system is explained by the last term of equation (7). It is finite and much less (in magnitude) than the first term. As a matter of fact, it can be shown that the last term is equal to the negated number of phases if A^{k} and b_{i}^{k} are equal to one. If noise is included, its effects are minimized when statistical constraints are applied. To verify the validity of the PMG outputs, (i.e. to prove that each PMG is designed correctly), cross-correlations of the transmitter and receiver codes are determined and appear in Figure 3A.11.

PMC in CDMA

As more transmitters are added, system performance declines. This is seen in the following equations:

$$
\begin{align*}
Y_{(s y n c h)}^{k}=A^{k} b_{i}^{k}(p-1)+\sum_{j=0}^{p-2} \sum_{W=1}^{L} n\left(j t_{s}\right) a_{j}^{W} & +\sum_{j=0}^{p-c-1} \sum_{r=1 ; r=k}^{M} A^{r} b_{(i-1)}^{r} \sum_{W=1}^{L} a_{j}^{W} a_{j}^{r} \\
& +\sum_{j=p-c r=1 ; r \sim k}^{p-2} A^{r} b_{i}^{r} \sum_{W=1}^{L} a_{j}^{W} a_{j}^{r}+\sum_{j=0}^{p-2} A^{k} b_{i}^{k} \sum_{W=1 ; W \sim k}^{L} a_{j}^{W} a_{j}^{k} \tag{9}
\end{align*}
$$

$$
\begin{equation*}
Y_{(n o-s y n c h)}^{k}=\sum_{j=0}^{p-2} \sum_{W=1}^{L} n\left(j t_{s}\right) a_{(j+l)}^{W}+\sum_{j=0}^{p-c-1} \sum_{r=1}^{M} A^{r} b_{(i-1)}^{r} \sum_{W=1}^{L} a_{(j+l)}^{W} a_{j}^{r}+\sum_{j-p-c r=1}^{p-2} \sum_{r}^{M} A^{r} b_{i}^{r} \sum_{W=1}^{L} a_{(j+l)}^{W} a_{j}^{r} \tag{10}
\end{equation*}
$$

The extra code phases at the receiver are correlated with the incoming signals (noise and users) which changes the outcome of the integration process. More phases results in a larger disturbance. To illustrate this, a second transmitter is added to the previous example. While synchronization still occurs, it is quickly lost (see Figure 3A.12b). Reducing the number of phases while increasing the number of users lead to a better mix. Figure 3A.12c is the integrator output for eight phases and seven transmitters. The signal looks good; however, one more user causes a breakdown (see

Figure 3A. 9 Multiple Phase PMC (Single Transmitter)

a		$\begin{aligned} & \text { file }=\text { disssigs/pmc64a } \\ & \text { samp. freq. }=1 \\ & \text { time }=1.12 E+05 \text { secs } \\ & \text { point\# }=111507 \text { of } 125000 \\ & \text { value }=2 \end{aligned}$
b		```file = disssigs/pmc64b samp. freq. = 1 time = 1.12E+05 secs point# = 111507 of 125000 value = 964```
c		```file = disssigs/pmc128a samp. freq. = 1 time = 1.12E+05 secs point#}=111507\mathrm{ of 125000 value = -14```
d		```file = disssigs/pmc128b samp. freq. = 1 time = 1.12E+05 secs point#}=111507\mathrm{ of 125000 value = 884```

Figure 3A. 10 Multiple Phase PMC (Single Transmitter)

Figure 3A. 11 Cross-correlation of Multiple PN Sequences

Figure 3A. 12 PMC with Multiple Transmitters

Figure 3A.12d). For completeness, a final experiment is performed to study the near-far problem. An eight phase, four transmitter system is modeled with the on-line multiplier of transmitter \#3 increased by increments from 2 to 4 in subsequent computer runs. With a multiplication factor of 2 , the output was satisfactory, staying in sync for 23 integration periods. When increased to 3 , the system maintained sync for 10 integration periods, and for a factor of 4 , it only lasted for 2 periods. Figure 3A. 13 provides sample integrator outputs for the described cases. As expected, performance dropped due to a lack of cancelling terms in the correlated codes.

Synthesis of the PMG

In designing a PMG, a maximum length PN polynomial is selected. Phase shifted replicas are designed using a delay synthesis technique. There are many methods for creating delayed versions of a PN sequence. One method uses a parallel bank of PN generators with different initial values. Another uses strings of delay elements that are attached to the generator. An even better method (less hardware) uses polynomial theory and modulo two arithmetic to multiply the PN polynomial by the prescribed shift, and then factors it into a polynomial of degree n or less.[5] This is done for each phase shift.

An example will help to clarify the latter approach. Suppose that an eight phase PMG is desired from the following tenth order polynomial:

$$
g(x)=1+X^{2}+X^{3}+X^{6}+X^{8}+X^{9}
$$

The distance between neighboring sequences is calculated as $(N+1) / \mathrm{L}=1024 / 8=128$. However, one of the codes has a spacing of 127 in order to keep $\mathrm{N}=1023$. Polynomials for phase shifted replicas are determined by individually multiplying $\mathrm{g}(\mathrm{x})$ by $\mathrm{X}^{128}, \mathrm{X}^{256}, \mathrm{X}^{384}, \mathrm{X}^{512}, \mathrm{X}^{640}, \mathrm{X}^{768}$, and X^{89} and factoring until the orders of the replicated polynomials are less than or equal to 10 :

$$
\begin{aligned}
& g_{1}(x)=g(x)=1+X^{2}+X^{3}+X^{6}+X^{8}+X^{9} \\
& g_{2}(x)=g(x) X^{128}=X^{2}+X^{4}+X^{9} \\
& g_{3}(x)=g(x) X^{256}=X^{7}+X^{8}
\end{aligned}
$$

Figure 3A. 13 PMC with Near-Far Effects

$$
\begin{aligned}
& g_{4}(x)=g(x) X^{384}=X^{2}+X^{3}+X^{5}+X^{10} \\
& g_{5}(x)=g(x) X^{512}=X^{4}+X^{6} \\
& g_{6}(x)=g(x) X^{640}=X^{3}+X^{5}+X^{9} \\
& g_{7}(x)=g(x) X^{768}=X^{1}+X^{2}+X^{3}+X^{4} \\
& g_{8}(x)=g(x) X^{89}=X^{1}+X^{7}+X^{8}+X^{9}+X^{10}
\end{aligned}
$$

These polynomials are realized in Figure 3A.14. To verify that the sequences are indeed shifted by the prescribed amounts, the cross-correlation of signal $g(x)$ with the output of the phase multiplexed generator is shown in Figure 3A.15. Note that the correlation peaks occur for lags of 0,128 , $256,384,512,640,768$, and 896 , as expected. Applying these 8 sequences to the system of Figure 3A. 8 results in a despreader output waveform similar to the one shown in Figure 3A.6c.

Summary

Determining the performance of a PMC operating in a CDMA environment is no easy task, particularly when the near-far problem is considered. Equations (9) and (10) are indicative of the complexities involved. These equations could be further enhanced by incorporating the following features: individual carrier frequencies for all users; random alignments between chips, bits, and the integration process; and differing chip sizes among the spreaders. Inclusion of these items would make the results more realistic, but, would not change performance trends. For simplicity, they were omitted. To graphically illustrate system tendencies for various scenarios, many examples were given. For instance, Figures 3A.9-3A. 11 show that a virtually unbounded number of phases is allowed at the PMG if only one transmitter is used. Once additional users appear, however, signal degradation prevails, see Figure 3A.12b. Near-far considerations drop the efficiency even further, as shown in Figure 3A.13. Of course, the PMC is not the only technique plagued by the effects of CDMA. The CSC also suffers from it. Figure 3 A .5 shows that under the given conditions, 28 users are allowed and Figure 3A. 4 proves that a nonlinear decline to nine users (equivalent to nine) occurs

Figure 3A. 14 Multiple PN Sequence Generator.

Figure 3A. 15 Sum of Multiple PN Sequences and their Cross-correlation
when one of the transmitters is boosted to six times the amplitude of the others. While the CSC is shown to perform better than the PMC, it must be pointed out that the PMC concedes to sacrificing accuracy for speed. The PMC is a relatively new design that is still under development. Further improvements should make it a viable technique for rapid acquisition.

As a final comment, this paper confirms that SPW is well suited for spread spectrum simulation.

References

[1] Comdisco Systems, Inc., Signal Processing Worksystem, Software Documentation, Product Number SPW1080, Version 2.7, August 1990.
[2] R. Skaug and J. F. Hjelmstad, SPREAD SPECTRUM IN COMMUNICATION. London, UK: Peter Peregrinus Ltd., 1985.
[3] R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, "Theory of Spread-Spectrum Communications - A Tutorial", IEEE Trans. Comm., vol COM-30, May 1982.
[4] R. C. Dixon, SPREAD SPECTRUM SYSTEMS. New York: Wiley-Interscience, 1984.
[5] G. S. Rawlins, "A RAPID ACQUISITION TECHNIQUE FOR DIRECT SEQUENCE SPREAD SPECTRUM SYSTEMS BY A PN PHASE MULTIPLEXED CORRELATOR." Master's Thesis, University of Central Florida, Orlando, Florida, 1987.

[^0]:

[^1]: MUST ENTEF: AT LEAST ONE FREQUENI:Y ***

[^2]: Table 1.4 GEMACS input file for a cube to be run using GTD at 9 GHz

