
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-1991

Functional Specification And Implemented Capabilities Of The IST Functional Specification And Implemented Capabilities Of The IST

Semi-automated Dismounted Infantry System Semi-automated Dismounted Infantry System

Mikel D. Petty

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Petty, Mikel D., "Functional Specification And Implemented Capabilities Of The IST Semi-automated
Dismounted Infantry System" (1991). Institute for Simulation and Training. 101.
https://stars.library.ucf.edu/istlibrary/101

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/101?utm_source=stars.library.ucf.edu%2Fistlibrary%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

------------------------...........
I
I
I
I
I
}

I
I
I
I
I
I
I
I
I
I
I
I
I
=

~ -

B 2))

May 1991

Functional Specification and
Implemented Capabilities of the
1ST Semi-Automated Forces
Dismounted Infantry System

Mikel D. Petty· Clark R. Karr . David R. Van Brackle
Donald O. Cross· Robert W. Franceschini· Gilbert L. Gonzalez

Institute for Simulation and Training
12424 Research Parkway, Suite 300
Orlando FL 23826

University of Central Florida
Division of Sponsored ROSOBfCh

1ST· TR-91-20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

INST I TUT E F OR SI M UL A T ION A ND TR A INING

Functional Specification and
Implemented Capabilities of the

1ST Semi-Automated Dismounted
Infantry System

May 1991

IST-TI<-91-20

Prepared by ~ D p~
Mikel O. PeHy • Clark R. Karr • Oavid A. Van Si'aclde

Donald 0 _ Cross • Roben W. Franceschini • Gilben L. Gonzalez

Insli1Uleior Simulation and Training. 12424 Research Parkway. Suite 300 • Orlando, Florida 32826

University of central Fk)rlda • Division of Sponsored Research

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2 1

Instit u t e for Simulation a nd Training
Intelligent Simulated Forces

Functi onal Specification and Implemente d Capabi lities ot the
1ST semi-Automated Forces Di smounte d Infantry s ystem

1ST Technical Report I ST- TR- 91-20

Mikel O. Petty
Clark R. Kar r
David R. Van Br ackle
Donald D. Cross
Robert W. Franceschini
Gilbert L. Gonzalez

1 June 1991

1

I
I
I 1

I
I

2

I
I
I
I
I
I
I
I
I
I

3

I
I
I
I

Table of contents

Introduction .
1.1
1.2
1.2
1.3

Purpose
SIMNET and the 1ST SAFOR Testbed
Semi-Automated Forces Dismounted Infantry
Structure of this Report

SAFOI Overview ••• • •••••••••••••••••••
2.1 SAFDI Functional Specification

2.2

2 . 1.1 SAFD! Impl e mentation Levels
2.1. 1.1 Scouts •.•
2.1. 1 .2 Mechanized Infantry • •
2.1. 1. 3 Smarts
2.1.1.4 Units • • • • • • •

•

2.1.2 SAFDI Capabil ities •

User
2. 2 .1

2. 1.2.1 Basic capabilities
2.1.2.2 Capabilities and Commands

Interface Specification
Functional Specification
2.2 .1.1 Screen

2.2.1.2

2.2.1.3

2.2.1.1.1
2.2.1.1.2
2.2.1.1.3
2 . 2.1.1.4

Map Pane
Entity Icon
Message Pane
Text Pane

Entities

•
Pane

2.2.1.2.1 Pending Enti t ies
2.2.1.2.2 Contro lled Entities
2.2.1.2.3 Other Entities
Use r Input• •
2.2.1.3.1 Keyboard Commands
2.2.1.3.2 Mouse Commands
2.2.1 . 3.3 Hot Keys

•

2 .2. 1.3.4 Immediate Action Keys
2 . 2. 1.4 User Commands••

•

2.2.1.4.1 Command Structure
2.2.1.4.2 User Interface Commands

•
•

••••••• •

•

•

••••

2.2 .1.4 .2.1 Entity Change Commands
2 . 2 . 1 . 4.2 . 2 Entity Status Commands
2.2.1.4.2.3 Entity Order Commands
2 . 2 . 1 . 4.2.4 Entity GoTo Command
2.2.1.4 . 2 . 5 Map Commands
2 . 2 .1. 4.2 . 6 List Commands
2.2.1.4.2.7 Master Commands • • •

SAFDI Technical Description
3.1 SAFDI I mplementation

3.1.1 Definitions
3.1.2 SAFDI fireteam attributes

•

3 .1. 3 Sighting and Fireteam Destruction Reports
3.1.3 .1 Terrain Database••••

••

• •

•
3. 1.3.2 General Line of Sight ••...•..•••• •

3. 1.3. 2 .1 Intersecting LOS with land polygons
3 .1. 3 . 2.2 I ntersecting LOS wi th treelines • • ••

2

•
4
4
4

• 6

8
8
8
8
8
8
8
9
9

11
12
12
12
12
13
13
13
13
14
14
14
14
15
15
15
15
16
16
21
21
22
22
23
23
25
26

28
28
28
28
28
29
30
30
30

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.1.3.2.3
SAFD!

Intersecting
Line of Sight

LOS with canopies

3.2

3.3

3.4
3.5
3.6

3.1.3.3
3.1.3.3.1 Line of Sight Algorithm

3.1. 4
3.1. 5

3.1.3.3.2 Line Intersection Algorithm
Implied posture changes
SAFO! Combat
3.1.5.1 ATGM Firing

Small arms firing 3 .1. 5.2
3.1.5.3 Receiving small arms fire
3.1.5.4 Receiving other direct fire
Ammunition Resupply

•

3.1.6
3. 1.7 Finite State Machine Transition Diagrams

3.1.7 .1 ATGM Firing
3.1 . 7 .2 Load Smal l Arms
3 . 1.7 . 3 Mount and Dismount

User Interface Specification
3.2.1 Data St ructures

3.2. 1.1 Entity

•
•

• •
•

•
3.2.1.2 Hash Table and Functions
3.2.1.3 Pending and Controlled
3.2.1.4 Maintaining the Map

Entity Lists

3.2.2 Interface OFA
Prompt
Handlers

3.2.2.1
3.2.2.2
3.2.2.3 Gate
3.2.2.4 Mouse State
3.2.2.5 Action

3.2.3 Main Task Loop
3.2 .3.1 Ethernet

•••

•

•

• •
•

3.2.3.2 Dead Reckoning and Screen Updates
3.2.3.3 Serial Port, Keyboard, and Mouse

3.2 .4
3.2.5

Mouse Objects and Structures • •••••
User Interface to Simulator mapping
3.2.5.1 Entity Change Commands
3.2.5.2 Entity Status Commands.

••
••• •

• • • • •

3.2.5.3 Entity Order Commands
3.2 .5. 4 Entity GoTo Command
3.2 . 5.5 Map Commands •••
3.2.5.6 List Commands ••
3.2.5.7 Master Comma nds • • • •

Terrain Database ••• •••••••• •••
3.3.1 Terrain Database Interface ••• •

•

SAFDI and User Interface Hardware Configuration
Current Limitations ••••••••••
Next Phase Tasks ••• ••••• •

• •

••••
•

• •••
• • • •

• ••

•

•

•

•

• •
• •

• ••

•
•

•

4 References and Bib1ioqraphy
A Append.ices

A.l SALUTE Report Format . • •
A.2 U.S. Mechanized Infantry Platoon •
A.3 Summary of April 10, 1991 SAFDI Demonstration • •

3

30
31
31
32

34
34 -
34
37
37
38
39
39
40
41
41
42
42
42
43
43
44
44
45
45
46
47
47
47
47
48
48
52
52
53
53
53
54
56
57
58
58
60
61
62

64

68
69
70

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1. Introduction

1 . 1 purpose
This document is the interim technical report required as contract
deliverable SA under Workplan 4, dated 4 January 1991, of DARPA
contract N61339-89-C- 004 (Intelligent Simulated Forces: Evaluation
and Exploration of Computational and Hardware Strategies). This
report describes the Semi - Autonomous Forces Dismounted Infantry
(SAFD!) project, which is a subtask of t hat contract.

1 . 2 SIMNET and the 1ST SAFOR Testbed
The U. S. Army/ DARPA SIMNET is a well - known distributed interactive
simulation system. In SIMNET, individual vehicle simulators are
connected via a computer network, permitting them to coexist in a
cornmon, shared simulation environment and to interact (e.g. engage
in combat) through the exchange of network packets. SIMNET is used
to train tank and vehicle crews in cooperative team t actics. (The
documentation of SIMNET is extensive: Thorpe{1987] and Pope[1989)
are good examp les.)

In a SIMNET exercise, the simulated battlefield opponent (or
"opposing force") for the trainees can be provided in two different
ways. One technique is for instructors to operate vehicle
simulators similar to those used by the trainees. The instructors
are trained to behave in a way that simulates threat doctrine.
This method is expensive in terms of both manpower and equipment.
The second technique is to provide a simulator node that generates
and controls one or more simulation entities on the network with a
computer system (and possibly one or more human operators). Such a
computer generated opposing force is usually referred to as a semi
automated force (SAFOR). The SIMNET SAFOR system was implemented
by BBN Systems and Technologies and is described in Downes
Martin [l 990] and Crooks [l990]. The BBN SAFOR system uses two
minicomputers and a single human oper ator to generate and control
up to approximately 40 vehicles.

Under the Intelligent Simulated Forces (ISF) contract, the
Institute for Simulation and Training (1ST) has been conducting
research in the area of SAFOR systems . 1ST has developed a S1MNET
compatible SAFOR testbed, which is a SA FOR system that connects to
the SIMNET network and provides a mechanism for testing SA FOR
control algorithms. Using the testbed, 1ST has tested the
applicability of various artificial intelligence techniques to
SAFOR systems. The 1ST SAFOR testbed i s documented in
Danisas[l990] and Gonzalez[1990b]. 1ST ' s artificial intelligence
investigations are described in Coleman[1990] and Clarke[l99l].

1.3 Semi-Au tomated Forces Dismounted Inrantry
Dismounted infantry is conspicuously absent from the SIMNET
battlefield . Although the SIMNET network protocols and image
generators include the necessary features to represent and display
dismounted infa ntry units, the BBN SA FOR system does not generate
them. The manned dismounted infantry workstation developed by BBN
Fraser [l990] is interesting but impractical for the large numbers

4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

of infantry needed to populate the SIMNET battlefield
realistically. Consequently, the SIMNET armor trainees train in an
environment in which they are free to drive about the battlefield
oblivious to the serious threat posed by infantry. Infantry are
especially dangerous because they are are hard to see and are armed
with powerful anti-tank guided missiles . The retraining
necessitated by this unrealistic environment complicates the entire
training process and reduces the effectiveness of the SIMNET
environment as a training tool.

As a means to provide both a needed enhancement to SIMNET training
and a demonstration of the capabilities of the 1ST SAFaR Testbed,
1ST was asked to produce a SAFOR system capable of generating and
controlling semi - automated forces dismounted infantry (SAF01) in
the SIMNET battlefield. This SAFOI project was undertaken by 1ST
within the context of the ISF contract.

The 1ST SAFOI system adds the functionality of dismounted infantry
to the SIMNET battlefield. The SAFOI system is composed of two
components: a Simulator component and a User Interface. The
Simulator component consists of the programs and data structures
that implement Dismounted Infantry within the SIMNET environment.
The Simulator is a version of the 1ST SAFOR Testbed enhanced with
many capabilities specific to dismounted infantry. The User
Interface is a separate computer system with which an operator
issues commands and instructions to the Simulator. The Simulator,
in turn, is responsible for carrying out those instructions within
the SIMNET environment.

Within the SIMNET environment, SAFOI fireteams generated by the 1ST
SAFOI system have a substantial set of capabilities. They can:

sight activity within Line of Sight
report sighting to operator via the User Interface
kill enemy infantry and vehicles
mount and dismount APes

• be seen according to visual range and posture
• be killed

change visual appearance based on posture
change movement speed.

The entities controlled by the SAFOI system represent a generic
five man fireteam; the structure of that fireteam is given in
Appendix A.2. These entities are fully functional in the SIMNET
environment in that the SAFOI system generates and accepts standard
SIMNET PDUs, allowing the SAFOI fireteams to interact with the
entities on the SIMNET network.

In summary, SAFDI fireteams move, change posture, detect enemy
entities, report enemy units to the operator, fire weapons, can be
killed by enemy fire, and mount and dismount vehicles. These
behaviors, with the exception of being killed, are initiated by
commands from the operator via the User Interface . Each behavior
may consist of several steps and decision points which are

5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

performed automatically by the Simulator without operator
intervention . Investigations are underway that address the issues
of automating more complex behaviors and decision making
activities.

As indicated earlier, the SAFDI project has two goals . First, the
project serves as a demonstration and test application for the 1ST
SAFOR Testbed. Second, the SAFDI project adds to the SIMNET
environment a cost effective dismounted infantry component of
computer generated and controlled forces. To be useful in the
SIMNET environment, the SAFDI entities (fireteams) must behave
realistically . This requires modeling hUman decision making
capabilities and command, control, and communication mechanisms.
This report documents the current ability to model such behaviors
in the SIMNET environment.

1.4 structure ot thi s Report
Section 2 of this Technical Report describes the functional
specification and implemented capabilities of the SAFDI system and
its components, as of the report date. No technical knowledge is
assumed or required for understanding Section 2.

Section 3 provides technical details of the implementation. It is
intended as an more detailed discussion of the design and
implementation issues of the system. The reader is assumed to have
some knowledge of computer programming and algorithm design.

The Appendices contain supplemental technical detail, and a report
of the initial functionality demonstration of the SAFDI system .

6

I
I
I
I
I section 2

I SAFDI overview

I
I
I
I
I
I
I
I
I
I
I
I
I 7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2. SAFor ov e rview

This section provides a overview of the current capabilities (as of
the report date) of the 1ST SAFDI system. The SAFDI system is
composed of two major sUbsystems: t he SAFOI Simulator and t he User
Int erface. section 2. 1 describes t he SAFOI Simulator. section 2.2
describes the User I nterface.

2 . 1 SAFor simulator specifi cation
The SAFDI simulation module provides t he func t ional capabilities o f
SAFO! f i reteams in the SIMNET battlefield.

2 . 1.1SAFDI Implementation Levels
The implementation p l an calls fo r SAFDI capabi l i t i e s and
commands to be imp lemented i n four levels , each intended to
provide a coherent set of functionality. The levels a r e:
scouts, mechanized infantry . smart s, and units .

2.1.1 . 1 Scouts
SAFOI f i reteams appear on the battlefield and can serve as
scouts under the direct control of the operator. They are
harmless and invulnerable. They serve to demonstrate the
ability to create and move SAFO! fireteams in the SIMNET
battlefield.

2 . 1.1 . 2 Mechanized In f antry
SAFDI fireteams can move, fire weapons, be killed, mount APes,
and dismount from them. They are fully functional but require
an operator to initiate and control their behavior. This is
the current level of functionality .

Two additional levels of functionality are planned for follow- on
phases of this project .

2 . 1 . 1.3 Smarts
At this level , route planning, hiding, and limited recon
behaviors are added to the SAFOI repertoire as automatic
behaviors not requiring operator initiation and cont rol.

2 . 1.1.4 Un i ts
SAFO! platoons and companies may b e defined. Order s given t o
higher leve l units are implemented as sets of orders which are
passed to appropriate subunits . Or ders given to u nits may be
r evised or expanded by the Simulator as they are passed t o
subunit s.

8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.1 .2 SAFOI Capabilities
This section lists SAFOI capabilities and briefly indicates the
program activities required for that capability. Note that some
capabilities are partially implemented as stated. Follow-on
phases of this project will deal with a more complete
implementation of them. Unless stated otherwise, the following
capabilities are implemented.

2 . 1 .2. 1Basic c a p abi l i ties
Colonel L. Mengel (TSM SIMNET, Ft. Knox) l isted the following
capabilities as the minimum required in any usable SAFOr
system.

Report activity within Line of Sight (LOS).
Using the SIMNET terrain database and a LOS algorithm
developed at 1ST, each SAFDI fireteam determines which
enemy entities can be seen. The Simulator generates
sighting reports for sighted entities which are passed to
the User Interface and displayed in the User Interface
message area (in SALUTE format) .

communicate with higher headquarters.
Currently, onl y communication between the operator and
individual fireteams is supported. Commands from the
SAFDI operator are r outed to the SAFDI fireteam.
Messages from the fireteam are routed t o the operator.
In later i mplement a tion l evels, commands from the
operator to platoon and company levels units will be
converted to the appropriate commands to the subunits and
communica t ed t o them a utomatically.

Kill enemy infantry and vehicles .
The Simulator selects targets for each fireteam from
among the visible enemy entities based on that fireteam's
rules of engagement and firing priorities. It calculates
firing and i mpact probabi l i ties, generates fi r e and
impact messages (S IMNET PDUs), and tracks ammunition
e xpenditure.

Be killed .
The Simulator receives and processes impact messages sent
to i ndividual SAFDI fireteams and assesses damage
appropriately . SAFDI fireteams are suffer losses
incrementally (i . e . man by man) based on the
effectiveness of received fi r e . Currently on l y direct
fire is considered. The effect of indirect fire is being
implemented .

Mount and dismount APCs.
SAFDI fireteams mount nearby APes when given mount
commands. The mounted fireteams disappear from view and
accompany t he APC as it moves. Mounted SAFDI fireteams
reappear on the battlefield at the loc ation of the APC
when they receive a dismount command.

9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Be seen according to visual range and posture.
Part of a SAFDI fireteam's appearance message is an
indicator of the fireteam ' s posture; different icons are
displayed by SIMNET image generators for each posture.
Currently, a single icon represents a SAFDI fireteam.

Change speed
A SAFDr fireteam's rate of movement is based on its speed
setting, the posture of the fireteam, and terrain being
covered. An additional factor to consider is the
exhaustion level of the firetearn. Currently, exhaustion
is not a component of SAFDI rate determination.

10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.1.2.2 Capabilities and Commands
The following table displays the capabilities and commands to
be implemented at each level. The levelland 2 capabilities
and commands have been implemented. A capability implemented
at one level are available at all higher levels.

Table 1 - Capabilities and Commands

Levels: 1 Scouts 2 Mech Inf 3 Smarts 4 Units

CaQabilities
Report Activity X
Communicate X
Kill X
Be Killed X E
Mount and Dismount X
Be Seen X
Change Speed X E
Troop quality X
Visual appearance X

Commands
Halt X E
Change Speed X E
Change Formation X
Follow Vehicle X E
Resume X E
Resume All Subordinates X
Rejoin Unit X
Change Direction X
Se t Rules of Engagement X E
Resupply X E
Report status X E
Mount X E
Dismount X
Change Posture X E
Set Firing Priorities X E
Select X E
Create X E
Remove X E
Beam X E
Reset X E
Clear X
Load X
Save X
Go To Avoiding Obstacles X E
Go To Using Cover X E
Go To Recon X E
Go To Hidden Position X E
Merge X

X: implemented at this level E : Enhanced at this level

11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.2. User Interface specification
This section describes the User Interface component of the 1ST
SAFDI system.

2.2.1 Functional Specification
The User Interface provides the user with the ability to create
and control simulated entities in the SIMNET environment. It
does not actually control the entities--rather, the user's
commands are communicated to the Simulator machine, which
executes them. The User Interface machine acts purely as a front
end to the Simulator machine. This design was chosen so that the
User Interface could be developed somewhat independently of the
Simulator, and so that much of the resource-consuming tasks
associated with a user interface could be off-loaded from the
Simulator, leaving more of its resources available for
simulation.

2 • 2 • 1. 1 Screen
The User Interface screen is divided into four distinct areas
(panes) : the Map Pane, the Entity Icon Pane, the Message Pane,
and the Text Pane. Each pane has a different colored
background so it may be identified by color.

Map Pane Entity Icon Pane

white

green

Message Pane

black

Text Pane
blue

Figure 1 - Screen Layout

2 . 2.1.1.1 Map Pane
The Map Pane is a SIMNET plan view display showing a portion
of the map of the area of operations. It starts in the
upper left corner and takes up most of the screen. Its
background is a green pattern. The Map Pane displays a
rectangular section of the map represented in the SIMNET

12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

terrain database. How large a section is displayed depends
on the scale of the display which may be changed by the
operator. The section of the map that is being displayed
may be changed by the operator so that the entire area of
operations may be seen. The Map Pane displays all terrain
features and a ll entities within the area represented by the
map. The displayed entities include all the fireteams
controlled by the SAFDI system and any other entities on the
network. In addition , it may opt ionally display map
gridlines, contour lines and SIMNET database polygon
boundaries.

2 . 2.1.1.2 Enti ty leon Pan.
The Entity Icon Pane is in the upper right corner of the
screen, and has a white background. It displays an icon for
eve ry entity created or pending creation. This is for use
with the Mouse Interface; to give a entity an order, the
user may "click" on its icon. The Entity Icon Pane is
divided vertically into two halves--the left half is for
entities controlled by the Simulator, and the right half is
for entities pending creation. A row of icons occurs at the
bottom of the Entity Icon Pane. These icons activate
operations concerning the Map Pane and the List Pane and
operations controlling the Simulator. These operations are
described below in Section 2.2. 1.4 .2.

2.2.1.1.3 Message Pane
The Message Pane is a generic scrolling information window.
It is in the lower right corner of the screen , and has a
black background. The Message Pane is primarily for
displaying messages from entities to the operator. This is
where sighting reports and status reports appea r.

2.2.1.1.4 Text Pane
The Text Pane is in the lower left corner of the screen , and
has a blue background . The Text Pane is primarily for text
interaction with the operator. In this pane appears the
text of any command being formed by the user . Also in this
pane are prompts for the next input, and certain error
messages .

2.2.1.2 Enti t ies
There are three classes of entities within the User Interface:
Pending, Controlled and Other. (In the current SAFDI syst em ,
these ent ities may be dismounted infantry fireteams as well as
any other vehicle or object type in the SIMNET protocol. The
final version of the 1ST SAFDI system will be limited to
dismounted infantry fireteams only.) The Pending and
Controlled classes both describe entities controlled by the
Simulator which is attached to the User Interface. The Other
class describes entities controlled by other simulators. All
entities appear on the map with an appropriate background
color: blue for U.S., red for USSR , black for unknown

13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

alignment. In addition, the vehicle type of each entity is
indicated by a unique symbol.

2.2.1.2.1 pending En t i t i es
Pending entities are entities which are known only to the
User Interface. They are not known to the Simulator or any
other device on SIMNET. This class exists in order t o allow
all elements of a large scenario t o be created
simul t aneously . The user may add or remove entit ies from
the Pending List, and then may create them all
simultaneously .

Pend i ng entities appear in the Map with yellow highlighting.
Their icons appear on the right side of the Entity Icon
Pane , which is the Pending List side . Pending entities may
NOT be given orders, since they have not yet been placed in
the SIMNET environment.

2 . 2. 1. 2 .2 Controll e d Ent i t ies
Controlled entities are entities that are controlled by the
Simulator to which the User Interface is attached. Once a
Pending entity is created, it becomes a Controlled entity .
controlled entities normally appear on the map with white
highlighting, although it may be red if the entity is
firing, or grey if the entity is destroyed. Its User
Interface name will always appear to the right of the
entity's icon on the map . Controlled entity icons appear on
the left side of the Entity Icon Pane . Controlled entities
MAY be given orders by the User Interface.

2 . 2 .1 . 2 . 3 Other Ent i t i es
Other entities are entities on SIMNET not unde r the control
of the Simulator to which the User Interface is attached .
They appear on the map with the same color scheme as
Controlled entities (normally white, r ed if fi r ing, grey if
destroyed), but they can be distinguished from Controlled
entities because they do not have names. Other entities do
not appear in the Entity Icon Pane, and may NOT be given
orders.

2.2 . 1. 3 User Input
There are two main ways for the User t o provide input to the
User Interface: the keyboard and t he mouse . There is a menu
system to which the user may provide input by typing the name,
of a entity or command , or by clicking t he mouse o n a menu
item. A single menu is visible at anyone time. The menu
contains all the options available to the User at that time.
The menu changes as the User selects options. The t ext and
mouse interfaces are integrated so that the u ser may u se
either at any time for any part of a command . There a r e also
certain "Immediate Action Keys " which immediately perform
functions outside of the structure of the menu syst em.

14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

To give a entity an order, the user first specifies the name
of the entity and then gives it a command. The name can be
specified either with the keyboard or by clicking one of the
entity ' s icons with the mouse. The user may click either the
entity's icon in the Map Pane or its icon in the Entity Icon
Pane.

In addition, there are three other icons representing Hap
commands, List commands and Simulator controller commands
(called Master commands). Each of these command sets can be
specified either by name using the keyboard or by clicking its
icon with the mouse. The Map commands control the display of
the Map. The List commands control the list of pending
entities. The Master commands are powerful commands for
scenario manipulation which an ordinary user shouldn ' t have
access to; they require a password.

2. 2 . 1.3 .1 Keyboard Commands
SAFDI commands may be entered via the keyboard. The
commands appear in the Text Pane as they are entered. All
of the SAFDI commands h ave the following format:

<Entity> <Verb> <Parameterl> <Pa rameter2 > •.•

The following are sample commands:

alpha Change Posture Kneeling
bravo GoTo AvoidObs ToLocation 40500 39975
charlie status Report
delta Change Speed Double

Text typed at the keyboard is accepted character by
character, and displayed on the screen in the Text Pane.
The use of "Hot Keysll (see section 2.2.1.3.3 below) allows
the user to specify entire words with individual keypresses.
Ho t Keys cause entire words to be displayed in the Text
Pane. Spaces separate parts of a command and Return/Enter
executes a command.

15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.2.1.3.2 Mouse Commands
The mouse may be used in place of or in combination with the
keyboard for entering commands. The basic mouse operation
by the user is to move the pointer on top of the item to be
selected or map location and clicking the mouse button. The
mouse may be used in three distinct ways:

1. The mouse may be used to identify entities in the
Map and Entity Icon Panes by moving the pointer on top
of the entity's icon and pressing (clicking) the mouse
button.

2. The mouse may be used to identify both points and
directions o n map by clicking within the Map Pane.

3. The mouse may also be used to identify verbs and
options in the pop-up menus .

For example,
3 steps:

a command can be fully given with the mouse in

(1)
(2)
(3)

Click a entity in the Map or Entity Icon Panes.
Click a verb from a menu.
Click in the Map Pane to indicate location
or direction.

Mouse clicks have different meanings in different states and
different locations on the screen. The mouse interface is
designed so that its use is quite intuitive--a "point and
shootll approach.

2.2.1.3.3 Hot Keys
A Hot Key for a menu option is a character which when hit
will be accepted for that menu option. Each menu option has
a hot key defined for it. The hot key for each option is
the highlighted character within the option name on the pop
up menu. Use of the hot keys allows rapid command input by
reducing the number of keystrokes required to enter a
command .

2.2.1.3.4 Immediate Action Keys
The are also certain keys or key combinations which
immediately perform functions outside the structure of the
menu system. These immediate action keys are accepted and
processed immediately. Thus, they can be used in the middle
of typing commands. Hot keys include the arrows for moving
around the map and ESC for halting the program.

16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2 • 2 • 1. 4 User Commands
This section describes in detail the SAFDI command structure.

2.2.1.4.1 Command structure
This section displays graphically the command s tructure
built into the User Interface. The operator builds each
command by repeatedly specifying a component of the command.
A component can be specified via text input through the
keyboard or by selecting options fr om a menu of options
through mouse clicKs or hot keys . The menu of opt ions
changes as the operator builds the command to reflect what
options are available at the current stage of building the
command. The User Interface provides context-sensitive
submenus and prompts to assist the use r in producing a valid
command.

Key to Command structure Diagra m
c hange

entity_id
--> 1

menu option, selected by pressing bold
character or mouse clicking menu option
parameter
from-connector; continue this command at
to-connector 1

1>-- to- connector; this command continued from
from - connector 1

xxx [O . . 500] valid values are integers in this range for

(8)

)(MAX

YMAX
»

option "XXX"
valid va lues are strings of this length

without spaces
maximum X coordinate
maximum y coordinate
prompt in Text Pa ne;

of terrain map
of t errain map
ready for user

Command Structure Diagram

»-----------r------->entity_id
i----->Map
i---->List
L---->Master

continued on next page

17

input

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Command Structure Diagram continued

1 >----------~--~s~p~e~e~d!------~E--:stoP
Normal
DQuble
Max

~==~D~ijr~e~eSt~1~·o~n~==r===directiOn[O .. 360] r RulesEng L~ L HoldFire
PlreAtwl11--range[O .. 2000]

Posture

s mallArrns-r=HoldFire
FireAtWill --range[O .. 2000)

cstanding
Kneeling
Prone

FIrepriorE3a0ff§k anff§anff§ank APC APC ~ ~
thv thV thV thV

DInt DInt DInt DInf

2 >----------lE--~R~e~p~o~r~t
ReSupply
Mount
Dismount

3>·-----------no action implemented

4>·--------->x loe [0 . . XMAX)-----------y_loe [0 .. YMAX)

continued on next page

18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Command Structure Diagram continued

CenterAt x_coord [0 . . XMAX]
~MoveCenter---x offset[-XMAX .. XMAX] ---
l-----Scale scale factor{SO .. 10000]
l-----MapUpdateRate rate[O .. 90]

VehDynupdateRate rate[O .. 5000)
~DeadReckUpdateRate rate[O .. 5000]
l-----RunScriptFile DOS fi l e name -!---Polygons E TOggle

Hide
Show

l-----Oebug Ethernet
Noise

f---Mouse
f---ShowSerial
'--HideSerial
-Za:g~~rial

uietLOS
L---DynamicMemory

ontours oggle
f--lIide
f--Show

uerv
SetWidth

I---Gridlines E T?ggle
Hlde
Show

L--.Hames Toggle

continued on next page

19

y_ coord[O .. YMAX]
y_offset[- YMAX .. YMAX]

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Command structure Diagram continued

List,-.---Md--enti ty _id- r~:--.--Q!
1---111
I---m
1---111

ow
hlQ
APache
lCiowa
hDhTS

rue
wit'7~~-1-M977

2-M978
3-M88Al

-4-M47-
-5-M577
-6-M1943
- 7-M1Q9

8-M35A2
-'·S.9o~vji,""et.!t~ -T-QI
~ M72

Remove---entity ld
reateAll -

EmptyList
Files

I--IlTR
I--Jl!i!'
f--Hind

HaVoc
f--ZS U2J

ueK

6> x_ loe[O .. XMAX]--- y_loe[O . . YMAX]---direetion[O .• J60]

>6

E
Remove entity_id >7
Beam entitY_id---X_IOC[O .. XMAX] ---y_I OC[O.oYMAXl-1
Res et----entity_id .
STealth---r==Locate

Master

7 >·--------------password

c ilWt
Hide

20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2 . 2.1.4.2 User Interface Commands
This section describes the User Interface commands and their
implementation levels. Each command entry has these items:

UIC : User I nterface command
IL: Implementation Level

Command format key:
In UI C: e nt ity_id

Change
parameter
menu option, selected by

pressing highlighted charact er

The symbols () enclose the elements of a s et of
options.

The symbol I is u sed to separate the elements of a set
of options, exactly one of which should be chosen.

2.2.1.4.2.1 Entity Change Commands
Change Entity Speed

UIC: entity_id Change Speed (~ I NormalI Double I Rush)
IL: 1

Sets the entity's speed in meters/second. The speed is
found by accessing a 3D look-up tab le, with axes for
speed setting , posture, and terrain. The Simulator
should use the speed setting in the command, the posture
of the enti t y identified by entity_id, and the terrain of
that entity ' s c urrent location to set the entity' s speed.

Change
UI C:
IL:

Entity Direction
entity_id c hange
1

Direction h eading(O •• 360]

Changes the headi ng of entity_id .

Change Entity Rules o f Engagement
U1C: entity_id Change RulesEng (ATGM 1SrnallArms)

(Holdfire IFireAtWill) range[O . . 2000J
IL: 2

Sets ent ity_id ' s rules of engagement for the weapon
selected.

Change
UI C:
IL:

Entity Posture
entit y_id Change
1

Posture (Standing I I neelingl Prone)

Sets the D1 fireteam's posture. certain posture changes
are implied by other commands and actions; when the
Simu l ator performs these commands, the posture of the
fireteam is also af f ected.

21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Change
UIe:

IL:

Entity Firing Order
entity id Change FirePrior (Tank IAPC IOthVIDlnf)

(TanJil APe I OthV I DInt) (Ill.nlI I APe I OthV I DInt)
(Tan!> 1 APe OthV .!UD.1)

2

Set entity_id's target priorities. A target type can
appear only once in the list of priorities.

2.2 . 1.4.2.2 Entity Status Commands
Entity Status Report

VIC: entitY_id Status Report
IL: 1

The Simulator returns to the User Interface a message
containing all of the SAFDI firetearn attributes for
entity entity_id that are not available in an Appearance
POU. These attribues include Posture, Strength, ATGM
rounds, Small arms ammo, and Exhaustion level.

Entity
UIe:
IL:

status Resupply
entity_id sta tus

2
Resupply

Resupplies entity_id, if a supply source is available.

Entity
UIe:
IL:

Status Mount
entity_id status

2
Mount

Causes Simulator to mount fireteam entity id in vehicle
provided that fireteam is within legal mounting distance
and the vehicle allows 01 fireteams to mount them.

Entity
UIe:
IL:

Status Dismount
entity_id status
2

Dismount

Causes Simulator to dismount fireteam from vehicle.

2.2.1.4.2.3 Entity Order Commands
No entity order commands have been implemented at this stage
of the project . The development plan calls for the
implementation of entity commands in follow-on phases.
Typical unit commands are: Halt movement, Resume movement,
Follow vehicle, Separate subunit from unit, and Rejoin
subunit to unit.

22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.2.1 .4. 2. 4 Enti t y GoTe Command
Entity Order Movement

UIC : entity_id GaTo x_loc[O . . XMAXJ
y_loc(O .. YMAX)

IL: 1

Determines the route of travel using the current testbed
route planning algorithm, with the following
restrictions:

1. Buildings and non - fordable water are obstacles.
2. Treelines and fordable rivers are not obstacles.

2 .2. 1 . 4 . 2 . 5 Map Commands
Set Map Center

Ule: H2R CenterAt x_coord[O •• XMAX)
y_coord(O .. YMAX)

IL: 1

Centers the Map display at (x_coord, y_coord). The unit
of measure of x coord and y_coord is meters.

Map MoveCenter
UIC: ~ MoveCenter

IL: 1

x_offset(- XMAX .. XMAX)
y_offset(-YMAX .. YMAX)

Moves the Map center x offset horizontally and y offset
vertically. The unit of measure of x_of fs et and-y_offset
is meters.

Map Scale
UIC: Map Scale scale_factor[50 .. 10000]
IL: 1

Sets the Map display scale to scale factor. The u nit of
measure of scale_factor is meters.

Map Update Rate
UIC: ~ MapUpdateRate rate[O .. 90]
IL: 1

Sets the Map display rate. The unit of measure of rate
is IBM timer ticks which is 1/ 18.204 seconds or
approximately . 055 milliseconds.

Set Vehicle Dynamic Update Rate
UIC: Map VehoynUpdateRate rate{0 .. 5000]
IL: 1

Sets the dynamic entity appearance update rate. The unit
of measure of rate is IBM timer ticks which is 1/ 18.204
seconds or approximately .055 milliseconds.

23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

set Dead Reckoning Update Rate
UIC: H2Q DeadReckUpdateRate rate(O .. 5000]
IL: 1

Set the dead reckoning update rate.
of rate is IBM timer ticks which is
approximately .055 milliseconds.

The unit of measure
1/ 18 .204 seconds or

Run Script File
UIC: HAR RunscriptFile OOS file name
IL: 1

Runs the sequence of User Interface commands stored in
the file DOS file name.

Map Polygons
UIC: ~ Polygons (ToggleIHide l ~)
IL: 1

Controls the display of terrain polygons in the Map Pane.
The Toggle option changes the current setting. The Hide
option turns the display of terrain polygons off. The
Show option turns the display of terrain polygons on.

Programmers' Tools
UIC: Map Debug

IL: 1

(Ethernetl NoiselMousel ShQwSerial1
HideSerial] z apSerial ouietLOSI
DynamicMemory)

Activates vario us programmers' debugging tools. This
optio n will be removed in delivered systems.

Map Contours
UIC: Map Contours (Toggle!Mide !Show !Query !setWioth)
IL: 1

controls the display of elevation contours in the Map
Pane . The Toggle option changes the current setting.
The Hide option turns the display of elevation contours
off. The Show option turns the display of elevation
contours on. The Query option displays the current
setting of the elevation scale. The SetWidth option sets
the elevation scale which is the difference in elevation
between contour lines in the map display.

24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Map Guidelines
UIC: Map Guidelines (ToggleIHideIShow)
IL: 1

Controls the display of map 1 km gridlines in the Map
Pane. The Toggle option changes the current setting.
The Hide option turns the display of guidelines off. The
Show option turns the display of guidelines on.

Map Names
UIC: MAP Names (ToggleI HideIShow)
IL: 1

Controls the display of names of other SIMNET entities in
the Map Pane. The Toggle option changes the current
setting. The Hide option turns the display of names off.
The Show option turns the display of names on.

2.2.1.4.2.6 List Commands
Add Entity

UIC: List Add entity_id(8)

IL: 1

(US (DIIM1 1···) I
Soviet (DI IT72I ...))

Adds an entity of the type selected to the Pending List.

Remove
UIC:
IL:

Entity
List Remove
1

Removes a single entity from a Entity list.

Create All Entities
UIC: Li st Create
IL: 1

The Entities on the Pending List are moved to the
controlled List. Causes the Simulator to create all the
entities on the Pending List.

Remove
UIC:
IL:

Entire List
List EmptyList
1

Removes all entities from a Entity list.

List Files
UIC: List F iles DOS_file-path
IL: 1

Displays the names of the Entity Lists (files with a
".lst" extension) saved to the disk under the
sUbdirectory DOS_file-path.

25

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Load Entity List
UIe: List Load DOS_file name
IL: 1

Loads a Entity list from a disk file.

Save Entity List
Ule: ~ Save DOS_file_name
IL: 1

Save a Entity list to a disk file

2.2.1.4.2.7 Master Commands
Remove entity

Ule: Master Remove entity_id password
IL: 1

Removes entity from SIMNET network.

Change
UIC:

IL:

entity location
Kaster Beam entity_id

password
1

The Simulator resets the x and y coordinates for entity
entity_id to those given in the command. The entity's z
value is reset to match the current Above Ground Level
value. Any current GaTe command is cancelled. No other
attributes, including speed , and direction are affected.

Reset entity attributes
Ule: Master Reset entity_id password
IL: 1

The attributes of entity entity_id are set to their
respective reset values given in section 3.1.2.

Stealth
UIC:
IL:

commands
Kaster Stealth
1

(Locatel s howIHide)

The Locate option returns the current location of the
Stealth unit. The Show option displays a Stea l th icon in
the Map Pane indicating the Stealth ' s heading. The Hide
option turns off the display of the Stealth icon.

26

I
I
I
I
I Section 3

I SAFDI Technical Description

I
I
I
I
I
I
I
I
I
I
I
I
I 2 7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3 . SAFOI Techni cal De scri pti on
This section describes in technical detail the SAFDI and User
Interface Components .

3.1. SAFor I mplementat ion
This section describes in detail the SAFOI simul ator component .

3 .1 .1 Datin i t i ons
The following terms are used in this section. They are defined
here for reference.

vehicle number:
Integ-er in the range (O . . n], assigned sequentially to entities
created by the Simulator . App l ies t o 01 fireteams as well as
actual vehicles.

vehicle id:
SIMNET packet identifier consisting of three integers:
host, a nd vehicle . Applies to 01 fireteams as well as
vehicles.

entity_id:

site,
actual

User Interface entity name, assigned by SAFO! operator.
Consists of up to eight arbitrary characters, with spaces not
allowed.

3. 1. 2 SAFOI tireteam attributes
SAFDI fireteams have the following attributes, or values which
may change over the course of a simulation:

Attribute
x position
y position
z position
Roll
Pitch
Yaw
Posture
str ength (# of men)
ATGM rounds (Dragon)
Small arms ammo (%)
Exhaustion level (%)

Type and range
Float[O •• XMAX]
Float[O •• YMAX]
Float[O •• ZMAX]
Float[O]
Float[O]
Float[0 •• 2,,]
Char{s,k,p)
Integer (1 •. 5)
Integer[0 • • 2]
Integer[0 •• 100]
Integer[O •. lOO]

In itia l / reset
Given
Given
Calculated
Constant
Constant
Given
Given

5
2

100
100

3. 1 .3 s ight ing and Firet eam Destructi on Reports

value

In addition to the messages from t he Simulator to the User
Interface produced in response to the User Interface commands,
there are circumstances i n which the Simulator may i n itiate a
message. They are:

Sighting report:
When a SAFOI fireteam sights an enemy entity, the Simulator
passes the information necessary to produce a sighting report.
(See Section 3 . 1.3 .2 for a discussion of h ow sightings are

28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

determined.) The User Interface produces the sighting report
in the message pane in SALUTE format (see Appendix A.1).

Fireteam destruction:
When a SAFDI fireteam is hit by fire and destroyed, that
fireteam must be removed from the SAFDI operator ' s control.
The Simulator must pass a message to the User Interface
indicating the destruction of a fireteam and identifying the
fireteam with the vehicle number.

The reporting of sighted hostile entities is a critical SAFDI
function . The procedure for determining sightings is described
in the following sections.

3.1.3 . 1Terrain Databas.
The SAFOI Line of Sight (LOS) algorithm determines point-to
point LOS using the SIMNET terrain database. The LOS
calculation involves deciding whether the line between two
points is blocked by a feature of the terrain database. For
the purposes of the SAFDI system, we chose to consider three
main features which can block the LOS: elevat ion of the
terrain (e.g. mountains, hills, and valleys), treelines, and
canopies.

The terrain database is organized into blocks which represent
500 meter x 500 meter squares called patches. Each patch is
composed of 16 squares called grids. Both patches and grids
can be referenced by computing indices based on the world
coordinates of a point inside them.

Terrain is represented in the database as vertices, edges, and
polygons in the following manner. Each vertex is an entry in
a point array; the po i nt array holds the coordinates of all
vertices. Each edge is an entry in an edge array; the edge
array holds the indices into the vertex array of the edges '
vertices. Each polygon is an entry in a polygon array; the
polygon array holds the indices into the edge array of the
polygons' edges.

The elevation of the terrain is represented in the database by
polygons; the three dimensional vertices of each polygon are
used to compute the height of any point within the polygon .
Polygons are organized by their patch and grid locations.
Each edge structure has a code that tells which grids within
the patch contain that particular edge. Therefore, to check
whether the LOS is blocked by the elevation of the terra i n,
one must determine if the LOS intersects a polygon along the
LOS. The check for intersection is done by determining if the
LOS has a lower terrain height than the terrain height of any
edge the LOS crosses at the point the LOS crosses the edge .

The way to find all points of intersection of a line with a
polygon is to find the points of intersection, if any, of the
line with each edge of the polygon. Because the terrain

29

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

database contains a list of edges of polygons indexed by grid
location, it is not necessary to make reference to the list of
polygons in order to compute LOS. Instead, we compute the
intersections of all edges of polygons which are within the
grids containing the LOS with the LOS. This removes a level
of indirection and speeds the process of determining LOS.

3.1.3.2 General Line of Sight
The first task in determining Line of Sight (LOS) without the
SIMNET environment is to determine which patches and grids to
search for the possible polygon, treeline, and canopy
intersections with the LOS. In the SAFDI system, the patch
and grid indices are computed using Bresenham's algorithm (see
[Foley,1982]) in the following way: First, the patch and grid
indices are computed for the endpoints of the LOS. Then,
Bresenham's algorithm is used to determine all (patch, grid)
pairs which lie along the LOS. The result is a list of
(patch, grid) pairs which is then used to determine
intersections with the LOS.

3.1.3.2.1 Intersecting LOS with land polygons
The next step in determining LOS is to test whether the
elevation of the terrain blocks the LOS. This is
accomplished by testing each of the edges within the current
patch and grid (the line intersection algorithm used is
listed in the Section 3.1.3.3.2). The line intersection is
computed using (x,y) coordinates only . Then, the z
coordinates are calculated for the edge of the polygon and
the LOS, respectively, at that point. These z coordinates
determine whether the LOS is blocked . If the z value for
the polygon edge is higher than the z value for the LOS, the
LOS function immediately decides that the LOS is blocked,
and returns to its caller without further processing .

3.1.3.2.2 Intersecting LOS with treelines
After the land polygons are checked, the treelines which are
within the (patch , grid) pairs are checked to see whether
they block the LOS. Treelines are represented by a linked
list of three dimensional coordinates; the treeline extends
between these points. Further, the treelines have a
constant height above the ground. The approach used to
determine whether the treelines block the LOS involves first
computing the (x,y) intersection point of each treeline edge
with the LOS. The height of this point in the treeline is
computed as the height of the treeline plus the height of
the terrain. This is compared to the height of the point
along the LOS to determine whether the LOS is blocked. If
the LOS is blocked, the LOS function returns to its caller
without further processing.

3.1.3.2.3 Intersecting LOS with canopies
Canopies are represented in the terrain database as a
combination of a treeline (the border) and polygons (the
interior). So, the LOS test for a canopy involves combining

30

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

the steps outlined above for land polygons and treelines.
canopies are not organized by grids, just by patches.
Therefore, all canopies located within a patch through which
the LOS passes are checked.

3.1. 3.3 SAPo r Line o f siqbt
The algorithm detailed above provides a method of determining
the LOS between two points. In the SAFDI system, we need to
determine the LOS between several entities . This is done by
a function which provides the interface between the simulator
and the LOS function.

There were two goals for the LOS calculation of the SAFDI
system : efficien t execution time and avoiding repeated
sighting reports . An important goal of any LOS algorithm is
to minimize the amount of execution time required. One way to
accomplish this is to carefully monitor the number of times
the function for determining LOS is called. In reality,
sighting reports are only made once for a particular vehicle
while that vehicle remains in sight. So, another goal of the
simulation is to avoid repeated sighting reports .

Both of these goals are achieved in SAFDI using the concept of
a sightings list. Each entity maintains a linked list of the
other entities in the SIMNET battlefield which it has
previous ly sighted. The algorithm detailed below takes
advantage of this list in order to use a minimum amount of
time in the LOS function and to avoid repeated sighting
reports.

As a final note, each entity has an individual LOS update
rate, which can be modified by the user. This controls the
number of times that an update of the LOS list is performed on
a particular entity.

3 . 1.3 . 3 . 1 Line of Sight ~lqori thm
The Line of Sight algorithm is as follows:

for each SAFDI fireteam i
for each entity y in Si (current sightings list for i)

calculate LOS from i to y;
if LOS blocked & not seen for 60 seconds

remove y from Si
endif

endfor

X := set of entities Movable Objects Mqr is tracking
using its dead recKoning model;

X :- X - all entities in X more than 2000 meters from
X := X - all entities in X friendly to i;
X := X - all entities in X that are destroyed;
X := X - Si, the current sightings list for i

31

i;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

for each entity x in X
calculate LOS from i to x;
if LOS not blocked

add x to 5i
produce sighting message

endif
endfor

end for

The above algorithm makes use of the LOS check algorithm to
update the sightings list for a particular entity. There
are two main loops.

In the first loop, the current sightings list is checked for
entities which can no longer be seen. Entities which have
not been seen for 60 seconds or more are removed from the
current sightings list. However, entities which have been
sighted in the last 60 seconds but are now unsighted are
kept in the sightings list and marked as "unsighted
recently". This ensures that a new sighting report will not
be generated for an entity which temporarily passes behind
an object. Finally, the "unsighted-recently" mark is
removed from those entities which were previously marked as
unsighted (although not removed from the list) but are
sighted on this update. In other words, they disappeared
and then reappeared within 60 seconds, so the algorithm does
not issue another sighting report.

In the second loop, all entities in the current simulation
are placed in a list if they are within the range of vision
of the entity doing the sighting. This range is taken to be
2000 meters in the SAFDI system. This list is then
subjected t o several filters. First, all entities are
removed from this list which are friendly to the sighting
entity (i.e. from the same country). Next, all entities are
removed from the list which have been destroyed. Finally,
all entities are removed from this list which are already in
the sightings list. The LOS is computed for each entity
remaining in this list, and the sightings list is updated
appropriately. If a entity is sighted in this step, a
sighting report is generated and sent to the user interface.

3 . 1.3 . 3 . 2 Line Intersection Algorithm
This algorithm determines whether the line segments I and m
(defined by coordinates (lxl, lyl) --> (lx2, ly2) and
(mxl, myl) --> (mx2, my2)) intersect. If so, the
intersection point can be determined based on the values
found as the result of computing parameters tl and t2, as
well as determinant D. If the lines are coincident, this
fact is r eturned to be dealt with by the caller.

32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Line of Sight Algorithm is as follows:

Method: Parameterize the line segments as follows:

1: <x, y> ~ <lXI, lyl> + tl* <ldx, Idy>
m: <x, y > ~ <mxl, myl > + t2* <mdx, mdy>

where Idx ~ lx2-!xl,
Idy ~ ly2-1yl,
rndx ~ mx2-mxl,
rndy ~ my2 - myl,
0 <~ tl <~ 1,

and 0 <~ t2 <~ 1.

Rewrite these equations into 2 equations with (tI, t2) as
the solution by setting the XiS and y's equal:

Idx*tl - mdx*t2 = mxl-l x l
Idy*tl - mdy*t2 = myl-lyl

Using Cramer's rule, define 0, tI, and t 2 as foll ows:

Idx - mdx
D ~

1dy - mdy

dx - mdx
tl ~

dy -mdy

Idx dx
t 2 ~

1dy dy

where dx = mxl - lxl,
and dy = myl-lyl.

Then, the two line segments intersect if

o <= tl <= 0 and 0 <- t2 <- 0
o <- tl <= 0 and 0 <= t2 <= 0

(ifD>O)
(ifD<O)

The point of intersection can be calculated by using the
original equations for 1 and m. However, it should be noted
that the tl and t2 values calculated above need to be scaled
by 0 (tl = ti/ D and t2 = t2/ D) in order to use them in the
equations for land/ or m.

One final note:
coincident if D

the lines
= 0 and tl

33

are
~ 0

parallel
(t 2 will

if 0 = O. They
also be 0).

are

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.1.4 Implied Posture Chanqes
The posture of a SAFO! fireteam may be changed explicitly by a
Change Posture order from the SAFDI operator . In addition to an
explicit order, certain simulation events cause a SAFDI fireteam
to change its posture. A SAFDI fireteam must be kneeling to fire
an ATGM. If a fireteam is ordered to fire an ATGM while not
kneeling , the fireteam will assume a kneeling position during the
entire fire ATGM sequence (see s ection 3.1.5.1 below) and resume
its initial posture at the end of the firing sequence. SAFO!
fireteams assume a standing posture when mounting and dismounting
vehicles.

3 • 1. 5 SJ.FDI Combat
3.1.5.1 ATGK Firing
There are five phases in ATGM firing. First, the SAFDI
fireteam must load the ATGM. Loading requires 60 seconds if
t he ATGM is not already l oaded. Second, a target must be
acquired ; Section 3.1.3 discusses target sighting. Third, the
SAFOI unit must stop movement and kneel. The time required to
stop movement is dependent on the rate of travel. Fou rth, the
ATGM is fired if the target is still sighted. Firing an ATGM
causes the creation of a missile entity within the Simulator.
The flight dynamics of the missile entity are managed by the
Simulator independent of the SAFOI f ireteam firing it.
Finally, a phase corresponding to controll i ng the ATGM during
flight is entered . Firing and guiding an ATGM requires 10
seconds. The SAFOI fireteam may now return to the first
phase; ie. loading an ATGM . If during phases 1 through 4 the
SAFOI fireteam is destroyed, the ATGM firing process is
stopped. If the SAFO! fireteam is destroyed after the ATGM is
fired but before the ATGM strikes its target, the missile will
not strike its target (no impact POU will be generated).

3 . 1. 5.2 Sma.ll a.rms firing
The basic procedure for resolving SAFOI small arms fire
follows the SIMNET standard technique. In that technique, t he
firing entity determines whether a hit is scored and sends an
i mpact POU t o the t arget entity. The target entity analyzes
the i mpac t POU and determi nes what damage it has suffered.
Thus, the firing SAFOI firete am generates an impact POU for
every executed small arms attack; that POU specifies the
firepower intensity of the attack. The target SAFOI fireteam
uses the firepower value in the POU to assess casualties,
which are taken incrementally. A single small arms attack may
cause anywhere from zero to five casualties in the target
fireteam.

34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

When resolving small arms fire, a number of factors are
considered. For the firing fireteam, they are:

• strength (# men) and weapons of firing fireteam
range to target
simultaneous f i ring/ loading of ATGM
movement of firing fireteam
"surprise" or prepared fire

These factors, taken together, are used to produce the
firepower value for the small arms attack.

For the target fireteam, the factors considered are:
firepower value of attack
posture of target fireteam
strength (# men) of target fireteam

As a fireteam takes casualties, the weapons available to it
decreases. The following table shows the weapons assumed to
be present in a fireteam at each strength level.

Table 2 - Fireteam weapons availability

Fireteam strength Weapons in fireteam
(# men)

5 ATGM, SAW, M-16+M203, 3x M-16
4 ATGM, SAW, M- 16+M20J, 2x M-16
3 ATGM, SAW , M-16+M203, M- 16
2 ATGM, SAW, M-16
1 ATGM, M- 16

Note that the ATGM gunner is also armed with a M-16. The
firepower of that M- 16 is not counted in the fireteam's small
arms firepower if the ATGM gunner is firing or reloading his
ATGM weapon. See the following tables.

The relative firepowe r for each of the fireteam's small arms
weapons is given in the next table.

T b 1 3 a e - W eapon f ' 1repower

Range S (meters)
Weapon 50 100 200 300 400 500 750 1000

M-16 3 2 2 1 0 0 0 0
M-16+M20J 6 4 2 1 0 0 0 0
SAW 10 8 6 5 4 3 2 1

35

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The cumulative firepower of a fireteam is found by summing the
individual firepower of the weapons available. The
availability of weapons depends on the fireteam ' s strength and
whether or not the ATGM gunner is participating in the small
arms attacK.

T bl 3 a e - Fi t re earn cumu a e 1repower 1 tiv f'

Fireteam strength Range S (meters)
(# men) 50 100 200 300 400 500 750 1000

5 25 18 14 9 4 3 2 1
5 - ATGM gunner 22 16 12 8 4 3 2 1
4 22 16 12 8 4 3 2 1
4 - ATGM gunner 19 14 10 7 4 3 2 1
3 19 14 10 7 4 3 2 1
3 - ATGM gunner 16 12 8 6 4 3 2 1
2 13 10 8 6 4 3 2 1
2 - ATGM gunner 10 8 6 5 4 3 2 1
1 3 2 2 1 a a a a
1 - ATGM gunner a a a a a a a a

Sma ll arms firing procedure
1. Based on the firing fireteam's strength, whether or not

the ATGM gunner is in the process of firing an ATGM (see
section 3.1.5.1 above) , and the r ange to the target, use the
above table to get small arms attack firepower F.

2. Gene rate impact POU with Impactvariant.burst.quantity set
to F. Generate a fire POU.

3. Decrement fireteam small arms ammunition percentage by a
constant amount that reflects the percentage of ammunition
expended.

36

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.1.5.3 Receiving small arms tire
For a fireteam that is the target of a small arms attack, the
probability of each man in the fireteam being "attritedU

(killed or incapacitated) is given in the following table.

Table 5 - Base P per man in target fireteam k

Firepower Base Pk Firepower Base Pk
of attack per man of attack per man

30 .95 14 .66
29 . 94 13 . 62
28 .93 12 .58
27 .92 11 .54
26 . 91 10 .50
25 .90 9 .46
24 .88 8 . 42
23 .86 7 .38
22 .84 6 .34
21 .82 5 . 30
20 .80 4 .24
19 .78 3 .18
18 . 76 2 .12
17 .74 1 .06
16 .72 0 .00
15 .70

Small arms target procedure
1 . Depending on the firepower value in the impact PDU , get

base Pk from the table 5.

2. Set Pk = Pk + { . 02 * (size of target fireteam - 3».

3. If the target fireteam is kneeling, set Pk = Pk * .5.
If the target firetearn is prone, set Pk = Pk * .35.

4. For each man in the target fireteam
r = random number, 0 S r < 1
if r S Pk, decrement size of target fireteam.

3.1 . 5.4 Receiving other di rect tire
Currently, SAFDI fireteams are not susceptible to fire from
weapons other than small arms. A follow-on task in this
project is to add susceptibility of SAFDI fireteams to other
weapons. The following discusses the planned approach.

When a fireteam is attacked by direct fire from a weapon other
than small arms (e.g. a H1 main gun, or a M2 automatic
cannon), the resolution procedure is nearly the same as when
receiving small arms fire. After deriving a firepower
strength based on weapon type and range (see Table 6 below),
the same Pk table and procedure is used.

37

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Table 6 - Munition firepower

Range S (meters)
Vehicle and munition type 250 500 750 1000 2000 3000

M1 munition us M392A2
munition-US-M456Al

16
16

16
16

16
16

16
16

16
16

12
12

M2

T72

8MP

munition US M791
munition-US-M792
munition=US=M789

munition USSR 125HEAT
munition-USSR-125SABOT

munition USSR 73HEAT
munition=USSR=30SABOT

All others

20
20
20

15
15

16
16

8

20
20
20

15
15

16
16

4

16
16
16

15
15

10
10

2

16
16
16

15
15

10
10

1

12
12
12

12
12

4
4

o

The munition types in this table . are defined in file
mun_type.h. The munition type value will be found in the
Impact PDU in field burst.projectile.

Other direct fire target procedure

8
8
8

8
8

o
o

o

1. Depending on the munition type and range in the I mpact
PDU, get the firepower value from the Munition Firepower
table.

2. Using the firepower value derived, get the base Pk from
the base Pk table in the previous section.

3. Fo llow the procedure in the previous section exactly,
beginning with step 2 .

3 .1 . 6 Ammun i t ion Resupply
SAFDI fireteams expend ATGM and small arms ammunition when
firing, and may not fire if sufficient ammunition of the
appropriate type is not available. SAFOI fireteams may resupply
their ammunition to the initial levels (2 ATGMs a nd lOOt small
arms) under either of the following two conditions:

1. The SAFDI fireteam mounts a friendly APC. This r esupply
action is automatic , and need not be ordered by the SAFOI
operator.

2 . The SAFDI operator issues a Resupply command . In the next
phase of the project, the distance from the fireteam to a
friendly APC will determine if the resupply command can be
executed. An additional restriction wil l be that the 01
fireteam may not perform any actions other than LOS checks
during the resupply period, which will be 2 minutes.

38

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.1. 7
SAFDI
State
s tate
Mount

Finite state Machine Transition Diagrams
beha viors are implemented within the Simulator as Finite
Mac hines (FSM). The following sections show the Finite
Machine diagrams for ATGM Firing, Load Small Arms, and the
and Dismount behaviors .

3.1.7.1ATGK Firing

L
0

s
t

1 start I
o sec

> I Load ATGM I

No t
Lo aded Lo aded
o sec. 60 s ec .

r >1 Ac quire Target '
T
a Target Ac quired

~ 1 s top and Kneel
e

I <I
t

Mov ing 1 s ec.

Y F i re ATGM

1 Fly ATGM 1
I

10 s e c

> r->

>
Fir
Des

>

Finished

eteam
troyed

>1 s t a rt Miss i le FSM

Figure 2 - ATGM Firing

39

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.1.7 . 2 Load Small Arms

I Start I

r----> I Load Ir-----_________ >I Finished
·I~.-----.~I r-> L---------~

Loaded I I Load: 1 sec

r->I A~quire Target1r----->

Yes:O sec
No:l sec

I Fire

I
1 sec

Fireteam
Destroyed

Figure 3 - Load Small Arms

40

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.1.7 .3 Mount and Dismount

Mount:

Can Not Mount ~I
Finished

L-__ ----'

Success:O sec

60 sec.
~----'-----~ Fa ilure

~---> Mount >

Not Arrived:
. 5 sec

Arrived

Figure 4 - Mount

Dismount:

Dismount
Can Not Dismount> I

. Finished
>'----- -

Success

Figure 5 - Dismount

3.2 User Interface Specification
The SAFDI User Interface provides a user friendly interface to the
operator who controls the SAFOI fireteams.

The User Interface uses SIMNET terrain databases to produce maps i n
the Map Pane. The SIMNET terrain databases are appr oximatel y 30
Megabyt es each . The User Interface can be operated without a
terrain database , but it would have no map in the Map Pane. Thus,
the User Interface machine must realistically have a large capacity
hard drive to accommodate the SIMNET terra i n databases.

41

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3. 2.1 Data s tructures
The following is a description of the major data structures
involved in the major functions of the User Interface. C code is
included wherever necessary .

No te: In the following technical discussion , the word " unit II
refers to a SIMNET entity. For example, "UnitStruct" in the next
section actually refers to an entity.

3. 2 .1.1 Entity
The following structure holds the information for any entity
on the battlefield:

struct UnitStruct
(

) ;

int 10 , siteid,
double X, y;
double vx, vy

hostid, vehicleid; II SirnNet ID

double width:
int screenx , screeny,

screenwidth;
int class;
int heading;
int alignment:
int needsredrawing:

int deactivate;
int pending;
int controlled:
int left, t op;
int namedrawn;
int r edrawlevel;
int mounted;
int destroyed;

/1 (x,y) position
II (vx,vy) velocity
II width of object in meters
II Position of object on
II map section of screen
II Object 's c l ass
II Object's heading 0-360
II US or SOVIET
II True if entity has changed
II & needs to be redrawn
II True if entity is g o ne away
II True if entity is pending
II True if entity controlled
II ScreenPos of bkgnd bitmap
II True if name was redrawn
II Used in redrawing alg
II True if DI mounted on M2
II True if entity is destroyed

int msiteid, mhostid,
int turretAzimuth;
unsigned long oldtime;
void *background;

mvehicleid; II SimNet 1D of M2

char *name , *displayname;
char *type, code;
int fireflagi

II
II
II
II

II TurretAngle 0-360
II Last update time
II Background bitmap
Hash & Display names
More type info
T if entity fired

since last update

3.2. 1 .2 Hash Ta bl e and Functions
The entities are put into a hash table using the following
hash function on their name:

Hash (name) = [sum of characters of name] & OxFF

Collisions are resolved with external chaining; that is, all
entities for which Hash(name) = H are put in a linked list
pointed to by HashTable[H]. If the entity was created

42

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

locally, then its name is given to it when it was created. If
the entity was not created locally, then its name is built
from its SIMNET 10 as follows:

sprintf(name, "v%d.%d.%d 't , siteid, hostid, vehicle);

All access to entities must come through the Hash Table . The
following functions manipulate the hash table:

struct Unitst ruct *LocateUnit(c har *unitname);

s truct UnitStruct *GetUnit (char *unitname) ;

void AddUnit(char *unitname ,
struct UnitStruct *UnitStuff);

void RemoveUnit(char *unitname);

The function EveryUnit(void (*func) (struct UnitStruct *Unit)
) traverses the hash table structure and applies the function
"func" to every unit in it. Thus , the hash structure may be
changed without changing every piece of code which needs to
traverse the structure.

3 . 2 . 1 . 3 Pendi ng and Control led Enti ty Lists
The 1ST SAFOI system simulates up to 12 fireteams at a time.
The data structures reflect this limitation. The Pending List
is an array limited to no more than twelve entities which are
pending creation. It holds their name and type. The
Controlled List is an array limited no more than twelve
controlled entities. It holds their User Interface name,
their network name, their type, and their SIMNET Vehicle 10
information.

3.2.1.4 Mai n t a i ning the Map
The map of the terrain database is drawn and maintained
largely by code which is part of the Simulator; it will thus
not be discussed here . We have implemented new code to
compute and draw contour lines, and a discussion of t hat- code
fo l lows.

Contour lines are computed directly from the polygons in the
terrain database. For a ny particular view on t he map port ion
of the screen, t he minimum and maximum values of the heigh t of
the terrain are determined. Then, all planes with heights
between these minimum and maximum values (which are at a
preset distance, contour width, apart) are intersected with
al l polygons on the map.- When any polygon contains
intersection points with a plane, a line segment is drawn on
the map which corresponds to this intersection. So, contours
are constructed polygon by polygon instead of as a linked
structure.

There are a few special cases to consider when using this

43

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

approach. First, if a polygon lies completely within one of
the planes, then no action is taken; no contour line is drawn.
If a polygon intersects a plane in exactly one point (a vertex
of the polygon) then no action is taken. If, however, the
intersection of a polygon and a plane is one of the sides of
the polygon, then a contour line is drawn along this side.

3 . 2 . 2 Interface DFA
The Simulator to which the User Interface is attached is
constantly changing . Thus, the addition and removal of commands
from the User Interface command structure must be easy to
understand and quick to do. This section describes the method
chosen.

The acceptance of commands from the user is governed by a
Deterministic Finite Automaton (OFA), or more simply a Finite
State Machine. Each part of a command is represented as a state
i n the OFA . For instance, the command:

Map CenterAt 30000 40 000

has four parts, and thus the User Interface goes through four
s tates to input it: an object name entry state (Map), a command
menu (CenterAt), an integer entry for X (30000) , and an integer
entry for Y (40000) .

The User Interface is always in some interface state, and how any
particular input character or mouse action is interpreted depends
on the current state of the system. A state stack is maintained,
so that if a User erases an input, he will properly end up in the
previous state.

Each state has a Prompt, a Handler, a Gate, a Mouse State, and an
Action (these are discussed in detail below). The Gate, Mouse
State and Action may be NULL. In addition, there is a " Goto
Table" which determines the next state for any given state and
input. Note that "Branching" can only occur from a Menu state.

Within this structure, the addition of a command consists of
adding states to the State table, adjusting the Goto table, and
implementing the appropriate Action. Most new states can use
existing Handlers, Gates and Mouse States. Addi ng and removing
states is a very simple task. Thus, the command structure
maintains a high degree of flexibility as well as functionality.-

3 . 2 . 2.1 promp t
The Prompt is a text string describing the expected input to
the user. In the case of a Menu state, the Prompt describes
the menu choices. The Prompt is displayed in the Text Pane in
yellow. It is displayed immediately upon entering a state,
and is erased upon exiting that state. If any character in
the Prompt is preceded by an "at" sign (@), then it is
highlighted in Light Cyan. If the current state is a Menu

44

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

state, then the highlighted letter is considered the "Hot Keyll
for that menu choice.

3.2.2.2 Handlers
A Handler is a special function which accepts characters based
on the input expected. Each Handler takes one character as a
parameter, and processes it accordingly - accepting or
rejecting it, doing whatever display is necessary, and
changing states if necessary. The handlers only accept one
character at a time to maintain the asynchronous nature of the
system; the user only types one letter at a time, and other
processing must continue in between. The following handlers
are implemented:

UnitHandler

EndHandler

IntHandler

IDHandler

DoubleHandler

PasswordHandler

MenuHandler

3 .2. 2.3 Ga.te

Accepts the name of the
this command is given.
first state.

entity for which
it is always the

Special Handler for processing the action
at the end of a command.

Accepts an integer

Accepts a string

Accepts a double precision floating point
number

Special Handler for Passwords.
String, but displays blocks in
Pane instead of the string.

Accepts a
the Text

Special Handler for Menus. Accepts a
single letter, but only one of the letters
highlighted in the Prompt . Displays the
entire choice which the letter indicates,
not just the letter itself.

Gates are special functions which monitor the results of
inputs and check them for accuracy. If a state has a gate,
then the input quantity must pass the gate in order for the
interface to proceed to the next state. Note that the gate is
checked only when the interface attempts to advance to the
next state. The following gates are implemented:

AngleGate Assures angles are between 0 and 360

XGate Assures X coordinates are o n the map

YGate Assures ~ coordinates are on the map

• UnitGate Assures that commands are only given to
entities which exist.

45

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PassGate

ContourGate

ListAddGate

PriorityGate

RangeGate

Checks for the proper password

Assures that input contour widths are
reasonable

Won't allow adding to a full pending list

Won't allow redundant firing priorities

Assures that input ranges are reasonable

3.2.2.CMouse stat.
The Mouse State is a field in the state structure that enables
the mouse to participate in the User Interface OFA in an
integrated manner . Many of the prompts in the user interface
are of a similar nature , such that the mouse can be used as a
short-cut to using the keyboard. For example, in every state
where the current state accepts an X-coordinate and the next
state accepts a Y-coordinate, the state has a MouseState field
of EnteringCoordPair. Whenever a mouse click occurs in this
state, both the map object and the Entity Icon Pane object
will respond by simulating the keystrokes necessary to enter
the world-coordinates of the mouse click through the keyboard
interface. In other words, if the mouse is clicked in a
certain area in the map object, the actual battlefield
coordinates are immediately fed to the user interface so that
the user does not need to calculate and enter them manually.
Similarly, when the mouse is clicked on a particular entity in
the Entity Icon Pane, that entity's current location is fed to
the user interface.

Here is a list of all the Mouse States currently used in the
SAFDI User Interface:

NothingSpecial:
Tells the mouse code to ignore this state.

EnteringcoordPair:
Indicates that the user interface currently expects an x
coordinate, which should be followed by a Y-coordinate. If
the user clicks on the map, the coordinates of the location
on the map are fed to the keyboard part of the User
Interface. If a mouse click on a entity in either the
Pending List or the Controlled List of the Entity Icon Pane
is made, the current coordinates of that entity are fed to
the User Interface in the same manner.

EnteringUnitName:
Indicates that the user interface expects a entity name.
The entity name can be selected by mouse either in the Map
Pane or the Entity Icon Pane in the same manner as (x,y)
coordinates can be specified.

46

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

EnteringControlledUnitName :
Same as EnteringUnitName, except that only entities in the
User Interface Controlled List are accepted.

EnteringPendingUnitName:
Same as EnteringUnitName , except that only entities in the
User Interface Pending List are accepted.

EnteringNonpendingUnitName:
Same as EnteringUnitName, except that only entities not in
the User Interface Pending List are accepted.

InsideMenu:
Indicates to the mouse code that the current state uses a
menu, and that the mouse code should create a mouse
controllable menu equivalent to the keyboard menu if a mouse
is being used. (The SAFDI User Interface uses the mouse if
it is installed, but is completely functional without a
mouse.)

3.2.2.5 Action
The Action is a function which performs the action specified
by the input command. It is only activated a t the end of a
command, but it can examine the components of a command by
examining the s tate stack . The state stack holds the
components of a command with the first component on the bottom
of the stack and the last component on the top of the stack.

3.2.3 Main Task Loop
The main task l oop provides the central functionality of the User
Interface. It continually checks five separate areas to see if
they need attention. The five areas are: Ethernet, Update,
Serial Port, Keyboard and Mouse.

3.2.3.1 Ethernet
SIMNET packets are received along the Ethernet asynchronously
and placed in a queue, but are not processed as they are
r eceived. Within the Main Task Loop, this queue is checked,
and any packets in the queue are processed. Processing a
packet consists of recording its effect on the battlefield and
the simulated entities. For most SIMNET packets, this simply
means changing the values in the fields of an entity's
structure and allowing the Update and Display mechanisms to
handle the rest. The only exception is the Impact PDU, which
actually causes a visual signal on the screen.

3.2.3.2 Dead Reckoning and Screen Updates
The Dead Reckoning model for each entity which the User
Interface knows about is updated on a regular basis. The Main
Task Loop will check to see if the allotted amount of time has
passed sinc e the last update, and if it has, will perform the
next update. This amount of time is initially 1/ 10 of a
second, but can be changed within the User Interface. The
update consists of updating the Dead Reckoning models,

47

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

determining which entit ies will have to be redrawn on the map,
and redrawing them.

3.2.3.2 . 1 Dead Reckoninq
The entities' Oead Reckoning models consist only of x & y
coordinates of position and vx & vy coordinates of velocity.
The other coordinate direction, Z & vz, are not necessary
since the User Interface Map is two-dimensional. The update
consists of addinq vx*Ctime_elapsed) to x and adding
vy*(time_elapsed) to y, where time_e lapsed is the time from
the last update OR the last Vehicl e Appearance POU. A
Vehicle Appearance POU sets an entity's x and y coordinates
to the x and y coordinates in the Vehicle Appearance POU.

3.2.3.2.2 Redrawing Entities
In order to minimize "flashing", entities are redrawn on the
map via a slightly complicated algorithm. First, it is
determined which entities need to be redrawn. An entity
needs to be redrawn if its position has changed by at least
one pixel in any direction, or if it overlaps or is
overlapped by such a entity. Of course, an entity does not
have to be redrawn if both its old and new positions are not
on the screen.

Groups of overlapping entities are collected into "Levels",
and each level is redrawn separately. Redrawing a level has
four steps:

1. All entities are erased (by writing their stored
bit-mapped backgrounds on top of them) .

2. Any entities which have been deactivated are
removed from the hashing structure .

3. All remaining entities store a bitmap of the Map
where they are going to be placed.

4. The remaining entities are drawn.

3.2.3.3 Serial Port, !teyboareS, aneS House
The Serial Port, Keyboard and Mouse are all sources of input
which are polled by the Main Task Loop. If the Serial Port
has characters waiting, they are received and processed by a
special routine. If the Keyboard has a character waiting, it
is read and passed to the Text Interface DFA. If there is a
Mouse Click pending, it is processed by special House
routines.

3 . 2." Mouse Obj ects and Structures
There is a specialized module in the SAFDI user interface which
implements object-oriented , event-driven entities fo r allowing
the user t o interact with the user interface using a mouse as an
input device. Upon being initialized, this module creates a
special object which represents the entire screen. This object

48

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

also acts as the root node of an n-ary tree, to which other
objects are added in a hierarchy. This module also adds support
for creating several primitive kinds of objects, such as push
buttons, boxes, and menus on the screen. In addition to these
objects, the user can create ad hoc objects using the same
protocols as the objects that are provided. The provided objects
and the user-defined objects can then be combined to produce
compound objects, which the Mouse Object engine can treat as
single objects due to its hierarchical design. For example, the
programmer can use a box object with two push-button objects as
children to create a compound object which asks the user whether
he/she really wants to perform a critical action. One push
button would contain the word "Yes" and the other push-button
would contain the word " No". When the user places the mouse over
either of these buttons and clicks the mouse button, a message is
sent to that push-button by the actions of the Mouse Object
engine, which causes the desired action to occur.

A primary design goal of the Mouse Object engine was to allow
several objects to exist on the screen simultaneously in such a
way that the CPU could handle all of them and still have time
left to perform other actions. This is the reason an event
driven approach was used. Specifically, the Mouse Object engine
operates primarily through a function called FocusAttentionOn().
FocusAttentionOn() is designed to be called frequently from the
main task loop of the program using the Mouse Object engine.
Every time it is called, it polls the mouse to determine if any
mouse buttons have been pressed. If so, it reads the mouse to
determine which button was pressed, and the coordinates of the
mouse icon at the time the button was pressed. Using a depth
first traversal of the n-ary mouse object tree, the Mouse Object
engine determines whether there is an object which existed
underneath the location of the mouse click. If so, a message is
sent to that object telling it that it has been selected with a
mouse click. Each object in the hierarchy has a user-defined
function attached to it (via a pointer to a function in its
defining structure), called a Mouse Object Handler, so that each
object can have unique behavior to any given message, including a
mouse click message. There are other kinds of messages in
addition to mouse click messages. All of the different kinds of
messages are listed below, along with their meanings:

MOBJ_CREATE: This message is sent to an object when it is
created. This message acts as a constructor message to an
object, so that it can perform specific data and screen
initialization operations. If the object has a screen
representation, it should also save whatever is underneath the
object and draw its image at this time. This is the same action
as is expected when a MOBJ_REDRAW message is sent (see below) .
It is allowed for the newly created object to in turn create
other subobjects by calling AddMouseObject() at this time,
resulting in a single creation message yielding a complete,
compound object.

49

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

MOBJ_REORAW: This message is sent to an object to let it
know that it should save whatever is underneath it and redraw its
image on the screen. Objects which do not have a screen
representation may ignore this message when it occurs.

HOBJ UPDATE: This message is similar to the MOBJ REDRAW
message,-except that the object does not need to save-what is
underneath it first. When this message occurs, the object can
assume that its representation is already on the screen, but that
it needs to be updated to reflect changes.

MOBJ_UNDRAW: This message is sent to an object whenever it
should restore whatever was on the screen before it was most
recently redrawn.

MOBJ DESTROY: This message is sent to an object just before
it is about to be destroyed b y the Mouse Object engine. This
message implements a destructor facility, so that each object can
deallocate dynamic data structures and restore the screen to its
original state, thus undoing whatever changes to the user
interface its existence caused. When this message is received by
a compound object, it should not destroy any of its child
objects; the Mouse Object engine will do this automatically.

MOBJ_KEYBOARO: This message is sent to any object which has
requested attention from the keyboard , whenever a key is pressed.
The message contains the key that was pressed as part of the
message. This al lows objects to be activated either by the
keyboard or by the mouse.

MOBJ EVENT: This message is sent to any object when a mouse
click occurs within the boundaries of the object's representation
on the screen.

MOBJ_ ATTN: Objects may request cont inuous attention from the
Mouse Object engine, instead of having to wait for MOBJ KEYBOARD
and MOBJ_EVENT messages passively. Such objects will receive
this continuous attention by receiving one MOBJ ATTN message each
time FocusAttentionOn() is called .

All of t hese messages are routed to
function, as mentioned previously .
have the following prototype as an

the object via a pointer to a
The function pointed to must

interface:

int Handler (int messageType, II Type of MOBJ_ message
int button, II Button 10 or key pressed
int x, l n t Y, II Coord of button click
MouseObjectNode *p,

II Pntr to object recing msg
void *info); II Ad hoc info for object

The function returns an integer which signifies whether the
message was processed successfully or not. A return value of 0
signifies success, while a set of nonzero return values is used

50

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

for various possible failure conditions, such as running out of
dynamic memory, etc.

To create a mouse object, the function AddMollseObject() (as
defined below) is called.

int AddMollseObject (int parent, //Handle of object's

MouseFunction f,
int xC , int yO ,
int dx, int dy.
void '* info);

II parent
//Handler function for the object
//Object's upper left coordinate
jlThe object's width and height
If Ad hoc info for the object

This function allocates necessary memory, attaches it to the
object n-ary tree appropriately, and then sends a MOBJ_CREATE
message to the new object. The return value of the function
AddMollseObject() is 0 if the object creation was unsuccessful, or
a nonzero "handle" value if successful. The handle returned is a
unique value which identifies the mouse object just created.
Note that the 'parent' parameter passed to AddMouseObject() is
also a handle, only it is the handle of the already-existing
object which should become the new object's parent. Note that if
o is passed for "parent", then the root object mentioned
previously will be the new object's parent.

51

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.2.5 User Interface to s imulator mapping
This section describes the User Interface commands and their
translation to Simulator commands. Each command entry has these
items:

UIC: User Interface command
IL: Implementation Level
SC: Simulator command generated by USER INTERFACE
SR: Simulator response

Command format key:
In UIC: entity_id

change
parameter
menu option, selected by

pressing highlighted character
constant In SC: i

entity_type parameter

The symbols () enclose the elements of a set of options.

The symbol I is used to separate the elements of a set of
options , exactly one of which should be chosen.

3.2.5.1 Entity Change Comman4s
Change Entity Speed

UlC: entity_id c hange Speed (~INormalI Double I Ru sh)
IL: 1
SC: vehicle_ number (~I~) (~ I § I NlnIQlgIBI~)
SR: Acknowledgement

Change
UlC:
IL:
SC:
SR:

Entity Direction
entity_id Change
1
vehicle number f
Acknowledgement

Direction heading [O .. 360)

heading

Change Entity Rules of Engagement
UIC: entity_id Change RulesEng (ATGMI SrnallArms)

(HoldFireIFireAtWill) range(O .. 2000]
lL: 2
SC: vehicle_number (Llllill) range
SR: Acknowledgement

Sets

Change
UlC:
IL:
sc:
SR:

entity id's rules of engagement as follows:
"(II: ATGM fire at will ") " : ATGM hold fire
" (II: small arms fire at will "}": small arms hold fire

Entity Posture
entity_id c hange Posture (StandingjlneelingI Prooe)
1
vehicle_number (~Il!) (§ Ils I p)
Acknowledgement

52

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Change
UIC:

IL:
SC:

SR:

3.2.5 . 2
Entity

UIC:
I L :
SC:
SR:

Ent ity
UIC:
IL :
SC:
SR:

Entity
UIC:
IL:
SC:
SR:

Entity
UIC:
IL:
SC:
SR:

Entity Firing Order
entity id Change firePrior (TanKI~IQthY I D Inf)

(Tan~ ~ I QthY 1lllD..t:) cr.~nlIl ~ I QthY 1lllD..t:)
(~I APC QthY lllD..t:)

2
vehicle number " (TlaIQIQ) (TIAIQIQ) (TlaIQIQ)

(TIAIQlQ)
Acknowl e dgement

Entity Status Commands
Status Report

e nt i t Y_id Status Report
1
vehicle number ?
Stat us repo rt information

stat us Resuppl y
entity_ id s tatus

2
vehic l e number =
Acknowl edgement

Status Mount
entity_ id Status

2
vehicle_number +
Acknowledgement

Status Dismount
entity_ id s tatus
2
vehicle number -
Acknowledgement

Re s upply

Mount

<siteid> <hostid> <vehicleid>

Dismount

3.2.5.3 Entity Order Commands
No entity order commands have been implemented at this stage of
t he project. The devel opment plan calls for the implementation
of entit y commands in follow - on phases. Typical unit commands
are : Halt movement, Resume movement, Follow vehicl e, separat e
subunit from uni t, and rejoin subunit t o unit.

3 . 2 . 5 . 4 Enti ty GoTo Command
Entity Order Movement

UIC : ent i t Y_id QQlQ x_loc[O .. XMAX] y_loc[O .. YMAX]
IL: 1
SC: vehicle_number ~ ? x_location y location
SR: Acknowledgement

53

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Map Commands
Center

3.2.5.5
Set Map

UIC:
IL:

Map CenterAt x_coord[O .. XMAX) y_coord[O .. YMAX)
1

SC:
SR:

not passed to Simulator
none

Map MoveCenter
UIC: Map MoveCenter x_offset (-XMAX .. XMAX]

y_offset[-YMAX .• YMAX)
IL: 1
se: not passed to Simulator
SR: none

Map Scale
UIC: Map Scale scale_ factor[50 .. 10000]
IL: 1
se: not passed to Simulator
SR: none

Map Update Rate
UIC: Hap MapUpdateRate rate(O .. 90]
IL: 1
se: not passed to Simulator
SR: none

Set Vehicle Dynamic Update Rate
UIC: Hap VehDynUpdateRate rate (O .. 50 0 0]
IL: 1
se: Y y. rate
SR: Acknowledgement

Set Dead Reckoning Update Rate
UIC: Hap DeadReckUpdateRate rate[O .. 5000]
IL: 1
se: m y rate
SR: Acknowledgement

Map Polygons
UIC: Hap Polygons (ToqqlejHide I Show)
IL: 1
se: not passed to Simulator
SR: none

Programmers' Tools
Ule: Hap Oebug

IL: 1

(EthernetlNoiselMouse I ShowSerial I
HideSeria l l ZapSerial OuietLOSI
DynamicMernory)

sc:
SR:

not passed to Simulator
none

54

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Map Contours
UIC: Hap Contours (Toggle IHide l showIQuery lsetwidth)
IL: 1
se: not passed to Simulator
SR: none

Map Gridlines
UIC: Hap Gridlines (Toggle IHideIShow)
IL: 1
se: not passed to Simulator
SR: none

Map Names
UIC: Hap Names (Toggle]Hide I Show)
IL: 1
se: not passed to Simulato r
SR: none

55

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.2.5.6 List Commands
List Add Entity

1

UIC: List Add entity_id(8) (US (QIIM1 1· ··) I
soviet (QIITll I ...)

IL:
SC:
SR:

Remove
UIC:
IL:
SC:
SR:

1
not passed t o Simulator
none

Entity
List Remove entity_id
1
not passed to Simulator
none

List Create All Entities
UIC:
IL:

List CreateAll
1

SC:
SR:

i ~ entity_type x_location y location 0
vehicle id vehicle number

Remove
UIC:
IL:

Entire List
List EmptyList
1

SC:
SR:

not passed to Simulator
none

List Files
UIC: Li st Files DOS_file-path
IL: 1
SC: not passed to Simulator
SR: none

Load Entity List
UIC: List Load DOS file name
IL: 1
SC : not passed to Simulator
SR: none

Save Entity List
UIC: List Save DOS file name
IL: 1
SC: not passed to Simulator
SR: none

56

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.2.5 . 7 Master Commands
Remove entity

UIe: Master Remove entity_id password
IL: 1
SC: i ~ vehicle_number
SR: Acknowledgement

Change entity location
Ule: Master Beam entity_id x_loc(O .. XMAX) y_loc[O .. YMAX)

password
IL: 1
sc: vehicle number Q x location y_location
SR: Acknowledgement

Reset entity a ttributes
Ule: Kaster Reset entity_id password
IL: 1
SC: vehicle number?
SR: Acknowledgement

stealth
UIC:
IL:
SC:
SR:

commands
Ma s ter s tealth (Locate IShow l HiQ&)
1
not passed to Simulator
none

57

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.3 . Terrain Databa s e
A terrain database consists of a database header, a patch index
list, a patch guard list, and a patch list. The database header
gives general and statistical information about the database as
well as some information about data area offsets. The patch index
list is a list of patch offsets, where patch offset 0 is the offset
from the beginning of the file to the beginning of data for patch 0
(n+1 offsets allow patch size calculations). A patch guard is a
synopsis of patch data that is described as being used for fast
inter-visibility calculations; there i s a patch guard for every
patch . A patch contains the data for a square block of terrain,
where the whole terrain is divided up into many small patches (i.e.
a 75 , OOOm X SO,OOOm terrain is divided into 15,000 patches of SOOm
square) .

Each patch of terrain contains vertices, edges, polygons (basically
slope planes), trees , treelines, objects, canopies, and patch
header information (to locate and describe the previous data
objects). The polygons describe either soil, asphalt (road), or
river terrain features. The vertices for polygons and edges are
given as indices into the patch's vertex list (i.e. the coordinate
of a vertex is stored once in the vertex list and indirectly
referenced by all the polygons and edges that use it). canopies
share a similar strategy, using their own vertex list. Trees ,
treelines, and objects have their coordinate data directly within
their structure. In addition to coordinate data, data for trees
include type, height, and radius, and data for treelines include
type, number of vertices, height, and extents. Data for objects
are simply the vertices; they are considered flat. The canopies
are logically sub patches of a patch, containing their own vertex
and edge lists. One interesting feature of polygon data is that
soil polygons cover the entire patch with river, road, and canopy
polygons (trees, treelines and objects also) superimposed on top of
them. The polygons seem to be sorted with river and road coming
first followed by soil .

3 .3 . 1 Terrain Database Int erfac e
The Terrain Database Interface (TOBI) uses patch caching to
provide quick access to terrain patch data. The TOBl requires
initialization calls to set up the terrain database file (located
on disk) and the patch cache (located in resident memory). Once
these are set up, patches can be read from the terrain database
file and kept in the patch cache for fast access. The patch
caching system attempts to reduce the amount of disk reads
t hrough a Least Recently Used (LRU) scheme. The LRU scheme keeps
in the cache patches that are active or t hat have been recently
used, letting patches that have become stagnant (r elatively)
leave the cache to make room for new patches being read from
disk .

Each simulated entity has a " region" which is a subset of patches
that exist in the patch cache. Currently a region consist of the
patch that contains the entity and the eight surrounding patches.
An initialization call is required t o set up an entity's region

58

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

with the appropriate patches. As the entity moves outside of its
center patch, a request is made to update its region. Patches
are released and acquired such that the region is filled with
patches centered around the entity's new location. If the
patches needed to fill the region are in the cache no disk read
is necessary; otherwise, the patches are read from disk a nd added
to the patch cache.

The TDBI is used by the Intelligent Simulated Forces (ISF)
software to provide access to patch data. The immediate need for
the TDBI is for determining the elevation of a simulated entity
given its (x,y) coordinate. Given an (x,y) coordinate and the
patch data, the vertices of the polygon containing the coordinate
are used to define an equation of the plane of the polygon.
Inserting the coordinate into the equation will yield the z
component or the elevation. Modifications could be made to the
database to incorporate the polygon plane equation, thus saving
computation time .

A by-product of developing the interface was a plan view display
of an entity's region. The plan view display shows the rivers,
r oads, trees, treelines, objects, and canopies of a region . Both
scale and offset of the display can be changed, allowing zoom in
and out capabilities.

59

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3. 4 . SAFOI and User Interface Hardware Confi gurat i on
The SAFDI User Interface and the Simulator each require the
following equipment:

IBM PC compatible, with ISA (AT) bus
Intel 80386 microprocessor
Intel 80387 math coprocessor or equivalent
4 Mbytes of m~ory
VGA graphics
3.5" diskette drive (720 or 1.44M)
80 Mbyte hard disk drive
Jearn ethernet interface card
Serial port

In addition , the following are required:
1 null modem cable compatible with the PC's serial ports.
1 Microsoft compatible mouse and driver on User Interface
pc.

To connect the Simulator to the SIMNET Ethernet network requires:
Thin Ethernet coaxial cabling
3 thin Ethernet T- connectors
2 50 ohm thin cable terminators
1 Thin Ethernet to Thick Ethernet converter box
(eg. a Clear Signal 8043-3)

The User Interface is connected to the Simulator via serial ports.
Currently, they communicate at 2400 baud, though this could safely
be increased to as much as 1920 0 baud.

overall system configuration:

S1MNET LAN

I I
Ml M2 BBN

Simulator Simulator . . . SA FOR

1ST SAFD1 Serial Port 1ST SAFD1
User Simulator
Interface

SAFOI Operator

figure 6 - System Configuration

60

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.5. Currant Limitations
Known limitations of the current SAFO! implementation are listed in
this section .

1. Workstation limit
Because of the complexities associated with tracking mount and
dismount operations across multiple SAFOI workstations, the SAFOr
i mplementation is currently limited to a maximum of two SAFDI
workstations simultaneously active on the network. FUrthermore,
if two workstations are active, they must be controlling forces
of opposite alignment (i.e. o ne Blue and one Red). Of course, a
single SAFO! workstation may be of either alignment.

This limitation can be removed with considerable programming
effort and some increase in network traffic . The correction
involves SAFDI workstations transmitting non-SIMNET POU packets
over the network to signal mounts a nd dismounts to each other, so
that each workstation can keep track of which M2s are occupied .

2 . Number of fireteams supported
The I ST SAFDI system has not yet been stress tested with a large
number of fireteams (i.e. more than 5 or 6), although the
designed capacity is 12 fireteams (one Mechanized Infantry
company) .

3. Operator Intervention
The operator must initiate most behaviors. There are no
automatic complex or sophisticated behaviors s upported at thi s
stage. The automatic behaviors that are supported concern the
activities involved in a single task . For examp le , upon being
ordered to move a SAFOI fireteam can move from one location t o
another l ocation avoiding obstacles automatically but will not
react to being attacked along the way. The operat or must
intervene to cause the fireteam to react to the attack.

4. Unit command and control
The individual fireteam is the onl y dismounted i nfant ry unit
currently modeled. Follow-on phases of this project will
development highe r level unit command and contr o l behaviors .

61

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.6. Next Phase Tasks
SAFDI Phase 2 Changes and Enhancements

1. SAFDI fireteams should be able to mount any friendly vehicle,
including helicopters, but not including fixed wing aircraft.

2. Dismount should require a 30 second delay. Under consideration
are dismount left/ dismount right/ dismount rear battle drills.

3 . Reduce mount range from 50 meters to 20.

4. Modify mount to mount at rear rather than mount at front.

5. New implied posture changes:
a. prone at end of move
b. prone after 5 seconds without moving .

6. Add SIMNET Id to display of Other Entities in User Interface.

7. Add other direct fire.

8. Enhance implied posture changes.

9. Correct the use of "unitl1 and "entity" throughout code and data
files.

10 . Design and begin implementation of SMARTS and UNITS .

11. Implement exhaustion component of rate determination.

12. Implement other movement types; ego Using Cover, Go To Hidden
Position, and Go To Recon .

13. Implement indirect fire.

14. Implement Change Firing Order command for small arms .

62

I
I
I
I
I Section ..

I References and Biblioqrapby

I
I
I
I
I
I
I
I
I
I
I
I
I 63

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4 References and Bibliography

Burg, J. t Hughes, C. E., Lisle, C., Moshell, J. M., Carrington, J.,
and Li, X. (1991). "Behavioral Representation in Virtual Reality",
Proceedings of the 2nd Behavioral Representation and Computer
Generated Forces Symposium, Orlando FL, May 6-7 1991, pp. B 1-26.

Clark.e, T. L., and otte, J. M. (1991). "Human Behavioral Modeling
Using catastrophe Theory", Proceedings of the 2nd Behavioral
Representation and Computer Generated Forces Symposium, Orlando FL,
May 6 - 7 1991, pp. C 1-8.

Coleman, v, ' Gonzalez, G., Petty, M., Smith, S., Vanzant-Hodge, A' I

Watkins, J' t and Wood, D. (1990). "Alternative Implementations of
Knowledge Representation and Acquisition Methods in Distributed
Interactive Simulation: Investigations and Findings", Technical
Report IST-TR-90-21, Institute for simulation and Training, University
of Central Florida, 113 pages.

Cox, B. J. (1986). Object-oriented Programming, An Evolutionary
Approach, Addison-Wesley, Reading MS, 274 pages.

CrooKs, W. H., Fraser, R. E., Herman, J. A., Jacobs, R. 5., McDonough,
J. G., Bonanni, P., Harrison, B., Junot, A., and Kirk, J. (1990) .
"SIMNET Semi-Automated Forces (Version 3.x) Functional Specification",
Technical Report PTR-4043-15-0200-4 / 90, Perceptronics.

Danisas, K., Smith, S. , and Wood, D. (1990). " Sequencer/ Executive for
Modular Simulator Design", Technical Report IST-TR-90-1, Institute for
Simulation and Training, University of Central Florida, 16 pages.

Downes-Martin, S. (1990). " Replacing the Exercise Controller with the
Enemy: the SIMNET Semi-Automated Forces Approach", International
Training Equipment Conference, UK, April 1990.

Downes-Martin, S. (1991). " The Combinatorics of Vehicle Level
Wargaming for Senior Commande rs", Proceedings of the 2nd Behavioral
Representation and Computer Generated Forces Symposium, Orlando FL,
May 6-7 1991, pp. 0 1-19.

FishwicK, P. A., Petty, M. D., and Mullally, D. E. (1991). "Key
Research Directions in Behavioral Representation for Computer
Generated Forces", Proceedings of the 2nd Behavioral Representation
and Computer Generated Forces Symposium, orlando FL, May 6-7 1991, pp.
E 1-13.

Foley, J. D., and Van Dam, A. (1982). Fundamentals of Interactive
Computer Graphics, Addison-Wesley, Reading MA, 664 pages.

Fraser II, R. E., a nd Herman, J. A. (1990). "Integration of SIMNET 01
Simulators with SAFOR WorKstations, Functional Specification",
Technical Report PTR-4043-06-0000-90/ 90, Perceptronics , 65 pages.

64

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Gates, K., and Frantz, F. (1990). IISem i-Automated Force Simulation
using a Blackboard", Proceedings of the 12th Interservice/ lndustry
Training Systems Conference, Orlando FL, Nov 6-8 1990, pp. 295-301.

Gonzalez , A. J. (1990a). "Intelligent Adversaries in a SIMNET
Simulation" , unpublished, Institute for Simulation and Training,
University of Central Florida, August 1 1990, 23 pages.

Gonzalez, G., Mullally, D., Smith, S . , Vanzant-Hodge, A., Watkins, J.,
and Wood, O. (1990b). ItA Testbed for Automated Entity Generation in
Distributed Interactive Simulation", Technical Report IST- TR-90-15,
Institute for Simulation and Training, University of Central Florida,
37 pages .

Grier, P. (1990) . "Three Tracks for Simulation", AIR FORCE Magazine ,
August 1990, pp. 40-43.

Guibas, L. J., Hershberger, J., Leven, D., Sharir, M. , and Tarjan, R.
E. (1987). "Linear Time Algorithms for Visibility and Shortest Path
Problems inside Simple Polygons", Algorithmica, Vol. 2, pp. 209 - 233.

Harmon, S. Y. , Yang, S. C., Howard, M. D., and Tseng, D. Y. (1991).
"A Behavior-Based SAFOR and Its Preliminary Evaluation ll , Proceedings
of the 2nd Behavioral Representation and Computer Generated Forces
Symposium, Orlando FL, May 6-7 1991, pp. G 1-14.

Huon, M. (1989). "Expert system for the simulation of tank platoon
behavior in a synthetic scene" , promotional literature, 11th
Interservice/ Industry Training Systems Conference, 9 pages.

Kornell, J. (1987). "Reflections on using knowledge based systems for
military simulation", Simulation, Vol. 48, No . 4,
April 1987, pp. 144-148.

Lavery, R. G. (1986). "Artificial Intelligence and Simulation: An
Introductionll, Proceedings of the 1986 Winter Simulation Conference,
1986, pp. 448-452. "

Le , H. T. (1990). li On the Role of Distributed AI in Large Scale
Network Simulation", Proceedings of the 12th Interservice/ Industry
Training Systems Conference, Orlando FL, November 6-8 1990, pp. 241 -
246.

Maruichi, T., Uchiki, T . , and Tokoro, M. (1987). "Behavioral
Simulation Based on Knowledge Objects " , Proceedings of the European
conference on Object Oriented Programming, Paris France , June 17-18
1987, pp . 213-222.

Moshell, J. M., Hughes, C. E., and Petty, M. O. (1989). nConstraints
as a Specification Mechanism for Automated Opposing Forces in
Networked Simulators", Proceedings of the Interactive Networked
Simulation for Training Conference, Institute for Simulation and
Training, Orlando FL, April 26 - 27 1989, pp . 84-90.

65

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Nelms, O. W. (1988). "SIMNET 11 11 , National Defense , July/August 1988,
pp. 68-69 .

Petty, M. D., Moshell, J. M., and Hughes, C. E. (1988). " Tactical
Simulation in an Object- Oriented Animated Graphics Environment",
Simuletter, Vol. 19, No.2, June 1988, pp. 31-46 .

Petty, M. D. (1990). "Experiments in Routing an Autonomous Land
Vehicle with a Weakly Inductive Learning Algorithm", Proceedings of
the Third Florida Artificial Intelligence Symposium, Cocoa Beach FL,
April 3 - 6 1990, pp. 159- 163.

Pope, A. R. (1989). "The SIMNET Network and Protocols" , Report No .
7102, BBN Systems and Technologies, July 1989, 160 pages.

SOGITEC, "An Expert System for Tank Platoon Behavior", Interactions,
No.2, June 1989, pp. 6 - 7.

stanzione, T. (1989). IITerrain Reasoning in the SIMNET Semi-Automated
Forces System ll

, Geo ' 89 Symposium on Geographical Information Systems
for Command and Control, SHAPE Technical Centre, The Hague,
Netherlands, Oc tober 1989.

Thorpe, J. A. (1987). liThe New Technology of Large Scale Simulator
Networking: Implications for Mastering the Art of Warfighting",
Proceedings of the 9th Interservice/ Industry Training Systems
Conference, Orlando FL, November 30-December 2 1987, pp. 492-501.

Wise, B. P. , Miller, D., and Ceranowicz, A. Z. (1991). itA Framework
for Evaluating Computer Generated Forces", Proceedings of the 2nd
Behavioral Representation and Computer Generated Forces Symposium,
Orlando FL, May 6-7 1991, pp . H 1-7.

66

I
I
I
I
I Appendices

I
I
I
I
I
I
I
I
I
I
I
I
I
I 67

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A. Appendices

A.l SALUTE Report Format

s ~ Size of entity
A ~ Activity of enemy entity; if moving, give direction

movement.
L ~ Location of enemy entity (6-digit grid position)
U ~ Uniform
T ~ Time of sighting (DTG Date Time Group, e.g. J016JOZ)
E ~ Equipment carried by enemy entity

Sample:

s: "Line alfa , platoon plus."
A: "Line bravo, moving south on road, in column . "
L: "Line charlie, ES9 47859."
U: "Li ne delta, green camouflage."
T: "Line echo, 3016JOZ."
E: II Line fox, 4 bravo mike papa I 3 tango 7 2 ."

68

of

• •
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A.2 u.s. Mechanized Infantry Platoon

The dismount element
below. Soldiers who
(Information source:

of a mechanized infantry platoon are l isted
remain mounted in the Bradleys are not listed.
u.s. Army FM 7 - 7J March 1990)

BFV 1: Platoon Ldr, Platoon RTO, FO, Squad Ldr, Fireteam Ldr, SAW

BFV 2: Fireteam Ldr, Rifleman, Grenadier, 2x SAW, ATGM Gunner

BFV 3: Fireteam Ldr, Grenadier, 2x SAW, ATGM Gunner

BFV 4: Squad Ldr, Fireteam Ldr, SAW , ATGM Gunner, Medic, FO RTO

Total of all dismounted men : 23
Total without support troops: 19

Weapons
Platoon Ldr, Platoon RTO, FO,
Fireteam Ldr, Rifleman: M-16
SAW: S . S6mm

FO RTO ,
S.S6mm

Squad Ldr,

Grenadier: M-16 + H203 40mm grenade launcher
ATGM Gunner: Dragon ATGM + M-16 5.56mm
Medic:

1ST SAFDI Generic fireteam
Strength: 5
Soldiers : 2x Rifleman*, Grenadier, SAW, ATGM Gunner

*Includes leaders.

The five men strength of the SAFOI generic fireteam reflects the
typical ly non-combatant roles of the medic , Platoon RTO, and FO RTO.

69

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A.3 summary ot April 10, 1991 SAFOI Demonstrati on

On April 10, 1991 the 1ST Intelligent Simulated Forces Lab
demonstrated the 1ST Semi - Automated Forces Dismounted Infantry (SAFDI)
system. In attendance were Col. Larry Mengel and SFC Hager (TSM SIMNET
office), Col. Frank smith and Mr . Russ Miller (Forces Command), Lt.
Col. Thomas Mostaglio (U . S. Army TRAOOC), Mr. Robert Paulson (PM
Trade), Mr. Peter Bush (U.S . Army Infantry School), and 1ST personnel .
The meeting was divided into two sessions.

The first session consisted of a presentation by Col. Mengel and Mikel
Petty. Col. Mengel gave an overview of how the SAFDI system would be
used in the training environment. Mikel Petty then discussed the
design and implementat ion of the SAFDI system . He discussed the work
pla n outline, basic a rchitecture and capabilities of the system, and
the interface's command structure. He also went over some of the
internal processing of the system, such as the algorithms used to
calculate small arms fire. He emphasized that he was explaining this
so he could get feedback from the attendees. Throughout the
presentation, the attendees discussed the implications of the various
design decisions.

The second session was a live demonstration of the 1ST SAFDI system
seen with the BBN STEALTH. Capabilities demonstrated for 01 included
searching for and destroying targets, navigating through the terra i n
while avoidi ng obstacles, and mounti ng and dismounting from Bradleys.
At the time of this demonstration, determination of line of sight was
not completely functional.

1ST's SAFD1 testbed is fully compatible with SIMNET V6.0. It operates
with two PCs, one that serves as a mouse- driven User Interface and a
second one that simulates the entities.

SAFDI CAPABILITIES

This section lists the 1ST SAFDI capabilities as stated in the project
plan. This list is based on Col. Mengel's mi nimum requirements for
any usable SAFDI syst em that is part of SIMNET.

1. Using l ocal terrain map and LOS algorithm, 01 fireteams will
determine sighted enemy entities, then generate sighting reports
(in SALUTE format) to be displayed in the User Interface 's
Message Pane. (Radio communication wil l be assumed for all SAFDI
fireteams.)

2. At this time , there is communication between operator and
fireteams only. Future implementation levels will i ncorporate
communications at the platoon or company level. Commands would
then be passed to component fireteams automatically.

70

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.01 fireteams will be able to kill enemy infantry and vehicles.
The simulation will perform firing probability calculations,
generate fire and impact PDU's, create ATGM entities , and track
ammunition expenditure.

4.01 fireteams can be killed by enemy's direct or indirect fire.
The simulation will receive and process impact PDUs, and track
incremental losses.

5. 01 fireteams can mount and dismount APes. When mounted , the
fireteam is temporarily removed from the simulation and becomes
associated with its APe. The dismount command places fireteam
back on the battlefield.

6. 01 fireteams can be seen according to visual range and posture.
The simulation can send appearance POUs of 01 standing, kneeling,
or prone, to produce the visual icon appropriate for that
posture.

7.01 fireteams can change speed .
appropriate for infantry, based
terrain.

The movement at fixed rates is
on speed setting, posture, and

LAB DEMO

During the lab demonstration there were four demonstrations conducted
by Mikel Petty .

The first scenario presented the capabilities of movement, route
planning, postures, and user interface. The SAFDI fireteam
automatically routed around obstacles. While the fireteam was moving,
the operator changed the fireteam's speed directly with the User
Interface commands. Changes in posture also resulted in changes in
speed . The important points in this demonstration were:

speed was changed directly with user interface

change of posture caused changes in speed

01 fireteams found routes around obstacles (route planning)

The second scenario demonstrated Mounting and Dismounting
capabilities. The important points in this demonstration were:

A SAFDI fireteam mounted a Bradley.

A SAFDI
too far
command

fireteam failed to
from the Bradley.
to move up closer ,

mount because the fireteam was
After the fireteam was given a
it was able to mount the Bradley.

A Bradley holding a mounted fireteam was given the command
to relocate, then the mounted fireteam was ordered to
dismount. This showed that D1 fireteams could be transported.

71

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The third scenario demonstrated missile combat involving two u.s.
fireteam versus two T72s and a ZSU- 23. An interesting observation
about this scenario was that the 01 fireteams where nearly invisible
from the enemy's perspective, e v en though they were in a standing
posture and no effort was made to hide them . Therefore, 01 fireteams
will be very dangerous to tanks i n the SIMNET battlefield .

The 01 fireteams were given permission to fire under operator
specified rules of engagement. The 01 fireteams then destroyed the
targets with their Dragon missiles. The 01 fireteams obeyed their
firing priorities (tanks first and then other vehicles); even though
the ZSU was closer, the DI fired at the T72's first because they were
higher priority targets. The scenario was viewed from multiple
perspectives, so that the missiles could be seen both incoming and
outgoing. From the target ' s view, the missile blast was very visible,
reveal ing the DI fireteams' positions. The important points of this
demonstration were:

DI fireteams were given permission to fire using Rules of
Engagement

DI fireteams destroyed the targets with Dragon missiles

DI fireteams were virtually invisible beyond 200 meters

DI fireteams obeyed firing priorities

The fourth scenario was a demonstration of a small arms ambush. Two
Soviet fire teams could be seen advanc ing along t he road, and then
being ambushed by a U.S. fire team. The U.S. fireteam opened fire,
killing or incapaci tating all of the enemy fireteams . Each time the
u.s. fireteam fired, a smoke cloud was visible .

The same scenario was run again , but this time, the enemy fireteams
were given permission to return fire. In addition, all fire t eams
were permitted to start firing at a much longer range. Because they
opened fire at a much longer range, their fire was less effective and
all fireteams ran out of ammunition before they had killed all the
enemy fireteams. The attendees then pointed out that the ammunition
expenditure was too rapid. The important points of this demonstration
were:

fire teams were ambushed

ammo expenditure was too rapid and will be corrected

small arms fire generates a smoke cloud

fire teams were taking losses one man at a time
(incremental losses)

72

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST SAFD1 FUTURE PLANS

The next SAFO! event will be a demonstration of 1ST SAFOI at Ft
Benning . This will be conducted under SIMNET V6.6.1. The Ft. Benning
demonstration date has not yet been specified, but will be July or
later depending on when SIMNET V6 . 6.1 is installed at 1ST. All SAFDI
development beyond the Ft. Benning demonstration is subjected to
approval by PM TRADE.

SAFO! Phase 2 Demonstration

Location: Ft. Benning, GA.
Attendees: M. Petty, C. Karr, O. Mullally.
Equipment : 2 PCs and required ethernet connectors.

73

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2

{)000038

	Functional Specification And Implemented Capabilities Of The IST Semi-automated Dismounted Infantry System
	Recommended Citation

	0000038.pdf

