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Abstract 

This document is the Final Report of a two year project at the institute for 
Simulation and Training supported by PM· TRADE under contract 
#N61339-9().C·0042. 

The purpose of this project were 

1) to construct a "geospecific data center" consisting of software tools for the 
construction of visual databases; and 

2) to evaluate and extend techniques for the extraction of information about 
buildings from aerial photography, in support of the rapid production of 
visual simulation databases. 

These databases are required for time-critical mission rehearsal . Two 
techniques were selected for study: stereo pair analysis, and shadow 
analysis. Two teams of researchers in the computer science departments of 
the University of Central Florida and the University of South Florida 
undertook parallel projects. They constructed prototypes and evaluated 
various techniques. The results were brough back to the Institute for 
Simulation and Training and used to construct a demonstration database to 
show the feasibility of the methods used. 

Outline 

1. Purpose 
2. The Geospecific Data Processing Center 
3. Data integration and Management System 
4. Sample Database Production 
5. Conclusions 
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I. Purpose 

The overall purpose of this project was to investigate techniques which are 
potentially useful in service of the goal of rapidly producing visual 
databases of specific geographic regions. These so· called "geospecific 
databases" are necessary for simulation-based mission rehearsal. They 
contrast with "generic databases'" which are the most common form of 
simulator database for training. A generic database conveys the overall 
flavor of a particular kind of terrain (e. g. desert; temperate zone forest, 
etc.) without referring to (or requiring) the integration of timely real·world 
data. 

In order to work in this area, a substantial collection of tools and resources 
had to be gathered. The construction of the Geospecific Data Processing 
Center is described in the following section. 

2. The Geospecific Data Processing Center 

Overall Activities 

The activities of this project can be described in four broad areas: the 
acquisition of skilled personnel in key technical areas to support the 
Geospecific Data Processing Center (GeoData Center); the acquisition of 
hardware and software to support the complex activities in rapid 
production of databases; automatic production of terrain databases and 
technology transfers to industry. 

Skilled Personnel The Visual Systems Laboratory (vSL), in support of the 
Geospecific Data Processing Center has staffed itself with highly qualified 
personnel which are trained in the speciality areas of computer graphics, 
computer vision and image processing. Dr. Michael Moshell, who leads 
VSL has 20 years experience in the computer and physical sciences. Brian 
BIau, Curt Lisle and Ron Klasky have their Masters of Science in Computer 
science and each has experience in computer graphics. Klasky has 
additional experience in image processing and astronomy and Lisle has 
additional experience in low-level design of computer image generators. 

The quality of the personnel listed above is enhanced by a pool of students 
from the Computer Science Department at the University of Central 
Florida. This department has a nationally recognized program with 
excellence in parallel computation and VLSI design. Most recently, their 
student computer programming team placed fifth in an internationally 
recognized programming contest. One of the programing team members is 
now employed at VSL. 

Hardware and Software at the GeoData Center. During 1990. the VSL 
acquired software and hardware necessary to support the complex tasks 
involved in the production of databases. The following list summarizes the 
capabilities of the GeoData Center: 
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Image Generators 

These machines have the capability to display geographic 
databases in three dimensions at real-time update rates. 

VSL has the ESIG 500 as its highest powered rendering 
engine. Databases from multiple sources can be built on 
support machines and then downloaded to the ESrG for 
display. Additionally, SlMNET's Image Generator from Delta 
Graphics is available for viewing mOTe customized models and 
databases 

The Silicon Graphics Power Series is a new addition to VSL 
which will enhance the capability to rapidly see low fidelity 
simulations. This is an excellent platform for visualization of 
low detail and low band width databases. Because this 
platfonn is a workstation, it is easily reconfigurable and will 
host many different software systems. 

The SenseS WorldToolkit uses Intel DVI technology to provide 
phototextured imagery in low-cost (PC) computing equipment. 
This cost/performance level was unanticipated at the outset of 
this project; its arrival allowed some nice demonstrations. 

Image Processing Software 

The GRASS image processing system, in conjunction with the 
KURTA digitizing tables, is being used to generate IG 
databases. Sources include DMA DTEDIDFAD, satellite 
images and maps. These sources are combined in GRASS and 
written to a script file for use in the ANIM object animation 
system. Additional routines exist for exporting this data to the 
Multigen system, which is a tool for building image generator 
databases. 

Modeling Software 

The software packages MultiGen, ElectroGig, AutoSolid, 
Alias, SI000 and Geometric Modeling System are useful when 
building custom image generator database models. 
Specifically, S1000 and Multigen has been used to build models 
for various industrial partners and projects tasks. These 
packages give the GeoData Center an ability to quickly build 
databases to customer specifications. These databases can 
then be transformed into the appropriate formats to be 
displayed. 

- 3 -
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Additional Software and Hardware 

The VSL has two Sun Sparc workstations for use in the 
GeoData Center. These machines are general purpose UNIX 
computers that run at very high clock speed. This gives the 
GeoData Center the ability to perform complex tasks required 
for database construction. 

Additionally, VSL has the ability to read and display DMA 
DTEDIDF AD databases. Many of the software packages 
mentioned above have this feature which gives the GeoData 
Center additional capabilities to build geospecitic databases. 

Automation of Terrain Database Production. One of the main goals of this 
project is to determine unique and efficient methods for automatic and 
semi-automatic constructions of databases for image generators in support 
of some standard database interchange format. The GeoData Center has 
the capability to build databases in several formats and continues to add 
flexibility to this process. 

Using the Multigen and GRASS systems mentioned above, the GeoData 
Center can take raw input data, such as DMA DTEDIDFAD, remote 
sensing, maps and photos and create individual databases which are at 
firs t specific to the hardware and software platform. Additional support 
comes from human modelers, which is now the only way to actually 
integrate all of the data. 

Additionally, VSL has developed a series of software packages which can 
extract useful 3D information from images. One package can recover depth 
from stereo images and the other package can recover building information 
from shadows. Both of these packages have been documented in the 
monthly reports for this project. 

Technology Transfer 

GeoData Center Technology Transfer: The GeoData Center is a toolset 
which creates computer representations of regions of geospecific terrain. 
Digitized terrain technology is attractive to a variety of industrial 
companies and government organizations. VSL has relationships which 
will make this technology available to them. 

VSLhas established a relationship with the Army Topographic 
Engineering Center (TEC) where we will be cooperating with them in the 
development of geospecific database technology for simulators. VSL has 
already been funded by Martin Marietta to produce software prototypes 
which realistically display geospecific terrain in a simulator using 
Continuou s Levels of Detail to minimize the number of polygons needed 
while preserving terrain features like ridge lines, contours, etc. VSL will 
be serving as a demonstration site for Project 2851 standardized databases 
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as they become available over the next eighteen months •. providing the 
simulator industry with an independent organization with expertise in thi s 
future database format. Project 2851 format databases are required for aU 
new military training contracts involving Computer Image Generators. 

3. Data Integration and Management System 

Overall Activities. The primary goal of this project is to provide a way to 
increase the productivity of human database modelers, especially those 
working with low-cost image generators. Accomplishing this goal involves 
the introduction of several new technologies which are usually not 
associated with simulator database construction. These technologies 
include Geographical Information Systems (GIS) and computer vision. 
These new technologies wiU be used to support the Geospecific Data 
Processing Center, an organization within IST which will include skilled 
personnel, software and hardware necessary for the rapid integration of 
digital geographic data, photographs, including stereo pairs, maps and 
charts. 

Over the course of the project, there have been a number of specific sub
projects that were designed to get a better understanding of the simulator 
construction process. This included analysis of off· the-shelf software and 
hardware that already has taken this technology to the forefront. 
Implementations of stereo processing and shadow analysis helped in the 
evaluation of the main goal of this project. Additionally. there were 
consultations with industry officials who have insight into this arena of 
work. Their help along with the work done by Dr. Mubarak Shah at the 
University of Central Florida and Dr. Kevin Boyer at the University of South 
Florida has contributed to the success IST understanding of the simulator 
construction process . 

Accomplishments 

During the first six months of this project, there was a concentrated effort 
to define the overall scope of this project, as well as define important goals 
for the coming year. The foHowing is a list of accomplishments which took 
place during the first year: 

• SIMNET Database : Programs were written to read the 
SIMNET database. This is the plan view database which is 
located on the Mascomp computer. This effort was very 
successful, the data gathered from this experiment was 
valuable in many different aspects of this project. The code 
written was also used in other spin·offprojects (Virtual Reality 
Demo @ IIITSC 90, VSL's bulldozer and car on SIMNET 
terrain demo, Blau's masters thesis). 

Demonstrations of the bulldozer on SIMNET terrain done at 
VSL during first quarter, 1991, used dynamic and 
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microterrain techniques developed at VSL. Demonstration of 
another derivative of SIMENT software was done at the I1ITSC 
91 Conference in fourth quarter 1991. 

Problems in this area came about because VSL was unable to 
have access to the SIMNET CIG database. Dynamic terrain 
was to be put on SIMNET, but because of restricted access to 
the CIG database, work stopped in this area. 

Uolv, otWaterloo: An image processing tool kit was acquired 
at nominal cost. Uses inc1ude general image processing 
functions and display functions. Documentation and source 
code is available. 

Stereo Extraction : Dr. Mubarak Shah and graduate students 
from the Computer Science department of the University of 
Central Florida started work on extracting image depth from 
stereo images. He specifically concentrated on using off-the
shelf algorithms as a working introduction to this field. The 
results are reported in Appendix A. 

Shadow Extraction: Dr. Kevin Boyer and graduate students 
from the Computer Science department of the University of 
South Florida started work on extracting building height from 
shadows. Buildings cast shadows in an image, and through 
some geometry and computer vision techniques, the building 
height can be calculated. The results of this work are reported 
in Appendix B. 

Literature Review: Annotated bibliographies were constructed 
in the areas of stereo extraction and shadows analysis . These 
documents were submitted with the Quarterly report in June 
1991. 

Industrial Contacts and Logistics: Information was gathered 
from the following sources: DMA data and the hardware 
necessary to read tapes, David McKeown at Carnegie Mellon 
for information about shadow extraction and images 

The work done in the first six months defined clear goals that meet the 
expectations of this project. Specifically, the process of taking multiple 
inputs (ie: digital geographic data, single photographs, stereo images, 
maps, charts) can be integrated together for form accurate simul ator 
terrain databases. 
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Figure 1. Path from raw data to flyable database 

During the last six months of the first year of the project, efforts continued 
in the areas described above. The implementation was completed for the 
stereo extraction and shadow extraction algorithms. Additionally. 
industrial contacts were made during this period. The following is a 
specific li st of work accomplished during the last half of the first year: 

• Stereo Extraction : Dr, Shah and his students implemented 
three separate stereo extraction techniques. The output from 
all three is an image of depth values, where at an (x, y) location 
there is a corresponding depth. The problem here is that the 
(x, y) values are image coordinated, not actual physical values. 

• 

Normalized correlation method by Cochran and Medioni 
matches a point in the left image and right images and 
computes the disparity, which is then translated into height. 

Sum of absolute difference method by Kayalap uses the 
difference of the correlation of points in the left. and right 
images to compute the disparity. Again depth can be obtained 
from di sparity . 

Prazdny's method computes the correlation only at edge points 
in the image and it is based on a smoothness criterion. The 
disparity is computed at the edge points and then translated to 
depth values. 

Shadow Analysis : Dr. Kevin Boyer and his students have 
completed implementation of an interactive software package 
which lets the user choose a building to analyze. First the user 
is presented with an image which contains buildings, they are 
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then instructed to trace a building and then its shadow. The 
height of the building is then computed and soored in a 
database file. 

CAD Package for""" with Stereo algorithms : Chuck 
Campbell and Brian Blau have developed an interactive CAD 
style software package 00 interpret the output from Shah's 
algorithms. This software provides a view of the depth fields 
as a grid of posts, where the height of the posts correspond to 
the disparity between the left and right images. The user is 
then able 00 construct polygons using the oops and botooms of 
the posts. The output of this program is a database of polygons. 

Animated Fly Througb: The output from the interactive CAD 
software and the shadow extraction are inputs to Curt Lisle's 
ANIM Object Animation package. This software can be 
viewed as a generic object rendering engine. It is used to fly 
through the data that was created by both the stereo extraction 
and shadow analysis . 

The stereo depth extraction, shadow analysis. CAD interactive 
software and animated fly through were documented and 
demonstrated for the sponsors in January 1991. 

Industrial Contacts and Logistics : There has been contact 
with General Electric about their TARGET database 
construction toolkit. At the present time. 1ST is attempting to 
establish a working relationship which will benefit both 
organizations. 

Images in both digital and picture form are being collected by 
VSL 00 support the GeoData Center. Along with this, continued 
research is being done in the areas of cartography and satellite 
imaging. 

The following is a diagram of how the different aspects of database 
production fit together. It shows how stereo extraction combined with 
shadow analysis are combined through software and human interaction 
into 8 simulator database. 
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Shadow 
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1ST's CAO Tool for Building IG Databases 

1ST's Anim 

(Silicon Graphics) 

Object 
Management and 
Display 

(Silicon Graphic.) 

Inputs h"om 
Stereo 
Analysis 

Figure 2. Stereo analysis. sh adow analysis and database flythrough 

Integration Management System. The original design for the Geospecific 
Data Center included a semiautomatic integration management system 
which would track database components and bring them together. This 
proved infeasible to construct, because of the large number of decisions that 
had to be made during each database's construction. The components 
provided by the suh·teams were "stand· alone" software systems, and were 
best used as individual tools. 

Lessons learned in this project would be useful in the construction of a 
semiautomatic integration management system. However, the magnitude 
of such an effort far exceeds the scope of this small project . 

4. Sample Database Production 

Overview. During the first year of the project, there were two significant 
software developments which enabled the Visual Systems Laboratory (VSL) 
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to build a standard database. These two software packages were built by Dr. 
M. Shah and Dr. K. Boyer ofUCF and USF respectively. 

Stereo and Shadow Analysis. Dr. Shah and his students have built a 
software system which when given 8 stereo pair, can determine the depth 
of the scene. Additionally, Dr. Boyer and his students have built a software 
system which when given an image of buildings and shadows can 
determine the height of those buildings. Both of these software packages 
have been documented in the monthly reports for this project. 

DemonstratioD. This software was used, along with the commercial 
packages Multigen and S1000 to build the sample database. On January 25 
1991, VSL presented a demonstration of the capabilities which were 
developed during the first year of the project. Using both commercial 
software and applications developed for this project, the data flow from raw 
images to image generator database was shown. 

During the second year. an additional database was built according to the 
guidelines proposed in this project. This database will be displayed during 
the final Project Review in March, 1992. 

S. Conclusions 

1. The two techniques (stereo and shadows) were both capable of providing 
information about the height of a building. However, neither of the 
subcontracting teams were willing to hypothesize a mechanism which 
would reliably find buildings by automatic means. Instead, both teams 
provided prototypes with a substantial manually operated user interface. 

2. Shadow information was generally easier to use than stereo information, 
in actual hands-on efforts to build databases of simple rectangular 
buildings. This was because the shadow measurement techniques provided 
an unambiguous reference for the height of the significant roof-line, 
whereas the stereo-pair algorithms produced highly noisy height fields . 

3. The two techniques can be used to complement one another, but will 
require the construction of numerous experimental user interfaces before 
really useful tools will result. 

4. For the foreseeable future, the construction of urban databases from 
aerial photographs will remain a highly manual operation, with at most 
low-level assistance from software tools. 
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Appendix A: 

Using Shadows to Estimate Properties of Buildings in Aerial Photographs 

Maha Sallam, Kevin Bowyer 
University of South Florida 
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Abst ract 

The science of aerial photography has advanced greatly in the past few years and 

much of the equipment used in taking the actual photographs has become highly 

automated . However. the art of aerial photograph interpretat ion is still highly man

ual and pr imitive in comparison. As a step towards automating the interpretation 

process. this research work is aimed at investigating the task of automatically finding 

and estimating the properties of buildings which typically e:-:isl ill aerial photographs. 

In monocular aerial photographs, shadows comprise the major source of information 

about the properties, and in some cases also the existence. of raised struc t ures in the 

scene. Because of this. a significant part of this work has been de\·oted to finding 

shado\\" region s in images. The detecled shado\\" regions and othel" edge information 

extracted from the image are then lIsed 10 es timate the bllilding properties. 
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1.1 Im age Interpretation 

CHAPTER 1 

INTRODUCTION 

1 

Finding a way of automatically extracting the information available in two dimen

sional images can save an enormous amount of time and effort . The most common 

and least expensive type of digiti zed images used to provide a computer with a real 

world scene are intensity images. These are images which encode the intensity of the 

light reflected off surfaces in the scene at each point in a finite set of sample surface 

points into binary strings. This form of scene representation is easy to store and 

manipulate by the machine. However, it is also usually more difficult to analyze than 

other forms, such as range images , which contain explicit depth information [3]. 

Automatic gray· scale image interpretation has traditionally been an important 

and complicated problem in the field of computer vision. The main difficulties in 

performing this task lie in isolating the the various regions of interest from the back· 

ground in the image, and in identifying the items in the actual scene which the isolated 

areas represent. Typically, the human eye and brain have t.he ability to identify the 

items in a two dimensional image despite the fact that some depth information is 

mlssmg. This goal is what many researchers have been trying to make computers 

achieve in image interpretation. A two dimensional image contains depth informa· 

tion in the form of shading, texture or shadows. This information can be used to give 

a more precise description of a particular item in the image, which will increase the 

probability of identifying that item correctly. 
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2 

1.2 Aerial Images 

Aerial images are typically gray·scale images which are obtained by means of 

photographing a geographical area of interest from an airplane. Such images have 

been used and analyzed for many years to serve a variety of purposes. The most 

traditional uses for these images are in military surveillance, vegetation monitoring, 

soil and water testing and map drafting [1, 8]. Aerial images are also used in building 

models for flight and land maneuvering simulators. In this area of modeling and 

simulation, aerial images often comprise the only source of information about a real 

world location for which a model is needed. 

The problem of automating the process of aerial photograph interpretation, though 

difficult , is not impossible to solve. Indeed , numerous researchers have already ex

plored many different aspects of the problem [i , 9, 10 , 11, 13]. Many of the basic 

image processing and interpretation techniques used in Computer Vision can be ap

plied to aerial photugraphs, especially photographs of urban and suburban areas. 

However, there are certain aspects which are unique to aerial images. One of these 

aspects is the fact that. all it.ems in the scene are represented by their top view in the 

image. Another important characteristic i~ the shadow regions which exist in most 

aerial photographs due to fact that they are usually obtained during good weather 

conditions. 

1.3 Use of Shadow Information 

Shadows play an important role in the process of interpreting two dimensional 

images. They have been used to serve several purposes, from detecting the existence 

of three dimensional objects to estimating fair~y accurate qualitative and quantitative 

features of objects in an image [9,10, 11 , 13]. 
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3 

The difficulty of interpreting two dimensional images of three dimensional objects 

lies mostly in losing the th ird dimension information. Shadows can be considered 

to be the projection of th is thi rd dimension onto the plane of the two dimensional 

view, and can be used to extract object features that are not explicitly avai lable in 

t he two dimensional image. For shadows to be of value in calculating the properties 

of the three dimensional objects that generate them, information must be available 

about the source of illumination causing these shadows. In aerial images, the source 

of the illumination causing shadows is the sun. The geometry of shadows cast by sun 

illumination is well understood. By knowing the date , time and location of an aerial 

photograph , the elevation of the sun can be accurately calculated. The sun elevation 

can then be used to define the relationship between objects and the shadows they 

cast, as we will explain in the next chapter. 

Shadows play an important role in aerial image interpretation. In single aerial 

images, shadows comprise the most useful source of information about the three di

mensional properties of raised st ructures. A raised structure in a two dimensional 

image can be distinguished from markings on the ground by the fact that it casts a 

shadow t hat also appears in the image. Shadows are also usefu l in pro\·iding infor

mation pertaining to the shape of such structures. 'When the direction of the light 

source is known, we can use the shape of the shadow cast by a particular building 

to reconstruct the shape of the building itsel f. Typically, only about half of the top 

edges of the building cast corresponding shadow edges. This means that we may have 

to ext rapolate to find a possible complete building shape. 

One other important use of shadows in image interpretation is the use of shadow 

length in an image to estimate the height of the structure which casts the shadow. 

This can be done only if image information such as the elevation and direction of the 

illumination source is avai lable. 
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1.4 Problem Statement and Overview 

This thesis presents a research project which attempts to provide a part of the 

solution to the problem of aerial image in terpretation; namely identifying buildings 

and their shape and height in such images. Shadows and edge information play the 

main role in achieving this task. Chapter 2 provides an overview of the basic theory 

and a discussion of previous work on how shadows can provide information about 

the objects in an aerial image. We also explore work that used shadows to calculate 

features of buildings that cannot be directly measured in an aerial image, such as the 

height of a building. In chapter 3, the stage of shadow extraction is given in detail 

as well as the idea of establishing "ground truth". Chapter 4 explores a method of 

finding the actual buildings in the image using edge and shadow information. Finally, 

Chapter 5 provides a general discuss ion and summary. 
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CHAPTER 2 

USE OF SHADOWS IN IMAGE UNDERSTANDING 

2.1 Theoretical Studies 

As general background, this section provides a review of previous theoretical work 

dealing with the relationship between objects and their shadows in images. The 

work reviewed in this section is considered I<t heoretical" because no real images are 

analyzed. Nevertheless. the ideas on which most of this research was built are the 

same ones which can be useful in analysis of real images. The input to the algorithms 

described here is assumed to be either a complete extracted line drawing, or a labeled 

li ne drawing that represents qualitative understanding of the scene in terms of the 

basic shape and position of objects. 

In chapter two of the book titled "The Psychology of Computer Vision" [17] , 

David Waltz provides a discussion of extracting shadows and reconst ructing three 

dimensional models from their two dimensional line drawings. In this study, a catalog 

of labels for the possible types of lines and vertices that can exist in a li ne dra ..... ing 

of polyhedral objects is pro\'ided. A set of working programs that attempt to assign 

a unique label to each line and vertex in a line drawing is also explored. For this 

particular set of programs, the labeling of the various lines and vertices is based 

mainly on geometric constraint-s. Limiting the number of labels that a particular 

vertex can have leads to imposing constraints on adjacent vertices. By increasing the 

const raints on the type of label that a \'ertex can have, the possibility of producing a 

unique label for this ve rtex is increased. Shadows in th is case present an important 
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source of additional constraints that can be imposed on li nes in the image. Without 

shadows, the identification of parts of the objects relative to their backg round becomes 

impossible. 

Another researcher who explored the theme of geometric const raint s between ob· 

jects and t hei r shadows is Shafer in his book u. Shadows and Silhouettes in Computer 

Vis ion" [15}. In th is book, the relationship between illumination source positions, 

objects and the shadows they cast is explored . Shafer started with solving whal he 

called the "Basic Shadow Problem'" and went on to provide solutions for progressively 

more complex scenes. He studied scenes of multiple curved objects and illumination 

sources. The simplest case, or the " Basic Shadow Problem", occurs when a single 

polygon casts its shadow on the background due to a single source of illumination . 

The solution to this problem is the base on whi ch most analysis of the more compli· 

cated situat ions in t.he book WM built . Although t.his part icular work did not deal 

with real images, it provided several equat ions and geometric relations that can be 

valuable when appl ied to shadow information extracted from real images. 

Recently, Singh and Ramakrishna [16] expanded the work done by Shafer and 

combined shadows and texture to find the shape of three dimensional objects from 

their two dimensional line drawings. They used the solution to the "Basic Shadow 

Problem" proposed by Shafer to find the shape and orientation of the various surfaces 

of a polyhedr'a based on shadow geometry. They also introduced a method for finding 

the shape of curved objects by calculating t.he gradients of points on the surfaces of 

these objects. Their calculations were based on shadow geometry constraints as well 

as texture. 

2 .2 Shad ow A n a lysis in Real Images 

Shadow detec t ion should not be viewed as an independent step which precedes 

object identification in the process of image interpretat ion. In fact, potential object 
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structure areas in an aerial photograph are important to verify the existence of shad-

ows in potential shadow areas and vice versa. Shadow extraction is a complicated 

process which is affected by many variables. To reduce t.he complexity of the pro

cess, researchers have imposed certain restrictions on the types of structures and the 

intensity of the shadow areas relative to other components in an aerial photograph . 

Huertas and Nevatia [9, 10] for example, assumed that structures to be detected in 

an aerial photograph are constructed from rectangular components. This assump

tion allowed them to find shadows by detecting pairs of perpendicular line segments 

obtained by some low level edge detection algorithm. Once such corners have been 

detected , further analysis is performed based on the direction of the sun illumination 

and the relational positions of pairs of detected corners. The boundaries of the rect

angular areas in the image are then found by looking for the groups of corners that 

could be connected to form a completed area boundary. In this work , shadow areas 

are not segmented out in the actual image, but rather, shadow information is stored 

as a part of each corner description. Using the shadow information for each corner, 

they decide which corners are likely to belong to a structure boundary and which are 

likely to belong to a shadow boundary. 

Irvin and Md\eown [11] introduced a more comprehensive approach for usmg 

shadows in aerial phot.ographs. They implemented separate algorithms for each of 

the various stages of the aerial image interpretation process. The reason for dividing 

the process into modules is to make it possible to combine more than one method for 

each stage of the interpretation process. For the stage of shadow extraction, they use 

an algorithm that finds shadow areas using simple thresholding and region growing 

techniques. An average shadow intensity value is calculated based on the values of 

t.he pixels adjacent to all the potential structure areas in the image. Only the pixels 

that are on the opposite side of the illumination source are considered since this is 

the side where shadows have to be if they exist. The calculated threshold value is 
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then used in a region growmg process to extract the shadow areas in the image. 

So far, this method does not impose any restrictions on the shape of structures nor 

their shadows in the image. Once shadow areas have been extracted , the the shadow 

boundary segments which are shared with the structure boundary are determined 

using knowledge of the direction of illumination. These segments are then extended 

into parallelograms which approximate the shapes of the structures in the image. This 

step restricts the structures that can be detected in an aerial image to parallelogram 

shaped structures. Irvin and McKeown also use shadows to group fragments that 

belong to the same structure in an image but are separated because of segmentation 

errors. The idea is that there is usually more consistency in color intensity with in 

a shadow area that belongs to a certain building than there is in the building area 

itself. This reduces the chance for producing false area boundaries within the shadow 

area during segmentation. Based on this assumption , all the separate segments that 

are adjacent to the illuminated side of a shadow area can be grouped into one large 

segment that represents the building which cast the shadow . 

Sometimes shadow areas can be used as a source of information without being 

explicitly extracted in an image. Some researchers found it useful to use shadow 

information at the level of segmentation and edge detection to produce more reliable 

structure boundaries in the image. Liow and Pavlidis [13] introduced two meth

ods tha t used shadow/building edges as an in itial source of reliable information for 

performing edge detection and region growing. The results of these methods are far 

better than any simple segmentation scheme because they take advantage of the sharp 

intensity of edges caused by the high cont rast between structure areas and adjacent 

shadows. In their region growing algorithm, they use the pixels adjacent to a sharp 

edge which separates a structure area from its shadow area. These pixels are used 

as a representative sample from which they calculate the average intensity and the 

standard deviation among all pixels that belong to this structure area. 
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Thompson, Cheeky and Kaemmerer [18] used "shadow·stereo" to extract object 

boundaries in two dimensional images. In their analysis of a scene, they use two sets 

of images. Each set is taken from a different camera position and within each sel, 

images are captured under different sources of illumination. Edges that are raised 

from the ground , such as those which represent object boundaries, are distinguished 

from edges that are on the ground using the stereo images. Images taken under 

various sources of illumination are used to identify true boundary edges which would 

remain in the same position regardless of the direction of illumination . Other edges 

that shift in position depending on the direction of illumination are considered to be 

shadow boundaries . Although this work did not use aerial photographs as a source 

of input images, it can certainly be applied to aerial images. Of course, we cannot 

change the direction of the source of illumination (the sun), but we can take several 

stereo images at different times or even on different dates when the scene location 

changes its position with respect to the sun. 

As we mentioned earlier. shadow analysis cannot be used as an independent source 

of information in the interpretation of aerial photographs. The use of shadows should 

be an integrated part of a full aerial image interpretation system. !\agao, Matsuyama 

and Ikeda introduced such a system in [14]. In this system, all the various regions 

in the image are extracted and numbered . For each region found , they calculate 

all of the properties associated wi th that region, such as average intensity, location , 

shape. etc. Once these properties have been calculated , they are stored along with the 

region number in a table wh ich they call " t.he basic property table". These calculated 

properties are used to identify the various objects in the actual real world location 

that the extracted regions in the image represent. In this system, shadows play their 

traditional role of aiding in identifying raised structures in an aerial image. To extract 

the shadow regions , they calculate some threshold value of brightness based on the 

average intensity among all pixels in the image. All regions in the image which have 
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brightness lower than the calculated threshold are considered to be shadow regions. 

Once shadow regions have been identified. the regions which are adjacent t.o them in 

the direction of the sun and which have common borders with t.hem are considered 

to be regions that correspond to raised structures in the image. 

Most methods which have been implemented so far are dependent on various 

assumptions and restrictions that limit their performance under various conditions. 

Due to the differences in cont rast, illumination and quality of various aerial images, 

many systems may consider some dark non·shadow areas to be shadow areas. This 

problem may cause a false detection of objects or structures. 

2.3 D etermining the Height of a Structure 

Scientists have used shadows to accurately determine the height of buildings in 

aerial images p, 8, 9, 10 , Ill. Figure 1 shows the basic idea of how the height of 

a building (BH) can be calculated if the angle of the sun elevation with respect to 

Earth (x) and the length of the shadow (5L) are known . The following equation 

describes the important relation: 

BH=SLxtanx (2.1 ) 

The length of the shadow can be measured directly from the image. In general , finding 

the angle of the sun elevation requires a somewhat more complicated process. x can 

be found usi ng one of the following methods: 

1. If the height of an object in the image is already known, then by measunng 

the height of the shadow which this object casts on the background , we can use 

equation 1 to calculate the angle x. Once the value of x is known , it can be 

used to calculate other unknown object heights . The problem with this method 

is that it requi res some prior knowledge about the image which is not always 

available. Also the chance for er ror in the fi nal result of the calculated height is 
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Eanh surface 

If the angle of the sun el evation "x" is known then the actual height of a 
buil ding can be found using the length of its shadow using the equation: 

BH = SL tan(x) 

Figure I: A st ruct ure height can be determined using shadow length. 
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rather large since it depends on measuring two shadow height values from the 

image rather than one. 

2. This second method allows the calculation of the sun elevation angle x to be 

performed independently from the image. If the t ime, date and location of the 

photograph are known then x can be calculated, using astronomical t.ables, from 

the following relation : 

sin x = cos a x cos b x cos c ± sin a x sin b (2.2) 

where: a is the latitude of the photograph location , b is the latitude of the sun 

relati\'e to Earth when the photograph was taken, and c is the difference in 

longitude between the sun and the photograph location. 

The sign in the equation is a .. + .. if both sun latitude and the photograph 

location are on the same side of the Equator and it is a " - n if they are on 

opposite sides of the Equator. See Figure 2. This is because the sun is located 

to the south of the Equator between September 23 and March 21, and it IS 

located to the north of the Equator between r..Iarch 21 and September 23. 

These two methods gi\'e accurate results only jf the foll owing conditions hold: 

1. The heights of the objects for which shadow heights are measured should be 

vertical with respect the image plane. 

? The entire surface of where lhe shadows are cast is in the plane of the image. 

Figure 3 illustrates the problems that arise when one of these two conditions is 

not met. 
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If the sun has some latitude b above the equator (between March 21 and September 23) 
and point p is nonh of the equator. or the sun has a latitude b below the equator (between 
Splember 23 and March 21 ) and point p is south of the equator then : 

sin(x) = cos(a-b) = cos(a) cos(b) + sin(a) sin(b) 

13 

If the sun has 0 latitude (on March 21 and on September 23) then: 
sin(x) = cos(a) 

r---------------~ ~--------------_, 

If the sun has some latitude b below the equator (between September 23 and March 21 ) 
and pain! p is nonh of the equator, or the sun has a latitude b above the equator (between 
March 21 and September 23) and point p is south of the equator then: 

sin(x) = cos(a+b) = cos(a) cos(b) - sin(a) sin(b) 

Figure 2: Calculating the angle of the sun elevation "xn at point "pn which bas a 
lati tude "an depends on the time of year. 
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actual height of building 

-) ...... ........................ ; .:;; 
calculaled height -' ,. 

of building -' 
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;' \ x 
ground level I- - I 

actual length of shadovs 
Plene of the ime.e:e 

; length of shadov in the image 
I III .. I 
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i 
actual height of building 

,. 
./ ., X ,. . 

L " _I Plane of the image 

Figure 3: If the shadow is not cast on the plane of the image or the build ing height is 
not perpendicular to the plane of the image then the calculated building height will 
be different from its actual height. 
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CHAPTER 3 

EXTRACTING SHADOW REGIONS 
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In order to use shadows in height and property est imation of buildings in aerial 

images, we first need to be able to ext ract the shadows in the image. Once an 

appropriate method of shadow extraction is found, the shadows can be used in later 

stages to calculate st ructure properties. 

The most obvious properly of shadow regions in an image is that they are generally 

darker than other regions. This suggests that one method of extracting shadows is 

to use thresholding techn iques to ext ract the darker regions' "in the image. Using 

a global threshold to determine which pixels belong to dark regions is a relatively 

simple process. The difficult part of employing such a technique lies in automatically 

finding a threshold value which will produce good results. It is not very clear how to 

measure the performance of a region extraction technique. The ideal region ext raction 

algor ithm is one which extracts only regions of the required type and all regions of 

the required type. \·Vhen a global threshold value is used to extract shadow regions, 

it seems reasonable to consider a good threshold value to be one which extracts all 

actual shadow regions in the image while extracting the minimum number of dark 

non-shadow regions possible. There is generally a trade off between extracting only, 

but not all, actual shadow regions, a nd extract ing .regions which include all shadow 

regions as well as other regions that happen to be dark. We have chosen to concentrate 

on obtaining all shadow regions at t his point, based on the assumption that it is easier 

to eliminate non-shadow regions at later stages than it is to find the missing shadow 

regions . 
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3.1 "Ground '!ruth" and Evaluating Shadow Extraction Techniques 

Any rigorous evaluation of an automated region extraction technique should in. 

elude some sort of comparison to the ideal performance. Therefore, we first construct 

a "ground truth" data base for a group of test images. This data base is produced 

using a high degree of human intervention. Humans have established their ability to 

interpret two dimensional scenes and they seem to be capable of adequately identifying 

shadow regions in aerial photographs. In order to represent this human interpretation 

in a measurable way. an algorithm has been implemented which allows for manual 

tracing of shadow regions in the image, This algorithm was used to perform manual 

shadow extraction on 5 images. Figure 4 contains the manually outlined test images 

and the shadow regions found usi ng the outlines. 1 

This manual tracing is then automatically interpreted into chains of point coor

dinates in the image plane that correspond to outlines of the traced shadow regions. 

Using these boundaries, we produce a data base for each image that contains an entry 

for each shadow region. This entry describes its corresponding region by the following 

informat ion: 

1. A region id number which is unique within each image. 

2. The coord inates of the top-left and bottom-right corners of a bounding box for 

the region specified. 

3. A list of the points which define the actual boundary of the region. 

4. The number of pixels which make up the area of the shadow region . 

5. The center of mass of the region . 

IThe image used in f igure 4-a was obtained from Andres Hu ertas at USC Institute for Robotics 

Ilnd Intelligent Systems while images used in Figu res 4-b through 4-e are parts of larger images which 

were obtained from J oseph Sanjour at the Center for Automation Research. University of Maryland . 
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(a ):\ .51:2X512 image of a hangar and group of buildings at the Los Angeles Airport. 
Resolution information for this image is not available to us. 

(b )A 512X.j12 image of the Washington monument. Approximate resolution is 1.2 
meters/pixel. 
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(c ) A 600>':600 im~g€' of a group of buildings in \Vashington DC. Approximate 
resolution is 1.2 meters/pixel. 

(d) A 512X512 image of a group of buildings in Washington DC. Approximate 
resolution is 1.4 meters/pixel. 

18 
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(e) A 512X512 image of a group of buildings in Washington DC. Approximate 
resolution is 1.4 meters/ pixel. 

Figure 4: ~Ianually outlined test images and thei r shadow regions. 
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Tables 1 through 5 list all shadow regions in each of the test images used in 

Figure 4. The regions are listed in order of their id numbers. For each region listed, 

the bounding box , area in number of pixels and centroid location are given . 

To c\'aluate the performance of a particular shadow extraction technique, we com-

pare the shadow regions found using each automated technique to the ground truth 

shadow regions of each test image. By making this comparison we can calculate per-

fOfmance histograms for the results of each method as applied to each image. These 

histograms describe the distribution of the number of the actual shadow regions given 

in the image data base over each of the following: 

1. the number of segments into which each hand·traced shadow region is (erro

neously) segmented using the automated method . This histogram provides a 

measure of how likely the method is to oversegment a shadow region. 
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2. the percentage of each hand-traced shadow area found uSing the automated 

method. This histogram is a measure of how completely the particular method 

segments out a shadow region. 

3. the ratio of the area of regions erroneously extracted as part of the actual 

shadow area, using the automated method, to the area of the actual shadow 

region. This histogram is a measure of how likely the particular method is to 

merge a shadow region in the image with other shadow or non-shadow regions. 

In addition to these three histograms, we calculate other quantities which provide 

important performance evaluation measures that are either not reflected at all , or are 

implicit in the performance histograms. These quantities are given as follows: 

1. The percentage of regions found in a single segment using the automated method . 

2. The percentage of the total hand·traced shadow area found using the automated 

method . 

3. The ratio of the total area of regions erroneously extracted as part of the actual 

shadow regions , using the automated method, to the total area of the actual 

shadow regions. 

4. The ratio of total fal se shadow area extracted using the automated method to 

the actual shadow area. 

Obviously, a perfect shadow extraction technique is one which produces the max

imum number possible of completely detected shadow regions but no distorted , over-

segmented or false shadow regions. For practical purposes however, we can consider a 

certain shadow extraction technique to be better than another if it produces a larger 

number of completely detected shadow regions and a smaller number of distorted, 

oversegmented or fal se shadow regions. 
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T bl ? G a e _: rOlln d trut h d ata b ase or ImaRe use In 1.I!;ure 4- b. 
Region Bounding box Number Centroid 

id Xffiln ymln xmax ymax of pixels x y 
1 281 194 356 243 988 319.25 218.86 

3.2 Shad ow Extraction U sing Glob al Thresholding 

One way of finding a threshold value for an image is to calculate a histogram which 

describes the distri but ion of t he various gray-levels in the image [2, 12]. Typically. 

this histogram will have peaks and valleys. Each peak in t he histogram corresponds 

to a group of regions in the image which share a common average intensity. The peak 

which corresponds to the darkest regions in the image can generally be assumed to 

represent the shadow regions. The valley which separates this peak from peaks at 

lighter gray levels corresponds to the threshold value used to extract the dark regions 

in the image. \Ve first consider the performance of a method which uses a global 

threshold chosen manuall.y through iterative experimentation. Then we consider the 

performance of another method which uses an automatically calculated global thresh-

old. 

3 .2. 1 Using an operat or selected glo ba l thresh old 

.A. simple algorithm has been implemented to confirm that shadows can be extracted 

using a global threshold value for the whole image. This algorithm accepts a single 

threshold value as input and uses it to extract regions in the image which have pixel 

values darker than the threshold . Using this program, we have been able to estimate 

reasonable threshold values for the 5 test images used in Figure 4. 

The test images used have a wide range of threshold values and they contain 

shadow regions of various sizes. Determining a reasonable threshold value for each 

image is based on extracting all regions that a human would consider to be shadow 
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regions while extracting the minimum possible number of non·shadow regions. The 

ground truth data bases were not used in this case to determine the threshold value 

which will produce the best shadow extraction. The reason is that the process requires 

only comparison between the results which correspond to the various threshold values 

for each single image rather than absolute measurement of performance for each case . 

This comparison can be easily done by a human operator. Once the operator selects 

the threshold value which he or she considers to be the best, the performance of the 

algorithm using that particular threshold value can be measured against the ground 

truth data base. The results of these measurements represent the best possible shadow 

extraction result using a single global threshold. These results can be used to judge 

the performance of an algorithm which automatically calculates a global threshold 

value for the test images. They can also be used to compare the performance of 

shadow extraction using global thresholding methods versus other methods. 

Figures 5 through 9 show the results of shadow extraction and the performance 

histograms using the estimated thresholds for the 5 test images in Figure 4. By 

examining the performance histograms, we find that in general this method performs 

well as far as extracting most of the area for most of the shadow regions . It also 

find s most of the shadow regions in one segment. The amount of distortion in each 

extracted shadow region is represented by the ratio of shadow area falsely found to be 

connected to the shadow region to the area of the actual shadow region. This measure 

is found to be low for most of the regions in the test images. The total area of what 

is falsely extracted as shadow regions is also reasonable for all images except for the 

image of Figure 6. In this image the shadow region is small and is surrounded by 

several dark non-shadow regions. Because of these dark regions it is not reasonable 

to expect an algorithm to extract fewer false shadow regions while extracting the 

actual shadow region based on intensity alone. As we indicated earlier, we are not 

very concerned about extracting false shadow regions at this stage, based on the 
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assumption that other information in the image can be used later on to elim inate 

such regions. The only time such false regions become of great concern is when they 

d istort the t rue shadow regions, as we will see in t he next sect ion. 

3.2 .2 U sing an a utomatically calculated global thr eshold 

An algorithm which uses a histogram to calculate a global t hreshold value has been 

implemented and used to extract shadows from the test images. The main difficu lty 

in using this technique is finding peaks and valleys in the histogram . This problem is 

inherent to the method of t hresholding using his tograms. Finding peaks and valleys 

in a histogram requires setting criteria which define what causes a certain intensity to 

be identified as corresponding to a peak , a valley or neither. These criteria may have 

to be determined experimentally using certain images and are t herefore dependent 

on the image being used . The reason for this is that images differ in the amount of .. 

noise, average intensity, and the type and size of regions which they contain. All of 

these factors have a direct effect on the shape of t he histogram and the amount of 

smoothing needed to eliminate meaningless peaks and valleys. In this implementation, 

these criteria have the form of a single parameter which defines how to smooth the 

histogram in a way that will make all of its peaks and valleys meaningful. In other 

words, smoothing the histogram will eliminate the peaks and valleys which are too 

small or too narrow to be representative of a region type in the image. 

Figures 10 through 14 show the results and performance histograms of using au· 

tomatically calculated global threshold values to extract shadows in the 5 test images 

used earlier. The performance of this method is considerably worse t han using the 

operator selected threshold method. This is particularly obvious in Figures 10 and 

11. In Figure 10 it seems that t he performance is very good in terms of the percent age 

of total shadow area found and the percentage of the single segment regions found. 

However , if we examine the ratio of area falsely found to be part of actual shadow 
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Figure 5: Extracted shadows and performance histograms for the image used in Figure 
4.a usi ng an operator selected threshold . 
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Figure 6: Extracted shadows and performance hist.ograms for the image used in Figure 
4.h using an operator selected threshold. 
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Figure 7: Extract.ed shadows and performance histograms for the image used in Figure 
4.c using an operator selected threshold. 
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Figure 8: Extracted shadows and performance histograms for the image used in Figure 
4.d usi ng an operator selected threshold. 
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4.e using an operator selected threshold . 
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regions to the actual shadow area, we find it to be ext remely high for all regions. 

This is obvious from the image in which most of the extracted shadow regions are 

blended with the background and are almost impossible to identify. The reason for 

such degraded performance is that the image used in Figure 10 contains a small nUffi-

ber of shadow pixels which fail to make a significant peak in the dark area of the 

histogram. This causes the algorithm to pick a threshold that classifies all but very 

light regions in the image as shadow regions. In Figure 11, the algorithm fails to find 

most of the shadow region. This is caused by regions in the image that happened to 

be darker than the shadO\ .... region and which happened to form a significant peak in 

its histogram. The performance histograms given in Figures 12 through 14 indicate a 

far smaller degradation in performance for this method compared to the one explored 

in the previous section. 

The method of using a single histogram cannot be used as a reliable au tomatic 

shadow extraction technique in its simple form. The reason for this is the need to set 

the parameter based on the image being used and the potential for not detecting the 

shadows in the image if the total shadow area is too small. 

3 .3 Shadow Extractio n Using Autom ated Local Thresholding 

To overcome some of the problems associated with using a single histogram for the 

whole image, local histogramming can be used 14, 6J. Based on this method, an image 

is divided into smaller parts and a local histogram is calculated for each part. The 

main advantage of this division is that smaller shadow regions have a better chance 

of form ing peaks in the local h istograms. Also the global variations in the average 

intensities of the various shadow regions will have a smaller affect on calculating the 

thresholds for the shadow pixels. The algorithm is composed of the following steps. 

1. Divide the image into a reasonable number of overlapping rectangular areas. 

(For the given image test set, with its particular image sizes, division in to 100 
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Figure 10: Extrac ted shadows and performance histograms for the Image used III 

Figure 4.a using an automatically calculated global threshold. 
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Figure 11 : Extracted shadows and performance histograms for the Image used In 

Figure 4.b using an automatically calculated global threshold. 
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Figure 4.c using an automatically calculated global threshold. 
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Figure -l .d using an automatically calculated global threshold . 
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Figure 14: Extracted shadows and performance histograms for the image used In 

Figure :I .e using an automatically calculated global threshold. 
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areas produces areas which are just large enough to produce reliable histograms 

and small enough not to contain too many types of areas). For each rectangular 

subimage, a local histogram is calculated, then the histogram is used to find a 

threshold value for dark regions in each of the subimages. 

2. Calculate a threshold value for each pixel in the image which belongs to at least 

one subimage for which a local threshold value was found . If such a pixel belongs 

to only one subimage, it is given the same local threshold value calculated for 

the subimage. If the pixel belongs to more than one overlapping subimage. it 

is given the average value of the local threshold values of these subimages. 

3. Although some of the suhimages used in the first step may not have any shadow 

regions at all , a threshold may be found for such subimages. The threshold 

calculated in this case represents the darkest regions in the particular subimage, 

but it may represent very light regions in the whole image. In order to avoid 

using such erroneous local th reshold values to find shadow regions in the image, 

we have to somehow find a way of identifying these local thresholds. This 

can be achieved by establishing yet another threshold to determine whether a 

local threshold value corresponds to regions that are too light to be shadow 

regions. Such a th reshold can be found by creating a histogram which describes 

the distribution of local threshold values calculated for all subimages over the 

range of grey-scale values allowed in the image. This histogram is then used to 

calculate a threshold which separates local thresholds that correspond to light 

regIons. 

4. At this point there are three types of pixels in the image; pixels which have 

t hreshold values that correspond to dark regions , pixels which have threshold 

values that correspond to light regions and pixels which have no calculated 

threshold values at all. In this step, the last two types of pixels are given 
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threshold values based on the average threshold values of the closest pixels of 

the first type. 

5. The last step in this process finds the edge pixels which bound shadow regions 

in the image. This is performed using the threshold calculated for each pixel. 

The condition for a pixel to belong to a shadow boundary is that its east and 

west neighbors, or its north and south neighbors, have opposite relationships to 

the threshold values; i.e. one is less than the threshold value and the other is 

greater than the threshold value. 

Figures 15 through 19 show the results and performance histograms of shadow 

extract ion using the method described above on the images in Figure 4. This method 

is significantly better than using an ij.utomatically calculated single global threshold 

value, as can be concluded form examinjng its performance histograms. This method 

is completely aut.omated and does not require adjusti ng any parameters based on the 

image. T his method also seems to extract most shadow regions for all of the test 

images used and it seems to extract shadow regions which are small compared to the 

size of the image. 
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Figure 15: Extracted shadows and performance histograms for the Image used in 
Figure 4.a using automated local thresholding. 
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Figure 16: Extracted shadows and performance histograms for t he Image used In 

Figure 4.h using automated local thresholding. 
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Figure 17: Extracted shadows and performance histograms for the image used In 

Figure 4.c using automated local thresholding. 
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Figure IS: Extracted shadows and performance histograms for the image used In 

Figure 4.d using automated local thresholding. 
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Figure 4.e using automated local thresholding. 
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ESTIMATING BUILDING PROPERTIES 
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As indicated earlier, shadows provide very important information about buildings 

in aerial images. However, they are not the only source of such information. Extracted 

edges in the image are also very important for our purpose. It may be possible to 

detect edges that correspond to the boundaries of the top views of the buildings as 

well as the boundaries of the shadows which these buildings cast. 

Thi s chapter expands on the idea of combining shadow and edge information. 

This is done in the context of describing the details of an algorithm which finds the 

shape of the top view and the height of each building. 

4.1 Overv iew of the Algorithm 

The general algorithm can be outlined in the following stages. 

1. Extract the shadow regions in the image. 

2. Perform edge detection on the original image and obtain a labeled outline for 

each shadow region. 

3. Estimate the sun direction using the shadow region boundaries . 

4. Find the part of each shadow boundary which is shared by the top view of its 

corresponding building and extrapolate to find the complete boundary of the 

top view of each building. 
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5. Find the building height using the shadow length . 

Figure 20 depicts a flowchart for this algorithm and the following sections describe 

stages 2 through 5 in detail (the shadow extraction stage has been explained in the 

previous chapter). 

4.2 Obtaining Labeled Shadow Boundaries 

Once the shadow regions are found in the image, we can easily label the individual 

regions by using a connected component algorithm. We also find the boundary chain 

code for each region [12J. Dealing with a chain code boundary can be difficult in 

determining the location of corners and corner angles in the boundary. The impor

tance of finding corners will become more apparent in the next sections. To overcome 

this difficulty we convert the boundary description from the chain code form to a list 

of ordered line segments. Fitting the line segments to the chain code boundary is 

performed using a part of a software package called Perceptual Grouping. This pack

age was developed by A. Etemadi at the Universi ty of Surrey in Guildford, United 

Kingdom . Perceptual Grouping is mainly concerned with extracting and grouping 

line and arc segments in an edge image. We only use this package to find a list of line 

segments which best represent the boundary of each shadow region. Each single li st 

of line segments is labeled as belonging to a certain shadow region . 

In our shadow region extraction technique, each of the pixels in a shadow region 

including boundary pixels is chosen based on a threshold value. This means that 

our boundary pixels are chosen without any regard to how well they contribute to a 

smooth boundary of some shape. This also means that our shadow region boundaries 

are very sensitive to noise. Fitting line segments to such noisy boundaries will result 

in producing somewhat distorted and oversegmented boundary approximations. At 

th is point we use edges obtained by applying the edge detection technique developed 

by J. Canny [5] to the original image. The edges found have the advantage of being 
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Figure 20: A flowchart for the general algorithm . 
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49 
smoother than the extracted shadow boundary in general. However the extracted 

shadow boundary is more complete, especially around the corners. 'We approximate 

these edges using li ne segments in the same way we did the shadow region boundaries. 

The line segment.s obtained by edge detection represent parts of various region 

boundaries in the image including shadow boundaries. Our next step is to identify 

the group of segments which belongs to each shadow boundary. This is done by 

calculating the proximity of each of the line segments obtained by edge detection 

to each of the line segments in an extracted shadow boundary. Once this step is 

completed, we have a group of line segments for each shadow region such that the 

lines in the group have been obtained from the two different sources. Out of all the 

lines in each group we form a final line segment approximation of the boundary. This 

final approximation uses mainly the more reliable and generally longer line segments 

from the edge detected image and completes the missing parts of the boundary with 

the remaining segments. 

The information provided by edge detection is also useful in verifying whi ch of 

the previously extracted regions is truly a shadow region. In our implementation we 

consider an extracted shado, .... region to be true if over 40 percent of the length of its 

boundary is supported by edge information. 

4.3 Estimating the Sun Direction 

A corresponding shadow region boundary shares the part of the building region 

boundary which is closest. along the sun direction . At this point , the only information 

that we have about the building region boundary is embedded in the shadow region 

boundary, and the only way to extract such information is by finding the sun direction 

in the image. 

All building shadows in an aerial image are cast in the direction of the sun. This 

leads us to conclude that we should be able to use the shadow bounda.ry line segments 
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to estimate the sun direction. OUf initial thought. was to form a frequency histogram 

which represents the number of shadow boundary line segments in each possible 

direction or range of directions. Then we can choose the direction which has the 

most number of line segments to be the sun direction. Figure 21.a illustrates how 

this method would work in an idealized situation. This method did not work in 

practice however. One reason for this is that the line segments in the sun direction 

for each region are often distorted and sometimes too short to provide a reliable 

direction in a digital image. The second reason is concerned with the typical layout 

of buildings. In many city and suburban scenes, buildings tend to be parallel to each 

other. This means that the direction of the line segments shared between buildings 

and their shadows, as well as the projections of these line segments on the other side 

of the shadow region , will be parallel for many buildings, see Figure 21.b. This will 

cause certain directions other than the sun direction to have equal or even higher 

support than the actual sun direction. 

A more reliable way of estimating the sun direction involves finding building cor· 

ners of the part of the building which caused the shadow and their corresponding 

shadow corners. T he direction of the vector which starts at a corner point and ends 

at its shadow point is the same as the direction of the sun. This idea is illustrated 

in Figure 22. In order to find the corresponding corners, we sort the line segments 

which descr ibe each shadow boundary and we assign a direct ion to each segment. 

The sorting and direction assignment are done such that if the end and start of each 

pair of consecutive line segments is connected , the result is a closed polygon. Once 

we sort the line segments we can look for pairs of two consecutive line segments which 

have corresponding parallel line segments. 

Since at this time we have no information about which part of the shadow bound· 

ary is shared between the shadow and its building, we can find each of the building 

corners and its corresponding shadow corner only as a pair , without actual knowledge 
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Figure 21: Estimating the sun direction using shadow line segments. 
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Figure 22: Estimating the sun direction using building corners and their shadows. 

of which belongs to the building and which is the shadow. Since we need to make 

t.his decision to calculate the sun direction , we assume that the non-convex corner 

of the shadow is always the one which is shared by the building. This assumption 

is justified since we take the sun direction to be the one which is supported by the 

most number of corner pairs , and in a full aerial image, there are typically more con-

vex shadow causing building corners (which correspond to non-convex corners on the 

border shadow boundary) than non-convex. 

vVe applied OUf shadow boundary finding technique to the images in Figure 4 and 

obtained the results in Figures 23 through 27. We also obtained the sun direction 

for each of the images. Only the two images in figures 23 and 25 gave correct sun 

direction of 310 degrees and 166 degrees respectively. The sun direction is taken to be 

o degrees in the eastward direction. and to be increasing in the clock· wise direction. 

It was not possible to find the correct sun direction in the other images due to the 

lack of the type of corners which our sun direction estimation method relies on . 
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Figure 23: Shado\\' boundaries in the image of F igure 4.a. 

Figure 2-1 : Shadow boundaries in t he image of Figure 4.h. 
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Figure 2i: Shadow boundaries in the image of Figure 4.e. 

4 .4 D et ermin ing B u ilding Shap e 

By finding the shadow boundary for a building and estimating the sun direction , 

it is clear that we can determine which part of the shadow boundary is shared by its 

building. In our implementation this is performed by finding two bounding lines of 

each shadow region such that each of the two lines is in the direct ion of the sun. Each 

of these lines passes through a point on the shadow boundary. These points split the 

shadow boundary loop into two parts. The part of the loop which is closer to where 

the sun rays are coming from is the shadow building border. 

To find the rest of the building boundary, we extrapolate based of the part of the 

boundary which has been found. \Ve assume that the buildings are parallelogram 

shaped or are composed of parallelogram shaped blocks. T his means that we can 

simply complete each of the parallelograms half of which is given in the each of the 

convex (relative to the building boundary) corners of the building-shadow border. 

Figures 28 and 29 give the results of extracting the buildings in the images of 
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Figure 28: Building boundaries found for the image in Figure 23. 

Figures 23 and 25 respectively. eWe could not. obtain meaningful building boundaries 

for the rest of the images since it was not possible to calculate the sun direction in 

these images. 

4 .5 Calculating Building H eight 

As explained in Chapter 2, we can use the shadow length to estimate the height 

of its corresponding building. In order to find the shadow length, we calculate the 

average distance between the shadow-building border part of the shadow boundary 

and the other part along the direct. ion of the sun. In some situations , it may be 

the case that the shadows of more than one building are merged as a result of their 

proximity. This situation may be detected if the buildings have significantly different 

heights by detecting the significant difference in the shadow length when measured 

at different points along the boundary. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~ 

57 

Figure 29: Bui lding boundaries found for the image in Figure 25. 
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It is clear from examining the resu lts in the prevIOus chapter t hat usmg only 

shadows t.o find the buildings in an aerial image often produces incomplete results. 

Only when the image is clear and the shadow cast is completely visible is it possible 

to find an accurate estimate for the part of the building shape reflected in the shadow 

or even to decide the existence of a building. Perhaps the most. important step 

in the whole process is the shadow extraction step. This is because most of the 

processing performed beyond this initial step is completely dependent on how accurate 

the extracted shadows are. Any large distortion in the shape or number of the initially 

extracted shadow regions will directly affect the final performance of the algorithm. 

This condition of having to obtain very good shadows to be able to find good estimates 

of building properties may not be necessary if we can correct the errors in the shadow 

boundaries using reliable edges. Unfortunately, obtaining such reliab le edges is also 

dependent on how clear the original image is and how sharp the edges in that image 

are. 

Another problem which can be solved by obtaining reliable edges is determining 

the complete shape of bui ldings. As we indicated in previous chapters, a shadow 

region reflects only a portion of its building boundary. Ideally we would like to have 

enough edge information to reconstruct t he missing parts of bui lding boundaries. 

This is very difficult to do since the edges of the buildings which do not border 
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the shadow regions are typically very weak and therefore are difficult to detect by an 

edge detector. Extrapolating based on building-shadow borders is a reasonable opt ion 

only if the buildings happen to be parallelogram shaped. However, if the buildings 

are irregular in shape then shadows do not provide any more information other than 

the border information. 

5.2 FUture Research 

Most work which has been done in the area of aerial photograph interpretation 

so far remains highly restrictive, which makes it less useful in practical applications. 

OUT algorithm utilizes a single aspect of the information contained in an aerial image 

to infer some information about the real world scene represented by this image. This 

algorithm is not meant to be an independent method of providing all information 

about all buildings in an image. However this algorithm along with others can be 

in tegrated into a full system of aerial photograph interpretation. A final complete 

interpretation system is not likely to be composed of separate modules but rather 

of closely connected modules each of which depends on information provided by the 

others to make its decisions. 

Because of the complexity of any typical scene captured in an aerial image, it 

was important to deal with solving the problem of interpreting such images by di· 

viding the problem in to parts. From all the research work which has been done on 

various subparts of this problem a very sophisticated interpretation system can be 

implemented. This task of combining the various methods and sources of information 

into a full system wi ll take much time and effort but it will provide a very important 

tool which will be of great use in several applications. It will also be beneficial if a 

system is implemented to take color images. This will solve certain problems such 

as distinguishing between vegetation and shadow areas which usually have similar 

intensities in gray-scale images. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
-

60 

5.3 Summary 

I have provided a. complete description of my thesis project which invol ved the 

investigation of the idea of using shadows to estimate building properties in aerial 

photographs. The first two chapters provided general introduction and full explana

tion of the background for this work . Chapter 2 also provided the theoretical bases 

for the connection between buildings and their cast shadows. Chapter 3 provided the 

idea of establishing "ground truth" and concentrated on extract ing shadow regions. 

Chapter 4 described in detail an algorithm which used the extracted shadows to find 

buildings and estimate their height. Finally, this conclusion chapter provided some 

discussion and suggestions for futu re work. 
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1 Introduction 

The goal of the stereo vision is the recovery of three- dimensional information from images 

taken from different viewpoints . Two cameras located at two positions can be used to take 

two images, or one camera. can be used to take two images from two different positions. As 

one lakes images of an object from two different positions, the object is shifted in one image 

relative to that in other image. This shift is inversely proportional to the depth of the ob jed, 

which is the distance of the object from camera. We call this shift disparity, and hence it is 

the measure of three dimensional depth. 

The basic problem in stereo is that , one has to match a. point from the left image to a 

point in the right image. One point in the left image can correspond to only one point in 

the right image. The problem of matching a point from left image to a point in the right 

.image is called correspondence problem. All the stereo algorithms try to solve this problem. 

If we take two images with the cameras which are aligned, the matching problem can be 

restricted to one dimensional search along any row, i.e. we do the matching of the points in 

the same row in both images, we don't match a point in one image to the point in other 

image which is not in the same row. This constraint is known as epipolar constraint. 

Establishing correspondence problem is the main task in a stereo algorithm, this involve 

two quest ions: what to match? and how to match? Correspondence between two images 

can be established by matching specific features such as blobs or edges, or by matching 

small regions by direct correlation of image intensities without identifying features. After 

feature matching, the next step in stereo is to apply continuity constraint, which slates that 

disparity varies smoothly almost everywhere, and that only a small fraction of the area of 

an image is composed of bounderies that are discontinous in depth. When disparities at 

some points are not known. a surface between known disparities can be interpolated using 

the smoothness criterion . Since these disparities are direct measure of the depth, we can 

interpolate a surface going through all points with given disparities. 

This report summarizes our work during the first year of this project. The first six months 

of this project were devoted to the literature search on the stereo algorithms. A number 

of recent papers from the current literature were studied and their approaches analyzed. 

Three representative algorithms were selected for further study. During the next six months 
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the algorithms were implemented, and tesled. on a representative set. of stereo pairs. This 

report. describes our experiments, and the comparitive study of these algorithms. During t.he 

second year of this project we will focus on improving these algorithms by incorporating the 

smoothness and continuity criteria. We will also attempt to introduce some other 3D cues 

like shading in the stereo algorithms. It is expected that. the performance of such method 

using multiple cues will be much better than the one using only single cue. We will also 

start an initial study related to interpolation of surface from the dispariy maps. 

In the next section, we will discuss three stereo algorithms : Normalized Correlation 

Method, Difference Method and Prazdny's Method. Section 3 presents the results obtained 

for several images with these algorithms. We end this report with section 4 which conclude 

this report. We have also included the source codes of three algorithms, and Canny's edge 

detector written in C language in the Appendix A. This will make it easy to run these 

algorithms on any other system for further experimentation. In addition, the demos for 

running our programs are given in the Appendix B. 

2 Algorithms 

The three algorithms which are used here, basically try to match corresponding points in 

images and get the difference in their positions, which as explained in previous section is 

measure of the distance of a point in the object from camera. Cochran and medioni [2], 

have proposed an algorithm which declares a point as corresponding point to a ipoint at 

which highest Normalized correlation is obtained. The algorithm reported by Kayalap [3J, 

takes sum of the absolute difference of the intensities of the neighbouring points of a point in 

the left image Lo the corresponding neighbouring points of a. point in the right ima.ge. The 

point in the right image, which gives t he minimum sum of difference, is the matching point. 

Prazdny's II] algorithm chooses a matching point which gets the maximum support from its 

neighbours. 

Each of the algorithm is discussed briefly in the following sections. 
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2.1 Normalized Correlation Method (Cochran and Medioni) 

In this method, to match a poin t x in the left image to the point y in the right image, 

we first get the mask of given size around x. Then we compute the normalized correlation 

of that mask with the mask around point y in the right image. The point y at which we 

get the maximum normalized correlation value is the matching point. The difference in the 

position of x and y is the disparity value for x. If multiple points with maximum normalized 

correlation values are obtained, we select one disparity value for the point X, based on the 

smoothness criterion. The smoothness criterion assume that a point x has almost the same 

disparity value as of its neighbouring points. Finally, the edgels from the original intensity 

images can be extracted, and used for possible locations of the depth discontinuties. 

In order to get disparity for a point (Z,y), we compute 

where 

m m 

A(x;,y) = L: L: R(x; + k,y + j)' 
j=_m.l:=_m 

( . ) _ Ej=_m Ek=_m L(x + k,y + j) X R(x; + k,y + j) 
c x" y - A( . ) 

X" Y 

d is the disparity, m is the mask size, L(z,y) and R(x, y} respectively are the gray values in 

left and right image at (z,y) . The point (z; , y) at which value of C(Xil Y) is maximum is the 

matching point for (x,y), and Xi - X is the disparity value for (x,y ). 

2.2 Sum of Absolute Difference Method (Kayalap) 

This method is based on sum of absolute differences of intensity values around the small 

neighborhood of the two points in the Jeft and right images. To get a point y in the right 

image corresponding to the point x in the left image, first the mask of given size around x is 

obtained. Then the sum of absolute differences (SAD) of this mask with the mask centered 

around point y in right image is computed . The point in the right image which has minimum 

SAD is the point y matched to the point x in the left image. The difference in the position of 

x and y is the disparity for x. The disparity for all the points in the left image are computed 
5 
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in the similar fash ion. In this case also , we may ge t multiple points with the same SAD for 

a point x. The smoothness criterion can be used to to resolve the disparity conflict. 

The disparity for a point (x ,y) is computed as foUows: 

m m 

D(x;,y)= L L IL(x+k,Y+i) -R(x;+k,Y+ i)1 
j=_m k= _m 

where 

:r - d :S Xi :5 X + d, 

d is the disparity a.nd m is the mask size. The point (Zi,Y) at which the value of D(Xi,y ) is 

minimum is the matching point and, Xi - X is the disparity value for (x,y) . 

2.3 Prazdny's Method ( Prazdny) 

In this method, the disparity is computed at edge points only unlike the previous methods 

where the disparity was computed for each point. Therefore, the first step in this method is 

to apply the edge detector to left and right images. Prazdny's method is based on smoothness 

criterion. The point under consideration should have the same disparity value as of most of 

its neighbours. This implies that the neighbours should support a disparity value for a point 

under cosideration. Prazdny has given an expression which calculates support for a disparity 

value of a point based on above criterion. This expression is called similarity function. The 

sum of similarity funct ion for each possible disparit.y is calculatecl . A final dispari ty value 

for which this summation is maximum is assigned to the point. 

The similiari ty fun ction should meet three requirements: 

1. The disparity similarity function should be inversely proportional to the difference of 

disparities of interacting points. 

2. More distant points should exert less influence while nearby points should have more 

disambiguiting power. 

3. The more distant the two interacting points are the less seriously should their dispar. 

ity difference be considered. Because of inherent uncertainity : steeply. sloped surfaces 

will generate large disparity differences which should nevertheless contribute to disam· 

biguation. For large seperations one shcsuid probably expect a Hat support function . 
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The similarity function capturing all of these requirements is : 

Here, s(i,j) expresses the amount of support disparity Di at point i , receives from dis

parity Dj at another point j, and I (i - j) I is the distance between two points, c is scaling 

costant, usually taken between 0.55 and 0.85. 

The first step in this method is to compute all the potential disparities for each point 

in the left image. We will explain this step by taking an example in one dimension. This 

example can easily be extended to two dimensions. 

Let ® denote exclusive nor operation, and let two one dimensional images of size 1 x 5 

are 

left(L) image 

Right(R) image 

then Co is defined as: 

CO(x, d) = L(x) ® R(x + d) 

For this example the initial disparity map, Co is given by: 

1 2 3 4 5 

2 1 1 

1 1 1 1 

0 1 1 

-1 

-2 1 
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The first column (shown in bold) represents poss ible disparity values ranging from -2 to 

+2 in this case. \Vhile the first row (shown in bold) denotes the I location of a point. 

The disparity values influence each other as follows . Suppose that a left image fea.lure 

point at location i has a set of possible disparities Di and we are interested in the amount of 

support a particular disparity d j receives from the feature point j ( with possible disparity 

set Dj ), which is neighboring point of i. First, the disparity dj from set Dj of point j 

is selected, and the support is computed using similiarity function. In the same way, the 

support for a disparity value <4 is computed using all disparity values dj of all neighbors j 

of point i . Then all these supports are added to get the support for disparity cIt of point i. 

The disparity d; for point i which receives the maximum support is the final disparity value 

assigned to the point i. 
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3 Results 

The algorithms discussed in the previous sections were tested on a set of six stereo pairs: 

Renault, Sandwich, Pentagon, Sphere, Ruts, and Rocks. The Renault pair shows the auto 

part used in the Renault car, while the Sandwich pair shows a Sandwich resting on a fiat 

surface, and the Pentagon pair is an aerial view of the Pentagon with some cars in the 

parking lot in the background. The Sphere pair is synthetically generated which shows a 

concrete shpere on the table. Finally, the Ruts and Rocks pairs are real images which show 

respectively the mound of rocks, and futS. The images were acquired from Professor Ramesh 

Jain at University of Michigan, Ann Arbor. The original images were of the size 512 x 512, 

but were reduced to 128 x 128 for timing constraint. All the algorithms were run on Sun 

SparcStation.1. 

3.1 Normalized Correlation Method 

The results are shown in Figures 2-7. The informations regarding the image size, disparity 

range , masksize and cpu time in seconds are given in the table shown in Figure 1. 

Disparity map for the Sandwich image shown in Figure 3(c), is almost continouous on the 

surface of sandwich. There is some discontinuity which can be avoided by using continuity 

criterion. In case of Pentagon image shown in Figure 4, it was observed that smaller mask 

size gave rise to the finer details of the Pentagon building. However, lot of discontinuities 

in the background were also observed. On the other hand, with large mask size the finer 

details were lost but background became smoother. Disparity map for Renault shown in 

Figure 2(c) does not have much discontinuity on the surface of Renault, and for larger mask 

the background is smoother also. The disparity maps for Sphere, Ruts and Rocks shown 

in Figure 5(c), 6(c) , 7(c) respectively, are not of good quality. It is difficult to perceive 

anything significant from disparity maps of Ruts and Rocks . The input images themselves 

are very difficult to analyze, these images have lot of symmetry. In this case, when selecting a 

particular disparity value the algorithm encourages multiple matches. Therefore, the results 

are not good. 

9 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure Image Size Disparity Range Masksize Time(sec) 

2 Sandwich 128 x 128 13 11 782 

3 Pentagon 128 x 128 4 11 257 

4 Renault 128 x 128 10 11 609 

5 Sphere 128 x 128 17 11 2114 

6 Ruts 128 x 128 17 11 1004 

7 Rocks 128 x 128 38 11 2049 

Figure 1: Summary of result for Normalized Correlation Method. 
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(a) (b) 

(e) 

Figure 2: Result. of Normalized Correlat.ion Met.hod for J{enault Image. (a) Left. Image, (b) 

Right. Image, (c) Disparity l\l ap. Darker parts arc closer to the viewer. 
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(a) (b) 

(e) 

Figure 3: Result of Normalized Correlation Method for Sandwich Image. (a) Left Image, 

(b) Right Image, (e) Disparity Map. Darker parts are closer to the viewer. 
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(a) (b) 

(c) 

Figure 4: Result of Normal ized Correlation Method for Penatgon Image. (a) Left Image, 

(b) Right Image, (c) Di sparity Map. Darker parts are closer to the viewer. 
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(a) (b) 

(e) 

Figure 5: Result of Normalized Correlation rvlclhod for Sphere. (a) Left Image, (b) Right 

Image, (c) Disparity l\.bp. Darker parts are closer to the viewer. 

1·1 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

(a) (b) 

(c) 

Figure 6: Result of Normalized Correlation Method for Ruts. (a) Left. Image, (b) Right 

Image, (c) Disparity Mar. Darker parts are closer to t he \'iewer. 

1.5 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

(a) (b) 

(e) 

Figure 7: Result of Normalized CorrelaLion Method for Rocks . (a) Left Image, (b ) Right 

Image, (c) Disparity Map. Darker parts are cl~ser to lh C' viewer. 
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3.2 Differ ence Met hod 

The results for this method are shown In Figures 9-14. The informations regarding the 

image size, disparity range, masksize and cpu t ime in seconds are given in the table shown 

in Figure 8. 

The disparity map for the Sandwich pai r is shown in Figure 9(c). It is clear from the resul t 

that some of the details are missing, which can be filled in using the continuity criterion. 

The disparity map for the Pentagon pair shown in Figure 10(c) does not contain finer 

details. The results for the Spbere pair shown in Figure 12(c) are very good with this method. 

The sphere is clearly visible. 

In summary, we get almost similiar results with this method as compared. to the the 

correlation method discussed in the previous section. However, the difference method is 

the order of magnitude faster than the normalized correlation method. The normalized 

correlation method requires additional square root operation for each point, which slows it 

down. 
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Figur e 

8 

9 

10 

11 

12 

13 

Imag e Size Dispari tyRange Masks ize Time(sec) 

Sandwich 128 x 128 13 11 327 

Pentagon 128 x 128 4 11 122 

Renault 128 x 128 10 11 261 

Sphere 128 x 128 17 11 391 

Ruts 128 x 128 17 11 411 

Rocks 128 x 128 38 11 800 

Figure 8: Summary of Results for Difference Method. 
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(a) (b) 

(c) 

Figure 9: Result of Difference Method for Sandwich . (a) Left Image, (b) Right Image, (c) 

Disparity Map. Darker parts are closer to the viewer. 
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(a) (b) 

(c) 

Figure 10: Result of Difference Method for Pentagon. (a) Left Image, (b) Right Image, (c) 

Disparity Map. Darker part s are closer to the viewer. 
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(a) (b) 

(c) 

Figure 11 : Resull for Difference Melhod for Renault. (a ) Lefl Image, (b) Righl Image, (c) 

Disparity Map. Darker parts are closer to the viewer. 
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(a) (b) 

(c) 

Figure 12: Result for Difference Method for Sphere. (a) Left Image, (b) Right Image, (e) 

Disparity Map. Darker parts are closer to the viewer. 
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(a) (b) 

(e) 

Figure 13: Result for Difference Method for Ruts. (al Left Image, (b) Right Image, (c) 

Disparity Map. Darker parts are closer to the viewer. 
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(a) (b) 

(e) 

Figure 14: Result for Difference Method for Rocks. (a) Left Image, (b) Right Image, (c) 

Disparity Map. Darker parts are closer to the viewer. 
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3.3 Prazdny Method 

The results obtained with Prazdny's method are shown in Figure 16- 21. The informations 

regarding the image size, disparity range, masksize and cpu time in seconds are given in the 

table shown in Figure 15 . The value of constant c in the similiarity function is taken as 0.65. 

Canny's edge detector was applied to get the negative and positive edges for all the images. 

The left and right images for the Sandwich pair are shown in Figures 16 (a)-(b), corre

sponding edge maps are shown in Figure 16(c)-(d), and the disparity map is shown in Figure 

16(e). 

The results for the Pentagon pair are shown in Figure 17. The disparity map obtained 

for this pair is quite good. The disparity map for Renualt pair is shown in Figure 18(e). 

Next , the results for the Sphere pair are shown in Figure 19. From the edge maps of this 

pair, it was observed that disparity for this pair is very high. Therefore, a high disparity value 

range was given as input to the algorithm. The benefit of edge based method is that , we can 

easily observe from edge map what maxlffium disparity value is to be given as input. For this 

pai r we get much better result as compared to methods discussed in previous subsections. 

Quite good results were obtained with this algorithm for Ruts and Rocks stereo pairs 

shown in Figures 20 and 21(e) respectively, as compared to previous two methods. 
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Figure 

16 

17 

18 

19 

20 

21 

• 

I mage Size DisparityRange Masksize Tim e(sec) 

Sandwich 128 x 128 13 11 16 

Pentagon 128 x 128 4 11 19 

Renault 128 x 128 10 11 65 

Sphere 128 x 128 13 11 29 

Ruts 128 x 128 13 11 16 

Rocks 128 x 128 13 11 18 

Figure 15: Summary of results for Prazdny's Method. 
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(c) (d) 

(e) 

Figure 16: Result for Prazdny's Method (or Sand wich pair. (a) Left Image, (b) llight Image, 

(c) Left Edge Map, (d ) Right Edge Map. Positive edges are brighter than negative edges. 

(e) Disparity Map at edge points on ly. Brighter edges arc fa r from the viewer. 
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(e) (d) 

(e) 

Figure 17: Resul t for Prazdny's Method for Penatgon pai r. (a) Left Image, (b) Right Image, 

(e) Left Edge Map, (d) Right Edge Map. Posi tive edge are brighter than negative edges. (e) 

Disparity fvtap at edges only. Br ig ht.er edges are far from the viewer. 
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(c) (d ) 

(e) 

Figure 18: Result for Prazdny's \l eLhod for Renault pai r. (a) Left. Image, (b) Right Image , 

(c) Left Edge ~Iap , (d ) Right Edge Map. Posit ive edge arc brighter than negative edges. (e) 

Dispari ty Map at edges only. Ilr ighter edges are far frol1l the viewe r. 
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(c) (d) 

(e) 

Figure 19: Result for Prazdny's Method for Sphere pair. (a) Left Image, (b) Right Image, 

(c) Left Edge ~I ap. (d ) Right Edge Map. Positive edge arc brighter than negative edges. (e) 

Disparity Map at edges o nly. Brighter edges are far frolll the viewer. 
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(c) (d) 

(e) 

Figure 20, Result for Prazdny's Method for Ruts pair. (a) Left Image, (b) Right Image, (cJ 

Left Edge Map, (d) Right Edge Map. Positive edge are brighter than negative edges. (e) 

Disparity l'. lap at Edges only. Brighter edges arc far from the viewer. 

31 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

(c) (d) 

(e) 

Figure 21 : Result for Prazdny's Method for Rocks pair. (a ) Left Image, (b) Right Image, 

(c) Left Edge Map, (d) Right Edge Map. Positive edge are brighter than negative edges. (e) 

Disparity Map at Edges only. Brighter edges are far from the viewer. 
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4 Su mmary and Conclusions 

In this report we have described the implementation of three stereo algorithms. Two algo

rithms are correlation type, while the third one is edge based. The algorithms were also 

tested on a set of stereo pairs, and compared in terms of cpu time and the overall results . 

It was found tha.t difference and normalized correlation methods give almost similar results, 

except that difference method is order of magnitude faster than the normalized correlation 

method. 

In case of prazdny's method, which is edge based, the disparity values are computed 

only a.t edge points. Therefore, in order to obtain disparity values on other points the 

surface in terpolation is necessary. The Difference and Nonnalized Correlation methods don't 

perform well for the textured images. However, Prazdny's method still give good result since 

it computes disparity at edge points only. One of the limitations of all these methods is that 

the maximum disparity range is to be known beforehand. 

The execution time of the algorithms reported is reasonable for image size of 128 x 128. 

But, the algorithms will slow down significantly if the original size of images (512 x 512) is 

used. However, the execution time can be easily reduced to few seconds by using additional 

hardware boards e.g. Data Cube convolution boards for the Sun Workstation. 

Our future work will focus on improving these algorithms by incorporating the smooth

ness and continuity criteria. We will also study some other 3D cues like shading, and attemp 

to combine these cues with stereo. It is expected that the performance of such method using 

multiple cues will be much better than the one using only single cue. We will also start an 

initial study related to segmentation of 3D surfaces followed by the interpolation step. 
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