
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

11-13-1995

Time Synchronization Server Time Synchronization Server

Michael D. Myjak

Nicole L. Densmore

Christopher H. Esser

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Myjak, Michael D.; Densmore, Nicole L.; and Esser, Christopher H., "Time Synchronization Server" (1995).
Institute for Simulation and Training. 199.
https://stars.library.ucf.edu/istlibrary/199

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/199?utm_source=stars.library.ucf.edu%2Fistlibrary%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

INSTITUT E FOR SIMULATION AND TRAINING

Contract Number N61339-94-C-0024
CORL AOOO
U.S. Army STRICOM
13 November, 1995

Time Synchronization
Server

!nstitu!e fer Sil1'ulatiC'n ar.d Training
3280 Progress Drive
Orlando FL 32826

University of Centrsl Florida
Division of Sponsored Research 1ST -TR-95-28

I
I
I
I
I
I
I
I
I
I
I
I
I
I.
1
1
I
I
I

I
INSTITUT E FOR SIMULATION AND TRAINING

Contract Number N61339-94-C-0024
CDRL AOOD
U.S. Army STRICOM
13 November, 1995

Time Synchronization
Server

Institute for Simulation and Training
3280 Progress Drive
Orlando FL 32826

University of Central Florida
Division of Sponsored Research

iSl

IST-TR-95-28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

INSTITUT E FOR SIMULATION AND TRAINING

Time Synchronization Server

IST-TR-95-2B
November 13, 1995

Prepared For:
U.S. Army STRICOM
N61339-94-C-0024

CDRL AOOD

Primary Author:
Michael D. Myjak

Contributing Authors:
Nicole L. Densmore
Christopher H. Esser

Reviewed By:
S. Sureshchandran

Institute for Simulation and Training • 3280 Progress Drive • Orlando, Florida 32826

University of Central Florida • Division of Sponsored Research

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I. Introduction
1.1 Abbreviations and Acronyms 1
1.2 Background 2

2. Research Goals .. 3

3. Approach . 4
3.1 Investigate/Acquire Time Signal Sources 4
3.2 Identify Host Systems 4
3.3 Integrate NTP and Signal Source into the TESTBED 6
3.4 Integrate NTP and GPS Signal Source into the TESTBED 7

4. Experiments .. 7
4.1 Designing the Experiments .. 8
4.2 Conduct The Experiments 8
4.3 The Hypothesis .. 8

5. Results 10
5.1 Experiment #1 10
5.2 Experiment #2 10

6. Conclusions 13

7. Recommendations . 14

8. References 16

Appendix A Configuring and Testing the GPS Receiver: .. 17

Appendix B Kernel Modifications . 18

B.I Line discipline 18
B.2 Pulse Per Second Support 19
B.3 Install ation .. 19
B.4 Kernel Configuration .. 20

Appendix C Compile and Install Xntpd3.4x . 23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1. Introduction

This report is a deliverable item, CDRL AOOD, under subtask 3.2.2.6, "Time Synchronization
Server," of the U.S. Army Simulation Training and Instrumentation Command (STRICOM)
contract #N61339-94-C-0024, entitled "TRIDIS: A TESTBED for Research in Distributed
Interactive Simulation."

This report presents the results of the Institute for Simulation and Training's erST)
installation and integration of Network Time Protocol (NTP) and a Global Positioning System
(GPS) receiver into the Distributed Interactive Simulation (DIS) TESTBED located in 1ST's
laboratories . The report describes:

• Integration of a Universal Coordinated Time reference into the TESTBED

• Recommendations for implementing NTP in a DIS exercise

• Recommendations on the Integration of NTP using a GPS receiver in DIS exercises

1.1 Abbreviations and Acronyms

The following abbreviations and acronyms are used in the body of this paper:

CD
DIS
DNS
GPS
IP
1ST
LAN
NFS
NTP
PC
PDU
PPC
RFC
STRICOM
TAIP
TRIDIS
UTC
WAN

Carrier Detect
Distributed Interactive Simulation
Domain Name Server
Global Positioning System
Internet Protocol
Institute for Simulation and Training
Local Area Network
Network File Server
Network Time Protocol
Personal Computer
Protocol Data Unit
Pulse Per Second
Request for Comments
U.S. Army Simulation Training and Instrumentation Command
Trimble ASCII Interface Protocol
TESTBED for Research in DIS
Universal Coordinated Time
Wide Area Network

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.2 Background

The Network Time Protocol offers a unique approach for achieving reliable time
synchronization from a set of possibly unreliable remote time servers. Restated, NTP does
not attempt to synchronize the system clocks of multiple hosts to each other. Rather, each
server attempts to synchronize to Universal Coordinated Time (abbreviated by the British
nomenclature UTC) using the best available source and available transmission paths. This is
a fine point which is worth understanding.

A group of NTP-synchronized clocks may be close to each other in time, but this is not a
consequence of the clocks in the group having been synchronized to each other. Rather each
clock has been synchronized closely to UTC via the best source it has access to. Trying to
synchronize a set of clocks to a set of servers whose time is not in mutual agreement may not
result in any sort of useful synchronization of the clocks, even if you don't care about UTC
[Mills92].

NTP operates on the premise that there is one true standard time, and that if several servers
which claim synchronization to standard time disagree about what that time is, then one or
more of them must be broken. There is no attempt to resolve differences more gracefully
since the premise is that substantial differences cannot exist. In essence, NTP expects that the
time being distributed from the root of the synchronization subnet will be derived from some
external source of UTC (e.g ., a GPS radio clock). This makes it somewhat inconvenient
(though not impossible) to synchronize hosts together without a reliable source of UTC to
synchronize them to. If your network is isolated and you cannot access other people's
servers across the Internet, a GPS receiver may make a good investment.

In the NTP approach, time is distributed through a hierarchy of NTP servers, with each server
adopting a "stratum." A stratum indicates how many levels away from an external source of
UTC a given server is operating at. Stratum-l servers , which are the most accurate, have
access to some external time source, such as a GPS receiver, which receives its time signal
from satellites containing cesium clocks. These servers explicitly provide a standard time
service. A stratum-2 server is a time server which is currently obtaining time from a stratum-
1 server. A stratum-3 server gets its time from a stratum-2 server, a stratum-4 server from a
stratum-3 server, and so on. To avoid long-lived synchronization loops, the number of strata
is limited to 15.

Each client in the synchronization subnet (which may also be a server for other stratum
clients) chooses exactly one of the available time servers to synchronize to . It is thus
possible to construct a synchronization subnet where each server has exactly one source of
lower stratum time to synchronize to.

This simple hierarchical tree structure is not an optimal configuration. NTP operates under
another premise. The premise that NTP operates under is that each stratum server's time
should be viewed with a certain amount of distrust. This is in part due to the drift that is
experienced by real clocks. Drift is a variation in skew, which is the frequency difference
between two clocks . One of the things that the NTP daemon does when it is first started is to
compute the error in the intrinsic frequency, "the drift", of the clock of the computer it is

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

running on. It usually takes a day or so of continual operation in order to compute a good
estimate of the drift and a good estimate is needed in order to synchronize the clock closely
with the server. Once the initial drift value is computed, it will change slightly during the
course of continued operation. The "drift file" is a file designated by the NTP daemon where
the current value of the frequency error may be stored. Then if the time server is stopped
and restarted , it can reinitialize itself to the previous "drift file" estimate instead of taking an
entire day to resynchronize[Mills93].

NTP has access to several sources of lower stratum time (at least three) where it can then
apply an agreement algorithm to detect insanity on the part of anyone of these. NTP
declares a clock to be insane when the data received fro m that clock is invalid or inconsistent.
Normally, when all servers are in agreement, NTP will choose the best server, where "best" is
defined in terms of lowest stratum source, the closest server (in terms of network latency) and
claimed preci sion, along with several other considerations.

The implication on server selection is that while one should aim to provide each client with
three or more sources of lower stratum time, several of these will only be providing backup
service. Some servers may be of lesser quality than others in terms of network delay,
precision, and stratum (i.e. a same-stratum peer which receives time from lower stratum
sources the local server doesn't access directly can also provide good backup service) .

2. Research Goals

The goal of this research project was to implement the Network Time Protocol in the TRIDIS
TESTBED. NTP was selected as the method for distributing time in the TESTBED because
NTP is an approved Internet Standard protocol (NTP version 2) used to synchronize computer
clocks to UTC [RFC 1305]. System clocks which are synchronized to UTC are a
fundamental necessity for DIS simulation applications operating in absolute time mode. In
version 3, NTP was corrected to always be monotonically increasing (never allows time to
run backwards). NTP is continuing to undergo developmental changes to improve its
accuracy and to add encryption services (NTP v3.4x). NTP version 3 is currently designated
as an experimental protocol with recommended use.

UTC is generally recognized as the authoritative time source. The hypothesis is that a
common reference for time, such as UTC, would be beneficial for distributed interactive
simulations . The theory is that a set of system clocks synchronized to UTC would eliminate
the effects of multiple time zones, network latencies, and altercations with daylight savings
time from geographically distributed simulation applications.

As documented in the Standard for Distributed Interactive Simulation [IEEE 1278], a
simulation application's system clock must be synchronized to UTC for a DIS exercise to be
able to use absolute timestamps. If all nodes in a concurrent DIS exercise use a common,
precise reference for time with very high precision (such as a GPS receiver) , then simulation
messages called protocol data units would be provided with a more accurate timestamp

3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[Paterson, 95]. A more accurate timestamp would increase the accuracy of the dead
reckoning algorithms and therefore improve the overall performance of the simulation.

3. Approach

In order to integrate the latest version of NTP into the TRIDIS TESTBED, the following
things needed to occur:

• An accurate time source needed to be identified and procured

• A host system (or systems) needed to be identified to become the authoritative time
source or metronome for the TRIDIS TESTBED

• The latest version of NTP needed to be acquired and installed on the identified system

• The NTP server needed to be connected to the identified time source

• A set of experiments needed to be devised to determine the stability of this setup

3.1 Investigate/Acquire Time Signal Sources

The approach taken by the TRIDIS team was to identify the accuracy, implementational cost
effectiveness, and ability to achieve time synchronization (of simulation system clocks) for a
variety of time sources. A Trimble GPS receiver was purchased by the TRIDIS team to be
shared by the Network Time Protocol and another TRIDIS task. At the same time, results of
the 10th DIS workshop were published. Dr. Amnon Katz at the University of Alabama had
determined that GPS receivers were quite reliable for absolute time sources in distributed
simulations. Dr. Katz stated that "the [a] GPS clock maintains an accuracy [of] about three
orders of magnitude better, at no added cost..." than any other available time source [Katz,
94a].

3.2 Identify Host Systems

The next step consisted of identifying a host computer to become the authoritative time
server for the TRIDIS laboratory. Originally, the Sun Sparcstation-lO on loan from Loral,
had been identified as the time server. This workstation was an excellent choice because the
original development of the NTP protocol had occurred on a Sun Sparcstation running Sun­
OS .

However, a delay was incurred by the TRIDIS team when Encore Systems decided to reclaim
their System 91 file server. With the removal of the Encore NFS file system, the previously
selected NTP server, the Loral Sparcstation-lO, was drafted into service as the new Network
File Server (NFS). Additionally, Domain Name Server (DNS) operations were also
implemented on this server.

Using the Loral Sparcstation-lO to provide NFS and DNS services meant that the machine

4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

was being moved into "production" status. Production machines typically require that
maintenance periods and experimental processes be performed during scheduled down-times
and on other machines, respectively. This created two problems. First, NTP experiments
required that the selected server be periodically rebooted to reset the clock process or
interface. This could only be perfonned during periods of scheduled down time. This could
not be scheduled to occur during normal working days and that left no time to perform the
experiments. Second, since several DIS projects were now reliant on this machine for
multiple services, the CPU process time necessary to devote to NTP would be in jeopardy.
The team believed that the possibility existed for NTP's statistical evaluation program to
become confused and possibly distort the results of any passive or active experiments.
FUlthermore, when it came time to experiment with NTP and GPS, current NFS file users
might complain if their server began to toggle between "up" and "down" states. The
conclusion of the team was that the Loral Sparcstation- 10 could no longer be considered for
the NTP stratum time server in the TRIDIS laboratory.

The next likely choice for an NTP time server was another Sun machine known as "Jaws."
Jaws was a Sun Sparcstation-2 Classic, a lower performance machine which when unloaded,
should have been capable of managing the NTP process. However, when the NTP design
team was ready to use this DIS Server, they were informed that it was now designated as a
standby machine for 1ST's primary server, "Xeno" and was not available for performing the
experiments on NTP. The project was put on hold until a suitable machine could be
identified which could run the NTP process and integrate with the Trimble GPS receiver.

Another suggestion for an NTP stratum server machine was a Personal Computer (IBM
80386-PC) running the latest version of LINUX (1.3.9). The TRIDIS team accepted this
solution and began installing the LINUX operating system on the new hardware. LINUX
required a minimum of 130 megabytes of disk space and 16 megabytes of random access
memory.

Several problems were encountered when trying to incorporate NTP and the Trimble GPS
receiver with the LINUX operating system. The team took nearly two months to completely
resolve the issues . In the end, NTP could run on LINUX and the GPS receiver worked on
the PC, but the combination of the two did not work together. After months of electronic mail
correspondence with the original authors of LINUX, NTP, and the LINUX NTP development
team, it was determined that a new UNIX kernel would need to be built. The NTP process
required the use of several operating system level functions in order to communicate with a
Trimble GPS receiver and to set and test the PC's system clock. What was missing from
LINUX was the "line discipline" necessary to communicate with the Trimble GPS receiver.

Briefly, each GPS receiver provides some sort of serial interface to communicate its data.
However, standards and definitions have not yet been universally adopted for GPS
communication streams. Each vendor therefore, creates a unique interface definition for
transmitting its serial data. In the case of the Trimble GPS receiver, data is transmitted using
10 byte records. The NTP process timestamps the GPS data upon arrival. The NTP process
uses this arrival time in its delay calculations prior to updating the system clock.

5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Before LINUX would be able to communicate with a Trimble GPS receiver, the specific
serial line discipline function would have to be developed and integrated into a new LINUX
kernel. This would require 6 new internal system calls to be developed for the LINUX
operating system. This level of effort was beyond the scope of this TRIDIS task.

In searching for a solution for the LINUX problem it was recommended (several times, in
fact) by the LINUX NTP development team that the TRIDIS team migrate stratum time
server services over to a Sun workstation running Sun-OS version 4.1.3. Their reasoning was
that the Sun was the host machine on which NTP was developed, a known Trimble line
discipline existed, and they had no idea when they might get the LINUX NTP software or the
Trimble line discipline operational. The LINUX NTP development team said that other GPS
receivers had been connected to NTP running LINUX, but the code base within LINUX to
support the Trimble GPS receiver line discipline was not going to be available in the near
future. The TRIDIS team then decided to abandon the LINUXIPC approach entirely and
began looking for another host to operate as a time server.

Two weeks later a suitable machine was located. A Sun Sparcstation-2 running the Sun-OS
4.1.3 was acquired from the Eagle project. The NTP software was installed on this machine
and the Trimble GPS receiver was connected. Stratum-l time synchronization experiments
could now begin.

3.3 Integrate NTP and Signal Source into the TESTBED

Prior to the change in allocation of the Loral Sparcstation-IO, and prior to receiving the GPS
receiver, the team had installed NTP (version 3.4n) on the Sparcstation-lO. The first
experiment was 11m using this configuration. The xntpd (read as "experimental NTP daemon")
was installed and setup to operate as a stratum-2 time server. The NTP configuration file was
defined and three NTP stratum servers were entered. These were eagle.tamu.edu at Texas
A&M University, black-ice.cc.vt.edu at the University of Vermont, and c1ock.llnl.gov at
Lawrence Livermore National Laboratory. The experimental NTP installation went smoothly
and an almost immediate connection to a Stratum-l time server (at Texas A&M University)
was made. Using the TRIDIS data logger, the NTP packets were detected on the network at
the rate of one every few seconds.

The ntpdate function in debug mode was used to display the synchronization error of the
xntpd program. Over several months of testing, we were able to determine that the accuracy
of the resident drift file was quite good. Time readings from ntptrace indicated that the
Stratum-2 time server was accurate to 156 microseconds after just 10 days of continual
operation. Another iteration of the experiment showed that the server was synchronized to 86
microseconds after II days.

After the preliminary installation and testing of the NTP software on the Sparcstation-IO, it
was necessary to integrate NTP with an authoritative time source. From the NTP
documentation and other available literature, it appeared that a GPS receiver would provide

6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

the best source for time (UTC). However, locating a GPS receiver which would work with
our specific hardware and software environment turned out to be another problem, and
perhaps one of the more important lessons learned.

3.4 Integrate NTP and GPS Signal Source into the TESTBED

When the Trimble GPS receiver became available for NTP experiments, we moved the
receiver into the laboratory. Immediately we found that the built-in antenna was unable to
receive satellite data through the ceiling of the laboratory. We detelmined that an external
roof-mounted antenna was needed to solve the problem. A new antenna was ordered from
Trimble and arrived two months later.

When the antenna arrived, another delay was encountered when concern was voiced about an
aerial connection to a server located on the 1ST Local Area Network (LAN) . The connection
was initially refused because it was felt that the GPS antenna might act as a lightning rod and
thus endanger the server and other LAN-based equipment. It took approximately one month
to locate a replacement machine to act as the NTP host.

With the GPS receiver installed, a suitable source for UTC was also now available. All that
remained was to integrate NTP with the GPS receiver output. The integrated solution would
provide a stratum-l time server for the TESTBED. First, configuration and testing of the
GPS receiver was conducted using the Trimble starter kit and a DOS-compatible Pc. This
permitted the team to configure the receiver for serial output. Specifically, the serial output
needed to be set in the Trimble line discipline mode.

NTP requires Trimble GPS receivers to communicate with xntpd using a predefined line
discipline. To support the Trimble line discipline, specific (but relatively minor) kernel
modifications needed to be made to the SUN 4.1.3 operating system. These modifications
were documented in the NTP software and are also reprinted in Appendix B.

After the kernel modifications were complete, the Trimble GPS receiver was configured for
serial transmission. With the GPS receiver functioning properly, the NTP daemon was started
and within approximately 15 minutes of operation, the NTP process had synchronized to the
GPS receiver with a stated accuracy of 2 microseconds. The TRIDIS team now had a
stratum-l time server.

7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4. Experiments

Two experiments were conducted to determine the effects of NTP time stabilization on
networked computer systems. The first test involved the use of a Stratum-2 time server
connected across a wide area interface to a stratum-l server (c1ock.llnl.gov). The second
experiment involved a stratum-l server that was directly connected to the TESTBED.

4.1 Designing the Experiments

The following experiments were devised to determine the utility, effectiveness, reliability and
precision of the NTP/GPS application. Four experiments were proposed:

• In the first experiment the system was monitored under normal conditions with no
problems introduced to accurately determine the effects of NTP's built-in time
stabilization.

• The second experiment was designed to determine what problems, if any, were
encountered when the GPS receiver lost power momentarily.

• In the third experiment, the NTP software was reset during normal operation to determine
if problems were induced.

• In the fourth experiment power was removed from the network server to determine what
effects that had on the time synchronization system.

The built-in commands ntptrace , ntpq, and ntpdate (in debug mode) were used to verify the
accuracy of the local host's time. Errors in time were measured as floating point offsets in
microseconds from the authoritative time server's clock. For the first experiment, our
stratum-2 server's reference clock was connected via the Wide Area Network (WAN). For
the second experiment, our stratum-I server was directly connected to an authoritative clock,
GPS . The ntptrace command reports on the accuracy of synchronization of the given time
server with respect to its parent server or reference clock.

4.2 Conduct The Experiments

All experiments were conducted in the TRIDIS laboratory at IST. Experiments were
conducted using stand-alone machines. This eliminated the possibility of another program or
project interfering with the NTP process. Timing analysis was performed on an IBM PC
using Microsoft Excel.

8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4.3 The Hypothesis

The NTP GPS time trial experiment was designed to test the resynchronization ability of a
stratum-] time server. This is the time necessaJY for the NTP agent xntpd to resynchronize to
the GPS clock. The resynchronization time for the stratum-l server is similar to the
resynchronization time of lower stratum servers without any network latency or propagational
delay . This experiment set the reliability for a single LAN implementation of NTP and GPS.
The theory behind the experiment was constructed given the following three assumptions.

First, in order to support a geographically di stributed simulation exercise using absolute
timestamps, each LAN in the exercise would require a connection to the same time source
(i.e. UTe). Second, while it is generally recognized that other stratum time servers can and
will be used in a simulation exercise, the most accurate time source available (that with the
least en'or) would be a stratum-l server. Third, in order to synchronize simulation application
hosts, an appropriate amount of "up time" would be needed before and during a simulation
exercise to stabilize the drift file.

The first assumption, that at least one stratum-l time server would be required, is a given. A
stratum-l time server is defined as any device designed to serve time which is directly
connected to an authoritative time source. Preferable simulation implementation solutions
may require additional stratum-l time servers for each exercise, but we felt that the normal
implementational case would be one stratum-l server for each LAN. Each simulation
application would then synchronize its clock to the clock of its peer stratum server. This is
also the operational theory behind the use of NTP and DIS .

The second assumption, that other stratum time servers can and will be used in a simulation
exercise, is probably quite true because of the relatively low cost of implementing a stratum-2
(or lower) time server. The software is freely available on the Internet and operates on most
common platforms in use today. Furthermore, each stratum server is capable of maintaining
accurate time during periods when it cannot directly connect to its stratum peer. NTP
accomplishes this by continuing to update the host's system clock using the data stored in the
NTP drift file .

The third assumption, that a certain amount of "up time" would be needed to stabilize NTP
would not be a problem. NTP operates by making small incremental adjustments to the clock
increment value and stores this data in the NTP drift file. An indeterminate amount of
operation "up time" would be needed in order to stabilize the drift file to some level of
accuracy. When the NTP client loses connectivity to its metronome, the data in the drift file
is still used to compensate for variances in the resident system clock. When synchronization
is re-established, the xntpd process continues where it left off. When multiple stratum peers
are avai lable, the NTP daemon selects the most accurate time source available.

9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

5. Results

Two experiments were performed. The first experiment was designed to detennine the time
needed by a stratum-2 (or lower) server to generate a drift file that would maintain the system
clock to an accuracy of I millisecond . The second experiment was designed to detennine
how long, on average, a stratum-1 (system peer) would take to resynchronize to UTe after
losing connectivity to its GPS receiver.

5.1 Experiment #1

The first experiment involved synchronizing stratum-2 time servers across the Internet. This
experiment was important because the simulation community needed an inexpensive and
relatively accurate method for creating absolute time stamps. Relative time stamps in DIS
exercises have been so badly misinterpreted that they have become (to a greater or lesser
degree) a large source of internal error in real time simulations.

Demonstrating that NTP stratum servers could provide an inexpensive source of accurate time
to simulation testbeds was the result of this experiment. A Sun Sparcstation-10 was installed
with NTP and allowed to settle for two days . At the end of the second day, ntptrace was run
to indicate the network latency between the local host, and its system peer. The ntpdate
function was used to indicate the update offset and that showed that the system was
synchronized to UTe by just under 1 millisecond. The server was allowed to operate for 10
more days. After the tenth day of continual operation, the stratum-2 time server was
synchronized to UTe within 156 microseconds.

This series of NTP experiments were run three consecutive times. At each iteration, the NTP
drift file was cleared and the server was rebooted. Each iteration showed that the server was
synchronized to I millisecond in two days of continual operation. Similar results were
achieved after 10 days of operation. During the following months, the server was
occasionally reset for system upgrades and software installations. The xntpd process never
created an entry in the system log indicating a process failure. The program was quite stable
and continued to provide consistent results.

5.2 Experiment #2

The second experiment involved testing the resynchronization ability of an NTP stratum
server. A stratum-1 time server was selected for this experiment for two reasons: 1) a
stratum-1 time server would produce the most accurate results; and 2) all NTP stratum servers
operate essentially the same way, implying that resynchronization times would be similar for
other lower stratum servers in the network.

Experiment #1 showed that stratum servers can maintain their sanity over long periods of
time. When a time server loses time synchronization, its clock is said to be unreliable and is

10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

denoted as insane. NTP attempts to circumvent this occurrence by recommending that several
(preferably lower level) stratum servers be specified within an NTP configuration file.
However, the TRIDIS team believed that many of the simulation administrators would only
establish a single clock. They might read this report, for example, and assume that all they
need is a GPS receiver and the NTP installation and they are ready to operate using accurate,
absolute timestamps. Appropriate backup time servers need to be established to provide fault
tolerant NTP distribution services.

If a simulation team purchased a single GPS receiver and built a stratum-l server, the most
likely problem to befall them would be the loss of their time server. In fact, any team which
built stratum-2 (or lower) time servers would potentially run into the same or similar problem.
So the TRIDIS team wanted to know how long it would take for a stratum server to regain its
sanity.

What was not well understood was how long it would take for an insane clock to regain its
sanity after resynchronization. This is precisely the fear that a simulation manager might
have if he had to suddenly replace his GPS receiver or reboot his stratum time server prior to
starting a simulation exercise. The team set out to determine the duration of this critical
period of time.

Experimental results were obtained for the resynchronization of an NTP stratum-I time server
and are shown in Table 1. As described above, a Sun Sparcstation-2 running Sun OS 4.1.3
was used to conduct this experiment. The latest version of NTP, version 3.4x, was installed.
Next, kernel modifications were required and performed as outlined in the appendices. The
Trimble GPS receiver was then connected to the xntpd process and allowed to settle for a
period of 2 weeks. This insured that the NTP drift file was sufficiently accurate to maintain
time on the server when the GPS receiver was lost.

The resynchronization table shows that on average, the NTP stratum-l server would obtain
system peer status in 12 minutes and 54 seconds. This was the average time obtained after
thirty-two time trials were attempted. In accordance with standard statistical practice the data
in the table does not contain the longest (39 minutes) and the shortest (12 seconds) time trials
because they deviated from the norm. They are documented here for completeness.

11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1

2

3

4

5

6

7

8

9

10

1 I

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

28

29

30

Averages

Start

14:20:22

9:33: 16

10:09:32

10:22:20

10:36: 12

10:26:48

10:23:32

11 :55 :20

10:46:52

11:47:26

12:57:12

11 :39:08

11 :49:48

12:45:45

10:59:40

12:15:22

12:51 :38

13:17:14

12:44:26

13:48:10

13:05:30

10:47:56

11 :07:28

14:09:48
10:40:40

14:47:56
15 :24:12

13 :32:10

13: 11 :04

13:00:12

Reachable Sys.peer Time to Time To Time to
(Insane) (Sane) Reachable Sys Peer Synchroniz

14:24:07 14:32:09 0:03:45 0:08:02 0:11:47

9:36:28 9:45:06 0:03: 12 0:08:38 0: 11 :50

10: 12:42 10:22:20 0:03: 10 0:09:38 0: 12:48

10:25:30 10:35:08 0:03: 10 0:09:38 0: 12:48

10:39:24 10:46:52 0:03 :12 0:07:28 0:10:40

10:30:38 10:39: 36 0:03:50 0:08:58 0:12:48

10:26:44 10:34:36 0:03:12 0:07:52 0:1 1 :04

11 :58:32 12:07:04 0:03: 12 0:08 :32 0: 11 :44
10:50:04 10:59:40 0:03:12 0:09:36 0: 12:48

11:53:21 11 :56:43 0:05:55 0:03 :22 0:09:17

13:00:24 13:10:00 0:03: 12 0:09:36 0:12:48

11 :42:20 11 :49:48 0:03: 12 0:07:28 0:10:40

11 :53:00 12:02:36 0:03: 12 0:09 :36 0:12:48

12:51:32 12:59:43 0:05:47 0:08 : 11 0:13:58

11 :02:52 11:13:32 0:03: 12 0:10 :40 0: 13:52

12:18:34 12:28:10 0:03: 12 0:09:36 0:12:48

12:54:50 13:05:30 0:03 :12 0:10:40 0: 13 :52

13:20:28 13:30:02 0:03 :14 0:09:34 0: 12:48

12:49:44 12:57:12 0:05: 18 0:07 :28 0: 12:46

13:51:22 14:07:22 0:03:12 0:16:00 0:19:12

13:05:42 13:17:14 0:00: 12 0: 11:32 0:11 :44

10:57:03 11 :07:08 0:09:07 0:10:05 0:19:12

11:10:20 11 : 19:56 0:02:52 0:09 :36 0: 12:28

14:13:48 14:24:28 0:04:00 0:10:40 0:14:40
10:43:52 10:52:24 0:03 : 12 0:08 :32 0: 11 :44
14:51:06 14:59:40 0:03:10 0:08 :34 0: 11 :44
15:28:28 15:41:16 0:04:16 0:12:48 0:17:04

13:35:22 13 :44:58 0:03:12 0:09:36 0: 12:48

13:14:10 13:21 :44 0:03:06 0:07:34 0:10:40

13:02:24 13: 12:08 0:02: 12 0:09:44 0: 11 :56

0:03:36 0:09:18 0:12:54

Table 1: GPS Synchronization Time Trials

12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

In Table I, there are three columns labeled Start, Reachable, Sys Peer. The column labeled
Start is the time of day that this particular experimental run was started. Start indicates the
time of day at which the GPS receiver was reconnected to its power source. Power (110 V AC
and battery backup) was removed from the GPS receiver for approximately five minutes. The
five minute duration was recommended by Trimble to insure that all memory had cleared and
that the GPS receiver would have to recalibrate, locate and lock on to the required number of
GPS satellites. When the GPS power was restored, the time was noted as the start time.

The second column marked Reachable, is the time at the GPS receiver began transmitting
accurate time. The NTP daemon xl1tpd considers this time to be unreliable because it has
received one (or too few) clock updates. The daemon will display this time but will denote it
as being insane, meaning unreliable. Reachable time might be significant for DIS field
instrument devices or simulation hosts which carry on-board UTC clock generators. If a GPS
receiver was used as a source clock in a simulation host, and the receiver lost power or
possibly satellite lock-on, then the difference between start time and reachable time would be
the time that the GPS receiver was unable to provide time stamp information to the
simulation application. On average, the Trimble GPS receiver was able to produce UTC after
3 minutes and 36 seconds.

The third column is marked Sys Peer and represents the time that the xl1tpd daemon needed
to "believe" or accept the GPS receiver clock time as valid . After xl1tpd receives several (10-
13) consistent clock time readings, as determined by its own system clock and the drift file
offsets, xl1tpd denotes the time received from that server as sane. The xl1tpd process denotes
this time as sane by using a statistical method of calibration and averaging. The average time
taken by xl1tpd to lock on to the receiver and believe it as being a sane, accurate time source
was 9 minutes and 18 seconds.

6. Conclusions

As stated in the NTP documentation, the NTP process xntpd can synchronize the system's
local time using multiple reference sources. Sometimes these time sources will disagree with
one another due to errors in their clocks and latency delays which are unaccounted for. NTP
will determine which time source, listed in its configuration file, is the closest (in terms of
latency, not distance) and most accurate. NTP will then synchronize to that time source. As
a client, xl1tpd will manage the local system clock and maintain synchronization to its system
peer. If the system peer is synchronized to UTC, then so will the NTP client.

Stratum servers 2-15 will likewise maintain synchronization to their respective system peers
prior to becoming stratum servers for a network. Since the same process, xl1tpd, is used by
stratum server and NTP client alike, it is reasonable to assume that both will operate in a
similar fashion and maintain local time for the respective host. It can be assumed that a
network clock will always be available given access to the Internet. If the NTP reachable
time is zero, the remaining time to authentication and sanity will be on the order of 10

13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

minutes .

NTP client software can easily be integrated into simulation applications by installing it on
the simulation host computer provided the right GPS clock and computer platform are chosen.
Many combinations of GPS receiver and UNIX operating system are available. Note that not
every GPS receiver can interoperate with every UNIX platform. Special care must be taken
to select an appropriate combination. NTP can be transmitted using broadcast or multicast
communications, and can be encrypted for secure sites. Local clock management occurs at
the rate of once per second using a locally stored drift file . NTP client updates from the
server are configurable and by default occur at 20 minute intervals . During an update, the
NTP server will send a short burst of packets to the client to calculate the average latency
delay of the network. When the last packet is received, it is time stamped and added to the
latency delay to compute a new synchronized time. The local clock is then updated
accordingly.

NTP stratum servers process time by accepting NTP packets from multiple time sources.
Stratum servers use these additional references of "current" time to gauge which server is
currently the most accurate. The xntpd process continually checks the validity of one time
server against another in order to produce a stable, local reference time. The server with the
most accurate time and stable delay is used to compute new stratum server time in much the
same way that NTP client time is computed.

7. Recommendations

The TRIDIS team had to select hardware for the experiments which was compatible with the
Trimble GPS receiver. Indeed, NTP runs on almost every UNIX platform and GPS receivers
are available from many different vendors. However, because GPS serial line disciplines and
standards are not yet implemented, an NTP solution does not yet exist for every combination
of GPS receiver and UNIX platform. The team found that only some GPS receivers will
communicate with some NTP implementations on some UNIX platforms. Which GPS
receivers work with which NTP/OS combinations should be researched thoroughly prior to
procuring either platform or receiver.

According to the DIS standard, in order for a DIS exercise to be able to use absolute
timestamps, a simulation application s system clock must be synchronized to UTe. What is
missing from this standard is the level of precision or accuracy by which simulation hosts
require. The network time protocol has been demonstrated as being adequate for maintaining
the system clocks of most simulation hosts participating in a simulation exercise. What needs
to be established in the DIS standard is a recommended level of synchronization accuracy.

The xntpd daemon for stratum-2 through stratum-15 servers receive time from mUltiple,
preferably lower stratum servers. However, only one time source can be the system speer
an any given point in time. Each stratum server detennines its peer by statistically computing

14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

computing both accuracy and latency delay. The system peer selected is the stratum time
server deemed best by each NTP client at that moment. DIS simulations which use NTP to
distribute time should configure NTP to reference multiple time servers. The xl1tpd process
will then choose the most accurate server from the configuration. Further analysis should be
conducted using flooded networks to determine if varying network latencies have an impact
on time synchronization or time stabilization.

NTP clients (and servers) need some time to settle, possibly for a period of a week or two , in
order to establish a unique drift file value for each xntpd host. The time required to settle the
data contained within the NTP drift file will vary for each NTP client and therefore cannot be
empirically measured. This is just as important for stratum-l time servers as it is for stratum-
2 through stratum-15 servers. All stratum servers need time to create an accurate drift file for
the local system clock. The time allowed will be different for each platform and will depend
on the degree of accuracy required. Properly configured and settled stratum servers can
maintain microsecond clock integrity on the order of hours or even days . Simulation exercise
managers should be aware of this requirement.

According to the DIS standard, simulation hosts must be synchronized to UTe before they
can use absolute timestamps in a simulation exercise. Therefore having a simple method for
synchronizing host systems would be quite beneficial to the DIS community. Having a
solution which does not require common geographical locations would also be beneficial.
The TRIDIS team can recommend that distributed simulations, whether geographically
localized or dispersed can use the Network Time Protocol to synchronize system hosts in
support of absolute time based simulations. NTP servers make an acceptable metronome and
an accurate time source, synchronizing simulation hosts to UTe, thus permitting the use of
absolute time stamps within a simulation exercise.

Areas for further research identified by this work are:

Analysis of the effects on DIS traffic of NTP synchronization packets/sequences

Simulation synchronization errors using NTP in Wide Area Network (WAN)
configurations

Definition of an accurate UTe timestamp for DIS Protocol Data Units (PDUs)

15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

8. References

[Golner94] Golner, M. and E Pollak, 1994. The Application of Network Time Protocol To
Implementing DIS Absolute Timestamp, Proceedings from the 11''' DIS
Workshop Sept. 26-30 1994, 1ST Technical Report IST-CF-94-02, pp.431-

439.

[IEEEl278.1] IEEE 1278.1, 1995. "Standard for Distributed Interactive Simulation -­
Application Protocols," Institute of Electrical and Electronics Engineers, Inc.,
345 East 47th St., New York, NY 10017.

[Katz94] Katz, A. 1994. The Absolute Clock in the DIS Scheme, Proceedings of 10'"
DIS Workshop Mar. 14-18, 1994, 1ST Technical Report IST-CF-94-01, pp. 1-

4, 1994.

[Katz94a] Katz, A. 1994. "Dead Reckoning for Airplanes in Coordinated Flight,"
Proceedings of the 10th DIS Workshop Mar. 14-18, 1994, 1ST Technical Report
IST-CF-94-02, 5-13, 1994.

[Katz94b] Katz, A. 1994. Synchronization of Networked Simulators, Proceedings of 11'''
DIS Workshop Sept. 26-30 1994, 1ST Technical Repolt IST-CF-94-02, pp.

81-87.

[Mills92] Mills, D. 1992. "Network Time Protocol (Version 3) Specification,
Implementation and Analysis," Internet Architecture Board Network Working
Group report RFC-1305, University of Delaware, 1992.

[Mills93] Mills, D . 1992. "Notes on Xntpd Configuration," NTP Version 3 Distribution
Release Notes, University of Delaware, 1993.

[Paterson95] Paterson, D. 1995. Sychrony and Time Representation for Distributed
Simulators, Proceedings of the 12111 DIS Workshop Mar. 13-17, 1995, 1ST
Technical Report IST-CF-95-01, pp. 325-328.

[Saunders95] Saunders, R. 1995. It's About Time, It's About Space - Time and Space in
DIS, Proceedings of the 12'h DIS Workshop Mar. 13-17, 1995, 1ST Technical
Report 1ST -CF-95-0 1, pp. 63-66.

16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Appendix A Configuring and Testing the GPS Receiver:

The easiest way to configure the Trimble GPS SV6 receiver is through the software that

comes with the starter kit.

1. Connect a PC to the receiver's port 1 using a standard serial cable.

2. Run the cfgps program and put the receiver in TAIP mode.

3. Run the gpssk program and verify the receiver is picking up satellites.

Once you have verified the receiver is functioning properly, you can connect it to the Sun.
This requires a special cable. The Trimble GPS receiver sends a PPS (pulse per second)
signal on the RING line (pin 9), but xl1tpd expects the PPS to be on CD (carrier detect) . This
is because CD is a much higher priority interrupt, and we don't want to miss a pulse. See the
diagram below for complete cable specifications.

• GPS Sun

• TX 2 2 TX

• RX 3 3 RX

• GNDS 7 GND

• PPS 9 8 CD

• DB9 DB25

17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Appendix B Kernel Modifications

B.! Line discipline

Tty _clk.c contains a generic clock support line discipline. The tem1inal driver is actually run
in raw mode, giving you an eight bit data path. Instead of delivering the data character-by­
character, however, the line discipline collects characters until one of two magic characters
(your current erase and kill characters) are received. A timestamp is then taken (by calling
the function microtime()) and inserted in the input buffer after the magic character and the
other information that is available for input by the application. Both selectO and SIGIO are
supported by the discipline.
To install the clock line discipline the following steps must be followed:

I. Copy tty _clk.c into Isys/sys
2. Edit Isys/sys/tty _confc. You will want to include some facsimile of the following

lines:
#include "clk.h"

#if NCLK > 0

int clkopenO, clkcloseO, clkwriteO, clkinputO, clkioctlO;

#endif

#if NCLK > 0

#else

#endif

{ clkopen, clkclose, ttread, clkwrite, clkioctl,

clkinput, nodev, nulldev, ttstart, nullmodem,

1* lO-CLKLDISC *1

ttselect },

{ nodev, nodev, nodev, nodev , nodev,

nodev, nodev, nodev, nodev, nodev,

nodev },

3. Edit Isys/h/ioct1.h and include a line (somewhere near where other line disciplines
are defined) like:

#define CLKLDISC 10 1* clock line discipline *1

The ' 10' should match what you used in Isys/sys/tty _confc.

18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4. Edit Isys/conf/files and add a line which looks like:

sys/tty _e1k.c optional elk

5. Edit the configuration file for the machine you want to use the clock line discipline
on to include the following: pseudo-device elk 4

6. Run config, then make clean, then make depend, then make vmunix . Then reboot
the new kernel.

B.2 Pulse Per Second Support

In order to use the 1 pps pulse to correct both the UNIX clock offset and frequency , the time
between when the external clock signals 1 pps and when this module records the UNIX clock
should be as small as possible and should be repeatable. AT&T STREAMS code makes this
very difficult to achieve

The allocb/wput overhead adds about 700us of latency on a SS-1 + and the stream 'scheduler'
combined with doing everything at a relatively low interrupt priority adds about +-400us of
jitter. So, to get a high quality time stamp, this module uses STREAMS (only) to get the
ioctl request.

The module gets the 1 pps signal by avoiding STREAMS code entirely and inserting itself
directly into the hardware interrupt service path for the 1 pps pulse. It does this by stealing
the modem control interrupt from the Sun's zs serial driver. This is not a generic streams
module. It is designed to work with Sun's zs driver under Sun OS 4. Expect that this will not
work with other versions such as Solaris-2. Expect it not to run on anything but a Sun.

Note that the distribution was designed for a clock where' 1 second' occurs on the leading
edge of the pulse, where on the Trimble SV6 the second starts on the trailing edge. Therefore
you should change the line:

if «sO & ZSRRO_CD) != 0) {

in ppscJock_intr to:

if «sO & ZSRRO_CD) == 0) {

to grab the time stamp on the trailing edge of the pulse.

B.3 Installation

These are some notes on the installation of the SunOS 4 PPS clock streams module.

19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

This directory contains:

README - this file

RELEASE - version of this release

CHANGES - description of differences between releases

magnavox.ps - PostScript schematic (Magnavox rs422lrs232 converter)

b-and-b.ps - PostScript schematic (B&B rs422/rs232 converter)

Makefile

ppstest
you

sys

- compilation rules

- ppscJock test program (works with Magnavox MX4200 GPS

can probably use this as sample code illustrating the use of this
streams module if you have some other kind of clock).

- SunOS 4 kernel modules

sys/genassym - genassym program for object-only (non-source) sites

B.4 Kemel Configuration

1. Copy sys/sundev/ppsc1ock.c to Isys/sundev.
2. Copy sys/sys/ppscJock.h to Isys/sys (and lusrlinc1ude/sys if it is separate directory).
3. If you want to use the fast microtime module, copy sys/sun4c/microtime.s to Isys/sun4c.
4. Use sys/sun/str_conf.c.patch to patch Isys/sun/str_conf.c.

Alternately, manually install the following lines in the appropriate places:

#incJude "zs.h"
[... J
#if NZS > 0

#incJude "sys/ppscJock.h"
extern struct stream tab ppscJockinfo;

#endif
[...]
#if NZS > 0

{ PPSCLOCKSTR, &ppscJockinfo},
#endif

5. Use sun4c/conf/files.patch to patch Isys/sun4c/conf/files.

Alternately, manually install the following line in the appropriate place:

sundev/ppscJock.c optional zs device-driver

20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

In addition, if you want to use the fast microtime module, use:

sun4c/conf/files.microtime.patch to patch Isys/sun4c/conflfiles

Alternately, manually install the following line in the appropriate place:

sun4c/microtime.s standard

If you are using Sun OS 4.1 .3 and wish to support the sun4m architecture, apply the

corresponding patches from the sun4m tree.

6. If you want to use the fast microtime module, and have full SunOS 4 source, use
Isys/os/kern_clock.c .patch to patch Isys/os/kern_clock.c. Alternately, edit
Isys/os/kern_clock.c and bracket the code for uniqtimeO with the following two lines:

7.

#if !defined(sun4c) && !defined(sun4m)

#endif

If you DO NOT have full SunOS 4 source but still want to use the fast microtime, change

the symbol table entry in for _uniqtime to _Uniqtime as follows:

hell I % cd Isys/sun4c/OBJ # or Isys/sun4m
hell 2 % mv kern_clock.o kern_clock.o.virgin
hell 2 % cp kern_clock.o.virgin kern_clock.o
hell 3 % chmod +w kern_clock.o
hell 5 % strings -0 -a kern_clock.o I grep -w _uniqtime
7892 _uniqtime
hell 6 % adb -w kern_clock.o
?m 0 Oxffffffff 0
0t7892?s
_dk_ndrive+Ox1 2cc:
.?x
_dk_ndri ve+Ox 12cc:
.?w5f55
_dk_ndrive+Ox 12cc:
.?s
_dk_ndrive+OxI2cc:

"D

_uniqtime

5f75

Ox5f75 = Ox5f55

_Uniqtime

If you do not have a full implementation of SunOS 4 source code, you are missing the
source code to genassym. In order to correct this problem copy the "mini" genassym
source from genassym/genassym.c to Isys/sun4c (and into Is ys/sun4m if you have
Sun OS 4.1.3 and wish to support the Sun4m architecture) .

Next, use sun4c/conf/Makefile.src.patch to patch Isys/sun4c/conf/Makefile.src (and

possibly Isys/sun4m/conf/Makefile.src).

21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

8.

Altem ately, manually install the following rules in the prototype Makefile(s).

assym .s: ${ MACHINE}/genassym.c
$ {CC} -E $ {CPPOPTS} $ {MACHINE }/genassym.c > .Ia.out.c
cc $ {COPTS} .Ia.out.c
.Ia.out >assym.s
nn -f .Ia.out .Ia.out.c

Configure, bui ld, and boot the new kernel.

22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Appendix C Compile and Install Xntpd3.4x

With the GPS clock connected and the kernel modifications done all that's left to do is
compile and install the xntpd.

1. Make sure that you have all necessary tools for building executables. These tool s
include cc or gcc, make, awk, sed, tr, sh, grep, egrep and a few others . Not all of
these tools exist in the standard distribution of today's UNIX versions (compilers are
likely to be an extra product). For a successful installation all of these tools should be
accessible via the current path.

By default, if there is no Config.local , the system will generate one to support a local
reference clock (which is run off the system clock).

To set up for a radio clock, type "make refconf" and answer the questions about PLL,
PPS and radio clock type. If this is the first use of the ref clock, don't forget to make
suitable files in /dev/. For a Trimble SV6 make a symbolic link callerd refclock-O in
/dev/ to the port to which the clock is attached (i .e. In -s /dev/ttya /dev/refclock-O).

For custom tailored configuration, copying Config.local.dist to Config.local and editing
Config.local to suit the local needs is necessary . Or use one of the makes listed above
and then make the necessary modifications for the correct radio clock type.
Config.local can also be used to override common settings like the AUTHDEFS=
which is used to select very specific configurations. Please use this feature with care
and don't be disappointed if it doesn't work the way you expect.

2. Type "make" to begin the compilation. Expect only a few or no warnings using cc
and only a moderate level of warnings using gcc. Note on some UNIX platforms the
use of gcc can result in quite a few complaints about system header files and type
problems within xntpd code. This is usually the case when the OS header files are not
up to ANSI standards or GCCISMs. There may, however, still be some
inconsistencies in the code.

Each time you change the configuration a script that interacts with your hardware and
software will be run to build the actual configuration files . If the script fails, it will
give you a list of machines it knows about. You can override the automatic choice by
changing to the directory . .lmachines and typing "make makeconfig OS=<machine>",
where <machine> is one of the file names in the . .lmachine directory.

The shell script will attempt to find the gcc compiler and, if found, will use it instead
of the cc compiler. You can override this automatic choice by changing to the
directory . .lmachines and typing "make makeconfig COMP=<compileD", where
<compi leD is one of the file names in the . .lcompilers directory. This can be
combined with the OS argument above.

23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The configuration step can be separately invoked by typing "make makeconfig".

Note that any reconfiguration will result in cleaning the old program and object files.

3. Assuming you have write permission on the destination directory, type "make install"
to install the binaries in that directory . Presently, at the 1ST TESTBED, this includes
the programs xntpd (the daemon), xntpdc (an xntpd-dependent query program), ntpq (a
standard query program), nTpdale (an rdate replacement for boot time date setting and
sloppy time keeping) and xntpres (a program which provides name resolver support

for some xntpd configurations).

4. Create /etc/ntp.conf with support for a local clock and any server peers that looks

something like this.

/etc/ntp .conf
server 127.127.8.0 mode 137 # Support for local clock (127.1 27.type.unit)

type 8 = GENERIC
unit 0 = /dev/refclock-O
mode 137 = Mode 9 (Trimble SV6ITAIP) + Mode

128 (PPS)
peer servers for redundancy
server 128.115.14.97 # clock.llnl.gov
server 128.173.14.71 # black-ice.cc.vt.edu
server 128.2.250.95
server 165.91.72.27

driftfile /etc/ntp .drif

5. Start xntpd.

clock-l.cs.cmu.edu
eagle.tamu.edu

File to keep system clock drift value

/usr/local/bin/xntpd -c /etc/ntp.conf

To start xntpd at boot time insert the following lines in /etc/rc.local just after the

network interfaces get started.

Start xntpd

if [-f /etc/ntp.conf]; then

echo "Starting NTP daemon "
/usr/local/bin/ntpdate -v (server]) (server2) (server)

sleep 5
/usr/local/bin/xntpd -c /etc/ntp.conf

fi

24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 0000070

	Time Synchronization Server
	Recommended Citation

	tmp.1440086406.pdf.QUyZu

