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1. Introduction 

This report is a deliverable item, CDRL AOOD, under subtask 3.2.2.6, "Time Synchronization 
Server," of the U.S. Army Simulation Training and Instrumentation Command (STRICOM) 
contract #N61339-94-C-0024, entitled "TRIDIS: A TESTBED for Research in Distributed 
Interactive Simulation." 

This report presents the results of the Institute for Simulation and Training's erST) 
installation and integration of Network Time Protocol (NTP) and a Global Positioning System 
(GPS) receiver into the Distributed Interactive Simulation (DIS) TESTBED located in 1ST's 
laboratories . The report describes: 

• Integration of a Universal Coordinated Time reference into the TESTBED 

• Recommendations for implementing NTP in a DIS exercise 

• Recommendations on the Integration of NTP using a GPS receiver in DIS exercises 

1.1 Abbreviations and Acronyms 

The following abbreviations and acronyms are used in the body of this paper: 

CD 
DIS 
DNS 
GPS 
IP 
1ST 
LAN 
NFS 
NTP 
PC 
PDU 
PPC 
RFC 
STRICOM 
TAIP 
TRIDIS 
UTC 
WAN 

Carrier Detect 
Distributed Interactive Simulation 
Domain Name Server 
Global Positioning System 
Internet Protocol 
Institute for Simulation and Training 
Local Area Network 
Network File Server 
Network Time Protocol 
Personal Computer 
Protocol Data Unit 
Pulse Per Second 
Request for Comments 
U.S. Army Simulation Training and Instrumentation Command 
Trimble ASCII Interface Protocol 
TESTBED for Research in DIS 
Universal Coordinated Time 
Wide Area Network 
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1.2 Background 

The Network Time Protocol offers a unique approach for achieving reliable time 
synchronization from a set of possibly unreliable remote time servers. Restated, NTP does 
not attempt to synchronize the system clocks of multiple hosts to each other. Rather, each 
server attempts to synchronize to Universal Coordinated Time (abbreviated by the British 
nomenclature UTC) using the best available source and available transmission paths. This is 
a fine point which is worth understanding. 

A group of NTP-synchronized clocks may be close to each other in time, but this is not a 
consequence of the clocks in the group having been synchronized to each other. Rather each 
clock has been synchronized closely to UTC via the best source it has access to. Trying to 
synchronize a set of clocks to a set of servers whose time is not in mutual agreement may not 
result in any sort of useful synchronization of the clocks, even if you don't care about UTC 
[Mills92]. 

NTP operates on the premise that there is one true standard time, and that if several servers 
which claim synchronization to standard time disagree about what that time is, then one or 
more of them must be broken. There is no attempt to resolve differences more gracefully 
since the premise is that substantial differences cannot exist. In essence, NTP expects that the 
time being distributed from the root of the synchronization subnet will be derived from some 
external source of UTC (e.g ., a GPS radio clock). This makes it somewhat inconvenient 
(though not impossible) to synchronize hosts together without a reliable source of UTC to 
synchronize them to. If your network is isolated and you cannot access other people's 
servers across the Internet, a GPS receiver may make a good investment. 

In the NTP approach, time is distributed through a hierarchy of NTP servers, with each server 
adopting a "stratum." A stratum indicates how many levels away from an external source of 
UTC a given server is operating at. Stratum-l servers , which are the most accurate, have 
access to some external time source, such as a GPS receiver, which receives its time signal 
from satellites containing cesium clocks. These servers explicitly provide a standard time 
service. A stratum-2 server is a time server which is currently obtaining time from a stratum-
1 server. A stratum-3 server gets its time from a stratum-2 server, a stratum-4 server from a 
stratum-3 server, and so on. To avoid long-lived synchronization loops, the number of strata 
is limited to 15. 

Each client in the synchronization subnet (which may also be a server for other stratum 
clients) chooses exactly one of the available time servers to synchronize to . It is thus 
possible to construct a synchronization subnet where each server has exactly one source of 
lower stratum time to synchronize to. 

This simple hierarchical tree structure is not an optimal configuration. NTP operates under 
another premise. The premise that NTP operates under is that each stratum server's time 
should be viewed with a certain amount of distrust. This is in part due to the drift that is 
experienced by real clocks. Drift is a variation in skew, which is the frequency difference 
between two clocks . One of the things that the NTP daemon does when it is first started is to 
compute the error in the intrinsic frequency, "the drift", of the clock of the computer it is 
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running on. It usually takes a day or so of continual operation in order to compute a good 
estimate of the drift and a good estimate is needed in order to synchronize the clock closely 
with the server. Once the initial drift value is computed, it will change slightly during the 
course of continued operation. The "drift file" is a file designated by the NTP daemon where 
the current value of the frequency error may be stored. Then if the time server is stopped 
and restarted , it can reinitialize itself to the previous "drift file" estimate instead of taking an 
entire day to resynchronize[Mills93]. 

NTP has access to several sources of lower stratum time (at least three) where it can then 
apply an agreement algorithm to detect insanity on the part of anyone of these. NTP 
declares a clock to be insane when the data received fro m that clock is invalid or inconsistent. 
Normally, when all servers are in agreement, NTP will choose the best server, where "best" is 
defined in terms of lowest stratum source, the closest server (in terms of network latency) and 
claimed preci sion, along with several other considerations. 

The implication on server selection is that while one should aim to provide each client with 
three or more sources of lower stratum time, several of these will only be providing backup 
service. Some servers may be of lesser quality than others in terms of network delay, 
precision, and stratum (i.e. a same-stratum peer which receives time from lower stratum 
sources the local server doesn't access directly can also provide good backup service) . 

2. Research Goals 

The goal of this research project was to implement the Network Time Protocol in the TRIDIS 
TESTBED. NTP was selected as the method for distributing time in the TESTBED because 
NTP is an approved Internet Standard protocol (NTP version 2) used to synchronize computer 
clocks to UTC [RFC 1305]. System clocks which are synchronized to UTC are a 
fundamental necessity for DIS simulation applications operating in absolute time mode. In 
version 3, NTP was corrected to always be monotonically increasing (never allows time to 
run backwards). NTP is continuing to undergo developmental changes to improve its 
accuracy and to add encryption services (NTP v3.4x). NTP version 3 is currently designated 
as an experimental protocol with recommended use. 

UTC is generally recognized as the authoritative time source. The hypothesis is that a 
common reference for time, such as UTC, would be beneficial for distributed interactive 
simulations . The theory is that a set of system clocks synchronized to UTC would eliminate 
the effects of multiple time zones, network latencies, and altercations with daylight savings 
time from geographically distributed simulation applications. 

As documented in the Standard for Distributed Interactive Simulation [IEEE 1278], a 
simulation application's system clock must be synchronized to UTC for a DIS exercise to be 
able to use absolute timestamps. If all nodes in a concurrent DIS exercise use a common, 
precise reference for time with very high precision (such as a GPS receiver) , then simulation 
messages called protocol data units would be provided with a more accurate timestamp 
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[Paterson, 95]. A more accurate timestamp would increase the accuracy of the dead 
reckoning algorithms and therefore improve the overall performance of the simulation. 

3. Approach 

In order to integrate the latest version of NTP into the TRIDIS TESTBED, the following 
things needed to occur: 

• An accurate time source needed to be identified and procured 

• A host system (or systems) needed to be identified to become the authoritative time 
source or metronome for the TRIDIS TESTBED 

• The latest version of NTP needed to be acquired and installed on the identified system 

• The NTP server needed to be connected to the identified time source 

• A set of experiments needed to be devised to determine the stability of this setup 

3.1 Investigate/Acquire Time Signal Sources 

The approach taken by the TRIDIS team was to identify the accuracy, implementational cost 
effectiveness, and ability to achieve time synchronization (of simulation system clocks) for a 
variety of time sources. A Trimble GPS receiver was purchased by the TRIDIS team to be 
shared by the Network Time Protocol and another TRIDIS task. At the same time, results of 
the 10th DIS workshop were published. Dr. Amnon Katz at the University of Alabama had 
determined that GPS receivers were quite reliable for absolute time sources in distributed 
simulations. Dr. Katz stated that "the [a] GPS clock maintains an accuracy [of] about three 
orders of magnitude better, at no added cost..." than any other available time source [Katz, 
94a]. 

3.2 Identify Host Systems 

The next step consisted of identifying a host computer to become the authoritative time 
server for the TRIDIS laboratory. Originally, the Sun Sparcstation-lO on loan from Loral, 
had been identified as the time server. This workstation was an excellent choice because the 
original development of the NTP protocol had occurred on a Sun Sparcstation running Sun
OS . 

However, a delay was incurred by the TRIDIS team when Encore Systems decided to reclaim 
their System 91 file server. With the removal of the Encore NFS file system, the previously 
selected NTP server, the Loral Sparcstation-lO, was drafted into service as the new Network 
File Server (NFS). Additionally, Domain Name Server (DNS) operations were also 
implemented on this server. 

Using the Loral Sparcstation-lO to provide NFS and DNS services meant that the machine 
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was being moved into "production" status. Production machines typically require that 
maintenance periods and experimental processes be performed during scheduled down-times 
and on other machines, respectively. This created two problems. First, NTP experiments 
required that the selected server be periodically rebooted to reset the clock process or 
interface. This could only be perfonned during periods of scheduled down time. This could 
not be scheduled to occur during normal working days and that left no time to perform the 
experiments. Second, since several DIS projects were now reliant on this machine for 
multiple services, the CPU process time necessary to devote to NTP would be in jeopardy. 
The team believed that the possibility existed for NTP's statistical evaluation program to 
become confused and possibly distort the results of any passive or active experiments. 
FUlthermore, when it came time to experiment with NTP and GPS, current NFS file users 
might complain if their server began to toggle between "up" and "down" states. The 
conclusion of the team was that the Loral Sparcstation- 10 could no longer be considered for 
the NTP stratum time server in the TRIDIS laboratory. 

The next likely choice for an NTP time server was another Sun machine known as "Jaws." 
Jaws was a Sun Sparcstation-2 Classic, a lower performance machine which when unloaded, 
should have been capable of managing the NTP process. However, when the NTP design 
team was ready to use this DIS Server, they were informed that it was now designated as a 
standby machine for 1ST's primary server, "Xeno" and was not available for performing the 
experiments on NTP. The project was put on hold until a suitable machine could be 
identified which could run the NTP process and integrate with the Trimble GPS receiver. 

Another suggestion for an NTP stratum server machine was a Personal Computer (IBM 
80386-PC) running the latest version of LINUX (1.3.9 ). The TRIDIS team accepted this 
solution and began installing the LINUX operating system on the new hardware. LINUX 
required a minimum of 130 megabytes of disk space and 16 megabytes of random access 
memory. 

Several problems were encountered when trying to incorporate NTP and the Trimble GPS 
receiver with the LINUX operating system. The team took nearly two months to completely 
resolve the issues . In the end, NTP could run on LINUX and the GPS receiver worked on 
the PC, but the combination of the two did not work together. After months of electronic mail 
correspondence with the original authors of LINUX, NTP, and the LINUX NTP development 
team, it was determined that a new UNIX kernel would need to be built. The NTP process 
required the use of several operating system level functions in order to communicate with a 
Trimble GPS receiver and to set and test the PC's system clock. What was missing from 
LINUX was the "line discipline" necessary to communicate with the Trimble GPS receiver. 

Briefly, each GPS receiver provides some sort of serial interface to communicate its data. 
However, standards and definitions have not yet been universally adopted for GPS 
communication streams. Each vendor therefore, creates a unique interface definition for 
transmitting its serial data. In the case of the Trimble GPS receiver, data is transmitted using 
10 byte records. The NTP process timestamps the GPS data upon arrival. The NTP process 
uses this arrival time in its delay calculations prior to updating the system clock. 
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Before LINUX would be able to communicate with a Trimble GPS receiver, the specific 
serial line discipline function would have to be developed and integrated into a new LINUX 
kernel. This would require 6 new internal system calls to be developed for the LINUX 
operating system. This level of effort was beyond the scope of this TRIDIS task. 

In searching for a solution for the LINUX problem it was recommended (several times, in 
fact) by the LINUX NTP development team that the TRIDIS team migrate stratum time 
server services over to a Sun workstation running Sun-OS version 4.1.3. Their reasoning was 
that the Sun was the host machine on which NTP was developed, a known Trimble line 
discipline existed, and they had no idea when they might get the LINUX NTP software or the 
Trimble line discipline operational. The LINUX NTP development team said that other GPS 
receivers had been connected to NTP running LINUX, but the code base within LINUX to 
support the Trimble GPS receiver line discipline was not going to be available in the near 
future. The TRIDIS team then decided to abandon the LINUXIPC approach entirely and 
began looking for another host to operate as a time server. 

Two weeks later a suitable machine was located. A Sun Sparcstation-2 running the Sun-OS 
4.1.3 was acquired from the Eagle project. The NTP software was installed on this machine 
and the Trimble GPS receiver was connected. Stratum-l time synchronization experiments 
could now begin. 

3.3 Integrate NTP and Signal Source into the TESTBED 

Prior to the change in allocation of the Loral Sparcstation-IO, and prior to receiving the GPS 
receiver, the team had installed NTP (version 3.4n) on the Sparcstation-lO. The first 
experiment was 11m using this configuration. The xntpd (read as "experimental NTP daemon") 
was installed and setup to operate as a stratum-2 time server. The NTP configuration file was 
defined and three NTP stratum servers were entered. These were eagle.tamu.edu at Texas 
A&M University, black-ice.cc.vt.edu at the University of Vermont, and c1ock.llnl.gov at 
Lawrence Livermore National Laboratory. The experimental NTP installation went smoothly 
and an almost immediate connection to a Stratum-l time server (at Texas A&M University) 
was made. Using the TRIDIS data logger, the NTP packets were detected on the network at 
the rate of one every few seconds. 

The ntpdate function in debug mode was used to display the synchronization error of the 
xntpd program. Over several months of testing, we were able to determine that the accuracy 
of the resident drift file was quite good. Time readings from ntptrace indicated that the 
Stratum-2 time server was accurate to 156 microseconds after just 10 days of continual 
operation. Another iteration of the experiment showed that the server was synchronized to 86 
microseconds after II days. 

After the preliminary installation and testing of the NTP software on the Sparcstation-IO, it 
was necessary to integrate NTP with an authoritative time source. From the NTP 
documentation and other available literature, it appeared that a GPS receiver would provide 
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the best source for time (UTC). However, locating a GPS receiver which would work with 
our specific hardware and software environment turned out to be another problem, and 
perhaps one of the more important lessons learned. 

3.4 Integrate NTP and GPS Signal Source into the TESTBED 

When the Trimble GPS receiver became available for NTP experiments, we moved the 
receiver into the laboratory. Immediately we found that the built-in antenna was unable to 
receive satellite data through the ceiling of the laboratory. We detelmined that an external 
roof-mounted antenna was needed to solve the problem. A new antenna was ordered from 
Trimble and arrived two months later. 

When the antenna arrived, another delay was encountered when concern was voiced about an 
aerial connection to a server located on the 1ST Local Area Network (LAN) . The connection 
was initially refused because it was felt that the GPS antenna might act as a lightning rod and 
thus endanger the server and other LAN-based equipment. It took approximately one month 
to locate a replacement machine to act as the NTP host. 

With the GPS receiver installed, a suitable source for UTC was also now available. All that 
remained was to integrate NTP with the GPS receiver output. The integrated solution would 
provide a stratum-l time server for the TESTBED. First, configuration and testing of the 
GPS receiver was conducted using the Trimble starter kit and a DOS-compatible Pc. This 
permitted the team to configure the receiver for serial output. Specifically, the serial output 
needed to be set in the Trimble line discipline mode. 

NTP requires Trimble GPS receivers to communicate with xntpd using a predefined line 
discipline. To support the Trimble line discipline, specific (but relatively minor) kernel 
modifications needed to be made to the SUN 4.1.3 operating system. These modifications 
were documented in the NTP software and are also reprinted in Appendix B. 

After the kernel modifications were complete, the Trimble GPS receiver was configured for 
serial transmission. With the GPS receiver functioning properly, the NTP daemon was started 
and within approximately 15 minutes of operation, the NTP process had synchronized to the 
GPS receiver with a stated accuracy of 2 microseconds. The TRIDIS team now had a 
stratum-l time server. 
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4. Experiments 

Two experiments were conducted to determine the effects of NTP time stabilization on 
networked computer systems. The first test involved the use of a Stratum-2 time server 
connected across a wide area interface to a stratum-l server (c1ock.llnl.gov). The second 
experiment involved a stratum-l server that was directly connected to the TESTBED. 

4.1 Designing the Experiments 

The following experiments were devised to determine the utility, effectiveness, reliability and 
precision of the NTP/GPS application. Four experiments were proposed: 

• In the first experiment the system was monitored under normal conditions with no 
problems introduced to accurately determine the effects of NTP's built-in time 
stabilization. 

• The second experiment was designed to determine what problems, if any, were 
encountered when the GPS receiver lost power momentarily. 

• In the third experiment, the NTP software was reset during normal operation to determine 
if problems were induced. 

• In the fourth experiment power was removed from the network server to determine what 
effects that had on the time synchronization system. 

The built-in commands ntptrace , ntpq, and ntpdate (in debug mode) were used to verify the 
accuracy of the local host's time. Errors in time were measured as floating point offsets in 
microseconds from the authoritative time server's clock. For the first experiment, our 
stratum-2 server's reference clock was connected via the Wide Area Network (WAN). For 
the second experiment, our stratum-I server was directly connected to an authoritative clock, 
GPS . The ntptrace command reports on the accuracy of synchronization of the given time 
server with respect to its parent server or reference clock. 

4.2 Conduct The Experiments 

All experiments were conducted in the TRIDIS laboratory at IST. Experiments were 
conducted using stand-alone machines. This eliminated the possibility of another program or 
project interfering with the NTP process. Timing analysis was performed on an IBM PC 
using Microsoft Excel. 
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4.3 The Hypothesis 

The NTP GPS time trial experiment was designed to test the resynchronization ability of a 
stratum-] time server. This is the time necessaJY for the NTP agent xntpd to resynchronize to 
the GPS clock. The resynchronization time for the stratum-l server is similar to the 
resynchronization time of lower stratum servers without any network latency or propagational 
delay . This experiment set the reliability for a single LAN implementation of NTP and GPS. 
The theory behind the experiment was constructed given the following three assumptions. 

First, in order to support a geographically di stributed simulation exercise using absolute 
timestamps, each LAN in the exercise would require a connection to the same time source 
(i.e. UTe). Second, while it is generally recognized that other stratum time servers can and 
will be used in a simulation exercise, the most accurate time source available (that with the 
least en'or) would be a stratum-l server. Third, in order to synchronize simulation application 
hosts, an appropriate amount of "up time" would be needed before and during a simulation 
exercise to stabilize the drift file. 

The first assumption, that at least one stratum-l time server would be required, is a given. A 
stratum-l time server is defined as any device designed to serve time which is directly 
connected to an authoritative time source. Preferable simulation implementation solutions 
may require additional stratum-l time servers for each exercise, but we felt that the normal 
implementational case would be one stratum-l server for each LAN. Each simulation 
application would then synchronize its clock to the clock of its peer stratum server. This is 
also the operational theory behind the use of NTP and DIS . 

The second assumption, that other stratum time servers can and will be used in a simulation 
exercise, is probably quite true because of the relatively low cost of implementing a stratum-2 
(or lower) time server. The software is freely available on the Internet and operates on most 
common platforms in use today. Furthermore, each stratum server is capable of maintaining 
accurate time during periods when it cannot directly connect to its stratum peer. NTP 
accomplishes this by continuing to update the host's system clock using the data stored in the 
NTP drift file . 

The third assumption, that a certain amount of "up time" would be needed to stabilize NTP 
would not be a problem. NTP operates by making small incremental adjustments to the clock 
increment value and stores this data in the NTP drift file. An indeterminate amount of 
operation "up time" would be needed in order to stabilize the drift file to some level of 
accuracy. When the NTP client loses connectivity to its metronome, the data in the drift file 
is still used to compensate for variances in the resident system clock. When synchronization 
is re-established, the xntpd process continues where it left off. When multiple stratum peers 
are avai lable, the NTP daemon selects the most accurate time source available. 

9 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

5. Results 

Two experiments were performed. The first experiment was designed to detennine the time 
needed by a stratum-2 (or lower) server to generate a drift file that would maintain the system 
clock to an accuracy of I millisecond . The second experiment was designed to detennine 
how long, on average, a stratum-1 (system peer) would take to resynchronize to UTe after 
losing connectivity to its GPS receiver. 

5.1 Experiment #1 

The first experiment involved synchronizing stratum-2 time servers across the Internet. This 
experiment was important because the simulation community needed an inexpensive and 
relatively accurate method for creating absolute time stamps. Relative time stamps in DIS 
exercises have been so badly misinterpreted that they have become (to a greater or lesser 
degree) a large source of internal error in real time simulations. 

Demonstrating that NTP stratum servers could provide an inexpensive source of accurate time 
to simulation testbeds was the result of this experiment. A Sun Sparcstation-10 was installed 
with NTP and allowed to settle for two days . At the end of the second day, ntptrace was run 
to indicate the network latency between the local host, and its system peer. The ntpdate 
function was used to indicate the update offset and that showed that the system was 
synchronized to UTe by just under 1 millisecond. The server was allowed to operate for 10 
more days. After the tenth day of continual operation, the stratum-2 time server was 
synchronized to UTe within 156 microseconds. 

This series of NTP experiments were run three consecutive times. At each iteration, the NTP 
drift file was cleared and the server was rebooted. Each iteration showed that the server was 
synchronized to I millisecond in two days of continual operation. Similar results were 
achieved after 10 days of operation. During the following months, the server was 
occasionally reset for system upgrades and software installations. The xntpd process never 
created an entry in the system log indicating a process failure. The program was quite stable 
and continued to provide consistent results. 

5.2 Experiment #2 

The second experiment involved testing the resynchronization ability of an NTP stratum 
server. A stratum-1 time server was selected for this experiment for two reasons: 1) a 
stratum-1 time server would produce the most accurate results; and 2) all NTP stratum servers 
operate essentially the same way, implying that resynchronization times would be similar for 
other lower stratum servers in the network. 

Experiment #1 showed that stratum servers can maintain their sanity over long periods of 
time. When a time server loses time synchronization, its clock is said to be unreliable and is 

10 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

denoted as insane. NTP attempts to circumvent this occurrence by recommending that several 
(preferably lower level) stratum servers be specified within an NTP configuration file. 
However, the TRIDIS team believed that many of the simulation administrators would only 
establish a single clock. They might read this report, for example, and assume that all they 
need is a GPS receiver and the NTP installation and they are ready to operate using accurate, 
absolute timestamps. Appropriate backup time servers need to be established to provide fault 
tolerant NTP distribution services. 

If a simulation team purchased a single GPS receiver and built a stratum-l server, the most 
likely problem to befall them would be the loss of their time server. In fact, any team which 
built stratum-2 (or lower) time servers would potentially run into the same or similar problem. 
So the TRIDIS team wanted to know how long it would take for a stratum server to regain its 
sanity. 

What was not well understood was how long it would take for an insane clock to regain its 
sanity after resynchronization. This is precisely the fear that a simulation manager might 
have if he had to suddenly replace his GPS receiver or reboot his stratum time server prior to 
starting a simulation exercise. The team set out to determine the duration of this critical 
period of time. 

Experimental results were obtained for the resynchronization of an NTP stratum-I time server 
and are shown in Table 1. As described above, a Sun Sparcstation-2 running Sun OS 4.1.3 
was used to conduct this experiment. The latest version of NTP, version 3.4x, was installed. 
Next, kernel modifications were required and performed as outlined in the appendices. The 
Trimble GPS receiver was then connected to the xntpd process and allowed to settle for a 
period of 2 weeks. This insured that the NTP drift file was sufficiently accurate to maintain 
time on the server when the GPS receiver was lost. 

The resynchronization table shows that on average, the NTP stratum-l server would obtain 
system peer status in 12 minutes and 54 seconds. This was the average time obtained after 
thirty-two time trials were attempted. In accordance with standard statistical practice the data 
in the table does not contain the longest (39 minutes) and the shortest (12 seconds) time trials 
because they deviated from the norm. They are documented here for completeness. 
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4 
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6 

7 

8 

9 

10 

1 I 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 
26 

27 

28 

29 

30 

Averages 

Start 

14:20:22 

9:33: 16 

10:09:32 

10:22:20 

10:36: 12 

10:26:48 

10:23:32 

11 :55 :20 

10:46:52 

11:47:26 

12:57:12 

11 :39:08 

11 :49:48 

12:45:45 

10:59:40 

12:15:22 

12:51 :38 

13:17:14 

12:44:26 

13:48:10 

13:05:30 

10:47:56 

11 :07:28 

14:09:48 
10:40:40 

14:47:56 
15 :24:12 

13 :32:10 

13: 11 :04 

13:00:12 

Reachable Sys.peer Time to Time To Time to 
(Insane) (Sane) Reachable Sys Peer Synchroniz 

14:24:07 14:32:09 0:03:45 0:08:02 0:11:47 

9:36:28 9:45:06 0:03: 12 0:08:38 0: 11 :50 

10: 12:42 10:22:20 0:03: 10 0:09:38 0: 12:48 

10:25:30 10:35:08 0:03: 10 0:09:38 0: 12:48 

10:39:24 10:46:52 0:03 :12 0:07:28 0:10:40 

10:30:38 10:39: 36 0:03:50 0:08:58 0:12:48 

10:26:44 10:34:36 0:03:12 0:07:52 0:1 1 :04 

11 :58:32 12:07:04 0:03: 12 0:08 :32 0: 11 :44 
10:50:04 10:59:40 0:03:12 0:09:36 0: 12:48 

11:53:21 11 :56:43 0:05:55 0:03 :22 0:09:17 

13:00:24 13:10:00 0:03: 12 0:09:36 0:12:48 

11 :42:20 11 :49:48 0:03: 12 0:07:28 0:10:40 

11 :53:00 12:02:36 0:03: 12 0:09 :36 0:12:48 

12:51:32 12:59:43 0:05:47 0:08 : 11 0:13:58 

11 :02:52 11:13:32 0:03: 12 0:10 :40 0: 13:52 

12:18:34 12:28:10 0:03: 12 0:09:36 0:12:48 

12:54:50 13:05:30 0:03 :12 0:10:40 0: 13 :52 

13:20:28 13:30:02 0:03 :14 0:09:34 0: 12:48 

12:49:44 12:57:12 0:05: 18 0:07 :28 0: 12:46 

13:51:22 14:07:22 0:03:12 0:16:00 0:19:12 

13:05:42 13:17:14 0:00: 12 0: 11:32 0:11 :44 

10:57:03 11 :07:08 0:09:07 0:10:05 0:19:12 

11:10:20 11 : 19:56 0:02:52 0:09 :36 0: 12:28 

14:13:48 14:24:28 0:04:00 0:10:40 0:14:40 
10:43:52 10:52:24 0:03 : 12 0:08 :32 0: 11 :44 
14:51:06 14:59:40 0:03:10 0:08 :34 0: 11 :44 
15:28:28 15:41:16 0:04:16 0:12:48 0:17:04 

13:35:22 13 :44:58 0:03:12 0:09:36 0: 12:48 

13:14:10 13:21 :44 0:03:06 0:07:34 0:10:40 

13:02:24 13: 12:08 0:02: 12 0:09:44 0: 11 :56 

0:03:36 0:09:18 0:12:54 

Table 1: GPS Synchronization Time Trials 
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In Table I, there are three columns labeled Start, Reachable, Sys Peer. The column labeled 
Start is the time of day that this particular experimental run was started. Start indicates the 
time of day at which the GPS receiver was reconnected to its power source. Power (110 V AC 
and battery backup) was removed from the GPS receiver for approximately five minutes. The 
five minute duration was recommended by Trimble to insure that all memory had cleared and 
that the GPS receiver would have to recalibrate, locate and lock on to the required number of 
GPS satellites. When the GPS power was restored, the time was noted as the start time. 

The second column marked Reachable, is the time at the GPS receiver began transmitting 
accurate time. The NTP daemon xl1tpd considers this time to be unreliable because it has 
received one (or too few) clock updates. The daemon will display this time but will denote it 
as being insane, meaning unreliable. Reachable time might be significant for DIS field 
instrument devices or simulation hosts which carry on-board UTC clock generators. If a GPS 
receiver was used as a source clock in a simulation host, and the receiver lost power or 
possibly satellite lock-on, then the difference between start time and reachable time would be 
the time that the GPS receiver was unable to provide time stamp information to the 
simulation application. On average, the Trimble GPS receiver was able to produce UTC after 
3 minutes and 36 seconds. 

The third column is marked Sys Peer and represents the time that the xl1tpd daemon needed 
to "believe" or accept the GPS receiver clock time as valid . After xl1tpd receives several (10-
13) consistent clock time readings, as determined by its own system clock and the drift file 
offsets, xl1tpd denotes the time received from that server as sane. The xl1tpd process denotes 
this time as sane by using a statistical method of calibration and averaging. The average time 
taken by xl1tpd to lock on to the receiver and believe it as being a sane, accurate time source 
was 9 minutes and 18 seconds. 

6. Conclusions 

As stated in the NTP documentation, the NTP process xntpd can synchronize the system's 
local time using multiple reference sources. Sometimes these time sources will disagree with 
one another due to errors in their clocks and latency delays which are unaccounted for. NTP 
will determine which time source, listed in its configuration file, is the closest (in terms of 
latency, not distance) and most accurate. NTP will then synchronize to that time source. As 
a client, xl1tpd will manage the local system clock and maintain synchronization to its system 
peer. If the system peer is synchronized to UTC, then so will the NTP client. 

Stratum servers 2-15 will likewise maintain synchronization to their respective system peers 
prior to becoming stratum servers for a network. Since the same process, xl1tpd, is used by 
stratum server and NTP client alike, it is reasonable to assume that both will operate in a 
similar fashion and maintain local time for the respective host. It can be assumed that a 
network clock will always be available given access to the Internet. If the NTP reachable 
time is zero, the remaining time to authentication and sanity will be on the order of 10 
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minutes . 

NTP client software can easily be integrated into simulation applications by installing it on 
the simulation host computer provided the right GPS clock and computer platform are chosen. 
Many combinations of GPS receiver and UNIX operating system are available. Note that not 
every GPS receiver can interoperate with every UNIX platform. Special care must be taken 
to select an appropriate combination. NTP can be transmitted using broadcast or multicast 
communications, and can be encrypted for secure sites. Local clock management occurs at 
the rate of once per second using a locally stored drift file . NTP client updates from the 
server are configurable and by default occur at 20 minute intervals . During an update, the 
NTP server will send a short burst of packets to the client to calculate the average latency 
delay of the network. When the last packet is received, it is time stamped and added to the 
latency delay to compute a new synchronized time. The local clock is then updated 
accordingly. 

NTP stratum servers process time by accepting NTP packets from multiple time sources. 
Stratum servers use these additional references of "current" time to gauge which server is 
currently the most accurate. The xntpd process continually checks the validity of one time 
server against another in order to produce a stable, local reference time. The server with the 
most accurate time and stable delay is used to compute new stratum server time in much the 
same way that NTP client time is computed. 

7. Recommendations 

The TRIDIS team had to select hardware for the experiments which was compatible with the 
Trimble GPS receiver. Indeed, NTP runs on almost every UNIX platform and GPS receivers 
are available from many different vendors. However, because GPS serial line disciplines and 
standards are not yet implemented, an NTP solution does not yet exist for every combination 
of GPS receiver and UNIX platform. The team found that only some GPS receivers will 
communicate with some NTP implementations on some UNIX platforms. Which GPS 
receivers work with which NTP/OS combinations should be researched thoroughly prior to 
procuring either platform or receiver. 

According to the DIS standard, in order for a DIS exercise to be able to use absolute 
timestamps, a simulation application s system clock must be synchronized to UTe. What is 
missing from this standard is the level of precision or accuracy by which simulation hosts 
require. The network time protocol has been demonstrated as being adequate for maintaining 
the system clocks of most simulation hosts participating in a simulation exercise. What needs 
to be established in the DIS standard is a recommended level of synchronization accuracy. 

The xntpd daemon for stratum-2 through stratum-15 servers receive time from mUltiple, 
preferably lower stratum servers. However, only one time source can be the system speer 
an any given point in time. Each stratum server detennines its peer by statistically computing 
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computing both accuracy and latency delay. The system peer selected is the stratum time 
server deemed best by each NTP client at that moment. DIS simulations which use NTP to 
distribute time should configure NTP to reference multiple time servers. The xl1tpd process 
will then choose the most accurate server from the configuration. Further analysis should be 
conducted using flooded networks to determine if varying network latencies have an impact 
on time synchronization or time stabilization. 

NTP clients (and servers) need some time to settle, possibly for a period of a week or two , in 
order to establish a unique drift file value for each xntpd host. The time required to settle the 
data contained within the NTP drift file will vary for each NTP client and therefore cannot be 
empirically measured. This is just as important for stratum-l time servers as it is for stratum-
2 through stratum-15 servers. All stratum servers need time to create an accurate drift file for 
the local system clock. The time allowed will be different for each platform and will depend 
on the degree of accuracy required. Properly configured and settled stratum servers can 
maintain microsecond clock integrity on the order of hours or even days . Simulation exercise 
managers should be aware of this requirement. 

According to the DIS standard, simulation hosts must be synchronized to UTe before they 
can use absolute timestamps in a simulation exercise. Therefore having a simple method for 
synchronizing host systems would be quite beneficial to the DIS community. Having a 
solution which does not require common geographical locations would also be beneficial. 
The TRIDIS team can recommend that distributed simulations, whether geographically 
localized or dispersed can use the Network Time Protocol to synchronize system hosts in 
support of absolute time based simulations. NTP servers make an acceptable metronome and 
an accurate time source, synchronizing simulation hosts to UTe, thus permitting the use of 
absolute time stamps within a simulation exercise. 

Areas for further research identified by this work are: 

Analysis of the effects on DIS traffic of NTP synchronization packets/sequences 

Simulation synchronization errors using NTP in Wide Area Network (WAN) 
configurations 

Definition of an accurate UTe timestamp for DIS Protocol Data Units (PDUs) 
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Appendix A Configuring and Testing the GPS Receiver: 

The easiest way to configure the Trimble GPS SV6 receiver is through the software that 

comes with the starter kit. 

1. Connect a PC to the receiver's port 1 using a standard serial cable. 

2. Run the cfgps program and put the receiver in TAIP mode. 

3. Run the gpssk program and verify the receiver is picking up satellites. 

Once you have verified the receiver is functioning properly, you can connect it to the Sun. 
This requires a special cable. The Trimble GPS receiver sends a PPS (pulse per second) 
signal on the RING line (pin 9), but xl1tpd expects the PPS to be on CD (carrier detect) . This 
is because CD is a much higher priority interrupt, and we don't want to miss a pulse. See the 
diagram below for complete cable specifications. 

• GPS Sun 

• TX 2 2 TX 

• RX 3 3 RX 

• GNDS 7 GND 

• PPS 9 8 CD 

• DB9 DB25 
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Appendix B Kernel Modifications 

B.! Line discipline 

Tty _clk.c contains a generic clock support line discipline. The tem1inal driver is actually run 
in raw mode, giving you an eight bit data path. Instead of delivering the data character-by
character, however, the line discipline collects characters until one of two magic characters 
(your current erase and kill characters) are received. A timestamp is then taken (by calling 
the function microtime()) and inserted in the input buffer after the magic character and the 
other information that is available for input by the application. Both selectO and SIGIO are 
supported by the discipline. 
To install the clock line discipline the following steps must be followed: 

I. Copy tty _clk.c into Isys/sys 
2. Edit Isys/sys/tty _confc. You will want to include some facsimile of the following 

lines: 
#include "clk.h" 

#if NCLK > 0 

int clkopenO, clkcloseO, clkwriteO, clkinputO, clkioctlO; 

#endif 

#if NCLK > 0 

#else 

#endif 

{ clkopen, clkclose, ttread, clkwrite, clkioctl, 

clkinput, nodev, nulldev, ttstart, nullmodem, 

1* lO-CLKLDISC *1 

ttselect }, 

{ nodev, nodev, nodev, nodev , nodev, 

nodev, nodev, nodev, nodev, nodev, 

nodev }, 

3. Edit Isys/h/ioct1.h and include a line (somewhere near where other line disciplines 
are defined) like: 

#define CLKLDISC 10 1* clock line discipline *1 

The ' 10' should match what you used in Isys/sys/tty _confc. 
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4. Edit Isys/conf/files and add a line which looks like: 

sys/tty _e1k.c optional elk 

5. Edit the configuration file for the machine you want to use the clock line discipline 
on to include the following: pseudo-device elk 4 

6. Run config, then make clean, then make depend, then make vmunix . Then reboot 
the new kernel. 

B.2 Pulse Per Second Support 

In order to use the 1 pps pulse to correct both the UNIX clock offset and frequency , the time 
between when the external clock signals 1 pps and when this module records the UNIX clock 
should be as small as possible and should be repeatable. AT&T STREAMS code makes this 
very difficult to achieve 

The allocb/wput overhead adds about 700us of latency on a SS-1 + and the stream 'scheduler' 
combined with doing everything at a relatively low interrupt priority adds about +-400us of 
jitter. So, to get a high quality time stamp, this module uses STREAMS (only) to get the 
ioctl request. 

The module gets the 1 pps signal by avoiding STREAMS code entirely and inserting itself 
directly into the hardware interrupt service path for the 1 pps pulse. It does this by stealing 
the modem control interrupt from the Sun's zs serial driver. This is not a generic streams 
module. It is designed to work with Sun's zs driver under Sun OS 4. Expect that this will not 
work with other versions such as Solaris-2. Expect it not to run on anything but a Sun. 

Note that the distribution was designed for a clock where' 1 second' occurs on the leading 
edge of the pulse, where on the Trimble SV6 the second starts on the trailing edge. Therefore 
you should change the line: 

if «sO & ZSRRO_CD) != 0) { 

in ppscJock_intr to: 

if «sO & ZSRRO_CD) == 0) { 

to grab the time stamp on the trailing edge of the pulse. 

B.3 Installation 

These are some notes on the installation of the SunOS 4 PPS clock streams module. 
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This directory contains: 

README - this file 

RELEASE - version of this release 

CHANGES - description of differences between releases 

magnavox.ps - PostScript schematic (Magnavox rs422lrs232 converter) 

b-and-b.ps - PostScript schematic (B&B rs422/rs232 converter) 

Makefile 

ppstest 
you 

sys 

- compilation rules 

- ppscJock test program (works with Magnavox MX4200 GPS 

can probably use this as sample code illustrating the use of this 
streams module if you have some other kind of clock). 

- SunOS 4 kernel modules 

sys/genassym - genassym program for object-only (non-source) sites 

B.4 Kemel Configuration 

1. Copy sys/sundev/ppsc1ock.c to Isys/sundev. 
2. Copy sys/sys/ppscJock.h to Isys/sys (and lusrlinc1ude/sys if it is separate directory). 
3. If you want to use the fast microtime module, copy sys/sun4c/microtime.s to Isys/sun4c. 
4. Use sys/sun/str_conf.c.patch to patch Isys/sun/str_conf.c. 

Alternately, manually install the following lines in the appropriate places: 

#incJude "zs.h" 
[ ... J 
#if NZS > 0 

#incJude "sys/ppscJock.h" 
extern struct stream tab ppscJockinfo; 

#endif 
[ ... ] 
#if NZS > 0 

{ PPSCLOCKSTR, &ppscJockinfo}, 
#endif 

5. Use sun4c/conf/files.patch to patch Isys/sun4c/conf/files. 

Alternately, manually install the following line in the appropriate place: 

sundev/ppscJock.c optional zs device-driver 
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In addition, if you want to use the fast microtime module, use: 

sun4c/conf/files.microtime.patch to patch Isys/sun4c/conflfiles 

Alternately, manually install the following line in the appropriate place: 

sun4c/microtime.s standard 

If you are using Sun OS 4.1 .3 and wish to support the sun4m architecture, apply the 

corresponding patches from the sun4m tree. 

6. If you want to use the fast microtime module, and have full SunOS 4 source, use 
Isys/os/kern_clock.c .patch to patch Isys/os/kern_clock.c. Alternately, edit 
Isys/os/kern_clock.c and bracket the code for uniqtimeO with the following two lines: 

7. 

#if !defined(sun4c) && !defined(sun4m) 

#endif 

If you DO NOT have full SunOS 4 source but still want to use the fast microtime, change 

the symbol table entry in for _uniqtime to _Uniqtime as follows: 

hell I % cd Isys/sun4c/OBJ # or Isys/sun4m 
hell 2 % mv kern_clock.o kern_clock.o.virgin 
hell 2 % cp kern_clock.o.virgin kern_clock.o 
hell 3 % chmod +w kern_clock.o 
hell 5 % strings -0 -a kern_clock.o I grep -w _uniqtime 
7892 _uniqtime 
hell 6 % adb -w kern_clock.o 
?m 0 Oxffffffff 0 
0t7892?s 
_dk_ndrive+Ox1 2cc: 
.?x 
_dk_ndri ve+Ox 12cc: 
.?w5f55 
_dk_ndrive+Ox 12cc: 
.?s 
_dk_ndrive+OxI2cc: 

"D 

_uniqtime 

5f75 

Ox5f75 = Ox5f55 

_Uniqtime 

If you do not have a full implementation of SunOS 4 source code, you are missing the 
source code to genassym. In order to correct this problem copy the "mini" genassym 
source from genassym/genassym.c to Isys/sun4c (and into Is ys/sun4m if you have 
Sun OS 4.1.3 and wish to support the Sun4m architecture) . 

Next, use sun4c/conf/Makefile.src.patch to patch Isys/sun4c/conf/Makefile.src (and 

possibly Isys/sun4m/conf/Makefile.src). 
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8. 

Altem ately, manually install the following rules in the prototype Makefile(s). 

assym .s: ${ MACHINE}/genassym.c 
$ {CC} -E $ {CPPOPTS} $ {MACHINE }/genassym.c > .Ia.out.c 
cc $ {COPTS} .Ia.out.c 
.Ia.out >assym.s 
nn -f .Ia.out .Ia.out.c 

Configure, bui ld, and boot the new kernel. 
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Appendix C Compile and Install Xntpd3.4x 

With the GPS clock connected and the kernel modifications done all that's left to do is 
compile and install the xntpd. 

1. Make sure that you have all necessary tools for building executables. These tool s 
include cc or gcc, make, awk, sed, tr, sh, grep, egrep and a few others . Not all of 
these tools exist in the standard distribution of today's UNIX versions (compilers are 
likely to be an extra product). For a successful installation all of these tools should be 
accessible via the current path. 

By default, if there is no Config.local , the system will generate one to support a local 
reference clock (which is run off the system clock). 

To set up for a radio clock, type "make refconf" and answer the questions about PLL, 
PPS and radio clock type. If this is the first use of the ref clock, don't forget to make 
suitable files in /dev/. For a Trimble SV6 make a symbolic link callerd refclock-O in 
/dev/ to the port to which the clock is attached (i .e. In -s /dev/ttya /dev/refclock-O). 

For custom tailored configuration, copying Config.local.dist to Config.local and editing 
Config.local to suit the local needs is necessary . Or use one of the makes listed above 
and then make the necessary modifications for the correct radio clock type. 
Config.local can also be used to override common settings like the AUTHDEFS= 
which is used to select very specific configurations. Please use this feature with care 
and don't be disappointed if it doesn't work the way you expect. 

2. Type "make" to begin the compilation. Expect only a few or no warnings using cc 
and only a moderate level of warnings using gcc. Note on some UNIX platforms the 
use of gcc can result in quite a few complaints about system header files and type 
problems within xntpd code. This is usually the case when the OS header files are not 
up to ANSI standards or GCCISMs. There may, however, still be some 
inconsistencies in the code. 

Each time you change the configuration a script that interacts with your hardware and 
software will be run to build the actual configuration files . If the script fails, it will 
give you a list of machines it knows about. You can override the automatic choice by 
changing to the directory . .lmachines and typing "make makeconfig OS=<machine>", 
where <machine> is one of the file names in the . .lmachine directory. 

The shell script will attempt to find the gcc compiler and, if found, will use it instead 
of the cc compiler. You can override this automatic choice by changing to the 
directory . .lmachines and typing "make makeconfig COMP=<compileD", where 
<compi leD is one of the file names in the . .lcompilers directory. This can be 
combined with the OS argument above. 
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The configuration step can be separately invoked by typing "make makeconfig". 

Note that any reconfiguration will result in cleaning the old program and object files. 

3. Assuming you have write permission on the destination directory, type "make install" 
to install the binaries in that directory . Presently, at the 1ST TESTBED, this includes 
the programs xntpd (the daemon), xntpdc (an xntpd-dependent query program), ntpq (a 
standard query program), nTpdale (an rdate replacement for boot time date setting and 
sloppy time keeping) and xntpres (a program which provides name resolver support 

for some xntpd configurations). 

4. Create /etc/ntp.conf with support for a local clock and any server peers that looks 

something like this. 

# /etc/ntp .conf 
server 127.127.8.0 mode 137 # Support for local clock (127.1 27.type.unit) 

# type 8 = GENERIC 
# unit 0 = /dev/refclock-O 
# mode 137 = Mode 9 (Trimble SV6ITAIP) + Mode 

128 (PPS) 
# peer servers for redundancy 
server 128.115.14.97 # clock.llnl.gov 
server 128.173.14.71 # black-ice.cc.vt.edu 
server 128.2.250.95 
server 165.91.72.27 

driftfile /etc/ntp .drif 

5. Start xntpd. 

# clock-l.cs.cmu.edu 
# eagle.tamu.edu 

# File to keep system clock drift value 

/usr/local/bin/xntpd -c /etc/ntp.conf 

To start xntpd at boot time insert the following lines in /etc/rc.local just after the 

network interfaces get started. 

# 
# Start xntpd 
# 
if [ -f /etc/ntp.conf ]; then 

echo "Starting NTP daemon .... " 
/usr/local/bin/ntpdate -v (server]) (server2) (server ... . ) 

sleep 5 
/usr/local/bin/xntpd -c /etc/ntp.conf 

fi 
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