S —'-— RS University of Central Florida
f t STARS

Institute for Simulation and Training Digital Collections

1-1-1990

Networking And Communications Technology Laboratory:
Design/development Progress Report Submission #2

Jack Thompson
Michael A. Bassiouni

Michael Georgiopoulos

Find similar works at: https://stars.library.ucf.edu/istlibrary
University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been
accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation

Thompson, Jack; Bassiouni, Michael A.; and Georgiopoulos, Michael, "Networking And Communications
Technology Laboratory: Design/development Progress Report Submission #2" (1990). Institute for
Simulation and Training. 145.

https://stars.library.ucf.edu/istlibrary/145

.. + . * N + +

®.¢4+_".’ + N *’ * ) + *0 »‘
.+

Central e, AR ! STARS

Florida . ° + . + Showcase of Text, Archives, Research & Scholarship *


https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/145?utm_source=stars.library.ucf.edu%2Fistlibrary%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

FOR SIMULATION AND TRAINING

B 116

INSTITUT E

Contract N61339-83-C-0044
January 15, 1830

Neiworking and
Communications
Technology
Laboratory

Design/Development Progress Report
Submission 2

Institute for Simulation and Training
12424 Research Parkway, Suite 300
Criando rL 3282¢

University o! Cantral Florida
Uivision of Sponscred Research IST-CR-90-1




INSTITUTE

FOR SIMULATION AND TRAINING

Contract N61339-89-C-0044
January 15, 1990

Networking and
Communications
Technology
Laboratory

Design/Development Progress Report
Subr%ission #2p J

J. Thompson
M. Georgiopolous
M. Basiouni

Institute for Simulation and Training

12424 Research Parkway, Suite 300 -
Orlando FL 32826 lSI'

University of Central Florida
Division of Sponsored Research IST-CR-90-1




Il Il N N N = BN BN BN B B BN B B BN BE B B B

1

NETWORKING AND COMMUNICATIONS TECHNOLOGY
LABORATORY

DESIGN/DEVELOPMENT PROGRESS REPORT

Submission #2
Contract N61339-89-C-0044
15 January 1990

1. INTRODUCTION

This memo presents a summary of the progress made to date involving the
design and development of the Institute for Simulation and Training's Network
and Communications Technology Laboratory. Within this laboratory
there are two functional testbeds which house the equipment and capabilities
required for carrying out the specific research activities of this project. These
functional testbeds are the Simulation Network Prototyping Testbed and
the SIMNET World Access Testbed.

2. SIMULATION NETWORK PROTOTYPING TESTBED

This testbed supports research in several areas pertaining to the use of Local
Area Network (LAN) technology for interconnecting Simulation Training
Devices. These research areas include: Carrier Sense Multiple Access with
Collision Detection protocol networks (i.e., ETHERNET), Token-Ring Networks,
Fiber Distributed Data Interface (FDDI) Technology, Simultaneous Voice and
Data Transmission, and Non-Homogeneous Simulator Network Interfacing.

2.1 Testbed Overall Design Approach

A flexible design approach has been developed and adopted for the
establishment of the IST Simulation Network Prototyping and Assessment
Testbed. The main goal of this approach is to facilitate the investigation and
evaluation of alternate network protocols using PC-based platforms. The PC's
will provide each SIMNET node with a quasi-contentionless ETHERNET
interface. When equipped with appropriate network controller boards, the PC
platforms readily provide a gateway capability between networks of different
topologies, such as ETHERNET and token-ring. Each PC will also be capable
of operating as a controller/protocol translator providing the necessary services
for routing SIMNET packets to the alternate network prototypes.

2.2 Testbed Implementation

The Hewlett-Packard Vectra 386 PC/AT Tower System will be used as a data
logger, network traffic generator and protocol translator for the Testbed. Our
initial tests and evaluation of the intelligent Excelan 205E ETHERNET controller
boards have revealed that such intelligent boards would not be able to capture
all the broadcast data packets generated in the SIMNET real-time environment.
Our data capture prototyping effort will be based, therefore, on dumb
ETHERNET controller boards that are optimized for speed of the low-level
transmit/receive operations. The high-level TCP/IP processing capability of the
intelligent boards, however, will still be used to provide file transfer services for




data analysis, software development, and other applications requiring PC-to-PC
ETHERNET communications.

Because of the many features of token-ring protocols, coupled with the
commercial availability of token-ring boards for the PC, our alternate network
prototyping effort will focus on building a token-ring network configuration for
the SIMNET environment. Packets captured off the SIMNET ETHERNET by the
PC-platforms will be used to drive the token-ring LAN. Various performance
tests to evaluate the token-ring scheme will then be conducted.

2.2.1 Ongoing Activities
The following is a summary of the main activities that have been carried out
during the first phase of building the Alternate Network Testbed.

» We have gained considerable experience on using the 3-Com ETHERLINK
I dumb ETHERNET boards. With these boards installed in the HP Vectra
20MHz PC's, we are able to transmit packets with data passed from the HP
Vectra to the 3-Com board, of length 64,128 and 256 bytes at rates of 1.8,
2.1 and 2.3 Mbits/sec., respectively. Furthermore, we are able to transmit
packets without data passed from the HP Vectra to the 3-Com board, of
length 64,128 and 256 bytes at rates of 3.6, 4.9 and 6.4 Mbits/sec.,
respectively. . The data capture capability of the boards using a single
receive buffer is approximately one half of the transmit capability or
1Mbits/sec. These measurements were made over Thin-Net ETHERNET
under light traffic loads with minimal collisions.

* We have begun preliminary efforts towards using the HP Vectra's to perform
data logging (i.e., to read broadcast packets off the SIMNET ETHERNET,
time-stamp and store them to a disk or tape file). These early activities
include experimentation with various techniques for time stamping,
assessing the impact of missed packets on playback performance,
experimentation with optimum precision of time reference used for
timestamping.

+  We have written a program to generate EHTERNET packets and transmit
them out onto the network. Currently, we are working on techniques to
provide programmable delay to packet transmissions, as well as generating
packets with fixed and jittering interarrival times. Software used to generate
simulated packet inter-arrival times in the network simulation software
models will be reused to generate actual network traffic. This will allow us to
perform more accurate validation experiments on the software models
against actual hardware.

*  We have written C-language programs to extract and manipulate different
fields within a SIMNET protocol data unit (PDU). These programs consist of
several header files along with compilable C-routines and have been used
in several applications including capturing, manipulating and retransmitting
SIMNET M1 data packets, as well as capturing ETHERNET data packets
from non-SIMNET simulators and translating them into SIMNET compatible
packets.




We are currently able to pass data packets across the 4Mbits/sec 3-Com
TOKENLINK token-ring network boards between two of the HP Vectra's.
Experiments are underway to determine the maximum load of SIMNET
packets that can be communicated over the ring.

We are currently performing tests using Concurrent-C simulation models to
compare the performance of the early token release protocol of token-
ring LAN's with that of the late token release version. These tests will
give us an insight into the significance of the improvement in throughput
attained through the early release protocol, as well as the amount of network
overhead required to support prioritized tokens.

We are currently building a predictive model to investigate the greedy
node problem in Ethernet simulation networks. In our preliminary model,
the impact of a greedy node on the transmission of a single non-greedy
node is considered and the corresponding channel probabilities are
tabulated. It is hoped that this type of modeling will help us evaluate the
magnitude of the greedy node problem and its impact on network packet
delay and packet loss.

We are in the process of completing experiments which will allow us to
implement ETHERNET-like protocols via the 3-Com Etherlink |l boards.
Tests have indicated that it may be possible to discard old state update
messages from the 3-Com board's transmit buffer and substitute them with
new (more recent) update messages. This will allow us to improve the delay
performance of the standard ETHERNET protocol.

NOTE: Listings of all software programs mentioned above are included as an

attachment.

2.2.2 Planned Activities
The following activities are planned the next phase of the project:

.

Improve the data capture capabilities of the 3-Com Etherlink II| ETHERNET
controller board by implementing a scheme utilizing multiple receive buffers.
This will allow us to determine the safe operating range of traffic load for
which minimal data loss occurs.

Design and build C-language software libraries for transmitting and
receiving both ETHERNET and token-ring data packets.

Design and build C-language software programs for performing data
logging and artificial packet generation for both the ETHERNET and token-
ring LAN's.

Examine the token-ring priority scheme and evaluate its suitability and
potential benefits to optimize packet management in the SIMNET
environment.




« Begin using the DURRA software analysis tool developed by Carnegie
Mellon University's - Software Engineering Institute. This application is
written in ADA and will be implemented on a SUN Workstation. Plans are to
use DURRA as part of a research task involving the use of intelligent filtering
techniques applied at Gateways which interconnect multiple SIMNET type
networks via high capacity local area or long haul networks.

« Continue activities involving the use of the 3-Com Etherlink Il board to
implement ETHERNET-like protocols and investigate the capability of
changing some parameters of the standard ETHERNET protocol in an effort
to produce priorities on the network. Such parameters include the packet
slot-time which directly affects the calculation of the retransmission
back-off algorithm, as well as the back-off algorithm itself. We will also
focus on the implementation of a modification of the standard ETHERNET
protocol that reduces packet transmission delays, only at times when the
channel is sensed idle. The final thrust in this effort will be to implement the
GBRAM protocol by utilizing the 3-Com ETHERNET board. GBRAM is
superior to the ETHERNET protocol for medium to high traffic loads.

2.3 Data Analysis

Data Analysis capabilities in the laboratory will consits of hard and software
which will be used to manage and analyze the large amounts of data generated
by networked simulators. A variety of test experiments will be conducted in
order to evaluate the performance of the vairous LAN configurations. Different
performance measures (e.g., packet transmission delay, distribution of packet
inter-arrival times, utilization of transmission medium, LAN throughput, etc.) will
be collected and analyzed (using statistical inference) for both ETHERNET and
token-ring LAN's. Some of the statistical tests which will be applied include
confidence intervals, analysis of variance, goodness-of-fit tests (e.g., the
Kolmogorov-Smirnov test), and regression analysis. A VAX 3100 workstation
has been procured and will be used for the performance of the required
statistical tests and data analysis services.

2.4.1 Ongoing Activities
The following is a summary of the main activities that have been carried out
during the first phase of this research.

+ We have gained considerable experience on using the VAX 3100
workstation in both the system administration and user areas.

» Graphics software, the ULTRIX (UNIX for VAX) operating system and some
software development tools for the VAX 3100 workstation have been
received.

« Chris Pinon has attended the VMS System Management Class | to aid her in
administering the VAX 3100 (see Memo for Record from Chris Pinon dated
Nov. 20, 1989).




« Local Software and Hardware support has been established through
Dingital Equipment Computer Users Society (DECUS). Membership has
been obtained and a Local User Group meeting was attended (see Memo
for Record from Chris Pinon dated Nov. 29, 1989).

* Procurement has begun for statistical packages and data analysis tools.

2.3.2 Planned Activities
The following activities are planned the next phase of the project:

» Develop a list and a detailed description of the performance measures,
statistical experiments and data analysis tests that will be used for
evaluating the performance of the ETHERNET interface, as well as the
prototype networks to be implemented.

< Procure any statistical software packages found to be suitable for this
project.

» Write any necessary software interfaces needed for the invocation of the
statistical packages mentioned above.

» Interface VAX DECNET to existing laboratory ETHERNET.

2.4 Simultaneous Voice and Data Transmission Research
Research involving the simultaneous transmission of digital voice and data will
be conducted utilizing Digital Signal Processing (DSP) modules interfaced to a
networked HP Vectra PC platform. The Ariel DSP56001 DSP modules were
chosen and two of the boards were procured for this effort.

2.4.1 Ongoing Activities
The following is a summary of the main activities that have been carried out
during the first phase of this research.

« We have received the DSP56001 boards and are gaining experience on
using them to manipulate voice data under real-time constraints.

» We have nearly completed the program to packetize the digital voice data
that are stored in the memory of DSP56001 Board.

+ We are in the process of writing a program to transfer the packetized data
from the DSP56001 board to the 3-Com ETHERNET board, and visa versa,
for transmission to and reception from the ETHERNET network.

»+ We are in the process of writing a program to reassemble the packetized
data located in the memory of the DSP56001 board into a continuous
stream of digital data for subsequent conversion to analog information
(voice).




2.4.2 Planned Activities
The following are planned activities which will be performed during the next
phase of the project:

« Utilize the aforementioned C-language programs to extract and manipulate
different fields within a protocol data unit (PDU) in order to send the voice
data over the network in a form that is consistent with the SIMNET
communication protocol standard.

» Utilize the capabilities of the DSP56001 board to distort the digitized voice
information in a manner that corresponds to the degradation of the analog
voice signal in the actual battle environment (RF phenomena).

» Show experimentally, by using the DSP56001 board, the percentage of lost
voice packets that we can accommodate without affecting the clarity of the
voice signal. This will allow us to find the number of concurrent voice
conversations that the network can support in the ETHERNET protocol
environment.

« Use the DSP56001 boards to show the effect of certain signal processing
techniques on the digitized speech signals (i.e., data compression, coding,
voice listener tests). By doing so we will expect to accommodate more
simultaneous voice conversations on the network.

« Examine the ETHERNET boards carefully to determine the possibility of
implementing an alternative protocol (other than ETHERNET) that can
support simultaneous voice and data transmission over the network.

2.5 Non-Homogeneous Simulator Network Interfacing

The goal of this research is to provide a proof-of-principle demonstration of
interconnecting non-homogeneous simulators via a common network, and
provide the means for them to interact with one another.

This activity is on-going in nature and centers on the interconnection of non-
SIMNET devices (such as the ASAT's, the Silicon Graphics' Networkable Flight
Simulator, the SUN Microsystems' AVIATOR Networkable Simulator, and
others) with the existing IST SIMNET devices. Protocol
translation/transformation, intelligent filtering techniques for gateways used to
interconnect LAN's of differing topologies, and techniques for handling
inconsistencies in data protocol formats between dissimilar simulations are
some of the research areas being investigated under this task.

3. SIMNET WORLD ACCESS TESTBED

Providing access to the SIMNET World is one of the major capabilities IST is
developing in the Network and Communications Technology Laboratory.
Additional SIMNET modules are being acquired to enhance the existing suite of
SIMNET equipment. These new modules include a Stealth Vehicle, a Plan
View Display, a Data Logger/Playback System and a Long Haul
Communications Gateway. The addition of this equipment will provide a wide




range of SIMNET capabilities to support ongoing research efforts in the areas of
alternate network implementations, digital voice transmission, network
benchmarking, and Long Haul Networking.

3.1 IST SIMNET Network Configuration

As mentioned earlier, the current SIMNET configuration uses an ETHERNET
network to provide data communications between simulators. The SIMNET-T
site at Ft. Knox uses an interconnect scheme which connects up to eight
SIMNET modules together via a multi-port transceiver box, which in turn is
attached to the ETHERNET coaxial cable. In the IST Lab, the SIMNET modules
are interconnceted via a THIN-NET ETHERNET network. THIN-NET uses 50
ohm coaxial cable similar to RG58 to interconnect the nodes on the network.
Each node has a small transceiver attached directly to it which provides the
required interface to the coaxial cable. This THIN-NET implementation provides
a flexible interconnect scheme, without any loss in performance and is more
suited to laboratory requirements.

Currently in the IST Laboratory, there are several clusters of computers which
are being used for various research activities. By running a series of coaxial
cables around the lab we are able to provide a variety of interconncetions
between the clusters. For example, the SIMNET modules are linked together in
one cluster and the networking research equipment (HP LAN Analyzer and
PC's with ETHERNET cards) are linked in another. These two clusters can be
tied together whenever desired by simply removing two cable termination
devices and hooking the two cables together. This scheme allows for the
sharing of resources, no matter where they may be physically located in the lab.

3.2 SIMNET Compatible Interconnect Capabilities

This capability in the lab refers specifically to the concept of providing gateways
into the SIMNET World. The first gateway to be procured will be a BBN SIMNET
Gateway. This gateway is based on the BBN Butterfly computer and most
probably will be a closed system, meaning that we will have no way to alter its
software and/or hardware to experiment with it. The SIMNET Gateway is being
procured, and is expected to be delivered to IST within the next two months.

Commercially available long haul networking hardware is currently being
evaluated to determine its suitability for the SIMNET application. Details of this
evaluation can be found in the attached memo, Notes on IST Long-haul
Interconnectivity, dated 11/29/89. To achieve interconnectivity, we will
procure several ETHERNET bridges which will allow for limited dial-up access
to the IST SIMNET world, as well as support research being performed in the
area of Long Haul Networking.

We have initiated conversations with personnel at Human Engineering Labs
(HEL) in Aberdeen Proving Grounds, MD. Preliminary plans are to establish a
long haul link between the IST SIMNET Laboratory and HEL's laboratories.
There are tentative travel plans for two IST researchers to visit HEL (Aberdeen,
MD) during the month of January 1990 to further discuss this project.



3.3 Simulation Network Performance Benchmarks

The functional requirements for a set of benchmarks to be used to evaluate
training device network performance and interfacing capabilities will be
established. These benchmarks will aid in the validation of interfacing methods
between non-homogeneous simulators and compatibility with the current
SIMNET communications protocol standard. The benchmarks will consist of a
set of software programs which will perform automated analysis of incoming
network data, either in real-time or off-line, and will provide an orderly method of
evaluating a networked training device's network performance.

Initial benchmark development efforts will employ the use of the VAX 3100
workstation for software development and data analysis. This benchmark work
depends highly on the simulation network protocol standards currently under
development. Therefore, these activities will be closely monitored and attended
to ensure benchmark analysis techniques are valid meaningful measures of
performance.

Our initial evaluations indicate a software system called DURRA might be a
useful tool to aid in benchmark development. DURRA was developed by the
Software Engineering Institute (SEI) at Carnegie Mellon University. IST is the
first site to receive DURRA. DURRA is essentially a system for predicting the
preformance networked computing nodes. DURRA provides a flexible
environment for specifying the interconnection of these nodes (i.e. network
topology), as well as predicting the system performance under varying loades
and usages. DURRA programs can be written which can perform network
assessments off-line. On-line assessments will require enhancements which
will be pursued by IST and SEI.

4. CONCLUSIONS

This report has presented a summary of the procurements, activities and
progress made towards the development of the IST Network and
Communications Technology Laboratory. Comments and/or suggestions are
encouraged and should be directed to:

Jack Thompson
Institute for Simulation and Training
University of Central Florida
12124 Research Parkway
Orlando, FL 32826



MEMORANDUM FOR RECORD

To: Jack Thompson
From: Chris Pinon

Subject: VMS System Management I Class
November 13-17
DEC Education Center
Maitland, Florida

Date: November 20, 1989

Purpose:

The purpose of taking this class was to become more familiar with
the VAXstation's operating system and to learn skills and
commands associated with managing the system. The VAXstation
3100 is an integral part of the Networking laboratory. The
training was necessary to aid in the integration of the VAX onto
the network.

Key Topics:
The class provided an overview of the VMS operating system and

the role of the system manager in maintaining the system. Topics
discussed include:

- Understanding the User Environment

- Managing System Users

- Managing Queues

- Managing Disk and Tape Volumes

- Customizing the System

- Starting Up and Shutting Down the System
- Maintaining System Integrity

- Monitoring System Performance

- Installing and Updating System Software

Conclusion:
The class provided an excellent overview of the VMS operating
system and gave the student many valuable tools that can be

implemented immediately. The class fulfilled the purpose
detailed above.

Copy to:
B. Goldiez, S. Smith, J. Cadiz, R. Ouyang, M. Georgiopoulos,
M. Bassiounni




Memorandum

To: Jack Thompson
From: Chris Pinon
Subject: Central Florida DECUS LUG
November Meeting
Merritt Island Public Library
Date: November 29, 1989

Purpose:

The purpose of the meeting was to meet with members of the
Central Florida DECUS LUG (DEC users Local Users Group). This
group is a valuable resource for help concerning the VAXstation.
This is the first meeting attended since joining DECUS. I also
sought contacts to help with the transfer of data from one type
of tape media to another, an activity essential for the
statistical study of the SIMNET data packets and for examining
the program from Carnegie-Mellon University.

Key Topics:
The meeting took place at the Merritt Island Public Library and
began at 9:00 am. The meeting proceeded as follows:

1) DECUS business

2) DIGITAL update - an overview of new products on the
market

3) "Leveraging PC Applications on the VAX" - a presentation
by RECITAL Corporation

LUNCH BREAK

4) MPCSA and 386WARE" - a presentation by Bob Thomson,
Computer Operations Supervisor for Martin Marietta
Aerospace, KSC

5) General Question and Answer session - A chance for all
to discuss problems and solutions. Also a chance to share
tips and shortcuts.

The meeting ended at 3:30 pm. I spent some time talking to Mr.
Christopher Korson, Software Engineer for Level Five Research,
Inc. in Indialantic. He has the means to transfer 8mm, 9mm and
TK70 tapes to the TK50 format our computer requires. All IST has
to do is provide the tape.

Conclusion:

This meeting provided some valuable information concerning VAX
computers in general and some SW products available on the market
at this time. It also provided some business contacts that may
be valuable in the near future.

Copy to: B. Goldiez, G. Winkler, M. Bassiouni



To: Jack Thompson

From: Jorge Cadiz

Date: 11/29/89

Subject: Notes on IST Long-haul Interconnectivity

It seems that we have the choice to make as far as what
type of interface device we would like to use in the Long-
haul environment. The three devices that we can use are
Bridges, Routers, and Gateways. Following are definitions
for these devices. These definitions were extracted from
TRW's Unified LAN I Components Guide (July, 1989).

Bridge: A router that connects two or more networks and
forwards packets among them. Usually, bridges operate at
the physical network level. For example, an ETHERNET
bridge connects two physical ETHERNET cables and forwards
from one cable to the other exactly those packets that are
not local. Bridges differ from repeaters because bridges
store and forward complete packets while repeaters forward
electrical signals.

Router: Any machine responsible for making decisions
about which of several paths network (or Internet) traffic
will follow. At the lowest level, a physical network
bridge is a router because it chooses whether to pass
packets from one physical wire to another. Within a long
haul network, each individual packet switch is a router
because it chooses routes for individual packets. 1In the
Internet, each IP gateway 1is a router because it uses IP
destination addresses to choose routes.

Gateway: A special purpose, dedicated computer that
attaches two or more networks and routes packets from one
to the other. 1In particular, an Internet gateway routes IP
datagrams among the networks to which it connects.

Gateways route packets to other gateways until they can be
delivered to the final destination directly across one
physical network. The term is loosely applied to any
machine that transfers information from one network to
another, as in mail gateway.

After looking at some literature on the three devices, it
seems that a bridge may be the type of device that we may
want to procure. Bridges are generally faster than
routers, and they perform packet filtering in order to
prevent some of the "local" traffic from getting onto the
long-haul medium.

Routers seem like they may provide more functions than are
necessary for our application. In the SIMNET environment a
large percentage of the traffic has a broadcast destination
address. This means that most of the traffic generated at
the different nodes will be looking to be transmitted over




the network. This will require a "dumb" interface which
simply passes the traffic to the remote location.

* A gateway will provide a connection between two segments of
network that are driven by a different type of protocol.
These "protocol translators" are not what we need since the
SIMNET units communicate with the same protocols.

* Following is a diagram which is my perception of the long-
haul network that will be established by
IST

E-NET

IST ETHERNE1 -

FEESIFIPIS IS FEFIT IS T

Long Haul
Connection

IEITITITITITIT T T TETEE T LTS TITEF FITETTILT

RO OO0

SIMULATORS

ERELIFIEETEEIPESESF

. I have gathered some product information on some
Bridges, Routers, Brouters, etc. Here is a table which
summarizes the pricing information.

Company Device Pxice
Advanced ACS 4110 $7,500
Computer Remote ETHERNET
Communications Bridge
Advanced ACS 4030 $4,975-85,575
Computer Remote ETHERNET
Communications Bridge
Halley Systems ConnectLAN 100 $?
Local and Remote
Brouter
Blackbox Remote Bridge $6,600
Corporation 56Kbps
Blackbox Remote Bridge =512k

Corporation Tl




Jhkhkhkkhkkhkhkhhkdhhdhhhdhhdhhdhhdhhhhhhhhhhhdhhdhhhhhhhdhdhhhrdhhhdhhhhkhkhhhhkhhdhhhdrhhhhhdkx /

*

*/

l* CTO3LC.C */
/* * /
* Description: This file contains the code which calls the funtions * /

* provide by the CTO3L.ASM to receive/transmit packets * /

* through 3COM EtherLinkii board. * /
/* * /
I***************************************************************************/

#include <stdio.h>
xtern cInitAdapters():
xtern cInitParameters():
extern cResetAdapter():

xtern cRdRxFilter():

ixtern cWhoAmI () :

xtern cWrRxFilter():
extern cPutTxDatal():
lxtern cGetRxDatal():

xtern cSetLookAhead():
extern cXmitl():

Ixtern cRcvSome( ) :

main()

char
char
char
char
char
char
char
char
char

char
}:

char
char
char
char
char
char
char
char

long
long
long
long
long
long
long
char

int i, J;
struct ini hdr /!

short

len;
nonl;
nonz2;
non3[2]:
nondl[41:;
nonS[41];
noneé ;
cdend([4]:
*argo:

short args:

non7;

struct WhoStruct {
unsigned char addr(6]:

ver_major:
ver _minor;
sub ver;
type_ds;
type_adapter;
init status;
reserved;
num_tran buf;

size_tran_buf;

ttl tran_cnt;

ttl _tran_err_cnt;
ttl tran timeout cnt;

ttl_recp_cnt:

ttl recv_bdr_ cnt:;
ttl recv_err_cnt;
ttl retry cnt:;

xfr mode;



char walt mode:
char hdr_ spec data:
iH

struct PktStr {
char inp[1500];

b

struct WhoStruct far *Who:
struct PktStr far *Pkt:
struct ini_hdr *parmsdr:

int ttlpl, nb, flags, regid, nreqid:
char far *paddr = "This is a test only";

int rc, rxf=0x000c, rrxf, Adapters=0:
int rs = 0, icnt = 0;
parmsdr->1len=0x17:
parmsdr->nonl=0x00;
parmsdr->non2=0x00:
parmsdr->non3[0]1=0x00;
parmsdr->non3[1]=0x00;
parmsdr->non4 [0 1=0x00;
parmsdr->non4[1]=0x00;
parmsdr->nond | 2 1=0x00;
parmsdr->noné4|[ 3 ]=0x00;
parmsdr->non5([ 0 ]=0x00;
parmsdr->non5[1]=0x00;
parmsdr->non5([ 2 ]=0x00;
parmsdr->non5([ 3 ]=0x00;
parmsdr->non6=0x00;

parmsdr->cdend[ 0]=0x00;
parmsdr->cdend| 1 ]=0x00;
parmsdr->cdend( 2 ]=0x00;
parmsdr->cdend| 3 1=0x00;

/* parmsdr->argo = "c:\3com\ether503.sys /a:2e0/m:4/t:1/d:1/i:3\n"; */
parmsdr->argo = "c:\\3com\\ether503.sys /A:2e0 /D:1 /I:3\0x0a";
parmsdr->args=getds();
parmsdr->non7=0x00;

rc=getds():
printf ("getds O0x%x\n",rc):

rc=cInitParameters(parmsdr);

printf("cInitParameters returns %d\n",rc):;
rc=cInitAdapters(&Adapters);

printf("cInitAdapters returns %d, Adp=%d\n",rc, Adapters):

rc=cSetLookAhead(32):
printf ("cSetLookAhead returns %d\n",rc);

rc=cWhoAmI ( &Who) ;
printf("cWhoAmI returns %d\n",rc):
printf("addr = %02x %02x %02x", Who->addr[0],
Who->addr[1], Who=->addr[2]):
printf (" %02x %02x %02x\n", Who->addr(3],
Who->addr[4], Who->addr[5]);
printf("ver major %02x ver minor %02x\n", Who->ver_major, Who->ver_minor):
printf("transfer mode %x wait mode %x\n", Who->xfr mode, Who->wait_mode):
printf("ttl recp cnt %d (0x%4x)\n", Who->ttl recp_cnt, Who->ttl_recp_cnt):



rc=cWrRxFilter(rxf):

printf ("cWrRxFilter returns %d\n",rc);
rc=cRdRxFilter(&rrxf);

printf("cRdRxFilter returns %d, filter=%x\n",rc,rrxf);

rs = * *;
printf("Receiver or Sender ? (r/s)\n");
while ( ((rs = getchar()) != ’'r’) && (rs != ’'s’) ) |

1
printf("Receiver or Sender ? (r/s)\n"):
}:

if (rs == 'r?’) |{
while ( !kbhit() ) {
rc=cRcvSome( &PKkt) ;
if (re > 0) {
icnt++;

*

printf ("cRcvSome returns %d\n",rc):
for (i=0; i<rc; i++)
printf("%02x",Pkt->inp[i]):

}
)

érintf("Total input count %d\n",icnt):
}
else |

ttlpl = 0x64;
nb = 0x64:;
flags = 0x0060;
regid = 0x0001;

nregid = 0x0011;
for (i=0; i<10; i++) {
rc=cXmitl(ttlpl, nb, flags, regid, paddr, &nreqid):;
}
}

rc=cResetAdapter():
printf ("cResetAdapter returns %d\n",rc);
exit (0);

Il EE N N N N A B B B BE EE .
~

void myRxProcess(Status, PacketSize, RequestID, PacketHeader)
lnt Status, PacketSize, RequestID;
har far *PacketHeader;

{
I /* fprintf(stderr,%Called by ASM - myRxProcess\nNot implement yet\n");

fprintf (stderr,"Status=%d, PacketSize=%d, ReguestID=%d\n",Status, PacketSize,
RegquestID); */

'oid myTxProcess(Status, RequestID)

int Status, RequestID:;

I /* printf("Called by ASM - myTxProcess\nNot implement yet\n");
printf ("Status=%d, RequestID=%d\n", Status, RequestID); */

loid myExitRcvInt ()

i /* printf(®"Called by ASM - myExitRcvInt\nNot implement yet\n"); */







title cto3l.asm
hhkkhkkhkhhkhkkhkhkdkkkkkkkh ko khkk kA kkkh kA kA kA Ak kA hkkkhkkhkhkhhkhk
File: CTO3L.ASM

Description: This file contains subroutines which provide a

C program with an interface to the 3L 1.0 routines.

dhkkkhddkhdhdkdkhkhhhkhhdhdddddddhdhdbdhdddddhhddhdbhdhhhddddhhdhhbhdhkhhhhdkhhhkhkhhkkkhkdhi

Functions called by C

‘ -'-n \-n tl-

UBLIC _getds
UBLIC _cInitParameters
iUBLIC _cInitAdapters
UBLIC _cResetAdapter
PUBLIC _cWhoAmI
UBLIC _cRdRxFilter
EUBLIC _CWrRxFilter
PUBLIC _cPutTxData
UBLIC _cGetRxData
EUBLIC _cSetLookAhead
UBLIC _etext
tUBLIC _cRcvSome
UBLIC _cXmit1l
Need to be written in C
xtrn _myExitRcvInt :near
extrn _myRxProcess :near

ixtrn _myTxProcess tnear

: Functions provide by this file
PUBLIC ExitRcvInt
tUBLIC RxProcess

UBLIC TxProcess

3L functions

xtrn InitParameters :near
extrn InitAdapters :near
xtrn WhoAmI tnear
Extrn ResetAdapter tnear
xtrn RdRxFilter tnear
extrn WrRxFilter :near
xtrn GetRxData :near
txtrn SetLookAhead near
extrn PutTxData :near
!f equ Oah
r equ 0dh
'print macro strloc ;print string at strloc
local strloc
push ax
push (0574
I push ds
push dx
mov dx,seqg strloc

mov

ds ,dx




!CODE
CODE ends

mov
mov
int
pop
pop
pop
pop
endm

macro
mov
int
endm

macro
mov

int
endm
GROUP
segment
group
assume

ends

segment
ends

segment

ATA segment

is ds dw
_etext db
Irectsv dd
retsav dw

rlf db
Iklock db

klen dw
ikerr dw

kcnt dw
pkcount dw

kthd db

ktdat db
iATA ends
_ DATA segment

de label

DATA ends

BSS segment
_be label

BSS ends

DATA segment
_s@ label

DATA ends

dx,offset strloc

1500 dup(0)

word public ‘DATA’
byte

word public ’BSS’
byte

word public ‘DATA’
byte

ah,09h

21h
dx
ds
cX
ax

;get kbd char in al

ah,8

21h ;wait for key

;check for kbd char

ah,0bh

21h ;returns al: O-nokey, ff-keyhit
_TEXT, DATA, ICODE
byte public ’‘CODE’
_DATA, _BSS
cs:_TEXT, ds:DGROUP, ss:DGROUP
word public ‘CODE’
word public ‘CODE’
?
?

22h dup (0) ;save all vectors so we can cleanup
?
cr,1f,’s$’

0

0

0

0

0

32 dup(0)




_TEXT SEGMENT

l ASSUME CS:_TEXT, DS:DGROUP, SS:DGROUP
~getds proc near

mov ax,ds
I mov cs:his_ds,ax

ret

_getds endp

;_cInitAdapters: This procedure provides the glue between a C
[ program and the 3L 1.0 InitAdapters function.

;Calling Sequence:
l int cInitAdapters(&nAdapters)

;Input Parameters:

I None

;Output Parameters:
[' int nAdapters

Returns:
The return value of the InitAdapters function

—————————————————————————— T — —————————————————————————————————————————————

_cInitAdapters proc near
push bp

mov bp,sp
push si

push di

push ds

mov ax,cs

mov ds,ax

mov di ,offset CODE:RxProcess

call InitAdapters

pop ds

mov di ,word ptr[bp+4]
mov word ptr[di],cx
pop di

pop si

pop bp

ret

cInitAdapters endp

==

———————— ——— -

_cInitParameters: This procedure provides the glue between a C
program and the 3L 1.0 InitAdapters function.
Calling Sequence:

l int cInitParameters(Parms)

r Input Parameters:
l char *Parms - Pointer to a structure with overrides of default



parameters.

lOutput Parameters:
H None

IReturns 3
The return value of the InitParameters function

cInitParameters proc near
push bp
mov bp,sp

I push si
push di
push ds
I mov bx, [bp+4]
mov ax,ds
mov es,ax
I mov ax,cs
mov ds,ax
I call savvecs
call InitParameters
I pop ds
pop di
pop si
pop bp
I ret
_cInitParameters endp

;_CResetAdapter: This procedure provides the glue between a C
I program and the 3L 1.0 ResetAdapters function.

;Calling Sequence:
int cResetAdapter()

Input Parameters:
None

Output Parameters:
None

Returns:
The return value of the ResetAdapter function

M S ————————NSEpE———————— e e e e e

cResetAdapter proc near

-c ‘0- -8 -". --t

push bp

I mov bp,sp
push si
push di

I push ds
mov dx,0
mov ax,cs

I mov ds,ax




mov dl,o
call ResetAdapter
call fixvecs
I pop ds
pop di
pop si
I pop  bp
ret
lcResetAdapter endp

I_cWhoAmI: This procedure provides the glue between a C
program and the 3L 1.0 WhoAmI function.

.Cal ling Sequence:
int cWhoAmI (&WhoPtr)
Input Parameters:
I None
:Output Parameters:
I struct WhoStruct far *WhoPtr - Far pointer to the WhoAmI structure

r

sReturns:
I The return value of the WhoAmI function
cWhoAmI proc near
I push bp
mov bp,sp
push si
I push di
push ds
mov dx,0
mov ax,cs
mov ds,ax
I call WhoAmI
pop ds
l mov si,[bp+4]
mov Word ptr [si],di
mov Word ptr [si+2],es
I pop di
pop si
pop  bp
l ret

cWhoAmI endp

I__-_-,-___________________________________-_____________________________-___
.

;_CRdRxFilter: This procedure provides the glue between a C
l program and the 3L 1.0 RdRxFilter function.



;Calling Sequence:
- int cRdRxFilter(&RxFilter)

Input Parameters:
None

Output Parameters:
int RxFilter - The receive filter value

Returns:
The return value of the RdARxFilter function

cRdRxFilter proc near

-. "i- - -- ‘-

push bp
mov bp,sp
push si
push di
push ds
mov ax,cs
mov ds,ax
mov dx,0

call RdRxFilter

pop ds

mov di,[bp+4]
mov [di],bx
pop di

pop si

pop bp

ret

_cRdRxFilter endp

s CWrRxFilter: This procedure provides the glue between a C
l program and the 3L 1.0 WrRxFilter function.
;Calling Sequence:

int cWrRxFilter(RxFilter)

s Input Parameters:
I int RxFilter - The new receive filter wvalue

;Output Parameters:
None

lReturns :
3 The return value of the WrRxFilter function

—————————————————————— T ——————————— -

_CWrRxFilter proc near

push bp
l mov bp,sp
push ds

push si
I push di



mov ax,cs
mov ds ,ax
mov dx,0
mov ax,[bp+4]

call WrRxFilter

pop di
pop si
pop ds
pop bp
ret

cWrRxFilter endp

————————————————————————————————————————————————————————————————————————————

;_cSetLookAhead: This procedure provides the glue between a C
program and the 3L 1.0 SetLookAhead function.

;Calling Sequence:
int cSetLookAhead(NumBytes)

Input Parameters:
int NumBytes - The nnumber of bytes of look ahead data

Output Parameters:
None

Returns:
The return value of the SetlLookAhead function

————————————————————— T — i ———————— T ———————— T —————————————————————

cSetLookAhead proc near
push bp
mov bp,sp
push si
push di
push ds

-. -h.- - -. --.

mov ax,cs
mov ds,ax

mov dx,0
mov ax, [bp+4]

l call SetLookAhead

pop ds
pop di
pop si
pop bp
ret
cSetLookAhead endp

[ ———————p—————————_———————— e e

.__cPuthData: This procedure provides the glue between a C
H program and the 3L 1.0 PutTxData function.

'Cal ling Sequence:




int cPutTxData(TotalPacketLen, NumBytes, Flags, RequestID,
PacketAddr, &NewRequestID)

Input Parameters:
int TotalPacketLen - The total packet length (first call only)
int NumBytes - The nnumber of bytes to transfer this call
int Flags - The DL flags
int RequestID - Used if not the first call
char far * PacketAddr - A far pointer to the packet

Output Parameters:
int NewRequestID - Returned after first call

IR FEETEET IR T RETEET R THE TR TR TR I

Returns:
The return value of the PutTxData function

B o e e ————————————————————————————————————————————————— —— ——————— - — ————————— — ——

cPutTxDAta proc near

push bp

mov bp,sp
push si

push di

push ds

mov ax,ds
mov es,ax
mov bx, [bp+4]
mov cx, [bp+6]

mov dl,byte ptr[bp+8]
mov dh,byte ptr[bp+10]

mov si,[bp+12]
mov di,offset CODE:TxProcess
mov di,offffh ; no TxProcess

call PutTxData

pop ds

xchg dh,dl

xor dh,dh

mov di, [bp+16]
mov [di],dx
pop di

pop si

pop bp

ret

cPutTxData endp

—— ————————————————————————————————————————— ———————————————————————————————— -

. .

l_cGetRxData: This procedure provides the glue between a C
program and the 3L 1.0 GetRxData function.
;
Calling Sequence:
int cGetRxData(&NumBytes, Flags, RequestID, PacketAddr)
: Input Parameters:
int NumBytes - The nnumber of bytes to transfer this call




‘-. -- -~ -

sReturns:

push
mov

push
push
push

mov
mov
mov
mov
mov
mov
call

pop
mov
mov

pop
pop
pop
ret
_cGetRxData end

Il BN B B B B BN . ..

int Flags - The DL flags
int RequestID - The request identifier
char far * PacketAddr - A far pointer to the packet to copy the data

Output Parameters:
int NumBytes - The actual number of bytes transferred

bp
bp,sp
si
di
ds

di, [bp+4]
cx,ss:[di]

The return value of the GetRxData function

——— —————————————————————————— T ———————————————————————— ——— S —— —————————

cGetRxData proc near

dl ,byte ptr[bp+6]
dh,byte ptr[bp+8]

di,[bp+10]
es, [bp+12]
GetRxData
ds
di,[bp+4]
ss:[di],cx
di

si

bp

p

—— e — — i ——————————————————————————————————— ————————————————————————————

-

TxProcess: This procedure is
l when a packet has
; provides the glue

l' myTxProcess.

myTxProcess Calling Sequence:

the protocol-side routine which is called
finished transmitting (see _cInitAdapters). It
between the 3L 1.0 routines and C routine called

: void myTxProcess(Status, RequestID)

ImyTxProcess Input Parameters:

H int Status - Receive status
l int RequestID - The request identifier
s myTxProcess Returns:
I' Nothing
TxProcess proc near
push bp
I push si
push di
push ds
I push es



push ax

mov ax,cs:his_ds
mov ds,ax

mov es,ax

I pop ax
xor cX,CX
l mov cl,dh
Xor dh,dh
I push cX

push ax
call _myTxProcess

add sp,4

pop es
pop ds
pop di
pop si
pop bp
ret

TxProcess endp

;ExitRcvInt: This procedure is the protocol-side routine which is called

. when the 3L has completed a receive interrupt. It provides
the glue between the 3L 1.0 routines and C routine called

: myExitRcvInt.

'nyExitRchnt Calling Sequence:
H void myExitRcvInt()

.myExi tRcvInt Input Parameters:
None

3
r

yExitRcvInt Returns:
Nothing

——————————————————————————————————————— - ————————————————————————————————

FitRchnt proc near
v push bp
push ds
' push es
push si
H push di
l push ax
; mov ax,cs:his_ds
: mov ds,ax
I mov es,ax

pop ax
call _myExitRcvInt

pop di
pop si
pop es




; pop ds

pop bp
iret

ExitRcvInt endp

;RXProcess: This procedure is the protocol-side routine which is called

when a packet has been received (see _cInitAdapters). It provides
the glue between the 3L 1.0 routines and C routine called
) myRxProcess.

myRxProcess Calling Sequence:
: void myRxProcess(Status, PacketSize, RequestID, PacketHeader)

lmnyProcess Input Parameters:
. int Status - Receive status
: int PacketSize - Size of the received packet
I int RequestID - The request identifier
char far *PacketHeader - Address of the virtual packet header

myRxProcess Returns:
I Nothing

B o ——————————————————————— —————————————————— — ———————————————————————————————

lerocess proc near

push cx
push ax

omment #

push bx
push cX

I push dx
push si
push di

l push bp
push ds
push es

l pushf
push es

. push di
push ax
mov ax,cs:his_ds

I mov ds,ax
mov es,ax
pop ax

I xXor bx ,bx
mov bl ,dh

l Xor dh,dh
push bx
call _myRxXProcess

l add sp,10
popf
pop es

I pop ds



pop bp
pop di
I pop si
pop dx
pop CX
I pop bx
ret
#
push bx
I push CX
test cs:pklock,0ffh
l jz getp
ontget:
7inc pkcount
I inc cs:pkcount
mov cx,0 ;zero length (just discard)
jmp goget
etp:
' ; At this point we could check es:di packet header data
i to make some decision on packet disposition
I i lock our buffer and get packet data into it
mov cs:pklock,0ffh ;lock buff
mov cs:pkerr,0
oget:
l mov ax,CODE
mov es,ax
mov di,offset cs:pkthd sbuffer
I or dl,40h ;release buffer
call GetRxData
l jcxz nolen
mov cs:pkerr,ax
mov cs:pklen,cx
nolen:
pop cx
. pop bx
ret

.xProcess endp

—————————————————————————————————————————————————————— —————————

—————————————————— -

; transmit one packet
cXmitl proc near
push bp
mov bp,sp
push si

push di
push ds
I mov ax,ds

mov es,ax

;setup for PutTxData
mov bx, [bp+4] ;set lengths



mov cx, [bp+6]
mov dl, byte ptr([bp+8]
mov dh, byte ptr[bp+10]
mov si,[bp+12]
mov di,offffh ;no
I call PutTxData
pop ds
I xchg dh,dl
Xor dh,dh
mov di, [bp+16]
I mov [di],dx
pop di
l pop si
pop bp
ret
chmitl endp
: cRcvSome proc near

q

push
mov

push
push
push

mov
II mov

test

jnz
II mov
jmp

stpkt:
test

jZ
jmp

|Impk:
cmp

jnz

jmp
lkok 2

cmp
jle

|' mov
edone:

mov
inc
|I mov
pop
mov
II mov
mov
|l mov

ax,cs
ds,ax

cs:pklock,0ffh
l1stpkt

cs:pklen, O ;: No
wedone

cs:pkerr,0ffffh
dmpk
wedone

cs:pklen,0
pkok
wedone

cs:pklen, 256
wedone
cs:pklen, 256

cs:pklock, 0
cs:pkcnt
ax,cs

ds
si,[bp+4]

TxProcess

following code to dump received packets for a fixed time

cRcvSome proc

rgot a pkt?

pkt, move 0 to pklen

;any error

;limit dump to 1st 256 bytes

word ptr [si], offset cs:pkthd

word ptr [si+2], ax
ax,cs:pklen




pop di
pop si

pop bp
ret

cRcvSome endp

—————— - ———————————————————————————————————————————— - ——————— -

avvecs proc near
push ds
push es
push si
push di
push cX

mov es,ax

xXor ax,ax

mov ds,ax

mov cx,22h*2 ;vectors 0 - 21h, 2 wds per
mov di,offset CODE:vectsv

Xor si,si

cld

cli

rep movsw rsave ‘em all

sti

pop cX
pop di
pop si
pop es
pop ds

7
I mov ax,ds

Iixvecs proc near
push es
push si
I push di
push cx
push ax
I xor ax,ax
mov es,ax
I mov cx,22h*2 ivectors 0 - 21h, 2 wds per
mov si,offset CODE:vectsv
Xor di,di
cld
|I cli
rep movsw ;restore ‘em all
sti
I pop ax
pop cx
pop di
l pop si
pop es
ret
Iixvecs endp




ends
end

TEXT




xtern
Xtern
xtern
Xtern
xtern
Xtern
xtern
xXtern
xtern
xXtern

Xtern

ain()

} :

B Il N BN B BN BN BN BN BN BN BN oo Al O - EE . e

int
struct ini_hdr /{

include <stdio.h>

cInitAdapters():
cInitParameters();
cResetAdapter():
cWhoAmI () ;
cRdRxFilter():
cWrRxFilter():
cPutTxData()
cGetRxDatal():
cSetLookAhead( )
cXmitl():

cRcvSome( ) ;

is

char len;
char nonl;
char non2:
char non3[2]:
char non4[4]:
char non5[41:
char noné6:;
char cdend[41:
char *argo:
short args:
char non7;

struct WhoStruct {

unsigned char addr[6]:
char ver_major;

char ver minor;

char sub_ver:;

char type_ ds:

char type_adapter:
char init_status:

char reserved;

char num_tran_buf:
short size_tran_buf;
long ttl_tran_cnt;
long ttl_tran_err_cnt:

long ttl_tran_timeout_cnt;

long ttl_recp_cnt:;
long ttl_recv_bdr_cnt;
long ttl_recv_err_cnt;
long ttl_retry_cnt:;
char xfr_mode:;

khkhkhkhhkhdkhdkhdhhhkhhhddhhhdhdhhdhdhhdrhdhhdhdhdhdhdhdrdhdhhhdddkhddrdrdrdbdhdhdhrdddhdhdsx /

* *f
* CTO3LC.C * /
* */
* Description: This file contains the code which calls the funtions * /
* provide by the CTO3L.ASM to receive/transmit packets * /
* through 3COM Token Ring board. */
* */
*

khkkhkhkhkkhhkhkhkhkhhkhdhhkhkhhkhhdhdhhkhhdhhhhhhhhbhhdhdhhdbhkhhhhhdhdhdbhhkhhhhkhhdhdhhdhdrhxd /




char wait mode:
char hdr_ spec data:
}:

struct TokenFrame (
unsigned char da[6]
unsigned char sa[é6]
unsigned char infol
b

struct PktStr |
unsigned char inp[1500]:

by

struct WhoStruct far *Who;

struct PktStr far *Pkt:

struct ini_hdr ddh;

struct ini_hdr *parmsdr = &ddh;
struct TokenFrame tkbuf:;

struct TokenFrame *ptkbuf = &tkbuf;

int ttlpl, nb, flags, regid, nreqid:

int rc, rxf=0x0005, rrxf, Adapters=0:
int rs = 0, icnt = 0;
parmsdr->len=0x17:
parmsdr->nonl=0x00:
parmsdr->non2=0x00:
parmsdr->non3[01=0x00;
parmsdr->non3[11=0x00;
parmsdr->non4 [0 1=0x00:
parmsdr->non4{1]=0x00;
parmsdr->non4|[ 2 1=0x00;
parmsdr->non4[ 3 1=0x00;
parmsdr->non5[0 ]=0x00;
parmsdr->nonS[1]1=0x00;
parmsdr->non5[ 2 1=0x00;
parmsdr->non5( 3 ]1=0x00;
parmsdr->non6=0x00;
parmsdr->cdend[ 0 ]=0x00:
parmsdr->cdend[ 1 ]=0x00:
parmsdr->cdend| 2 ]=0x00:
parmsdr->cdend|[ 3 ]=0x00;
parmsdr->argo = "c:\\3com\\toké603.sys 5,300,0,,\0x0a";
parmsdr->args=getds();
parmsdr->non7=0x00;

rc=getds():
printf("getds O0x%x\n",rc):;

rc=cInitParameters(parmsdr):

printf("cInitParameters returns %d\n",rc):
rc=cInitAdapters(&Adapters):

printf("cInitAdapters returns %d, Adp=%d\n",rc, Adapters);

rc=cSetLookAhead(32);
printf ("cSetLookAhead returns %d\n",rc):

rc=cWhoAmI ( &Who):
printf("cWhoAmI returns %d\n",rc);




printf("addr = %02x %02x %02x", Who->addr(0],

Who->addr([1]1, Who->addr[2]):
printf(" %02x %02x %02x\n", Who->addr([3],

Who->addr[4], Who->addr[5]):;
printf("ver major %02x ver minor %02x\n", Who->ver_major, Who->ver_minor):;
printf("adapter type %02x\n", Who->type_adapter):
printf("transfer mode %x wait mode %x\n", Who->xfr_mode, Who->wait_mode):
printf("ttl recp cnt %d (0x%4x)\n", Who->ttl_recp_cnt, Who->ttl_recp_cnt):

for (i=0; i<=5; i++)

ptkbuf->da[i] = Oxff;
for (i=0; i<=5; i++)
ptkbuf->sa[i] = Who->addr(i]:

rc=cWrRxFilter(rxf):

printf("cWrRxFilter returns %d\n",rc):;
rc=cRdRxFilter(&rrxf);

printf("cRdRxFilter returns %d, filter=%x\n",rc,rrxf);

rs = & Lo
printf("Receiver or Sender ? (r/s)\n"):
while ( ((rs = getchar()) != ’'r’) && (rs

1= ’s’) ) {
printf("Receiver or Sender ? (r/s)\n"):;
) :
if (rs == ’'r’) |
while ( !Xbhit() ) {
rc=cRcvSome( &PKkt) ;
i (¥e S5 D) 4

*

printf(" length = %d\n", rc):
for (i=0; i<=rc; i++)

printf(" %2x", Pkt->inp[i]):
printf("\n®, rc):

)

icnt++;
}
)
printf ("Total input count %d\n",icnt):;

else |
ttlpl = Oxlc;
nb = 0Oxlc;
flags = 0x0060;
regid = 0x0001;
nregid = 0x0011;

for (i=0; 1<10; i++)
rc=cXmitl(ttlpl, nb, flags, regid, ptkbuf, &nreqgid):
) :

rc=cResetAdapter():
printf("cResetAdapter returns %d\n",rc);
exit (0):;

void myRxProcess(Status, PacketSize, RequestID, PacketHeader)
int Status, PacketSize, RequestID;
har far *PacketHeader;

/* fprintf(stderr,"Called by ASM - myRxProcess\n Not implement vet\n"):
fprintf(stderr,"Status=%d, PacketSize=%d, RequestID=%d\n",6Status,PacketSize,

-n-




<IN .

Al BN N B BN B S B BN D B B B BE = ..

RequestID); */
oid myTxProcess(Status, RequestID)
nt Status, RequestID:;
/* printf("Called by ASM - myTxProcess\n Not implement yet\n"):;
printf("Status=%d, ReguestID=%d\n",Status, RequestID); */
oid myExitRcvInt()

/* printf("Called by ASM - myExitRcvInt\n Not implement yet\n"); */




title cto3l.asm

I*************************************************************************

lFile: CTO3L.ASM
'Description: This file contains subroutines which provide a
3 C program with an interface to the 3L 1.0 routines.
'*************************************************************************
Functions called by C
IUBLIC _getds
UBLIC _cInitParameters
UBLIC _cInitAdapters
UBLIC _cResetAdapter
PUBLIC _cWhoAmI
UBLIC _cRdRxFilter
UBLIC _cWrRxFilter
PUBLIC _cPutTxData
UBLIC _cGetRxData
UBLIC _cSetLookAhead
UBLIC _etext
tUBLIC _cRcvSonme
UBLIC _cXmitl
Need to be written in C
xtrn _myExitRcvInt :near
extrn _myRxProcess tnear

_myTxProcess tnear

'xtrn

Functions provide by this file
PUBLIC ExitRcvInt

UBLIC RxProcess

UBLIC TxProcess

l3L functions

xtrn InitParameters tnear
extrn InitAdapters tnear
xtrn WhoAmI thear
Extrn ResetAdapter inear
xtrn RdRxFilter tnear
extrn WrRxFilter tnear
xtrn GetRxData tnear
xtrn SetLookAhead thear
extrn PutTxData snear
If equ Oah
cr equ 0dh
‘print macro strloc ;print string at strloc
local strloc
push ax
I push cx
push ds
push dx
mov dx,seg strloc
I mov ds ,dx




mov
mov
‘I int
pop
pop
1 =
pop
endm
Ikbd in macro
mov
int
l endm
kbdchk macro
Ii mov
int
endm
IODE GROUP
TEXT segment
'GROUP group
assume
TEXT ends
ATA segment
DATA ends
CODE segment
ICODE ends
tATA segment
is_ds dw
_etext db
lectsv dd
retsav dw
rlf db
pklock db
klen dw
ikerr dw
kcnt dw
pkcount dw
kthd db
ktdat db
iATA ends
_DATA segment
de label
[DATA ends
B BSS segment
_be label
BSS ends
DATA segment
_s@ label
ends

IDATA

dx,offset strloc
ah,09h

21h

dx

ds

cX

ax

iget kbd char in al
ah,8
21h ;wait for key

;check for kbd char
ah,Obh
21h ;sreturns al: O-nokey, ff-keyhit
_TEXT, DATA, ICODE
byte public ‘CODE’

_DATA, _BSS
cs:_TEXT, ds:DGROUP, ss:DGROUP

word public ‘CODE’

word public ‘CODE’

?
?

22h dup (0) rsave all vectors so we can cleanup
?

e, 1E, 1e”

O000O0

32 dup(0)
1500 dup(0)

word public ‘DATA’
byte

word public ‘BSS’
byte

word public ‘DATA’
byte




_TEXT SEGMENT

I ASSUME CS:_TEXT, DS:DGROUP, SS:DGROUP
_getds proc near
mov ax,ds
l mov cs:his_ds,ax
ret
_getds endp
_cInitAdapters: This procedure provides the glue between a C
I program and the 3L 1.0 InitAdapters function.

:Calling Sequence:
' int cInitAdapters(&nAdapters)

;Input Parameters:

l None

;Output Parameters:
int nAdapters

+Returns:
l' The return value of the InitAdapters function

——————————————————————————————————————————————_————————————————————————————————

_cInitAdapters proc near
push bp
mov bp,sp
push si
push di
push ds

mov ax,cs
mov ds,ax
mov di,offset CODE:RxProcess

pop ds
mov di,word ptr([bp+4]
mov word ptr[di],cx

pop di
pop si
pop bp
ret
cInitAdapters endp

I call InitAdapters

B o ————————————————————————— - ——— - —— ————————————— - ———————— — — — —

program and the 3L 1.0 InitAdapters function.

l_cInitParameters: This procedure provides the glue between a C
Calling Sequence:
int cInitParameters(Parms)
: Input Parameters: .
char *Parms - Pointer to a structure with overrides of default




H parameters.

IOutput Parameters:

B None
lReturns:
The return value of the InitParameters function

.
r

push bp

mov bp,sp
push si

push di

push ds

mov bx, [bp+4 ]
mov ax,ds
mov es,ax
mov ax,cs
mov ds,ax

call savvecs
call InitParameters

pop ds
pop di
pop si
pop bp
ret

_cInitParameters endp

;_CResetAdapter: This procedure provides the glue between a C
l program and the 3L 1.0 ResetAdapters function.

;Calling Sequence:
I int cResetAdapter()

;Input Parameters:

None

Returns:

H None
lOutput Parameters:
H The return value of the ResetAdapter function

———————————————— T — — —————— ———————— T ——— T ——————————————————————————— -

cResetAdapter proc near

push bp

I mov bp,sp
push si
push di

I push ds
mov dx,0
mov ax,cs

l mov ds,ax




mov dl,0 ; Ruey Ouyang
I call ResetAdapter
call fixvecs
l pop ds
pop di
pop si
I pop bp
ret
IcResetAdapter endp

B e — S S S S S A S S S - -

cWhoAmI: This procedure provides the glue between a C
program and the 3L 1.0 WhoAmI function.

l Calling Sequence:

int cWhoAmI (&WhoPtr)
Input Parameters:
l None

;Output Parameters:
struct WhoStruct far *WhoPtr - Far pointer to the WhoAmI structure

;Returns:
I The return value of the WhoAmI function

B o ——— S A S S -

cWhoAmI proc near
push bp
mov bp,sp
push si
push di
push ds

mov dx,0
nov ax,cs
mov ds,ax

POpP ds

mov si,[bp+4]

mov Word ptr [si],di
mnov Word ptr [si+2],es

pop di
pop si
pop bp
ret
cWhoAmI endp

I call WhoAmI

;_CcRdRxFilter: This procedure provides the glue between a C
I- program and the 3L 1.0 RdRxFilter function.




;Calling Sequence:
int cRdARxFilter(&RxFilter)

Input Parameters:
None

Output Parameters:
int RxFilter - The receive filter value

Returns:
The return value of the RARxFilter function

cRdRxFilter proc near

. ... . ..

push bp
mov bp,sp
push si
push di
push ds
mov ax,cs
mnov ds,ax
mov dx,0

call RdRxFilter

pop ds

mov di, [bp+4]
mov [di],bx
pop di

pop si

pop bp

ret

_CRARxFilter endp

_CWrRxFilter: This procedure provides the glue between a C
l program and the 3L 1.0 WrRxFilter function.

Calling Sequence:
int cWrRxFilter (RxFilter)

-.\

;Input Parameters:

I int RxFilter - The new receive filter wvalue
;Output Parameters:
I' None

r Returns:

: The return value of the WrRxFilter function

_CWrRxFilter proc near

push bp

I mov bp,sp
push ds
push si

I push di




mov ax,cs
mnov ds,ax
mov dx,0

mov ax, [bp+4]

call WrRxFilter

pop di
pop si
pop ds
pop bp
ret

' CWrRxFilter endp

;_cSetLookAhead: This procedure provides the glue between a C
program and the 3L 1.0 SetLookahead function.

;Calling Sequence:
int cSetLookAhead(NumBytes)

g wE we S wa

TR N NE NE NE N NE NE W W Se v

Input Parameters:
int NumBytes - The nnumber of bytes of look ahead data
I Output Parameters:
None

Returns:
The return value of the SetLookAhead function

cSetLookAhead proc near
push bp

-

mov bp,sp
push si
push di
l push ds
mov ax,cs
mov ds,ax
I mov dx, 0
mov ax,[bp+4]
l call SetLookAhead

pop ds
pop di

I pop si
pop bp
ret

I_cSetLookAhead endp

_cPutTxData: This procedure provides the glue between a C
program and the 3L 1.0 PutTxData function.

LR TR T T

;Calling Sequence:




int cPutTxData(TotalPacketLen, NumBytes, Flags, RequestID,
PacketAddr, &NewRequestlID)

I:Input Parameters:
. int TotalPacketLen - The total packet length (first call only)
l: int NumBytes - The nnumber of bytes to transfer this call
H int Flags - The DL flags
; int RequestID - Used if not the first call
l.‘ char far * PacketAddr - A far pointer to the packet

Output Parameters:
int NewRequestID - Returned after first call

Returns:
The return value of the PutTxData function

_cPutTxDAta proc near

push bp

mov bp,sp
push si

push di

push ds

mov ax,ds
mov es,ax
mov bx, [bp+4]
mov cx, [bp+6]

mov dl,byte ptr[bp+8]
mov dh,byte ptr[bp+10]

mov si,[bp+12]
mov di,offset CODE:TxProcess
mov di,0ffffh ; no TxProcess

call PutTxData

pop ds

xchg dh,dl

Xor dh,dh

mov di,[bp+16]

~e

mov [di],dx
pop di

pop si

pop bp

ret

cPutTxData endp

[P o ———————————————————————————————————————————————— . ————————————————————_— -

; _cGetRxData: This procedure provides the glue between a C
program and the 3L 1.0 GetRxData function.

;Calling Sequence:
I' int cGetRxData(&NumBytes, Flags, RequestID, PacketAddr)

; Input Parameters:
int NumBytes - The nnumber of bytes to transfer this call




int Flags - The DL flags
int RequestID - The request identifier
char far * PacketAddr - A far pointer to the packet to copy the data

;Output Parameters:
int NumBytes - The actual number of bytes transferred

;Returns:
The return value of the GetRxData function

——— S —— — —————

cGetRxData proc near
push bp
mov bp,sp
push si
push di
push ds

mov cx,ss:[di]
mov dl,byte ptr[bp+6]
mov dh,byte ptr[bp+8]
mov di, [bp+10]
mov es,[bp+l2]
call GetRxData

pop ds
mov di, [bp+4]
mov ss:[di],cx

pop di
pop si
pop bp
ret
_cGetRxData endp

I mov di,[bp+4]

-
r
-
r

TxProcess: This procedure is the protocol-side routine which is called

l: when a packet has finished transmitting (see _cInitAdapters). It
7 provides the glue between the 3L 1.0 routines and C routine called
H myTxProcess.

[ myTxProcess Calling Sequence:
; void myTxProcess(Status, RequestID)

[myTxProcess Input Parameters:
int Status - Receive status
: int RequestID - The request identifier

;ymyTxProcess Returns:
2 Nothing

B e e ———————————————————————————————————— T ———————————————————————————

!‘xprocess proc near

push bp
l push si
push di
push ds

l push es




I push ax

mov ax,cs:his_ds
mov ds,ax
mov es,ax
I pop ax
xor CX,CX
mov cl,dh
I Xor dh,dh
push CcX
I push ax
call _myTxProcess
I add sp,4
pop es
pop ds
I pop di
pop si
pop bp
l ret
xProcess endp

;ExitRcvInt: This procedure is the protocol-side routine which is called

when the 3L has completed a receive interrupt. It provides
l the glue between the 3L 1.0 routines and C routine called
; myExitRcvInt.

lmyExitRchnt Calling Sequence:
void myExitRcvInt()
myExitRcvInt Input Parameters:
None

-

myExitRcvInt Returns:
' Nothing

B o ———————————————— T ———— ———— - ———————— - —————————————————————————————————

lxitRchnt proc near

push bp
; push ds
push es
push si
; push di
I push ax
’ mov ax,cs:his_ds
H mov ds,ax
I mov es,ax
pop ax
l call _myExitRcvInt
pop di

. =

pop si
l pop es




; pop ds
1 _pop bp

! iret
XitRcvInt endp

iRxProcess: This procedure is the protocol-side routine which is called

when a packet has been received (see _cInitAdapters). It provides
I the glue between the 3L 1.0 routines and C routine called
: myRxProcess.

lmnyProcess Calling Sequence:
void myRxProcess(Status, PacketSize, RequestID, PacketHeader)
myRxProcess Input Parameters:
I int Status - Receive status
H int PacketSize - Size of the received packet
int RequestID - The request identifier
I char far *PacketHeader - Address of the virtual packet header

;myRxProcess Returns:
' Nothing

B o ——————————————— T — ————————————————————————————————————————————————————————

'xProcess proc near
o

mment #

push bx
push cXx

l push dx
push si
push di

l push bp
push ds
push es

I pushf
push es
push di

I push ax
mov ax,cs:his_ds

l mov ds,ax
mov es,ax
pPopP ax

I Xor bx,bx
mov bl,dh
Xor dh,dh

I push bx
push CcX

I push ax
call _myRxProcess

I add sp,10
popf
pop es

I pop ds




pop bp
pop di
pop si
pop dx
pop cX
pop bx
ret

push bx
push cX

test cs:pklock,0ffh

I N =N =N B .

jz getp
ontget:
inc cs:pkcount
mov cx,0 ;zero length (just discard)
Jmp goget

getp:
; At this point we could check es:di packet header data
; to make some decision on packet disposition
; lock our buffer and get packet data into it
mov cs:pklock,0ffh ;lock buff

l; mov cs:pkerr, 0

oget:

mov ax ,CODE

l mov es,ax
mov di,offset cs:pkthd ;buffer
or dl,40h ;release buffer

I call GetRxData
jcxz nolen

l mov cs:pkerr,ax
mov cs:pklen,cx

I101en:
pop cx
pop bx
ret

lixProcess endp

l, cXmitl proc near

transmit one packet
[cXmitl proc near
push bp
mov bp,sp
push si

push di
push ds
mov ax,ds
mov es,ax

;setup for PutTxData

mov bx, [bp+4] ;set lengths
mov cx,[bpt6]
mov dl, byte ptr[bp+8]




dh, byte ptr[bp+10]

si,[bp+12]
di,offffh

PutTxData

ds

dh,dl
dh,dh

di, [bp+16]
[di],dx

di

si
bp

near

;no TxProcess

;_CRcvSome proc

; following code to dump received packets for a fixed time

-

chkpk:

llstpkt:

dmpk :

pkok:

Iwedone :

push
mov

push
push
push

mov
mov

test
jnz
mov
jmp

test
jz
jmp

cmp
jnz
jmp

cmp
jle
mov

mov
inc
mov
pop
mov
mov
mov
mov

pop
pop

ax,cs
ds,ax

cs:pklock,
lstpkt
cs:pklen,
wedone

cs:pkerr, 0
dmpk
wedone

cs:pklen,0
pkok
wedone

cs:pklen,2
wedone
cs:pklen, 2

cs:pklock,
cs:pkcnt
ax,cs

ds
si,[bp+4]
word ptr [
word ptr [

—————————— T ——————————————————————— ———————————————— - —— -

cRcvSome proc

0ffh rgot a pkt?

0 ; No pkt, move 0 to pklen

ffffh ;any error

56

56 ;limit dump to 1st 256 bytes
0

si], offset cs:pkthd

si+2], ax

ax,cs:pklen

di
si



pop bp
ret

_CRcvSome endp

Isavvecs proc near
push ds
push es
I push si
push di
I push cX
mov ax,ds
mov es,ax
I Xor ax,ax
mov ds,ax
mov cx,22h*2 ;vectors 0 - 21h, 2 wds per
mov di,offset CODE:vectsv
I Xor si,si
cld
cli
I rep movsw ;save ‘em all
sti
l pop cx
pop di
pop si
pop es
I pop ds
ret
lsavvecs endp
fixvecs proc near
I push es
push si
push di
push CcX
l push ax
Xor ax,ax
I mov es,ax
mov cX,22h*2 ;vectors 0 - 21h, 2 wds per
mov si,offset CODE:vectsv
Xor di,di
‘I cld
cli
rep movsw ;restore ‘em all
|I sti
pop ax
l pop cx
pop di
pop si
pop es
i ret

fixvecs endp
TEXT ends
end

-




Ehhkhkkhkhhkhkhkhhhhhhhhhkhhkhhhkhhhkhhkhkhhkhhkhhkhkhkhhhkhkhkhkhkhkhhkhkhhkhhhhhhhhkhkhkhkhkhkhhkkkdhk
ogdisk.c

ihis program displays the airplane controled by the SiliconGraphics on

the simn

Sili

KAk A AT AT AT AT A A A AR A Ak dddddd Ak hdkdhddddddhdhdddhhkhddddddhdrhdx /

Iinclude

#include

Iinclude

include

et.

conGraphics: Synchronous

(disk file)

<sys/extypes.h>

<stdio.h>
<ctype.h>
<math.h>
<sys/exerrno.h>
<sys/socket.h>
<netinet/in.h>
<fcntl.h>
<signal.h>
<errno.h>

simnet: Link Level Raw Ethernet Packets / Synchronous Non-blocking

-blocking UDP/IP or

<sys/types.h>
<sys/stat.h>
<sys/exosopt.h>
<sys/exos.h>
<ex_ioctl.h>
<sys/soioctl.h>
<svs/dcb.h>

#include
include
‘include
include
include
‘include
include
#include
include
!include
include
include
‘include

include "..\simnet.h\simnet2.h"
finclude ®..\flight.h\flight.h"
ltruct sockaddr_link recv_socket = { AF_ETYPEFILTER

-
’
-
r

)
}

struct sockaddr_link send_socket = { AF_ETYPEFILTER
truct sockaddr_in recv_socket_sg = { AF_INET ):
‘truct sockaddr_in send_socket_sg = { AF_INET }:

define FILEOFLAG (O_RDONLY | O_BINARY)
define FILEPMODE (0)

I

#define PI 3.14159

lxtern int errno;

extern int break enabled:;

'xtern int abort_op:;
nt diskfd = -1; /* disk file */
int netfd = 1; /* simnet file */
nt netfdsg = =-1; /* udp/ip file */
nt timelimit = 30;

char *inputfile;
har SENDIT;

char buf[1024];

lnt break handler():

main (arac,
thar **argv;

argv)




.

)

int an, i, j, pdukind, netcnt:

signal (SIGINT, break_handler):
break_enabled = 1:
inputfile = argv([1];

sginitin():
netinit();

/* Capture a simnet packet first, so we don’t have to fill all of the data
field */

fprintf(stderr, "wait for simnet\n"):

while(1) !
/* netcnt=netread(inbuf); */
netcnt=netread():
datalength.p_datalength= ntohs (ether_buf.simnet_data.e_datalength):
netcnt=datalength.i_datalength.length + HEADER_SIZE:;
memcpy (&pdu_buf, &ether_buf.simnet_data, netcnt - HEADER_SIZE);
pdukind = ntoh_simnet():

if (pdukind == vehicleAppearancePDUKind) {
SENDIT = ' ’;
if (ether_buf.e_shost [5] == TANKA)
SENDIT = 'A';
if (ether_buf.e_shost [5] == TANKB)

SENDIT = ’'B’;
)
if ((SENDIT == ’A’) || (SENDIT == ‘B’)) break;
)

fprintf(stderr, "Got a vehicle appearance packet from tank %c\n", SENDIT);
pdu_buf .VAPDU.VADATA.hdr.vehicleID = MYTANKID;

pdu_buf .VAPDU.VADATA.appearance.vehKindMask = AlQ;

memcpy (ether_buf.e_shost, my_addr, sizeof(my_addr)):

while (1) ¢
netcnt = sgreadin():;
if (netcnt <= 0) break;
memcpy (&plane, buf, netcnt);
ntoh_flight();

pdu_buf .VAPDU.VADATA.location[0] =
ATRPORTX + ((plane.x + ADJUSTX)/F2M);
pdu_buf .VAPDU.VADATA.location(1] =
ATRPORTZ - ((plane.z + ADJUSTZ)/F2M);
pdu_buf .VAPDU.VADATA.location[2] = AIRPORTY + (plane.y/F2M);
calrotation();
hton_simnet():;
memcpy (&ether_buf.simnet_data, &pdu_buf, netcnt - HEADER_SIZE);
netwrite();
}
fprintf (stderr, "End of input sg packet\n"):
close(diskfd);
sgfiniin();
netfini();

errexit(errstring)

har *errstring;




if (errno) experror(errstring);

else fprintf(stderr, "%s\nusage: dogdisk filename\n", errstring):
close(diskfd):

soclose(netfdsg):

netfini():

exit(1):;
eak_handler() /* break handler ... control-break or control-c */
static int break_count = 0;
if (++break_count == 1) {
/* first time, just try to stop current network operation */
abort op = 1:;
signal (SIGINT, break_handler): /* reset trap */
return;
j
else |

/* second time, try to clean up, then quit */
errexit("user abort"):

pinfo(optp)
truct exosopt *optp:

/* note that this routine will not return valid results

x if used with a pre-3.3 driver, which interpreted the

* board memory address as absolute, rather than relative
* to the beginning of the data segment

* /
long optaddress = 0; /* location of options */
int id;

if ((id = brdopen(0, 1)) < 0) {
experror ("brdopen"):;
return(-1);

if (brdioctl(id, BRDADDR, &optaddress) < 0) {
experror ("brdioctl(,BRDADDR,...)");
return(-1);:

if (brdread(id, optp, sizeof(struct exosopt)) < 0) |
experror ("brdread”):
return(-1):;

)

brdclose(id):

return 0O;

include "..\simnet.h\simnet.ccd"
include "..\flight.h\flight.ccd"

This subroutine computes the rotation matrix (3x3) for the SIMNET PDU‘’s */
given the pitch, roll and yaw of the vehicle. */

* *

alrotation()

N NN Ay N BN BN BN BN B .




int i,7,k=0;
float R,P,Y;
float RC,RS,PC,PS,YC,YS:
float A [31 [32]1:

float 2z [3] [3]
float x [3] [3]
float vy [3] [3]

/* In Silicon Graphics DogFight: Roll=Twist;

R=(plane.twist/10*PI)/180;
P=-(plane.elevation/10*PI)/180;
Y=-(plane.azimuth/10*PI)/180;

RC=cos(R);
RS=sin(R):

PC=cos(P);
PS=sin(P);
YC=cos(Y):;
YS=sin(Y):

z[0] [0]=YC:
z[0] [1]=-YS;
z[0] [2]=0;
z[1] [0]=YS;
z[1] [1]=YC:
z[1] [2]=0;
z[2] [0]=0;
z[2] [1]=0;
z[2] [2])=1;

x[0] [01=1;
x[0] [1]1=07
x[0) [2]1=0;
x[1] [01=0;
¥{1l] [1}=PC:
x[1] [2)=-PS;
x[2] [0]1=0;
x[2] [1]=PS:
x[2] [2]1=PC;

y[O]
y[0]
y[O]
y(1l)
y[(1]
y(l]
yi2]
vi2]
yl2]

for (i=0; i<=2; i++) {
for (j=0; j<=2; j++) |
A [i])[j])1=0;
for (k=0; k<=2; k++)

NFRFONPFONREO
I
b 5% i -
0

e bt bd b boed b o b
(LR [ (| (|

P p— p— pe— P e— — p— p—
o

A[i1](3] += x[i]1[k] * y[(k][3]]:

Pitch=Elevation;

Yaw=Azimith */



for (i=0; i<=2; 1i++) |
for (j=0; J<=2; J++)/{
pdu_buf .VAPDU.VADATA.rotation[i][j]1=0;
for (k=0; k<=2; k++)
pdu_buf .VAPDU.VADATA.rotation[i]1[]j] += A[i][k] * z[k]1[]]):



/***************************************************************************

ilight.h

This file is the header file for the airpalne running on
the SiliconGraphics

*************************************************************************/

efine MYPLANEID 16

;ef ine NAME_LENGTH 15
d
/

*

Eefine ADJUSTX -850
efine ADJUSTZ 2050

#define AIRPORTX 40000.0

Eefine ATIRPORTY 220.0
efine AIRPORTZ 30000.0

/S *

Fefine F2M 3.281

fdefine F2M 5.0

ruct plane ¢{
long planeid;:

char version; /* flight version */
char cmd; /* type of packet */
short type:; /* plane type */
short alive; /* alive */

char myname[NAME_LENGTH+1];

unsigned short status:

unsigned short won:; /* for msgs these 2 shorts */
unsigned short lost:; /* hold the plane id */

float x; /* plane position */

float y:

float z:;

short azimuth;
short elevation:
short twist;

short mstatus; /* missile data */
float mx;

float my;

float mz:

float last _mx:

float last_my:

float last _mz;

long kill:

float tps:;

int airspeed;

int thrust;

short wheels; /* wheel position */
short elevator; /* elevator position */
char mtype;

Il EI =N N N BN BN BN BN B =

0

truct plane plane;
ort port=0x140a; /* port address for udp/ip connection */




Jhkkkhkkhkkhkhkhkkhkhkhkkhkdhkhkhhkdkhkhkkhkhhkdkhhhdhhkhhkhkhhhhhhdhkdhhhhdhdhdhhhkhkhdrhhdhhhhrkdbhhhhhhdik

.flight.ccd
This file contains the c code to handle the airplane flying on the SG

'*************************************************************************** r

/* Initialize a synchronous/blocking udp/ip connection for input */

rginitin()
' /* Check that the driver is loaded, and get our own ethernet MAC
address from the EX0S board */

if (!loaded()) errexit("driver NOT loaded");
memcpy (my_addr, opt.xo_eaddr, sizeof(my_addr));:

/* Display my address */

fprintf(stderr, "my addr = %02x-%02x-%02x-%02x-%02x-%02x\n",
my_addr(0], my_addr(1], my_addr(2],
my_addr[3], my_addr([4], my_addr[5]):

/* Open input disk file */

diskfd = open(inputfile, FILEOFLAG, FILEPMODE):
if (diskfd < 0) errexit("cannot open diskfile”):
fprintf(stderr, "disk file fd = %d\n", diskfd):;

/* UDP/IP specification */
send_socket_sg.sin_port = htons(port):
send_socket _sg.sin_addr.s_addr = 0x00000000;
recv_socket_sg.sin_port = htons(port):
recv_socket _sg.sin_addr.s_addr = Oxffffffff;

/* Make a udp socket call */
if ((netfdsg = socket(SOCK_DGRAM, (struct sockproto *) 0,
&send_socket_sg, 0)) < 0) {

fprintf(stderr, "ERRNO %d\n", errno):
errexit("socket");

)

fprintf(stderr, "sg socket fd = %d\n", netfdsqg):;

return(0):

* Read synchronous/blocking udp/ip packet */
greadin()

int cnt;

/* if ((cnt = soreceive(netfdsg, &recv_socket_sg, buf, sizeof(buf)))
errexit("soreceive”);

fprintf(stderr, "read %d bytes from sg\n", cnt); */

if ((cnt = read(diskfd, buf, 100)) < 0)
errexit("read"):

/* fprintf(stderr, "read %d bytes from disk\n", cnt); */

return(cnt);

* Close connection */
gfiniin()

soclose(netfdsqg);

if (ipinfo(&opt) < 0) errexit("could not get own ethernet MAC address"):

< 0)



}

l Network order to host order transform */
oh_flight ()

Int 1, 9:
union {
char *tmpc;
float *tmpf:
b tmp;
union |
char +*tmpc;
short *tmps:;
} tmps;

tmp.tmpf = &plane.x:
swap4(tmp.tmpc)

tmp.tmpf = &plane.y:

swap4 (tmp.tmpc) ;

tmp.tmpf = &plane.z;

swap4 (tmp.tmpc):

tmps.tmps = &plane.azimuth;
swap2(tmps.tmpc);

tmps.tmps = &plane.elevation;
swap2(tmps.tmpc):

tmps.tmps = &plane.twist;
swap2(tmps.tmpc)

Host order to network order transform */
on_flight ()

int i, j?
union {
char *tmpc;
float *tmpf:
} tmp:
union {
char *tmpc:
short *tmps:
} tmps:;

tmp.tmpf = &plane.x;

swap4 (tmp.tmpc) ;

tnp.tmpf = &plane.y:

swap4 (tmp.tmpc) ;

tmp.tmpf = &plane.z;

swap4 (tmp.tmpc) ;

tmps.tmps = &plane.azimuth;
swap2(tmps.tmpc);

tmps.tmps = &plane.elevation;
swap2(tmps.tmpc);

tmps.tmps = &plane.twist:;
swap2(tmps.tmpc):;

This subroutine is here for documentation, it is on simnet.ccd */

A I B N & - - EEAE B BN B B N B e

swap4 (char *ptr)




char tmp:

tmp = *ptr:;

*ptr = *(ptr+3):
*(ptr+3) = tmp:

tmp = *(ptr+1):
*(ptr+l) = *(ptr+2);
*(ptr+2) = tmp:

e,

* This subroutine is here for documentation, it is on simnet.ccd */

*

wap2(char #*ptr)

char tmp;

tmp = *ptr;
*ptr = *(ptr+1):
*(ptr+1) = tmp;

~

isplay plane()

fprintf(stderr, "plane id %1d\n", plane.planeid):

fprintf(stderr, "version %c\t cmd %c\t type %d\t alive %d\t myname %s\n",
plane.version, plane.cmd, plane.type, plane.alive,
plane.myname) ;

fprintf(stderr, "status %ud\t won %ud\t lost %ud\n",plane.x,plane.y,
plane.z);

fprintf(stderr, "x %2f\t v %f\t z %f\n",plane.x,plane.y,plane.z);

fprintf(stderr, "azimuth %d\t elevation %d\t twist %d\n",plane.azimuth,

plane.elevation,plane.twist);

fprintf(stderr, "mstatus %d\t mx Zf\t my %f\t mz 3f\n",plane.mstatus,
plane.mx,plane.my,plane.mz);

fprintf(stderr, "last_mx %f\t last_my %f\t last_mz %f\n", plane.last mx,
plane.last_my,plane.last_mz);

fprintf(stderr, "kill %id\t tps %f\n", plane.kill, plane.tps);

fprintf(stderr, "air speed %d\t thrust %d\n",plane.airspeed,
plane.thrust):;

fprintf(stderr, "wheels %d\t elevator %d\t mtype %c\n",plane.wheels,
plane.elevator, plane.mtype):;

Il B B N B BN N - B Eh O EE o E BN B AN B BN EE E.




‘/************************************************i**************************

Isimnet2

.h

SIMNET DATA STRUCTURE DECLARATIONS

r*************************************************************************** Vi
# TANKA 0x68
TANKB 0Oxff95

define
#define

¥define
#define

ltypedef

|

MCcC
ANZR

struct (
unsigned
unsigned
unsigned
unsigned

PDUHeader:;

0x09
0Ox14

version
length

protocol

kind

m* version field */

define protocolVersionFeb87 0
#define protocolVersionNovg7 1

I/* protocol field */

#define
#define
fdefine
define
#define
define

/* kind

fdefine
define
#define

#define

protocolNone
protocolMgmt
protocolSim

protocolData
protocolXfer
protocolDiag

field */

activatePDUKind 1

b wNnEO

activatingPDUKind 2
deactivatePDUKind 3

vehicleAppearancePDUKind 4

l/* #define UNUSED 5
#

define
#define
#define
define
#define
#define
lzdefine
define
#define
define

define
#define

l/* Vehicle Type Identifier Field */
vehMainBattleTank

#define
#define
define
define
#define
define
mdefine
#define

fdefine
define

vehicleImpactPDUKind 6

groundImpactPDUKind 7
indirectFirePDUKind 8

serviceReguestPDUKind 9
resupplyOf ferPDUKind 10
resupplyReceivedPDUKind 11

repairPDUKind 12

repairedPDUKind 13

collisionPDUKind 14
firePDUKind 15

radiatePDUKind 16
resupplyCancelPDUKind 17

vehPersonnelCarrier
vehCommandPost

vehAmmunitionTruck

vehFuel Truck
vehSupplyTruck

vehMortatCarrier

vehSPHowitzer

vehRecoveryVehicle

vehFISTVehicle

HOpNOOD B WN

/*
/%
/%
/%

T
/*
/%
/*

/*
/*

/*
/*
/*
/%
/%
o

7%

/*
/*
/%

/*
/%
/*

/*
/*

02-cf-1f-30-27-68 */
02-cf-1f-30-27-95 */
02-cf-1£f-30-28-09 */
08-00-09-00-ba-14 */

version of protocol */

length of PDU in octets */
protocol PDU belonags to */
type of PDU within protocol */

the Feb.
the Nov.

1987 version of the protocols */
1987 version of the protocols */

no protocol -- PDU used for padding */
the Network Management Protocol */
the Simulation Protocol */

the Data Collection Protocol */

the File Transfer Protocol */

the Diagnosis Protocol */

Activate PDU #*/
Activating PDU */
Deactivate PDU */
Vehicle Appearance PDU */
Unused PDU */

Vehicle Impact PDU */
Ground Impact PDU */
Indirect Fire PDU */
Service Request PDU */
Resupply Offer PDU */
Resupply Received PDU */
Repair PDU */

Repaired PDU */
Collision PDU */

Fire PDU */

Radiate PDU */
ResupplyCancel PDU */

M1 or T72 main battle tank */
M2, M3 or BMP */

M577 Command Post */

M977 Ammo Truck */

M978 Fuel Truck */

M35-A2 Truck */

M106 Carrier */

M109 Howitzer */

M88 Recovery */

Fire Support */




l* Appearance Field Descpritors */

PDUHeader pduHdr; /* version, length, protocol, PDUKind */
unsigned char exerciselD; /* exercise identifier #*/
unsigned char padding:
unsigned short vehiclelID; /* vehicle identifier #*/
SimPDUHeader:;

iypedef struct {

lypedef struct (

unsigned char role; /* role of vehicle: ammo truck,
fuel truck, etc */
unsigned char batallion; /* batallion (task force) vehicle belongs
to */
unsigned char company; /* company (team) vehicle belongs to */
unsigned char bumper; /* bumper number within company */

I VehicleRole;
/

* role field */
efine roleSimulator 0 /* a vehicle operated by a full crew,
'd simulated by a crewed vehicle
simulator */
define roleOPFOR 1 /* a vehicle simulated by a Semi-automated
Forces system #*/
define roleGunneryTarget 2 /* a gunnery target, such as that simulated
by an MCC system */
define roleAmmoTruck 3 /* an ammunition truck, such as that
simulated by an MCC system */
roleFuelTruck 4 /* a fuel truck, such as that simulated by
an MCC system */
Idefine roleMaintTeam 5 /* a maintenance team , such as that
simulated by an MCC system */
#define roleS2 6 /* a batallion S2’s vehicle, such as that
I simulated by an MCC system as part of a
tactical operations center (TOC) */
#define roleS3 7 /* a batallion S3’s vehicle, such as that
simulated by an MCC system as part of a
!define

joh
o
h
=
o]
]

TOC */
roleFSE 8 /* a batallion fire support officer’s
vehicle, such as those simulated by an
' MCC system as part of a TOC */
define roleTACP 9 /* a batallion tactical air control party
vehicle, such as those simulated by an
MCC system as part of a TOC */
Idefine roleAdminLogCenter 10 /* a batallion admin/log center vehicle,
such as that simulated by an MCC

system */
ldefine roleOther 99 /* any other vehicle not in one of the above
categories */

l* company field */

define assignedBattalion 1 /* the vehicle is assigned to no unit in
particular within the batallion */
efine assignedScoutPlt 2 /* the vehicle belongs to the batallion’s
scout platoon */
#define assignedTACP 3 /* the vehicle belongs to the batallion’s

tactical air control party */




typedef struct /{
I SimPDUHeader hdr:; /* include ID of described number */
/* Common to all vehicles */
VehicleRole role; /* include ID of described number #*/
l unsigned char alignment; /* offense, defense, friend, or foe */
unsigned char vehicleClass; /* class of vehicle */
/* unsigned short appearance; /* type of vehicle and appearance */
I /* struct {
unsigned vehKindMask : 6;
unsigned unl : 1
unsigned vehDestroved g 1
I unsigned vehSmokePlume : 1;
unsigned vehFlaming £ 1
unsigned vehDustCloudMask : 2;
I unsigned un2 ¢ 1;
unsigned vehTOWLauncherUp : 1;
unsigned vehEngineSmoke : 1;
l unsigned un3 : 1;
} appearance; */
struct {
unsigned vehSmokePlume : 1;
l unsigned vehFlaming ¢ 1
unsigned vehDustCloudMask : 2:
unsigned un2 t d;
I unsigned vehTOWLauncherUp : 1:
unsigned vehEngineSmoke : 1;
unsigned un3 : 17
unsigned vehKindMask : 6;
I unsigned unl : 1;
unsigned vehDestroyed t 1;
} appearance;
' float rotation [3][3]: /* vehicle rotation */
float location [3]: /* exact vehicle location */
short grid [2]; /* approximate vehicle location */
l unsigned short engineSpeed:; /* engine speed, in RPM */
/* unsigned short padding; */
unsigned short sequence; /* sequence # for vehicleAppearancePDU */
l /* Depending on vehicle class */
union {
l /* If a simple moving vehicle, without turret ... */
struct |{
float velocity [3]: /* velocity (m/sec/15) */
l ) simple;
/% If a tank */
struct {
I float velocity [3]: /* velocity (m/sec/15) */
unsigned short turretAzimuth;
/* turret/hull orinntation */
' unsigned short gunElevation; /* gun/turret elevation */
} tank;
) u;
I VehicleAppearancePDU;
/* alignment field */

/* the vehicle appears unfriendly to all

efine alignedFoe 0
participants */




#define alianedOffense
define alignedDefense
define alignedFriend

s

/* the vehicle is on the offense team */

/* the vehicle is on the defense team */

/* the vehicle appears friendly to all
participants */

W N

'* vehicle class field */
Pdefine vehicleClassStatic 1 /* the vehicle is always stationary when
visible, and it has no independently
movable parts */

define vehicleClassSimple 2 /* the vehicle can move, but is has no
independently movable parts */
define vehicleClassTank 3 /* the vehicle can move, and it has a turret

and a gun barrel */

vpedef struct ({
unsigned char ammunition; /* type of ammunition fired */
unsigned char fuze:; /* type of fuze used */
unsigned char gquantity; /* number of rounds in burst */
unsigned char rate; /* rate of fire, rounds per second */
BurstDescriptor;

‘* ammunition field */
‘i

define ammoHEi25 1 /* 25 mm high exposive incendiary shell */
define ammoHEAT105 2 /* 105 mm high exposive anti-tank shell */
define ammoAPDS25 3 /* 25 mm armor piercing discarding sabot
shell */
define ammoAPDS105 4 /* 105 mm armor piercing discarding sabot
shell */
define ammoTP25 5 /* 25 mm target practice shell */
define ammoBomb500 6 /* 500 1lb. bomb */
define ammcHE107 7 /* 107 mm (4.2in.) high exposive mortar
shell */
define ammoHE155 8 /* 155 mm high exposive howitzer shell */
define ammoMissileTOW 9 /* TOW anti-tank missile */
/* fuze field */
Idefine fuzePointDetonating 1 /* point detonating fuze */
define fuzeProximity 2 /* proximity fuze */

.ypedef struct {
unsigned char targetType:2; /* what is known about the target */
unsigned : 14;
unsigned short vehiclelID:; /* ID of target vehicle, if known */
I TargetDescriptor:

/* targetType field */

define targetUnknown 0 /* the target vehicle is not known */
Idefine targetNotVehicle 1 /* the target is known, but it is not a
vehicle */
define targetVehicle 2 /* the target is known and it is not a
‘ vehicle */

*x %/
‘define MYTANKID 16

define MAXBUF 8192

#define HEADER_SIZE 14 /* ethernet header size including our header #*/

ltruct ether { /* first three fields required for any link level packet */
char e_dhost[6]; /* 00-05 ethernet destination */
char e_shost[6]; /* 06-11 ethernet source */

. short e_type: /* 12=13 ethernet packet type */




-~

nion {

struct {
short e datalength; /* 14-15
char e_data[1512-HEADER_SIZE]:;
} simnet_data;

user data length */
/* 16-1512 data,

struct {
unsigned length :
unsigned version :
} i_datalength;
short p datalength:

datalength;
ypedef union {
struct {
char DATAONLY [1512 - HEADER_SIZE];
} DATAONLYPDU;
struct {
PDUHeader ANYHDR;
char data [1512 - HEADER_SIZE - 4];
)} ANYPDU;
struct {
VehicleAppearancePDU VADATA;
} VAPDU;
PDU;
#define MAXPKTSIZE 1514 /* total size of largest possible
I* char send_addr[6]; /* our ethernet MAC address */
* char recv_addr([é6]:; /* his ethernet MAC address */
char my_addr(6]: /* my ethernet MAC address */
truct exosopt opt: /* EXOS board options include own
'define ETYPE htons(0x5208) /* arbitrary unused ethernet type
define HELICOPTER11 11
define HELICOPTER12 12
‘define Al0 13
DU pdu_buf;
struct ether ether buf;

max size is 1512 */

packet */

address */

el d



/% Fe de de do de de de de ke K Fe d e de g g e o e gk de e d ok ke gk ok ok % g o kg ok %k K gk ke o k% %k %k % ok ok ok de ok % e o % % d ok o ok dk ok ok ok ok gk ok e ok ok ke e

'imnet <ccd

This file contains the c code for the simnet M1 tank simulator.

l*********************************************************************i***** b

/* Initialize the synchronous/non-blocking link-level socket connection */

Ietinit()
int rc, on=1;

/* Check that the driver is loaded, and get our own ethernet MAC
address from the EXO0S board */
if (!loaded()) errexit("driver NOT loaded");
if (ipinfo(&opt) < 0) errexit("could not get own ethernet MAC address"):
memcpy (my_addr, opt.xo_eaddr, sizeof(my_addr)):

/* Display my address */

fprintf(stderr, "my addr = %02x-%02x-%02x-%02x-%02x-%02x\n",
my_addr[0], my_addr(1l], my_addr(2],
my_addr([3], my_addr[4], my_addr[5]):

/* Initialize the simnet receiver/sender socket type */
recv_socket.sl_types[0] = ETYPE;

/* Make a 1link level socket call */

if ((netfd=socket(SOCK_ETH, (struct sockproto *)0, &recv_socket, 0)) < 0) |
if (errno == EACCES)
errexit ("link-level access must be enabled with -1 option on netloa

else errexit("cannot create socket"):;
}
fprintf(stderr, "socket fd = %d\n", netfd):

/* Synchronous/non blocking mode */
soioctl(netfd, SIOCSLINGER, &timelimit):;
rc = soioctl(netfd, FIONBIO, &on):
1 £ (e < 0Y 4
experror ("soioctl(...FIONBIO, &on)"):
return(=1):
}
return(0):;

* Read synchronous/non blocking mode packet */
* netread (struct ether buf) */
etread ()

int cnt;

= soreceive(netfd, (struct sockaddr #*)0, &ether_buf, MAXPKTSIZE):
if ((cnt < 0) && (errno == EWOULDBLOCK))
3 /* No network data */

if (cnt < 0) experror("soreceive read error"); /* Error condition */

return (cnt);

* Write synchronous/non blocking mode packet */
* netwrite (struct ether *buf) */

. B - N - I = =S - - I = E e .



netwrite ()
int cnt, netcent;

datalength.p_datalength = ntohs (ether_buf.simnet_data.e_datalength);

cnt = datalength.i_datalength.length:

netcnt = sosend(netfd, (struct sockaddr *)0, &ether_buf,cnt + HEADER SIZE):
if ((netcnt < 0) && (errno == EWOULDBLOCK)) netcnt = 0;

else
if ((netcnt >= 0) && (netcnt < cnt))
fprintf(stderr, "sosend : some data has been lest\n\007\007");

I if (netcnt < 0)
errexit("sosend write error"):;
t Close synchronous/non blocking socket connection */
tfini
{
int off = 0;

if (netfd >= 0) |{
fprintf(stderr, "Please wait up to %d seconds for completion\n",
l timelimit);
soioctl (netfd, FIONBIO, &off);
soclose(netfd);
I netfd = -1;
}
}

Network order to host order transform, not all of the data field are included
yet. Add more statements if needed and modify the hton_simnet() too */
ntoh_simnet (PDU buf) */

oh_simnet ()

it i, 93
I union |{
char *tmpc:
unsigned short *tmpui:
} tmpui;
I union |
char *tmpc;
float *tmpf:
II ) tmp;:
tmp.tmpf = &pdu_buf.VAPDU.VADATA.location[0];
I swap4 (tmp.tmpc) :
tmp.tmpf = &pdu_buf.VAPDU.VADATA.location[1];
swap4 (tmp.tmpc);
tmp.tmpf = &pdu_buf.VAPDU.VADATA.location[2];
. swap4 (tmp.tmpc) ;
tmpui.tmpui = &pdu_buf.VAPDU.VADATA.hdr.vehiclelID;
swap2(tmpu1 tmpc) ;
l for (i=0; 1i<=2; i++)
for (J=0; Jj<=2% J++) {
tmp.tmpf = &pdu_buf.VAPDU.VADATA.rotation[i] [j]:
l swap4 (tmp.tmpc) ;
)
return(pdu_buf .ANYPDU.ANYHDR.kind)




/* Host order to network order transform, not all of the data field are included
yet. Add more statements if needed and modify the ntoh_simnet() toc */

* hton _simnet (struct PDU buf) */

on_simnet ()

int i, i
union {
char *tmpc:;
unsigned short *tmpui:
} tmpui;
union {
char *tmpc;
float *tmpf:
} tmp;

tmp.tmpf = &pdu_buf.VAPDU.VADATA.location[0]:
swap4(tmp.tmpc):
tmp.tmpf = &pdu_buf.VAPDU.VADATA.location[1];
swap4 (tmp.tmpc) :
tmp.tmpf = &pdu_buf.VAPDU.VADATA.location[2];
swap4 (tmp.tmpc) ;
tmpui.tmpui = &pdu_buf.VAPDU.VADATA.hdr.vehiclelID;
swap2(tmpui.tmpc):
for (i=0; i<=2; i++)
for (Jj=0; Jj<=2; j++) |
tmp.tmpf = &pdu_buf.VAPDU.VADATA.rotation[i] []]:
swap4 (tmp.tmpc) ;

----AF

}
return(0):;

/* This subroutine does the same work as ntohl(), htonl(). */
Iwap4(char *ptr)

char tmp:

I tmp = *ptr;
*ptr = *(ptr+3):;
*(ptr+3) = tmp:;

l tmp = *(ptr+1);
*(ptr+1) = *(ptr+2);

L

Il

*(ptr+2) tmp:

* This subroutine does the same work as ntohs(), htons(). */
wap2(char *ptr)

char tmp:

l tmp = *ptr;
*ptr = *(ptr+l);
*(ptr+l) = tmp:;

/

* This subroutine is for debugging purpose only, it will DUMP the content of a
1link level packet in hexdecimal*/

‘* dump_ether (struct ether ether_buf) */

ump_ether ()

7

{
l ink %, 3, netont)




fprintf(stderr,"ETHER content\n");
datalength.p_datalength = ntohs (ether_buf.simnet_data.e_datalength):
fprintf (stderr,"Source addr O R2X-%2X-%2X-%2X-%2%X-%2x\n",
ether_buf.e_shost [0], ether_ buf.e shost [1], ether_buf.e_shost [2
ether_buf.e_shost [3], ether_ buf.e_shost [4], ether_buf.e_shost [5
fprintf(stderr,"Destination addr : %2x-%2x-%2x-%2x-%2x\n",
ether_buf.e_dhost [0], ether_buf.e_dhost [1], ether_buf.e_dhost [2
ether_ buf.e_dhost [3], ether_buf.e_dhost [4], ether_buf.e_dhost [5
fprintf(stderr,"%2x ",datalength.p_datalength):
netcnt = datalength.i_datalength.length;
for (i=0, j=3; i<(netcnt-HEADER_SIZE-2); i++, Jj++) ({
fprintf (stderr,"%2x ", ether_buf.simnet_data.e_datal[i]):
it (] == 17) ¢
3=0;
fprintf(stderr,"\n"):

)ik

[ S p—

j P
10

}

}
fprintf(stderr,"\n");

This subroutine is for debugging purpose only, it will DUMP the content of a
pdu packet in hexdecimal*/
mp_pdu ()

tnt 1, 9, netcnkt:

fprintf (stderr,"PDU content\n");

datalength.p_datalength = ntohs (ether_buf.simnet_data.e_datalength);
netcnt = datalength.i_datalength.length:

for (i=0, j=1; i<(netcnt-HEADER_SIZE-2); i++, j++) ({

fprintf(stderr,"%2x ", pdu_buf.DATAONLYPDU.DATAONLY[i]);
1€ €1 >= 17) {
J=0;

fprintf(stderr,"\n");
)

)
fprintf(stderr,"\n");

* This subroutine is for debugging purpose only, it will DISPLAY the content of
a pdu packet */
isplay_pdu ()
int 3, 3:
union {
char *tmpc:
float *tmpf:;
} tmp;

fprintf(stderr, "Rotation\n");
for (i=0; i<=2; i++)
for (j=0; d<=2; j++)

fprintf(stderr,"%d %d %1f\n",i,j,pdu_buf.VAPDU.VADATA.rotation[i][ 7]

fprintf(stderr, "Location\n"):;

fprintf(stderr, "$1f\n",pdu_buf.VAPDU.VADATA.location(0]);

fprintf(stderr, "%1f\n",pdu_buf.VAPDU.VADATA.location[1]):

fprintf(stderr, "%1f\n",pdu_buf.VAPDU.VADATA.location[2]

fprintf(stderr, "Zu\n",pdu_buf.VAPDU.VADATA.hdr.vehiclelID);

)
)
)3
D

I E T TN E T OB N BN B O BEn S B BE BN B B Em e




0000100



	Networking And Communications Technology Laboratory: Design/development Progress Report Submission #2
	Recommended Citation

	tmp.1440014046.pdf.E3mTE

