
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-1990

Object Oriented Terrain Databases For Visual Simulators Object Oriented Terrain Databases For Visual Simulators

Brian S. Blau

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Blau, Brian S., "Object Oriented Terrain Databases For Visual Simulators" (1990). Institute for Simulation
and Training. 148.
https://stars.library.ucf.edu/istlibrary/148

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/148?utm_source=stars.library.ucf.edu%2Fistlibrary%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
J
"=" >

Object Oriented Terrain Databases for Visual
Simulators

by

Brian Scctt B!au

B.S., University of Central Florida, 1988

Graduate Committee:

Dr. 1. Michael Moshell (Chairman)

Dr. Charles E. Hughes

Dr. Ali Oroeji

Project

Submitted in partial fulfillment of the

requirements of the Master's of Science degree in

Computer SCIence in the Graduate Studies Program

of the College of Arts and Sciences

University of Central Florida

Orlando, Florida

Fall 1990

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Object Oriented Terrain Databases for Visual
Simulators

by

Brian Scott Blau

B. S., University of Central Florida, 1988

Graduate Committee:

Dr. 1. Michael Moshell (Chairman)

Dr. Charles E. Hughes

Dr. Ali Orooji

Project

Submitted in partial fulfillment of the

requirements of the Master's of Science degree in

Computer Science in the Graduate Studies Program

of the College of Arts and Sciences
University of Central Florida

Orlando, Florida

Fall 1990

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Abstract

This project is intended to develop methodologies and solutions to

the problem of representation and utilization of dynamic terrain on a real

time simulator. Until recently, real-time image generation had been

focused on flight simulators. With the increased use of ground based

simulation, such as armor and infantry, terrain imaging has become vital

as well. However, existing simulators are limited in their ability to deal

with changing terrain features. This project proposes the use of an object

oriented terrain database to handle the problem of dynamic terrain. The

main objective of this project is to design and implement an object oriented

terrain database manager which will use object oriented data structures to

represent the terrain as well as other simulation objects.

-i-

I
I
I
I
I Dedication

I
I To Patricia,

I Allan, Sally, Jodi and David

I with love

I
I
I
I
I
I
I
I
I

-ii-

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Acknowledgements

I would like thank a ll the people who have made a difference in my life

while I was a graduate student. First come professors Dr. Charles E. Hughes

and Dr. 1. Michael Moshell. The ir help, direction and encouragement were

always an inspiration to me. Without the ir guidance and support I would no t

have accomplished the goals which I had set for myse lf. Most of all, they gave

me social and professional opportunities which I would not have had

anywhere but at 1ST and UCF. I feel honored to have worked with the m. I

would also like to thank Dr. Ali Orooji participating in my graduate education.

My friends are very important to me. Roommate Kevin Bryden and

close frie nd Michael Gravel have helped me through the best and worst of

tim es. lowe a great deal of frie ndship to them. I also owe a great deal of

th anks to my classmates and fri ends, Marty Altman, Jennifer Burg, Mahesh

Dodani, Richard Dunn-Roberts, Ron Klasky, Curt Lisle, Micheline Provost,

Robynn Sebastian and John Turner. I appreciate the ir he lp in class work and

he lping me have fun while in school. I would also like to acknowledge Ernie

Smart and all of the supportive people at the Institute For Simulation and

Training, Visual Systems Laboratory.

I would also like to thank my family for supporting me throughout my

school. Allan, Sally, Jodi, David, Hilda, Carole, Max and Curt have always

been there for me when I needed it.

Finally, I would like to thank Trish for putting up with me for the past

two years. She has been an inspirational light to whom I give all my love and

an e normous amount of gratitude.

-i ii-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Table of Contents

1 Motivation for Object Oriented Terrain Databases 1

1.1 Motivation 1

1.2 Simulatio n and Virtua l Realitie s 2

1.2.1 Training Simulators 2

1. 2.2 Simulato r Components 4

1. 2.3 Data Paths 4

1.2.4 Visual Syste ms 5

1.3 Models 6

1.4 Fide lity 6
1.5 Dynamic Terrain 7

1.6 Object Orie nted Technology 9

1.6.1 Objects 9

1.6.2 Object Orie nted Design fo r Simulations 10

1.7 Objectives and Scope 10

2 Object Oriented Technology, Design and Databases 12

2.1 Object Oriented Language Features and De s ign Methods 12

2.1.1 Objects. Classes and Protoco l. 12

2.1.2 Polymo rphism, Inheritance. Me ssages and Methods 14

2.1.3 Abstract and Concrete Classe s 16

2.2 Object Oriented Databases 16

2.3 Curre nt State-of-the-Art in OODB's IB
2.3.1 GemSto ne 19

2.3.2 02 20

2. 3.3 IT ASCA 22

2.4 Why an OODB Methodology Was Chose n For This Project... 23

3 Spatial Data Management and Terrain Database s 25

3.1 Spatia l Databases 25

-iv-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.1.1 De ficiencies of Conventional Databases and Data

Structures 26

3.1.2 PANDA DBMS 26

3.1 .3 PROBE Research Project 28

3.1.4 Antony's OODB Manage me nt System 31

3.2 Geographic Information Systems 32

3.3 Terrain databases 33

3.3.1 Sample Terrain Databases 34

3.3.2 ESIG 500 Databases 34

3.3.3 SIMNET Database Organization 36

3.4 Summary 38

4 Object Oriented Terrain Database 39

4.1 Overview of OOTDB 39
4.2 The Root Class Terrain 39

4.2.1 Class Region and Description of Te rrain's State 40

4.2.2 Class Terrain's Instance Variables 41

4.2.3 Class Terrain's Public Methods 43

4.3 Using The OOTDB Design To Create A Sample Database 46

4.4 Query Processing 49

4.4.1 Efficie ncy 50
4.4.2 Inte rvisibility 52

4.4.3 Terrain Modification 54

4.5 Additional Classes Which Support the OOTDB 55

4.5.1 Class EdgeList 55

4.5.2 Class Edge 56

4.5.3 Class Points 56

4.5.4 Class Polygon 56

5 Object Oriented Terrain Database Editor 58
5.1 Overview o f Editor 58

5.2 Using the OOTDBE 59

5.2.1 OOTDBE Classes 59

5.2.2 Starting the OOTDBE... 60

5.3 Window Layout 60

5.3.1 Background Area 61

-v-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

5.3.2 Object List 64

5.3.3 Hierarchy List... 65

5.3.4 Graphics Area 67

5.4 Rules For Adding an Object or Region to the Database 69

6 An Experiment on Performance of the OOTDB 70

6.1 Description o f the Experiment... 70

6.2 Description of the Expe rimental Databases 70

6.3 Experiment 70

6.4 Numerical Results 71

6.5 Results 71

6.6 Possible Reasons for Poor Performance 72

7 Comments on the Object Oriented Terrain Database and Editor 74

7.1 Accomplishments and Lessons Learned .. 74

7.1.1 Object Oriented Representation of Te rra in Geometry 74

7.1.1.1 Integration into the Virtual Reality Testbed 75

7.1.1.2 Complex Queries 75

7.1.1.3 Different Spatial Data Structure s 75

7.1.1 .4 Frameworks 76

7.1.2 The OOTDBE 76

7.1.3 Smalltalk-80 77

7.1 .4 Gemstone 78

7.2 Additional Research Needed 78

7.2.1 Performance Analysis 79

7.2.2 Real-time Implementation 79
7.2.3 Future Directions For OOTDB 79

7.2.3.1 Distributed Processing 80
7.2.3.2 Effectiveness as a Training Simulation 81

7.2.3.3 Physical Modeling 81

-vi-

I
I
I Table of Figures

I
I

Fig.

Fig.

1.1 Life cycle of use r input to user output... 5

1.2 Cost o f using an image generator.. 7

Fig. 1.3 Texturing versus Dynamic Te rra in 8

I Fig. 2.1 Example class hie rarchy 14

Fig 2.2 GemStone system architecture 20

I Fig.

Fig.

2.3 Functional Architecture of 02 21

2.4 ITASCA Distributed architecture 22

I
Fig.

Fig.

2.5 Clie nt/server object oriented te rrain database 24

3.1 Architecture of PANDA 27

I
Fig.

Fig.

3.2 Architecture o f the PROBE database syste m 30

3.3 Antony's spatial database manageme nt 32

Fig. 3.4 ESIG Metafile structure 35

I Fig.

Fig.

3.5 SIMNET database organization 37

4.1 Example of region within a sub-region 41

I Fig.

Fig.

4.2 An example class hierarchy based on SIMNET.. 47

4.3 A map with labe le d areas 48

I
Fig.

Fig.

4.4 A part-whole hie rarchy showing an example te rrain 49

4.5 An Example of inte rvisibility 53

I
Fig.

Fig.

5.1 Window layout of Object Oriented Terrain Database Editor 61

5.2 Main Menu 61

Fig . 5.3 A working session with the editor 64

I Fig. 5.4 Object List Me nu 64

Fig. 5.5 Hierarchy List Me nu 66

I Fig.
Fig.

5.6 Graphic Area Menu 67

5.7 A sample editor session 68

I
Tab. 1 Experimental Results 73

I
I

-vii-

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 Motivation for Object Oriented Terrain
Databases

In recent years, the computer revolution has made possible high fid elity

computer simulations. Visual simulators have traditionally employed

static terrains over which active objects move. In these environments,

actions that should alter the terrain sometimes result in visual changes.

The construction of earthworks, erosion and traffic damage are examples of

the complex effects which occur in real life and need to be emulated in

graphical simulations. Unfortunately, existing systems rare ly modify the

terrain's internal structure and behavioral characteristics.

Developments in hardware and software are now making it possible to

manage and display dynamically changing terrain in rea l-time. Using an

object oriented approach, it is now possible to implement a system which

supports dynamic terrain. The project described in this report has developed

novel data structures and modeling algorithms for land formations that

can be modified during display.

1.1 Motivation

Massive processing power combined with the need for accurate
I

simulations has created the computer simulation industry. This industry

focuses its efforts on how humans use computer inputs and outputs to

better train for a particular task. Many private and public institutions

conduct research to continually improve the training/response scenario. An

example of a training simulator is the SIMNET network of tactical tank

trainers [Johnson 87]. In this simulation, many separate tank units

participate in a single computer networked battle, giving the soldier a

feeling of being in a large battle. This device helps the U.S. Army give

soldiers effective training in a "semi-real" situation so they might be better

prepared for actual battle.

Some computer based simulations are used for training, but there are

an equal number of computer applications which are not training

situations, but have more social implications. Examples can be seen in

Walt Disney World and Universal Studios in Florida. The engineers there

- 1 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

have created the Star Wars/Body Wars and Hanna Barbara ride experiences.

In these similar rides, passengers sit in a room where they view an

animated film. The motions portrayed in the film are felt by passengers as

a motion platform moves them around. In some of these cases, computers

can generate the film shown to the audience as well as coordinate the

control of the motion platform.

This project focuses on how to make computers better represent the

real world in a simulation and training environment. Although there have

been many advances in computer simulations, there still remain many

hard problems to solve. The work described below brings into focus some of

the difficulties with today's computer simulations.

1.2 Simulation and Virtual Realities

A visual simulation can b e defined as any computer simulation in

which one of the cues to the user is in some form of computer graphics. In

m ost cases, computer graphics are presented on a high resolution color

display. The scenes presented to the user mimic a window to the real world.

If one looks out the window of an aircraft cockpit, one sees gross terrain

details like mountains, lakes and oceans. The desired effect in a flight

simulator is to create a realistic scene when looking out the window o f the

simulated cockpit. This environment which is located on the other side o f

the graphics screen is called a virtual world, a world which exists only in

the mind and imagination of the user and in the computer's m emory.

1.2.1 Training Simulators

One of the main customers of training simulators is the United States

Department of Defense. Soldiers have traditionally had weapon use and

tactical fighting instruction on the battle fie ld, in which the cost is paid

with human lives. With the advent of the computer revolution, the

government realized they could use computers to train soldiers in p eace

tim e without the loss of life. The military has many uses for training

simulators. Much of today's military is very technical. Advanced fighter

aircraft contain complicated controls and require years of training to learn.

Each aircraft is flown by one or two men and can delive r as much

destruction as a battalion of foot soldiers. To use these advanced weapons,

a solider must undergo many hours of training. The cost o f training a new

- 2 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

pilot in actual flight is very high compared to the cost of training on a

simulator. Expenses for training in an aircraft come from necessities such

as fuel and maintenance. Not only is money a factor, but the pilot's life is in

danger every time he flies. But to properly train the pilot, the simulation of

the aircraft and the environment must match the experience of actual

flight. All of the visual and m echanical cues must be present in the

simulated flight.

The simulators which train pilots typically have high resolution

graphics in terms of their scene complexity and visual realism. Typically,

the fastest graphical simulations will refresh their scene display about 60

cycles/second. The highest fidelity simulators are used to train the most

sensitive of tasks such as the operation of fighter aircraft and helicopters.

Many trainers do not require high speed graphics systems. In fact, higher

fidelity terrain can be achieved with lower update rates. These types of

graphical systems are used in ground based simulations, such as tank and

driver trainers.

The following are two examples of training simulators which are in

use by the military. Each has a description of the trainer and the desired

training effect. Also listed are the approximate cost, performance and the

manufacturer.

Tank Driver Trainer :

Physical description :
The tank driver sits in an exact copy of the real tank driver 's
cockpit. The visual system accurately portrays the terrain as seen
by a tank driven with the hatch open or closed, and the whole unit
is located on a motion platform. A single can be with networked
with other units.

Training effect :
Soldier learns how to drive a tank without actually using one.

Cost/Performance:
Visual system : PT2000
Cost: Approximately $1 ,000,000 for one visual channel

Manufacturer:
General Electric Simulator Division, Daytona, Florida

-3 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Tank tactical trainer: SIMNET

Physical description :
The SIMNET network of tanks is used as a mass participation
simulation. Many separate tank simulator units are connected
together so they can all participate in the same battle.

Training effect :
SIMNET teaches soldiers how to pe rform in a battlefield situation.
It provides a situation in which a solider can lea rn the tactics of
cooperation when in battle.

Cost/Performance:
Visual System: Delta Graphics image generator
Cost: Approximately $250,000 for one tank unit

Manufacturer:
BBN and Delta Graphics, Boston, Massachusetts

l.2.2 Simulator Components

The complexity of military machines has a direct correlation to the
complexity of their simulator counterparts. Simulation units must mimic

the actual equipment in both physical structure and virtual e nvironm ents.

Often the training device is built from the plans of the actual machine. For

the soldier to perceive the simulation as reality, it is important that

computed sensory cues parallel the actual cues in as many ways as

possible.

A training device is composed of many complicated mechanical and
computational components. A pilot flies an F-16 fighter with a hard stick

and throttle. The simulator should also have corresponding hardware

components which feel, look and perform the same.

l.2.3 Data Paths

The data flow in a simulator also mimics how a soldier fights in a rea l

battle. First there is some input to the fighting machine, o r in the

simulator's case, input through discrete switches or analog controls. Next,

a weapon is fired and some destruction occurs, the simulator computes the

trajectory of the round and it determines if any object has been hit Finally
I

the soldier sees the result of his action and again inputs some action to his

fighting machine. Here the simulator computes the graphical screen and

displays it on a monitor. Finally the cycle is complete and input is again

introduced to the unit.

- 4 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

User input can come in many forms. There can be triggers, knobs,

pedals, switches, steering wheels, throttles and buttons. Once the input

has been gathered inside the host simulation computer, the computation

system starts. H ere all o f the inputs are converted to world coordinates so

... User Output Output ... Image
• Device Generator

~ ~

~

~

I User Input .. I
./ I Dynamic

).. Mod el o f
V ehicles and

Database
Wea pons .. . Traversal

Fig. 1.1 Life cycle of user input to user output

all data is in the same coordinate system. The physical dynamics of the

simulation determine the velocity, direction and explosive effects of all

objects which are in the simulation. Next, a database is read to determine

what environment surrounds the user . This data is then sent to the image

generator and a picture is displayed. There m ay also be lights and gauges

for the user to r ead.

1.2.4 Visual Systems

One important output of a simulator is the visual display. Here the

user is presented with some graphical representation of the virtual world

which is located on the other side of screen. This display is generated by a

high speed graphics engine, commonly ca lled an image generator. This

functio nal component takes three dimensional information about a scene

and using mathematical transfo rmations, projections and rendering

routines, produces a picture display. Inputs to the image generator come

from the user's position in the virtual world and a database which contains

a model of the world. The output of the graphics engine is through a CRT

m onitor and video projector.

-5-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.3 Models

A typical simulator database models different aspects of the

simulation world. There are models of the terrain. vehicles. houses. trees.

forests. roads. lakes. power lines and rivers. Many of these are dynamic.

meaning they are able to move about the virtual world either by some user

input or by automated codes. Other models are static in that they never

change. A vehicle will use a dynamic model because it needs to move about.

and the terrain will use a static model because it will not change.

Models can be described in many ways. depending on their size and

complexity. A polygon is a planar figure. usually represented by a list of 3

dimensional points. It takes at least 3 points to define a polygon. When

drawn on a graphics screen. a polygon will be assigned a color based on its

location and orientation. There may be one color for the entire polygon or it

may be smooth shaded across its face. Polygons can be used to describe the

physical likeness of many models and can either be static or dynamic.

1.4 Fidelity

Simulations can be classified on a spectrum ranging from low to

high fidelity. meaning the components of the trainer are either gross or

close approximations of the equipment being simulated. To be able to give

the user an accurate representation of the surrounding virtual world. the

graphics system must be able to display many different views very quickly.

High fidelity simulators typically have display update rates of 60

cycles/second. This means data must be gathered from the database. sent

to the image generator and the final picture displayed very quickly. This

high update rate is necessary to mimic the human visual system. which is

a continuous input system.

Typically. high fidelity systems are high cost and low fide lity systems

are low to medium cost Low cost can range from $100.000 to $300.000 and

high cost can range from $500.000 to $2.000.000. Figure 1.2 profiles six actual

1990 visual systems [Johnson 87] [Silicon 90] [ESIG 89] [General 90] .

- 6 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

100.000

Polygons 10.000

per &.000
Frame

4.000

1.000

60

Frames
per 30
Second

10

SSOk SIOOk S200k SSOOk SIOOOk S2000k

Fig. 1.2 Cost of using an image generator

1.5 Dynamic Terrain

Even though there are many successful image generators on the

market. they are all lacking in o ne respect Some o f the inputs the user is

giving to the simulator unit are not being recognized. These may be very

subtle inputs. but they still are not han died. For example. if a tank is

driving close to a river bank. but not actually in the river. the ground

underneath the tank may be soft. When the tank moves it should leave

m arks in the soft ground. Also. if a tank fires its weapon and the round does

not hit another object. it then strikes the ground leaving a crater. A

simulation of these events should correspond to their real world

counterparts.

If this capability were to exist in simulators. the functions to create

craters and tank tracks would be located in the image generator. o r some

piece o f equipment closely connected to it. But the databases and graphics

engines in today 's simulators do not have this capability.

Both of the events described above modify the underlying terrain.

Previously the terrain was named as a static model because it would never

change. but it now must be made a dynamic model. We will now call a

dynamic model of terrain. dynamic terrain.

- 7 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

There are a few possible solutions to the problem of dynamic terrain.

When a tank leaves tracks, it may be enough to simply display a black mark

where the tank has driven. This is an attempt to leave a permanent mark

of the tank's presence. This method is acceptable when on ly looking at the

tracks, but it is not acceptable when trying to navigate them. This effect

can be seen in Fig. 3, Tank A. Here textures are left behind the tank as it

moves across the terrain.

Tank A Tank B

Fig. 1.3 Tank A may look good, but Tank B leaves real tracks

If one tank is in pursuit of another, then the visual and motion cues

felt by driving over the tracks might be important. After the passage of a

column of tanks, a roadway is often impassible to wheeled vehicles. This

effect can be seen in Fig. 1.3, Tank B. As the tank moves across the terrain,

changes to the terrain polygons are made automatically. A small

depression in the polygon signifies that the ground is lower at these points.

The depth of the crater might give the enemy some idea of its size. These

visual cues are not part of today's visual systems. The inputs that have

- 8 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

been given (e.g. driving over soft ground) are not registered by the simulation

computer.

Not only does the dynamic terrain model apply to terrain, but if the

model is extended, all forms of databases will be able to share in the

dynamic nature of models. As it stands now, the simulation industry has

put a restriction on what can and cannot move in a simulation. By making

all models of a simulation dynamic, we can better recreate reality.

1.6 Object Oriented Technology

There has been a software evolution which may hold the answer to

some of the problems with visual simulators. Object oriented technology

has the inherent ability to manipulate and manage the complex data

structures which are necessary for dynamic terrain. ,

1.6.1 Objects

Many parts of a simulation can be described as encapsulated data

structures, or objects. A house, tree or tank can be an object Objects are

instantiations of data structures with actions and slot variables. The slot

variables of an object are objects themselves. Sending a message to an

object requires that object to respond by executing one of its associated

actions. Actions can be passive or active and the only way the outside world

has access to that object is through one of the actions. The collection of an

object's actions are known as its protocol.

Because objects are encapsulated data structures, they are dynamic b y

nature. By knowing the protocol, objects may send messages to each other

without regard to implementation or method o f execution. Thus when a

m essage is sent to an object and the action is passive (i.e. the action is

simply to assign a value to a slot variable) no message propagation takes

place, but if the action is active, then many m essages may propagate and

affect other objects located in the system. Nesting of objects is possible

through the use of slot variables. This is called an object hierarchy or part

whole hierarchy. One slot variable may contain an object, which has a

slot containing another object.

-9-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.6.2 Object Oriented Design for Simulations

A simulator database may be modeled by using objects. Houses. trees.

rivers, lakes and terrain are candidates for these encapsulated data

structures. A simulation database may easily take advantage of the part

whole hierarchical structure. For example, a house object may have as its

parts a door, a kitchen, a fireplace and a room. The kitche n object may in

turn have a stove, a sink and a cabinet. The terrain of a simulator database

may be modeled the same way. A terrain may be one object, itse lf comprised

of smaller pieces of terrain. Each smaller terrain may contain even smaller

terrain objects. A terrain object may even contain houses and trees as parts.

This encapsulation of objects gives the terrain a natural hierarchy. Using

the object oriented structure to implement the database, both static and

dynamic models can be incorporated into the database.

Within an object oriented design, each part of the simulation is

independent from the others. Objects may receive messages and act upon

them accordingly. Because each object is encapsulated, different parts of

the simulation will not know how other parts are impleme nted. The only

communication route is through message sending. This means each object

must have a well defined protocol which must be known to all other objects.

This is the main restriction on how objects interact, and it is not a

drawback, but a feature. Because the implementation is not known to the

outside world, there will be no direct modification of the internal variables.

This encapsulation leaves the object free to use any imple m e ntation

without fear of losing reuseability or portability. The state of the object is

defined by its internal variables, while modification is done through its

standard protocol.

1. 7 Objectives and Scope

This project is intended to develop methodologies and solutions to the

problem of representation and utilization of dynamic terrain on a real-tim e

simulator. Dynamic terrain is one advancement which strengthens the

training effectiveness of a computer simulator. It now seems possible to use

object oriented technology as a base in the construction of simulator

databases. This project will show that an object oriented paradigm can be

used to model simulator databases, which include the inhe rent ability to

dynamically modify the underlying terrain.

- 10-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The main objective is to design and implement an object oriented

terrain database manager which will use object oriented data structures

to represent the terrain as well as other simulation objects. The use of

data from an existing image generator will show how these designs and

algorithms can be app lied to today's technology. The database manager was

designed and implemented in an object oriented programming language,

which includes the use of a permanent object storage system. Also, basic

queries and commands have been designed and implemented. Finally, an

eva luation of the database performance is given.

The work done in this project will address some of the problems with

today's simulators. It does not make any revolutionary recommendations,

but it should serve as a guide. The ideas developed here are new and have

yet to be implemented on a real-time system. The design and algorithms

developed are a basis for implementing dynamic terrain on any image

generator, and the analysis done here should lead to work in that area.

- II -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2 Object Oriented Technology, Design and
Databases

The use of object oriented ideas has recently become popular in the

software design arena. The software industry for a long time has argued

that analysis and design should focus less on the traditional top-down

methodology and concentrate on object oriented analysis and design. These

alternative design issues focus on software r euse, modularity and

abstraction as a foundation rather than on functional decomposition. This

chapter will formally introduce object oriented concepts and discuss object

oriented databases, current object oriented technologies and the reasons

this m ethodology was chosen for the design of the terrain database.

2.1 Object Oriented Language Features and Design Methods

The main motivation for object oriented design and programming is

software reuse. It has been shown that the functions of a system tend to be

more volatile than the data structures [Meyer 88]. Thus programs should

be designed with modularity and reuse in mind. The concentration should

be on functionality of the data rather than on actions.

The first step in designing an object oriented system is to determine

which objects exist. This can be done by looking at the data which must be

manipulated. A well organized software system can be viewed as an

operational model of some aspect of the world. A simulation is an excellent

example of an operational model of the world. If the design of this m odel is

well understood, then the world can be viewed as a system of objects. The

world being modeled is made up of many different objects which can be

houses, trees, tanks and terrain. Here we will find a natural progression

from the design of a system to its implementation. In gemeral, the objects

are obvious and easy to find [eoad 90].

2.1.1 Objects, Classes and Protocol

An object is an encapsulated structure of both data and operations. It

is a single entity which exists independently of other objects. The data are

often called instance variables and operations are called methods. This

- 12 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

structure provides modularity and information hiding. It is important to

see how objects differ from conventional data abstractions. There are many

features of objects that distinguish these two similar concepts. The

differences can be seen through the use of inheritance and polymorphism

[Wegner 87)[Johnson 88) (see 2.1.2).

An object is a specific instance of some class. A class is a template from

which many objects can be created. The following is an example of a class

definition.

Class Tank
Instance Variables

gun: an instance of class Gun
turret: an instance of class Turret
ammo: an instance of class Ammo

Methods
fireWeapon

All objects which were created from the same class h ave the same

structure and will have similar behavior [Wegner 87) . Classes may be

placed in a hierarchy in which a subclass is a child of a class and a

superclass is a parent. Subclasses will inherit from their parent classes

and superclasses are available to inherit from. All attributes and actions

associated with a parent will be accessible to subclasses. Any object created

from some subclass will respond to all inherited actions without knowledge

of who has defined that action. It is interesting to note that in many object

oriented language implementations, a class is simply another object which

can respond to message. Thus the class Object (see 2.1.2) is an instance o f

the class MetaClass. There is a circularity implied here because every class

cannot be an instance of another class, meaning the hierarchy would never

stop [Goldberg 89].

There are two separate hierarchies that are distinguishable. A class

hierarchy is defined as a collection of classes in which some are parents

and some are children, and a class may be both a parent and child. There

exists one class which is the root of the hierarchy in which all classes

inherit from. If a class has only one direct parent, then it is said to have

single inheritance. If it has multiple parents, then it is said to have

multiple inheritance. Multiple inheritance is conceptually difficult since ,

-13-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

there are so many ways in which inherited classes may be combined

[Wegner 90}. Each application of multiple inheritance implements the

conflict resolution in different ways. This problem leads to unportable

software systems.

Objects have attributes and actions as part of their foundation. The

attributes of an object may be objects themselves. An object hierarchy, also

called a part-whole hierarchy, is a tree of objects in which one object

contains other objects. An object may belong to many other objects.

The set of messages that can be sent to an object is defined as its

protocol. Protocols are standard interfaces between objects, and the only

way to communicate information to an object is through its protocol.

Here is a class hierarchy of a tank. It has parts described above with

some additional components. Also shown is an object hierarchy. It

represents an instance of one tank.

Vehicle

Object
iv's -0
methods - (n ew)

iv's - (posi tion, velocity)
methods - (moveForward)

aTank

LandBased Aircraft ;f ~ 'ooomo"";;\ '"".,
iv's - (locomotion) iv's (type)
methods - (startEngine. r efuel) methods - (altitude)

x y z d x dy dz type rpm

Tank r-----. Jeep
iv's - (gun, turret. am m unition) iv's ('passengers)
methods - (lireWeapon) meth?ds - 0

Fig. 2.1 The class hierarchy of a Vehicle is given on the left.
Tank inherits all instance variables and methods from its
superclasses. An object hierarchy of one tankis given on the right.
The instance variables position, velocity and gun themselves
have attributes.

2.1.2 Polymorphism, Inheritance, Messages and Methods

Sending a message to an object causes it to perform some particular

action which is determined by the name of the message. These are not

operating system signals, but late bound functions calls. When a message

- 14 -

am munition

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

is sent by one object (sender), another object (receiver) of the message

must determine which of its actions (methods) to execute [Johnson 88] .

For example, to create a new object in Smalltalk-80, we may send the

following message:

aNewTank <- Tank new

Although the method new is not located in the definition of Tank given

above, it is inherited from the class Object from which all objects must

inherit [Goldberg 89]. When the Terrain receives a message, it allocates

memory for a new object and assigns it to the variable aNewObject.

Polymorphism is defined as "the ability to take several different

forms." In an object oriented language, this describes the ability to refer at

run-time to different instances of various classes [Meyer 88]. For example,

if there exists a list of objects which are numbers, each object in the list

should respond to the message + (plus). If this message was sent to each

object in the list, the result would be the total sum. Each object should

respond to the message without regard to its class. The objects in the list

may be Integers, Floats or Complex numbers. This is similar to operator

overloading where the action is bound at compile time. An object oriented

system will consider the + (plus) a method and bind it late.

This idea of blind message sending is a plus to many systems. It

relieves the programmer of knowing the object's type at code time because

the message is bound at run time. If this feature was not available, then

explicit type checking must be added to every function. This is a dangerous

practice because any added modification may cause many changes in the ,
case checking. This leads to software that is difficult to maintain and

reuse [Johnson 88].

Inheritance, another feature of object oriented programming, has its

own advantages. Inheritance promotes code reuse; code that is common to

many classes can be placed in a superclass. This relieves a class from

implementing a complete functional system. One additional advantage

which inheritance offers is standard protocols [Johnson 88]. Many non

polymorphic languages do not allow different procedures to have the same

name. In an object oriented language, this is encouraged, and is the real

power of polymorphism.

- 15 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.1.3 Abstract and Concrete Classes

Standard protocols are often represented by abstract classes. An

abstract class never has instances, only subclasses. The root classes of a

hierarchy are usually abstract while the leaf nodes are never abstract. They

almost never define new instance variables, except for implementation

details. They do define methods at different levels, some of which may be

part of the standard protocol. Any m ethod which has been d efined and has

no action associated leaves the implem entatio n details to user defined

subclasses. These undefined m ethods are placed in an abstract class so

that the uniform protocol is not broken. Abstract hierarchies are created to

be used by others. They should be portable and their implem entatio n is

hidden from any subclasses.

A subclass which is not abstract is concrete. In general, concrete

classes are always the leaf nodes of a class hierarchy and all objects are

instances of some concrete class. Since abstract classes do not provide a

data representation, concrete classes are free to choose any implementation

that is appropriate without fear of superclass conflicts [Wegner 87].

2.2 Object Oriented Databases

An important aspect of using a object oriented design in a terrain

database is to be able to permanently store the data. Since this project is

concerned with the design of the terrain class structure and the specialized

queries which pertain to spatial relationships, it necessary to take a

detailed look at object oriented databases (OODB). Most important is the

design of the OODB, the storage technique and its query processing

capa bilities.

An object oriented database is similar to a traditional relational,

networked or hierarchical database in respect to its storage capabilities and

query processing. An object oriented database is another model of data

storage which has its roots in object oriented programming. [Kim 90] has

given a good definition of object oriented databases which will be

summarized in the next few paragraphs.

An object oriented database has a direct relationship to an

implementation of an object oriented system. A database is defined as an

implementation of some 'data model, regardless of its base structure. An

- 16 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

object oriented model is a logical organization of objects, constraints on

them and the defined relationships among the objects. An OODB is the

system which directly supports that data model.

An object oriented data model captures the semantics of an object

oriented system and is based on object oriented concepts. It captures the

relationships between objects, which is the true base of an object oriented

system. One of these relationships is aggregation. The aggregation

relationship in an object oriented data model is simply that a class

consists of a set of attributes. The domain of an attribute may be any class.

This is one of the main departures from a relational database model where

the domain of an attribute is restricted to be of a primitive type. For

example, the class Tank has the attribute gun which is an instance of class

Gun. Because the domain of an attribute is arbitrary, it leads to a

hierarchical structure. Using the Tank as an example again, the gun of the

tank also has attributes, such as trigger, barrel and safteyPin.

The fact that the domain of an attribute is arbitrary gives rise to the

nested definition of a class. In this hierarchical structure, there is one root

class which has attributes that may be other classes or primitives. This

model is very similar to the nested structures of a nested relational and

hierarchical database. But in an OODB, the class structure forms a

directed graph rather than a hierarchy.

The OODB model also includes the generalization relationship

which is not present in the relational or hierarchical models. This

relationship describes the class/ subclass structure where a class is a

generalization of a subclass. The main feature to note is that an OODB has

both the aggregation and generalization relationships, where a class has a

role in the class hierarchy and the class graph.

The definition above describes the basic OODB model, but more

discussion is required to fully explain an implementation. An OODB must

have disk storage and optimization techniques which each database must

follow. Most OODB's follow some traditional sector clustering technique

where objects of the same class reside close to each other on disk. Other

clustering techniques bring together objects of the same user or objects

which recursively reference each other.

The other major component of an OODB is the query processor.

Queries in a traditional database environment are generated by user

- 17 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

requests or by automatic response to a user action. In either case there

must be a mechanism that can parse the queries and efficiently evaluate

the requested information. It is interesting to note that early OODB queries

were processed in a manner similar to relational queries. Here a query was

directed to a single target class. Recently there has been development in the

accommodation of queries to more than one target class [Banergee 88).

Implementations of OODB's have recently become available and all

support long term data persistence, transaction control and query

processing. Since this technology is new, there has not yet been a standard

convention on the interface or model of an OODB. Because of this turmoil,

it is difficult to see any trends or future directions.

2,3 Current State-of-the-Art in OODB's

The following is a descriptive list of OODB's that are available as

independent database products. There are some OODB's which exist as part

of larger systems. These will not be presented here. There are at least

Product Name

G-Base
GemStone
02
IRIS
ITASCA
Object/I
Objectivity/DB
OBJECT-STORE
OBJECT-BASE
ORION II
Ontos
Persisit \
Statice
Versant
Vision

Vendor

Graphael
Servio
Altair
Hewlett-Packard
ITASCA Systems
MDBS
Objectivity
Object Design
Object Sciences
ARTEMIS
Onthologic
Juniper Software
Symbolics
Versant
Inovative Systems

fifteen products which claim they are OODB systems. The list above shows

the products and their vendors [Reit 90] [Versant 90] [Atwood 90] (Deux 89]

(ITASCA 90 (Objectivity 90] (Banerjee 88). Three of these products,

GemStone, 02 and ITASCA, are described below. This is to give the reader a

sense of the OODB market place in the fall of 1990.

- 18 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.3.1 GemStone

GemStone by Servio Logic [GemStone 90) is one of the more popular

OODB management systems. It is available on many popular workstations

including SUN, IBM PC and Macintosh. Full support is provided for an object

oriented data model with objects, classes, instances and messages. It

supports inherited class and object hierarchies and comes with a

programming language called OPAL. Gemstone also supports an identity

feature where every individual object has an object oriented pointer (OOP).

This is how speed is achieved in the database manager. When an object is

referenced, its OOP is passed around rather than the complete object.

GemStone is a multi-user /multi-application product and runs under a

client/server architecture. It can support numerous consecutive users on

multiple workstation while coordinating all of the control, transactions and

security.

The server of GemStone consists of three components: the database,

the resource monitor and multiple data servers. The database is a single

logical file on the host system. Internally, the database is a series of logical

pages where objects are written. The function of the resource monitor is to

synchronize resource allocation and maintain data integrity. The data

servers have a large responsibility in GemStone. They map the logical page

object storage into the object oriented data model that is presented to the

user. They also process all OPAL code that is either in the database or is

supplied from the user.

Two other important parts of GemStone are the user application and

the platform specific environment. The user application will interface to

GemStone through the environment and a programming language called

OPAL. OPAL is very similar to in syntax and semantics Smalltalk-80. They

are very similar in syntax and semantics. To make GemStone compatible

with Smalltalk-80, the vendors provide a detailed class hierarchy which

contains many Smalltalk-80 like classes. A GemStone Class Browser,

Workspace and Debugger and user interface are included in their Smalltalk-

80 support. Also supplied is a

- 19 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I Terminal I
OPAL Program OPAL Program
and C and Smalltalk
application code application code

OPAL Program
and Smalltalk

I
application code

I
Communications Link Communicatio ns link

~
Communications Link / UNIX UNIX

Workstation Workstation

""'- /
"' /

Communications link I

GemStone GemStone GemStone
Session Session Session

I

I Database Monitor I
I

I Host File I/O I
Host Computer

Fig. 2.2 GemStone system architecture

C interface where function calls are used to access database objects. Figure

2.2 is a pictorial view of the GemStone architecture which shows how

Smalltalk-80, UNIX and C can all be employed as user platforms to interface

with GemStone.

2.3.2 02
02 [Deux 89) is another OODB manage ment system that uses a

programming language, graphical interface and application development
toolbox. One of the main selling points of 02 is the integration of the

database and application language. GemStone supports this feature with its

Smalltalk-80 like language called OPAL, but ITASCA supports access from

- 20-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

traditional programming languages. It supports a full object oriented data

model where users have access to all of the nice tools they are accustomed

to using.

Object Oriented Programming Environment

LOOKS
Language Query
Processor Interpreter

Schema Manager Object
Manager

Disk Manager

Fig. 2.3 Functional Architecture of 02

02 consists of eight functional modules. The Disk Manager handles

low level I/O and base data manipulation. The Object Manager has the

responsibility of taking the abstract data model and mapping it to its disk

representation. The Language Processor compiles and stores methods

which are then used by the Schema Manager. Additionally the Query

Interpreter takes input and, using the Object and Schema Manager,

processes queries. There are also two modules to manage the graphical

interface and programming environment. Figure 2.3 shows the

relationships of these modules.
The data model of 02 is similar to other OODB's. It maintains a class

hierarchy where each object is an instance of a class. Classes d escribe

common behavior among a set of objects, and have attributes and actions

associated with them. All objects are manipulated with the methods

defined in a class. Methods can be private, in which case only other

methods in that class can use them, or may be public and open to all
classes. 02 also has user defined types. Types are similar to objects, but

they have no action associated with them and they cannot be instanced.
I

- 21 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Instead they appear as components of a system and are not part of the object

hierarchy.
02 also supports subtyping and inheritance. Subtyping defines a

relationship between two types. A type is a subtype of another if every
instance of it is also an instance of its supertype. Inheritance in 02 has the

same meaning as defined above (section 2.1.2) but it also supports mUltiple
inheritance. 02 is supplied with two programming languages which are

supersets of C and BASIC.

2.3.3 ITASCA

ITASCA Distributed OODB [ITASCA 90 I is an advanced distributed

database manager. It supports all of the features common to the other

OODB me ntioned above . There is one aspect of ITASCA which should be

noted. It uses a distributed architecture with private and shared objects

across UNIX platforms. This architecture allows any numbe r o f databases

to exist on mUltiple workstations. The data manager stores a copy of the

entire schema on all sites to improve performance. This is a departure from
the confining server/client relatio nship in GemStone and 02. This

advantage prevents a single point failure because all schema information is

stored on all nodes. When a node is off-line, only its data becomes

Applications Applica tions Applications

Clients A Clients

Servers , L Servers , r
I Network 1

.... Private databases

-- -- ~
Shared databases -

~

Fig. 2.4 ITASCA Distributed architecture

- 22-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

unavailable, not the class structure. Therefore, editing of data and class

reorganization may continue while a node is off-line. Figure 2.4 shows the

architecture of the ITASCA system. The clients maintain page and object

buffers. Here objects are mapped from object space into disk partitions. The

servers maintain object buffers for the local memory, similar to a cache

system. A single client can access multiple servers.

2.4 Why an OOBO Methodology Was Chosen For This Project

In general, the OOBO products that are available have been developed

and are targeted for large scale data manipulation mostly for use in the

business environment. They all contain some programming language and a

graphical interface in which to build applications and manipulate objects.

Each has a particular object oriented data model which supports classes,

objects, class and object hierarchies, and inheritance. Some even have

distributed architectures which aid in data management.
The design of this project is object oriented by nature and requires the

permanent storage offered by an OOOB system. The terrain database is a

part of a visual system and all components need access to its data. One

method is to employ an OOOB to manage all transactions between

simulator components. This will relieve the application program from

managing any of its data. It will all reside with the underlying support

system [Hughes 90].

A terrain database is similar to any other database in that they all

must have some efficient permanent storage medium. In this case we have

an object oriented design and would like to have persistent obje cts which

may be accessed on mulfiple platforms. The following diagram is a

conceptual picture of a network of simulators and their relationship to the

OODB. The networked model shown is a client/server relationship, but

because the applications do not rely on data manipulation, it may be

reconfigured to be a distributed model. Objects and classes will

permanently reside in the database server. Each simulator unit will access
objects remotely and will let the database server manage all concurrency

and transaction control as well as security. The interface from the data

server to the simulator unit is provided through a database interface. This

interface is transparent to the application program. Each application views

- 23-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Visual Display Visual Display

Image Generator Image Generator

j ~ j

~ ,..~~ ~ I Database Interrace I I Database Inte rrace i)0

...1 • Ir ~ j ~
,
~ L. H Host Simulation

1
1 Host Simulation I. iJ Computer Computer

, Ir ,Ir , Ir • Ir
j

, Ir
I Database Server I ,

Fig. 2.5 Client/server object oriented terrain database

all of the objects as local entities, m embers of their own local memory, but

in reality, all objects reside permanently on the database server. Any

change to an object will be reflected in the main database as well as in any

local unit.

- 24 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3 Spatial Data Management and Terrain
Databases

This chapter is a detailed review of two technologies which when

combined can help make an object oriented terrain database a reality. The

development of spatial data management systems is an area of very active

research. The goal is to combine data management and query techniques

with three dimensional geometry. This results in a system which accepts

queries specifically tailored toward spatial data management The other

technology has been presented in the first chapter. which is simulator

database management. This chapter will take a detailed look at different

terrain database systems. In chapter 7 we will use these technologies to

look at possible future work where a combination of management schemes

will produce a faster and smarter terrain database.

3.1 Spatial Databases

Conventional database management has proven insufficient to model

certain types of complex data management schemes which involve spatial

information [Egenhofer 88al. Such systems include VLSI design tools.

CAD/CAM packages. geographic and land information systems. and military

applications such as autonomous vehicle control and battlefield data fusion

[Egenhofer 88a. Antony 88]. The use of object oriented technology has

provided a way to efficiently implement and model spatial systems without

losing processing or design power.

Real world objects and their relevant operations are inherently

spatially oriented and are modeled naturally in an object oriented system

[Egenhofer 88b]. They require operations that use three dimensional

properties of points. lines and areas. For example. the traditional intersects

operation can be applied to a three dimensional object. where the response

will be true if the two objects share at least one point in space. Modeling

real world objects is one of the motivating factors behind the move from

specialized spatial processors to higher level data management systems.

- 25-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.1.1 Deficiencies of Conventional Databases and Data Structures

Most relational or hierarchical database systems do not meet the

demands of spatial data management. The composition of spatial data is

too complex for a traditional database. The level of detail required for one

complex object may exceed the limits of the management system. This can

be seen when looking at the performance of some geographical information

systems. An interactive system requires high speed manipulation of data

without sacrificing performance due to the size of data sets.

In the description of the PANDA [Egenhofer 88b] database

management system, Egenhofer cites examples of deficiencies of currently

available systems. Performance of engineering systems was shown by

Wilkins, Harder and Maier to suffer when large amounts of data were used.

Complex objects such as those in chemical systems or VLSI circuits cannot

be supported in a non-hierarchical structure. Lorie and Batory stress that

spatial objects should not be artificially decomposed into smaller parts.

The relational model does not support the data types necessary to

manage spatial data. In most relational systems, the base types are strings,

integers and floats whicH are in a table format. Spatial data is naturally

defined by nested structures in some hierarchy. The relational model is not

suitable for recursive traversing of the spatial data structure.

There has been work done in this area to help define the needs of a

spatial data system. Egenhoffer and Frank have developed the PANDA

system, a spatial object oriented database. Manola, Orenstein and Dayal

have developed an object oriented geographic information system called

PROBE. Antony has been working in the area and his work not only

includes spatial data management, but also includes terrain management,

tactical data fusion and autonomous vehicle control. These topics will be

discussed further in the following sections.

3.1.2 PANDA DBMS
•

PANDA (£ascal Network lliltabase Management System) [Egenhofer

88a, 88b] is an object oriented spatial data management system. It

incorporates all aspects of an object oriented design with special operators to

manipulate three dimensional data. The data structures are present for

efficient storage and access of objects. The following is a diagram of

PANDA's architecture:

- 26-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Appli cation

Object Layers

Programmer's Interface

User Defined {
Objects and Types "

,

I Object Definition I
I I

Database Kernel
Value Types

1
I III

Fig, 3,1 Architecture of PANDA

The database kernel manages the storage and retrjeval of objects

from a permanent storage devjce. It also provides transaction management

as well as logical structure access. The kernel is precompiled but

extensible, Users can extend the kernel by using a collection of object

oriented operations. These are called as functions and procedures in

PASCAL and are defined as the most general actions available to objects,

This notion is similar to the Object class in Smalltalk-80.

The definition of an object in PANDA is similar in concept to the

definition given above. All objects are instances of a class, and class

definitions can be nested into a hierarchy, Objects have some predefined

attributes which give them their spatial data representations. The spatial

class types are :

Node, Edge, Face, Bounds, SpatialObject

A class can be an instance of one of the above types or can be user defined.

Specific object-operations,are needed for each object type that is supported.

Because PANDA claims to be extensible, the basic object-operations are not

defined by the system and are left for the appljcation programmer. For

example, a user defined class must supply the operations for hashing

-27-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

because the kernel uses hashing for efficient storage and retrieval. If the

class does not define a particular required operation, it may rely on the

inherited operation if it exists.

Although PANDA seems like a system which is suited well for

operations necessary to manage a terrain database, it lacks many aspects of

an object oriented system. One major drawback is that PANDA is compiled

PASCAL. This limits the functionality which is possible in systems like

Smalltalk-80. The programmer can create objects at runtime, but not

classes. Although this aspect of database management may not seem

appropriate, it becomes useful when an automatic data manager

determines that some attributes and actions can be collected and

generalized, automatically reconfiguring the class hierarchy [Hendley 90] .

One final comment is on the built-in use of a spatial data

management system. In all of the documentation on PANDA they do not

describe any implementation details of spatial structure manipulation

except for some default class definitions given above. They do not describe

how to use this aspect of their system. It is assumed that there are actions

which are provided to manipulate spatial data. The nodes, edges, faces and

boundaries are used as an efficient disk storage technique and are not

necessarily used for geographical queries.

3.1.3 PROBE Research Project

The PROBE research project by Orenstein and Manola [Orenstein 86 ,

88] has produced a mature spatial object oriented database management

system. It was mainly built for databases which require non-traditional

query and storage techniques. PROBE is extensible and supports a full

object oriented data model. One of the main features is its ability to

efficiently store, retrieve and process spatial information.

The PROBE data model has two basic types: entities and functions.

An entity is a data structure which denotes some particular object, which

may represent a real world object or an idea. Entities with similar

characteristics are grouped together into entity types. In addition to these

entity types, functions differentiate entities by defining their properties as

relationships between entities and the operations on entities. These two

components of the PRO~E data model are similar to the definition given

above of an object. The type ENTITY is similar to the class Object and is at

- 28-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

the top of the generalization hierarchy. All generic operations on objects are

defined in the type ENTITY.

The architecture of PROBE comes from a combination of object

oriented concepts and database managem ent techniques. It has two major

components, the kernel and a collection of classes. There is a unique

division of labor between these two components. The main question is,

what part of the query should be processed in the kernel and what part in

the class? One possibility is to process all queries in the kernel. This

requires that spatial information be hard coded into the kernel and forces

the system to be unextensible. Another possibility is to process all of the

queries in the classes. In this case, classes must know intimate details of

the base data management system. Again this is unacceptable.

A combination of these two techniques is the current PROBE ,
architecture. It consists of limiting which parts of the query are processed

in the kernel. Only the most general spatial types are supported in the

kern el, ENTITY and POINT_SET. An instance of POINT_SET contains a set o f

points which represent the space occupied by an object. An example of this

division of labor can be seen in the following PROBE query :

for each x in S
for each y in S

if overlap ex, y) then output ex, y)

The database kernel implem ents the scan of S while the object is

responsible for determining if the two objects overlap.

The most interesting aspect of this type of processing is the

implementation of the database spatial kernel. Figure 3.2 shows the

architecture of PROBE.

The representation that is used by the geometry filter is a grid

structure. The cells of the grid which contain part of the point-set instance

of an object is the set of candidate areas. This is noted as a conservative

approximation of the object. When a query is processed, this approximation

is fo und inside the kernel and then passed to the object for further

refinement. This is the breakdown of responsibilities between the kernel

classes and application classes.

- 29-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Database Extensible Database System Object Classes Queries

Set ~

• Queries
Stored
Functions ..

Set .. Kernel
Operations ... Classes

• Query I
I Candidates r"'" Tuple ... Application

Operations .. Classes

J
" ,.

I
Instance ...

Result Queries ...

Legend:

-...... Function invocation

--I~~ Data and Queries

Fig 3.2 Architecture of the PROBE database system

F or the geometry filter to effectively process the spatial data, an

encoding of the grid is used. This code, called the z-value, is similar to a

quad tree representation [Gargantini 82] where locations can be described by

a unique number. Because this encoding is consistent ac ross grids, the z

value for the location of one object can be compared to another. The grid can

be partitioned recursively, making each code more accurate.

With the e ncod ing and the processing responsibility in place, the

PROBE system e fficiently , processes spatial data requests. Operations such

as spatial join, POINT _SET _union, POINLSELintersect, and

POINT _SET _diffe rence are explained fully . Their imple me ntations and

analysis are give n.

PROBE has many of the features which are needed for the processing

of terrain data. It has a n object oriented data mode l which supports classes,

objects, inheritance and polymorphism. It also supports a spatial data

representation which is needed in any system which has terrain processing.

The m ain reason for examining PROBE is to get ideas o n the components

needed for the object oriented terrain database. Because the terrain

- 30-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

database is hierarchical, it may be possible to incorporate the spatial

processing power into the natural hierarchy of the terrain.

3.1.4 Antony's OODB Management System

Antony [Antony 88,90] has been looking at alternative methods for

representing terrain, autonomous vehicle control, target recognition and

battlefield data fusion. His proposed database management system is a

fully integrated hierarchical, object oriented spatial data management

system. Although this system has never been implemented, it represents

the latest research ideas in this area and has close ties to object oriented

terrain databases.

Because this system is in the proposal stage, it is difficult to

determine if an implementation will meet the expectations of the

designers. They have one of the most unique ways of looking at the problem

of representing spatial data. Their main goal is to have an efficient

representation of three dimensional data and at the same time incorporate

object oriented technology. The combination of the two is natural when

comparing hierarchical representations. It was better said by Antony :

"If both the object-oriented and spatial-oriented database
representations are hierarchical, significant reductions in
search space size and subsequent improvements in efficiency
of both logical and global problem solving can be achieved.
Such a structure ... provides a representation that supports
reasoning that is metaphorically similar to that employed by
human problem solvers."

The framework of the database consists of four frame based forms

which are the semantic object, pyramid object, vector object and region

object. The semantic object has an attribute-slot form with associated

pointers and procedural constructs. The pyramid form summarizes the

point, line and region features into a the bit-coded vector. The vector object

is a list of continuous line features. The region object is a minimal

quadtree representation of a two dimensional region.

The organization of the database allows complex object oriented

queries. The query processing will be in two stages, the first links all point,

line and area features together into a fully registered low resolution

pyramid. Here is where substantial reduction is search space can be found

- 31 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

using the hierarchical structure. The second stage of processing refines the

representation to the exact precision needed.

Lake
Class

........ Minimal Quadtree
Region

Tank
Class

Representation

Fig. 3.3 Composite view of Antony's spatial database management system

Figure 3.3 shows an example ofthe proposed data management

system. There are two classes, Tank and Lake, from which instances are

created. These objects are the semantic object representations. The

pyramid representation can be seen in the quad-tree structure which

successively refines the resolution of the terrain. The vector representation

is used to encode the road, and is not shown graphically above. The region

objects are given as the lake and area.
I

3.2 Geographic Information Systems

Geographic Information Systems (GIS) are used in land use and land

planning. They are used by city planners and engineering firms to properly

determine the location of new projects and public utilities. GIS typically use

specialized processors or workstations as platforms.

- 32-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

These systems have become popular recently because of their low cost

and availability. The reason that the GIS technology is discussed here is its

relationship to database queries and spatial data management. These

systems answer queries like the following :

Areas ,
where population .: density 5 people/square acre
where location < 2 miles from any elem entary school
where location < 5 miles from water treatment plant

This query would answer all land parcels which meet the criteria. It

would show a land developer possible places to build new homes. To process

these types of queries, the GIS must know spatial information as well as

attributes of an area.

Some of the currently available GIS systems have powerful

capabilities. [GRASS 86] is a public domain GIS which is available through

CERL at the University of Illinois. Although it is not the most powerful GIS

system, it has the capability of processing standard Defense Mapping Agency

(DMA) data as well as most query functions necessary to support a small

GIS shop. The InterGraph Company [TIGRIS 90] [Karimi 90] manufactures a

computer line which is specifically built for GIS systems. They have

successfully combined hardware database optimizations with powerful

software to create the most widely used GIS. Their most recent development

is the TIGRIS Object Oriented GIS Environment. This product has been in

development since at least 1988 and has yet to be released as a production

GIS. It supports a full object oriented data model and its processing uses an

object hierarchy to efficiently traverse the database.

3.3 Terrain databases

As explained above, a terrain database for simulation is a collection o f

data which models some features of the earth. Typically a terrain database

will contain representati9ns of the ground and objects that are on the

ground like houses, buildings, trees, lakes, rocks, roads and telephone poles.

Also included would be subtle aspects of the earth. For example there might

be a salt water lake which is located next to a desert which is located next

to a mountain with a snowcap. Not only do these databases contain

- 33 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

features of the earth but they may contain models of dynamic objects such

as vehicles and aircraft.

Although terrain databases are used in simulators and their function

is to provide a limited form of spatial data management, they are very

different in scope and function from GIS, Terrain databases process simple

queries at very high speed and are not accessible as a general data

repository, Instead they have restricted access and are static, GIS systems

are able to process generic non-trivial queries, and they are not required to

perform at high speeds.

To construct a terrain database there is usually some database

modeling tool. Here a user will take te rrain information from multiple

sources and, using software, automatically combine features into one data

module. The user will then manipulate and add more features until the

database meets specifications, Finally there will be software which takes

the constructed data module and transforms it into binary data which an

image generator can read and process,

Many of today's simulators require that multiple players participate

in the same scenario, Networking of simulators is not a new problem, but

as requirements for higher fidelity image generators increase, network

traffic also increases. Some of the problems can be solved with faster

hardware, but it is important to look at the semantic relationship between

players as an area where substantial reduction in network traffic can take

place [Hughes 90],

3.3.1 Sample Terrain Databases

The following are two examples of terrain databases, The database

from the SIMNET trainers and the ESIG 500 image generator will be used to

describe typical terrain databases which are in use today, First, the

modeling process will be shown, followed by a description of each database

architecture, This should give a detailed view of current terrain database

technology and some implementations,

3.3,2 ESIG 500 Databases

The Evans and Sutherland ESIG 500 Image Generator [ESIG 90]

[Moshel 90] is a real-time image generator which supplies high resolution

and high fidelity graphics for use in simulators. It is independent of any

- 34-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

particular simulator and can be configured with multiple dependent

channels. The database design tool is the E&S Metafile Editor (ESED) and

runs on a workstation which is networked to the image generator.

The database editor supplies information to the ESED program about

the construction of the database. This information is stored in a

hierarchical structure called a Metafile. A Metafile is a collection of

polygons, objects, cells ~nd meshes. The Metafile is the user configurable

database which is presented to the image generator. This may not be the

only representation of the data. Once compiled into binary files, the

database is reconfigured for optimal performance. The presentation here is

concentrated on the user configurable database. Figure 3.3 is a pictorial

view of a sample Metafile .

• ' Mesh 00 1 ". '\ "
Cell 001

~
Obi 001 Mesh 002

~=::::::::----
Cell 002 Cell 003 Ce ll 004 Cell 005

~ f\ ~ '" Mesh 003 Mesh 004

/ \
Obi 004 Obi 005

Obi 002 Obi 003 Obi 006 Obi 007

Cell 006 Cell 007

~ /"----.....
Obi 008 Obi 009 ObiOIO Obi011

Fig. 3.4 Metafile structure

A polygon is a three or four sided, planar, convex geometric construct.

A polygon has a front and back side which can be dete rmined by its normal

vector.

Included in the collection is a string of lights. Lights are similar to

polygons except that they define light sources and are not planar. Objects

are sets which contain polygons, and lights and are used to define entities

such as planes, buildings and vehicles. A cell is a database record which

contains two objects, one or two meshes or one of each. Cells are used by the

-35 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

system to determine levels o f detail (LOD) of objects. The LOD of is a

perception trick which helps reduce the amount of data necessary to

describe an object When an object is located far away from a viewer, the

image generator will render a less complex description of the object. The

polygon count in the most detailed object (close to the viewer) can be 100

times more than the least detailed object (farthest from the viewer). The

final part of the Metafile is the mesh. The mesh is a collection of cells and

are of two kinds: either priority or special effect meshes. Priority meshes

define which objects will have rendering priority. Special e ffect meshes are

used for animations and coll isions.

Once the user d efines the database using the ESED tool, it must be

compiled with the Metafile Compiler into binary code. Next the Parcel

Generator creates a flyable database which combined with the World

Description file gives the Real-time system.

The most important part of the database to note is the model. It is

hierarchical but not object oriented. It only contains the information

necessary for creating images. It does not provide any way to interactively

change the database once it is running on the image generator.

3.3.3 SIMNET Database Organization

The SIMNET database is generated using the SI 000 tool. The database

is constructed by m eans of an interactive graphics program. Using this too l

the user can create terrain from DMA DTED and DF AD (Digital Terrain

Elevation Data, Digital Feature Analysis Data) [DMA 86]. Once the terrain

has been created, the user can define objects which will be on the terrain

such as trees, tree lines, canopies, roads and rivers. These objects are placed

on the terrain by using an ex, y) coordinate. Their altitude is obtained from

the elevation of the terrain at that ex, y).

Once the database has been built with S1000, it is compiled to a binary

file and loaded onto the image generator. The compiled database has

additional information which is needed by the image generator. This data

is never seen by the d atabase modeler . Figure 3.5 is the hierarchical

structure of the SIMNET terrain database as defined by the user. The main

structure is kept inside of the image generator, but when compiled, more

information is added.

-36-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Patch List

1 Info

Patch Heade r

Terrain Point List

XYZ I XYZ I XY ZIXYZ 1

Edge Descriptor List

I Ve rte x J 1 vertex21 Grid

Vertices I ·

~ Pointe rs into Terrain Point List

... rXYl rXY Z I~ Y Z Fyz I · · .

Objector Descriptor Lis t

Info Vertices Grid

\ Pointers into Terrain Point List

"-- ... i*xy, i*xy, I~YZ I= y, I ···

Fig. 3.5 SIMNET database organization

An interesting aspect of the SIMNET database is the organization of

spatial data. A patch des,cribes a 500m x 500m area which includes quads,

polygons and objects. Each quad encompasses a 125m x 125m area and has

a pointer to the polygon which covers it and to any objects which are located

in its area. A single polygon may cover multiple quads. The list of quads in

a patch is ordered to facilitate easy access. Each quad has a unique index

which can be derived from a simple formula. This makes traversal of patch

structure fairly computationally inexpensive. In addition to patches, the

compiler adds another level in the hierarchy called load modules. This

structure is used by the image generator to take advantage of the placem ent

of patches on the database disk. This enables the database traversal to be

quite efficient

- 37 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

There is an attempt in the SIMNET database to efficientl y model

terrain without losing accuracy. There has been some additional work on

using this database fo r m o re specific queries. Stanzione [Stanzione 89] has

proposed additional structures which will work in conjunction with the

current database model. This new fo rmat will allow the processing o f

detailed terrain data as well as objects. It will support rapid search

techniques and storage effi ciency. Their approach is to use a quad tree

structure to define the terrain and the objects that are associated with it.

3.4 Summary

Chapter 2 and 3 have been a review of the current technologies.

Object oriented design is a promising technology which will help better

organize and e ncapsulate the terrain database. Object oriented database

m od els have provided insight into th e world o f efficient storage and

traversal techniques. Simulator terrain databases have provided a base to

start with. They define the upper limit of the amount o f data necessary to

obtain a good visual picture. Finally, spatial d ata m anagem ent has looked

at efficient methods for processing three dimensional data in an object

oriented database.

- 38-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4 Object Oriented Terrain Database

This chapter is a detailed description of the OOTOB that was

developed as part of this project. First there will be a description of the

general format of the database followed by the specific implementation of

the Terrain class and its subclasses. Throughout this chapter there will be

an example which will evolve and will continue into chapter 5.

4.1 Overview of OOTDB

The OOTOB was designed to be used in dynamic simulations. The

underlying structure of the database is a Smalltalk-80 based object o riented

hierarchy. It is made up of classes, objects and their respective hierarchies.

The main goal of the terrain database is to concisely d escribe a region of the

earth using object oriented design and spatial data m anagement. This

format follows an object oriented design where the data model will be a

class hierarchy with the most abstract classes at the top and the most

general classes at the bottom of the hierarchy.

To give this project credibility, it was necessary to find some database

which is in use today. Since the SIMNET tank simulators were available to

use, the database of Fort Knox, Kentucky was employed as the main OOTOB

fil e.

The coordinate system used is the Euclidean three dimensional

space. Since the terrain being represented is a real place, its description is in

longitude and latitude pairs (lat/ long). The header of the data file shows

the exact location of the bottom left patch, and therea fter each patch has its

own (lat/long) location. Each polygon in one patch is numbered according to

its relative location in that patch. All measurements are in meters and the

spacing between elevation posts is approximately 125m. Polygons connect

the elevation posts and are either three or four sided.

4.2 The Root Class Terrain

The structure o f the terrain database has a special root class called

Terrain. This class will contain all of the necessary attributes and actions

to support a minimal terrain database. Each subclass of Terrain is

- 39-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

responsible for conforming to the protocol that has been established. In

addition, classes may add to and extend the protocol to better represent

their intended attribute and function domain. This means that any

specialization of Terrain must, either by inheritance or redefinition, respond

to all of the methods that have been established at highe r levels in the class

hierarchy. This structure implies that there will be a single class hierarchy

and possibly multiple independent part-whole hierarchies.

At the highest level, Terrain is a special class because it must

establish the structure of the basic database. Each instance variable

describes a particular aspect of the terrain. Not only will this basic data

structure describe the natural physical structure of the terrain, but it will

also have pointers to man-made structures of the terrain. For example, the

class Terrain will describe the surface of the ground as well as any bridges,

roads, houses, and moving vehicles which are located on or near the ground.
I

4.2.1 Class Region and Description of Terrain's State

At some time during a simulation, it may be necessary to instantiate

pieces of terrain which will not belong to any specific concrete class. It is

Class Terrain
Instance Variables

surface: list of instances of class Polygons
components: list of instances of any Terrain class
overlaps: list of instances of class Regions
partOr: list of instances of class Regions
occupiedBy: list of instances of class SimulationObjects
extent: an instance of class EdgeList

Methods
addObject: anObject
elevationAt: aPoint
extent
addSurface : aTerrainObject
entirelyEnclosedln: anObject
craterAt: aPoint withForce: aFloat
elevationAt: aPoint put: anotherPoint
intersects: an Object
overlapsAnyone
visibility From: point! to: point2
root
receiveRain: aFloat

- 40-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

not permitted to make specific instances of Terrain because it is an abstract

class, so we will define another class called Region, which will be a

concrete subclass of Terrain. Formally, the class Terrain and its associated

concrete class Region will be defined in section 4.2.2.

4.2.2 Class Terrain's Instance Variables

Each of the instance variables and methods listed above have distinct

meanings and functions which support the operation of the terrain

database. Their implementation is not known outside this class, but it is

useful to look at the details of each attribute to better understand the

internal processing of data. The following detailed list of each attribute and

function describes the responsibilities and scope of the base class Terrain.

surface

List of instances of the class Polygon. All polygons collectively describe the

physical formation of the ground. There will only be one object associated

with each actual instance of a polygon, but each instance of Region will

Instance of Region,
called regionOO I

Instance of Region,
called region002, is a
sub-region of regionOO I

Fig. 4.1 Example of region object which has some polygons in a sub-region

- 41 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

contain pointers to the polygons in this list. Each instance o f Region will

contain only those polygons which it can directly d escribe. A Region may

have sub-Regions which themselves have polygons. Only those polygons

which are in the p arent region and not in the sub-Region will remain in the

surface list. Figure 4.1 shows an example of this separatio n of polygons

between Regions and their sub-Regions.

components

List of instances of any Terrain class. Each object in this list has a physical

locatio n within the terrain database. Each component is entire ly enclosed

in the o bject which owns this list. If an object which is an instance of class

Tree is in the components list of some Region, then the location o f the Tree

is completely within the area of that Regio n.

overlaps

List of instances of the class Region. Each object in this list has a physica l

loca tion within the t errain database. Each object in the o verlaps list is

partially enclosed in the object which owns this list. This part of the

database is important to reduce the complexity of the searches which take

place as part of the query processing. Because all m embers of this list

overlap in area with other objects, it can be thought o f as the list of

neighbors for anyone instance of Region. When an object is added to the

database, its overlap list is computed and stored. This provides a convenient

way for the quer y processing to find local neighbors as well as large regions.

partOf

List of instances of the class Region. This list can be thought of as pointers

upward in the p art-whole hierarchy. If a Tree is in the components list of a

Region, then the Region will be in the Tree's partOf list. This part of the

database is used to find the root of the part-whole hierarchy as well as

finding larger areas of the database. Each Regio n describes some area o f the

terrain. Its parent Region will describe some larger encompassing area.

This is also useful for finding the owner Region of some t errain feature like

a tree or house. Additionally, this list may contain more than one instance

of Region, meaning that the particular object belongs to more than one lea f

of the part-whole hierarchy.

- 42-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

occupied By

List of instances of the class SimulationObject. These objects are contained

either partially or wholly within the area of the surface instance variable.

This list is used to maintain the location of any transient objects. These

objects are not necessarily part of the database class hierarchy, but it is the

responsibility of the data manager to keep track of their locations. For

example, a tank may be driving over the terrain. Its location can be

maintained from its position in the part-whole hierarchy.

extent

Instance of the class EdgeList. The EdgeList class is implemented as a

doubly connected edge list (DCEL) [Perparata 85] if the region is an area or a

line. If the object is a point, its implementation is still the DCEL, but any

access to that spatial structure will result in point-only operations. The

main use of this data structure is in display and area comparison m ethods.

See section 4.5 for more details of class EdgeList and the DCEL.

4.2.3 Class Terrain's Public Methods

All methods which belong to subclasses of Terrain must conform to

the standard use of the instance variables defined above. Abstract

subclasses of Terrain will probably add more instance variables as well as

methods, and the same rules will apply for any additional subclasses. Not

only must each specialization conform to the use of instance variables, but

each must also conform to the use of methods. The methods listed below

are an example set which one would use in the managem ent of a t errain

data base. The following definitions are the protocol which all objects must

use when communicating with the terrain database. Additional methods

are local to class Terrain and will not be described here.

addObject: anObject

Adds anObject to the components list. This message may be sent to the root

of the database, or a specific component to be added to the part-whole

hierarchy. This is one 01 the main working methods in the class Terrain. It

sets as many of the instance variables of the new object as possible. First

the partOf method is set using the receiver . Next, the components and

- 43 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

overlaps instance variables are determined using a combination of the local

methods entirelyEnclosedln and overiapsAnyone. At this point, the

extent attribute is used to determine the spatial relationship between

objects. The surface variable is set prior to execution of this method.

elevationAt: aPoint

Answers the elevation above sea level at aPoint on the terrain. This

message is sent to an object which may the the root of the part-whole

hierarchy. First, the hierarchy is searched to find which objects contains

aPoint To get the exact elevation, the plane equation of the polygon which

contains aPoint is solved for its z value. See section 4.4.1 for more

discussion.

extent

Answers the DCEL describing the enclosing area.

addSurface: aTerrainObject

Sets the surface instance variable of the receiver. This method is used

when terrain objects are first built. First an object is constructed from disk

file data. It is instantiated as a Region and polygons are added. Finally the

object must be added to the database part-whole hierarchy, and this method

is used to build the surface instance variable. aTerrainObject is the region

object which was built from the disk file.

entirelyEnclosedln: anObject

Answers true if anObject is entirely enclosed in the receiver. This method

determines if an object is entirely enclosed within the receiver.

craterAt: aPoint withForce : aFloat

Tells the database to create a crater at aPoint with the explosive force of

aFloat. The crater is centered at aPoint with a radius which is proportional

to the number given, with 1 meter of radius equal to 1 unit of force. NOTE:

Although this method is not yet implemented, all of the functionality is

available in the database to complete this transaction. The methods which

will determine the actual structure of the crater are not the responsibility of

the database, but of the physical modeling processor section of a simulator.

-44-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The database's responsibility is to maintain the data, not be the dynamics

and physics sections. Terrain modification is discussed in section 4.4.3.

elevationAt: aPoint put: anotherPoint

Tell the database to change the elevation of aPoint. This method has the

restriction that aPoint must be an existing elevation post. It is similar in

implementation to elevationAt, except that once the object which contains

aPoint is located, one of its vertices is modified accordingly. This method

would be used by an application specific method such as craterAt: aPoint

withForce: aFloat.

intersects: anObject

Return true if anObject's physical area intersects the receiver. This

method, using the hierarchy, determines if an Object overlaps the receiver by

at least one point in space. The method to determine overlapping structures

is contained in the EdgeList class. The methods there are based on the

DCEL and some simple intersection algorithms which come from basic

geometry. See section 4.5 for more details about the EdgeList class.

visibility From: point! to: point2

Return true if there is a visible path from point! to point2. This is one of the

most interesting methods in this project. Further discussion of

intervisibility can be found in section 4.4.2. To determine if one point can

see another, a ray casting algorithm was used [Glassner 89,90] . A ray is

cast from point! to point2. If any object obstructs that ray, then there is no

visibility. For this method to properly work, all objects must have some

polygonal representation. In this case, because of the format of the SIMNET

database, objects such as trees and bushes will not participate in the

intervisibility query.

root

Return the root of the part-whole hierarchy. Using the partOf instance

variable, this method does an upward traversal of the part-whole hierarchy

to find the object which is located at the top.

- 45-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

receiveRain: aFloat

Modify the state variable of the object which receives this m essage. The

parameter aFloat represents the amount in cubic meters of water that have

fallen. As implemented, this method requires that subclasses redefine the

action of receiving rain.

overlapsAnyone

Return true if the receiver overlaps any object in the part-whole hierarchy.

This method uses method root to determine which object is at the top of th e

part-whole hierarchy, and then sends the root object the intersects m essage.

4.3 Using The OOTDB Design To Create A Sample Database

Both the instance variables and m ethods make up the formal protocol

of the Terrain class. To create a terrain database, the minimum class

hierarchy must include classes Terrain and Region. Since Terrain is an

abstract class and Region is concrete, there can only be instances of Region.

To create depth in the database, there must be a natural breakdown of the

world being modeled.

To see the usefulness of this methodology, think of the Terrain and

Region classes as a library. When the programmer wants to create a new

database format, he must use the class library just as he would use a C

library. The programmer would create new classes which specialize th e

library to meet specific needs. He will rely on the classes to perform specific

tasks without questions about implementation, and the classes will require

any new classes to follow the predefined base protocol.

Figure 4.2 illustrates only one possible combination of abstract and

concrete classes. This class hierarchy is loosely based on the SIMNET

database format. Because SIMNET data was the only production image

generator data used, the example terrain hierarchy resembles the actual

data in names and in structures.

- 46-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Terrain

~~~~ 
LandFormation ManMadeFormation Region WaterFormation 

~ 
Lake Marsh Stream 
~ ~ 

Mountain Valley Plain Building House RoadWay 

/'\ 
SaltLake FreshLake SeasonalStream PermanentStream 

Legend: 

Abstract classes are in plai n bold. 
Concrete classes are in italic bold. 

TwoLaneRoad FourLandRoad 

Fig. 4.2 An example class hierarchy based on the SIMNET data model 

The following class definitions will demonstrate how the class 

hierarchy specializes the data definition. Each class has a specific purpose 

and was designed based on the specification of the original data. 

Class WaterFormation 
Instance Variables 

totalVolume: an instance of class Float 
Methods 

volumeAt: aPoint 

Class Stream 
Methods 

directionOfFlow: aDirection 

Class SeasonalStream 
Instance Variables 

activeMonths: list of instances of class Integer 
Methods 

atPeak 
nowActive 

Class LandFormation 
Instance Variables 

soilType: an instance of class Integer 
Methods 

tellTrafficabilityAt: aPoint 

- 47-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Class Mountain 
Instance Variables 

percentSnowCoverage: an instance of class Float 
Methods 

isPassable: aPath 

Class ManMadeFormation 
Instance Variables 

materials: list of instances of class MaterialType 

Class Roadway 
Instance Variables 

name : an instance of class String 
speedLimit: an instance of class Integer 
easementWidth: an instance of class Float 

Methods 
vehicIesPerHourAt: anInteger 

Class FourLaneRoad 
Instance Variables 

median Type: an instance of class Integer 

The instance variable trafficability is an attribute of soil. It describes 

how well vehicles can pass over a certain piece o f earth. The following 

Valley2 

TwoLaneRoad I 

Fig.4.3 A map 'with labeled areas which represent database objects 

- 48-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

diagram is a map of an example terrain and the specific objects that will be 

in the database. 

For the data that is represented in Fig. 4.3 to become a database, an 

instantiation of Region must be created. One object must be created which 

represents the entire land region. Other objects are created to represent 

each of the distinct land features such as the lake and roads, as well as the 

non-distinct mountains and plains. Once these objects are created, they are 

placed into the part-whole hierarchy. 

Figure 4.4 is the database's part-whole hierarchy, with the root object 

being named Region!. This figure shows the relationship betwe en objects 

contained in the components and overlaps instance variables in the class 

Terrain. Even though each member of components is completely enclosed 

in its parent's bounding area, it still may be possible for a region to be in 

more than one component list. The object FreshLake 1 is a member of the 

components list of both Mountainl and Valley!. 

Regionl 

\ TwoLaneRoadl ~ 
'- Valley~ =: : M-:ntainl • 

FreshLakel 

Legend : 

Members of the components list 

Members or the overlaps list 

PermanentStream2 

Mountain2 

Fig. 4.4 A part-whole hierarchy showing the re lationship 
between instance variables of the class Terrain 

4.4 Query Processing 

Now that the terrain database has been defined, we must look at how 

this database will function and how it will respond to those queries that 

- 49-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

will be necessary to support simulator activities. Efficiency, intervisibility 

and terrain modification are important areas of consideration when 

discussing query processing. 

In the discussion above it was noted that sending messages to objects 

in an object oriented language will cause some action which is internal to 

that object Also discussed was query processing in an object oriented 

database. These are two different operations that are essentially the same 

in nature. An object oriented database will process queries by sending 

database objects messages. Once the user has queried the database, the 

query processor will determine which object is to receive the message, then 

execute the appropriate method in that object. An object oriented language 

will process a message in a similar manner, decoding the message and 

executing code of an object. Because the OOTDB has an implementation in 

Smalltalk-80, queries are the same as sending message to objects. Because 

the OOTDB was designed independent of any implementation, generic query 

processing will be left as a black hole to be filled in by some application. 

Each class has the responsibility of responding to queries in an 

appropriate fashion according to its predefined course of action. For 

example, Valley 1 will respond to receiveRain by substantially changing its 

trafficability, as compared to FreshLakel, which would just add to its 

volume and perhaps extent. Depending on the recent history of FreshLakel, 

enough rainfall would completely change its trafficability and appearance. 

Notice that there are two distinct phenomena that occur simultaneously; 

first, there is the uniform requirem ent imposed by inheritance that all 

subclasses of Terrain respond to receiveRain. Second, there are the non

uniform reactions by the various subclasses of Terrain. 

4.4.1 Efficiency 

The efficiency of query processing is very important in a real-time 

simulator. Even if the response time is slow due to a particular 

implementation (e.g. Smalltalk-80), the query processing must be 

algorithmically efficient so that a re-hosting will yield a usable system. Th e 

information of the database is contained in the part-whole hierarchy, and 

the m ethods of the classes are the executable parts of the queries. This 

implies that a careful working relationship of these system components is 

necessary. 

- 50-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

In previous discussion of spatial data and query processing, Antony 

[Antony 88) mentioned that there might be a useful combination of spatial 

data processing based on quad-trees and object oriented part-whole 

hierarchies. The promising merger of these two technologies was tempting 

enough to at least try to justify the OOTDB as meeting this criteria. Most of 

the part-whole hierarchy tree traversal is accomplished by the use of an in

order search of the component's list located in the class Terrain. Because 

this list contains only those objects which are completely enclosed in their 

parent objects, each search will find the correct object without losing its 

place in the hierarchy. So in fact there is some relationship being shown 

here between spatial data and object oriented design. The difference is that 

the OOTDB has its spatial data embedded into the part-whole hierarchy 

whereas Antony suggests it should exist in parallel. 

The following code section is taken from the implementation of the 

OOTDB which is written in Smalltalk-80. There is one local variable, 

elevation, located between the vertical bars. The m ethod eIevationAt: 

aPoint is a traversal of the part-whole hierarchy. Other methods such as 

elevationAt: aPoint put: anotherPoint and intersects: anObject are very 

similar in their implementation. 

elevationAt: aPoint 
I elevation I 
(extent containsPoint: aPoint) 

ifTrue: [ 

) 

surface do: [ :each I 
(each containsPoint: aPoint) if True: [ 

"each elevationAt: aPoint) 

components do: [:each I 
elevation <- each elevationAt: aPoint 
elevation isNill if False : ["elevation) 

This method first searches its own local space to see if it contains 

aPoint. If so, the correct surface polygon which contains aPoint is found. 

Then the polygon is asked to exactly determine the elevation. If aPoint 

cannot be found in any of the surface polygons, then all of the components of 

- 51 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

the receiver are searched. This process is continued until the polygon which 

contains aPoint is found. 

When this message is sent to the root instance of Region, called 

Region!, all of the surface polygons must be searched. Remember, if the 

components list is not empty, then there may not be any polygons in 

Region! 's surface list. This is why we must search all of the members of 

the components list. 

The most important aspect of this query is the structure of the part

whole hierarchy. Because the components list can be thought of as a tree, 

we would like to have as balanced a tree as possible, with the constraint 

that this list represent the natural structure of the terrain. The above query 

is correct in either case, but is most efficient when the tree is exactly 

balanced. 

4.4.2 Intervisibility 

The question of intervisibility is important to the world of simulators, 

and in particular, automated simulation objects such as so-called "semi

automated opposing forces" (SAF). These automatic players must be able to 

query the environment, to examine their surroundings, and to determine 

what they can "see". The question "Can object Q be seen from a height of z 

at location (x,y)?" asked of the terrain database is particularly interesting 

and difficult. 

The most basic of answers involves geometric calculations 

concerning line of sight. Is there anyone object blocking the view path from 

one point to another? This problem has been solved many times over in ray 

tracing [Glassner 89, 90]. This concept then can be extended for line of sight 

from one single point to another and from one single point to an object 

which has an area. This. would involve taking into account all the 

bounding edges of the object. This again can be solved geometrically and for 

certain configurations of terrain, can be solved efficiently. [Cole 89] showed 

that for certain configurations of polyhedral terrains and viewing points, the 

complexity of computing the visibility of one point to another can be as good 

as O(log2n) time for ray shooting type queries (n is the number of faces). 

The most difficult questions to answer are when the line of sight is 

through some semi-transparent object. For example, if there is a line of 

trees between two objects, can they see each other? There are a few possible 

- 52-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

paths to solutions for this question. First, if the answer depends on the 

image from an image generator, then the only assistance needed from the 

database is scene geometry. Second, there is always the perceptual 

question, "If object 1 can physically see a very small part of object 2, does 

object 1 recognize object 2 as object 2 and not something else?" The answer 

to this question should come from the internal processing of objectl itself. 

This implies that the database will be limited to geometrical intervisibility 

queries based on the terrain only. 

Fig. 4.5 Can both tanks see each other? 

Because this is a very interesting question posed to a terrain 

database, it was included as part of the standard protocol for the OOTDB. 

This implementation does indeed find if a line of sight exists between two 

points based on the layout of the terrain polygons. The algorithm above 

comes straight from simple ray casting [Glasner 89]. It was important to 

show that these types of complicated queries can be included and supported 

in this type of database. The algorithm was written so that any subclass of 

Terrain may use it without regard to its implementation. It also can be 

modified to support an individual class's line of sight specific processing. 

Specifically, the line "loop on all polygons" is obviously not the most effic ient 

-53-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

visibility From: aPQint to: anotherPoint 
Calculate the ray direction from aPoint to anotherPoint 
Loop on all polygons 

Ignore polygons which are parallel to the ray 
Find distance from ray origin to polygonal plane 
If distance is closest so far then 

Calculate point of intersection of ray and polygon 
Project intersection point using Jordans curve 
Remember this point if it is closest 

If the closest distance is less than the distance from aPoint to 
anotherPoint, then there is no visibility 

way to traverse the database. It will be more efficient to use the part-whole 

hierarchy to determine the spatial relationships between objects to better 

traverse the database. 

4.4 .3 Terrain Modification 

This is one of the most important commands in the terrain database. 

This function will be included to support such simulator activities as 

t errain deformation, erosion, and any other actions which will affect the 

elevation of the ground. It is not the responsibility of the database to 

compute the physics of how the earth will be disturbed, but it does have the 

r esponsibility of remembering how it was changed. Also it must inform any 

simulation players about the changes to the terrain, especially those players 

who must supply images. 

There has been work done on automatic terrain deformation. There 

are two areas where research has been concentrated. First, automatic level 

of detailing may be a possible area where algorithms may be found 

[Scarlatos 90]. Also, work done by [Provost 90] may lead to high speed , 
generation of microterrain. There, large polygons are automatically broken 

into smaller ones when terrain deformation is needed. Then vehicles such 

as bulldozers are free to disturb the ground as they please. 

For the OOTDB to support such activities, it is necessary to include 

some specific algorithms to support terrain changes. The proper assignment 

of responsibility is crucial to the efficient operation of the data manager. 

This division of labor occurs at the point between physics and data storage. 

Imagine some infinitely powerful soil dynamics processor that could take 

the definition of the terrain and determine its new shape if any deformation 

occurs. This machine would be independent of any storage techniques, 

- 54 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

except for its own local memory. It would then register the terrain changes 

with the data manager. 

The OOTDB supports addition and deletion of polygons. The 

algorithm used to locate target polygons is almost exactly the same as the 

one described above in the elevationAt: aPoint algorithm. Simply changing 

polygons does not require any message propagation to inform other regions of 

the polygonal changes. But message are sent to all objects which reside on 

the changed polygons. Access to local objects can be found in the 

components, overlaps and simulationObject instance variables. This is 

because all polygons are stored only once in the database, and pointers to 

the polygons from objects are the only access to them. If new polygons are 

added to the database, insertion takes place in the same manner as reading 

from a disk file. 

4.5 Additional Classes Which Support the OOTDB 

There are four additional classes which are an intimate part of the 

OOTDB although they are not part of the Terrain class hierarchy. These 

classes represent data structures that would be found in any spatial data 

system. They were all put into classes because Smalltalk-80 does not 

support them. The classes are EdgeList, Edge, Points, Polygon. 

4,5.1 Class EdgeList 

The class EdgeList encapsulates the doubly connected edge list 

(DCEL) data structure. The class definition is : 

Class EdgeList 
Instance Variables 

listOfEdges: list of instances of class Edge 
origin: an instance of class Point 
corner: an instance of class Point 

Methods 
intersects: anEdgeList 

This class represents the main spatial representation which exists in the 

database. Since the SIMNET data is three dimensional, the DCEL is an 

excellent method of representing the data. It is mainly used to describe the 

enclosing area of a region. A region is a collection of contiguous polygons. A 

- 55-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

OCEL can be used to represent all of the edges of polygons surrounding the 

region. This edge list encloses either a convex or concave area, and there 

exist algorithms which can determine if any two OCEL structures inte rsect. 

To test to see if two regions intersect, it is only necessary to test the 

enclosure of the edge lists without their elevations. This is because 

polygons that are common to more than one region will have the same edge 

representation. The algorithm used is a simple loop which checks to see if 

any of the edge points of one region are contained in the other region. If even 

one point passes this test, then the regions intersect. This is an 0(n2) 

algorithm, it is one of the best known [Preparata 85] 

4.5.2 Class Edge 

This class is a simple structure representation of an edge. An edge is 

defined as the line connecting two three dimensional points. Routines are 

supplied which test the equality and intersection of two edges. This class is 

mainly used in the EdgeList class. The definition of class Edge is : 

Class Edge 
Instance Variables 

point! : an instance of class Points 
point2 : an instance of class Points 

Methods 
intersects: anEdge 

4.5.3 Class Points 

Smalltalk-80 does not contain any representations of three 

dimensional points. The class Points was added to Smalltalk-80's graphics 

library as a general tool. It has the same protocol as the Smalltalk-80 class 

Point, which represents two dimensional Cartesian points. 

4.5.4 Class Polygon 

The class Polygon is the main spatial data structure of the OOTOB. It 

is used in many places in the database to support graphical display. The 

structure of Polygon is simple: it contains a list of points which are the 

vertices of the polygon. The class definition is : 

- 56-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Class Polygon 
Instance Variables 

listOfVerticies: list (3 or 4 ) of instances of class Points 
Methods 

edgeList 
interiorPoint 
containsPoint: aPoint 
determineZAt: aPoint 
display 

This data structure was encapsulated into the class hie rarchy class 

because it was used many times during the design of the database. 

Although these operations are simple to imple ment. it was easier to re move 

the attributes and actions and place them in a separate class. 

- 57-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

5 Object Oriented Terrain Database Editor 

During the design of the OOTDB, it became necessary to develop tools 

that would help test and verify its proper operation. In addition, there are 

certain functions that are needed to support the main database activities 

but are not reasonably assignable to a class of the terrain hierarchy. The 

Object Oriented Terrain Database Editor (OOTDBE) was created to help in 

the building and learning process. With this editor, a user can create a new 

database from a disk file and edit terrain features including modifying the 

part-whole hierarchy. There is also support for persistent storage of the 

database using the GemStone Object Oriented Database system. 

5.1 Overview of Editor 

In looking at the simulator database systems described in chapter 3, 

it became obvious that any good terrain database works in conjunction with 

other software systems. All of the systems described above are supplied 

with editors and compilers which give the user easy access to the raw data. 

The terrain editors are typically interactive graphical sessions where the 

user can manipulate terrain data as well as terrain features. These 

operations will include reformatting the polygonal structure and adding 

features to the terrain to better serve the needs of the image generator. 

An editor was designed for this terrain database to get some of the 

functionality that exists in actual systems. It will let the user directly 

manipulate the raw SIMNET data to create the database's part-whole 

hierarchy. This editor is interactive and uses a graphical display which 

shows the user's work already completed. The basic steps in creating a 

database are: 

• Translate existing SIMNET file (raw data) 
• List all objects in the database that are not terrain polygons. 
• List the part-whole hierarchy 
• Add to and modify the part-whole hierarchy 
• Produce a graphical display 
• Send the final copy of the database to permanent storage 
• Edit the database again if necessary 

-58-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The main intent of the editor is to read some raw data, edit the data to 

make a part-whole hierarchy, see the resulting database graphically, and 

send the final database, which includes the classes and the part-whole 

hierarchy, to permanent storage. Additionally, the user may re load the 

database from permanent storage and continue to edit. 

This application is built using the object oriented language Smalltalk-

80 and the imbedded database language of GemStone called OPAL. Because 

of their similarity, OPAL iimd Smalltalk-80 can be considered the same. 

Smalltalk-80 was chosen because of its pure object oriented environment, its 

ability to rapidly build software components, its connection to the Ge mstone 

Object Oriented Database and its user interface development environment. 

This editor and terrain database are able to run on any computer which ca n 

support Smalltalk-80 v2.5 a nd at least provide an InterNet connection to a 

machine which is running the GemStone database server. [Goldberg 89] 

[GemStone 90]. 

5.2 Using the OOTDBE 

Using the OOTDBE is fairly simple if the user is familiar with the 

Smalltalk-80 interaction style. The user should be familiar with the object 

oriented programming environment but does not need to have any 

Smalltalk-80 coding experience. To work with the OOTDBE, the user must 

load it into Smalltalk-80. The GemStone database server must also be 
I 

accessible through the Smalltalk-BO environment. About five megabytes of 

local disk space are also required. Refer to the manuals for Smalltalk-80 v2.5 

and GemStone v1.5 for instructions on how to start both systems working 

toge ther. 

5.2.1 OOTDBE Classes 
The OOTDBE is constructed from classes which interface the terrain 

database to the Smalltalk-80 windowing environment. These classes were 
coded in Smalltalk-80 and follow the Model-View-Controlle r (MVC) paradigm 

which is the standard programming interface to the windowing structures. 
I 

The Model class contains all of the application code, the Controller class 

interfaces with all of the input devices and the View class handles all of the 

graphical displays. Most of the OOTDBE classe s are subclasses of either 

Model, View or StandardSystemController. The ObjectList and 

- 59-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

HierarchyList classes are instances of the pluggable view class List For a 

review of the MVC and List classes, see [Goldberg 891 [Bryden 90 I. The 

following is a list of the classes, who they inherit from, and a brief 

description of their function: 

Class/Type/Description 

DBC/ Model/Read data fil es, m aintain Object List and HierarchyList, 
interface to GemStone 
DBCView/View/Start the OOTDBE window 
DBCController/Controller/ Interface to mouse and Main M enu control 
DBCGraphicsView/View/Display of graphical data, contouring, display of 
objects, region selecting control 
DBCGraphicsController/Controller/Interface to mouse and Graphics Area 
menu control 
DBCList/ Model/Pluggable List 
DBCObjectList/Model/Directly m anipulate ObjectList, passing data to DBC 
DBCHierarchyList/Model/Directly manipulate HierarchyList data passing 
data to DBC 

5.2.2 Starting the OOTDBE 

Once the OOTDBE software is loaded into Smalltalk-80, the class 

DBCView must be sent the message open. The following text can be entered 

in a workspace window a,nd executed : 

DBCView open 

This message will ask the window manager to start the methods necessar y 

to run the editor. Once the user opens the editor window they are ready t o 

create object oriented terrain databases. 

5.3 Window Layout 

The editor window is divided into four sections, each of which can be 

activated by moving the mouse into a specific section. In each section, a 

menu can be activated by depressing the yellow mouse button. Each m enu 

w ill appear near the location of the cursor, and by moving the cursor, the 

user can highlight one of the m enu choices. To select a menu choice, 

highlight one menu choice and then release the mouse button. 

- 60-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The four sections of the editor window are Object List. Hierarchy List, 

Graphic Area and Background Area. The following is a diagram of the 

editor's window. 

Background Area 

I 

ooIDB I 

I' Graphi cs Area 
Object List .. l..---~ .. ----~ 

t/ 
... ~ 

Hierarchy Lis 

Fig. 5.1 Window layout of Object Oriented Terrain Database Editor 

5.3.1 Background Area 

The active menu in this area is the systems Main Menu. Using the 

options located here, the user can start to build a database. First, the user 

must read some database into memory using either of the top two m enu 

choices. Until then, all options of all other areas are inactive. The Main 

Menu has the following options: 

translate data file 

read GemStone database 

send database to GemStone 

GemStone commit 

sho w contour m ap 

show all polygons 

show all objects 

clear graphics area 

IFig. 5.2 Main Menu 

- 61 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

translate data file 

This menu option allows the user to start editing a terrain database. When 

this menu option is chosen, a data entry screen will appear asking the user 

to enter the name of the raw SIMNET data file to process. Once this file has 

been read, an instance of Region is created which is called Region!. This 

will be the root of the part-whole hierarchy. Next all of the terrain polygons 

in the data file are collected and placed in the surface list of Region!. This 

root region is added as the first entry in the Hierarchy List portion of the 

window. Finally, all of the objects in the raw data file are collected. For 

each raw object, a Smalltalk-80 object of the appropriate class is instantiate d 

and added to the Object List. Finally, the Object List and Hierarchy List are 

displayed in their appropriate locations on the screen. The part-whole 

hierarchy is now ready to edit. 

read GemStone database 

This menu option is used when a database needs to be read from permanent 

s torage. Only databases which have previously been stored can be loaded 

into memory using this menu choice. Once the user has chosen this option, 

a data entry window will appear. It will prompt the user to enter the name 

of a database which is listed in the top part of the entry window. Once the 

user enters a name, the database is loaded from GemStone into Smalltalk-80 

memory. At this point, the part-whole hierarchy is now ready for editing. 

send database to GemStone 

This menu option is used when the user has finished creating a terrain 

database and wishes to make it part of the collection of permanent 

databases. When the user chooses this option, a data entry screen will 

appear asking the user the name under which the database should be 

stored. After entering the name, the data is copied from local Smalltalk-80 

memory to GemStone. 

GemStone commit 

This menu option is used to tell GemStone that any operations done 

previously should be made permanent. The user should execute this menu 

option directly after saving a database in GemStone. This option is provided 

- 62-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

to give the user a last chance to make any changes to the database before it 

becomes permanent. 

show contour map 

This menu option shows a detailed contour map of the current terrain 

database. When the user chooses this option, a contour map of the data will 

appear in the Graphics Area. This image will be combined with any image 

that is already existing in the Graphics Area so all images will continue to 

show. This is mainly used for finding hills and valleys of the terrain area. It 

will help the user to better distinguish different parts of the terrain 

[Johnston 86). 

show all polygons 

This menu option shows all terrain database polygons in the Graphics Area. 

This image will be combined with any image that is already existing in the 

Graphics Area so all images will continue to show. The polygons will be 

displayed as a plan view. 

show all objects 

This menu option will display all of the objects in the Object List in the 

Graphics Area. This image will be combined with any image that is already 

existing in the Graphics Area so all images will continue to show. Each 

object has an internal polygonal or line based representation of itself which 

will be displayed. 

clear graphics area 

This menu option will clear the Graphics Area. 
I 

Figure 5.3 is an example of an editor session. At this point in the 

editing session, the user has read in a SIMNET data file. No objects have 

been placed in the part-whole hierarchy, so the only object located in the 

hierarchy list is Region!. Also, the user has chosen to see the contour map, 

all polygons and all objects in the graphics area. Although this display is 

confusing to look at, it represents almost all of the visual and textual 

information that can be placed on the screen at one time. 

- 63-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

OOTDBE 

PermanentStreaml 
PermanentStream2 
PermanentStream3 

Valleyl 

VaJley2 

Mountain! 

Mountain2 

TwoLaneRoadl 

FreshLakel 

Reiionl 

Fig. 5.3 A working session with the editor 

5.3.2 Object List 

The Object List contains all of the objects that are not currently in 

the part-whole hierarchy. It is a holding place where objects live until the 

user chooses one to be part of the database or to be removed completely from 

consideration. This list rbmains empty until a raw data file is processed. 
I 

The only objects which a~e supported as part of this list are the ones defined 
I 

by the Terrain class and its subclasses. Because this application has been 

built specifically to process SIMNET data, objects which are not part of that 

system are not supported here. When an object is in this list, it exists as a 

Smalltalk-80 object and can be manipulated as such. The menu of the 

Object List has the following options: 

add to hierarchy 

delete 

show 

inspect 

I Fig. 5.4 Object List Menu 

- 64-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

add to hierarchy 

This menu option will let the user add objects from the Object List to the 

part-whole hierarchy displayed in the Hierarchy List To be able to add an 

object to the part-whole hierarchy, the user must first choose a place in the 

hierarchy where the object is to be placed. This requires one object being 

selected with of the mouse. When a new database is loaded into memory 

from disk file, the only object to choose is Region!. The user may now select 

an object from the Object List. Then the "add to hierarchy" m enu option is 

chosen and the object is placed in the proper position in the part-whole 

hierarchy. The method to add an object performs all of the necessary 

computations to update the instance variables of the chosen object and 

region. 

delete 

This menu option will discard the selected object from the Object List. This 

object is no longer part of the system. 

show 

This menu option will display the selected object's graphical image in the 

Display Area. Each object type has a different representation graphically. 

Most classes display their objects as polygons, but some are points and lines. 

inspect 

This menu option will inspect the currently selected object from the Object 

List. A Smalltalk-80 inspector will be presented to the user which will 

contain information about the object which was selected. This is the 

standard Smalltalk-80 inspector and more information is available in the 

manuals. 

5.3.3 Hierarchy List 

The Hierarchy List will show all of the objects in the part-whole 

hierarchy of the database. Only the members of components will be shown 

in this list. This list is presented in a hierarchical manner. Each level in 

the hierarchy is indented from the left side of the menu. Deeper levels are 

- 65 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

farther to the right All of the objects here are the result of a user editing 

session. The menu which is active from this window is : 

dele le 

show 

show bounding box 

inspect 

Fig. 5.5 Hierarchy List Menu 

delete 

This m enu option will remove the object from the part-whole hierarchy. It 

will r ecursively delete all subparts which reside below the object that was 

selected. If any confusion is possible, the user will be asked for clarification. 

For example, if an object is in the components list of more than one region, 

and remov ing it from one region will r emove it from other regions, the 

system will prompt the user to make a choice about complete removal from 

all regions, or only from selected regions. 

show 

This menu option will highlight all edges of the object selected. All objects 

in the database have an extent, which is a collection of edges representing 

the outside of the region. All edges are display and highlighted so that they 

stand out from other lines on the display. 

show bounding box 
I 

This m enu option will display the smallest box which surrounds the reg io n 

that has been selected in the Hierarchy List. The box will be highlighted so 

that it will stand out from the other lines on the display. 

inspect 

This menu option functions the same as the inspect option in the Object 

List menu, except the object being inspected is from the Hierarchy List 

- 66-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

5.3.4 Graphics Area 

This area is one of the most interesting aspects of the editor. The 

user is given the capability to edit the database graphically. The user can 

interactively select portions of the terrain and add them to the part-whole 

hierarchy. Once an area of the terrain is selected. the user can add that 

area as a component of some region in the database. There are certain rules 

that will be followed in the creation of new area, which will be explained 

later. There are only two menu options which are active in this area. They 

are: 

add to hie rarchy 

forge t 

Fig. 5.6 Graphic Area Menu 

permenant 

add to hierarchy 

This menu option adds a region of terrain to the part-whole hierarchy. The 

"show contour" or "show polygon" main menu option should be chosen first 

before adding areas to the hierarchy. 

The yellow mouse button is active at any time during an editor 

session. First, the user will place the cursor somewhere in the Graphics 

Area and press the yellow button. This will mark the first point of the area 

to add. Thereafter, a rubberbanding line will follow the cursor until the user 

again presses the yellow mouse button. This action will continue until an 

area of the terrain has been selected. To close off the area, the blue mouse 

button is pressed. When the enclosing area is constructed, no lines may 

ever cross. The software automatically lets the user know if any illegal 

action has occurred. 

Once the user has enclosed an area it can be added to the part-whole 

hierarchy. The user will then choose a place in the part-whole hierarchy at 

which the new region will be added. This should be similar to the actions 

performed when adding an object from the Object List to the Hierarchy List. 

Finally the user must choose the "add to hierarchy" menu option. By doing 

so, a new instance of Region is created and added to the Hierarchy List in 

-67-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

the appropriate place. Again, all instance variables of the new region and of 

the existing region will be set. 

forget 

This menu option unmarks a set of features which were marked by the 

previous action. 

The following diagram is a continuation of the previous one. It shows 

some depth in the Hie rarchy List where the highlighted lines show the 

bounding area of Region2 and Region3. The objects shown in the Graphics 

area have been added to the Hie rarchy List. It is not shown here, but 

TwoLaneRoadl is in the overlaps of both Region2 a nd Region3. This was 

automatically computed when it was added from the Object List to the 

Hierarchy List. Also, the re are other objects which overlap each other but 

are not shown here. All other objects are not displayed. 

oomBE 

PermanentStreaml 

Valleyl 

VaJley2 

Mountain! 

Mountain2 

Regionl 

PermanentStream2 
Re~0n2 

FreshLakel 

TwoLaneRoadl 

PermanentStream3 

Re~onJ 

Fig. 5.7 A sample editor session 

- 68-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

5.4 Rules For Adding an Object or Region to the Database 

When an object or new region is added to the part-whole hierarchy. 

there are certain rules that are followed. These rules follow the guidelines 

set up by the Terrain class. When an object is added to the database. it 

must be completely enclosed in the area to which it is being added. This 

applies to regions as well. There are methods supplied which give the 

enclosing areas of objects and regions. There are also methods to do 

intersection tests. If this test does not pass. the object or region will not be 

added to the part-whole hierarchy. 

After a region has been added successfully. the surface list for the 

new region and its enclosing region will be modified accordingly. Remember 

that the polygons will reside at the lowest level possible. Once the object or 

region has been added. the overlaps instance variable is set. A complete 

search of the database will reveal all parts that extend over each other. 

This then becomes the overlaps list 

- 69-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

6 An Experiment on Performance of the OOTDB 

6.1 Description of the Experiment 

To show that the OOTDB is a viable resource for use in the 

simulation community, it is necessary to conduct an experiment This test 

was to determine if any conclusions could be drawn about the relative 

performance of the GemStone system. A database system should show 

improvements in speed when queries are centralized and give average 

results when the queries are randomized. 

The following experiment involved five different terrain databases all 

created with the OOTDBE. There are four queries which will be sent to the 

database and each query will be sent a specified number of times. The 

timings given are the real clock. 

6.2 Description of the Experimental Databases 

There were five databases created and used in this experiment. Each 

database was created from the same raw data files but the amounts of 

terrain coverage by each database differs. Each database is also classified by 

the form of hierarchy its takes. For example, there are flat, balanced and 

skewed part-whole hierarchies. In addition, some of the databases contain 

terrain objects such as houses, trees, treelines, roadways and lakes. The 

following is a list of the five databases: 

Database Size Balanced/Flat/ Objects or 
Number Patches Skewed No objects 

I 3x3 Balanced Objects 
2 3x3 Flat No objects 
3 2x2 Flat No objects 
4 3x3 Skewed Objects 
5 Ixl Flat No objects 

6.3 Experiment 

Each database was sent four queries with both randomized and 

localized data points. The queries that were used were: 

elevationAt: aPoint 

- 70-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

elevationAt: aPoint put: anotherPoint 
intersects: anObject 
visibilityFrom: aPoint to: anotherPoint 

Each query was sent to the same database which was located in the 

Smalltalk-80 image and in the GemStone system. When the queries were 

being processed in Smalltalk-80, no activity was being conducted in 

GemStone, and the reverse was also true. 

Each query was sent I, 5, 10, and 50 times to each database. For each 

query sent, the distribution of the data points was either randomized or 

localized. Randomized points, in the case of the elevation and visibility 

queries, fell anywhere inside the legal boundary of the terrain, The 

randomized areas which were used in the intersects: anObject query came 

from the database itself. Two objects from the terrain part-whole hierarchy 

were chosen at random. The localized points were statistically close 

togethe r. One seed point was picked at random. This along with a random 

range gave an enclosure which was random in nature. All points that are 

localized fall within that area. 

There is no data for the localized areas used in the intersects query. 

These areas were left out because there was no simple way to find which 

portions of the part-whole hierarchy were next to each other in the database, 

It was determined that randomized areas would be enough data for this 

query, 

6.4 Numerical Results 

The table which is located at the end of this chapter, Table 1, shows 

the numerical results which were obtained from conducting the 

experiment. All times are recorded in seconds, The queries are labeled at 

the top of the page while the number of repetitions are located at the side. 

Each database is marked with a number which corresponds to the list given 

in section 6.2. 

6.5 Results 

There are three major conclusions that were discovered about the 

OOTDB from the result of conducting this experiment. The first is that the 

terrain database functions correctly. Both the Smalltalk-80 and GemStone 

- 71 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

• 

queries returned the same results. The second observation is that the 

GemStone system is slow. It does not look like GemStone will be able to be 

used in its present configuration in a real-time simulation. Finally this 

experiment shows that more experiments need to be done. There is some 

obvious correlation of the data from the GemStone and Smalltalk-80 queries. 

But because GemStone is so slow, it is almost unnecessary to make any 

fo rmal evaluation of its performance. 

One of the inconstancies found was in the diffe rence in times 

between the random and localized points. The localized queries sho uld 

have taken less time to execute than their random counterparts. The d ata 

presented in the table shows that there are many times where this was not 

true. The reason these times differ from the expected pattern is unknown. 

6.6 Possible Reasons for Poor Performance 

There are a few possible reasons why such poor results were obtained 

from th e GemStone system . First, the configuration of the software o n the 

workstation which houses the GemStone server may be limiting its 

performance in some way. This particular computer is part of a network 

and one of its functions is to be an administrator. It has some resources 

which other workstations use. 

Second, this database uses three dimensional data and all of the 

computation uses floating point arithmetic. It is not known if the 

GemStone server uses the underlying floating point processor, or must 

process all floating point numbers in software. 

- 72-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Table 1. Experimental Results 

-73 -

I 



-------------------
elevationAt elevationAt:put: intersects: visibilityF rom:to: 

database' Smalltalk GemStone Sma llta lk GemStone Smalltalk GemStone Smalltalk GemStone 

, of reps Ra nd Local Rand Local Rand Local Rand Local Rand Local Rand Local Ra nd Local Rand Local 

1 1 0.35 1.0 36.5 48.41 0.20 0.48 12.42 14.96 1.11 - 46.39 - 0.78 0.84 127.63 82.49 

2 0.62 0.32 46.08 25.19 0.59 1.39 30.94 52.37 1.92 - 152.75 - 0.91 0.49 126.22 33.45 

3 0.27 0.37 26.41 29.86 0.12 0.54 7.27 24.43 0.26 - 66.36 - 0.46 1. 68 49.23 52.92 

4 0.11 0.46 30.52 20.76 0.14 0.38 18.85 11.91 0.04 - 20.87 - 0.73 2.02 95.33 71.14 

5 0.13 0.08 13.24 12.95 0.05 0.07 8.82 15.43 0.10 - 53.94 - 0.14 0.20 24 .27 16.43 

5 1 2.20 1.74 101.14 88.65 0.64 1.77 30.08 32.48 3.10 - 434 .76 - 2.45 2.30 - -

2 3.35 1.12 121.61 91.86 1.64 1.7 1 113.01 99.88 4.53 - 666.28 - 2.83 2.27 - -

3 2.25 0.33 69.71 32.85 0.25 1.02 37.59 82.33 1.89 - 290.93 - 1.03 0.94 - -

4 0.63 1. 43 54.09 55.31 0.40 0.55 27.25 21.41 0.35 - 61.28 - 2.49 2.06 - -
5 0.33 0.29 34 .26 17.44 0.71 0.35 17.99 27.62 1.71 - 80.82 - 2.88 1.06 - -

10 1 3.80 5.57 209 .28 360.35 0.36 0.93 40.34 48.67 11.67 - 1229.0 - 4.88 209 - -

2 3.32 2.75 222 .64 161.54 1.75 2.41 186.85 242.76 6.27 - 1324.9 - 5.32 3.93 - -

3 0.73 0.75 91.04 38.33 1.96 1.23 85.12 131.80 2.33 - 571.97 - 2.02 1.59 - -

4 2.73 2.40 88.21 117.50 0.68 0.66 35.31 38.16 0.69 - 87 .60 - 5.78 3.19 - -

5 1.83 0.43 36.68 30.63 0.25 0.63 20.19 56.87 1.84 - 161.75 - 1.79 1.13 - -

50 1 11.21 12.9 1 120 1. 4 11 05.8 2.41 3.02 141.00 173.96 30 .53 - 4046.2 - 25.76 18.21 - -

2 9.28 1.74 955.27 14 1.55 5.34 10.25 586.56 105 1.5 30.47 - 6764.7 - 24.91 16.53 - -

3 5.19 2.65 420.94 258.47 2.73 1.48 324.03 11 1.5 1 12.14 - 2858.4 - 10.14 7.16 - -

4 3.78 4.36 394.55 452.00 2.38 2.82 136.04 195.22 2.13 - 382.77 - 24.83 13. 14 - -
5 2.09 3.17 130.08 172.0 1 2.21 1. 49 82.69 92.05 5.30 - 708.57 - 3.55 4.40 - -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

7 Comments on the Object Oriented Terrain 
Database And the Editor 

This chapter will focus on the overall significance of the OOTDB and 

its editor. Comments will be made about design issues and the use of 

alternative data structures. The strengths and weaknesses of the terrain 

database and the graphical editor will be discussed. A discussion of 

unresolved issues concerning the OOTDB and editor is given. Finally, the 

future of this new technology is explored. 

7.1 Accomplishments and Lessons Learned 

The OOTDB was a proof-of-concept experiment. Because there were 

many unknown variables at the start of the project, some of the results 

obtained were unpredictable. In this section, some specific conclusions and 

recommendations will be presented about the object oriented design, the 

terrain editor and the use of Smalltalk-80 and GemStone. 

7.1.1 Object Oriented Representation of Terrain Geometry 

One of the main ideas presented in this project was the use of object 

oriented technology as a foundation for the construction of the terrain 

database. Object orient~d design was chosen because it facilitated the 

natural representation of real world data in the form of structured 

programming. 

The decomposition of a region of the world can be described spatially 

by using the part-whole relationship. It is easy to say that a mountain 

range has a city and lake located in its area. This straightforward approach 

to the design of the part-whole hierarchy also is used in the design of the 

class hierarchy. It is very natural to say that a region of terrain has water 

formations and man-made formations as its parts. This breakdown of the 

terrain into its object oriented representation is usually expressed without 

any difficulty, but an experienced geographer would perhaps be better 

equipped than a computer scientist to describe realistic terrain attributes. 

-74-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

7.1.1.1 Integration into the Virtual Reality Testbed 

A motivating factor for the use of object oriented design is the 

integration of the OOTDB into a project called the Virtual Reality Testbed 

CVRT), This project is focused on designing a standard communication 

protocol for simulations. It uses players and ghosts to represent dynamic 

models in a distributed simulation. The protocol determines how message s 

are sent to players which are located on remote nodes [Hughes 90]. 

The OOTDB will be one player located on the node which contains the 

permanent database. A simulation player will be able to query the terrain 

without knowledge of its physical location on the network. The smooth 

integration capability of the OOTDB into the VRT has implications for 

simulations which are designed using the VRT. By using the terrain 

database as a player. access to the complicated spatial structures. query 

processing power and real world data will be seamless. 

7.1.1.2 Complex Queries 

Incorporated into this project are methodologies from object oriented 

databases. It is important to realize that the terrain database is not an 

implementation of a traditional. query processing data manager. Rather it 

is a specific collection of classes which can manipulate dynamic terrain 

databases efficiently. 

The query language processor of the terrain database is a part of the 

Smalltalk-80 language. The database modeler must specify the operational 

code of the query, and the host system will do the dynamic binding of the 

query call. This implementation of an object oriented database will support 

the complex queries which are generated from a dynamic terrain 

simulation. Queries such as those from a GIS and a real-time simulator 

can be supported by the OOTDB. The work of this project has focused on the 

efficient representation of spatial data. Therefore more work will be neede d 

to fully demonstrate the real-time capabilities of the OOTDB. 

7.1.1. 3 Different Spatial Data Structures 

Object oriented design states that the problem statement should be 

broken down into the base structures to determine the relationships which 

exist among different the entities. Once these relationships have been 

established, the common structures are found and placed in classes. These 

- 75-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

classes become the abstract classes, placed near the root of the class 

hierarchy. The class hierarchy is then refined and tested, and the design 

process is repeated until the resulting hie rarchy is satisfactory. Using this 

method, the terrain database was form ed for this project. It contains one 

root class which manages all of the part-whole hie rarchy and lets more 

specific subclasses use Terrain's resources. 

After looking at the design process used for this project, it became 

clear that some of the original design could have been done more carefully. 

This is evident in the spatial data management. If a structure like 

Antony's [Antony 88,90] was followed, the performance a nd modularity 

might have improved. Specifically, a better m erger of the class and part

whole hierarchies and spatial re lationships would have resulted in better 

data management Some design considerations, like the one m e ntioned 

above, were discovered late in the implementation of the project. It also 

became clear that the DCEL structure was a good choice for the spatial 
I 

re lationship, but the quad-tree might have been easier to work with, and 

most likely, a combination of these two data structures would have been 

ve ry useful. 

7.1.1.4 Frameworks 

One final comment on the design of the terrain comes into light 

when looking at object oriented design. One of the most important aspects 

of object oriented design is the natural tendancy to reuse classes. A 

particular form of reuse is called a framework [Johnson 88]. This would 

give the class structure of the database as much reuseability and 

modularity as possible. It would also be convenient when distributing the 

te rrain database to use rs. They would receive a copy of the terrain 

frame work and would only need to know its protocol to be able to use it. 

7.1.2 The OOTDBE 

The OOTDBE was developed to provide a convenient interface to the 

OOTDB. It serves as a test platform in which te rrain databases ca n be built 

and experiments can be conducted. Although it was not meant to be a 

production database modeling tool, it does serve a specific need in this 

project. There are some advantages and disadvantages in using the 

OOTDBE. 

- 76-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The user interface of the editor is an interactive graphic environment. 

Because of the Smalltalk-80 base language, all of the windowing and 

graphics routines are supplied. With the editor, the user can construct non

trivial terrain databases by interactively manipulating the part-whole 

hierarchy. Once a database has been created and stored in GemStone, other 

workstations have access and may perform operations. Additionally, details 

of the terrain are easy to distinguish when using a graphical environment. 

An advantage of using Smalltalk-80 as th e host environment is the 

easy integration of GemStone. The OOTOBE is the link between the OOTOB 

and permanent storage GemStone system. It provides a way for the user to 

specify which databases are stored as part of the permanent database 

collection. 

One disadvantage when using the OOTOBE is creating the terrain 

classes. Smalltalk-80 provides an excellent Class Browser which gives th e 

user the ability to create, edit and delete classes. The OOTOBE does not 

have a Terrain Class Browser and creating classes requires the use of the 

Smalltalk-80 tool. 

7.1.3 Smalltalk-80 

The Smalltalk-80 programming environment was chosen because it 

was the only available application which met the original design goals. It is 

available on popular UNIX workstations and is relatively inexpensive. But 

the use of this tools had some effect on the outcome of the experimental 

results in terms of performance. 

One capability of the database is the ability to manipulate large 

amounts of data. The Smalltalk-80 system is image based. meaning that all 

source code is stored in binary format in the environment The image also 

contains objects and its size is determined by the number of objects 

currently in use. As the object count increases, the internal memory 

manager allocates space. Large terrain databases may be slow in processing 

because of the virtual image, but they are only limited in size by the image 

size. 

The only implementation of the database is in Smalltalk-80. This 

programming environment is available on very fast UNIX workstations and 

its performance on those computers is quite good, for some applications. An 

advantage to using Smalltalk-80 is that the language supports late binding. 

-77 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

which means that classes can be added while an application is executing. 

This is a powerful language mechanism which is available in Smalltalk-80, 

interpreted rather than compiled language. This price of using an 

interpreter is performance. 

Another disadvantage is Smalltalk-80's lack of popularity among 

computer and simulation professionals. Because object oriented ideas are 

new, many commercial manufacturers have not accepted this as a 

legitimate technology. Implementing this project in Smalltalk-80 meant 

that many people would be exempt from using it and rehosting would 

require a large effort. Recent releases of Smalltalk-80 have given this 

product more exposure to computer professionals. In the future, object 

oriented programming will become popular in all aspects of computing. 

Mandates by the government in the from of software standards will give 

this technology more exposure. 

7.1.4 Gemstone 

One of the other strengths as well as weaknesses is the software 

package GemStone Object Oriented Database. The most useful part of this 

tool is the persistence of Smalltalk-80 objects. It is very easy to use 

GemStone to permanently store and retrieve objects. Using GemStone in its 

basic form requires very few commands, and the objects can transfer back 

and forth between Smalltalk-80 and GemStone easily. 

One of the main problems in using GemStone is access time. Even 

though the workstation which houses the GemStone server has a high 

processor speed, database access is always slow. Typically, the time to read 

a small (four patch) terrain database into Smalltalk-80 is about 30 to 60 

seconds. This speed would be unacceptable for any real-time simulation. 

Another drawback is moving classes from Smalltalk-80 to GemStone. 

The only way to transfer class definitions to GemStone is by hand. Each 

Terrain class and its subclasses must be meticulously recreated using the 

GemStone Class Browser. There is no automatic of doing this transfer. 

7.2 Additional Research Needed 

This section of the chapter is devoted to exploring additional work 

which needs to be done to better understand the usefulness of the OOTDB. 

-78 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Performance analysis, real-time implementations and future directions for 

the OOTDB will be discussed. 

7.2.1 Performance Analysis 

One important aspect of this project was that the design of the 

database and the spatial management system would be computationally 

efficient The results of the experiment presented in chapter 6 did not cover 

any analytical study which would have determined order statistics for 

database algorithms. It only found that the use of GemStone as a real-time 

object oriented database system is not possible. An analytical study as well 

as experiments to verify the theoretical orders are needed. 

7.2.2 Real-time Implementation 

It is evident that the Smalltalk-BO and GemStone implementation 

presented in this report would not be suitable for a real-time simulation 

because the query processing is not fast enough. To be able to achieve real

time performance, a rehosting of the database in the C++ language may be 

necessary. There are some disadvantages is using C++ as a basis for the 

terrain database. C++ does not support a dynamic class hierarchy, which 

prevents any reorganization of the base class structure while the database 

is active. A change to a class must be done off-line and the database source 

code must be recompiled. An advantage to using C++ would obviously be the 

speed 

Another improvement which could be made to the terrain database is 

an analysis of the innermost loops and traversals of the database data 

structures. There may be some places where improvements can be made to 

the flow of code without changing its functionality. Once a final version of 

the database implementation is in place, it would then be interesting to 

look at the possibility of designing a database machine. This would be a 

hardware implementation of the terrain database, and it would be done to 

improve performance. 

7.2.3 Future Directions For OaT DB 

One important are,a of discussion that was brought out in this report 
i 

was the use of object oriented designs and databases. The future of these 

- 79-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

technologies has impacts on the next generations of the OOTDB. But what 

is on the horizon for these products? 

7.2.3.1 Distributed Processing 

The main consensus is that object oriented research will be 

investigating distributed processing. It was evident at the OOPSLA'90 

conference that concurrent and parallel implem entations of object oriented 

products would be the next generation of research topics. Nine out of thirty 

two papers and panels were devoted to either concurrent objects or parallel 

object oriented programming [OOPSLA 90J . It is obviously an area of active 

research and will be so in the future. 

To continue with the topic of distributed object oriented programming 

is the notion of a distributed OOTDB. It would be interesting to investigate 

how the terrain database can " live" on separate nodes while participating in 

one simulation. The class and part-whole hierarchies may be located on 

different nodes and the interaction of the simulation players on those nodes 

will determine where the different parts of the database will live. This line 

of thinking is in concert with the distributed and parallel research in object 

oriented programming above. Not only does this have enormous 

implications in the networking of simulators, but the implementation of a 

distributed terrain database may mean that thousands of players may be 

able t o participate in a single virtual world. 

There are many considerations when looking at distributed 

databases. One of the main questions asked is how to distribute the terrain 

data throughout the nodes of the simulation. Some objects may need to 

reside on more than one node. If a part of the terrain database needs to be 

used on one more than one node at a time, there is a question as to which of 

those places would actually get the terrain object, and which would have 

ghosts. 

Another question to be answered would be how to establish 

communication between objects on different nodes. This raises questions 

in message route planning and the configuration of an underlying physical 

network. 

A final area of investigation would be in the area of a distributed 

terrain class hierarchy. Would the entire class hierarchy be replicated on 

each node, or would some encapsulated version of the class hierarchy be 

-80-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

distributed? These questions, as well as many that were not m entioned 

here will be the focus of work on the OOTDB in the future. 

7.2.3.2 Effectiveness as a Training Simulation 

Also worth mentioning are possible human experiments using the 

OOTDB. One of the important factors of using a real-time simulation is its 

ability t o effectively train. Many times human factor experiments are used 

to determine how well subjects perform while using new equipment and 

software. This type of analysis is needed to determine how effective the 

OOTDB is in a simulation environment. 

7.2.3.3 Physical Modeling 
Another important aspect of this work is the connection of the 

database with other simulator components. There needs to be research in 

the areas of physical modeling, soil dynamics and dynamic terrain. These 

aspects of simulation along with a terrain database will improve the 
I 

usefulness of a simulator. Physical and constraint modeling will give the 

database symbolic resolution of constraints which may be placed on terrain 

objects. Soil dynamics will determine exactly how the t errain will react to 

its environment. Dynamic terrain will lead to algorithms and data 

structures which will better represent the terrain as it changes. All of the 

simulator activities mentioned above should be supported by the OOTDB. 

- 81 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Bibliography 

[Antony 90] Antony, R. "A Hybrid Spatial/Object Oriented DBMS to Support 
Automated Spatial, Hierarchical and Temporal Reasoning," Draft: 
Advances in Spatial Reasoning. Ablex Press, NJ, 1990. 

[Antony 88] Antony, R. "Representation Issues in the Design of a Spatial 
Database Management System," United States Army Symposium on 
Artificial Intelligence for Exploration of the Battlefield Environment, 
EI Paso, TX, November, 1988. 

[Atwood 90] Atwood, T., "Perspectives on Object-Oriented Databases," 
Hotline on Object-Oriented Techno logy, SIGS Publications, New York, 
NY, 1990. 

[Banerjee 88] Banerjee, 1., Kim, W., Kim, K. "Queries in Object-Oriented 
Databases," IEEE, 1988. 

[Coad 90] Coad, P., Yourdon, E. Object Oriented Analysis. Prentice-Hall Inc. 
1990. 

[Deux 89 ] Deux, 0 ., "The Story of 02," Altair, Le Chesnay Cede x, France, 1989. 

[Egenhofer 88b] Egenhofer, M. 1., Frank, A. U. "Object-Oriented Databases: 
Database Requirements for GIS," Department of Surveying 
Engineering, University of Maine, Orono ME, 1988. 

[Egenhofer 88a] Egenhofer, M. 1., Frank, A. U. "PANDA: An Extensible DBMS 
Supporting Object-Oriented Software Techniques," Department of 
Surveying Engineering, University of Maine, Orono ME, 1988. 

[ESIG 89 ] "ESIG-LC Modeling System Manual." Evans and Sutherland 
Simulation Division, Salt Lake City, UT, 1989. 

[Gargantini 82] Gargantini, I. "An Efficient Way to Represent Quadtrees," 
Communications of the ACM, pp. 905-910, December 1982. 

[GemStone 90] Servio Logic Corp., GemStone, Alameda, CA, 1990. 

[Glassner 90] Glassner, A. Graphics Gems. Academic Press Incorporated, 
1990. 

[Glassner 89] Glassner, A. An Introduction To Ray Tracing. Academic Press 
Limited, 1989. 

- 82 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

[Goldberg 89] Goldberg, A, Robson, D. Smalltalk-BO: The Language. Addison
Wesley Publishing Company, 1989. 

[Hendly 90] Hendly, G, "A Class Hierarchy Tool for an Object Oriented 
Programming Environment," Masters Project Report, Department of 
Computer Science, University of Central Florida, Orlando, FL, 1990. 

[Hughes 90] Hughes, C E., Blau, B., Li, X., Moshell, 1. M. "The Virtual 
Reality Testbed Smalltalk Prototype," Institute For Simulation and 
Training, Visual Systems Laboratory Memo 90.14, October 1990. 

[TIGRIS 90] Intergraph, TIGRIS, Huntsville, AL, 1989. 

[ITASCA90] ITASCA Systems, Inc., ITASCA 1990. 

[Johnson 88] Johnson, R E., Foote, B. "Designing Reusable Classes," Journ al 
of Object Oriented Programming, pp. 22-35, June/July 1988. 

[Karimi 90] Karimi, S., Personal Communications, October 1990. 

[Kim 90] Kim, W. "Architectural Issues in Object-Oriented Databases," 
Journal of Object Oriented Programming, pp. 29-38, March/April 1990. 

[Meyer 88] Meyer, B. Object-oriented Software Construction. Prentice Hall 
International, 1988. 

[Moshell 90] Moshell, 1. M., Goldiez, B., Blau, B., Dunn-Roberts, R, Klasky, 
R, Lisle, C, Morie, 1. "A State of the Art Report on Visual Simulation, " 
Institute for Simulation and Training, Visual Systems Laboratory, 
1990. 

[Objectivity 90] Objectivity, Inc., Objectivity, Menlo Park, CA, 1990. 

[OOPSLA 90] Conference on Object Oriented Programming: Systems, 
Languages and Applications and European Conference on Object
Oriented Programming, Ottawa, Canada, Octobe r 1990. 

I 

[Orenstein 86] Orenstein, 1. A. "Spatial Query Processing in an Object
Oriented Database System," Proceedings of ACM SIGMOD'86 
International Conference on Management of Data, Washington D.C, 
pp. 326-336, May 1986. 

[Orenstein 88] Orenstein, 1. A, Manola, F. A "PROBE Spatial Data Modeling 
and Query Processing in an Image Database Application," lEE 
Transactions on Software Engineering, 1988. 

[Riet 90] van deRiet, R P. "Impressions of the First International Conference 
on Deductive and Object Oriented Databases," Journal of Object 
Oriented Programming, pp. 45-48, March/April 1990. 

- 83-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

[Stanzione 891 Stanzione, T. "Terrain Reasoning in the SIMNET Semi
Automated Forces System, ." Symposium on Geographical Information 
Systems for Command and Control 1989, The Hague, Netherlands, 
October 1989. 

[Versant 90 I Versant Object Technology, Versant, Menlo Park, CA, 1990. 

[Wegner 90 I Wegner, P., "Concepts and Paradigms of Object Oriented 
Programming," SIGPLAN OOPS Messenger, August 1990. 

[Wegner 871 Wegner, P. "Dimensions Of Object-Based Language Design," 
Proceedings of ACM's OOPSLA'87, pp. 168-182, 1987. 

- 84-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 0000101 


	Object Oriented Terrain Databases For Visual Simulators
	Recommended Citation

	Untitled.PDF

