
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-1992

Specification Of Distributed Interactive Simulation In The Estelle Specification Of Distributed Interactive Simulation In The Estelle

Formal Description Technique: Investigation Of OSI Protocols For Formal Description Technique: Investigation Of OSI Protocols For

Distributed Interactive Simulation Distributed Interactive Simulation

David T. Shen

Huat K. Ng

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Shen, David T. and Ng, Huat K., "Specification Of Distributed Interactive Simulation In The Estelle Formal
Description Technique: Investigation Of OSI Protocols For Distributed Interactive Simulation" (1992).
Institute for Simulation and Training. 170.
https://stars.library.ucf.edu/istlibrary/170

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/170?utm_source=stars.library.ucf.edu%2Fistlibrary%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

INSTITUT E FOR SIMULATION AND TRAINING

B 214

' -

Contract Number N61339-91-C-01 03
Investigation of OSI Protocols for Distributed Interactive Simulation
Prepared for -
U.S. Army Project Manager for Training Devices

April 23, 1992

~~,' ; ':,1", ,," Sp~cificatiol1 of Distributed
(> ::>-: ~ r .; .~ -: rnteracfive Sirnulation in the

. ,,~ " ,{t'::~ :~' ;'i~s~~tl~~ormal Description
-~ : •. -" 1; ~ ~-- ;< ~ "' Te-chni-que '

.. ',. :- -Institute for Simulation and Train ing
1'2424 Research Parkway ~uite 300
Orlando FL 32826 .

University of Central Florida
Division of Sponsored Research

IST-TR-92-17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

IINS TIT UTE FOR SIMULATION AND TR AI r'i f N G . . -- .

Specification ()f
Distributed Interactive Simlulation in the

Estelle Formal Description Technique

Contract N61339-91-C-01 03
Investigation of OSI Protocols for Distributed Interactive Simulation

Prepared for
U.S. Army Project Manager for Training Devices

12350 Research Parkway
Orlando, FL 32826-3276

April 23, 1992

IST-TR-92-17

Prepared by

David T. Shen, Huat K. Ng

Reviewed by

Scott Smith

Institute for Simulation and Train ing • 12424 Research Parkway, Suito 300 • Orlando, Florida 32826

University of Central Florida • Division of Sponsored Research

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEOFICA nON OF DISTRIBUfED INTERACTIVE SIMULA nON

IN THE ESTELLE FORMAL DESCRIPTION TECHNIQUE

PREPARED FOR:

u.s. ARMY PROJECT MANAGER FOR TRAINING DEVICES

12350 Research Parkway

Orlando,.FL 32826-3276

INVESTIGATION OF OSI PROTOCOLS FOR

DISTRIBUTED INTERACTIVE SIMULATION

CONTRACT N61339-91-C-0103

April 23, 1992

Institute for Simulation and. Training

University of Central Florida

12424 Research Parkway

Orlando, FL 32826

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ABSTRACT

The Distributed Interactive Simulation (DIS) Entity Information and Entity

Interaction Draft Standard defines a communica tion protocol to interconnect

simulators in a real-time environment. This protocol focuses on the information

for describing the state of the simulated entities and their interactions during a battle

simula tion.

Many of the concepts in the DIS standard ilre derived from the Simulation

Network (SIMNET) project. The SIMNET program has demonstrated the feasibility

of interconnecting multiple autonomous simulators, primarily of ground based

armor vehicles, via a communication network (LAN/WAN), such that the

simulators could interact in real-time [POPE]. DIS is based upon the foundations of

SIMNET and will be enhanced to provide a standard for connecting existing and

future simulators. However, a formal description of the DIS standard is yet to be

developed, which would, in turn, speed its prototyping, development, and testing

processes.

This report describes the approach taken by the Institute for Simulation and

Training (1ST) to develop a formal description of DIS, to generate a prototype DIS

protocol machine derived directly from the developed DIS standard, and to test the

DIS protocol. 1ST used an International Organization for Standardization (ISO)

standard Formal Description Technique (FDT) called Estelle for the formal

specification, and a FDT prototyping tool known as the Portable Estelle Translator -

Distributed Implementation Generator (PET-DINGO) to generate a DIS prototype.

Furthermore 1ST developed a procedure to test the generated prototype.

The aim of this work was to develop a fonnal specification for DIS and to

identify possible shortcomings and inconsistencies in the DIS standard. This task

identified some areas in the current standard that need to be modified or clarified.

The recommended modifications to the DIS stalndard were submitted to the

respective DIS standard working group for consideration.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TABLE OF CONTENTS

LIST OF TABLES i v

LIST OF FIGURES v

1 INTRODUCTION 1

2 GENERAL DESCRIPTION .. 2

2.1 Distributed Interactive Simulation 2

2.2 Estelle Formal Description Technique 4

2.3 Portable Estelle Translator &

Distributed Implementation Generator 5

3 SPECIFICATION PHASE ... 8

3.1 Approach.. 8

3.2 Model :.. 8

3.3 Assumptions .. "... 14

3.4 Constraints .. 15

4 TESTING PHASE .. 16

4.1 Testing Procedure ... 16

4.1.1 Valid Testing 17

4.1.2 Inopportune Testing .. 22

4.2 Testing Results 23

5 RECOMMENDATIONS TO THE DIS WORKSHOP ... 25

6 CONCLUSION 28

APPENDIX A - ESTELLE OVERVIEW

APPENDIX B - ESTELLE SPECIFICATION OF DIS STANDARD

APPENDIX C - PET-DINGO USER DEFINED ROUTINES AND MAKEFILE

ii

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDIX D - LISTING OF PET-DINGO GENERA 1ED FILES FROM
DIS SPECIFICATION

APPENDIX E - REFERENCES

iii

I
I
I LIST OF TABLES

I Table 4.1 Logistic / Logistic - Resupply Service ... 18

I
Table 4.2 Logistic / Logistic - Repair Service 19

Table 4.3 Logistic / Assess ,.............. 20

I Table 4.4 Fire / Assess 21

I
I
I
I
I
I
I
I
I
I
I
I

iv

I

I
I
I
I Figure 2.1

I
Figure 3.1

Figure 3.2

I Figure 3.3

I Figure 3.4

I
Figure 5.1

Figure 5.2

I Figure A.l

I Figure A.2

I
I
I
I
I
I
I
I
I

LIST OF FIGURES

PET-DINGO Compilation Procedure ... 7

Estelle Structure of DIS Protocol 10

Extended State Transition Model for Logistic Module 12

Extended State Transition Model for Fire Module 13

Extended State Transition Model for .Assess Module 14

Resupply Receiver State Transition Model.................................... 26

Resupply Supplier State Transition Model........... 27

Estelle Structure 30

Example of an Extended State Transition Model............ 31

v

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 INTRODUcnON

The Institute for Simulation and Training along with the U. S. ARMY Project

Manager for Training Devices (PM TRADE) and Ddense Advance Research Project

Agency (DARPA) has been promoting the interoperability of defense simulations

through the DIS workshops. The goal of the workshops is to gather expertise from

the simulation community and to advance the dev,~lopment of a standard to allow

defense simulations to interact through networking. These types of simulations

provide an environment for training inter-crew skills and provide an environment

for evaluation of tactics, doctrines, and new equipment features.

The developed standard must be tested for validation. This test will create

confidence in the standard's completeness and domain of applicability for

implementers. This validation should begin with the initial stage of release.

The DIS draft standard is in its second year of development. The standard is

being reviewed and is proposed to the IEEE in 1992 for adoption. Currently, the DIS

standard covers only layer 7 of the Open System Interconnection (OS!) Reference

Model [1507498]. Layer 7 is the Application Layer, which is the simulation entity

information level. It does not cover the network architecture or communication

protocols below the Application Layer. Several defE'nse procurements have specified

the DIS standard as the baseline for the interoperability requirements.

IST has experience in many areas of computer and simulator networking. In

its effort to assess the suitability of existing 051 protocols for real-time simulations,

1ST has developed a formal specification of the DIS draft standard using the Estelle

Formal Description Technique (PDT) and the Portable Estelle Translator - Distributed

Implementation Generator (PET-DINGO) compiler.

Estelle is a standard PDT developed in 1989 by the International Organization

for Standardization (ISO) to specify distributed, concurrent information processing

systems using a Pascal like language. Estelle is not a programming language for

implementation, but simply for specification, with its own syntax and semantics.

The PET-DINGO compiler, developed by thE' National Institute of Standards

and Technology (NIST), is a protocol prototyping tool that accepts an Estelle

1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

specification and produces a runtime environment simulating the specified protocol

behavior. The PET-DINGO was developed to familiarize the scientific community

with the Estelle specification language and thus promote its use.

2 GENERAL DESCRIPTION

This section briefly describes the DIS standard, the Estelle PDT and the PET

DINGO compiler.

2.1 Distributed Interactive Simulation

The October 30, 1991 release of the DIS standard defines 10 types of Protocol

Data Units (PDUs) to be used by networked simulators to represent the state of the

simulation entities during a battle simulation [DIS-SID]:

1) Entity State

2) Service Request

3) Repair Complete

4) Repair Response

5) Resupply Offer

6) Resupply Received

7) Resupply Cancel

8) Collision

9) Fire

10) Detonation

Th-ese 10 POU types can support the entity behavior during repair, resupply,

fire, collision, motion and entity appearance updates, which are the vital

components of a simulation environment, and they are the core of this research

task.

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Entity State POU is used most often during a simulation exercise. It

describes the status of its simulated entity's location, velocity, acceleration,

ammunition, and articulated parts. It is transmitted when a dead reckoning model

of an entity's state diverges from its own high fidelity model by a predetermined

threshold. When an Entity State POU is received by other simulators in the exercise,

these simulators update their state information regarding the entity.

The Service Request, Repair Complete and Repair Response POUs are used

to represent a repair event involving two simulated entities. These POUs carry the

necessary information to determine the types of rE:pair performed and the level of

satisfaction of the repair. The repair POUs are request/response type, meaning, some

POUs are used in response to the receipt of other POUs.

The Service request, Resupply Offer, Resupply Received and Resupply Cancel

are used to represent a resupply event involving two simulated entities. These

POUs contain the necessary information to determine the type of resupply needed.

The resupply POUs are also request/response type, meaning, some POUs are used in

response to the receipt of other POUs.

The Collision POU is used by two simulated entities when involved in a

collision. The information contained in this POU is needed for collision damage

assessment.

The Fire POU and the Detonation POU are used to inform a target entity of

the weapon fire event and the associated detonation of the fired munition. The

entity which fires a weapon models the munition's trajectory and informs the target

of the point of impact. It is the responsibility of the targeted entity to assess its

damage using the information in the Detonation PDU.

3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.2 Estelle Formal Description Technique

The problem of specifying distributed systems is more difficult than that of

specifying a sequential system. The difficulties are related to the necessity of

describing various sequential components which may cooperate and execute in

parallel. To attain reliability in production softwarE~, a protocol development should

begin with a formal specification.

Estelle is a language for specifying distributed systems with a particular

application in mind, namely that of communication protocols and services [BUDKO,

1509074]. The semantics for Estelle have been formally defined and are aimed at

describing structured communicating automata (states) whose internal actions are

defined by Pascal programming language statements (with some restrictions and

extensions).

The benefit in using a FDT, in particular Estelle, is to remove the ambiguities

from the protocol description, traditionally defin,ed in a combination of natural

language and state tables. Another benefit is the availability of tools that use Estelle

to generate rapid prototypes and test suites.

The three main components of the Estelle structure are the Module, the

Interaction, and the Channel. The correct use of thl~se components is essential for a

specifica tion.

The Modules have a number of input/output access points known as the

Interaction Points. A module will be represented g:raphically as a rectangle and the

interaction points will be represented by dots on Hs boundary. An active module

includes in its transition part at least one transition. Each active module specifies its

own states and the rules for state transition. The colJection of the states, the possible

state transitions, and the module variables is lknown as the Extended State

Transition Model (ESTM).

The modules can be organized in a hierarchical (tree) structure, with

parentI children relationships. Each module can have several embedded modules

(children), and these modules can, in tum, include other embedded modules.

4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Interactions are the messages sent and received by the modules. The

interactions serve as the means of communicating information between modules.

The modules can send an interaction at any time, yielding non-blocking

communication. An interaction sent through an 'interaction point that is an end

point of a communication link directly arrives at the other end point of this link and

is always accepted by the receiving module. Thus only end-to-end communication

between modules is possible.

Modules (parents or children) can establish communication with other

modules using channels. Channels are defined as one-to-one connections between

the modules through which the modules interact. Each channel essentially connects

two interaction pOints. Each channel is associated with an unbounded first-in-first

out queue for the incoming interactions as they arrive for processing. There are

several restrictions imposed in the way channels may interconnect the modules.

Channels also define the types of interactions that may pass through it.

Each Estelle module definition is composed of a heading and a body that

describes its behavior. A detailed description of Estelle is presented in Appendix A.

A transition takes place in response to an internal or external event to the module

and it may generate an interaction to the connected modules. The global properties

of the Estelle FDT supports a logical specification (modeling) of a communication

protocol.

2.3 Portable Estelle Translator & Distributed Implementation Generator

The PET -DINGO proto typing tool, developed by NIST, is a twofold compiler

that generates a static model and a dynamic model from an Estelle specification. The

PET compiler takes an Estelle specification and checks it for syntax, semantic or

lexical error and then compiles it into an object c(]lde (static model) [SIJELl]. The

DINGO compiler takes the a static model and geneJrates a series of C++ source files

a~sociated with specified Estelle modules describing their behavior (dynamic model)

[SIJEl2].

The PET-DINGO was written in the C++ programming language. It supports

network communication using either Transmission Control Protocol/Internet

5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Protocol (TCP lIP) or Remote Procedure Call (RPC), as a consequence, generated

processes can run on diverse computers on a network. It is designed to run on a

Sun3 or Sun SPARC hardware platform. It also supports the X-window

environment, which facilitates the user's interaction with the specified protocol

processes.

Figure 2.1 shows the process to build and t!xecute a runtime instance of an

Estelle specification:

1) Compile the Estelle specification using the PET to generate an object file.

At this stage, the decision whether to run the specification in a multi-host

environment is made.

2) Compile the PET generated object file using DINGO to generate C++

source files and the Makefile.

3) Add user defined programs [see Appendix C] and set system parameters.

4) Modify the Makefile [see Appendix C] as needed by including user defined

programs.

5) Use the Makefile to generate system executables from the C++ files, which

are the Estelle modules.

6) Initialize the site-daemon (called site_.serv) to manage the runtime

processes and the network interface. The site-daemon has to be initialized

in each host if the processes is to run in a multi-host environment.

7) Call the Estelle specification top lev l~1 module name for modules

initializa tion.

6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Estelle
specification

".obj file
generated by PET

c++ files

Makefile

c++ libraries & user
provided code

(:++ compiler 1-----1~ lmd linker

Executables

[

. Estelle run time
. Inter-process comm.

Dingo run-time hbranes W· d . t f . m owm er ace

Figure 2.1 - PET-DINGO Compilation Procedure

Each Estelle module is a process that can be accessed through a window

interface. A user specifies inte.ractions by clicking the appropriate item of the

window. The windows display modules' state, the value of the variables at any

given time, and the queue of interactions associated with each channel connected to

the module.

The module windows can be opened by cliddng the name of the module on

the root window. The embedded process windows can be opened by first opening

their parent's window. The hierarchy of the windows follows the hierarchy of the

specified Estelle modules.

7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3 SPECIFICATION PHASE

This section describes the approach taken to specify the DIS standard using the

Estelle FDT. The model used for the DIS protocol with the associated assumptions

and constraints is also described.

3.1 Approach

A formal specification of a protocol using the Estelle FDT is not unique,

meaning there are several valid ways, to specify a particular protocol. IST has

experienced several difficulties in specifying the DIS PDU interactions in Estelle

because of the nature of the information passed from host to host and the type of

interaction specified in the DIS standard.

The approach taken by IST to specify the DIS PDU interactions using Estelle is

a model following an initiator/responder paradigm. This model uses a general view

of a simulation entity from a driver's perspective, meaning that the model follows a

hierarchical structure and the lower modules vi.ew the upper modules as the

initiators of the processes by making the appropriate choices as to what actions to

take.

3.2 Model

The model identifies the Repair and Resupply activities as the ones having a

initiator /responder type of interaction. Other activities like fire and collision are

essentially non-replied interactions, which do not: follow the initiator/responder

scheme.

8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The model includes four basic modules sho~m in Figure 3.1:

Driver Module: interfaces the user to the protocols specified within the Core

module. The Driver Module is responsible for starting a protocol process and

communicating appropriate decisions.

Core Module: includes 5 embedded modules, namely the Splitter, Combiner,

Logistic, Fire and Assess. It models the DIS POU interactions.

Network: models the physical/logical linkage between the protocols (the

entities). It is responsible for end-to-end transmission of protocol messages

between two entities.

Network Switch: allows user control of the network, giving the user the

ability to interrupt the message transmission. Its existence is purely for

testing purposes.

9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CORE

DRIVER]
A

B
~ - - - attachment
B

splitter_~gistic ... SPLI1TER ~
~~ ________ ~TC D

C

LOGISTIC

",
logistic_combiner

-

-4_ - splitter_fire

D

COMBINER I
I

ASSESS

H

..... -
assess_'COmbiner

I ~- -- - attachment

~ - - - lowcore_network
\

net action J \ - \

~ L--___________ tK-'----rdri~er2-' I NETSWITCHfL L _ NETWORK _ L ,:e~

Figure 3.1 - Estelle Structure of DIS Protocol

Figure 3.1 shows the modules with their names in bold type, the associated

interaction points in capital letters and the channel names indicated by arrows.

10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

task:

Within the Core module are the independent sub-modules of interest of this

Lo~istics Module: models both the repair and resupply (logistic) events of

DIS. It can act as either initiator or responde:r, but not both. This module uses

six types of PDUs (2 to 7 defined in sec. 2.1) to inform the peer entity of the

action taken by the other. It incorporates reliability features by using some of

the PDUs to acknowledge other PDUs. Such use of PDUs can be classified as

an application level acknowledgement.

Fire Module: models the fire and detonation events. It uses the Fire PDU

and Detonation PDU to convey related info:rmation to peers. The Fire PDU

and the Detonation PDU do not require- acknowledgement from their

intended target.

Assess Module: responsible for updating the internal representation of a

simulation. For instance, the Assess module represents updates to an entity's

appearance during a simulation exercise when it receives an Entity State PDU,

and it is also responsible for representing the fire event and damage

assessment caused by a munition detonation or a collision. As far as the

specification is concerned, the assessment means that the module transitions

from an idle state to a particular type of assessment state and then back to the

idle state.

There are two auxiliary sub-modules within the Core module:

Splitter Module: responsible for vectoring the user interactions (signals) to

the appropriate protocols within peer sub-modules. The rationale is to allow

a higher level of abstraction for the connection between the Driver module

and the Core module. Without the Splitter module, one would have to be

concerned with the various connections from the Driver module to the Core

sub-modules.

Combiner Module: responsible for piping the outgoing interactions (PDUs)

from protocols within peer sub-modules (Le., Logistics, Fire or Assess

modules) to a single channel connected to the Network module. It is

11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

analogous to the Splitter module performing the reverse function. The

rationale is to allow a higher level of abstraction for the connection between

the Core sub-modules and the Network module. It is also responsible for

conveying state variables among sibling modules.

Among all the referred modules, the Logistic, the Fire and the Assess

modules are the only ones that are mapped into the DIS PDU interaction, other

modules are intended for interface and testing purposes and are not part of the DIS

specification.

The extended state transition model of the modules that maps to the DIS PDU

standard are explained below:

ServiceRequestPDU

ServiceR;6ffestPDU
. Resuppl erPDU

Resup ply Received PDU

------stO~Signa1 Entit tatePDO

move Si~l
hntitystateOU

Figure 3.2 - Extended State Transition Model for Logistic Module

12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 3.2 unifies the existing repair/resupply related state transition models

defined in the DIS standard with the entity movement and collision activities. The

repair/resupply side from one entity responds to the repair/resupply side of another

entity, which creates a reply/response type of interaction between two Logistic

modules. A clock routine returns the system time which is used in the repair and

resupply transition models.

Because no collision ESTM is specified in DIS, the SIMNET model is

assumed. An entity involved in a collision sends a Collision PDU to the other

entity, communicating the collision. The receiver of the Collision PDU replies to the

first entity with another Collision PDU, as an acknowledgement of the collision.

IDLE

Delay
DetonationPDU

fire=signal
FirePDU

Figure 3.3 - Extended State Transition Model for Fire Module

The Fire module, shown in Figure 3.3, is composed of two states: IDLE and

FIRE. An entity transitions to the FIRE state on the Driver's signal representing

weapons fire and returns to IDLE state after a delay, simulating the time required for

flight and detonation of the fired munition.

Because no fire ESTM is specified in DIS, the SIMNET model is assumed. The

initiator sends a Fire PDU immediately followed by a Detonation PDU. These PDUs

are conveyed to the Assessment module which simulates the internal processing of

the receiving simulator.

13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

IDLE

DetonationPDU \

EntityStatePDU

Figure 3.4 - Extended State Transition Mod.el for Assess Module

The ASSESS module in Figure 3.4 represents the possible assessments a

simulator can perform: fire assessment, detonation assessment (damage assessment),

collision assessment (damage assessment), and entity state assessment.

Because no assessment ESTM is specified in DIS, the SIMNET model is

assumed. It serves the purpose of isolating the information update event from the

usual simulation related events allowing concurrent processing for the specified

model.

3.3 Assumptions

There are several assumptions made to faciliitate the model's creation:

1) The repair activities and resupply activities (logistic) do not take place

concurrently. This allows all four state transition models defined in the standard

associated with these activities to be combined in a single transition model.

14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2) An entity cannot repair or resupply while in motion. This assumption allows the

inclusion of collision and movement events in the logistic module.

3) The logistics activities, the fire activities and the lPDU assessment activities can be

processed concurrently. This is represented in the core module through three

independent sub-modules.

4) The resupply activity, once initiated, takes 15 seconds to complete.

5) The interval between consecutive Entity State PDUs is 1 second for a moving

entity.

6) The interval between a weapon fire and the detonation of the fired munition is 2

seconds.

7) The assessment related activities are instantaneous, which is represented by the

immediate transition from any type of assessment state to idle state in the Assess

module.

8) The IDs used by the entities for identifying the collision events are consecutive

integers starting at 1.

9) All interactions are received by the Assess module except for the repair and

resupply related interactions.

3.4 Constraints

The following constraints are imposed by the' Estelle specification:

1) There are only two entities modeled in the module for testing purpose.

2) The module interactions do not carry variable stnlcture or concrete :values.

15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4 TESTING PHASE

As mentioned earlier, the DIS Standard is in its infancy. Efforts must be

channeled toward writing a test plan that will discover whether the DIS protocol is

complete and valid. The DIS standard specifies procedures and formats for the

exchange of information between heterogeneous simulators. Based on these

specifications, a test plan can be written.

Protocol tests can be divided into three different types: Valid, Inopportune,

and Invalid Message Tests [BERTINE]. Valid Tests are those where the tester sends

messages at times and in sequences that ar€~ expected or normal for the

Implementation Under Test's (IUTts) state. Inopportune Tests are those where the

tester sends messages at times when they should not occur or are out of sequence.

Invalid Message Tests determine if the IUT correctly handles receipt of messages that

are incorrectly encoded, have illegal fields, or have parameters outside their legal

bounds. Since the DIS specification in this report does not include the actual bit

structure of the PDUs, Invalid Message Tests arE~ inappropriate and will not be

included in the test plan.

The DIS validation is an interactive process. Experience gained during the

testing phase is used to enhance the quality of the specification and testing process. If

the test plan uncovers an ambiguity or incomph~teness in the specification, the

specification can be modified and re-tested, leading to further refinement.

The hardware used in the IST testing environment consists of two Sun

SPARe Workstations connected by Ethernet. The s.ystems used Sun Open Window,

a graphical user interface based on the X-window environment. The experiments

were conducted in a multi-host environment, and both computers shared the files

generated by PET-DINGO.

4.1 Testing Procedure

Each test step follows this procedure:

• Initialize the IUT and manipulate it irltO the desired state .

16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

• Apply the specified input.

• Observe and validate the output.

• Verify the new state is as expected.

There are two choices available when executing the runtime PET-DINGO files

of an Estelle specification: continuous mode or single-step mode. Running the DIS

specification in single-step mode is the more appropriate choice because this allows

the tester to observe the changed states and messages passed between modules at his

or her own pace.

4.1.1 Valid Testing

The test plan is written in a tabular format. It consists of Valid test scripts.

Four tables describe the DIS state transitions. These are:

• Logistic / Logistic - Resupply Service

• Logistic / Logistic - Repair Service

• Logistic / Assess

• Fire / Assess

Each table is separated into an Initiator co.lumn and a Responder column.

Both Initiator and Responder are separated again into four other columns: Input,

Output, Current State and Next State. In this fashion, the tables follow a natural

sequence of the state transitions, which facilitate the observation of the transitions

and messages that are conveyed between two modules. The tables used in the test

plan are shown in Tables 4.1 - 4.4.

17

......
00

Logistic
(Initial) I Logistic

(Respond)

Request Service /
Offer Supplies

Offer Supplies /
Receive Offer

Accept Service /
Resupply Complete

Reject Offer /
Resupply Cancelled
(by Receiver)

Resupply Cancelled
(by Supplier) /
Transfered Cancel

Kepeat Kequest i
Offer Supplies

Resupply Refuse /
Cancel Requ~st

Input

Request
Resupply

Service
Request

POU

-

Resupply
Cancel

Resupply
Cancel

-

Resupply
Cancel

Initial Transition Respond Transition

Output Current Next Input Output Current Next
State State State State

Service Idle Requesting Service Resupply Idle Offering
Request Request Offer POU

POU POU
Resupply Idle Offering Resupply - Requesting Receiving

Offer POU Offer POU

Resupply Receiving Idle Resupply - Offering Idle I

Received Received I

POU POU
Resupply Receiving Idle Resupply - Offering Idle

Cancel POU Cancel POU

Resupply Offering Idle Resupply - Receiving Idle
Cancel POU Cancel POU

Service Requesting Requesting Service Resupply Idle Offering
Request Request Offer POU

POU POU
Resupply Idle Idle Resupply - Requesting Idle

Cancel POU Cancel POU

~---

Table 4.1 - Logistic / Logistic - Resupply Service

---------'--,-,-------

.....
\0

Logistic
(Initial) I Logistic

(Respond)

Repair Request
(receiver) / Repair
Request (repairer)
Repair Complete
(repairer) / Repair
Complete (receiver)
Cancel Request /
Repair Cancel
Repeat Request /
Repeat Offer

Input

Request
Repair

Repair
Complete

Cancel
Request

-

Initial Transition

Output Current Next Input
State State

Service Idle Requesting/ Service
Request Receiving Request

POU POU
Repair Offering Idle Repair

Complete Complete
POU POU

- Requesting/ Idle -
Receiving

Service Requesting/ Requesting/ Service
Request Receiving Receiving Request

POU POU

Table 4.2 - Logistic / Logistic - Repair Service

Respond Transition

I
I

Output Current Next
State State

- Idle Offering

Repair Requesting/ Idle i

Response Receiving
POU

- Offering Idle

- Offering Offering

N o

Logistic
(Initial) I Assess

(Respond)

Update / Assess
Location

Assess Location / -

Move / Assess
Location

Assess Location / -

Stop / Assess Location

Assess Location / -

Collision / Assess
Collision

Assess Collision /
Collision Reply
Assess Collision / -

move / assess
collision

stop / assess location

Input

-

-

move

-

Stop

-

collision

Collision
POU

-

move

stop

Initial Transition

Output Current Next Input
State State

Entity State Idle Idle Entity State
PDU PDU

- Assess Idle -
Entity State

Entity State Idle Move Entity State
PDU PDU

- Assess Idle -
Entity State

Entity State Move Idle Entity State
PDU PDU

- Assess Idle -
Entity State

Collision Move Collision Collision
PDU PDU

Collision Assess Idle Collision
POU Collision POU

- Assess Idle -
Collision

Entity State Collision Move Entity State
PDU PDU

Entity State Collision Idle Entity State
PDU PDU

Table 4.3 - Logistic / Assess

Respond Transition

Output Current Next
State State

- Idle Assess
Entity State

- - -

- Idle Assess
Entity State

- - -

- Idle Assess
Entity State

- - -

Collision Idle Assess
PDU Collision

- Idle Assess
Collision

- - -

- Idle Assess
Entity State

- Idle Assess
Entity State

IV

Fire
(Initial) / Assess

(Respond)

fire / Assess Fire

Assess Fire / -

delay ; Assess
Detonation

Assess Detonation / -

Input

fire

-

-

-

Initial Transition

Output Current Next
State State

Fire PDU Idle Fire

- Assess Fire Idle

Detonation Fire Idle
PDU

Entity State Assess Idle
PDU Detonation

Figure 4.4 - Fire / Assess

Respond Transition

Input Output Current Next
State State

Fire PDU - Idle Assess Fire

- - - -

Detonation - Idle Assess
PDU Detonation

- - - -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Table 4.1 shows the Initial transitions and the corresponding responding

transitions for the resupply services available in the DIS protocol. Resupply services

may include resupplying for fuel or munitions. Using Table 4.1 and following the

transitions, a list of the Initial/Respond transitions can be obtained and checked

against the DIS standard.

For example, an entity may request resupplies by sending a Service Request

PDU. The resupply receiver, will change state, transitioning from Idle to the

Requesting State and will respond by sending a Resupply Offer PDU. The supplier

entity will then transition from Idle to the Offering State. This set of transitions can

be traced by observing the first row of Table 4.1. Executing the DIS specification in

single-step mode allows the tester to verify the steps and observe the messages in the

queues.

When the Resupply Offer POU is transmitted by the supplier, the resupply

receiver receives the PDU and transitions from the Requesting State to Receiving

State. This set of transitions are described in the second row of Table 4.1.

As can be seen from the above scenario, a set of initial and response

transitions can be observed by following the test scrip t in Table 4.1. Tables 4.2, 4.3 and

4.4 are similar to Table 4.1. Ta ble 4.2 shows the initial transition and its

corresponding responding transitions for the repair services defined in the DIS

protocols. Tables 4.3 and 4.4 show the transitions during fire and collision scenarios

with the Assess Module playing the role of the responder.

4.1.2 Inopportune Testing

The inopportune tests identify shortcomings in the protocol due to network

failure and tests the protocols response in such situations.

For the inopportune tests, IST has developed test cases dealing with recovery

from PDU loss. In all cases, the protocol recovered by a timeout mechanism. In test

cases identified, DIS would simply discard the PDUs thaf do not apply to the state of

the transition model.

22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

For example, in row 1 of Table 4.1, if the Service Request PDU sent by the

requester is lost, the responder remains in the Idle state. The requester would repeat

the request by sending a Service Request PDU every 5 seconds until either it receives

a response for its request or it gives up the request. A lost Service Request PDU has

no great consequences.

Another example is row 4 of Table 4.2. If three or more consecutive Service ·

Request PDUs are lost (e.g., the requester dropped out from the network), then the

repairer would timeout after 12 seconds and cancel the repair activity by returning to

the Idle state. This event is not expected to happen frequently, but if it does happen,

it would be handled properly by the DIS protocol.

4.2 Testing Results

The tables presented in the previous section show a detailed testing procedure

for the DIS Protocols. The tables are arranged into an Initiator/Responder analysis.

All the initiated transitions were verified with the corresponding responder

transitions. The experience gained during the testing phase was used to enhance the

quality of the specifica tion and the testing process. If an ambiguity in the

specification was observed, the specification would be suitably modified.

As a result of the testing phase, two inconsistencies were found in the

Logistic Module. In the first case, the Cancel Request transition in the resupply

receiver module (Figure 5.1) did not occur. This was because no interaction

(Resupply Cancel PDU) originated from the supplier module to allow the receiver's

Cancel Request transition to take place. The specification was modified to correct this

inconsistency. With the addition made to thE~ DIS specification, the testing

procedures were changed to reflect this modification.

For the second case, the Transfer Cancel transition in the receiver resupply

module (Figure 5.1) would not occur. As with the first case, the reason was that

there was no interaction (Resupply Cancel PDU) originated from the supplier

module to allow the receiver's Transfer Cancel transition to take place. Again, the

specification was modified to handle this deficiency. The deficiencies and their

corrections are are explained in detail in section 5.

23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The new state transition models for the supplier/receiver resupply module is

shown in section 5. Further explanations are given in section 5 in regard to the new

state transitions. The Fire and Assess state transition models were checked based on

a number of assumptions on the standard. and no ambiguities were found. These

assumptions are listed in Section 3.3 in this report.

The DIS standard has provisions for the loss of packets in the case of the

repair /resupply activities due to network failures. Because of this, the Inopportune

test has shown those cases were handled properly. In the current DIS standard, a

timeout mechanism is incorporated and has been verified to be adequate.

24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

5 RECOMMENDATIONS TO THE DIS WORKSHOP

Specification of DIS in the Estelle Fonnal Description Technique for High

Level Protocol Machine Validation.

Introduction:

The goal of the DIS workshops is to gather expertise from the simulation

community to develop standards that allow defense simulations (existing and

future) to interact through simulation networking, realizing a realistic battle training

environment. This is ,a shift from the traditional single isolated training device

approach.

The developed standards must be tested for validity and interoperability. It is

therefore recommended that the initial DIS standard release be validated.

The Institute for Simulation and Training at University of Central Florida

has experience in many areas of computer and simulation networking. In its effort

to assess the usability of existing OSI protocols in real-time simulations, 1ST has

developed a fonnal specification of the DIS draft standard using the Estelle Formal

Description Technique (FDT) and the PET-DINGO compiler. This task has identified

areas in the DIS standard that need to be modified or clarified.

Estelle is a standard PDT developed in 1989 by the International Organization

for Standardization (ISO) to specify distributed concurrent infonnation processing

systems using a Pascal like language.

The National Institute of Standards and Technology (NIST) developed the

PET-DINGO compiler, which is a protocol prototyping tool that accepts an Estelle

specification and produces a runtime environment simulating the specified protocol
- -

behavior. PET-DINGO was developed to familiarize the scientific community with

the Estelle specification language and hence promote its popularity.

25

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Recommendations for Addition to the DIS Standard:

The current DIS protocol's resupply event is derived almost entirely from the

SIMNET protocol, but 'with some additions in the receiver's state transition model to

allow more possibilities for supplier cancella tion. However, the necessary

transitions on the supplier side of the protocol associated with such additions are

missing. In order to establish a correct transition model, there is a need for additions

to the supplier's state transition model.

Figure 5.1 show:; the resupply receiver's state transition model. The dotted

lines show the transitions expected by the supplier interaction, but not provided in

the supplier's state transition model. Figure 5.2 shows the resupply supplier's state

transition model with the proposed addition shown by the dotted line.

Decrement
Timer 1

r (
Request " Service

.
• .

Can.eel Request .
Requesting

Stab!

Repeat R,equest

Ready
State

1
,

Transfer
Cancel

' .

Receive Offer

{
Reject
Offer

I
Accept
Serviee

Decrement
Timer 2

Figure 5.1 - Resupply Receiver State Transition Model

26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Resupply
Refuse

,...--.----- Offer Supplies --------.

.,.....--- Resupply Complete -----.

Resupply Canceled.

1
1 1
1 1

1- - - Resupply Canceled. by Supplier - - _I

~ ______ Resupply Abandoned. _____ .-J

Decrement
Timerl

Figure 5.2 - Resupply Supplier State Transition Model

The proposed additions to the DIS standard are:

Resupply Refuse: When a Service Request PDU is received, the

supplier may refuse the request and issue a Request

Cancel PDU. The entity shall remain in the Ready

State.

(Rational: The supplier's Resupply Refuse transition

causes a receiver's Cancel Request transition.)

Resupply Canceled: When conditions for resupply are no longer met, a

by supplier Resupply Cancel PDU Shall be issued, Timer 1 shall

be canceled, and the entity shall proceed from the

Offering state to the Ready state.

(Rational: The supplier's Resupply Canceled by Supplier

transition causes a receiver's Transfer Cancel transition.)

27

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6 CONCLUSION

This work was successful in specifying the DIS standard within the context of

a formal description technique. However, because of the nature of the current

standard, several assumptions and restrictions were imposed on the entity responses

defined in the POUs. Without such assumptions and restrictions, this work would

be cumbersome and unnecessarily extensive.

The current standard is not fault tolerant, i.e., the protocol can present

misbehavior caused by network failures. However, the protocol works well in an

environment of low nE~twork failure rate (e.g., SIMNET packet loss rate is in the

order of one in one million).

28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDIX A

Estelle Overview

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Estelle FDT defines Modules with their interaction points and connections.

Each module may havle an extended state transition model. Figure A.1 shows a

possible structure for an Estelle specification:

A

1 9

B 3
C

11

[G 4
0-

[-
5

6 [- H

.. 7

8 13

2 10

Figure A.1 - Estelle Structure

Figure A.1 presents three levels of module hierarchy. The first level is

module A, the second level consists of modules Band C, and the third level consists

of modules D, E, F, G and H .

The dots numbered from 1 to 11 are the interaction points associated with the

modules. The thicker Lines represent four channels and four attachments linking

the modules. The channels are those connecting interaction pOints of sibling

modules (modules belonging to the same level of hierarchy and within the same

parent module), such as the channel connecting 1 to 9 and the channel connecting 4

to 7. The attachments join interaction points from modules belonging to different

levels in the hierarchy, such as the attachment 1 to 3 and the attachment 13 to 10.

30

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The collection of channels and attachments can establish end-to-end linkage

between modules. For instance, the 1 to 3 attachment combined with the 1 to 9

connection and 9 to 11 attachment yields a connection from module D to module G . .

In the Estelle specification, the channels, but not the attachments, must be

defined at the beginning of the specification. Attachments can be defined at the time

of attachment.

An Extended S ate Transition Model can be represented graphically as

follows:

~--- Transition A-8 Input
Transition A-B OUtput

-........... Transition B-A Input
Transition BOA OUtput

Figure A.2 .. Example of an Extended State Transition Model

Figure A.2 shows an ESTM with two states A and B, and two transitions A to

B (A-B) and B to A (B-A). An initial input (event) to the model can cause the

transition A-B to take place possibly generating an output. The same applies to the

transition B-A. There is no limit on the number of states allowed for each ESTM,

and a state can have any state in the model, even itself, as its next state.

The interaction transmitted from one module to the other can be defined as a

variable of any type in the Pascal language. It can be a data structure or simply a

name with no type assodated to it.

31

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The structure of an Estelle specifica tion is as follows:

Description Estelle Keyword

A. Module Header

1. Name, class, parameters

2. Interad:ion points

3. exported variables

4. termination

B. Module Body

1. Declaration part

a. body name

b. constant

c. types

d. variables

e. procedures/functions

f. channels

g. children modules

h. module variables

i. states

32

module

ip

export

end;

body

const

type

var

proc/func

channel

module, body

modvar

state, state-sets

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Description

2. Initialization part

a. keyword

b. initial state

c. block/instance creation

i. initialize

ii. connect

iii. attach

d. termination

3. Transition declaration

a. start

b. transitions

i. priority

ii. when

iii. provided

iv. delay

v. from X to Y

c. termination

4. Termination

33

Estelle Keyword

initialize

to

begin

init (release)

connect (disconnect)

attach (detach)

end;

begin

trans

priority

when

provided

delay

from to

end;

end.

I
I
I
I
I
I
I
I APPENDIXB

I Estelle Specification of DIS Standard

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

{"""i"i""""""""i""'."""~i"""}
{ }
{ Institute for Siruation and Training }
{ University of Central iPlorida }
{ }
{ Hale: dis.e }
{ ..}
{ Purpose: to deflne the s.~rVlces and }
{ protocols of th4~ Distributed }
{ Interactive Silulation (DIS) }
{ using Estelle; a FOrJlill Des- }
{ cription Technique (PDT). }
{ }
{ Author: •••••••.• David T. Shen }
{ }
{ Date: .••..•.•... 1S February 199:1. }
{ } {.ii ••••••••• i ••••••••••••••••••• * ••• i ••••••• ii.}

specification DIS;

default cOlDOn queue;

{ specification of the Distribut~1 Interactive SilUlation}

driver I

core

splItter I

1 logistics 1 1 fire 1 1 aSSE~ 1

1 combiner 1

1 network 1---1)l€:tswi tch 1

tiJeScale second:

type

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

request_ty~ = (resupply, repair):
id_type = Integer;

{ service request is for resupply or repair }

ServR~estPlxttype = record
servIce : request_type;

end:

{ collision id in the collision ~)U for event identification}

CollisionPf)U_type = record
id : id_type:

end;

{ resupply thle is arbitrarily set to be 15 seconds }

const resupply_tile = 15i

{ channel definition for connecting the driver and core }

channel driver_upcore (driver, core)i
by driver:

repa+r_request_~ignali
repaIr_cancel_sIgnali
repair_colplete_signali
resupply_request_sIgnali
resupply_cancel_signal;
JOve_signali
stop_signali
COllision_signal;
fire_signal:

{ channel definition for COnnectil~ the splitter and logistic }

channel splitter_logistic (splitter, logistic)i
by splitter:

repair_reQUest_signal:
repa+r_cancel_si~al:
repalr_colplete_slgnali
resupply_request_slgnali
resupply_cancel_signali
lOve_signal:
stop signal:
collIsion_signal:

{ channel definition for connectin.g the splitter and fire}

channel splitter_fire (splitter, fire):
by splitter:

fire_signal;

{ channel definition for connecting the logistic and cOibiner }

channel logistic_coJbiner (logistic, coJbiner)i
by logistic, coJbiner:

ServRequesti'OO (serv _data: Serv RequestPIxttype) i

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RepairResponsePDO;
RepairCoapletePDU;
ResupplyOfferPDO;
ResupplycancelPDO;
Resu~plyReceivedPDO;
collIsion_signal;

by l09istic:
EntltyStatePDO;
CollisionPDO(event: collisioru~_type);

{ channel definition for connectinq the fire and colbiner }

channel fire_colbiner (fire, colb :ner);
by fire:

FirePDO;
DetonationPDO;

{ channel definition for COnnectiI~ the assess and colbiner }

channel assess_colbiner (assess, Golbiner);
by assess, colbiner:

EntityStatePDO;
CollisionPDO(event : collisior~_type);
COllision_signal;

by colbiner:
DetonationPDUi
FirePDOi

{ channel definition for connectit~ the core and network }

channel lowcore_network (core, network);
by core, network:

ServRequestPDO(serv_data: SeI'YRequestPDO_type) i
RepairResponsePDO;
RepairCoapletePDO;
ResupplyOfferPDOi
ResupplycancelPDO;
ResupplyReceivedPDUi
EntityStatePDOi
CollisionPDU(event : collisionPDO_type)i
FirePDO;
DetonationPDO;

{ channel definition for connectiD~ the network and netswitch }

channel net_action (switch, network);
by switch:

dropPDO_signali
sendPDO_signal;

{ function systel_tiJe is found e~ternal to this proqraJ }

function systel_tiJe: integer; prilitive;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

{ declaration part for driver 1OKh1le }

lOdule driverhead systelprocess;
ip A:driver_upcore(driver) ;

end;

body driverbody for driverhead;

procedure initPlayer; priJitive;
procedure playerDriver; priJiti1fe;

initialize
i>e9in

InitPlayer
end;

trans
begin

playerDdver
end;

end;

{ declaration part for netswitch HOdule }

IOdule netswitchhead systel{>roc~;;
ip L: net_action (switch) Indivi(~ queue;

end;

body netswitchbody for netswitc~~d;

procedure initPlayerlf; priJitiVE~;
procedure playerDriverK; prilitive;

initialize
be9in

InitPlayerK
end;

trans

end;

begin
playerDriverK

end;

{ declaration part for core lOdule! }

lOdule corehead systelprocess;
ip A:driver_upcore(core) ;

J:lowcore_network(core) ;
endi

body corebody for coreheadi

lOdule splitterhead process;
ip B:driver_upcore(core) ;

C:splitter_loqistic(splitte'r)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

D:splitter_fire(splitter) ;;
end:

body splitterbody for splitterbE!ad:
trans

end:

{ the followinq signals received fro. the driver, i.e.,
repair_request_siqnal,
repair_cancel_siqJlal,
repair30Iplete_si911al,
resuppl y _request_!ilgnal,
res~pl y 3ancel_signal,
cOlllsion_signal,
IOve_siqnal,
stop_si911al

will be dlrected to the loqistic JOdule.

when B.repair_request_siqnaJ.
begin

output c.repair_request_.siqnal:
end:

when B.repair_cancel_signal
begin

output C.repair_cancel_s,ignali
end:

when B.repair_colplete_siqnal
begin

output C.repair_colplete_siqnal:
end:

when B.resupply_request_signal
begin

output C.resupply_request_siqnal:
end:

when B.resupply_cancel_siqnal
begin

output C.resupply_cancel_signal:
end:

when ~.collision_signal
begln

output C.collision_siqnal:
end;

when B.lOve_siqnal
begin

output C.lOve_signal;
end:

when B.stop_signal
begin

output c.stop_signal:
end:

{ the fire_signal recehted fro. the driver will be }
{ directed to the fire IlOdule. }

when B.fire_signal
begin

output D.fire_signal:
end;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

{ declaration part for logistic lOdule }

lOdule logisticbead processi
ip C:splitter_logistic(logistic)

F:loqistic_coabiner(logistic)
endi{logistichaed}

body logisticbody for logisticbP~di

{ different states when logistics are being perfoned }

state IDLE, REPAIR_REQUEST, UPAIR_OFFERING, RESUPPLY_REQUEST,
RESUPPLY_RECEIVING, RESlJPPLY_OFFERIKG, KOVE, COLLISIONi

var initial_t, setup_t : int~?er;
local_collision_id : int~?eI;
serv_data : ServRequestmJ_typei
event : collisionPDO_type;

procedure set_tiler will ~)rK together with function tiJeOut,
where set_tiler will initialize the variables initial_t with
the systeJ's tile and setup_t with the given countdown tile

pro~edure set_tiaer(t: int~~)i
~l~ , I ' lnltla _t := systel_tllei

setup_t := ti
endi {set_tiaer}

{ Function tiJeOut will test for the tiaer expiration.

function tiJeOut : booleani
var,delta, current_t: integer;'
begln

current t := systel tilei
if current t < initIal t then

delta :=-60 -
else

delta := Oi
if current_t + delta - initial_t < setup_t then

tiaeout := false
else

tileout := true;
endi {tiJeout}

initialize
to IDLE

begin ' "
local colllSlon ld := 1;

end; - -

{ resupply state transitions for resupply receiver }

trans

{ request service for receiver behavior during resupply }
when C. resuppl y-request_si9Ilal

fro. IDLE to RESUPPLY_REQUEST
begin

serv_data.service:=resupplYi

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

output F .5ervRequestp])(J(serv_data);
{ requesting interval is set to 5 seconds for Tilerl }
set_tiler(5):

end:

{ cancel request for receivl~r behavior during resupply }
when F.ResupplycancelPDU

frot RESUPPLY_REQUEST to DLE
beqin
end:

{ receive offer for receiver behavior during resupply }
when F.ResupplyofferPDU

fro. RESUPPLY_REQUEST to ltESUPPLCRECEIVllfG
be<jin

{ resupply_tile is arbitrarily set to 15 seconds for Titer 2 }
set_titer(resupply_tine):

end:

{ reject offer for receiver behavior during resupply }
when C.resupplLcancel_signa\l

fro. ~ESUPPLY_RECEIVIHG to IDLE
be<jln

output F • ResupplycancE!lPOO;
end;

{ transferred canceled for l'eceiver behavior during resupply}
when F • ResupplycancelPDU

froll RESUPPLY RECEIVING to· IDLE
be<jin -
end:

trans
{ accept service for receiver behavior during resupply }
frol RESUPPLY_RECEIVING to IDLE

provided timeout
be<jin

output F.ResupplyReceivedPDU;
end;

{ not tileout yet for Tiler 2, so it reaains in the sate state }
fro. RESUPPLY RECEIVING to sale

provided otherwise
be<jin
end:

trans
{ if Tiler 1 expires, the Service Request POO shall be reissued }
{ and tiler shall be reset for five seconds. }

frot RESUPPLY REQUEST to sale
be<]in. -

If tlJeOut then
be<jin

serv_data.service := resupply:
output F .ServRequestPDU(serv_data);
set_tiler(5);

end:
end;

{ repair state transitions for repair receiver }

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

trans

l repair reguest for receiver behavior during repair}
when C.repalr_request_signal

frol IDLE to REPAIR REQUEST
begin -

serv_data. service: =repair;
output F .5ervRequestp,DU(serv_data);
l requesting interval is set to 5 seconds for Tilerl }
set_tiler(5)j

endj
fro! REPAIR REQUEST to sa:1e

begin -
endi

{ repair co~plete for receiYer behavior during repair }
when F.RepalrCOlpletePDU

fro! REPAIR_REQUEST to IDILE
begin

output F.RepairResponsePOO;
end;

fro. IDLE to Sale
beqin
end;

{ cancel reguest for receivfrr behavior during repair}
when C.repalr_cancel_signal

froll ~AIR_REQUEST to IDLE
beqin
end;

fro! IDLE to sate
begin
end;

{ if Tiler 1 expires, the service Request POO shall be reissued }
{ and tiler shall be reset for five seconds. }
trans

fro. ~AIR_REQUEST to sale
begIn
if tiJeout then

begin
serv_data.service:=repair;
output F. servRequestpl)U (serv _data) ;
set_tiJer(5);

end;
endi

{ resupply state transitions for resupply supplier }
trans

{ offer supplies for suppli(~ behavior during resupply,
{ Resupply Offer POO is ISS\~ and tiler is set to one linute.
when F .servRequestpOO

provided serv_data.servicEl = resupply
frol IDLE to RESUPPLY_Of'FmlfG

begin
output F.ResupplyOfferPOOi
set_tiler(59)j

end;

{ resupply cOlplete for supplier behavior during resupply }

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

when F.ResupplyReceivedPDU
frol RESUPPLY OFFERING to IDLE

begin -
end;

{ resupply canceled for supplier behavior durinq resupply }
when F.ResupplyC4ncelPDU

frol RESUPPLY OFFERllIG to IDLE
beqin -
end;

{ if resuppl y-cancel_signal is sent by driver, sup~lier behavior }
{ will retain at IDLE state if it was at IDLE origLDally, or it }
{ will transition frol RESUPPLY_OFFERIJiG state to IDLE If it was }
{ originally at RESUPPLY_OF)~ERING state. }
when C.resupply_cancel_signcu

frol IDLE to sate
begin

output F • ResupplyCanCE!lPOO;
end;

when C.resupply_cancel_signal
frol RESUPPLY OFFERING to IDLE

trans

begin -
output F. Resuppl ycanCE!lPOO;

end;

{ if Tiaer 1 expires, the transfer shall be aban<Ioned or else }
{ retain in RESUPPLY_OFFERIliG state. }
frol RESUPPLY OFFERllIG to InLE

provided tiieout
begin
end;

fro. RESUPPLY_OFFERING to SC~
provided otherwise

begin
end;

{ repair state transitions for repair supplier }
trans

{ repair request for suppliE~ behavior during repair }
when F • ServRequestPDU

provided serv_data.servicE! = repair
frol IDLE to REPAIR_OFFERING

begin
set_tiaer(12);
end;

frol REPAIR OFFERING to sate
begin -

set_tiler (12) ;
end;

{ repair response for supplier behavior during repair }
when F. RepairResponsePOO

frol IDLE to sate
begin
end;

{ if repair colplete signal is sent by driver, su~lier behavior}
{ will retaIn at IDLE state if it was at IDLE origInally, or it }

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

{ will transition fro. REPAIR_OFFERING state to IDLE if it was
{ originally at REPAIR_OFFERIBG state.
when C.repalr_colplete_signal

frot ~AIR_OFFERING to IIlLE
begIn

output F.RepairColpletePOO
end;

fro. IDLE to sate
begin
end;

trans
{ if Tiller 1 expires, the transfer shall be abandoned or else }
{ relain in REPAIR_OFFERING state. }
fro. REPAIR_OFFERIlfG to IDLE:

provided tiJeOut
~~n

frot REPAIR_OF FERDIG to SUE!
provided otherwise

beqin
end;

{ entity behavior during actions: lOving, stopping, and colliding }
trans

when c.lIOve_signal
fro. IDLE to IIOVE

begin
output F.EntitystatePDO;

end;
fro. COLLISIOIf to HOVE

begin
output F.EntityStatePDO;

end;
fro. MOVE to sate

beqin
end;

when c.stop_signal
frol HOVE to IDLE

begin
output F.EntityStatePDO;

end;
fro. COLLISIOK to IDLE

begin
output F.EntityStatePDO;

end;
fro. IDLE to sate

begin
end;

when C.collision_signal
frot KOVE to COLLISION

begin. 1 1 .. 'd event.ld:= ocal co 11s10n 1 ;
output F.CollisionPoo(event);
output F.collision_signal;
loca130llision_id := loca130llision_id + 1;

end;
fro. IDLE to sate

begin
end;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

frol COLLISION to sate
beqin
end:

when ~.collision_siqnal
beqIn

local collision id := local collision id + 1;
end; - - - -

{ entity will issue Entity SUite (ES) POO every 4 seconds in IDLE state, }
{ or issue this POO based on t.he high fidelity 1Ode1 in the HOVE state. }
{ For the specification sake, it is assuae that the ES PDQ is issued }
{ every second in the IIOVE sUite. }
trans

frol IDLE to sate
delay(4)

begin
output F • EntitystatePOO;'

end;
frol HOVE to sate
delay(l)

begin
output F.EntityStatePDU;

end:

end:{body logisticbody}

{ declaration part for fire lOdule }

lOdule firebead process:
ip D:s~litter_fire(fire) ;

G;fIre_colbiner(fire) ;
end; {fuehead}

body firebody for firehead;
state READY, FIRE;
initialize to READY

begin
end;

{ entity behavior during fire }
trans

when D.fire_signal
frol READY to FIRE

begin
output G.FirePDO;

end;

{ delay 2 seconds is arbitrary! this value just gives a delay}
{ before a Detonation PDQ is Issued by the entity. }
trans

frol FIRE to READY
delay(2)
begin

output G.DetonationPOO;
end;

end; {firebody}

{ declaration part for assess lodule }

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

lIOdule assesshead ~rocessi
i p B: assess301lnner (assess)

end; {assesshead}

body assessbody for assessheadi
state IDLE, ASSESS_DETOKATIOH ASSESS_FIRE,

ASSESS_ENTITY_STATE, ASSESSjDLLISIOH i

var local_collision_id : int~Jeri

initialize to IDLE
beqin

local_collision_id := Ii
end;

{ entity behavior when it r~!ives the following PDUs: }
{ EntityStatePDU }
{ FirePOO }
{ DetonationPOO }
{ CollisionPOO }

trans
when B.EntityStatePDU

frol IDLE to ASSESS_ENTITY_STATE
beqin
end;

when B.FirePDU
frol IDLE to ASSESS FIRE

beqin -
end;

when B.DetonationPDU
frol IDLE to ASSESS DETONATION

begin -
endi

when H.CollisionPDU
provided event.id = local_collision_id

frot IDLE to ASSESS COLLISION
beqin -

output B.COllisionPDO(event);
output B.collision_signali
local_collision_id := local_collision_id + Ii

end;
provided otherwise

beqin
end;

when ~.collision_signal
beqln

local collision id := l~All collision id + Ii
end; - - - -

trans
frol ASSESS ENTITY STATE to IDLE

beqin - -
end;

frol ASSESS_FIRE to IDLE
beqin
endi

frol ASSESS DETOlfATIOIf to IDl.E
beqin -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

output H.EntityStatePDU~
end~

froB ASSESS_COLLISION to IDLE
beqin
end~

end~{assessbody}

{ declaration part for colbiner lOdule }

JOdule colbinerhead ~rocess~
ip F:logistic_colblner(colbiner)

G:fire30Ibiner(colbiner) ;:

end~

H:assess_colbiner(colbiner)
I:lowcore_network(core)

{ the following PDUs received frol the logistic lOdule, i.e.,
ServRequest.POO ,
RepairResponsePDO,
RepaircoapletePDU,
ResupplyofferPDO,
ResupplycancelPDU,
ResupplyReceivedPDU,
EntitystatePDU,
CollisionPOO,

will be directed to the network JOdule.

body combinerbody for colbinerhead~
trans

when F.ServRequest.POO
begin

output I.ServRequestpDU(serv_data)~
end;

when F.RepairResponsePDU
begin

output I. RepairResponsePDU ~
end;

when F.RepaircolpletePDO
begin

output I.RepaircoIpletePDU;
end;

when F.ResupplyofferPDU
begin

output I.ResupplyofferPDU;
end;

when F.ResupplycancelPDO
begin

output I.ResupplyCancelPDUi
end~

when F.ResupplyReceivedPDU
begin

output I.ResupplyReceivedPDUi
end~

when F.EntityStatePDU
begin

output I.EntitystatePDU~
end;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

when F.CollisionPDU
begin

output I.CollisionPDU(event);
end;

(the following PDOs received frol the network JOdule, i.e.,
servRequestPOO ,
RepairResponsePDU,
RepaircolpletePDO,
ResupplyofferPDO,
ResupplyC4ncelPDU,
ResupplyReceivedPDO,
EntityStatePDU,
CollisionPDU,

will be directed to the logistic JOdule.

when I. servRequestmJ
begin

output F.servRequestmJ(serv_data);
end;

when I.RepairResponsePDU
begin

output F.RepairResponseF~;
end;

when I.RepaircolpletePDO
begin

output F.RepairColpleteI~;
end;

when I.ResupplyofferPDU
begin

output F.ResupplyofferPI~;
end;

when I.ResupplyC4ncelPDO
begin

output F.ResupplycancelI~;
end;

when I.ResupplyReceivedPDU
begin

output F.ResupplyReceivE~:
end;

when H.collision_signal
begin

output F.collision_signcu:
end;

{ the following PDUs receiv~i frol the fire JOdule, i.e.,
FirePDU f DetonatlonPOO,

will be directed to the netw()rk JOdule.

when G.FirePDU
begin -

output I.FirePDO;
end;

when G.DetonationPDU
begin .

output I.DetonatlonPDU:

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

end;

{ EntitystatePDU received frot assess JOdule,
(will be directed to network JOdule.

when H.EntitystatePDU
begin

output I.EntitystatePDOi
end;

when H.CollisionPDO
begin

output I.CollisionPDU(event);
end;

{ the following PDOs received, frot the network JOdule, i.e.,
FirePDO,
Enti tystatePDO ,
DetonationPOO,

will be directed to the assess JOdule.

when I.FirePDU
begin

output H.FirePDO;
end;

when I.EntitystatePDO
begin

output H.EntitystatePDO;
end;

when I.DetonationPOO
begin

output H.DetonationPDOi
end;

when I.CollisionPOO
begin

output H.CollisionPOO(event)i
end;

when F.collision_signal
begin " ,

output H.colllslon_slgnal;
end;

endi{body coabinerbody}

JOdvar
splitter : splitterheadi
logistic : logistichead;
fire : fireheadi
assess : assesshead;
colbiner : coabinerheadi

initialize

be9i~ l't ' th l'tt bod Inlt sp 1 ter WI sp I er Yi
in it logistic with logisticbodYi
init fire with firebody;
init assess with assessbodYi
init coabiner with coabinerbodYi

attach A to splitter.Bi
connect splitter.C to logistic.Ci

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

end;

connect splitter.D to fire. D;
connect l~istic.F to coabiner.F;
connect fire.G to coabiner.G;
connect assess.B to coJbiner .B;
attach J to coabiner.I;

end;{body corebody}

{ declaration for network JOdule }

JOdule networkhead systetprocess;
ip J:lowcore_network(network) individual queue;

K:lowcore_network(network) individual queue;
L:net_action(network) individual queue;

end; {networkhead}

body networkbody for networkhead;
state SEND, DROP;

initialize to SEND
beqin
end;

{ network behavior either send or drop the POD }
trans

when
J • ServRequestPOO

frol SEND to sale
begin

output K.ServRequestPOO(serv_data);
end;

frol DROP to sale
beqin
end;

when
J.RepairResponsePDO

frol SEND to sale
begin

output K.RepairResponsePDU;
end;

frol DROP to Sale
begin
end;

when
J.RepairCowpletePDU

frol SEND to sale
begin

output K.RepairCotpletePDUi
endi

frol DROP to sale
beqin
end;

when
J.ResupplycanceiPDO

frol SEND to sale
begin

output K. Resuppl ycaoo!lPDU;
end;

I
I fro! DROP to sate

~in

I en i
when

J.ResupplyReceivedPDU
fro! SEID to sate

I begin
output K.ResupplyReceivedPDU;

end;
fro! DROP to sate

I ~in en ;
when

I
J.ResupplyotferPDU

fro! SEXD to sate
begin

output K.ResupplyotferPDU;

I
end;

frol DROP to sate
begin
end;

I
when

K. servRequestpOO
froD SEHD to sate

begin

I
output J.ServRequestFDO(serv_data);

end;
fro! DROP to sate

begin

I
end;

when
K.RepairResponsePDO

fro! SEND to sate

I
begin

output J.RepairResponsePOO;
end;

fro! DROP to sate

I
begin
end;

when
K.RepairColpletePDU

I
fro! SEND to sate

begin
output J.RepairColpletepoo;

end;

I
fro. DROP to sate
~in en ;

when

I K.ResupplycancelPDO
fro. SEXD to sate

begin
output J. Resuppl y<:ancelPDO;

I end;
fro. DROP to saae

begin
end;

I when
K.ResupplyReceivedPDU

fro. SEID to saae

I
I

I
I begin

I
output J.ResupplyReceivedPDU;

end;
frol DROP to saae
~in

I
en ;

when
K.ResupplyotferPDU

frol SEND to sate

I
begin

output J.ResupplyOfferPDO;
end;

frol DROP to sale

I
begin
end;

when
J.EntityStatePDO

I
frol SEND to sale

begin
output K.EntityStatePDU;

end;

I
frol DROP to sale
~in en ;

when

I
J.CollisionPOO

frol SEND to Sale
begin

output K.CollisionPDO(event);

I
end;

frol DROP to Sale
begin
end;

I
when

K.EntitystatePDO
frol SOO to salle

begin

I output J.EntitystatePDU;
end;

frol DROP to saae
begin

I end;
when

K.CollisionPDO
frol SEND to sate

I begin
output J.CollisionPDU(event);

end;
frol DROP to sale

I ~in en ;
when

J.FirePDO

I frol SEND to saae
begin

output K.FirePDU;
end;

I frol DROP to sale

~in en ;

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

when
K.FirePDO

from SEND to same
begin

output J.FirePDU;
end;

from DROP to same
begin
end;

when
J.DetonationPDU

from SEND to same
begin

output K.DetonationPD(J;
end;

from DROP to same
begin
end;

when
K.DetonationPDU

from SEND to same
begin

output J.DetonationPIXJ;
end;

from DROP to same
begin
end;

when
L.sendPDO_signal

from SEND to same
begin
end;

from DROP to SEND
begin
end;

when
L.dropPDU_signal

from SEND to DROP
begin
end;

from DROP to same
begin
end;

end;{body networkbody}

modvar
driverA : driverhead;
driverB : driverhead;
coreA: corehead;
coreB: corehead;
network : networkhead;
netswitch : netswitchhead;

initialize
- begin

Init driverA with driverbody;
init driverB with driverbody l@"ibis"};
init netswitch with netswitchbody;
init coreA with corebody;
init coreB with corebody {@"ibis"};

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

end;

end.

init network with networkbody;

connect driverA.! to coreA.A;
connect coreA.J to network.J;
connect network.K to coreB.J;
connect coreB.A to driverB.A;
connect netswitch.L to network.L;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDIXC

PET -DINGO User Defined Routines and Makefile

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

User interface modules are specified in the DIS Estelle specification: the

Driver module and the Network Switch module. These modules allow the user to

interact with the run-time processes and to set specific scenarios to test the DIS

protocol. The interface modules are purely for testing purposes and are not part of

the DIS standard.

_Driver.c implements the Driver module in the specification. It allows the

user to determine the action to be taken by the simulation entity at any time. The

user causes the protocol residing in the associated processes to interact, modeling the

behavior of the protocol described in the DIS standard. Examples of possible user

actions include: request for repair, request for resupply, move, fire, or response for

repair complete.

_Switch.c implements the Network Switch module in the specification. It

allows the user to disrupt the network module at any instant, simulating a network

failure. This module is aimed at testing the protocol under network failure

conditions.

The Drivers Driver.c and Switch.c are written in both C and C++

languages. They supply the human interface.

Timer.c supplies a system clock reader used in the logistic activities.

The Makefile generated by DINGO compiles a dynamic model into a run-time

environment.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/*

*/

_Driver.c

function to create a pop up menu from a null tel1linated list
of strings; the menu puts the number of the selected item in
a variable also specified in the creation call

extern "C" (
'include <stdio.h>

linclude <X11/Xatom.h>
linclude <X11/Intrinsic.h>
linclude <X11/StringDefs.h>

linclude <X11/Xaw/Box.h>
linclude <X11/Xaw/Form.h>
linclude <X11/Xaw/LabeI.h>
#include <X11/Xaw/Command.h>
#include <X11/Xaw/Paned.h>

'include <X11/Xaw/Cardinals.h>

linclude "rtwin.h"

/* custom interface of player module */

extern void playNext();

static void send(Widget w, XtPointer closure, xtPointer callData)
(

playNext(*(int*) closure);
}

void playerInterface(struct __ KIwin* miwin)
(

Widget sendPanel, button, button2, button3, button4, button5;
static int x1=0;
static int x2=1;
static int x3=2;
static int x4=3;
static int x5=4;
static int x6=5;
static int x7=6;
static int x8=7;
static int x9=8;
Arg args(10);
sendPanel = XtCreateKanagedWidget("Send Panel", fOl1lWidgetclass,

miwin->outer, NULL, ZERO);
XawPanedSetKinKax(sendPanel, 35, 155);

button = XtCreateKanagedWidget("Request Repair", commandwidgetclass,
sendPanel, NULL, ZERO);

XtAddCallback(button, XtNcallback, send, (XtPointer)&x1);

XtSetArg(args[O) , XtNfrolHoriz, button);
button = XtCreateKanagedWidget("Repair Cancel", commandWidgetClass,

sendPanel, args, ONE);
XtAddCallback(button, XtNcallback, send, (xtPointer)&x2);

xtSetArg(args[Oj, XtNfrolVert, button);

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

button2 = xtCreateKanaqedWidqet("Request Resupply", conmandWidqetClass,
sendPanel, arqs, ONE);

XtAddCallback(button2, XtNcallback, send, (XtPointer)&x3);

XtsetArq(arqs [O], XtNfrolVert, button);
xtSetArq(arqs[l], XtNfromHoriz, button2);
button = XtCreateKanaqedWidqet("Resupply Cancel" , commandWidqetClass,

sendPanel, arqs, TWO);
XtAddCallback(button, XtNcallback, send, (XtPointer)&x4);

XtSetArq(arqs[O], XtNfromVert, button2);
button3 = XtCreateKanaqedWidqet ("RepaIr Complete", commandWidqetClass,

sendPanel, args, ONE);
XtAddCallback(button3, XtNcallback, send, (xtPointer)&x5);

xtSetArq(args[O] , XtNfromVert, button3);
button4 = XtCreateKanagedWidqet ("Kove" , commandWidqetClass,

sendPanel, args, ONE);
XtAddCallback(button4, XtNcallback, send, (xtPointer)&x6);

xtSetArg(arqs [O] , XtNfromVert, button3);
xtSetArg(args[l], XtNfromHoriz, button4);
button4 = XtCreateKanaqedWidqet("stop", commandWidgetclass,

sendPanel, args, TWO);
XtAddCallback(button4, XtNcallback, send, (XtPointer)&x7);

xtSetArq(args[O] , XtNfromVert, button3);
xtSetArg(arqs [l], XtNfromHoriz, button4);
button5 = XtCreateKanagedWidget("Collision", commandWidgetClass ,

sendPanel, arqs, TWO);
XtAddCallback(button5, 'XtNcallback, send, (XtPointer)&x9);

xtSetArg(args[O], XtNfromVert, button5);
button = XtCreateKanaqedWidget("Fire", commandWidqetClass,

sendPanel, args, ONE);
XtAddCallback(button, XtNcallback, send, (xtPointer)&x8);

}
}

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/*

*/

_Switch.c

function to create a pop up menu from a null terminated list
of strings; the menu puts the number of the selected item in
a variable also specified in the creation call

extern ncn (

#include <stdio.h>

#include <Xll/Xatom.h>
#include <Xll/Intrinsic.h>
linclude <Xll /StringDefs.h>

linclude <Xll/Xaw/Box.h>
#include <Xll/Xaw/Form.h>
'include <Xll/Xaw/Label.h>
#include <Xll/Xaw/Command.h>
#include <Xll/Xaw/Paned.h>

' include <Xll/Xaw/Cardinals.h>

linclude "rtwin.h"

/* custom interface of player module */

extern void playNextN();

static void sendN(Widget w, XtPointer closure, xtPointer callData)
(

playNextN(*(int*) closure);
}

void playerInterfaceN(struct _ ."Iwin* miwin)
(

Widget sendPanel, button, button2;
static int xl=O;
static int x2=1;
Arg args[lOj;
sendPanel = XtCreateKanagedWidget("Send Panel", formWidgetClass,

miwin->outer, NULL, ZERO);
XawPanedSetKinKax(sendPanel, 35, 155);

button = XtCreateKanagedWidget("Send POU", commandWidgetClass,
sendPanel, NULL, ZERO);

XtAddCallback(button, XtNcallback, sendN, (XtPointer)&Xl);
setGreyWinBg(button);

XtSetArg(args[O j, XtNfromHoriz, button);
button2 = XtCreateKanagedWidget("Drop POU", cOlmandwidgetClass,

sendPanel, args, ONE);
XtAddCallback(button2, XtNcallback, sendN, (XtPointer)&x2);
setGreyWinBg(button2);

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

j*
timer.c

Routine to return system time
*;

#include <stdio.h>
#include <tille.h>

int _systell_time(__ KInstance* __ XI)
(
struct tm *TlKE();
return TlKE()->tm_sec;
}

struct til *TIKE()
(

struct til *xx;
long clk, ss;
char *tt;
ss=time(&clk);
xx=localtille(&ss);
return(xx);

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

i Generated Hakefile for Specification _DIS

#NOTES: l. dependencies are incomplete with respect to .hxx files;
I 'make all' forces the entire regeneration of object files
I 2. the user should complete the makefile and rename it
I to avoid losing changes made
I

I EDIT THIS:
I -------- LOGTRANS: log transitions when they are executed
; -------- LOCKODS: modules to run on this particular site
-------- LIBPATH: path to dingo runtime lIbrary
-------- XLIBDIR: path to Xll runtime libraries
I -------- INCLPATH: path to dingo runtime library header files
-------- GNUINCLUDEDIR: path to GNU 9++ library header files
I -------- WINS: do you want windows lInked with all modules?
, -------- WINTIKER: value of wait timer for window input
-------- USERDEF: object code to be linked with every executable
, -------- CCXX: invokation of c++ compiler (to object code)
-------- EXEC: invokation of C++ compiler to executable

LOGTRANS= -DLOGT

LOCHODS = _DIS _Corebody _Driverbody _Networkbody _Netswitchbody
LIBPATH= jusr3jestellejpetdingoj
XLIBDIR= jusr3 jestellejXlljlibj
XLIBINCL= j
HIWINDIR= jusrl jGNUjlibg++-l.39.0jg++-includej
INCLPATH= jusr3jestellejpetdingoj
GNUINCLUDEDIR= jusrl jGNUjlibg++-l .39.0jg++-includej
WINS= -DDEFWINS
WINTIHER = -DWINWAIT=l
USERDEF= _Driver.o _Switch .o _DIS.impl.o

CCXX=g++ -DGNU -w -c -I$(INCLPATH) -I$(GNUINCLUDEDIR) -I jusr jinclude
EXEC=g++ -DGNU -w -I$(INCLPATH) -I$(HIWINDIR)
WINLIBS= -L$(XLIBDIR) -IXaw -IXmu -lXt -IXll -IXext
SYSDEP= -L$(LIBPATH) -lestrt -lestrtwin -lnetif_sock
LIB= $ (USERDEF) _DIS.glob.o _DIS.a $(SYSDEP) $ (WINLIBS) -1m -lg++

default: $ (LOCHODS)

_DIS.a: _DIS.glob.o _DIS.dummy _Driverbody.dunmy _Netswitchbody.dummy _Corebody.dummy _Splitterbody.dummy _Logisticbo
rm -f DIS.a
ar q _DIS.a _DIS.o _DIS.tc.o _DIS.ch.o
ar q _DIS.a _Driverbody.o _Driverbody.tc.o _Driverbody.ch.o
ar q _DIS.a _Netswitchbody.o _Netswitchbody.tc.o _Netswitchbody.ch.o
ar q _DIS.a _Corebody.o _Corebody .tc.o _Corebody.ch.o
ar q _DIS.a _Splitterbody.o _SpIItterbody.tc.o _Splitterbody.ch.o
ar q _DIS.a _Logisticbody.o _Logisticbody.tc.o _Logisticbody.ch.o
ar q _DIS.a _Firebody.o _Firebotly.tc.o _Firebody.ch.o
ar q _DIS.a _Assessbody.o _Assessbody.tc.o _Assessbody.ch.o
ar q _DIS.a _Conbinerbody.o _Combinerbody.tc.o _Conbinerbody.ch.o
ar q _DIS.a _Networkbody.o _Networkbody.tc.o _Ketworkbody.ch.o
ranlib DIS.a

_DIS .glob.o: _DIS.glob.cxx _DIS.bindirs

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

$(CCXX) -DOPTIMIZE _DIS .glob.cxx

_DIS . dummy: _DIS.tc.hxx _DIS.tc .cxx _DIS.ch.hxx _DIS.ch.cxx _DIS.cxx _DIS.hxx
$(CCXX) -DOPTIMIZE $(LOGTRANS) _DIS.tc.cxx _DIS.ch.cxx _DIS.cxx
rm -f _DIS. dummy
echo I I > _DIS. dummy

_Driverbody.dummy: _Driverbody.tc.hxx _Driverbody .tc.cxx _Driverbody.ch.hxx _Driverbody.ch.cxx _Driverbody.cxx _Driver
$(CCXX) -DOPTIMIZE $(LOGTRANS) _Driverbody.tc.cxx _Driverbody.ch.cxx _Driverbody.cxx
rm -f _Driverbody.dummy
echo I I > _Driverbody.dummy

_Netswitchbody.dummy: _Netswitchbody.tc.hxx _Netswitchbody.tc.cxx _Netswitchbody.ch.hxx _Netswitchbody.ch.cxx _Netswit
$(CCXX) -DOPTIMIZE $(LOGTRANS) _Netswitchbody.tc.cxx _Netswitchbody.ch.cxx _Netswitchbody.cxx
rm -f _Netswitchbody.dunay
echo I I > _Netswitchbody.dummy

_Corebody.dummy: _Corebody.tc.hxx _Corebody.tc.cxx _Corebody .ch.hxx _Corebody.ch.cxx _Corebody.cxx _Corebody.hxx
$(CCXX) -DOPTIXIZE $(LOGTRANS) _Corebody.tc.cxx _Corebody.ch.cxx _Corebody.cxx
rm -f _Corebody.dUlly
echo I I > _Corebody.dummy

_Splitterbody.dummy: _Splitterbody.tc.hxx _Splitterbody .tc.cxx _Splitterbody.ch .hxx _Splitterbody.ch.cxx _splitterbody
$(CCXX) -DOPTIXIZE $(LOGTRANS) _Splitterbody.tc.cxx _Splitterbody.cb.cxx _Splitterbody.cxx
rm -f _Splitterbody.dummy
echo I I > _Splitterbody.dummy

_Logisticbody.dummy: _Logisticbody.tc.hxx _Logisticbody.tc.cxx _Logisticbody.ch.hxx _Logisticbody.ch .cxx _Logisticbody
$(CCXX) -DOPTIXIZE $(LOGTRANS) _Logisticbody.tc.cxx _Logisticbody.ch.cxx _Logisticbody.cxx
rm -f _Logisticbody.dunmy
echo I I > _LogistlCbody.dummy

_Firebody.dummy: _Firebody.tc.hxx _Firebody.tc.cxx _Firebody.ch.hxx _Firebody.ch.cxx _Firebody.cxx _Firebody.hxx
$(CCXX) -DOPTIMIZE $(LOGTRANS) _Firebody.tc.cxx _Firebody.ch.cxx _Firebody.cxx
rm -f _Firebody.dummy
echo I I > _Firebody.dummy

_Assessbody.dummy: _Assessbody.tc.hxx _Assessbody .tc.cxx _Assessbody.ch.hxx _Assessbody.ch.cxx _Assessbody.cxx _Assess
$(CCXX) -DOPTIMIZE $(LOGTRANS) _Assessbody.tc.cxx _Assessbody.ch.cxx _Assessbody.cxx
rm -f _Assessbody.dummy
echo I I > _Assessbody.dummy

_Combinerbody.dummy: _Combinerbody.tc.hxx _Combinerbody.tc.cxx _Combinerbody.ch.hxx _Combinerbody.ch.cxx _Conbinerbody
$(CCXX) -DOPTIMIZE $(LOGTRANS) _Combinerbody.tc.cxx _Combinerbody.ch.cxx _CoBbinerbody.cxx
rm -f _Combinerbody.dummy
echo I I > _Combinerbody. dUllY

_Networkbody.dummy: _Networkbody.tc.hxx _Networkbody.tc.cxx _Networkbody.ch.hxx _Networkbody.ch.cxx _Networkbody.cxx _
$(CCXX) -DOPTIMIZE $(LOGTRANS) _Networkbody.tc.cxx _Networkbody .ch.cxx _Networkbody.cxx
rm -f _Networkbody.dummy
echo I I > _Networkbody.dUllY

_DIS: _DIS.a _DIS.main.cxx $(USERDEF)
$(EXEC) $(WINS) $(WINTlXER) _DIS.~in.cxx -0 _DIS $(LIB)

_Driverbody: _DIS.a $(USERDEF) _Driverbody.main.cxx
$(EXEC) $(WINS) $ (WINTlXER) _Driverbody.lain.cxx -0 _Driverbody $(LIB)

Netswitchbody: _DIS.a $(USERDEF) _Netswitchbody.main .cxx
- $(EXEC) $(WlNS) $(WlNTlXER) _Netswitchbody.main.cxx -0 _Netswitchbody $(LlB)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

_Corebody: _DIS.a $(USERDEF) _Corebody.main.cxx
~(EXEC) $ (WINS) $ (WINTlKER) _Corebody.lain.cxx -0 _Corebody $(LIB)

_Networkbody: _DIS.a $(USERDEF) _Networkbody.lain.cxx
$(EXEC) $ (WINS) $(WINTlKER) _Networkbody.lain.cxx -0 _Networkbody $(LIB)

_DIS.ilpl.o: _DIS.ilpl.hxx _DIS.tc.hxx _DIS.ch.hxx _DIS.impl .cxx
$(CCXX) -DOPTIKIZE _DIS.itpl.cxx

_Driver.o: _Driverbody.tc.hxx _Driver.c _DIS.tc.hxx _DIS.ch.hxx _Driverbody.ch.hxx
$(CCXX) -DOPTIMIZE -I$(XLfBINCL) _Driver.c

_switch. 0: _Netswitchbody.tc.hxx _Switch.c _DIS.tc.hxx _DIS.ch.hxx _Netswitchbody.ch.hxx
$(CCXX) -DOPTIKIZE -I$(XLfBINCL) _Switch.c

all: clean $ (LOCMODS)

clean:
rI -f *.dully
rI -f _DIS .glob.o

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDIXD

Listing of PET-DINGO Generated Files from DIS Specification

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DIS.syE
_Assessbody.eh.exx
_Assessbody.eh.hxx
_Assessbody . en
_Assessbody.hxx
_Assessbody.te.exx
_Assessbody.te.hxx
_CoJbinerbody.eh.cxx
_Colbinerbody.ch.hxx
_colbinerbody.cxx
_Colbinerbody.hxx
_CoJbinerbody.te.cxx
_Colbinerbody.tc.hxx
_Corebody.ch.cxx
_Corebody.eh.hxx
_Corebody.en
_corebody.hx~
_Corebody.Jaln.exx
_Corebody.te.exx
_Corebody.te.hxx
_DIS.bindirs
_DIS.eh.exx
DIS.ch.hxx

-DIS.exx
)IS.glob.cxx

DIS.hxx
)IS. il{ll.hxx
_DIS.lenn.en
_DIS.lake.tlpl
_DIS.tc.en
_DIS.te.hxx
_Dr~verbody.ch.exx
_Drlverbody.ch.hxx
_Dr i verbody • en
_Dri verbody .hxx
_Driverbody.Jain.exx
_Driverbody.te.exx
_Driverbody.te.hxx
_Firebody.ch.exx
_Firebody.ch.hxx
_F irebody • en
_F~rebody.hxx
_Flrebody.tc.cxx
_Firebody.te.hxx
_Logisticbody.ch.cxx
_Logistiebody.ch.hxx
_Logisticbody.cxx
_Logistiebody.hxx
_Logisticbody.te.exx
_Logistiebody.te.hxx

_Ketswitehbody.eh.exx
_Netsw~tchbody.eh.hxx
_Netswltchbody.cxx
_Netswitchbody.hxx
_Ketsw~tchbodY·Jain.exx
_Netswltchbody.te.exx
_Netswitchbody.te.hxx
_Networkbody.ch.cxx
_Ketworkbody.ch.hxx
_Ketworkbody.cxx
_Ketworkbody.hxx
_Ketworkbody.aain.exx
_Ketworkbody.tc.exx
_Ketworkbody.te.hxx
_Splitterbody.eh.exx
_Splitterbody.eh.hxx
_Splitterbody.exx
_Splitterbody.hxx
_Spl~tterbody.te.cxx
_Splltterbody.te.hxx

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDIXE

References

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[BERTINE] Bertine, Herbert V.; W. B. Elsner; P. K. Verma; K. T. Tewani,

Overview of Protocol Testin~ Pro~rams, Methodologies, and Standards

(AT&T Technical Journal, Jan/Feb 1990)

[BUDKO] Budkowski, S.; P. Dembinski, An Introduction to Estelle: A

Specification Langua~e for Distributed Systems (Computer Networks

and ISDN Systems 14, 1987)

[DIS-SlD] Military Standard, Protocol Data Units for Entity Information and

Entity Interaction in a Distributed Interactive Simulation (Final Draft)

(Institute for Simulation and Training 15T-PD-91-1, October 30,1991)

[IS07498] International Organization for Standardization, Open Systems

Interconnection Reference Model (1507498, 1984)

[IS09047] International Organization for Standardization, Estelle: A Formal

Description Technique Based on an Extended State Transition Model

(IS09047, August 15, 1989)

[POPE] Pope, A; R. L. Schaffer, The SIMNET Network and Protocols (BBN

Systems and Technologies, Report No. 7627, June 1991)

[SIJELl]

[SIJEU]

Sijelmassi, R.; B. Strausser, The Portable Estelle Translator: An

Overview and User Guide (D. S. Department of Commerce, National

Institute of Standards and Technology, Technical Report NCSL/SNA-

91/1, January 91)

Sijelmassi, R.; B. Strausser, The Distributed Implemen ta tio n

Generator: An Overview and User Guide (D. S. Department of

Commerce, National Institute of Standards and Technology, Technical

Report NCSL/SNA-91/3, January 91)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 0000117

	Specification Of Distributed Interactive Simulation In The Estelle Formal Description Technique: Investigation Of OSI Protocols For Distributed Interactive Simulation
	Recommended Citation

	tmp.1440086406.pdf.0DjI1

