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1. Executive Summary 

Route planning occurs at multiple levels within CGF systems. At the lowest level, routes for 
individual vehicles are prepared that allow vehicles to move from one point to another. At levels 
above the vehicle, routes are prepared for groups of vehicles, i.e. units (platoons, companies, 
battalions) . Unit routes occur within "movement corridors" reflecting the fact that, formations 
and tactics aside, the vehicles' routes are only constrained to be within the corridor. As the 
hierarchy of units is ascended, the unit's size and therefore the width of the corridor increases. 

This report presents a new Unit Route Planning Algorithm based on a novel abstraction called 
the Obstacle Segment Abstraction (OSA). This Unit Route Planning Algorithm combines the 
OSA with two route planning approaches, regular grid and vertex graph. A regular grid overlays 
the terrain. The size and location of the grid is determined by the unit boundaries of the unit 
planning the route. The scale of the grid is determined by the unit size; a grid scale less than 
half the typical "frontage" of the unit gives good results.. Obstacles on the terrain are encoded in 
the grid using the OSA. An efficient search algorithm, A*, is applied to the grid to determine the 
optimal route. Factors in addition to distance are incorporated into the route cost determination 
to introduce trafficability and cover and concealment in the evaluation of the potential routes. 

The OSA is a space efficient representation of obstacles within a polygonal terrain database. 
Calculations show that the standard SIMNET Ft. Knox Terrain Database (TDB) can be 
completely represented at the 500 meter grid level as an OSA grid in approximately 200 Kbytes 
of memory. 

The Unit Route Planning Algorithm has several strengths: 
l. It is scalable. The size of the underlying grid is based on the size of the unit. 
2. It is time and space efficient. An efficient search algorithm, A*, is used to determine 

routes. The space requirements for the OSA are relatively small. 
3. Three factors (distance, trafficability, and cover and concealment) are considered in 

evaluating candidate routes. 
4. Multiple distinct routes can be generated between two locations on the terrain. 
5. Chokepoints are identified. 
6. It can be used to efficiently find and refine lengthy, precise routes through a process of 

successive refinement. 
7. It can be utilized as an efficient vehicle route planner with the addition of a simple route 

smoothing algorithm. 

This report documents several experiments of route planning at different unit sizes . For 
example, an optimal 10 km route was determined in approximately 5 seconds on a 60 MHz 486 
PC after the grid had been filled with Obstacle Segment Abstractions. 

1 
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2. Introduction 

2.1 Purpose 

This technical report is a deliverable under STRICOM contract N61339-92-C-0045, "Intelligent 
Autonomous Behavior by Semi-Automated Forces in Distributed Interactive Simulation". It is 
one of two reports satisfying CDRL A007 "Route Planning Technical Report"; the second report is 
entitled "Dynamic Obstacle Avoidance", IST-TR-94-41. 

Its purpose is to report the methodology and results of experimental software development 
conducted at the Institute for Simulation and Training (1ST) under that contract. The goal of the 
software development was to produce an efficient and effective mechanism whereby battalion, 
company, and platoon command entities controlled by Computer Generated Forces systems can 
efficiently generate routes with minimal length and exposure to enemy fire. 

2.2 Background 

This section provides a brief description of Distributed Interactive Simulation (DIS) and 
Computer Generated Forces (CGF). It may be skipped by readers familiar with these topics . 

2.2.1 Distributed Interactive Simulation 

Distributed Interactive Simulation is an architecture for building large-scale simulation models 
from a set of independent simulator nodes (DIS[1993]). The simulator nodes are linked by a 
network and communicate via a common network protocol. (The term DIS is also sometimes 
used to designate a particular network protocol standard; in this document "DIS" refers to the 
simulation architecture; the DIS protocol standard will be so identified.) In DIS, the simulator 
nodes each independently simulates the activities of one or more entities in the simulated system 
and report their attributes and actions of interest to other simulator nodes via the network. The 
simulated entities coexist in a common environment (for example, a terrain database) and 
interact by exchanging network packets (Loper et. al.[1991]). Finally, an important 
characteristic of DIS simulations is that they are real-time; events in the simulation occur at the 
same rate as their real-world counterparts. 

2.2.2 Computer Generated Forces 

DIS environments are designed to provide a simulated battlefield which is used for training 
military personnel. In such a battlefield, the trainees need an opposing force against which to 
train. One technique is to use a computer system that generates and controls multiple 
simulation entities using software and possibly a human operator. This type of system is known 
as a semi-automated force (SAF or SAFOR) or a computer generated force (CGF). 

A CGF system will use built-in behavior to react autonomously to the simulation situation or to 
carry out orders given by its operator. Its behavior may be encoded as algorithms, production 
rules, formal behavior specifications, or some other form. The intent is for the CGF system's 
behavior to be autonomous (i.e. not requiring human control) and realistic (i .e. true to doctrine, 
physics, and human responses) to the greatest possible extent. 

Under the sponsorship of ARPA and STRICOM, 1ST has been conducting research in the area of 
CGF systems, seeking to increase the realism and autonomy of CGF behavior. A key product of 
that sponsorship is the 1ST CGF Testbed. The 1ST CGF Testbed is a CGF system that provides 
an environment for testing CGF behavioral control algorithms. It is documented in Danisas et. 
al. (1990), Gonzalez et. al.(1990), Petty (1992), Smith et. al. [1992a), and Smith et. al. [1992b]. 

2 
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3. Route Plannin~ 

Route planning occurs at multiple levels within CGF systems. At the lowest level, routes for 
individual vehicles are prepared that allow vehicles to move from one point to another. Vehicle 
routes typically consist of a series of line segments. These piecewise linear routes are 
represented as a list of points (called "route points") and the vehicle is expected to travel in a 
straight line between route points. Craft et.al. [1994] describes a mechanism for avoiding 
moving obstacles while traversing a route. 

At levels above the vehicle, routes are prepared for groups of vehicles, i.e. units (platoons, 
companies, battalions). As the hierarchy of units is ascended, the unit's size and therefore the 
width of the route increases. Unit routes occur within "movement corridors" reflecting the fact 
that, formations and tactics aside, the vehicles' routes are only constrained to be within the 
corridor. A corridor has sufficient width for a unit to move through it. Figure 3-A illustrates a 
network of movement corridors between two locations on some notional terrain. 

Deslinalion 

Start 

River 

Bridge 

f:--~+- Forrest 

Movement 
Corridors 

Figure 3-A Movement Corridors 

Planning routes for units of differing sizes may seem a simple matter of generating a route for a 
single vehicle and treating that route as the center of a corridor. While feasible, this approach 
retains the complexities of creating precise vehicle routes. For example, a route for a vehicle 
would need to avoid small static obstacles such as buildings. In contrast, a unit route or corridor 
could ignore the buildings with the understanding that the vehicles within the unit would 
individually avoid them. Similarly, a vehicle level route would need to specify precisely the path 
to cross a bridge. A unit route would simply need to enclose the bridge. The complexities of 
vehicle level route planning increase the computational expense/time above that required for 
unit route planning. 

This report details research into route planning for military units. A novel approach based on 
the combination of three disparate route planning approaches is presented that: 

1. is scaleable, suitable for battalion through vehicle route planning, 
2. computationally fast, 
3. considers distance, cover and concealment, and trafficability, 
4. generates multiple acceptable routes between points within unit boundaries, and 
5. finds and reports chokepoints within the routes. 

3 
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This research has been done in conjunction with the development of a CGF Automated Mission 
Planner capability. To generate and evaluate multiple courses of action to fulfill a mission, the 
Mission Planner requires multiple, tactically sound unit routes and the identification of 
chokepoints along the routes (Lee [1994]). 

3.1 General Path Planning Approaches 

Motion planning with particular emphasis on robot path planning and robot manipulator path 
planning has seen considerable work, see Hwang et. al. [1992] for a survey. There are four broad 
categories of path planning approaches: free space analysis, vertex graphs analysis, potential 
fields, and grid (regular tessellation) based algorithms (Thorpe [1984]). Each approach has 
strengths and weaknesses. 

In the free space approach, only the space not blocked or occupied by obstacles is represented. 
For example, representing the center of movement corridors with Voronoi diagrams (Roos et. al. 
[1991]) is a free space approach. Although Voronoi diagrams are efficient representations, they 
and other free space approaches have some deficiencies. First, they tend to generate unrealistic 
paths. Paths derived from Voronoi diagrams follow the center of corridors while paths derived 
from visibility graphs (Mitchell [1988]) clip the edges of obstacles. Second, the width and 
traffic ability of corridors are typically ignored. Third, distance is generally the only factor 
considered in choosing the optimal path. 

In the vertex graph approach, the endpoints, vertices, of possible path segments are represented 
(Mitchell [1988]). This approach is suitable for spaces that have sufficient obstacles to determine 
the endpoints; determining the vertices in "open" terrain is difficult. In addition, representing 
only path vertices creates three other difficulties. First, trafficability over the path segments is 
not represented; route segments between arbitrary vertices are typically "open" or "blocked". 
Second, factors other than distance can not be included in evaluating possible routes. In the 
military simulation domain, concealment and cover are important factors in route planning. 
Third, because the width of route segments is not represented one of two problems occurs. 
Chokepoints (narrow sections of routes) are marked "blocked" or "open". If "blocked", acceptable 
routes are discarded. If "open", unacceptably long, narrow routes are accepted. Thus, the vertex 
graph approach has difficulty representing route width. 

In the potential field approach, the goal (destination) is represented as an "attractor", obstacles 
are represented by "repellors", and the vehicle is pulled toward the goal while being repelled 
from the obstacles (NASA [1991]). There are three difficulties with the potential field approach. 
First, the vehicles can be attracted into box canyons from which they can not escape (Mitchell 
[1988]). Second, some elements of the terrain may simultaneously attract and repel. For 
example, an obstacle to movement, a repellor, may create an area of concealment. A vehicle 
should be attracted to the obstacle for concealment while being repelled from the obstacle 
creating the "visibility shadow". Third, route width is not considered. 

In the regular grid approach, a grid overlays the terrain, terrain features are abstracted into the 
grid, and the grid rather than the terrain is analyzed. Each grid cell is typically marked as 
"open" or "blocked". Quadtrees are an example of the regular grid approach (Mitchell [1988]). 
Grid routes are converted into terrain routes typically by adding the z-coordinate to the xy­
coordinates in the grid route. This approach's advantage is to simplify the analysis but has two 
disadvantages. First, "jagged" paths are produced because movement out of a grid cell is 
restricted to four (or eight) directions corresponding to the four neighboring cells (eight if 
diagonal moves are allowed). Second, the granularity (size of the grid cells) determines the 
smallest "opening" that can be identified. If the granularity is too large, small openings in 

4 
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obstacles (e.g. bridges over rivers) are lost. To capture the small openings, a small granularity is 
required which increases the computational expense of the analysis. 
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4. Unit Route Plannin" 

The Unit Route Planning algorithm presented here combines a unique obstacle abstraction with 
two route planning approaches, regular grid and vertex graph. A regular grid overlays the 
terrain . The size and location of the grid is determined by the unit boundaries of the unit 
planning the route. The scale ofthe grid is determined by the unit size; grid scales less than the 
typical "frontage" of the unit give good results. For example, grid scales from 75 to 125 meters 
are suitable for platoons, 250 to 500 meters for companies, and 750 to 1000 meters for battalions. 
Obstacles on the terrain are encoded in the grid using a novel abstraction called the Obstacle 
Segment Abstraction (OSA). An efficient search algorithm, A*, is applied to the grid to 
determine the optimal route. Factors in addition to distance are considered in determining route 
cost to incorporate trafficability and cover and concealment in the evaluation of the potential 
routes. 

4.1 Terrain Grid 

CGF systems operating within DIS type environments rely on a representation of terrain termed 
a Terrain Database. This research was performed using the SIMNET terrain database (TDB) 
which encodes terrain and terrain features as polygons; these are encoded in turn in edge and 
vertex lists. This TDB contains features such as treelines, canopies, rivers, and lakes. These 
features are the physical obstacles. The Unit Route Planning algorithm is applicable to any 
polygonal TDB format (e.g., ModSAF's CTDB (Smith [1994])) and to any TDB format that 
represents obstacles as distinct features. 

When a route is requested, a regular grid is laid over a portion of the terrain. The location and 
size of the grid are determined by the unit boundaries and the orientation of the grid is 
determined by the orientation of the destination to the starting location. The granularity of the 
grid (the size of each grid cell) is determined by the unit size. Each grid cell has eight 
neighboring grid cells. The cells to the north (N), south (S), east (E), west (W) are called the 
orthogonal cells and the cells to the northeast (NE), northwest (NW), southeast (SE), and 
southwest (SW) are called the diagonal cells. 

INWI ~ ~ 

~ ~ 

Iswl ~ ~ 

Figure 4. I-A Neighboring cells 
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4.2 Obstacle Segment Abstraction 

The terrain underlying the grid is analyzed and each obstacle in encoded in the grid. The 
encoding uses a small set of linear segments called the Obstacle Segments (OSs). The different 
types of OSs are: 

• Horizontal and vertical 
• Diagonal and 
• Tunnel 

as shown in Figure 4.2-A. 

OJ EJ Hod"n,.1 .nd ve<ti~1 OS 

[J 0 D D Di.,o .. IOS 

[[] tl Tunnel OS 

Figure 4.2-A Obstacle Segments 

Each OS is identified with an Obstacle Identification Number (OIN). The OSs representing a 
single terrain feature are assigned the same OIN. Thus, each OSA represents a single terrain 
feature and is the set ofOSs with the same OIN. 

Treating physical obstacles as OS abstractions is the basis for OSA route planning. The precise 
polygonal details of the obstacle are be dispensed with and an encoded representation is used in 
its place. As will be seen, the grid granularity determines the "correlation" error between the 
feature and its abstraction. So long as the granularity reflects the unit size, the correlation error 
is not a significant issue. 

7 
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4.2.1 Creating Obstacle Segments 

The intersections of terrain obstacles and the edges of the grid cells are determined and 
converted to OSs. An OS is created between the sides of the two entry points of an obstacle into 
a grid cell: 

grid cell 
boundary 

Figure 4.2.1-A An Obstacle that is represented by an Obstacle Segment 

The portion of the river in Figure 4.2.1-A is represented by a horizontal OS in Figure 4.2.1-B. 

grid cell 
boundary 

Figure 4.2.1-B A cell with a Horizontal Obstacle Segment 

An obstacle that does not exit a cell does not impose a barrier to travel within the cell; a vehicle 
can simply move around it. Thus, an OS is not created for a feature that enters but does not exit 
a cell: 

-I-------... ~}---t- river 

grid cell 
~-- boundary 

Figure 4.2.1-C An Obstacle that is not represented by an Obstacle Segment 

The portion of the river in Figure 4.2.1-C is not represented by an OS. 

Obstacles with width (e.g., rivers and lakes) will sometimes be represented by more than one OS 
in a grid cell. This occurs when the edges of the obstacle cross different grid cell boundaries. The 
example in section 4.2.2 illustrates this phenomenon. 
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4.2.2 Example 

Figure 4.2.2-A shows some notional area of terrain and Figure 4.2.2-B shows the resulting OSA 
grid. 

;+--t- river 

'.---1- canopy 
~-~--+---+-4--+--~ 

1 : 

Figure 4.2 .2-A Notional Terrain 

1 " 

1 
- - - - - - -- - - - - -~ , 

, 
,'1 

1, ..... '1--+----+-- river OSA 

2 
2 ~---+- canopy OSA 

2' .' 2 

Figure 4.2.2-B Obstacle Segment Abstraction Grid 

The OSs representing each obstacle are assigned unique OINs. In this example, the river's OSs 
are assigned the id "1" and the canopy's OSs are assigned the id "2". The river crossing the 
corner of a grid cell causes the river's OSA representation to include two cells with multiple OSs . 
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4.3 Creating Routes 

Route planning within the OSA grid is a matter of searching the grid for optimal routes. The 
search begins at the start location and partial routes are extended into each of the neighboring 
grid cells. Then the partial path which seems "best" is extended. Extending a path creates 
several new partial paths, one for each neighboring cell at the end of the partial path. These 
partial paths are evaluated and placed on the list of candidate partial paths. The process of 
extending the "best" partial path continues until the destination is reached . 

The search through the grid utilizes the vertex graph approach to route planning. Within each 
grid cell, "sample" points (see Section 5.3.2) are isolated. Beginning at the start location, a 
partial route to each neighboring cells' sample points is created provided that the partial route 
does not cross an Obstacle Segment. In turn, each partial route is extended. This is a graph 
search problem. An efficient algorithm for performing graph searches is A*, Winston [1992]. 
The A* algorithm's efficiency results from extending the lowest cost partial path. Undesirable, 
costly partial paths are ignored in favor of less costly partial paths. The Unit Route Planner 
calculates route cost from distance, trafficability, and cover and concealment. 

4.3.1 A* Algorithm 

The A* procedure is a branch-and-bound search combined with, first, an estimate of the cost of 
the remaining route and, second, the dynamic-programming principle, Winston [1992]. This 
estimate of the remaining distance is called the "underestimate". When the underestimate is a 
lower-bound on the actual distance, A* produces optimal solutions. A natural underestimate in 
route planning is the lineal' distance from the last point on a partial route to the destination. 
The dynamic programming principle improves search efficiency by retaining only the best partial 
solution to each point for further analysis. 

4.3.2 Cost factors 

The cost of a route depends upon: 

• length, 
• concealment from enemy positions, and 
• trafficability over the route. 

As the length of a route increases, its cost also increases . Route segments that are not concealed 
from enemy positions increase total route cost reflecting increased "danger" along those route 
segments . Poor trafficability similarly increases the cost of route segments. For this work, 
terrain slope and soil type governed trafficability. Flat terrain was the least costly. Soil types 
were given costs in relation to the ease of travel over them. Route segment cost was computed 
through a set of weight factors and equations described in detail in Section 5.3.7. 

The Unit Route Planner's underestimate is the linear distance between the last point on the 
partial route and the destination considering the rest of the route to be concealed and on flat 
terrain. This is an underestimate because the least costly route possible between two points is a 
straight line with maximal concealment over the most easily traversed soil. 
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4.4 Advantages of the Obstacle Segment Abstractions 

The OSA combines the strengths of the vertex graph and the regular grid approaches and solves 
or alleviates their problems. Consider the shortcomings of the regular grid approach. First, the 
OSA encoding of obstacles within the grid is more sophisticated than the typical "open" or 
"blocked" approach. This encoding allows the interiors of cells containing obstacles to be 
considered for route segments. This removes the restriction that grid granularity is dictated by 
the smallest opening in the terrain. Second, within each grid cell, candidate route vertices called 
"sample points" are identified. The introduction of sample vertices into the regular grid solves 
the "jagged" path problem of regular grids. Consider the shortcomings of the vertex graphs 
approach. First, determining vertices in open terrain is not a problem because vertices, sample 
points, are found within many grid cells. Second, trafficability and cover and concealment are 
encoded in the grid cell and are included in the evaluation of candidate routes. 
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5. The Unit Route Planninf: Al&:,orithm 

This section discusses the Unit Route Planning Algorithm that was implemented in the 1ST CGF 
Testbed. Specifically, Section 5.1 presents the PlanRoute algorithm. Section 5.2 discusses how 
the grid granularity can be set to the optimum value. Finally, Section 5.3 presents the details of 
the algorithm implementation. 

5.1 Algorithm PlanRoute 

Algorithm PlanRoute plans a route between two points, the start and the destination . The 
details of PlanRoute are explained in following sections. 

Algorithm PlanRoute 

Input: 
The grid to route on, the start, and destination points. 

Output: 
A list of points defining the route. 

Variables: 
route_list A list of routes, sorted in ascending order of route cost. 

The first route on this list is referred to as route_list}' 
route_to_bLextended The least costly (and hence the first) route on the route_list . 

It is the same as route_list}' 
reachable-points A list of points that are reachable from the last point on 

route _to _be_extended. 

l. [Create the grid] 

2. [Fill the grid] 

3. [Initialize route_list] 
route_list = empty 

4. [Are we there?] 
If the first route on the route_list terminates at the destination then 

4.1 Return route_list J 

else 
4.2 [Extend least costly partial route] 

4.2.1 route_to_be_extended = route_list/' 
4.2.2 Determine the points reachable from the last point on 

route_to_be_extended (described in Section 5.3.6). 
reachable-points = {r J , r2 , ... , rJ. 

4.2.3 Expand route_to_be_extended to each of the points in reachable-points if 
another, less expensive route to those points does not exist. 

4.2.4 Add these new routes to route_list in ascending order of route cost and 
underestimate. 

4.2.5 Go to step 4. 

Steps 1 and 2 in the algorithm create the grid and populate it with abstract obstacles (see Section 
5.3.1 for details on converting polygonal features to OSs). Step 3 initializes the route_list to 
empty. Step 4 finds the route. 
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In step 4, a check is made to determine if route_to_be_extended has reached the destination. If 
so, the result is sent to the caller; otherwise, route_to_be_extended is extended. 

Step 4.2 extends the least costly partial route. The first route on the route_list, route_list
J

, is 
removed and assigned to route_to_be_extended. All the points that are reachable from the end of 
this route are determined and stored in the list reachable..floints (see Section 5.3.6 to see how 
reachable points are determined.) The route is extended to each reachable point only if another, 
less costly route does not exist. These "extended" routes are added to the route_list in sorted 
order and step 4 is repeated. 

5.2 Grid granularity auto-detection 

It is easy to see that the density of obstacles on portions of terrain can exceed the capacity of the 
OSA grid to represent them at certain grid sizes. When the granularity of the grid is too coarse 
for the density of obstacles, the Unit Route Planner attempts to create too many identical OSs. 
For example, the Planner may attempt to create two NE diagonal OSs in a single grid cell. The 
Unit Route Planner detects when this occurs and prevents analysis from continuing at the same 
granularity. There are at least two solutions to the problem of a too coarse grid granularity. 
First, the algorithm can simply stop and replan the entire route at a finer granularity. This is 
the simplest solution conceptual1:}'. The algorithm simply "halves" the grid width and starts over. 
The second solution is similar to the quadtree representation. In this approach only the 
granularity of the grid cell . that is too coarse is increased. This approach avoids the 
computational expense of repeated replanning but is more complex. For this work, the first 
approach was chosen. 

5.3 Algorithm details 

Sections 5.3.1 through 5.3.7 describe aspects of the Unit Route Planner in greater detail. 

5.3.1 Marking Obstacle Segment Abstractions in Grid Cells 

This section describes the details of analyzing the SIMNET Terrain Database to create Obstacle 
Segment Abstractions. 

Physical obstacles (treelines, canopies, rivers, and lakes) that cross a cell's boundaries are 
marked as Obstacle Segments for that cell. A cell may lie in one, two, or four terrain database 
patches. All the physical obstacles in the patches that contain the cell have to be searched to 
determine Obstacle Segments for the cell. 

5.3.1.1 Treeline obstacles 

A treeline is described by a list of vertices which determine its shape. A treeline is composed of a 
number of treeline segments which is the part of the treeline between two treeline vertices. A 
bounding box of a treeline is constructed which defines the smallest rectangle that encloses the 
treeline. The bounding box is tested to see if it overlaps a cell. 

If the bounding box intersects the cell at two points on different cell edges, the treeline is a 
candidate for classification as an Obstacle Segment. If there is no overlap between the bounding 
box and the cell or if the bounding box is completely enclosed by the cell, the treeline is not 
considered as an Obstacle Segment. Even though the bounding box of the treeline may intersect 
the cell boundary at two points on different cell edges, this by no means guarantees that the 
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treeline crosses the cell boundary and is an Obstacle Segment. Such a situation is shown in 
figure 5.3.1.1-A. 

r------tr:-=-----..,~ ..... ::----'-;-: ~-- b:::~~:g box 

I I 
- - - --

..-___ cell boundary 

Figure 5.3.1.1-A Bounding box overlap does not guarantee an Obstacle Segment 

Additional tests must be done on the treeline to make sure that it does cross the cell boundary in 
order to classify it as an Obstacle Segment. This is done by constructing a bounding box for each 
treeline segment and testing each bounding box against the cell for possible overlap. A situation 
similar to the one described for the treeline bounding box/cell overlap case may develop; a 
treeline segment bounding box may cross the cell boundary but the treeline segment may not 
(see Figure 5.3.1.1-A). In such a case, the treeline segment is tested against the cell boundary 
directly by doing a line intersection test. The bounding box tests at the two levels (treeline and 
treeline segment) and possible treeline segment intersection tests guarantee that treeline 
obstacles are correctly recognized. 

5.3.1.2 Canopy obstacles 

In the SIMNET TDB, a canopy is defined as a collection of treelines and base polygons. Canopies 
can be classified as Obstacle Segment Abstractions by first constructing a bounding box for the 
entire canopy and testing its overlap with the cell. If the canopy bounding box intersects the cell 
boundary at two points on different cell edges, the canopy is a candidate for classification as an 
Obstacle Segment Abstraction. However, this does not guarantee that the canopy will be an 
Obstacle Segment Abstraction. 

If the canopy bounding box overlaps the cell, each base polygon in the canopy is tested for 
intersection with the cell by constructing its bounding box and testing its overlap with the cell . 
Again, this may not guarantee that the polygon overlaps the cell, in which case intersection tests 
between the polygon edges and the cell may have to be done to be sure. It may be possible that 
some canopies may give rise to more than one Obstacle Segments in a cell (for example, a vertical 
and south west diagonal obstacle may result) . In such a case all the Obstacle Segments that are 
part of the same physical obstacle are given the same obstacle identification number (OIN). 

5.3.1.3 River obstacles 

A river flowing through a terrain database patch is described by a collection of (possibly) 
overlapping "water" polygons. The algorithm first determines the connectivity of water polygons 
in a patch. Finding the connectivity of water polygons refers to partitioning them into groups 
such that all water polygons in one group are connected to each other. This is necessary because 
two or more sets of connected water polygons may give rise to two or more rivers and each river 
would have to be marked as a separate Obstacle Segment Abstraction. 
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Each group of connected polygons is tested for possible classification as an Obstacle Segment 
Abstraction by constructing bounding boxes for all the water polygons in that group and by 
checking their overlap with the cell. Intersection tests may have to be done to determine that a 
polygon whose bounding box overlaps the cell does indeed intersect the cell boundary. 

The bounding box/cell overlap tests continue until another water polygon belonging to the same 
river is found that intersects a cell edge which is different from the one that was intersected by 
the first water polygon. This indicates that the river cuts through two different edges of the cell 
making certain regions of the cell unreachable. 

5.3.1.4 Lake obstacles 

Just like rivers, lakes are described is a similar fashion; the lakes in a patch are composed of a 
number of water polygons. The same logic is used for recognizing lakes as Obstacle Segment 
Abstractions as was used for recognizing rivers as obstacles (see section 5.3.1.3). 

5.3.2 Sample points 

In the typical regular grid approach to route planning, the center of the grid cell is the single 
available route point. The Unit Route Planner has instead a set of 12 available route points 
called sample points. The sample points are the. vertices used by A* in searching the OSA grid 
for routes. Figure 5.3.2-Ashows the sample points in relation to the diagonal OSs, a horizontal 
OS, and a vertical tunnel OS. They are arranged so there is at least one sample point on each 
side of each OS. 

• 
1 

• 
7 

9 

• 0: 

....... -- sample point 
2 

3 4 ....... • .. cell boundary . . : 12. 
5 6 ..--t--- Obstacle Segment 

• 
8 

Figure 5.3.2-A Sample Points 

All grid cells have at least the first eight sample points. If the grid cell contains a tunnel (see 
Section 4.2), four additional points (9 .. 12) are added. 

Regular grids typically show a udigitization bias", Mitchell (1988), in which only 4 (8 if diagonal 
moves are allowed) angles out of each cell are available; these angles correspond to moves to the 
orthogonal and diagonal cells. This digitization bias causes the "jagged" appearance of routes. 
Sample points greatly reduce digitization bias. Each cell has between 512 angles (8 sample 
points * 8 neighbors * 8 sample points per neighbor) and 1152 angles (12 sample points * 8 
neighbors * 12 sample points per neighbor). Each partial route can be extended to between 64 
and 96 available sample points. Section 5.3.6 discusses how this "explosion" of partial routes is 
controlled. 
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5.3.3 Adjusting start and destination points 

Because of the correlation error between an obstacle and its Obstacle Segments, the start and 
destination points can not be translated to the OSA grid directly from their locations on the 
terrain. Simply put, the start or destination points must remain on the correct "side" of the 
Obstacle Segments. Figure 5.3.3-A illustrates the problem. The start point in the OSA grid 
must be to the southwest of the river's OS. 

obstacle 
segment 

sample 
point 

start point 

,...-+-- river 

Figure 5.3.3-A Start point adjustment 

An algorithm was devised to move the start and destination points so that their positions relative 
to the abstract obstacles matched their positions relative to the physical obstacles. Specifically, 
the start or destination point is moved to a sample point (see Section 5.3.2) inside the grid cell. 
The algorithm is based on the /Zoodfilling approach as described in Foley et.al. [1991] . 

The algorithm starts by subdividing the grid cell containing the terminal point (start or 
destination) into 10 meter X 10 meter subcells. It then fills the cell with physical obstacles by 
marking appropriate sub-cells as being "blocked" by physical obstacles . 

The algorithm then floodfills the cell starting from the terminal point and determines which 
edges and corners of the grid cell have been "colored". 

Finally, the sample point replacing the terminal point is determined: 

1. First determine which corners are colored. Put each colored corner's sample point (i.e., 
the sample point nearest to that corner) onto the list of accessible sample points. 

2. If the list contains 0 or more than 1 sample points (zero or more than one corner was 
colored), examine the edges: 

2.1 If the left and top edges are colored, then add sample point 3 (see Figure 5.3.2-A) to 
the accessible sample points list. 

2.2 If the left and bottom edges are colored, then add sample point 5 to the accessible 
sample points list. 

2.3 If the top and right edges are colored, then add sample point 4 to the accessible 
sample points list . 

2.4 If the bottom and right edges are colored, then add sample point 6 to the accessible 
sample points list. 
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3. Of all the sample points in the accessible sample points list, find the closest sample point 
to the actual point and move the terminal point there. 

For the case shown in figure 5.3.3-A, the region that is floodfilled and the new starting point is as 
shown in figure 5.3.3-B. 

obstacle 
segment 

sample 
point 

new start 
point 

start point 

~--t-- river 

Figure 5.3.3-B Floodfilling the grid cell 
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5.3.4 Movement between grid cells 

Obstacle Segment Abstractions are approximations of the underlying terrain obstacles. OSAs in 
orthogonal cells may "touch" on the edge between the cells even though the obstacles do not 
touch. This creates an artificial barrier to routing. To solve this problem the concepts of the 
"shared point" and "Obstacle Segment Displacement" were introduced. 

5.3.4.1 Shared points 

Obstacle Segments in adjacent orthogonal grid cells may touch on the boundary between the two 
grid cells. The point of contact is called a shared point . Shared points are the midpoints of the 
edge separating two cells. For example, in Figure 5.3.4.I-A, 8 is a shared point. 

oh;tacle 2 , , , cellB 
'-

~ 
v ............... -'" 

, dNaclel 

cellA 

Figure 5.3.4.I-A A shared point. 

A shared point exists between grid cells only when 

• the destination cell is an orthogonal cell, and 
• the two grid cells contain Obstacle Segments that touch at the shared point. 

Shared points are used in allowing movement between obstacles whose OSAs meet (see Section 
5.3.4.2). 
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5.3.4.2 Obstacle Segment Displacement 

Obstacle Segment Abstractions may be aligned so as to block movement that would otherwise be 
possible if routes were being generated with respect to the underlying terrain features only. 
Consider, for example, the movement from cell A to cell B in Figure 5.3.4-A. 

point x treeline 

! 
::::: - - - - - - - - - --

~---t--- accessible 

river,_-+J======~~~~:::====:::::::: 
area 

ce IA cell B 

Figure 5.3.4-A Access to region between physical obstacles in two cells 

From the figure, it is clear that a route may be extended from point x to the accessible , area in 
cell B. 

The OSAs for these two grid cells restrict access to the accessible area (Figure 5.3.4-B). Without 
adjustment, the only move from x is to the NW of the treeline . 

point x treeline OSA 

---------------- ... 
C inaccessible _____ /0011---+- area 

I T 
cell A cell B river OSA 

Figure 5.3.4-B The corresponding obstacle abstractions 

To prevent "touching" OSAs from unrealistically eliminating route segments, OSAs are 
"displaced" or moved away from shared points. This is reasonable; the terrain features do not 
touch (they would be represented as the same OSA if they did), so the OSAs should not touch. In 
Figure 5.3.4-C, the OSA representing the river is displaced to the South and the treeline OSA is 
displaced to the North. 
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point x treeline OS (displaced) 

-:: :--- -- -------- - --~ 
area becomes 
accessible 

cell A shared 
point 

cell B river OS (displaced) 

Figure 5.3.4-C Displaced obstacle segments 

The displacement opens the gap between different OSAs making movement between them 
possible. 

5.3.5 Extended Obstacle Segments 

A move into a diagonal grid cell may sometimes be blocked by an as in an orthogonal cell. Such 
a situation is shown in Figure 5.3.5-A. 

y 

cellB ---.. .... --cellC 
r--c~---r-----~ 

current ----H~. 
position 

cell A 

Figure 5.3 .5-A Diagonal move blocked by abstract obstacle in an orthogonal cell 

The PlanRoute algorithm (Section 5.1) considers only two grid cells at a time when extending 
partial routes. In Figure 5.3.5-A, a move is being considered from "current position" in cell A to y 
in cell C. The move appears to be valid when only cells A and C are considered; knowledge of 
OS1 in cell B is not used. However, such moves should be disallowed because there may be ass 
in cell B that block such a move (e.g. as 1 in Figure 5.3.5-A.) 
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To disallow such moves, OSs in destination cells are "extended" as shown for the case given in 
Figure 5.3.5-A. 

exten 

blocked 
move 

current 
position 

y 

sionl~_ 
-

~ .. 

• 

- - -

~. , 
~ , 
, 

, 

..... ~------ extension 2 

cell A 

Obstacle 
Segment 

cell B 

Figure 5.3.5-B Extended Obstacle Segment 

An "Extended OS" consists of three components: the Obstacle Segment and its two extensions 
(one from each endpoint). Each extension is a line segment at a right angle to its edge of the grid 
cell. When determining if a sample point can be reached, the extensions as well as the OS are 
checked. 

5.3.6 Determining Reachable Points 

Routes are extended to "reachable" points in neighboring grid cells. A sample point is reachable 
if the route segment to the point does not intersect an OS. A route segment is a line segment 
from the end of the route to a sample point. 

If two adjacent grid cells do not contain the shared point (Section 5.3.4.1), line segments are 
drawn to each of the sample points in the destination grid cell. If a line segment intersects an 
OS, the sample point is unreachable and discarded. 

If two adjacent grid cells contain a shared point, the shared point is checked for reachability. If 
so, the sample points are checked for reachability from the shared point. Thus, a sample point is 
reachable if an unobstructed route segment exists to a reachable shared point. 

Reachable points are sorted by their grid_cost (see Section 5.3.7). 

The reachable points are partitioned into mutually reachable sets (MRS) which have the property 
that all points in a MRS are mutually reachable. Reachable points partitioning controls the 
combinatorial explosion of partial routes introduced by the multiple sample points. If any point 
in a MRS is involved in a route, all sample points in the MRS are considered to be part of the 
route and are not considered when extending additional partial routes. Thus, a MRS defines a 
reachable area and the least costly sample point within a MRS is used for routes into that area. 

21 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

For example: 

unreachable 
points 

MRSl---t-+;/ 

• .... . . ... . -Current 
Location:-+----~ 

H4----MRS2 

Figure 5.3.6-A Mutually Reachable Sets 

In Figure 5.3.6-A, sample points 1 and 3 in the North grid cell are unreachable from "Current 
Location". The reachable sample points have been partitioned into two MRSs corresponding to 
two possible destination areas in the North cell from "current location". Two partial routes will 
be created from Current Location into the North cell. The partial route into MRSl will be to the 
least costly of MRSl's two sample points. The partial route into MRS2 will be to the least costly 
of MRS2's four sample points . Hence, two, rather than six, partial routes are created for further 
analysis by A*. 

5.3.7 Computation of route cost 

The A* algorithm evaluates partial routes on their "cost". The cost of a route, partial or whole, is . 
the sum of the costs of its route segments. Three factors are considered in determining the 
segment cost: distance, trafficability, and concealment. Segment cost is the cost of moving 
between sample points in adjacent grid cells and is made up of three components: 

• The base cost ofthe terrain in the destination grid cell. 
• The slope of the terrain around the destination sample point. 
• The percentage of interuisibility from an area around the destination sample point to the 

areas around the enemy locations. 

The base cost is an average determined from the types of terrain in the grid cell. The average is 
calculated from 25 points taken from a regular 5 x 5 grid within the grid cell. For example, the 
base cost for a grid cell mostly on sand is greater than for a grid cell mostly on dirt. There are 
other approaches to calculating the base cost. A simple approach would use only the terrain 
under the sample point. This approach ignores the terrain along the route . Another approach is 
to sample the terrain along the route segment. This approach considers each route to have zero 
width. Zero width routes have a major defect. Because unit routes have width (i.e . units travel 
along corridors), the terrain under the corridor is not introduced into the cost calculation. For 
example, narrow corridors are weighted the same as wide corridors. Although the approach 
taken in the Unit Route Planner may consider too much terrain, it has the advantage that the 
terrain under a corridor is considered. Recall that grid granularity is determined by the size of 
the unit; so, the expectation is that most of the area under a grid cell will be traversed by the 
vehicles in the unit. Calculating an average over a grid cell appropriately increases the cost of 
grid cells with slow-go or no-go terrain . 
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An additional factor in trafficability is the slope of the terrain under the route. Flat terrain has 
the lowest cost. 

Concealment is considered by calculating a percentage of intervisibility from an area around the 
destination sample point to the areas around enemy positions known by the routing unit. 

Parameters into the algorithm control how much weight is given to trafficability and 
concealment. Thus, concealment can be weighted more to obtain routes that maximize 
concealment over trafficability. 

Route segment cost is calculated from the length of the segment, trafficability, and concealment: 

where: 

Isegmentl 
segment_ cost = (trafficability _ cost + concealment_ cost) *. . 

. gnd_ granulanty 

segmenCcost 
trafficability _cost 
concealment30st 
I segment I 
grid....granularity 

is the cost of the route segment 
is a measure of trafficabili ty of the terrain 
is a measure of concealment of the route 
is the length of the route segment and 
is the granularity of the grid. 

Trafficability_cost is computed as: 

where: 

trafficability _ cost = base_ cost + slope * slope_ weight 

trafficability _cost 
base_cost 
slope 

slope_weight 

is a measure of traffic ability of the terrain 
is the base cost of the terrain in the destination grid cell 
is the slope of the terrain at the destination sample point expressed as 
a percentage (0.0 = flat terrain, 100.0 = maximum slope a vehicle can 
handle) and 
is the weight given to slope component in the equation. 

ConcealmenCcost is computed as: 

where: 

concealmenC cost = los * los_ weight 

concealment_cost 
los 

los_weight 

is a measure of concealment of the route segment 
is the intervisibility from the area around the destination sample point 
to areas around all enemies expressed as a percentage and 
is the weight given to the los component in the equation. 

The cost of the route is the sum of the segment_costs of all the segments that lie on the route: 
II-I 

route_ cost = I segmenC costi. i + I 

i=1 

where: 
route cost is the cost of the route from the starting location to point labeled n 
segment_cost,;" is the cost of moving between points i and i+1 on the route 
n ' is the total number of points on the route 
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The base_costs for various soil types used in this research were: 

base polygon type base cost 
dirt soil 20 
sandy soil 30 
fordable water 50 
asphalt road 1 
dirt road 10 

The weight factors used in this research were: 

wei~ht factor wei~ht 

los weight 10.0 
slope weight 1.0 

5.3.8 Multiple "Optimal" Routes and Chokepoints 

This research was done in conjunction with the development of a CGF Automated Mission 
Planning capability. The Mission Planner requires multiple, tactically sound unit routes 
between points and the identification of chokepoints along the route. 

The Unit Route Planner generates multiple "optimal" routes between two points. A15 each route 
is generated the terrain covered by the route is made "less desirable" for subsequent routes by 
increasing the base cost of grid cells under the route. Hence, the base cost of "used" grid cells 
increases and subsequent routes tend to avoid repeating the previous routes. Each route is 
"optimal" considering that previously generated routes should be avoided. 

Keeping track of previous routes allows chokepoints to be identified. When multiple routes 
between points are requested, route segments corresponding to narrow corridors and chokepoints 
must be reused. The Unit Route Planner identifies multiple used route segments as chokepoints. 
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6. Results 

This section shows examples of routes that were generated for different grid granularities. The 
Unit Route Planner was incorporated into the 1ST CGF Testbed. Each figure is an image of a 
CGF Testbed Simulator's screen. There are five examples (Sections 6.1-6.5). Each section is 
composed of three figures, each a stage in the route generation process . The first figure shows 
the underlying terrain and the start and destination points marked on it. The second figure 
shows the grid overlaid on the terrain and the Obstacle Segment Abstractions. Finally, the third 
figure shows routes that were extended and the final route. All scenarios use the standard 
S1MNET Fort Knox terrain database, except Section 6.5, which uses the standard S1MNET Fort 
Hunter-Liggett terrain database. 

6.1 Grid granularity 5 meters 

This scenario shows route planning with a grid granularity of 5 meters. Although the Unit Route 
Planner was not designed for planning routes for individual vehicles, experiments show that 
vehicle routes can be generated with a grid granularity of 5 meters. 

This 5 meter scenario is included to orient the reader to the Obstacle Segment Abstraction 
because it is clearly visible. 

Figure 6.1-A shows the start and destination that are on opposite sides of a river. A road crosses 
the river to the north. 

destination 

/ 

/ 

+---------------------------~river 

sC"eenX 40213.199 
sc.'eenV 41620,601 
scale 0 , 220441 

Figure 6.1-A 5 Meter Grid: Terrain, start, and destination points 
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Figure 6.1-B shows the grid and the OSAs. The OSAs closely follow the underlying terrain. At 
the 5 meter level, the OSA and its underlying terrain are within 2.5 meters. 
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~17 ......... .......... ............. _ .................... ........ .................. 
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L~~ 
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~t7 \ 
'~l(~ 

'- Uriver I 
\ screenX "'I02t3.t99 , screenV "'It620.60t , 

scale O . 220"'l"'lt 

Figure 6.1-B 5 Meter Grid: Overlaid grid and OSAs 
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Figure 6.1-C shows partial and final routes generated by the A* algorithm. A*'s efficiency is seen 
after the bridge is found; very few partial routes were generated on the eastern (right) side of the 
river. 

Iroad I \start I Idestination 

-~4/L./UL~~:t·I=O;:-st~~IL~I's~'~I=r---------l1partial 
17 routes 

/ // /r'\" J 

'" ~ '17 

f-+-+-+--+--+--+-+--+-L..".''.,-' ':'"-' ________ -t1Jriver J 
screenX ~02t3.t99 

, screenV ~t620.60t 
scale O.220~~t 

Figure 6.1-C 5 Meter Grid: Final route 

Figure 6.1 shows the digitization bias of the Unit Route Planner is considerably less than the 
typical grid based route planner. Even so, some smoothing of the route would be preferred for a 
realistic appearing vehicle route. The 1ST CGF Testbed includes a grid based route smoothing 
algorithm that could be quickly incorporated into the Unit Route Planner. 
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6.2 Grid granularity 85 meters 

This scenario shows route planning with a grid granularity of 85 meters suitable for platoon 
route planning. The start and destination points are approximately 0.75 km apart. 

Figure 6.2-A shows the underlying terrain with the start and destination . 

."""""",,.,,"""" """"'"'''''''''''''''''''''1 +''''''''''' ' '''''''''''' '''''''''''''''''''''''''''''''''",,,,,,,1 ,,-, ,1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,",,"""" 

O+----::--'---------=o.l<Hdestination 

.... """" . . """",,.,,.,, ' """·,"'"''''''"""""· H """"·",,·,,·,,'''',·,,,,·,,'''''''''''''''''',, .... ,,''''',,,, 1 ,,,,,,·,,,,, ,, ,, , ,,, ".", 
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Figure 6.2-A 85 Meter Grid: Underlying terrain with start and destination 
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Figure 6.2-B shows the overlaid grid and the OSAs. 
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Figure 6.2-B Canopy and rivers OSAs, start, and destination 
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Figure 6.2-C shows the extended and final routes . 

Irmal route I destination 
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Figure 6.2-C 85 Meter Grid: The final route 

Figure 6.2 shows the optimal route from the start to the destination. A platoon can use this 
route as the center line of a movement corridor. The vehiCles within the platoon would be "free" 
to travel within some distance of this center line . 
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6.3 Grid granularity 85 meters with hostile units 

This scenario is the same as Section 6.2's except for the presence of hostile units. The Unit Route 
Planning Algorithm searches for routes maximizing concealment from these hostile units. 

Figure 6.3-A shows the underlying terrain, start and destination locations, and the hostile units' 
locations. 

./ destination 

I ················ .. ··· .. ······ .. ······•······ .. ····; .. ····· .................................... ~ ........................ . 

v+--~--------------~----------------Hstart 

Figure 6.3-A 85 Meter Grid with Hostile Units: Terrain, start and destination, and hostile unit 
locations 
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Figure 6.3-B shows the overlaid grid and the OSAs in it . 
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Figure 6.3-B 85 Meter Grid with Hostile Units: Overlaid grid and OSAs 
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Figure 6.3-C shows the partial and final routes. 

..................................... .. ....1. ............. . 
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scree~x 07.699 
screen 22BB.500 
scale 3.2245B3 

Figure 6.3-C 85 Meter Grid with Hostile Units: The final route 

The final routes generated by this and the previous example (Figure 6.2-C) are considerably 
different. Figure 6.3-C shows the optimal route with these enemy positions. A route of maximal 
concealment has been generated. Comparison of Figures 6.2-C and 6.3-C show that the area 
near the two enemy positions was not "explored" by A* due to the lack of concealment. Instead a 
longer, more concealed route was found to the south ofthe canopies. 
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6.4 Grid granularity 500 meters 

This scenario shows route planning with a grid granularity of 500 meters suitable for company 
route planning. The start and destination points are separated by 10 km and numerous rivers. 
This scenario challenges the Unit Route Planner to find routes across rivers. 

Figure 6.4 shows the underlying terrain, start and destination. 

Itreeline 

Figure 6.4-A 500 Meter Grid: Underlying terrain, start and destination 
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Figure 6.4-B shows the overlaid grid and the OSAs. 

{destination I 

grid 

I 
Figure 6.4-B 500 Meter Grid: Overlaid grid and OSAs. 
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Figure 6.4-C shows the partial and final routes. 

Figure 6.4 500 Meter Grid: Final route 

An optimal 10 km route was determined in approximately 5 seconds on a 60 MHz 486 PC after 
the grid had been filled with Obstacle Segment Abstractions; a process taking approximately 20 
seconds. Calculations show that the SIMNET Ft. Knox TDB can be completely represented at 
the 500 meter grid level as an OSA grid in approximately 200 Kbytes of memory. Such pre-

. processing of the TDB would improve the runtime performance of the Unit Route Planner by 
completing the Grid Creation and Filling steps prior to beginning the scenario. 
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6.5 Grid granularity 500 meters with tunnel 

This scenario shows route planning with a grid granularity of 500 meters. This scenario 
challenges the Unit Route Planer to find narrow corridors between canopies. The "tunnel" 
Obstacle Segment (Section 6.5) is seen to represent a corridor between two canopies. 

Figure 6.5-A shows the underlying terrain, start, and destination points. 

screenX 37505.000 
screenV 13097.000 
scale 23.046093 

Figure 6.5-A 500 Meter Grid with Tunnels: Underlying terrain, start, and destination. 
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Figure 6.5-B shows the overlaid grid and the OSAs. 
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Figure 6.5-B 500 Meter Grid with Tunnels: Overlaid grid and OSAs 

A tunnel OS has been created to represent a narrow gap between two canopies. The gap's width 
is less than the grid granularity. 
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Figure 6.5-C shows the partial and final routes. 
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Figure 6.5-C 500 Meter Grid with Tunnels: Final Route 

This scenario demonstrates the Unit Route Planner's ability to find and represent narrow 
sections of movement corridors. The "tunnel" Obstacle Segment is used to represent a corridor 
between obstacles that are closer than the grid size. In the typical grid based route planner, 
movement between obstacles closer than the grid size is blocked. The tunnel OS allows a coarser 
grid granularity and thereby improves computational efficiency. 
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7. Conclusions and Future Work 

The Unit Route Planner is flexible and efficient. Its flexibility comes from its scalability. The 
granularity (i.e. size) of the underlying grid varies based on the size of the routing unit . The 
finer the granularity, the closer the Obstacle Segment Abstractions correspond to the physical 
obstacles. Fine granularity routing is suitable for finding precise vehicle routes while coarser 
granularity routing is suitable for finding unit routes. The smaller the unit, the fmer the 
required granularity. The Unit Route Planner algorithm can be applied to any polygonal TDB. 

The efficiency of the Unit Route Planner derives from three factors. First, the Obstacle Segment 
Abstraction approach allows obstacles to be represented with sufficient precision for routing but 
not so precise as to waste computational power. Second, the scale able grid approach allows the 
representation of the terrain to correspond to the requirements dictated by the size of the unit. 
These two factors together prevenj; unnecessarily precise (i.e. computationally expensive) routes 
from being generated. Third, the Obstacle Segment Abstraction in combination with the vertex 
graph approach allows the application of an efficient search technique, A*, to the problem of 
determining routes. 

The Unit Route Planner has additional strengths. First, three routing factors, distance, 
trafficability, and concealment, are considered in fmding optimal routes. The relative 
contribution of each routing factor is controlled by parameters to the algorithm. Hence, optimal 
routes of different characteristics are determined. For example, concealment can be weighted 
more heavily than distance to produce predominately concealed but lengthy routes. Second, the 
Unit Route Planner generates multiple "optima]" routes between two points . As each route is 
generated the terrain covered by the route is considered less desirable. Subsequent routes tend 
to avoid the previous routes. Hence, each route is "optimal" considering that previously 
generated routes should be avoided. Third, chokepoints are identified. When multiple routes 
between points are requested, route segments corresponding to narrow corridors and chokepoints 
must be reused. The Unit Route Planner identifies those route segments as chokepoints . 
Fourth, narrow corridors between "close" obstacles are found . That is, corridors narrower than 
the granularity of the grid are represented. Fifth, the Unit Route Planner can be used to find 
and refine lengthy, precise routes through a process of successive refmement of routes. That is, a 
coarse route generated with a coarse grid granularity can be refined by applying the Route 
Planning process to sections of the coarse route at successively finer granularities. This 
approach would provide an efficient mechanism for planning detailed, lengthy routes. Sixth, 
although the goal of this research was a scalable, unit route planner, the Unit Route Planner is 
also an efficient vehicle route planner. It requires only the addition of a simple route smoothing 
algorithm to plan realistic vehicle routes. 

In the current work, only terrain obstacles that are uncrossable (canopies, rivers, and treelines) 
are abstracted into OSAs. There are other features in the terrain which may prevent or hinder a 
unit's movement across them. These features are considered "no-go" and "slow-go" areas . For 
example, extremely steep terrain is a no-go area for many units. No-go areas could easily be 
represented as OSAs which would further decrease the combinatorial explosion of partial routes 
within the Unit Route Planner. Sandy and swampy terrain are slow-go areas because vehicles 
cannot move quickly over such terrain. An interesting area for future research would be to 
extend the OSA concept to representing slow-go obstacles. 
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9. Glossary 

Term 

ARPA 
CGF 
DIS 
MRS 
OIN 
OS 
OSA 
sample points 
shared point 

SAFOR 
SIMNET 
STRICOM 
TDB 

Table 9-A Glossary. 

Description 

Army Research Projects Agency. 
Computer Generated Forces. 
Distributed Interactive Simulation. 
Mutually Reachable Set. 
Obstacle Identification Number. 
Obstacle Segment. 
Obstacle Segment Abstractions. 
Points in a grid cell that lie on the extended and final routes. 
Common point between two or more different Obstacle Segments that 
lie in adjacent grid cells . 
Semi-Automated FORces. 
SIMulation NETwork. 
Simulation TRaining and Instrumentation COmmand. 
Terrain DataBase. 
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