S —'-— RS University of Central Florida
/ k STARS

Institute for Simulation and Training Digital Collections

1-1-1995

Cooperative Behavior In ModSAF

Sumeet Rajput

Find similar works at: https://stars.library.ucf.edu/istlibrary
University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been
accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation
Rajput, Sumeet, "Cooperative Behavior In ModSAF" (1995). Institute for Simulation and Training. 52.
https://stars.library.ucf.edu/istlibrary/52

- + . +

S + o+ O G
. + +

Central e e, .+ + I STARS

Florida . ' + . + Showcase of Text, Archives, Research & Scholarship *

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/52?utm_source=stars.library.ucf.edu%2Fistlibrary%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

INSTITUTE

FOR SIMULATION AND TRAINING

Contract Number N61339-92-C-0045
U.S. Army STRICOM
20 November 1995

Cooperative Behavior
in ModSAF

Sumeet Rajput
Clark R. Karr

¢OR s,

& Y

<

N X
~ P,
- -
n @ o
Z <
Institute for Simulation and Training

L]
3280 Progress Drive o) N y
Orlando FL 32826 : INIV®

®

University of Central Florida
Division of Sponsored Research IST-CR-95-35

INSTITUTE FOR S IMULATION AND TRAINING

Cooperative Behavior
in ModSAF

IST-CR-95-35
20 November 1995

Prepared For:
U.S. Army STRICOM
N61339-92-C-0045

Reviewed by:
Rhonda Freeman

/Y

Prepared by:
Sumeet Rajput
Clark R. Karr

1L/ ..
P

Institute for Simulation and Training * 3280 Progress Drive * Orlando, Florida 32826

University of Central Florida ¢ Division of Sponsored Research

Cooperative Behavior in ModSAF

IST-CR-95-35

Contract N61339-92-C-0045
November 20, 1995

Sumeet Rajput and Clark R. Karr

Table of Contents

1. EXECUTIVE SUMMARY ... - L L s B L O L 1
2. INTRODIJCTION .oeeoessssvsorsvsasiossssesssvonasassssssossosssssssssssrssssssenorsosssersbasonseisetsssiossssivsostors issasssessssssiasasinssssessn 2
I (8 501250 2 N O T S By L o W L I 2
2.2 BACKGROVIND s sssmevivossvesohessnsorss saess sonisni s sssssss oot e s on e s S0m 98 0400 oo oo a s o s RS P As om e ey S e b Sae s o adn 2
2.2.1 Distributive Interactive SIMUIALION ...:.cccisviiiiinsssisvisissisasssiasssssesivensssssensosssisssinssasinsisssss sosesnssssennsat sses 2
2:2.2 Computer Generated FOTCES wiussssssivsivisivisssisinesssntsrinisssmassssiessirissessamsiss 15553 58504350875 RrEErsroTALTATSS 2
3. COOPERATIVE BEHAVIOR......treeeecrnerecreeeeecnns 4
3.1 REAL WORLD COOPERATIONceettiieeiurreeeeseaeistsseeeeesaeeesesssssesseesaeessnsssssssssesesssessssssssssssssseeseseeesesesemsmmsasnns 4
3.2 BACKGROUNDcieiiiiiiiiieieieeitessrsrssssssessressseeeessstesessessessssesressssssssssssssssssssssssssnsssesssssesssassssssssssssnssessesesssasens 4
3.3 METHODS FOR COOPERATIONcceieuueieissteeeesssessesssessesssssssessssesesssssssesessssssssesssssssssssssssessssssseesssssssesesemsssens 5
3.3.1 Common Doctrine And TACIHCS. v:cusiiscnnsiiissarenss s s aaiassiipi s s sisrsorss soebssnnaresds 5
3.3.2 MiSSIiON BIICJING... .cisvosusseisacesiiusassansssiasesssrsdisssssssnsnssassss3505 8450555050555 s 35835 05555 84S Re o357 sovE s R TSR T 5o A n AT 5
3.3. 3 Explictt:COOPEraliON i.civ s sonesvmusios souias ik s mtas arehisinnssssssts Sonssebsindts s se St Ao s S F¥ A4 LSRR Ei R s A SE S SANE 5
3.3.4 IMPLICIE COOPECTALION .. .oiecrsassaesssorsunsiesasorensinsnsasiosnassisns sovssasssranssaisssasnssimasonnasonssnsdssoansssisssassansoansnsed 6
3.4 STATEMENT OF THE PROBLEMceititiiuttttteeeeisisusseeesaeaesessasssseseeesanssssssssssssesssesesesssnsssssssssssseeseeseeesesnasssssns 6
4. COOPERATIVE BEHAVIOR CONTROL ARCHITECTURES......cccorrmrerreeeeerecsecnne 7
4. 1:CENTRALIZED CONTROL ARCHITECTURES (COAN tsvrvssssivesssissavorssississsovesss sssusvssssssssssrsiosiossassas viusssasssionss 7
4.2 DECENTRALIZED CONTROL ARCHITECTURES (IDCA) csis- fesisssesessossissssssossinssssisssnssssossnsaissssssonisnssiosonansarsnnssn 8
4.2. 1 Entity cooperation in-DCAS .vecisimsinsistisisssssssnsosssssismmsssssissnsssssesissasisissssrssamsist tossnsssrassasasnss 9
4.2.2 Allocation of subtasks in DCAS wsrssvisirssvessmommssnss s vhiaessssinessssss iesm s s ssasisssssssssrass rssassssmsrons 10
4.2.3 Surveyiof DEAS smrsrnsn smvrms s S o B SR o, - e s e s e O T R g A L e 10
5. A DECENTRALIZED CONTROL ARCHITECTURE USING FINITE STATE MACHINES 16
1 APPROACH :occvissinsisenssivanisssisssrsesssminsdommirerssitiossiis s ot e ety vrvidBarvsns Wi hesvicntthovisdnssdens o L N e 16
5. 2. FORMAL FSMS .eooscmsssissussissassssmssunmsisioiss siniiiiesssismsetstunst Dot et sustnsssssisiisasss comsssnmurmimneissi i sssrvaa tsens Sn donnas 16
i3 ESM COMMUNICATION ;s ovs cocovesssvsiossisninssissnrasssossnorsnn sodes s snosmasssasisssassis v sies Tokes Srsoesmnies s uAnaa ke sarns saiors e 17
531 Inter=-ESM COMMUTICATION - 5.::wonsmsivisssvsnstissons sestarsstuassssiassintississinsvesssssaiasvsnniisstibhnsssssosaecariyuatetscis 15
5.3.2 Intra-FSM COMMUIICAUION ..::vvs:vseusssssssvimssissssssvissisvsisissunsiississsassssiisisevsesssssysvsessissssnsasabsesssossisrsssesses 17
5.3:3 EVEnt QUBUES vicovsvcisssssiessvismsssssssssssrsssniiinsiavos St it iasssiassssshassasias i siis vas i ¥assss na s onuassenmoasassasbos iasugn 18
A ESM ENGINE wsssersaummonsssanmssvers s toraasess s sismavsss s st ms g aeasyss seans Fesvasas survsnasssoss s ns siasnsssnbssnsvasssahyheayens sboys 18
6. IMPLEMENTATION 20
6.1 HIERARCHY OF COMMANDERS.......uututeiiiiiiiuteteeeeeieesssssseeseeseessssssssssseesessssssesmmssssssesesssssssssssssssssssssssssssses 20
6.2 BOUNDING OVERWATCHceiiiiiiuiieeeeitieeeeiteeeesiiseseessesesessssseesassseesesesssssssssasssessassssseesssssssesessssssssessessssssees Z]
0.2.1 Platoon COMMANACT FSM.........coooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesaeesaesesessssassessssssaaseesssnnasessssnsessssssseessene 22
0.2.2 S5eCtion COMMANAET FSM..........uuueeeeeeeeeeeeeieeeeeieeeeeesesssssseesssssesesessssseseesessteseesmsmss.sessssssssmmmnn. 23
6.2.3 Vehicle COMMANAECT FSMuuuueeeeeeeeeeeeeeeeeetseseteeseeassssessaeesasestessanssssssssseasesssssssssssnnnns 24
6.3 DESCRIBING COMMANDER FSMS IN DATA FILES....uutiiiiiiiiieeieeeieeeeeeeeeeeetitiesasseeeeeeeeeeseeesasnssnnssnesaanees 24
6.3.1 FSM Grammar PrOAUCIION RULES................uueueeeeeeeeeeeeeeeeeeeseeeeeseseasessesseseessssesssssssseaesesssessssssnsnsnnns 24
6.4/ CHANGE IN/COMMAND ... eersenssensensssarsssnsossossasssssnissasisnssssssassnanssdssdsansssossss saagsassdssss sassonsssssasaspaiss ssansessssss 25
7. RESULTS....cccovvumeeenn. 27
7.1 PLATOON BOUNDING OVERWATCH USING EXPLICIT COOPERATIONcovvuuunenruinneesaeaeeeeressssionmssnsasesanaaaes 217
7.2 PLATOON BOUNDING OVERWATCH USING IMPLICIT COOPERATIONiiiieiiieeeeeeeeeeeennnensessessesseneeseenaes 31
8. CONCLUSIONS 35
9. REFERENCES 36
ii

10. APPENDICESouveeeeecccnnnssccccisseseescscssnenees I W X el i 40
10,1 GLOSSARYouoveeeeeeesssssassesssssssesssssssssssseensassessssasassasssssssessssssssesssssssssssssasssosssssssransensassssssstsssssssonsenasseesass 40
10.2 WRITING A NEW COOPERATIVE BEHAVIOR ...cciiiiiiiiiiieeieiiiiiiitieeeeeeeiseseesesssaasssss s sses s s s s s sessssaaaees 40
10.2.1 Writing FSM deSCIiPIIONSc.c.cucueueuruiiniiieieieieicisisss et 40
10.2.2 COAE CHANGESoeveveieeeeeeeeeeeieacasiseae st 4]
10.3 BOUNDING OVERWATCH FSM DESCRIPTIONSuuviiiiiieeeeseeurereessseeesssneeeesssesssmsnnsesesasasasssssssassssssasesaens 41
10.3.1 EXPLICIt COOPEIALION ..t e 42
10.3.2 IMPLICIt COOPETQLIONveeeenrerieiiisie it 45
iii

FIGURE I:
FIGURE 2:
FIGURE 3:
FIGURE 4:
FIGURE 5:
FIGURE 6:
FIGURE 7:
FIGURE 8:
FIGURE 9:

FIGURE 10:
FIGURE 1 1:
FIGURE 12:
FIGURE 13:
FIGURE 14:
FIGURE 15:
FIGURE 16:
FIGURE 17:
FIGURE 18:
FIGURE 19:
FIGURE 20:
FIGURE 21:
FIGURE 22:
FIGURE 23:

List of Figures

CENTRALIZED CONTROL ARCHITECTURE (SIMULATED ENTITY CONTROLLER)

CENTRALIZED CONTROL ARCHITECTURE (UNSIMULATED ENTITY CONTROLLER).ovvvvieeeerennnne. 8
DECENTRALIZED CONTROL ARCHITECTURE s sissvsssssssssssivararssiassssniasssassssnssssarsiasonsivsioarasassssnssssonsis 9
A PETRI NET (ALL INPUT PLACES ARE MARKED).......cciiiiiiiiuuriieeeeeeeeeeeesesssssssssssssnsssssssssessesseesesees 11
A PETRI NET (A TRANSITION HAS FIRED). ...cuvveiiuueiiueeeseeeseeeiseesssssesssseeasssesssssssessssseesssseessssesanns 11
TWO ROBOTS COOPERATING USING A COORDINATED PROTOCOL. ...ccceeeeeiieeeeeeeeeeeieesnsnssesssesnsnennes 12
BASIC BLACKBOARD SYSTEM. ...cciiiuiiiiiiieeeiiiiiiiieteeeeeeeessssaseaaeeseeaeesensesnsssssssssssssanssssssseseseeseesenns 13

FSM FOR A COIN-OPERATED CANDY DISPENSER
FSM ENGINE

HIERARCHY OF COMMANDERS isssusssssssiissssssssssssmossssesssnassorssivesossssasoaets ssrsvsssssnisssespmasenasssinoss 20
SIMPLIFIED ROLE MATRIX. ..veecittiittieetiesiieeeteeeeneeessseesaesssseessssessssesssssesssssessessssesssssessssssssssseesns 21
BOUNDING OVERWATCH. ...uveiuviecnneeeeieeiieeeeeeeeaeeeeseeesneens)|
BOUNDING OVERWATCH PLATOON COMMANDER FSM..coiiiiiiiiiiiiecciee e 22
BOUNDING OVERWATCH SECTION COMMANDER FSM.oiiiiiiiiiiiiiciececie e 23
BOUNDING OVERWATCH VEHICLE COMMANDER FSM.coiiiiiiiiiiiiiiicc e eaiaee e 24
PLATOON BOUNDING OVERWATCH: INITIAL POSITION.cccccveeerurerrrnnecsvrecesnessersasesssanssnnnassnnes 27
START (EXPLICIT): ONE SECTION STARTS MOVING.....ccccccurieeerrureerrersrneeeesesssssesesssesssassesesssssasasans 28
INTERMEDIATE STAGE (EXPLICIT): VEHICLE MOVE TOGETHER.ccccovviieeiiiirreeeeeesssneeesssssnsaneeens 29
END (EXPLICIT):;, PEATOON AT OBTRETIVES . .tessesesscstessssarsanessivosssssssssssbasrresssnasmsisas soonsssssrsprissacss 30
START (IMPLICIT): SECTION COMMANDER STARTS MOVING. ... |
START (IMPLICIT): WINGMAN STARTS MOVINGoutiieiiurieeeeiireeeeeiireeeeessissseeesesssssssesssssssssssens 32
INTERMEDIATE STAGE (IMPLICIT): ONE SECTION OVERWATCHES THE MOVEMENT OF ANOTHER. 33
END (IMPLICIT): THE PLATOON ARRIVES AT THE OBJECTIVE.ccttiiiiiieiiiiiiiereeesssinnseeesssnneseenns 34

' List of Tables
I TABLE 12 (G OSSARY cisussvsssomsssssssnssosenssomminss sss sersssansessrsannsanssersorsonnamnssnnsnonssssssisn i3 58 oA SE LRAST R FRARG S 40443 Vrnsn 40
l \'%

1. Executive Summary

Success in representing individual vehicles within Computer Generated Forces (CGF) systems has allowed
researchers to focus on representing CGF groups (units). Like vehicles in a real battlefield, CGF vehicles
must cooperate with each other to achieve battlefield objectives. This document reports IST's research into
mechanisms for cooperative behaviors in CGF.

An example of a cooperative behavior is Bounding Overwatch. A platoon uses this movement tactic when
enemy contact is imminent. One section of the platoon moves (bounds) while the other watches over it.
When the Bounding Section stops, the sections switch roles (bounding, overwatch) and the other section
begins moving. The process repeats until enemy contact is made or an objective is reached.

Vehicles can cooperate with each other either explicitly or implicitly. In explicit cooperation, signals (e.g.,
radio messages, voice commands, hand signals) are used to synchronize actions. For example, in a platoon
executing a Bounding Overwatch, the Bounding Section signals the Overwatch Section to switch roles. In
implicit cooperation, vehicles cooperate by observing the actions of others. For example, in a platoon
executing a Bounding Overwatch, the Overwatch Section would start moving after observing the Bounding
Section stop.

Cooperative behavior of simulated entities is implemented using a Control Architecture. Traditional CGF
systems, such as Modular Semi-Automated Forces (ModSAF), contain a Centralized Control Architecture
(CCA) to control the behavior of simulated entities. In this approach, an unseen entity controls the behavior
of other entities; this approach is sometimes referred to as a "puppet master" approach. CCAs are easy to
implement but do not mirror cooperation of vehicles in the real world.

CCA's have several disadvantages. First, increasing the realism of the simulated entities' behaviors makes
the software more complex. Second, because all behaviors are generated from a central point the controller
is overworked. Third, modeling larger units, such as companies or battalions, necessitates an increase in
complexity. Fourth, the entities' behavior is hardcoded into the software leading to predictable behaviors
even in complex situations. Finally, CCA implementations combine the behaviors of different levels in a
unit into one module; verifying and validating combined behaviors is difficult.

A second method of controlling the cooperative behavior of entities is through a Decentralized Control
Architecture (DCA). In this approach entities cooperate with each other directly; there is no supervisory
control. The advantages of DCA's are:

1. Unit or group cooperative behavior emerges as a result of direct cooperation between entities
resulting in more realistic cooperative behavior in complex situations. Consequently, the software
is more robust.

2. Because behavior generation is distributed across entities, which can be distributed across
computers, limited hardware resources can be used efficiently.

3. DCAs give rise to modular implementations; for example, a Platoon Commander's cooperative
behavior can be housed in a module separate from modules containing behaviors of other
commanders. It is easier to verify and validate independent modules.

This report describes a DCA developed within the ModSAF CGF system. Although cooperative behaviors
in ModSAF are typically implemented via centralized control, the underlying architecture supported the
implemented of a DCA. The core of the DCA is a Finite State Machine (FSM) Engine. Cooperative
behaviors are expressed as formal FSMs to obtain an unambiguous control process. Both explicit and
implicit cooperation are supported. CGF entities can cooperate explicitly using simulated radio messages
and implicitly by observing other entities.

2. Introduction

2.1 Purpose

This technical report is a deliverable under STRICOM contract N61339-92-C-0045, "Intelligent
Autonomous Behavior by Semi-Automated Forces in Distributed Interactive Simulation." It satisfies CDRL
A009 "Cooperative Behavior."

2.2 Background

This section provides a brief description of Distributed Interactive Simulation (DIS), Computer Generated
Forces (CGF), and the Modular Semi-Automated Forces (ModSAF) CGF system. It may be skipped by
readers familiar with these topics.

2.2.1 Distributive Interactive Simulation

Distributed Interactive Simulation (DIS) is an architecture for building large-scale simulation models from a
set of independent simulator nodes (DIS[1993]). The simulator nodes are linked by a network and
communicate via a common network protocol. (The term DIS is also sometimes used to designate a
particular network protocol standard; in this document "DIS" refers to the simulation architecture; the DIS
protocol standard will be so identified.) In DIS, the simulator nodes each independently simulate the
activities of one or more entities in the simulated system and report their attributes and actions of interest to
other simulator nodes over the network via the communication protocol. The simulated entities coexist in a
common simulated environment (for example, a terrain database) and interact by exchanging network
packets (Loper et. al. [1991]). Finally, an important characteristic of DIS simulations is that they are real-
time; events in the simulation occur at the same rate as their real-world counterparts.

2.2.2 Computer Generated Forces

DIS environments are designed to provide a simulated battlefield which is used for training military
personnel. In such a battlefield, the trainees need an opposing force against which to train. One technique
is to use a computer system that generates and controls multiple simulation entities using software and
possibly a human operator. This type of system is known as a Semi-Automated Force (SAF or SAFOR) or
a Computer Generated Force (CGF).

A CGF system uses built-in behavior to react autonomously to the simulation situation or to carry out orders
given by its operator. Its behavior may be encoded as algorithms, production rules, formal behavior
specifications, or some other form. The intent is for the CGF system'’s behavior to be autonomous (i.e. not
requiring human control) and realistic (i.e., true to doctrine, physics, and human responses) to the greatest
possible extent.

2.2.2.1 The IST CGF Testbed

Under the sponsorship of the Army Research Projects Agency (ARPA) and the U. S. Army's Simulation
Training and Instrumentation Command (STRICOM), the Institute for Simulation and Training (IST) has
been conducting research in the area of CGF systems, seeking to increase the realism and autonomy of CGF
behavior. A key product of that sponsorship is the IST CGF Testbed. The IST CGF Testbed is a CGF
system that provides an environment for testing CGF behavioral control algorithms. It is documented in
(Danisas et. al. [1990]), (Gonzalez et. al.[1990]), (Petty [1992]), (Smith et. al. [1992a]), and (Smith et. al.
[1992b])).

Another CGF system used commonly in the research community is the Modular Semi-Automated Forces
(ModSAF) system which has been used at IST since late 1994.

2.2.2.2 The Modular Semi Automated Forces CGF System

The Modular Semi Automated Forces (ModSAF) CGF system was developed by Loral Advanced
Distributed Simulation for the Defense Advanced Research Projects Agency (DARPA) WISSARD (What If
Simulation System for Advanced Research and Development) project and the STRICOM ADST (Advanced
Distributed Simulation Technology) program. The ModSAF system is an extensible set of software
modules which allows rapid development and testing of new agents (a simulation system, a simulation
entity, or a simulation application) in a DIS environment (Loral [1993]) and (Loral [1994]). ModSAF’s
data driven execution and other features make it attractive as a testbed for testing and developing many
ideas for behavior generation and command and control of automated DIS agents without extensive
redevelopment of already available ModSAF supporting code.

3. Cooperative Behavior

3.1 Real World Cooperation

In a real battlefield, soldiers and vehicles (actually commanders inside the vehicles) cooperate in most, if
not all, situations. They may cooperate:

e by coordinating movement and fire,

e by understanding the unit's plan and their role within it,
e by reacting to unexpected events in acceptable ways,

e through information passing, and

e by following commander's directives.

A unit in the battlefield has a hierarchy of command which reflects the information flow from the top to the
bottom levels of the hierarchy. For example, a platoon has a Platoon Commander in charge of the platoon,
Section Commanders in charge of individual sections (a section is typically made up of two vehicles), and
Vehicle Commanders in charge of individual vehicles. In many cases an individual has several levels of
responsibility; e.g., one human may be simultaneously Platoon, Section, and Vehicle Commanders.

Units also plan missions; for example, a Bounding Overwatch. A platoon uses this movement tactic when
enemy contact is imminent. One section of the platoon moves (or bounds) while the other watches over it.
When the Bounding Section stops it informs the other section, the Overwatch Section, to start moving.
Now, the Overwatch Section moves and the process repeats until enemy contact is made or an objective is
reached. The Platoon Commander, who is also a Section Commander, decides what each section does and
communicates this information to the other Section Commander. The Section Commanders, who are also
Vehicle Commanders, in turn communicate this information to Vehicle Commanders and the information
flows down the hierarchy. In this way a plan is executed by breaking it down into simpler parts to be
executed by lower levels in the hierarchy.

In a real battlefield, entities cooperate in a decentralized fashion as opposed to using a centralized
approach. Decentralized means that entities cooperate with each other directly without being directly
controlled by a supervisor. This does not mean they are unsupervised but rather the supervisor
(commander) controls his subordinates through orders and signals and not through direct immediate control
of the subordinate's behaviors.

Soldiers and vehicles cooperate either explicitly or implicitly. Explicit cooperation involves transmission of
signals. Platoons transmit signals using: messenger, wire, visual, sound, and radio (US Army [1990]).
Implicit cooperation does not involve any transmission of signals. Entities observe other entities and
change their behavior accordingly; e.g., entities do formation-keeping by observing the behavior of other
entities.

3.2 Background

To be effective as OPposing FORces (OPFOR) or adjunct friendly forces, CGF systems must model
cooperation between entities in a way that is realistic and tactically correct. CGF systems employ a Control
Architecture (CA) to control simulated entities. There are two CA approaches: Centralized Control
Architecture (CCA) and Decentralized Control Architecture (DCA).

In a CCA, a controller (typically unseen) directs the actions of subordinate entities and makes decisions for
them. Traditionally CGF systems, such as ModSAF, have used a CCA to model the cooperative behavior
of vehicles. For example, a Bounding Overwatch task on a platoon is done by starting a centralized
controller, the "Bounding Overwatch" task, on the platoon (Loral [1995]). This controller task divides the
platoon into two groups: the Bounding Section and the Overwatch Section. The controller then plans routes
to the next overwatch position for the Bounding Section and makes it move towards that position. All

formation keeping during movement is done in a centralized fashion. The controller puts the Overwatch
Section in an occupy-position formation to overwatch the movement of the Bounding Section. When the
Bounding Section reaches its destination, the controller switches the roles of the Bounding and Overwatch
Sections and goes back to controlling the sections.

The CCA approach does not mirror real world cooperation. In the real world there is no direct control of a
subordinate entity's behavior by a commander; rather, the entities control themselves in response to the
commander's orders. For example, in Bounding Overwatch, real world entities compute their routes and
maintain formation themselves.

In a DCA, entities follow the plan assigned to the group but control their own actions while giving orders to
and receiving orders from others. This models the real world more closely. So far, no DCAs have been
implemented in the CGF domain but they have been used for coordinating the actions of robots (Noreils
[1993]), (Noreils [1992a]), (Noreils [1992b]), (Noreils [1992c]), (Parker[1994]), and (Shin and Epstein
[1990]).

3.3 Methods for Cooperation

According to (Laird et. al [1994]), the key to coordination is knowledge. For a unit to coordinate its
behavior, the individual entities must know:

1. The appropriate techniques and methods for maneuvering, sensing, and employing weapons.

2. The specific constraints under which the mission is being executed, such as rules of engagement,
commit criteria, and so on.

3. During the mission, they must also build up their situational awareness, from their own sensors and
through communication with others.

4. Finally, they must coordinate their actions in the face of the world around them.

During mission execution these different types of knowledge are acquired at different times using the types
of methods listed below.

3.3.1 Common Doctrine and Tactics

This method addresses point 1 in Section 3.3. Common doctrine and tactics is "long-term" knowledge
contained in the entity. This is similar to social contracts, where independent entities can create
coordinated behavior by agreeing to behave in certain ways under certain circumstances (Shoham and
Tennenholtz [1992]). For example, drivers in the United States coordinate their behavior (and thus avoid
accidents) by always driving on the right side of a street.

Entities that are cooperating using common doctrine do not need to communicate (two cars passing each
other do not need to negotiate which side they will pass). It allows an entity to predict the behavior of other
entities without knowing the other entity's identity, and it reduces the cognitive load on the entity because
the entity does not need to plan its behavior from first principles.

3.3.2 Mission Briefing

This method addresses point 2 in Section 3.3. Before a mission, the participants are briefed on the tactical
situation, their responsibilities, and often, the responsibilities of others. The briefing helps establish specific
operational parameters required for coordination, such as the specific partners of a section, their formations,
the methods of communication (radio frequency, call sign), and so on.

3.3.3 Explicit Cooperation

This method addresses points 3 and 4 in Section 3.3. This is the most flexible way of cooperation between
entities. It involves the transmission of signals between entities. Some ways of transmitting signals are

through radio communication and visual signals. Explicit cooperation is least susceptible to
misinterpretation because a clear transmission of signals takes place.

There are many factors that prevent a unit from using explicit cooperation. For example, the possibility of
radio commurication being intercepted by enemy units may hinder its use. Also, obstructions, such as hills,
prevent entities to communicate via visual signals.

3.3.4 Implicit Cooperation

This method addresses points 3 and 4 in Section 3.3. Implicit cooperation does not involve the transmission
of signals between entities. Implicit cooperation is based on observing other entities’ behavior and on
modeling the behavior of other entities. An important capability of this approach is that the modeling entity
can interpret not only the modeled entities' current actions but also predict the entities' future actions.
(Tambe and Rosenbloom [1995]) call this agent tracking, where an entity monitors the observable actions
of other entities as well as their unobserved actions or high-level plans, goals, and behaviors, and adjusts its
behavior accordingly.

3.4 Statement of the problem

The goal of the research described in this report is to implement a CA architecture that:
e mirrors real life cooperation between vehicles,
e uses explicit and implicit cooperation between vehicles,

e allows new cooperative behaviors to be created easily and with little coding, and
e can be verified and validated easily.

4. Cooperative Behavior Control Architectures

The cooperative behavior control architecture controls the behavior of subordinate entities. There are two
ways to control subordinate entities: Centralized control and Decentralized control.

4.1 Centralized Control Architectures (CCA)

In the real world, a commander controls a unit by giving orders. Subordinate entities act on these orders
and change their behaviors accordingly. In a Centralized Control Architecture (CCA), a centralized
controller makes behavioral decisions for subordinate entities and conveys these decisions to the
subordinates. CCAs resemble the real world because, like the real world, the unit is controlled from a
centralized location. However, there are important distinctions. The first distinction is in the granularity of
control relative to that of the real world. CCAs exercise unrealistically fine control. For example, CCAs
may do formation-keeping for a platoon by monitoring each entity and making sure that entities maintain
appropriate distances between them. In the real world, formation-keeping is done by entities; proper entity-
to-entity distances are computed and maintained by entities themselves. The second distinction is in
reasoning and decision making. In CCAs, the centralized controller reasons and makes decisions on the
entities’ behalf whereas in the real world entities reason and make decisions themselves. For example,
CCAs plan routes for the entities whereas real world entities plan their own routes.

I The entity exercising centralized control may be either a simulated entity or an unsimulated "ghost" entity.
Furthermore, the centralized controller may control subordinate entities either explicitly or implicitly.
Explicit control requires the transmission of messages from the centralized controller to the subordinates;

l these messages are often orders to the subordinates. These orders, unlike real world orders, contain specific
information which otherwise would have been computed by the subordinates themselves. For example, an
order to move may contain the route information. In the real world, a subordinate will only be told to move

l to a destination and it will compute the route itself. Implicit control is more direct. In this case, the
centralized controller executes code on or on behalf of subordinate entities. Code execution directly affects
a subordinate's behavior.

=== Control flow.

@ Entity

Centralized Controller

&

Figure 1: Centralized Control Architecture (simulated entity controller).

Figure 1 shows a CCA in which the centralized controller is a simulated entity. The arrows indicate control
flow from the centralized controller to the subordinates. This may be either explicit (messages are sent) or
implicit (code is executed by the centralized controller on or on behalf of the subordinates).

G (Control flow.

@ Entity

Centralized Controller

Figure 2: Centralized Control Architecture (unsimulated entity controller).

Figure 2 shows a CCA where the centralized controller is an unsimulated entity (code). As in Figure 1, the
arrows indicate control flow from the centralized controller to the subordinates. Again, the control may be
either explicit (messages are sent) or implicit (code is executed by the centralized controller on or on behalf
of subordinates).

ModSAF implements cooperative behavior by combining the two approaches. The centralized controller in
ModSAF is an unsimulated entity which "knows" the identity of the vehicle responsible for the unit, e.g., a
Platoon Commander. When the Platoon Commander is disabled, ModSAF restarts the cooperative
behavior on the platoon. The responsible entity is updated, i.e., another entity becomes the Platoon
Commander.

The centralized ModSAF controller controls the subordinates implicitly by executing code on their behalf.
For example, the centralized controller in ModSAF executes a platoon Bounding Overwatch by dividing the
platoon into sections, each containing two vehicles. It then computes a destination and makes one section
(Bounding Section) move to it while it puts the other section (the Overwatch Section) in an occupy-position
formation. The centralized controller monitors the Bounding Section's location. When it reaches the
destination, the centralized controller switches the roles of the two sections and the process repeats.

CCAs are suitable for implementing simple cooperative behaviors but have several disadvantages. First,
implementing a CCA results in loss of realism. For example, with a "ghost" centralized controller, the unit's
collective behavior can be unaffected by the loss of the simulated commander. On the other hand, if a
simulated centralized controller is destroyed, the collective behavior of the unit is disrupted. Of course,
both problems can be addressed by introducing provisions in the software for transfer of command. But the
complexity required to centrally resolve all the conflicts between centrally controlling a real world
decentralized control process forces compromises and simplifications. To make up for these losses would
entail increasing the complexity of the software. Second, generating the behaviors of all entities from a
single source results in inefficient use of resources; more time is spent in the controller causing it to be
overworked. Finally, modeling larger units, such as companies or battalions, becomes increasingly complex
because the centralized controller has to control more vehicles.

4.2 Decentralized Control Architectures (DCA)

In a Decentralized Control Architecture (DCA), subordinate entities follow the unit's plan and commander's
orders but make their own behavior decisions. Unlike a CCA, there is no unseen controller that makes
decisions on their behalf; this approach mirrors cooperation in the real world. A DCA commander
functions like a real world commander by giving and receiving orders from other entities. For example, a
DCA commander may order an entity to move to a destination. Like the real world, the commander may
only supply the entity with the location of the destination and not a precise route. In this case, the entity
computes its route to reach the destination.

Commander O

@p Information flow.

|

i
O Entity

| |
Ol ¢O<——>©

Figure 3: Decentralized Control Architecture.

Figure 3 shows a DCA. Notice that in contrast to a CCA (Figure 1 and 2), entities send information (shown
by the double-headed arrows) to each other. Each entity contains knowledge to process incoming
information and modify its behavior.

DCA's have several advantages. First, unit or group cooperative behavior emerges as a result of direct
cooperation between entities resulting in more realistic cooperative behavior in complex situations. Second,
because behavior generation is distributed across entities, which can be distributed across computers,
limited hardware resources can be used efficiently. Finally, DCAs give rise to modular implementations;
e.g., a Platoon Commander's cooperative behavior can be housed in a module separate from modules
containing behaviors of other commanders. Behaviors can be verified and validated independently of
independent modules. CCA implementations combine the behaviors of different levels in a unit into one
module making verification and validation more difficult.

When discussing DCAs two questions need to be answered. First, how do entities cooperate with each
other. Second, how do entities know what task to do and when to do it. These two topics are discussed in
Section 4.2.1 and 4.2.2 respectively.

4.2.1 Entity cooperation in DCAs
Entities can cooperate in a number of ways:

e Message Passing.

e Shared Memory.

e Combination of Message Passing and Shared Memory.
e Implicit Cooperation.

Entities can cooperate explicitly (Section 3.3.3) by passing messages, such as radio messages, to each other
(Noreils [1993]), (Noreils [1992a]), (Noreils [1992b]), (Noreils [1992c]), (Parker [1994]), (Shin and
Epstein [1990]), (Lefebvre and Saridis [1992]), (Smith and Davis [1981]), (Fisher and Woodridge [1994]),
(Decker [1987]), and (Ohko et. al. [1993]). Messages may be broadcast (Parker [1994]) to all entities or
sent point-to-point.

Entities can also cooperate explicitly by placing information into memory which is shared by other entities.
This shared memory is commonly called a Blackboard. Blackboard and its variants have been used in a
number of DCAs (Laengle and Lueth [1994a]), (Laengle and Lueth [1994b]), (Corkill [1991]), (Occello
and Demazeau [1994]), and (Dai et. al. [1993]).

Some DCAs implement a combination of the message passing approach and the Blackboard to allow
entities to cooperate (Lun and Macleod [1992]), (Wang [1994]), and (Harmon et. al. [1986]).

In some DCAs entities can cooperate with each other implicitly (Section 3.3.4) by observing what the others
are doing (Payton and Dolan [1991]).

4.2.2 Allocation of subtasks in DCAs

In DCAs, entities contain knowledge for executing tasks allocated to them. Before they begin using this
knowledge they must be told what task they need to work on. The processing of letting entities know their
tasks is called rask allocation. There are two ways to allocate tasks in DCAs: Negotiation and Self-
Contribution.

When tasks are allocated using Negotiation, (Noreils [1993]), (Noreils [1992a]), (Noreils [1992b]), (Noreils
[1992c]), (Lun and Macleod [1992]), (Smith and Davis [1981]), (Fisher and Woodridge [1994]), (Decker
[1987]), and (Ohko et. al. [1993]), one entity assumes the role of a mediator or manager. The manager
subdivides the mission into tasks, advertises for the tasks, and receives bids from prospective contractors
(entities who are able and willing to do the task). The manager selects the most appropriate contractor and
awards the contract. A contractor receives task announcements from different managers and selects the one
that best fits the skills/knowledge that it has. After the contract has been awarded, the manager and the
contractor become linked by the contract and communicate privately the progress of the task being
executed.

In contrast to being told what tasks are available for execution, entities use the Self-Contribution approach
when they want to start executing tasks themselves. There are two approaches. In one approach (Corkill
[1991]), each entity knows the condition under which it can execute the task and, at appropriate times, it

attempts to do so. In the other approach (Parker [1994]), an entity executes a task when its motivation to do
the task, measured by a motivational behavior function, exceeds a certain threshold.

4.2.3 Survey of DCAs
There is a variety of DCAs in the literature. Sections 4.2.3.1 through 4.2.3.4 is a survey of these DCAs.

4.2.3.1 Net-based DCAs

Net-based DCAs have been used commonly for implementing cooperative behavior between robots. Net-
based DCAs encode the cooperative behavior of robots in Petri Nets (Peterson [1981]) or Petri Net
modifications such as Predicate/Transition nets (Noreils [1993]), (Noreils [1992a]), (Noreils [1992b]),
(Noreils [1992c]), (Lefebvre and Saridis [1992]), (Wang et. al. [1992]), (Zhou et. al. [1994]), and
(Bachatene and Seghrouchni [1993]).

Petri Nets (PN) are tools for modeling the dynamic behavior of discrete event systems. Ordinary PN are
directed graphs with two types of nodes called places and transitions, which are connected by arcs
(Peterson [1981]). Places may contain tokens that indicate the state of the PN. A place is referred to as
marked if there is at least one token in it. A transition is sensitive if all input places are marked. A
transition is fired if it is sensitive. Transitions are atomic, meaning that if a transition is fired and code is
executed as part of the transition, it remains fired until code execution is complete. Tokens are moved
between places by the firing of a transition. PN are valuable for simulating concurrent systems because the
PN structures can be analyzed for desirable properties such as boundedness and deadlock-free operation
(Murata [1989]).

j)

O

Figure 4: A Petri Net (all input places are marked).

Figure 4 shows a PN. The places are shown by circles P1, P2, and P3, a transition is shown by the vertical
line T, and arrows denote arcs. Places P1 and P2 contain tokens, shown by dots, indicating that they are
marked. Because all the input places for transition T are marked, the transition is sensitive and fires. The
firing of a transition causes code to be executed.

Pl O /" |Code executed |

@

Figure 5: A Petri Net (a transition has fired).

Figure 5 shows the state of the PN after transition T has fired. Places P1 and P2 are unmarked and place P3
is marked. The code associated with transition T, shown symbolically in the box, is executed when T fires.

The cooperative behavior of a robot is described by a PN. When a robot "executes" its PN, it may wait for
internal events or messages from other robots. When these arrive, certain places become marked resulting
in transitions being fired. Code associated with the transition is executed; a robot uses this code to modify
its behavior in response to internal events or messages from others. In this way, a robot executes a
cooperative behavior by modifying its behavior in response to external or internal stimuli.

11

) 4
O
Robot 1 Robot 2

Figure 6: Two robots cooperating using a coordinated protocol.

Figure 6 shows two robots cooperating. The figure is used to illustrate how robots cooperate and is not
intended to show a specific cooperative behavior. Places P4 and P5 are shared by the two robots. These
places are associated with messages and become marked when messages arrive. For example, P4 becomes
marked when a message, sent by Robot 1, is received by Robot 2.

Initially, place P1 and P6 are marked and T1 is sensitive. T1 fires, P2 gets marked, and a message is sent.
The receipt of the message by Robot 2 causes P4 to be marked. T3 becomes sensitive and fires, P7
becomes marked, and a message is sent. The receipt of the message by Robot 1 causes P5 to be marked.
T2 becomes sensitive and fires. This mechanism shows how sharing places between the robots' PNs can
help them cooperate with each other.

An advantage of Net-based DCAs is that complex behaviors can be modeled by combining simple nets;
each net models a simple behavior. In this way it is possible to build a library of behaviors and model
complex behaviors by combining behaviors contained in the library.

4.2.3.2 Blackboard DCAs

The Blackboard (BB) (Corkill [1991]) is the oldest data structure that has been used for modeling
cooperative problem solving. A BB system consists of three components (Corkill [1991]):

e Knowledge Sources (KSs),

e the Blackboard, and
e a Control Component (Figure 7).

12

Exe}g:ung Library of KSs
BLACKBOARD s
Activation
/ %
Events

Pending
KS
Activations

Y

Control Component

Figure 7: Basic Blackboard System.

Knowledge sources are independent modules that contain the knowledge needed to solve a problem. KSs
can be widely diverse in representation and inference techniques. Each KS is separate and independent of
all other KSs. A KS needs no knowledge of the expertise, or even the existence, of the others; however, it
must be able to understand the state of the problem-solving process and the representation of relevant
information on the BB. Each KS knows the condition under which it can contribute to the solution and, at
appropriate times, it attempts to contribute information toward solving the problem (Self-Contribution,
Section 4.2.2). When this happens, KSs are triggered and KS activations (or instances) are created. KS
activations are active processes that compete for execution resources.

The BB is a global database containing input data, partial solutions, and other data that are in various
problem-solving states. The BB serves as:

e A community memory of raw input data; partial solutions, alternatives, and final solutions; and
control information,

e A communication medium and buffer, and

e A KS trigger mechanism.

The Control Component makes runtime decisions about the course of problem solving and the expenditure
of problem-solving resources. The control component is separate from the individual KSs.

The BB system uses an incremental reasoning style; the solution to the problem is built one step at a time.
At each step, the system can:

e Execute any triggered KS.
e Choose a different focus of attention on the basis of the state of the solution.

Under a typical control approach, the currently executing KS activation generates events as it makes

contributions to the BB. These events are maintained (and possibly ranked) until the executing KS
activation is completed. At that point, the Control Component uses the events to trigger and activate other

13

KSs. The KS activations are ranked, and the most appropriate KS activation is selected for execution. This
cycle continues until the problem is solved.

Other variations of DCAs using BBs are discussed in (Lun and Macleod [1992]), (Occello and Demazeau
[1994)), (Wang [1994]), and (Dai et. al. [1993]).

BB DCAG s are suitable when:

1. Many diverse, specialized knowledge representations are needed. KSs can be developed in the most
appropriate representation for the data they are to handle. For example, one KS might be most
naturally written as a rule-based system while another might be written as a neural-net or fuzzy-logic
routine.

2. An integration framework is needed that allows for heterogeneous problem-solving representations and
expertise. For example, a BB is an excellent framework for combining several separately established
diagnostic systems.

3. The development of an application involves numerous developers. The modularity and independence
provided by large-grained KSs in BB systems allow each KS to be developed and tested separately.
The software engineering benefits of this approach apply during design, implementation, testing, and
maintenance of the application.

4. Uncertain knowledge or limited data inhibits absolute determination of a solution. The incremental
approach of the BB system will still allow progress to be made.

5. Multilevel reasoning or flexible, dynamic control of problem-solving activities is required in an
application.

BB DCAs are not very common:
1. The advantages of BB systems do not scale down to simple problems; they are only worth pursuing for
complex applications.

2. A BB system is useful for prototyping an application, but, once developed and understood, the
application can be reimplemented without the BB structure.

4.2.3.3 Ad-hoc DCAs

Researchers in robotics have developed a variety of DCAs for coordinating the actions of a group of robots.
These architectures have been developed as build-to-suit approaches.

(Yuta et. al. [1992]) and (Taipale and Hirai [1993]) discuss a combination of centralized and decentralized
control. In this approach, when a group of robots are given a task, one becomes a leader, solves the
problem, and conveys the result to the other robots. This approach is also called a master-slave control
architecture because one robot, the master, controls the others, the slaves.

Some researchers have looked at the level of cooperative control. Entities can be controlled in a purely top-
down plan-based manner and a purely bottom-up behavior-based manner; these two levels represent two
extremes of cooperative control. In plan-based approaches, all entity actions and interactions are planned in
advance. The plan is a script for action that all cooperating entities must follow faithfully. Assuming that
the entities can each execute their plan correctly, then an overall coherent activity will take place. In
behavior-based approaches, group behavior emerges from local entity interactions. By giving each entity
the same set of procedures for how to behave in response to the actions of others, a variety of interesting
and useful group behaviors can emerge (Arai et. al. [1989]). The work done by (Payton and Dolan [1991])
seeks to establish a bridge between the plan-based approach and the behavior-based approach. Plans are
used as resources for action (Suchman [1987]). As resources, plans serve as sources of information and
advice to entities that are already competent at dealing with the immediate concerns of their environment.
Consequently, plans are used to bias the natural actions of entities so that they conform more closely to
achieving some global objective.

14

Some other ad-hoc architectures are described in (Laengle and Lueth [1994a]), (Laengle and Lueth
[1994b]), (Parker [1994]), and (Shin and Epstein [1990]).

4.2.3.4 Finite State Machines (FSMs)

FSMs have been used widely in CGF systems. The IST CGF Testbed (Smith et. al. [1992a]), ModSAF, and
the CCTT SAF (Petty [1995]) use FSMs to implement cooperate behavior. FSMs are attractive because
they are a well understood process control mechanism and have been defined formally in Computer Science
(Sudkamp [1988]).

A formal FSM is defined as:

1. A setof states: An FSM is in one of its states. The state of an FSM is also the state of the process
being controlled by the FSM.

2. Events: Only events cause an FSM to change states.

3. State Transition Procedures (STPs): These are procedures (i.e., code) which are called to do
work. STPs are used only during state transitions. Many informal FSM implementations associate
code with states so that code is executed when an FSM goes to a new state and not during the
transition.

5. A Decentralized Control Architecture using Finite State Machines

In Section 4.2.3 different DCA's were discussed. IST chose to implement the FSM-based DCA. Section
5.1 describes the approach taken by IST. Section 5.2 describes formal FSMs; it may be skipped by readers
who are familiar with the topic. To cooperate, entities need to communicate. They do this via FSM
communication which is described in Section 5.3. Section 5.4 describes the FSM Engine which is a
mechanism for implementing formal FSMs.

5.1 Approach

To model cooperative behavior IST chose to implement a DCA within the ModSAF CGF system. DCAs
have several advantages which are described in Section 4.2. Traditional CGF systems have used CCAs for
controlling cooperative behavior. The work described in this report is the first time a DCA has been
implemented within a CGF system for controlling cooperative behavior.

The DCA chosen is based on Finite State Machines (FSMs). FSMs were used as building blocks for the
architecture; FSMs are a well understood process control mechanism and are defined formally in Computer
Science (Sudkamp [1988]).

Entities cooperate explicitly by exchanging simulated radio messages (Signal PDUs) and implicitly by
observing other entities. Observation is implemented by having an Observation Module, attached to an
entity, send observation messages to the entity.

The implementation is data driven and allows new behaviors to be defined quickly and easily through data
files. In current CGF systems, considerable coding effort is required to create new cooperative behaviors.
This increases development and prototyping time for new cooperative behaviors.

5.2 Formal FSMs

FSMs have been defined formally in Computer Science (Sudkamp [1988]) but implemented to various
degrees of formality. FSMs are one of the best techniques for process control. FSMs, as their name
implies, track the state of a process, handling events which may cause the process to change state (Section
4.2.34).

Formal FSMs are often represented as diagrams. Consider the example of a coin-operated candy dispenser.
whose FSM is shown in Figure 8.

[dispense]
<$0.05>

Start

<$0.05>

[dispense]

<dispense>

{DispenseCandy}

Figure 8: FSM for a coin-operated candy dispenser.

This machine accepts only nickels and dimes and dispenses candy worth $0.15. In Figure 8, the circles
represent states and arrows represent state transitions. Above the state transition line, in angle brackets

(< >), is the event causing the transition. Square brackets ([]) represent any events that are generated as
part of the transition. Braces ({ }) represent calls to STPs.

When a person walks up to the machine it is in state "$0" because no money has been deposited so far.
Depending on whether a nickel or dime is deposited, the machine transitions to the "$0.05" or "$0.10"
state. Assuming that a nickel was deposited, the state of the machine is "$0.05." Then, if a dime is
deposited two things happen. First, an event (dispense) is generated, and second, the machine goes to
the state "$0.15." When the dispense event arrives, an STP, DispenseCandy, is called to dispense
the candy. Note that an STP does work as part of the transition back to the start state, "$0"; no code is
executed in the state "$0.15" to dispense candy.

This example shows the workings of a simple formal FSM. A formal FSM does not poll for events to
change states; rather, events are generated and their arrival causes state transitions. This feature of formal
FSMs is especially attractive because it eliminates inefficiencies introduced in polling.

IST considered implementing the DCA using ModSAF FSMs. In ModSAF, FSMs are not implemented
formally: code is executed within states rather than by STPs during state transitions, and many state
transitions are not event driven.

Because formal FSMs provide an unambiguous way to control a process, they were used for the
implementation. To reiterate, in formal FSMs:

1. only events cause state transitions,
2. states do not contain code; they are merely place-holders for the process' current state, and
3. code is only executed by State Transition Procedures (STPs) during state transitions.

5.3 FSM communication

An entity's cooperative behavior is implemented as an FSM. To cooperate, entities need to communicate
and they do so via FSM communication. FSMs may communicate with each other (inter-FSM
communication) or an FSM may communicate with itself (intra-FSM communication).

5.3.1 Inter-FSM communication

In inter-FSM communication, FSMs send events to each other. These events, called external events, often
take the form of simulated "Radio Messages." For example, when the Bounding Section, in a platoon
executing a Bounding Overwatch, reaches a destination, the Section Commander sends a radio message
announcing the completion of its bound.

An entity may generate external events to itself. These events are generated from an Observation Module
and are called Observation Events. Observation Events are generated in response to battlefield conditions.
For example, the Observation Module for a Wingman sends an Observation Event informing him when his
Section Commander starts moving. This observation event triggers the Wingman's FSM to start following
the Section Commander.

5.3.2 Intra-FSM communication

FSMs communicate with themselves by sending internal events to themselves. Consider the FSM for the
coin-operated candy dispenser shown in Figure 8. Assume that the FSM is in state "$0.05." When a
dime is deposited, the machine generates an internal event, dispense, to itself and transitions to the state
"$0.15." The receipt of the dispense internal event signals the FSM to transition to another state and
execute an STP (DispenseCandy).

17

5.3.3 Event Queues

FSMs communicate by generating external events between themselves. When external events arrive, they
are first mapped to internal events and then put into an event queue for processing. There are two
approaches for handling external and internal events: use one or two event queues.

Using a common queue for external and internal events can lead to synchronization problems. State
machine actions are non-preemptive; processing an internal event is done completely and, possibly, new
internal events are generated in one execution thread. While internal events are being processed new
external events may continue to arrive. If the external and internal events are processed in an interleaved
manner unexpected situations can develop. Handling all possible interleaving of internal and external
events is needlessly complicated.

The solution is to queue external and internal events in separate queues. External events are put into one or
more external event queues while internal events are put into an internal event queue. No external event is
dispatched until the internal event queue is empty. This allows all intra-machine communication (spawned
by an external event) to complete without interference from new external events. The approach also allows
a single external event to be re-mapped into several internal events. This reduces machine complexity and
breaks complex external events into simpler requests.

5.4 FSM Engine

FSM Engine
External Event [¢—] Radio Message Queue
to
t
Internal Event Queue Teteoal Event .
Mapper [€] Observation Event Queue ¢
Internal Event
State-Event Table
e Observation
Radio Message (External Events) -
i Module Observation
& State Transition Procedures
T Events
Simulated Battlefield (TDB, DIS Traffic)

Signal PDUs
Figure 9: FSM Engine.

Because formal FSMs do not exist in ModSAF, an FSM Engine (Figure 9) was developed to run formal
FSMs. The FSM Engine contains an FSM's description in a State-Event Table. The State-Event Table is
created by reading a data file FSM description (Section 6.3). The table is indexed by a state/event pair that
determines the new state of the FSM; the indices are the current state of the FSM and the internal event to
be processed. During the transition, external and internal events may be generated and STPs called.

The FSM Engine receives input from two sources: Signal PDUs and Observation Events. Signal PDUs
contain radio messages and simulate radio communication. Observation Events are generated by the
Observation Module in response to battlefield situations. Radio messages and Observation Events are
external events which are queued on two separate queues: Radio Message Queue and Observation Event

Queue.

Periodically, the external event queues are checked to see if any external event is waiting to be processed.
The external event is removed from the queue, mapped into an internal event, and queued on the internal
event queue. Then, internal events from the internal event queue are removed and processed. To process
events, the FSM Engine needs to be called periodically. This is done by calling the FSM Engine from a
non-transitioning ModSAF FSM. Each time the ModSAF FSM becomes active, it calls the FSM Engine;
the FSM Engine can be thought of as embedded within the ModSAF FSM. Note that the ModSAF FSM
does not do anything. Its sole purpose is to ensure that the FSM Engine is called periodically; all the work
required in processing events and changing the behaviors of entities is done by the FSM Engine.

19

R R

6. Implementation

This section describes implementation details. Cooperative behavior occurs at different levels in a unit. To
mimic the flow of information in a real unit a hierarchy of commanders is created (Section 6.1). Section 6.2
describes Bounding Overwatch, a cooperative behavior commonly used by platoons. The sub-sections
describe the FSMs for the Platoon, Section, and Vehicle Commanders. Section 6.3 discusses the

specification of cooperative behavior in data files.

6.1 Hierarchy of Commanders

8 8 8 B8

Vehicle 1 Vehicle2 | Vehicle 3 Vehicle 4

Platoon : :
Commander PC . i PC
FSM e

..................

Section : P :
Commander SC . SC SC SC :
FSM Loasssupanaenaniis

Vehicle :
Commander VC VC VC VC

FSM

Figure 10: Hierarchy of commanders.

A vehicle can execute behaviors on many levels. Consider Vehicle 1 in Figure 10. The commander of this
vehicle has three responsibilities, those of the Platoon Commander (PC), Section Commander (SC), and
Vehicle Commander (VC). One way to represent the cooperative behavior of this commander would be to
create a large and complex FSM that merges the platoon, section, and vehicle commander behaviors. This
process can become arbitrarily complex as the hierarchy grows and commanders with more responsibilities
are modeled. For example, for the hierarchy shown in Figure 10, Platoon-Section-Vehicle Commander,
Section-Vehicle Commander, and Vehicle Commander FSMs would be needed to encapsulate all classes of
cooperative behaviors.

Instead, IST established a hierarchy of commanders like the one shown in Figure 10. Each box in the figure
represents a ModSAF FSM. Embedded inside each ModSAF FSM is the FSM Engine (Section 5.4). This
approach allows complex behaviors to be split into fundamental behaviors that are implemented as separate
FSMs; complex FSMs containing merged behaviors are thus avoided. For example, Vehicle 1 (Figure 10)
has three FSMs (Platoon, Section, and Vehicle Commander FSMs) controlling its behavior. Each FSM
communicates with others. The command hierarchy is created by higher level commander FSMs spawning
lower level commander FSMs; for example, the Platoon Commander FSM spawns the Section Commander
FSMs which in turn spawn Vehicle Commander FSMs.

In addition, there are next in command (deputy) commanders, shown by dotted boxes in Figure 10. Deputy
commanders assume command when the original commanders are disabled so that the unit's mission can
continue unhindered (Section 6.4). They model the behavior of the original commander but do not
communicate with other entities. This allows them to continuously track the original commanders behavior
and assume command in case the original commander is disabled. In Figure 10, Vehicle 3 is a deputy

20

l Section 1 Section 2

Platoon Commander (i.e., Platoon Sergeant), and Vehicles 2 and 4 are deputy Section Commanders for
Vehicles | and 3 respectively.

To start the whole process, a user assigns a mission to the unit. As part of initialization, a data structure
known as a Role Matrix is created. The Role Matrix is a two dimensional array of vehicle IDs and roles
such as Platoon Commander, Section Commander, Vehicle Commander, and deputy commanders.

Section Commander deputy
Vehicle Commander

Vehicle ID 1 2 3 4
Platoon Commander 1 0 0 0
Platoon Commander deputy 0 0 1 0
Section Commander 1 0 1 0
0 1 1
1 1 1

Figure 11: Simplified Role Matrix.

Figure 11 shows a simplified Role Matrix for the commander hierarchy in Figure 10. The vehicles in the
unit have IDs from 1 to 4. A "1" in a cell at the intersection of a vehicle ID column and role row means the
vehicle is playing that role; for example, Vehicle 1 is the Platoon Commander, Section Commander, and
Vehicle Commander. A "0" in a cell at the intersection of a vehicle ID column and role row means that the
vehicle is not playing that role; for example, Vehicle 3 is not the Platoon Commander. Note that Vehicle 3
is a deputy Platoon Commander and Vehicles 2 and 4 are deputy Section Commanders. Because a Vehicle
Commander's responsibility is limited to his vehicle's domain and another Vehicle Commander cannot
assume his functions, there are no deputy Vehicle Commanders. This is represented by the absence of a
deputy Vehicle Commanders row in the Role Matrix.

A vehicle's Role Matrix is accessible from the vehicle's FSMs. Using the Role Matrix a vehicle can easily
determine the role of other vehicles. For example, Vehicle 2 knows that Vehicle 1 is a Platoon and Section
Commander. In a real battlefield, a vehicle is designated roles before an exercise begins. The Role Matrix
is a manifestation of this information in the computer.

6.2 Bounding Overwatch

The FSM architecture was tested on a platoon executing a Bounding Overwatch. Bounding Overwatch
provides a simple and elegant way to test the architecture. In this behavior, a platoon advances by having
its sections alternately move and overwatch the movement of the other section. The sections move until the

platoon reaches an objective or enemy contact is made. By moving in this fashion, the platoon reduces the
risk of being ambushed by enemy forces.

@'— SectionA e @_ Section A

(Overwatch) (Bounding)

..................... @_ Section'B @—_ Section B
@_ (Bounding) l@_ (Overwatch)

(a) (b)

Figure 12: Bounding Overwatch.

21

The sections are in bounding or overwatch roles before the orders to start Bounding Overwatch are given.
The Bounding Section moves towards an intermediate destination always maintaining line of sight with the
Overwatch section, which is covering its movement (Figure 12(a)). Once the Bounding Section reaches an
intermediate destination, the Section Commander sends a radio message that the section is ready to
overwatch the movement of the other section. Alternatively, the Overwatch Section may observe that the
Bounding Section has stopped. Section Commanders use radio to communicate when enemy contact is not
imminent while relying on observation if the chance of running into an enemy is high.

In any case, there is a reversal of roles when the Bounding Section stops. The Overwatch Section switches
roles with the Bounding Section and overwatches its movement (Figure 12(b)). This process continues until
the objective is reached or enemy contact is made.

Sections 6.2.1 through 6.2.3 show FSMs for the Platoon, Section, and Vehicle Commanders for Bounding
Overwatch. These FSMs communicate via radio messages (explicit cooperation). Note that in the
following discussion overwatch is also called "Cover."

6.2.1 Platoon Commander FSM

<NULL> m <plt_bound_done>
Start > Wait Done
[start_overwatch] _/

Figure 13: Bounding Overwatch Platoon Commander FSM.

To start the process, the Platoon Commander FSM sends a radio message, [start_overwatch], and
transitions to the Wait state (Figure 13). It then stays there until it is informed (via event
<plt_bound_done>) the platoon is at the objective, when it goes to the Done state.

22

6.2.2 Section Commander FSM

<start_move> ///’_——\\\\ <beta_sec_bound_done>
Waiting — Move <
_—///[747 [start_move] [start_move]

<wingman_complete>,

<my_bound_done>

Wingman_bound_finished

<wingman_complete>

<my_bound_done>

start_cover]

(if (dest==obj) [sec_at_obj]
else [sec_bound_done])

[start_cover]
{(if (dest==o0bj) [sec_at_obJ
else [sec_bound_done]}

<start_cover>

[start_cover] k j <alpha_sec_at_obj>

<beta_sec_at_obj> | <start_move>

Beta_sec_at_obj

<wingman_complete> <my_bound_done>

ingman_bound_finished_
beta_sec_at_obj

I_arrive_beta_sec_at_obj

<my_bound_done>
<wingman_complete>

[plt_bound_done]
[start_cover]

[plt_bound_done]
[start_cover]

Figure 14: Bounding Overwatch Section Commander FSM.

Figure 14 shows the Section Commander FSM for Bounding Overwatch. Initially the FSM is in the
Waiting state. When a Section Commander receives the order to move (via event <start_move>), it
sends a radio message, [start_movel, to its Vehicle Commanders and transitions to the Move state. In
this state the section moves toward an intermediate destination. When a Section Commarder receives the
order to cover (via event <start_cover>), it sends a radio message, [start_cover], to its Vehicle
Commanders and transitions to the Cover state where it overwatches the moving section.

The moving section may arrive at the intermediate destination in two ways. Either the Section Commander
arrives first (event <my_bound_done> arrives) followed by the Wingman (event
<wingman_complete> arrives) or vice versa. If the Section Commander arrives first, the FSM
transitions to the T_arrive state. When the Wingman arrives (event <wingman_complete> arrives)
the FSM transitions to the Cover state and as part of the transition does this: First, the Section Commander

23

issues a radio message to its Vehicle Commanders to start cover and second, checks if the intermediate
destination is the objective. If the section is at the objective it sends a radio message, [sec_at_obj]
(section at objective), otherwise the section is at an intermediate destination and a radio message,
[sec_bound_done] (section bound done), is sent. The section now overwatches the movement of the
other section, which has transitioned from overwatch to move.

6.2.3 Vehicle Commander FSM

[veh_bound_done]

<start_cover>
{SPAWN Cover}

{SPAWN Move}
[tick])

<start_move>
{SPAWN Move} {STOP Cover}
<start_cover>

{SPAWN Cover) {STOP Move}

(if
(move_finished)
[move_finished]
else [tick]}

Figure 15: Bounding Overwatch Vehicle Commander FSM.

Figure 15 shows the Bounding Overwatch Vehicle Commander FSM. Initially, the FSM is in the Wait
state. The order to start a move (via event <start_move>) takes the FSM to the Move state. As part of
the transition the FSM spawns a ModSAF Move task (via STP {SPAWN Move)}). This is a low level
ModSAF behavior that a vehicle uses to travel.

Periodically, the Vehicle Commander checks if it has finished traveling. This check is made every time the
FSM receives a <t ick> event. When the move is finished the Vehicle Commander sends a radio message,
[veh_bound_done] (vehicle bound done), and transitions to the Wait state to receive further orders
from its Section Commander.

6.3 Describing Commander FSMs in Data Files

FSMs describing the cooperative behavior of commanders are written in data files. This approach allows
quick behavior specification; a user only needs to change a data file to create a new behavior, code changes
are not required.

6.3.1 FSM Grammar Production Rules
To describe FSMs production rules were developed. These production rules specify the structure of an

FSM description. FSM descriptions are "parsed" based on production rules and a representation of the
FSM is created inside the computer.

24

The production rules for the FSM grammar are:

FSM => (State)
State = (state_name (Event)) Il (state_name (Event)) State
Event = (event_name next_state (STP)) Il (event_name next_state (STP)) Event
STP = (TRUE (Actions)) STP Il (PRED (Actions) (Actions)) STP Il (FUNC) Il £
Actions = MSG string Actions [EVENT string Actions || SPAWN string Actions ||
STOP string Actions Il €
PRED = string
FUNC = string
where:

€ is the symbol for a NULL string.

An operator (TRUE, PRED, and FUNC) specifies how Actions are to be treated. TRUE means execute
unconditionally the Actions that follow. PRED is a user specified predicate function. Based on the result
of the predicate function, true or false, the first or the second list of Actions is executed. FUNC is a user
defined function. The Actions specify what is to be done. MSG means to broadcast the string that follows
as a radio message. EVENT means to put an internal event, string, on the internal event queue for
processing. SPAWN means to spawn a ModSAF task specified by string. STOP means to stop a ModSAF
task, specified by string, which was spawned earlier.

6.4 Change in Command

In the real world, when a commander becomes disabled, the next in command (deputy) commander takes
charge. Shifting command enable units to continue their missions with minimal disruption. This important
real world feature was implemented in this project.

In the simulated battlefield, a deputy commander models his commander's cooperative behavior via an FSM
similar to the commander's FSM. This model (FSM) is constantly updated through receipt of observation
and radio messages. This information keeps the model synchronized with the original commander's
cooperative behavior. A deputy commander "knows" what his commander is doing because the deputy's
commander's FSM goes through the same transitions as his commander's FSM. (An important
characteristic of the model is that information flow is unidirectional; i.e., information contained in
observation and radio messages flows into the model but does not flow out, e.g., a deputy commander does
not transmit radio messages which are intended for transmission by the original commander). If required, a
deputy commander can assume command and continue the mission from the last executed command of the
original commander.

In the simulated battlefield, all entities watch out for each other and respond when someone is disabled.
When an entity is disabled, such as by a firepower kill, another Vehicle Commander is notified by a
"vehicle destroyed" observation message from its Observation Module. The observation message contains
the Vehicle ID of the disabled vehicle. Upon receipt of the Observation Message, the Vehicle Commander
sends a "vehicle destroyed" radio message containing the disabled vehicle's Vehicle ID. This message is
sent only once.

A deputy commander runs a ModSAF FSM, called a Monitor FSM, to process vehicle-destroyed messages.
Because deputy commanders are present at different levels in the command hierarchy, such as deputy
commanders for Platoon and Section Commanders (Section 6.1), Monitor FSMs are also present at different
levels. When a Monitor FSM receives a vehicle-destroyed message it checks the vehicle ID in the message
with the vehicle ID of the original commander. If they are different, the message is discarded. Otherwise,
the Monitor FSM changes the Role Matrix (Section 6.1) to reflect the change of command.

25

When a commander is disabled, ModSAF designates another entity as the commander and restarts the unit's
mission. ModSAF developers believe that restarting the mission reflects the change in command; another
entity is "promoted” to the commander. ModSAF's internal architecture imposed a barrier to implementing
this change of command process. The new commander plans and executes the task using the current
vehicles and positions.

Because changes to the ModSAF software, to disable automatic mission restart, involve a fundamental
change to the ModSAF architecture, IST did not pursue this approach. However, to test the transfer of
command, IST designated an entity to be the Platoon Commander which is different than the ModSAF-
designated Platoon Commander. When the IST-designated Platoon Commander is destroyed, control is
transferred to the Platoon Sergeant.

26

7. Results

The formal FSM DCA was implemented in ModSAF version 1.5.1. Bounding Overwatch with explicit and
implicit cooperation was implemented and tested. Section 7.1 shows a platoon in Bounding Overwatch
cooperating using radio messages (explicit cooperation) while Section 7.2 shows a platoon in Bounding
Overwatch using observed behavior (implicit cooperation).

7.1 Platoon Bounding Overwatch Using Explicit Cooperation

Overwatch Section Moving Section Intermediate destination Objective

/ _ /

| MoISAF Station IEL@POATHOS] o :
File Map Scale Mgp Features Show As Local For Special Privilege

[:]‘ OAT %
e
2=
O/E|
rlol

Force Designation .~ HHour

(//

Jh7"

%
%
7

.
.
7

b

i3
77,
7

(7%

: G 68 :
E_-jgl : Zoom: click middie to zoom in around point; chick nght 1o zoom out around point; cick and drag middie to set screen area

" Unit Operations Editor: Use execution matrix to assign commands, or choose a different unit from the map
o0 T A WA be reaimad AR G ad ek S eranion sy T R

Figure 16: Platoon Bounding Overwatch: Initial position.

Figure 16 shows a platoon at its initial position. The remaining figures in this and the following section
show portions of the map where significant actions take place. All activities take place within the context of
the scenario that starts and ends at the locations shown in this figure. Note that vehicles are shown enlarged
from their actual size.

21

Overwatch Section Moving Section

il MadSAF Stavion VersloNy 8.1 & PO

File MspScale MapY¥stres Show As Local Force Force Designation /] HHours
e : |

sl

5% Mddmuumnwpmwwnnnnmy@ click and ¢

; Uﬁc'%uom Editor: Use execution matrix to assign commands, or choose a different unit from the

Figure 17: Start (explicit): One section starts moving.

Figure 17 shows a platoon starting a Bounding Overwatch. Both the vehicles in the Moving Section have
started moving at the same time which is shown by their being abreast of each other. The Section
Commander of the Moving Section gives the order to move via radio and both Vehicle Commanders
respond simultaneously.

28

Overwatch Section Moving Section
| MOdSAF Station Version 1.5.1 © PRATHOS Py e
File MapScale MapFeawres \\ohowAs Local Force ForceDexignation HHouns Special Privlege //

e
RN
N\

RN

- v

] W
Eilal

=]

iR A2 oA
@ X 4% |©M|0

N
N

&7 68

T
=k

o 4% V_Mddu:'l'dde(lnml\._u@pmcMr@_wunm@paﬂ:dﬂn&&qd“euwimn;
Unit Operations Editor: Use ex: i ign commands, or choose a different unit from the map
S e
b resvad WA

Figure 18: Intermediate stage (explicit): Vehicle move together.

Figure 18 shows Bounding Overwatch at the halfway mark. At this point, the original Bounding Section is
in overwatch and the original Overwatch Section is moving.

29

Platoon at Objective Objective

ce Force Designation
NN

X
N
\\\\\

7
7
%
2

24
%
7
4%

&

Ak
ARIInnite
ARtk
A T Y
Zoom: dlick middle to zoom in around point; dnduimmzom‘nn_urmdpn':}z click and drag middle to set screen area f

Unit Operations Editor: Use execution matrix to assign eommands, or choose a different unit from the inap

Figure 19: End (explicit): Platoon at Objective.

Figure 19 shows the platoon has arrived at the Objective. One section arrives at the Objective first and
overwatches the movement of the other as it arrives.

30

7.2 Platoon Bounding Overwatch Using Implicit Cooperation

Section Commander

Overwatch Section Wingman (Moving Section) g .
(Moving Section)

\

el * MOOSAF Station Version\'S.! @ PORTHOS = R b
File Map Scale _M_ap“mra Show As Local Force Forcg Designation HHours

TR =)

| 0~

Intermediate destination

=
S/
rlel
=1/
¥

4 Zamtdldcnid&eynunnqe}nﬂpmdddmtmummmndph:dd(mdtumdﬂ:uxusuénxu
Unit Operations Editor: Use execution matrix to assign cominands, or choose a different unit from the map

Figure 20: Start (implicit): Section Commander starts moving.

Figure 20 shows a platoon just starting a Bounding Overwatch using implicit cooperation. Note that the
Section Commander has started moving (it is not facing where the other vehicles are facing) whereas th2
Wingman is still stationary. This is because the Wingman has not yet noticed that the Section Commander
is moving. Soon, the Wingman notices the Section Commander is moving and starts following the Section
Commander.

31

Section Commander Intermediate destination

Wingman (Moving Section)
(Moving Section)

Overwatch Section

il - MOASAE Station Versiom Sl @ PORTIHDS.

File Map Scale Maphhmra Show As Local Force Fofce Designation HHours . Speci

‘
TR ;i
RAINERUASHIRS :

[Z] st gy N

Figure 21: Start (implicit): Wingman starts moving.

In Figure 21, the Wingman is starting to move. After the short delay in observing the Section Commander's
movement, the Wingman is now following the Section Commander.

32

R R R

Overwatch Section Moving Section

vl MadSAF Station Version 151 ©
File MapScale Map Features |Show

L)

As Local Force Force Designation HHours Specia

NN
R
N
N\

7

RN
Nk
Nk
Aihknnge
AN

FaRARRRRNTRNS
AN
RRRNTnn$H

Figure 22: Intermediate stage (implicit): One section overwatches the movement of another.

Figure 22 shows the sections about halfway to the Objective. The vehicles in the Overwatch Section are not
aligned as they are in the explicit case (Figure 18). There is a gap between the Section Commander's
position and that of the Wingman's. This is because the Wingman's start is delayed and this delay shows up

as the gap between Wingman and Section Commander.
33

l 5

—

Objective

Platoon at the objective

T ModSA7 Svation Version 1.5.1 @ PORTNOS
File MapScale Map Features Show As Local Force Force Designation |

oA R | » NN
i AR
Ll Aiink
= . AMiiIH I IHTHTH
a8 | ANkike
R NS
olm
ol
=2 ~
P NN
batind N
=»[p< AN
Sikel '
o { <l
N
=al AN 3
Al NN N
; R %&3

voun in areund peint click right t 200 out around paink: cick and drag middle to set screen area
tion matrix to assign commands, or choose a different unit from the map

Figure 23: End (implicit): The platoon arrives at the Objective.

Figure 23 shows the platoon at the Objective.

34

8. Conclusions

To be effective enemy and adjunct friendly forces CGF systems must be able to portray cooperative
behavior between entities realistically. There are two ways to implement cooperative behavior: Centralized
and Decentralized control. Centralized control has been used in a variety of CGF systems. In this control
an unseen "entity" controls and directs the behavior of subordinate entities. In addition to being unrealistic,
this approach can become arbitrarily complex if larger echelons, such as battalions, are to be modeled
(Section 4.1). Decentralized control involves entities cooperating with each other directly and mirrors
cooperation in the real world. DCAs have several advantages as discussed in Section 4.2

This project has implemented a Decentralized Control Architecture (DCA) within the ModSAF CGF
system. In addition to mirroring cooperation in the real world, DCAs allow cooperation within larger units
(companies, battalions, etc.) to be modeled with little increase in complexity. Explicit and implicit
cooperation between entities has been demonstrated within a platoon engaged in a Bounding Overwatch.

The cooperative behavior of an entity is implemented through FSMs. An entity's cooperative behavior is
described in data files. These descriptions are read and converted into FSM representations inside the
computer. Communication between entities is implemented by FSM communication. FSMs communicate
by sending each other external events implemented as radio messages. An FSM communicates with itself
by sending internal events. An FSM Engine, embedded within ModSAF, "reads” the description and
executes the defined behavior. The FSM Engine is general purpose and can be used by other ModSAF
code; ModSAF has been extended.

The ESMs use low level ModSAF behaviors. For example, a ModSAF task is used for vehicle travel as the
underlying fundamental behavior. This attempts to reuse code as much as possible. Thus, in addition to
being extendible, the approach is built on top of ModSAF.

Simpler implementations result as a consequence of the FSM approach. Instead of modeling various

responsibilities of a commander as a large and complex FSM, responsibilities corresponding to different
levels in the command hierarchy are modeled as separate FSMs which communicate with each other.

35

9. References

1. Danisas, K., Smith, S. H., and Wood, D. D. (1990). "Sequencer/Executive for Modular Simulator
Design", Technical Report IST-TR-90-1, Institute for Simulation and Training, University of Central

Florida, 16 pages.

2. DIS Steering Committee (1993). "The DIS Vision: A Map to the Future of Distributed Simulation", IST
Technical Report, 47 pages.

3. Gonzalez, G., Mullally, D. E., Smith, S. H., Vanzant-Hodge, A. F., Watkins, J. E., and Wood, D. D.
(1990). "A Testbed for Automated Entity Generation in Distributed Interactive Simulation”, Technical
Report IST-TR-90-15, Institute for Simulation and Training, University of Central Florida, 37 pages.

4. Loper, M. L., Thompson, J. R., and Williams, H. L. (1991). "Simulator Networking: What Can It Offer
The Training Community?", Military Simulation & Training, Issue 4 1991, pp. 11-14.

5. Petty, M. D. (1992). "Computer Generated Forces in Battlefield Simulation", Proceedings of the
Southeastern Simulation Conference 1992, The Society for Computer Simulation, Pensacola FL, October
22-23 1992, pp. 56-71.

6. Smith, S. H., Karr, C. R., Petty, M. D., Franceschini R. W., Wood, D. D., Watkins, J. E, and Campbell,
C. E. (1992a). "The IST Computer Generated Forces Testbed", Technical Report IST-TR-92-7, Institute for
Simulation and Training, University of Central Florida.

7. Smith, S. H., and Petty, M. D. (1992b). "Controlling Autonomous Behavior in Real-Time Simulation”,
Proceedings of the Southeastern Simulation Conference 1992, The Society for Computer Simulation,
Pensacola FL, October 22-23 1992, pp. 27-40.

8. Loral (1993). “ModSAF Behavior Simulation and Control”, Proceedings of the Third Conference on
Computer Generated Forces and Behavioral Representation, University of Central Florida, Orlando,

Florida, pp. 347-356.

9. Loral (1994). "ModSAF User Manual," Loral Advanced Distribution Simulation, Cambridge,
Massachusetts, September 30, 1994.

10. US Army (1990). "FM 7-7]: The Mechanized Infantry Platoon And Squad (Bradley)", Coordinating
Draft, Department of the Army, United States Army Infantry School, Fort Benning, Georgia 31905.

11. Loral (1995a). "Libuoverwatchmove Online Documentation”, Loral Advanced Distribution
Simulation, Cambridge, Massachusetts, April 28, 1995.

12. Laird, John E., Jones, Randolph M., and Nielsen, Paul E (1994). "Coordinated Behavior of Computer
Generated Forces in TacAir-Soar", Proceedings of the Fourth Conference on Computer Generated Forces
and Behavioral Representation, University of Central Florida, Orlando, Florida, pp. 325-332.

13. Shoham Y., and Tennenholtz M (1992). "On The Synthesis Of Useful Social Laws For Artificial
Agents Societies”, (preliminary report), Proceedings of AAAI-92, Morgan Kaufmann, 1992.

14. Tambe, Milind, and Rosenbloom, Paul S (1995). "Agent Tracking in Complex Multi-agent
Environments: New Results", Proceedings of the Fifth Conference on Computer Generated Forces and

Behavioral Representation, University of Central Florida, Orlando, Florida, pp. 125-133.

15. Noreils, Fabrice R. (1993). "Toward a Robot Architecture Integrating Cooperation between Mobile
Robots". The International Journal of Robotics Research, vol. 12, no. 1, February 1993.

36

16. Noreils, Fabrice R. (1992a). "An Architecture for Cooperative and Autonomous Mobile Robots".
Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, France, May
1992, pp. 2703-2710.

17. Noreils, Fabrice R. (1992b). "Multi-Robot Coordination for Battlefield Strategies”. Proceedings of the
1992 IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC, July 7-10, 1992,
pp. 1777-1784.

18. Noreils, Fabrice R. (1992c). "Coordinated Protocols: An Approach to Formalize Coordination
Between Mobile Robots". Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Raleigh, NC, July 7-10, 1992, pp. 717-724.

19. Parker, Lynne E. (1994). "ALLIANCE: An Architecture for Fault Tolerant, Cooperative Control of
Heterogeneous Mobile Robots". Proceedings of the IEEE/RSG/GI International Conference on Intelligent
Robots and Systems (IROS '94) Vol. 2, 1994, pp. 776-783.

20. Shin, Kang G. and Epstein, Mark E. (1990). "Intertask Communications in an Integrated Multirobot
System". Multirobot Systems, IEEE Computer Society Press, Los Alamitos, California, 1990.

21. Lefebvre, D. R. and Saridis, G. N. (1992). "A Computer Architecture for Intelligent Machines".
Proceedings of the 1992 IEEE International Conference on Robotics and Automation.

22. Smith, R. G. and Davis, R. (1981). "Framework for Cooperation in Distributed Problem Solving".
Proceedings of the IEEE Transactions on System, Man and Cybernetics, Vol. SMC-11, No. 1, January
1981, pp. 61-70.

23. Fisher, M. and Woodridge, M. (1994). "Specifying and Executing Protocols for Cooperative Action".
CKBS-94, Proceedings of the Second International Working Conference on Cooperating Knowledge
Systems, Springer-Verlag, 1994.

24. Decker, K. S. (1987). "Distributed Problem-Solving Techniques: A Survey". Proceedings of the IEEE
Transactions on Systems, Man, and Cybernetics, Vol. SMC-17, No. 5, September/October 1987.

25. Ohko, T., Hiraki, K, and Anzai, Y. (1993). "LEMMING: A Learning System for Multi-Robot
Environments". Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Vol. 2, July 1993, pp. 1141-1146.

26. Laengle, T. and Lueth, T.C. (1994a). "Decentralized Control of Distributed Intelligent Robots and
Subsystems". Proceedings of the IFAC Symposium on Artificial Intelligence in Real Time Control (AIRTC
'94).

27. Laengle, T. and Lueth, T.C. (1994b). "Task Description, Decomposition, and Allocation in a
Distributed Autonomous Multi-Agent Robot System". Proceedings of the 1994 IEEE/RSJ International
Conference on Intelligent Robots and Systems.

28. Corkill, Daniel (1991). "Blackboard Systems". AI Expert 6(9):40-47, September 1991.

29. Occello, M. and Demazeau, Y. (1994). "Building Real Time Agents using Parallel Blackboards and its
use for Mobile Robotics". Proceedings of the 1994 IEEE International Conference on Systems, Man and
Cybernetics, San Antonio, October 1994.

30. Dai, H., Hughes, J. G. and Bell, D. A. (1993). "A Distributed Real-Time Knowledge-Based System and

its Implementation using Object-Oriented Techniques”. Proceedings of the International Conference on
Intelligent and Cooperative Information Systems, May 1993, pp. 23-30.

37

i

31. Lun, V. and MacLeod, I. M. (1992). "Strategies for Real-Time Dialogue and Interaction in Multiagent
Systems". Proceedings of the IEEE Transactions on Systems, Man and Cybernetics, Vol. 22, No. 4,
July/August 1992.

32. Wang, J. (1994). "On Sign-board Based Inter-Robot Communication in Distributed Robotic Systems".
Proceedings of the 1994 IEEE International Conference on Robotics and Automation, Vol. 2, May 1994,

pp. 1045-1050.

33. Harmon, S. Y., Aviles, W. A., and Gage, D. E. (1986). "A Technique for Coordinating Autonomous
Robots." IEEE International Conference on Robotics and Animation, 1986, Vol. 1, page 666.

34. Payton, David W. and Dolan, Charles P. (1991). "Cooperative Control". Seminars on Robotics in the
Air/Land Battlefield, NATO Defense Group, 1991.

35. Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981.

36. Murata T. (1989). "Petri Nets: Properties, Analysis, and Applications," Proceedings of the IEEE, vol.
77, no. 4, pp. 541-580, 1989.

37. Genrich, H. (1986). "Predicate/Transition nets," Petri Nets: Central models and their properties -
Lecture Notes in Computer Science, pages 208 - 247, Springer Verlag, 1986.

38. Wang, Fei-Yue, Mittman, Michael, and Saridis, G. N. (1992). "Coordination Specification for a
Robotic Platform System." Proceedings of the 1992 IEEE/RSJ International Conference on Robots and
Systems, Raleigh, NC, July 7-10, 1992.

39. Zhou, Mengchu, Wang, David T., and Chao, Daniel Y. (1994). "Design of Command and Control
Systems Using Petri Nets and Object-Oriented Technology". Proceedings of the 1994 IEEE International
Conference on Systems, Man, and Cybernetics, San Antonio, October 2-5, 1994.

40. Bachatene, H. and Seghrouchni, A. (1993). "A Multiformalism Approach to Formalize Intelligent
Cooperative Information Systems". Proceedings of the International Conference on Intelligent and
Cooperative Information Systems, May 1993, pp. 13-22.

41. Yuta, Shun'ichi and Premvuti, Suparerk (1992). "Coordinating Autonomous and Centralized Decision
Making to Achieve Cooperative Behaviors Between Multiple Mobile Robots". Proceedings of the 1992
IEEE/RS]J International Conference on Intelligent Robots and Systems, Raleigh, NC, July 7-10, 1992, pp.
1566-1574.

42. Taipale, Tapio and Hirai, Shigeoki (1993). "A Behavior-Based Control System Applied Over Multi-
Robot System". Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Yokohama, Japan, July 26-30, 1993, pp. 1941-1943.

43. Arai, T., Ogata, H., and Suzuki, T. (1989). "Collision Avoidance Among Multiple Robots Using
Virtual Impedence,”" in IEEE/RSG International Workshop on Intelligent Robots and Systems, Tsukuba,
Japan, September 4-6, 1989, pp. 479-485.

44. Suchman, L. (1987). "Plans and Situated Actions," Cambridge University Press, 1987.

45. Sudkamp, Thomas A. (1988). Languages and Machines: An Introduction to the Theory of Computer
Science. Addison-Wesley Publishing Company Inc., 1988.

46. Petty, Mikel D. (1995). "Computer Generated Forces in Distributed Interactive Simulation,” in
Proceedings of the SPIE conference on Distributed Interactive Simulation Systems for Simulation and
Training in the Aerospace Environment, Orlando, FL, April 19-20, 1995, pp. 251-280.

38

47. Loral (1995b). "ModSAF 1.5.1 Developer's Course Exercise Workbook," LADS Document No.
94006, v. 1.5.1, July 24, 1995.

39

.

10. APPENDICES

10.1 Glossary

Term Description
ADST Advanced Distributed Simulation Technology
ARPA Army Research Projects Agency
BB Blackboard
CA Control Architecture
CCA Centralized Control Architecture
CGF Computer Generated Forces
DARPA Defense Army Research Projects Agency
DCA Decentralized Control Architecture
DIS Distributed Interactive Simulation
FSM Finite State Machine
FUNC Function
IST Institute for Simulation and Training
KS Knowledge Source
ModSAF Modular Semi-Automated Forces
MSG Message
OPFOR Opposing Forces
PC Platoon Commander
PDU Protocol Data Unit
PN Petri Net
Pr/Tr Predicate/Transition
PRED Predicate
SAF/SAFOR Semi Automated Forces
SC Section Commander
STP State Transition Procedure
STRICOM Simulation Training and Instrumentation Command
VC Vehicle Commander
WISSARD What If Simulation System for Advanced Research and Development

Table 1: Glossary

10.2 Writing a New Cooperative Behavior

The DCA, described in this report, is general enough to allow addition of new cooperative behaviors.
Cooperative behaviors are described as FSMs in data files. To write a new cooperative behavior entails:
Writing FSM descriptions and Code changes.

10.2.1 Writing FSM descriptions

Design FSM(s) for the new cooperative behavior. After FSMs have been designed and their operation
verified, write FSM data files like the ones shown in Section 10.3 or refer to the files "uisfom_pltcmdr.rdr,"
"uisfom_seccmdr.rdr," and "uisfom_vehcmdr.rdr" in libraries "libpltcmdr," "libseccmdr,” and "libvehcmdr"
respectively. These data files contain Bounding Overwatch FSM descriptions for Platoon, Section, and

Vehicle Commanders.

40

B

10.2.2 Code Changes
Code changes entail:

1. Create the behavior task: This is a user-assignable task which starts the process. For example,
assigning the "UISFOverwatchMove" to a unit executes a Bounding Overwatch using explicit
cooperation. Create this task (do the "advanced" exercise in creating new behaviors, (Loral
[1995b])) and then modify the task FSM (refer to the file "uisfom_task.fsm" in library
"libuisfoverwatchmove") to include the creation of the Role Matrix. Also, "spawn" the Platoon
Commanders as done in "uisfom_task.fsm."

2. Changes to Platoon and Section Commander ModSAF FSMs: Refer to the files "pcmdr_task.fsm"
and scmdr_task.fsm" in libraries "libpltcmdr" and "libseccmdr” respectively. These files contain
Platoon and Section Commander ModSAF FSMs. In the ModSAF FSM state where subordinate
commanders are spawned, "SpawningSectionCommanders" and "SpawningVehicleCommanders",
introduce a "case" statement for the new behavior and spawn the subordinate commanders (refer to
how subordinate commanders for Bounding Overwatch are spawned).

After steps 1 and 2, the command hierarchy is established. Steps 3 to 7 pertain to the new
behavior.

3. Reading FSM descriptions: Refer to the file "event_mgr.c" in library "libcoopbhv." Modify the
function "InitFSMData" so that FSM files, created in Section 10.2.1, are read. The modification is
adding a "case" statement for the new behavior.

After this step, data file FSM descriptions are in the computer.

and "veh_radio_map.c" in library "libcoopbhv." The new behavior may entail the creation of new
radio messages which must be mapped to internal events. Modify the "map" function in these files
to include the new mapping.

5. Mapping observation messages to internal events: Refer to files "plt_obs_map.c,"
"sec_obs_map.c," and "veh_obs_map.c" in library "libcoopbhv." The new behavior may entail the
creation of new Observation Events which must be mapped to internal events. Modify the "map"
function in these files to include the new mapping.

After steps 4 and 5, external events are mapped to internal events.

6. Predicate and other functions: The new behavior may call predicate and other functions. Write
these function in an appropriate file and make sure that it is included in the system.

7. Modifications to event dispatcher to use predicate and other functions: Refer to the file "queue.c”
in "libcoopbhv." Predicate and other functions added in Step 6 have to be called. Modify the
event dispatcher function, "DispatchEvents," to include calls to them. See how another predicate
function, "MoveFinished," is used and repeat the process for the new functions.

After following the procedure outlined above, a new cooperative behavior will be created. Compile and
link the system. Run the ModSAF executable and assign the new behavior to a unit. Verify that the
behavior is correct. For more information, contact the first author listed on this report.

10.3 Bounding Overwatch FSM descriptions

Sections 10.3.1 and 10.3.2 show data files describing the cooperative behavior of various commanders for
Bounding Overwatch. Each data file has three sections. The first section, States, list the states of the FSM.

41

' 4. Mapping radio messages to internal events: Refer to files "plt_radio_map.c," "sec_radio_map.c,"

The second section, Events, lists valid events for the FSM. The third section, FSM description, contains the
FSM description in the format specified by the production rules of the FSM Grammar (Section 6.3.1).

10.3.1 Explicit Cooperation

10.3.1.1 Platoon Commander Behavior

. Platoon Commander FSM - Explicit Cooperation
(
; States
(
S_WAIT
S_DONE

)

: Events
(
E_PLT_BOUND_DONE

)

; FSM description
(S_WAIT
(E_PLT_BOUND_DONE S_DONE
0
)
)
)

10.3.1.2 Section Commander Behavior

; Section Commander FSM - Explicit Cooperation
(
; States
(
S_WAITING
S_EXEC_MOVE
S_WMAN_BOUND_FINISHED
S_I_ARRIVE
S_EXEC_COVER
S_BETA_SEC_AT_OBJ
S_WMAN_BOUND_FINISHED_WITH_BETA_SEC_AT_OBJ
S_I_ ARRIVE_WITH_BETA_SEC_AT_OBJ
S_DONE
)

; Events

(
E_START_MOVE
E_START_COVER
E_WINGMAN_COMPLETE
E_MY_BOUND_DONE
E_BETA_SEC_BOUND_DONE
E_BETA_SEC_AT_OBJ
E_ALPHA_SEC_AT_OBJ

42

; FSM description
(S_WAITING
(E_START_MOVE S_EXEC_MOVE
(TRUE (MSG START_MOVE))
)
(E_START_COVER S_EXEC_COVER
(TRUE (MSG START_COVER))
)
)

(S_EXEC_MOVE
(E_WINGMAN_COMPLETE S_WMAN_BOUND_FINISHED
0
)
(E_MY_BOUND_DONE S_I_ARRIVE
0)
)
)

(S_WMAN_BOUND_FINISHED
(E_MY_BOUND_DONE S_EXEC_COVER
(TRUE (MSG START_COVER))
(DEST_EQUAL_OBJ (MSG SEC_AT_OBIJ) (MSG SEC_BOUND_DONE))

)

(S_I_ARRIVE
(E_WINGMAN_COMPLETE S_EXEC_COVER
(TRUE (MSG START_COVER))
(DEST_EQUAL_OBJ (MSG SEC_AT_OBIJ) (MSG SEC_BOUND_DONE))

)

(S_EXEC_COVER
(E_BETA_SEC_BOUND_DONE S_EXEC_MOVE
(TRUE (MSG START_MOVE))

(E_ALPHA_SEC_AT_OBJ S_DONE
0

(E_BETA_SEC_AT_OBJ S_BETA_SEC_AT_OBJ
(TRUE (MSG START_MOVE))

)
)

(S_BETA_SEC_AT_OBJ
(E_WINGMAN_COMPLETE S_WMAN_BOUND_FINISHED_WITH_BETA_SEC_AT_OBJ

0
)
(E_MY_BOUND_DONE S_I_ARRIVE_WITH_BETA_SEC_AT_OBJ

0
)

43

(S_WMAN_BOUND_FINISHED_WITH_BETA_SEC_AT_OBIJ
(E_MY_BOUND_DONE S_DONE
(TRUE (MSG PLT_BOUND_DONE MSG START_COVER))

)
)

(S_I_ARRIVE_WITH_BETA_SEC_AT_OBJ
(E_WINGMAN_COMPLETE S_DONE
(TRUE (MSG PLT_BOUND_DONE MSG START_COVER))

)
)
)

10.3.1.3 Vehicle Commander Behavior

: Vehicle Commander FSM - Explicit Cooperation
(
; States
(
S_WAIT
S_EXEC_MOVE
S_EXEC_COVER

)

; Events

(
E_START_MOVE
E_START_COVER
E_MOVE_FINISHED
E_TICK

)

; FSM description
(S_WAIT
(E_START_MOVE S_EXEC_MOVE
(TRUE (SPAWN MOVE EVENT E_TICK))

(E_START_COVER S_EXEC_COVER
(TRUE (SPAWN COVER))
)
)

(S_EXEC_MOVE
(E_MOVE_FINISHED S_WAIT
(TRUE (MSG VEH_BOUND_DONE))

(E_TICK S_EXEC_MOVE
(MOVE_FINISHED (EVENT E_MOVE_FINISHED) (EVENT E_TICK))

)
(E_START_COVER S_EXEC_COVER

(TRUE (STOP MOVE SPAWN COVER))

)
)

(S_EXEC_COVER

44

(E_START_MOVE S_EXEC_MOVE
(TRUE (STOP COVER SPAWN MOVE EVENT E_TICK))

)
)
)

10.3.2 Implicit Cooperation

10.3.2.1 Platoon Commander Behavior

. Platoon Commander FSM - Implicit Cooperation
(
; States
(
S_WAIT
S_DONE

)

; Events
(
E_PLT_BOUND_DONE

)

; FSM description
(S_WAIT
(E_PLT_BOUND_DONE S_DONE
0
)
)
)

10.3.2.2 Section Commander Behavior

: Section Commander FSM - Implicit Cooperation

(

; States

(
S_WAITING
S_EXEC_MOVE
S_WMAN_BOUND_FINISHED
S_I_ARRIVE
S_EXEC_COVER
S_BETA_SEC_AT_OBIJ
S_WMAN_BOUND_FINISHED_WITH_BETA_SEC_AT_OBJ
S_I_ARRIVE_WITH_BETA_SEC_AT_OBJ
S_DONE

)

: Events

(
E_START_MOVE
E_START_COVER
E_WINGMAN_COMPLETE
E_MY_BOUND_DONE
E_BETA_SEC_BOUND_DONE

45

E_BETA_SEC_AT_OBIJ
E_ALPHA_SEC_AT_OBJ

)

; FSM description
(S_WAITING
(E_START_MOVE S_EXEC_MOVE
(TRUE (MSG START_MOVE
INSTALL_FUNC CHECK_WINGMAN_COMPLETE
INSTALL_FUNC CHECK_MY_BOUND_DONE))
)
(E_START_COVER S_EXEC_COVER
(TRUE (MSG START_COVER
INSTALL_FUNC CHECK_BETA_SEC_BOUND_DONE
INSTALL_FUNC CHECK_BETA_SEC_AT_OBJ
INSTALL_FUNC CHECK_ALPHA_SEC_AT_OBJ))

)

(S_EXEC_MOVE
(E_WINGMAN_COMPLETE S_WMAN_BOUND_FINISHED
(TRUE (REMOVE_FUNC CHECK_WINGMAN_COMPLETE))
)

(E_MY_BOUND_DONE S_I_ARRIVE
(TRUE (REMOVE_FUNC CHECK_MY_BOUND_DONE))

)
)

(S_WMAN_BOUND_FINISHED
(E_MY_BOUND_DONE S_EXEC_COVER
(TRUE (MSG START_COVER
REMOVE_FUNC CHECK_MY_BOUND_DONE
INSTALL_FUNC CHECK_BETA_SEC_BOUND_DONE
INSTALL_FUNC CHECK_BETA_SEC_AT_OBJ
INSTALL_FUNC CHECK_ALPHA_SEC_AT_OBJ))

)

(S_I_ARRIVE
(E_WINGMAN_COMPLETE S_EXEC_COVER
(TRUE (MSG START_COVER
REMOVE_FUNC CHECK_WINGMAN_COMPLETE
INSTALL_FUNC CHECK_BETA_SEC_BOUND_DONE
INSTALL_FUNC CHECK_BETA_SEC_AT_OBJ
INSTALL_FUNC CHECK_ALPHA_SEC_AT_OBJ))

)

(S_EXEC_COVER
(E_BETA_SEC_BOUND_DONE S_EXEC_MOVE
(TRUE (MSG START_MOVE
REMOVE_FUNC CHECK_BETA_SEC_BOUND_DONE
REMOVE_FUNC CHECK_BETA_SEC_AT_OBJ
REMOVE_FUNC CHECK_ALPHA_SEC_AT_OBJ
INSTALL_FUNC CHECK_WINGMAN_COMPLETE

46

INSTALL_FUNC CHECK_MY_BOUND_DONE))

(E_ALPHA_SEC_AT_OBJ S_DONE
(TRUE (REMOVE_FUNC CHECK_BETA_SEC_BOUND_DONE
REMOVE_FUNC CHECK_BETA_SEC_AT_OBJ
REMOVE_FUNC CHECK_ALPHA_SEC_AT_OBJ))
)
(E_BETA_SEC_AT_OBJ S_BETA_SEC_AT_OBJ
(TRUE (MSG START_MOVE
REMOVE_FUNC CHECK_BETA_SEC_BOUND_DONE
REMOVE_FUNC CHECK_BETA_SEC_AT_OBJ]
REMOVE_FUNC CHECK_ALPHA_SEC_AT_OBJ
INSTALL_FUNC CHECK_WINGMAN_COMPLETE
INSTALL_FUNC CHECK_MY_BOUND_DONE))

)
)

(S_BETA_SEC_AT_OBJ
(E_WINGMAN_COMPLETE S_WMAN_B OUND_FINISHED_WITH_BETA_SEC_AT_OBI

(TRUE (REMOVE_FUNC CHECK_WINGMAN_COMPLETE))
)
(E_MY_BOUND_DONE S_I_ARRIVE_WITH_BETA_SEC_AT_OBIJ
(TRUE (REMOVE_FUNC CHECK_MY_BOUND_DONE))

)
)

(S_WMAN_BOUND_FINISHED_WITH_BETA_SEC_AT_OBJ
(E_MY_BOUND_DONE S_DONE
(TRUE (MSG PLT_BOUND_DONE
MSG START_COVER
REMOVE_FUNC CHECK_MY_BOUND_DONE))

)
)

(S_I_ARRIVE_WITH_BETA_SEC_AT_OBJ
(E_WINGMAN_COMPLETE S_DONE
(TRUE (MSG PLT_BOUND_DONE

MSG START_COVER
REMOVE_FUNC CHECK_WINGMAN_COMPLETE))

)
)
)

10.3.2.3 Vehicle Commander Behavior

: Vehicle Commander FSM - Implicit Cooperation
(
: States

(
S_WAIT
S_EXEC_MOVE
S_EXEC_FOLLOW_SCMDR
S_EXEC_COVER

47

; Events

(
E_START_MOVE
E_START_COVER
E_FOLLOW_SCMDR
E_FOLLOW_SCMDR_FINISHED
E_MOVE_FINISHED
E_TICK

)

; FSM description
(S_WAIT
(E_START_MOVE S_EXEC_MOVE
(TRUE (SPAWN MOVE EVENT E_TICK))

(E_START_COVER S_EXEC_COVER
(TRUE (SPAWN COVER))

(E_FOLLOW_SCMDR S_EXEC_FOLLOW_SCMDR
(TRUE (SPAWN FOLLOW_SCMDR
REMOVE_FUNC CHECK_SCMDR_MOVEMENT
EVENT E_TICK))

)

(S_EXEC_MOVE
(E_MOVE_FINISHED S_WAIT

0

(E_TICK S_EXEC_MOVE
(MOVE_FINISHED (EVENT E_MOVE_FINISHED) (EVENT E_TICK))

)
(E_START_COVER S_EXEC_COVER

(TRUE (STOP MOVE SPAWN COVER))

)
)

(S_EXEC_FOLLOW_SCMDR
(E_FOLLOW_SCMDR_FINISHED S_EXEC_COVER
(TRUE (INSTALL_FUNC CHECK_SCMDR_MOVEMENT
STOP FOLLOW_SCMDR))

)
(E_TICK S_EXEC_FOLLOW_SCMDR
(FOLLOW_SCMDR_FINISHED (EVENT E_FOLLOW_SCMDR_FINISHED)
(EVENT E_TICK))

)

(S_EXEC_COVER
(E_START_MOVE S_EXEC_MOVE
(TRUE (STOP COVER SPAWN MOVE EVENT E_TICK))
)
(E_FOLLOW_SCMDR S_EXEC_FOLLOW_SCMDR
(TRUE (SPAWN FOLLOW_SCMDR
REMOVE_FUNC CHECK_SCMDR_MOVEMENT

48

K))
49

E TIC

EVENT

0000066

	Cooperative Behavior In ModSAF
	Recommended Citation

	tmp.1440010807.pdf.xJSwG

