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1. Executive Summary 

Success in representing individual vehicles within Computer Generated Forces (CGF) systems has allowed 
researchers to focus on representing CGF groups (units) . Like vehicles in a real battlefield, CGF vehicles 
must cooperate with each other to achieve battlefield objectives. This document reports 1ST's research into 
mechanisms for cooperative behaviors in CGF. 

An example of a cooperative behavior is Bounding Dve/watch. A platoon uses this movement tactic when 
enemy contact is imminent. One section of the platoon moves (bounds) while the other watches over it. 
When the Bounding Section stops, the sections switch roles (bou nding, overwatch) and the other section 
begins moving. The process repeats until enemy contact is made or an objective is reached. 

Vehicles can cooperate with each other either explicitly or implicitly. In explicit cooperation, signals (e .g., 
radio messages, voice commands, hand signals) are used to synchronize actions. For example, in a platoon 
executing a Bounding Overwatch, the Bounding Section signals the Overwatch Section to switch roles. In 
implicit cooperation, vehicles cooperate by observing the actions of others. For example, in a platoon 
executing a Bounding Overwatch, the Overwatch Section would start movi ng after observing the Bounding 
Section stop. 

Cooperative behavior of simulated entities is implemented using a Control Architecture. Traditional CGF 
systems, such as Modular Semi-Automated Forces (ModSAF), contain a Centralized Control Architecture 
(CCA) to control the behavior of simulated entities . In this approach, an unseen entity controls the behavior 
of other entities; this approach is sometimes referred to as a "puppet master" approach . CCAs are easy to 
implement but do not mirror cooperation of vehicles in the real world. 

CCA's have several disadvantages. First, increasing the realism of the simulated entities' behaviors makes 
the software more complex. Second , because all behaviors are generated from a central point the controller 
is overworked. Third , modeling larger units, such as companies or battalions, necessitates an increase in 
complexity. Fourth, the entities' behavior is hardcoded into the software leading to predictable behaviors 
even in complex situations. Finally, CCA implementations combine the behaviors of different levels in a 
unit into one module; verifying and validating combined behaviors is difficult. 

A second method of controlling the cooperative behavior of entities is through a Decentralized Control 
Architecture (DCA). In thi s approach entities cooperate with each other directly; there is no supervisory 
control. The advantages of DCA's are: 

I . Unit or group cooperative behavior emerges as a result of direct cooperation between entitles 
resulting in more realistic cooperative behavior in complex situations. Consequently, the software 
is more robust. 

2. Because behav ior generation is distributed across entities, which can be distributed across 
computers, limited hardware resources can be used efficiently. 

3. DCAs give rise to modular implementations; for example, a Platoon Commander's cooperative 
behavior can be housed in a module separate from modules containing behaviors of other 
commanders. It is easier to verify and validate independent modules . 

This report describes a DCA developed within the ModSAF CGF system. Although cooperative behaviors 
in ModSAF are typically implemented via centralized control, the underlying architecture supported the 
implemented of a DCA. The core of the DCA is a Finite State Machine (FSM) Engine. Cooperative 
behaviors are expressed as formal FSMs to obtain an unambiguous control process. Both explicit and 
implicit cooperation are supported. CGF entities can cooperate explicitly using simulated radio messages 
and implicitly by observing other entities. 
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2. Introduction 

2.1 Purpose 

This technical report is a deliverable under STRICOM contract N61339-92-C-0045, "Intelligent 
Autonomous Behavior by Semi-Automated Forces in Distributed Interactive Simulation." It satisfies CDRL 
A009 "Cooperative Behavior." 

2.2 Background 

This section provides a brief description of Distributed Interactive Simulation (DIS), Computer Generated 
Forces (CGF), and the Modular Semi-Automated Forces (ModSAF) CGF system . It may be skipped by 
readers familiar with these topics. 

2.2.i Distributive interactive Simulation 

Distributed Interactive Simulation (DIS) is an architecture for building large-scale simul ation models from a 
set of independent s imulator nodes (DIS[ 1993)). The simulator nodes are linked by a network and 
communicate via a com mon network protocol. (The term DIS is also sometimes used to designate a 
particular network protocol standard; in this document "DIS" refers to the simulation architecture; the DIS 
protocol standard will be so identified.) In DIS, the simulator nodes each independently simulate the 
activities of one or more entities in the simulated system and report their attributes and actions of interest to 
other simulator nodes over the network via the communication protocol. The simulated entities coexist in a 
common simulated environment (for example, a terrain database) and interact by exchanging network 
packets (Loper et. al. [1991)). Finally, an important characteristic of DIS simulations is that they are real­
time; events in the simulation occur at the same rate as their real-world counterparts. 

2.2.2 Computer Generated Forces 

DIS environments are designed to provide a simulated battlefield which is used for traInIng military 
personnel. In such a batt lefield, the trainees need an opposing force against which to train. One technique 
is to use a computer system that generates and controls multiple simulation entities using software and 
possibly a human operator. This type of system is known as a Semi-Automated Force (SAF or SAFOR) or 
a Computer Generated Force (CGF). 

A CGF system uses built-in behavior to react autonomously to the simulation situation or to carry out orders 
given by its operator. Its behavior may be encoded as algorithms, production rules, formal behavior 
specifications, or some other form. The intent is for the CGF system's behavior to be autonomous (i.e. not 
requiring human control) and reali stic (i.e., true to doctrine, physics, and human responses) to the greatest 
possible extent. 

2.2.2.1 The 1ST CGF Testbed 

Under the sponsorship of the Army Research Projects Agency (ARPA) and the U. S. Army's Simulation 
Training and Instrumentation Command (STRICOM), the Institute for Simulation and Training (1ST) has 
been conducting research in the area of CGF systems, seeking to increase the realism and autonomy of CGF 
behav ior. A key product of that sponsorship is the 1ST CGF Testbed. The 1ST CGF Testbed is a CGF 
system that provides an environment for testing CGF behavioral control algorithms. It is documented in 
(Danisas et. al. [1990)), (Gonzalez et. al.[ 1990]), (Petty [1992]), (Smith et. al. [1992a]), and (Smith et. al. 
[ 1992b]). 

Another CGF system used commonly in the research community is the Modular Semi-Automated Forces 
(ModSAF) system which has been used at 1ST since late 1994. 

2 
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2.2.2 .2 The Mod ular Semi Automated Forces CGF System 

The Modular Semi Automated Forces (ModSAF) CGF system was developed by Loral Advanced 
Distributed Simul ation for the Defense Advanced Research Projects Agency (DARPA) WISSARD (What If 
Simulation System fo r Advanced Research and Development) project and the STRICOM ADST (Advanced 
Distributed Simulation Technology) program. The ModSAF system is an extensib le set of software 
mod ules which allows rapid development and testing of new agents (a simulation system, a simulation 
entity, or a simulation application) in a DIS environment (Loral [1993]) and (Loral [1994]). ModSAF's 
data driven execution and other features make it attractive as a testbed for testing and developing many 
ideas for behavior generation and command and control of automated DIS agents without extensive 
redevelopment of already available ModSAF supporting code. 

3 
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3. Cooperative Behavior 

3.1 Real World Cooperation 

In a real battlefield, so ldiers and vehicles (actually commanders inside the vehicles) cooperate in most, if 
not all , si tuations . They may cooperate: 

• by coordinating movement and fire, 
• by understanding the unit's plan and their role within it, 
• by reacting to unexpected events in acceptable ways , 
• through information passi ng, and 
• by following commander's directives. 

A unit in the battlefield has a hierarchy of command which reflects the information flow from the top to the 
bottom levels of the hierarchy. For example, a pl atoon has a Pl atoon Commander in charge of the platoon, 
Section Commanders in charge of individual sections (a section is typically made up of two vehicles), and 
Vehicle Commanders in charge of individual vehicles . In many cases an individual has several levels of 
responsibility ; e.g., one human may be simultaneously Platoon, Section, and Vehicle Commanders . 

Units also plan missions; for example, a Bounding Overwatch. A platoon uses thi s movement tactic when 
enemy contact is imminent. One section of the platoon moves (or bounds) while the other watches over it. 
When the Bounding Section stops it informs the other section, the Overwatch Section, to start moving. 
Now, the Overwatch Section moves and the process repeats until enemy contact is made or an objective is 
reached . The Platoon Commander, who is also a Section Commander, decides what each section does and 
communicates this information to the other Section Commander. The Section Commanders, who are also 
Vehicle Commanders , in turn communicate this information to Vehicle Commanders and the information 
flows down the hierarchy. In this way a plan is executed by breaking it down into simpler parts to be 
executed by lower levels in the hierarchy. 

In a real battlefield, entities cooperate in a decentralized fashion as opposed to using a centralized 
approach. Decentralized means that entities cooperate with each other directly without being directly 
controlled by a supervisor. This does not mean they are unsupervised but rather the supervisor 
(commander) controls his subordinates through orders and signals and not through direct immediate control 
of the subordinate's behaviors. 

Soldiers and vehicles cooperate either explicitly or implicitly. Explicit cooperation involves transmission of 
signals. Platoons transmit signals using: messenger, wire, visual, sound, and radio (US Army [1990]) . 
Implicit cooperation does not involve any transmission of signals. Entities observe other entities and 
change their behavior accordingly; e .g., entities do formation-keeping by observing the behavior of other 
entities . 

3.2 Background 

To be effective as OPposing FORces (OPFOR) or adjunct friendly forces, CGF systems must model 
cooperation between entities in a way that is realistic and tactically correct. CGF systems employ a Control 
Architecture (CA) to control simulated entities . There are two CA approaches: Centralized Control 
Architecture (CCA) and Decentralized Control Architecture (DCA). 

In a CCA, a controller (typically unseen) directs the actions of subordinate entities and makes decisions for 
them. Traditionally CGF systems, such as ModSAF, have used a CCA to model the cooperative behavior 
of vehicles. For example, a Bounding Overwatch task on a platoon is done by starting a centralized 
controller, the "Bounding Overwatch" task, on the platoon (Loral [1995]). This controller task divides the 
platoon into two groups: the Bounding Section and the Overwatch Section. The controller then plans routes 
to the next overwatch position for the Bounding Section and makes it move towards that position. All 

4 
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formation keeping during movement is done in a centralized fashion . The controller puts the Overwatch 
Section in an occupy-position formation to overwatch the movement of the Bounding Section. When the 
Bounding Section reaches its destination, the controller switches the roles of the Bounding and Overwatch 
Sections and goes back to controlling the sections. 

The CCA approach does not mirror real world cooperation. In the real world there is no direct control of a 
subordinate entity's behavior by a commander; rather, the entities control themselves in response to the 
commander's orders . For example, in Bounding Overwatch, real world entities compute their routes and 
maintain formation themselves. 

In a DCA, entities follow the plan assigned to the group but control their own actions while giving orders to 
and receiving orders from others. This models the real world more closely . So far, no DCAs have been 
implemented in the CGF domain but they have been used for coordinating the actions of robots (Noreils 
[1993]) , (Noreils [1992a]), (Noreils [1992b]), (Noreils [I 992c]), (Parker[1994]), and (Shin and Epstein 
[ 1990]). 

3.3 Methods for Cooperation 

According to (Laird et. al [1994]), the key to coordination is knowledge. For a unit to coordinate its 
behavior, the individual entities must know : 

I . The appropriate techniques and methods for maneuvering, sensing, and employing weapons. 
2. The specific constraints under which the mission is being executed, such as rules of engagement, 

commit criteria, and so on. 
3. During the mission, they must also build up their situational awareness, from their own sensors and 

through communication with others. 
4. Finally, they must coordinate their actions in the face of the world around them. 

During mission execution these different types of knowledge are acquired at different times using the types 
of methods listed below. 

3.3.1 Common Doctrine and Tactics 

This method addresses point 1 in Section 3.3. Common doctrine and tactics is "long-term" knowledge 
contained in the entity. This is similar to social contracts, where independent entities can create 
coordinated behavior by agreeing to behave in certain ways under certain circumstances (Shoham and 
Tennenholtz [1992]) . For example, drivers in the United States coordinate their behavior (and thus avoid 
accidents) by always driving on the right side of a street. 

Entities that are cooperating using common doctrine do not need to communicate (two cars passing each 
other do not need to negotiate which side they will pass). It allows an entity to predict the behavior of other 
entities without knowing the other entity's identity, and it reduces the cognitive load on the entity because 
the entity does not need to plan its behavior from first principles. 

3.3.2 Mission Briefing 

This method addresses point 2 in Section 3.3. Before a mission, the participants are briefed on the tactical 
situation, their responsibilities, and often, the responsibilities of others. The briefing helps establish specific 
operational parameters required for coordination, such as the specific partners of a section, their fo rmations, 
the methods of communication (radio frequency, call sign), and so on. 

3.3.3 Explicit Cooperation 

This method addresses points 3 and 4 in Section 3.3. This is the most flexible way of cooperation between 
entities. It involves the transmission of signals between entities. Some ways of transmitting signals are 

5 
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through radio communicati on and vi sual signals. Exp li cit cooperat ion is least susceptible to 
mis interpretati on because a clear transmi ssion of s ignals takes place. 

There are many factors that prevent a unit from using explic it cooperation . For exampl e, the possibility of 
radi o commu r icat ion bei ng intercepted by enemy units may hinder its use. Also, obstructions, such as hills, 
prevent entities to communicate via vi sual signals. 

3.3.4 Implicit Cooperation 

This method addresses points 3 and 4 in Secti on 3.3 . Implic it cooperation does not involve the transmission 
of s ignals between e ntiti es . Implicit cooperati on is based on observ ing other entities' behavior and on 
modeling the behavior of other entiti es. An important capability of thi s approach is that the modeli ng entity 
can interpret not onl y the modeled entities' current act ions but also predic t the entiti es' future actions. 
(Tambe and Rosenbloom [1 995]) call this agent tracking, where an entity monitors the observable acti ons 
of other entiti es as well as their unobserved actions or hi gh-level plans, goals, and behaviors, and adjusts its 
behavior accordingly. 

3.4 Statement of the problem 

The goal of the research described in thi s report is to implement a CA architecture that: 

• mirrors real li fe cooperation between vehicles, 
• uses explicit and implic it cooperation between vehicles, 
• allows new cooperative behaviors to be created easily and with little coding, and 

• can be verified and validated easily . 
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4. Cooperative Behavior Control Architectures 

The cooperative behavior control architecture control s the behavior of subordinate entities . There are two 
ways to control subordinate entities : Centralized control and Decentralized control. 

4.1 Centralized Control Architectures (CCA) 

In the rea l world, a commander controls a unit by giving orders. Subordinate entities act on these orders 
and change their behav iors according ly. In a Centralized Control Architecture (CCA), a centralized 
controller makes behav ioral deci sions for subordinate entities and conveys these deci sions to the 
subordinates. CCAs resemble the real world because, like the real world, the unit is controlled from a 
centrali zed location. However, there are important distinctions. The first distinction is in the granu larity of 
contro l rel ative to that of the real world. CCAs exercise unreali stically fine control. For example, CCAs 
may do formation-keeping for a platoon by monitoring each entity and making sure that entities maintain 
appropriate distances between them. In the real world , formation-keeping is done by entities; proper entity­
to-entity di stances are computed and maintained by entities themselves . The second distinction is in 
reasoning and decision making. In CCAs, the centralized controller reasons and makes decisions on the 
entities' behalf whereas in the real world entities reason and make deci sions themselves. For example, 
CCAs plan routes for the entities whereas real world entities plan their own routes. 

The entity exercising centralized contro l may be either a simulated entity or an unsimulated "ghost" entity. 
Furthermore, the centralized controller may control subordinate entities either explicitly or implicitly. 
Explicit control requires the transmission of messages from the centralized controller to the subordinates; 
these messages are often orders to the subordi nates. These orders, unlike real world orders, contain specific 
information which otherwise would have been computed by the subordinates themselves. For example, an 
order to move may contain the route information. In the real world, a subordinate will on ly be told to move 
to a destination and it will compute the route itself. Implicit control is more direct. In this case, the 
centralized controller executes code on or on behalf of subordinate entities. Code execution directly affects 
a subordi nate's behavior. 

Centralized Controller ~ Control flow. 

Enti ty 

Figure 1: Centralized Control Architecture (simulated entity controller). 

Figure I shows a CCA in which the centralized controller is a simulated entity . The arrows indicate control 
flow from the centralized controller to the subordinates . This may be either explicit (messages are sent) or 
implicit (code is executed by the centralized controller on or on behalf of the subordinates). 
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~ Con~olnow. 

Entity 

Figure 2: Centralized Control Architecture (unsimulated entity contro ll er). 

Figure 2 shows a CCA where the centralized controller is an unsimulated entity (code). As in Figure 1, the 
arrows indicate control flow from the centralized contro ll er to the subordinates. Again , the control ma be 
either explicit (messages are sent) or implicit (code is executed by the centrali zed controll er on or on behalf 
of subordinates) . 

ModSAF implements cooperative behavior by combining the two approaches . The centralized controller in 
ModSAF is an unsi mulated entity which "knows" the identity of the vehicle responsible for the unit, e.g., a 
Platoon Commander. When the Pl atoon Commander is disabled, ModSAF restarts the cooperative 
behavior on the platoon. The responsible entity is updated, i.e., another entity becomes the Platoon 
Commander. 

The centralized ModSAF controller controls the subordinates implicitly by executing code on their behalf. 
For example, the centralized controller in ModSAF executes a platoon Bounding Over watch by dividing the 
platoon into sections, each containing two vehicles. It then computes a destination and makes one section 
(Bounding Section) move to it while it puts the other section (the Overwatch Section) in an occupy-position 
formation. The centralized controller monitors the Bounding Section's location. When it reaches the 
destination, the centralized controller switches the roles of the two sections and the process repeats. 

CCAs are suitable for implementing simple cooperative behaviors but have several disadvantages. First, 
implementing a CCA results in loss of realism. For example, with a "ghost" centralized controller, the unit's 
collective behavior can be unaffected by the loss of the simulated commander. On the other hand, if a 
simulated centralized controller is destroyed, the collective behavior of the unit is disrupted. Of course, 
both problems can be addressed by introducing provisions in the software for transfer of command. But the 
complexity required to centrally resolve all the conflicts between centrally controlling a real world 
decentralized control process forces compromises and simplifications. To make up for these losses would 
entail increasing the complexity of the software. Second, generating the behaviors of all entities from a 
single source results in inefficient use of resources; more time is spent in the controller causing it to be 
overworked. Finally, modeling larger units, such as companies or battalions, becomes increasingly complex 
because the centralized controller has to control more vehicles. 

4.2 Decentralized Control Architectures (DCA) 

In a Decentralized Control Architecture (DCA), subordinate entities follow the unit's plan and commander's 
orders but make their own behavior decisions. Unlike a CCA, there is no unseen controller that makes 
decisions on their behalf; this approach mirrors cooperation in the real world . A DCA commander 
functions like a real world commander by giving and receiving orders from other entities. For example, a 
DCA commander may order an entity to move to a destination. Like the real world, the commander may 
only supply the entity with the location of the destination and not a precise route. In this case, the entity 
computes its route to reach the destination. 
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.-. Information now. 

Entity 

ll~'~ 
Figure 3: Decentrali zed Control Architecture. 

Figure 3 shows a DCA. Notice that in contras t to a CCA (Figure I and 2), entities send information (shown 
by the double-headed arrows) to each other. Each entity contains knowledge to process incoming 
information and modify its behav ior. 

DCA's have several advantages. First, unit or group cooperative behavior emerges as a result of direct 
cooperation between entities resulting in more reali stic cooperative behavior in complex situations. Second, 
because behavior generation is di stributed across entiti es, which can be di stributed across computers, 
limited hardware resources can be used efficiently . Finally, DCAs give rise to modular implementations; 
e.g., a Platoon Commander's cooperative behavior can be housed in a module separate from modules 
containing behaviors of other commanders. Behaviors can be verified and validated independently of 
independent modules. CCA implementations combine the behaviors of different levels in a unit into one 
module making verification and validation more difficult. 

When discussing DCAs two questions need to be answered. First, how do entities cooperate with each 
other. Second, how do entities know what task to do and when to do it. These two topics are di scussed in 
Section 4.2.1 and 4.2.2 respectively. 

4.2.1 Entity cooperation in DCAs 

Entities can cooperate in a number of ways: 

• Message Passing. 
• Shared Memory. 
• Combination of Message Passing and Shared Memory. 
• Implicit Cooperation. 

Entities can cooperate explicitly (Section 3.3 .3) by passing messages, such as radio messages, to each other 
(Noreils [1993]), (Noreils [1992a]), (Noreils [1992b]), (Noreils [1992c]), (Parker [1994]), (Shin and 
Epstein [1990]); (Lefebvre and Saridis [1992]), (Smith and Davis [1981]), (Fisher and Woodridge [1994]), 
(Decker [1987]), and (Ohko et. ai. [1993]). Messages may be broadcast (Parker [1994]) to all entities or 
sent point-to-point. 

Entities can also cooperate explicitly by placing information into memory which is shared by other entities. 
This shared memory is commonly called a Blackboard. Blackboard and its variants have been used in a 
number of DCAs (Laengle and Lueth [1994a]), (Laengle and Lueth [I 994b]), (Corkill [1991]), (Occello 
and Demazeau [1994]) , and (Dai et. ai. [1993]) . 

Some DCAs implement a combination of the message passing approach and the Blackboard to allow 
entities to cooperate (Lun and Macleod [1992]), (Wang [1994]), and (Harmon et. ai. [1986]) . 
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In some DCAs entities can cooperate with each other implicitly (Section 3.3.4) by observing what the others 
are doing (Payton and Dolan (1991)) . 

4.2.2 Allocation of subtasks in DCAs 

In DCAs, entities contain knowledge for executing tasks allocated to them. Before they begin using this 
knowledge they must be told what task they need to work on. The processing of letting entities know their 
tasks is called task allocation. There are two ways to allocate tas ks in DCAs: Negoti ation and Self­
Contribution. 

When tasks are allocated using Negotiation, (Noreils [1993]), (Norei Is [1992a)), (Noreils [1992b)) , (Noreils 
[1992c)), (Lun and Macleod (1992)), (Smith and Davis [1981)), (Fisher and Woodridge (1994)), (Decker 
[1987)), and (Ohko et. at. (1993)) , one entity assumes the role of a mediator or manager. The manager 
subdivides the mi ssion into tasks , advertises for the tasks, and receives bids from prospective contractors 
(entities who are able and willing to do the task). The manager selects the most appropriate contractor and 
awards the contract. A contractor receives task announcements from different managers and selects the one 
that best fits the skill s/knowledge that it has. After the contract has been awarded, the manager and the 
contractor become linked by the contract and commun icate privately the progress of the task being 
executed . 

In contrast to being told what tasks are avail able for execution, entities use the Self-Contribution approach 
when they want to start executing tasks themselves . There are two approaches. In one approach (Corkill 
(1991)), each entity knows the condition under which it can execute the task and, at appropriate times, it 
attempts to do so. In the other approach (Parker (1994)), an entity executes a task when its motivation to do 
the task, measured by a motivational behavior function, exceeds a certain threshold. 

4.2.3 Survey of DCAs 

There is a variety of DCAs in the literature. Sections 4.2.3.1 through 4.2.3.4 is a survey of these DCAs. 

4.2.3. 1 Net-based DCAs 

Net-based DCAs have been used commonly for implementing cooperative behavior between robots . Net­
based DCAs encode the cooperative behavior of robots in Petri Nets (Peterson (1981)) or Petri Net 
modifications such as PredicatelTransition nets (Noreils (1993)), (Noreils [1992a)) , (Norei1s [1992b)), 
(Norei1s [1992c)), (Lefebvre and Saridis (1992)) , (Wang et. at. (1992)), (Zhou et. at. (1994)), and 
(Bachatene and Seghrouchni (1993)). 

Petri Nets (PN) are tools for modeling the dynamic behavior of discrete event systems. Ordinary PN are 
directed graphs with two types of nodes called places and transitions , which are connected by arcs 
(Peterson [1981)). Places may contain tokens that indicate the state of the PN. A place is referred to as 
marked if there is at least one token in it. A transition is sensitive if all input places are marked. A 
transition is fired if it is sensitive. Transitions are atomic, meaning that if a transition is fired and code is 
executed as part of the transition , it remains fired until code execution is complete. Tokens are moved 
between places by the firing of a transition. PN are valuable for simulating concurrent systems because the 
PN structures can be analyzed for desirable properties such as bounded ness and deadlock-free operation 
(Murata [1989)). 
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r------------+~P3 
T 

P2 

Figure 4: A Petri Net (al l input places are marked). 

Figure 4 shows a PN. The places are shown by circ les PI, P2, and P3, a transition is shown by the vertical 
line T, and arrows denote arcs. Places P I and P2 contai n tokens, shown by dots, indicating that they are 
marked. Because all the input places for transition T are marked, the transition is sensiti ve and fires . The 
firing of a transi tion causes code to be executed. 

/ !Code executed I 
r-------.G) P3 

T 
P2 

Figure 5: A Petri Net (a transi tion has fired). 

Figure 5 shows the state of the PN after transition T has fired . Places P I and P2 are unmarked and place P3 
is marked. The code associated with transition T, shown symbolically in the box, is executed when T fires. 

The cooperative behav ior of a robot is described by a PN. When a robot "executes" its PN, it may wait for 
internal events or messages from other robots. When these arrive, certain places become marked resulting 
in transitions being fired. Code associated with the transition is executed; a robot uses this code to modify 
its behavior in response to internal events or messages from others. In this way, a robot executes a 
cooperative behavior by modifying its behavior in response to external or internal stimuli . 
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P4 

P6 

P5 ...... - T3 

P7 
-",,"""Ioo T2 

P3 

Robot I Robot 2 

Figure 6: Two robots cooperating using a coordinated protocol. 

Figure 6 shows two robots cooperating. The figure is used to illustrate how robots cooperate and is not 
intended to show a specific cooperative behavior. Places P4 and P5 are shared by the two robots. These 
places are associated with messages and become marked when messages arrive. For example, P4 becomes 
marked when a message, sent by Robot I, is received by Robot 2. 

Initially, place PI and P6 are marked and TI is sensitive. Tl fires, P2 gets marked, and a message is sent. 
The receipt of the message by Robot 2 causes P4 to be marked. T3 becomes sensitive and fires, P7 
becomes marked, and a message is sent. The receipt of the message by Robot I causes P5 to be marked. 
T2 becomes sensitive and fires. This mechanism shows how sharing places between the robots' PNs can 
help them cooperate with each other. 

An advantage of Net-based DCAs is that complex behaviors can be modeled by combining simple nets ; 
each net models a simple behavior. In this way it is possible to build a library of behaviors and model 
complex behaviors by combining behaviors contained in the library. 

4 .2.3.2 Blackboard DCAs 

The Blackboard (BB) (Corkill [1991]) is the oldest data structure that has been used for modeling 
cooperative problem sol ving. A BB system consists of three components (Corkill [1991]): 

• Knowledge Sources (KSs), 
• the Blackboard, and 
• a Control Component (Figure 7) . 
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BLACKBOARD 

Events 

Control Component t------.J 

Executing 
KS 

Activation 

r 
Pending 

KS 
Activati ons 

Figure 7: Basic Blackboard System. 

Library of KSs 

Knowledge sources are independent modules that contain the knowledge needed to solve a problem. KSs 
can be widely diverse in representation and inference techniques. Each KS is separate and independent of 
all other KSs. A KS needs no knowledge of the expertise, or even the existence, of the others; however, it 
must be able to understand the state of the problem-solving process and the representation of relevant 
information on the BB . Each KS knows the condition under which it can contribute to the solution and, at 
appropri ate times, it attempts to contribute information toward solving the problem (Self-Contribution, 
Section 4.2.2). When this happens, KSs are triggered and KS activations (or instances) are created. KS 
activations are active processes that compete for execution resources. 

The BB is a global database containing input data, partial solutions, and other data that are in various 
problem-solving states . The BB serves as: 

• A community memory of raw input data; partial solutions, alternatives, and final solutions; and 
control information, 

• A communication medium and buffer, and 
• A KS trigger mechanism. 

The Control Component makes runtime decisions about the course of problem solving and the expenditure 
of problem-solving resources . The control component is separate from the individual KSs. 

The BB system uses an incremental reasoning style; the solution to the problem is built one step at a time. 
At each step, the system can : 

• Execute any triggered KS . 
• Choose a different focus of attention on the basis of the state of the solution. 

Under a typical control approach, the currently executing KS activation generates events as it makes 
contributions to the BB. These events are maintained (and possibly ranked) until the executing KS 
activation is completed. At that point, the Control Component uses the events to trigger and activate other 
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KSs. The KS activations are ranked, and the most appropriate KS activation is selected for execution. This 
cycle continues until the problem is solved. 

Other variations of DCAs using BBs are discussed in (Lun and Macleod [1992]), (Occello and Demazeau 
[1994]) , (Wang [1994]) , and (Dai et. al. [1993]). 

BB DCAs are suitable when: 

I . Many diverse, specialized knowledge representati ons are needed . KSs can be developed in the most 
appropriate representation for the data they are to handle. For example, one KS might be most 
naturally written as a rule-based system while another might be written as a neural -net or fuzzy-logic 
routine. 

2. An integration framework is needed that allows for heterogeneous problem-solving representations and 
expertise. For example, a BB is an excellent framework for combining several separately established 
diagnostic systems. 

3. The development of an application involves numerous developers. The modularity and independence 
provided by large-grained KSs in BB systems allow each KS to be developed and tested separately. 
The software engineering benefits of this approach apply during design, implementation, testing, and 
maintenance of the application . 

4. Uncertain knowledge or limited data inhibits absolute determination of a solution. The incremental 
approach of the BB system will still allow progress to be made. 

5. Multilevel reasoning or flexible, dynamic control of problem-solving activities is required in an 
application . 

BB DCAs are not very common: 

I . The advantages of BB systems do not scale down to simple problems; they are only worth pursuing for 
complex applications. 

2. A BB system is useful for prototyping an application, but, once devel oped and understood, the 
application can be reimplemented without the BB structure. 

4.2.3.3 Ad-hoc DCAs 

Researchers in robotics have developed a variety of DCAs for coordinating the actions of a group of robots. 
These architectures have been developed as build-to-suit approaches. 

(Yuta et. al. [1992]) and (Taipale and Hirai [1993]) discuss a combination of centralized and decentralized 
control. In this approach, when a group of robots are given a task, one becomes a leader, solves the 
problem, and conveys the result to the other robots. This approach is also called a master-slave control 
architecture because one robot, the master, controls the others, the slaves. 

Some researchers have looked at the level of cooperative control. Entities can be controlled in a purely top­
down plan-based manner and a purely bottom-up behavior-based manner; these two levels represent two 
extremes of cooperative control. In plan-based approaches, all entity actions and interactions are planned in 
advance. The plan is a script for action that all cooperating entities must follow faithfully. Assuming that 
the entities can each execute their plan correctly, then an overall coherent activity will take place. In 
behavior-based approaches, group behavior emerges from local entity interactions. By giving each entity 
the same set of procedures for how to behave in response to the actions of others, a variety of interesting 
and useful group behaviors can emerge (Arai et. al. [1989]). The work done by (Payton and Dolan [1991]) 
seeks to establish a bridge between the plan-based approach and the behavior-based approach. Plans are 
used as resources for action (Such man [1987]) . As resources, plans serve as sources of information and 
advice to entities that are already competent at dealing with the immediate concerns of their environment. 
Consequently, plans are used to bias the natural actions of entities so that they conform more closely to 
achieving some global objective. 
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Some other ad-hoc architectures are described in (Laengle and Lueth [1994a]), (Laengle and Lueth 
[1994b]), (Parker [ 1994]), and (Shin and Epstei n [1990]). 

4.2.3.4 Finite State Machines (FSMs) 

FSMs have been used widely in CGF systems. The IST CGF Testbed (Smith et. al. [1992a]), ModSAF, and 
the CCTT SAF (Petty [1995]) use FSMs to implement cooperate behavior. FSMs are attractive because 
they are a well understood process control mechanism and have been defined formally in Computer Science 

(Sudkamp [1988]). 

A formal FSM is defined as: 

I . A set of states: An FSM is in one of its states. The state of an FSM is also the state of the process 
being controlled by the FSM. 

2. Events: Ollly events cause an FSM to change states . 
3. State Transition Procedures (STPs): These are procedures (i.e., code) wh ich are called to do 

work. STPs are used only during state transitions. Many informal FSM implementations associate 
code with states so that code is executed when an FSM goes to a new state and not during the 
transition . 
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5. A Decentralized Control Architecture using Finite State Machines 

In Section 4.2.3 different DCA's were discussed. 1ST chose to implement the FSM-based DCA. Section 
5.1 describes the approach taken by 1ST. Section 5.2 describes formal FSMs; it may be skipped by readers 
who are familiar with the topic . To cooperate, entities need to communicate. They do thi s via FSM 
communication which is described in Section 5.3. Section 5.4 describes the FSM Engine which is a 
mechanism for implementing formal FSMs . 

5.1 Approach 

To model cooperative behavior 1ST chose to implement a DCA within the ModSAF CGF system. DCAs 
have several advantages which are described in Secti on 4.2 . Traditional CGF systems have used CCAs for 
controlling cooperative behavior. The work described in this report is the first time a DCA has been 
implemented within a CGF system for controlling cooperative behavior. 

The DCA chosen is based on Finite State Machines (FSMs) . FSMs were used as building blocks for the 
architecture; FSMs are a well understood process control mechanism and are defined formally in Computer 
Science (Sudkamp [1988]). 

Entities cooperate explicitly by exchanging simulated radio messages (Signal PDUs) and implicitly by 
observing other entities. Observation is implemented by having an Observation Module, attached to an 
entity, send observation messages to the entity. 

The implementation is data driven and allows new behaviors to be defined quickly and easily through data 
files. In current CGF systems, considerable coding effort is required to create new cooperative behaviors . 
This increases development and prototyping time for new cooperative behaviors. 

5.2 Formal FSMs 

FSMs have been defined formally in Computer Science (Sudkamp [1988]) but implemented to various 
degrees of formality. FSMs are one of the best techniques for process control. FSMs, as their name 
implies, track the state of a process, handling events which may cause the process to change state (Section 
4 .2.3.4). 

Formal FSMs are often represented as diagrams. Consider the example of a coin-operated candy dispenser. 
whose FSM is shown in Figure 8. 

Start 

<dispense> 

{DispenseCandy} 

Figure 8: FSM for a coin-operated candy dispenser. 

This machine accepts only nickels and dimes and dispenses candy worth $0.15. In Figure 8, the circles 
represent states and arrows represent state transitions. Above the state transition line, in angle brackets 
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« » , is the event causing the transiti on. Square brac kets ([ ]) represent any events that are generated as 
part of the transition. Braces ({ I) represent call s to STPs. 

When a person walks up to the machine it is in state " $0 " because no money has been deposited so far. 
Depending on whether a ni ckel or dime is depos ited, the machine transitions to the " $ 0 . 0 5" or " $ 0 . 1 0" 

state. Assuming that a ni ckel was depos ited, the state of the machine is " $ 0 . 0 5. " Then, if a dime is 
depos ited two things happen. First, an event (di spense) is generated, and second , the machine goes to 
the state " $0 . 15. " When the dispense event arri ves, an STP, Di spenseCandy, is call ed to di spense 
the cand y. Note that an STP does work as part of the transition back to the start state, "$0"; no code is 
executed in the state "$0 .1 5 " to di spense candy. 

Thi s example shows the workings of a simple formal FSM. A formal FSM does not poll for events to 
change states; rather, events are generated and their arri val causes state transitions. Thi s feature of formal 
FSMs is espec ially attracti ve because it eliminates ineffi ciencies introduced in polling. 

1ST conside red implementing the DCA using ModSAF FSMs. In ModSAF, FSMs are not implemented 
formall y: code is executed within states rather than by STPs during state transitions, and many state 
transitions are not event driven. 

Because fo rmal FSMs provide an unambiguous way to control a process, they were used for the 
implementati on. To rei terate, in formal FSMs: 

I . onl y events cause state transitions, 
2. states do not contain code; they are merely place-holders for the process' current state, and 
3. code is only executed by State Transition Procedures (STPs) during state transiti ons . 

5.3 FSM communication 

An enti ty's cooperative behavior is implemented as an FSM. To cooperate, entities need to communicate 
and they do so via FSM communication. FSMs may communicate with each other (inter-FSM 
communication) or an FSM may communicate with itself (intra-FSM communicati on). 

5.3.1 Inter-FSM communication 

In inter-FSM communication, FSMs send events to each other. These events, called external events, often 
take the form of simulated "Radio Messages." For example, when the Bounding Section , in a platoon 
executing a Bounding Overwatch, reaches a destination, the Section Commander sends a radio message 
announcing the completion of its bound. 

An entity may generate external events to itsel f. These events are generated from an Observation Module 
and are called Observation Events. Observation Events are generated in response to battlefield conditions. 
For example, the Observati on Module for a Wingman sends an Observati on Event informing him when his 
Section Commander starts moving. This observation event triggers the Wingman's FSM to start following 
the Section Commander. 

5.3.2 Intra-FSM communication 

FSMs communicate with themselves by sending internal events to themselves . Consider the FSM for the 
coin-operated candy dispenser shown in Figure 8. Assume that the FSM is in state" $ 0 . 0 5 ." When a 
dime is deposited, the machine generates an internal event, d i spense, to itself and transitions to the state 
"$0 . 15." The receipt of the dispense internal event signals the FSM to transition to another state and 
execute an STP (Dispen seCandy). 
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5.3.3 Event Queues 

FSMs communicate by generating external events between themselves. When external events arrive, they 
are first mapped to internal events and then put into an event queue for process ing. There are two 
approaches for handling external and internal events: use one or two event queues. 

Using a common queue for external and internal events can lead to synchronization problems. State 
machine actions are non-preemptive; processing an internal event is done completely and, possibly, new 
internal events are generated in one execution thread. While internal events are be ing processed new 
external events may continue to arrive. If the external and internal events are processed in an interleaved 
manner unexpected situations can deve lop. Handling all poss ible interleaving of internal and external 
events is needless ly complicated. 

The so lution is to queue external and internal events in separate queues. External events are put into one or 
more external event queues while internal events are put into all internal event queue . No external event is 
di spatched until the internal event queue is empty. Thi s allows all intra-machine communication (spawned 
by an external event) to complete without interference from new external events . The approach also allows 
a single external event to be re-mapped into several internal events . Thi s reduces machine complexity and 
breaks complex external events into si mpler reques ts. 

5.4 FSM Engine 

FSM Engine 
External Event H Radio Message Queue J 

Internal Event Queue L to 
I Internal Event 

Mapper H Observation Event Queuer-

Internal Event 

State-Event Table 

New State 
Observation 

Radio Message (External Events) 
Module Observation 

State Transition Procedures 
Events 

i 
Simulated Battlefield (TDB, DIS Traffic) 

0 Sl",nal PDUs 

Figure 9: FSM Engine. 

Because formal FSMs do not exist in ModSAF, an FSM Engine (Figure 9) was developed to run formal 
FSMs. The FSM Engine contains an FSM's description in a State-Event Table. The State-Event Table is 
created by reading a data file FSM description (Section 6.3). The table is indexed by a state/event pair that 
determines the new state of the FSM; the indices are the current state of the FSM and the internal event to 
be processed. During the transition, external and internal events may be generated and STPs called. 
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The FSM Engine receives input from two sources: Signal PDUs and Observation Events. Signal PDUs 
contai n radio messages and simulate radio communication. Observation Events are generated by the 
Observation Module in response to battlefield situations. Radio messages and Observation Events are 
external events which are queued on two separate queues : Radio Message Queue and Observation Event 

Queue. 

Periodically, the external event queues are checked to see if any external event is waiting to be processed . 
The external event is removed from the queue, mapped into an internal event, and queued on the internal 
event queue. Then, internal events from the internal event queue are removed and processed. To process 
events, the FSM Engine needs to be call ed periodically . This is done by calling the FSM Engine from a 
non-transitioning ModSAF FSM. Each time the ModSAF FSM becomes active, it calls the FSM Engine; 
the FSM Engine can be thought of as embedded within the ModSAF FSM. Note that the ModSAF FSM 
does not do anything. Its sole purpose is to ensure that the FSM Engine is called periodically ; all the work 
required in processing events and changing the behaviors of entities is done by the FSM Engine. 
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6. Implementation 

This section describes implementation details. Cooperative behavior occurs at different levels in a unit. To 
mimic the flow of information in a real unit a hi erarchy of commanders is created (Section 6.1). Section 6.2 
describes Bounding Overwatch, a cooperative behavior commonly used by platoons. The sub-secti ons 
describe the FSMs for the Platoon, Section, and Vehicle Commanders . Section 6.3 discusses the 
specification of cooperative behavior in data ti les. 

6.1 Hierarchy of Commanders 

~ ~ ~ ~ 
Vehicle I Vehicle 2 Vehicle 3 Vehicle 4 

Platoon 

GJ 
. ........... . ... 

Commander PC 
FSM ....... ..... ... . 

Section 

~ 
.... .. .......... 

~ 
. ....... ... ... . . 

Commander SC SC 

FSM . . .... . . . .... ... ... ....... ... ... 

Vehicle 

~ GJ GJ GJ Commander 
FSM 

Section 1 Section 2 

Figure 10: Hierarchy of commanders. 

A vehicle can execute behaviors on many levels. Consider Vehicle 1 in Figure 10. The commander of this 
vehicle has three responsibilities, those of the Platoon Commander (PC), Section Commander (SC), and 
Vehicle Commander (VC). One way to represent the cooperative behavior of this commander would be to 
create a large and complex FSM that merges the platoon, section, and vehicle commander behaviors. This 
process can become arbitrarily complex as the hierarchy grows and commanders with more responsibilities 
are modeled. For example, for the hierarchy shown in Figure 10, Platoon-Section-Vehicle Commander, 
Section-Vehicle Commander, and Vehicle Commander FSMs would be needed to encapsulate all classes of 
cooperative behaviors. 

Instead, 1ST established a hierarchy of commanders like the one shown in Figure 10. Each box in the fi gure 
represents a ModSAF FSM. Embedded inside each ModSAF FSM is the FSM Engine (Section 5.4). This 
approach allows complex behaviors to be split into fundamental behaviors that are implemented as separate 
FSMs; complex FSMs containing merged behaviors are thus avoided. For example, Vehicle 1 (Figure 10) 
has three FSMs (Platoon, Section, and Vehicle Commander FSMs) controlling its behavior. Each FSM 
communicates wi th others. The command hierarchy is created by higher level commander FSMs spawning 
lower level commander FSMs; for example, the Platoon Commander FSM spawns the Section Commander 
FSMs which in turn spawn Vehicle Commander FSMs. 

In addition, there are next in command (deputy) commanders, shown by dotted boxes in Figure 10. Deputy 
commanders assume command when the original commanders are disabled so that the unit's mission can 
continue unhindered (Section 6.4) . They model the behavior of the original commander but do not 
communicate with other entities. This allows them to continuously track the original commanders behavior 
and assume command in case the original commander is disabled . In Figure 10, Vehicle 3 is a deputy 
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Platoon Commander ( i.e ., Platoon Sergeant), and Vehicles 2 and 4 are deputy Section Commanders for 
Vehicles I and 3 respectively . 

To start the whole process, a user assigns a mission to the unit. As part of initiali zati on, a data structure 
known as a Role Matrix is created. The Role Matrix is a two dimensional array of vehicle IDs and roles 
such as Platoon Commander, Section Commander, Vehicle Commander, and deputy commanders. 

Vehicle ID 

Platoon Commander 
Platoon Commander deputy 
Section Commander 
Section Commander deputy 
Vehic le Commander 

I 

I 

0 
I 
0 
I 

2 

0 
0 
0 
I 
I 

3 4 

0 0 
I 0 
I 0 
0 I 
I I 

Figure 11 : Simplified Role Matrix . 

Figure II shows a simplified Role Matrix for the commander hierarchy in Figure 10. The vehicles in the 
unit have IDs from I to 4. A" I" in a cell at the intersection of a vehicle ID column and role row means the 
vehicle is playing that role; for example, Vehicle I is the Platoon Commander, Section Commander, and 
Vehicle Commander. A "0" in a cell at the intersecti on of a vehicle ID column and role row means that the 
vehicle is not playing that role; for example, Vehicle 3 is not the Platoon Commander. Note that Vehicle 3 
is a deputy Platoon Commander and Vehicles 2 and 4 are deputy Section Commanders. Because a Vehicle 
Commander's responsibility is limited to his vehicle's domain and another Vehicle Commander cannot 
assume his functions, there are no deputy Vehicle Commanders . This is represented by the absence of a 
deputy Vehicle Commanders row in the Role Matrix . 

A veh icle's Role Matrix is accessible from the vehicle's FSMs. Using the Role Matrix a vehicle can easily 
determine the role of other vehicles . For example, Vehicle 2 knows that Vehicle 1 is a Platoon and Section 
Commander. In a real battlefield, a vehicle is designated roles before an exercise begins. The Role Matrix 
is a manifestation of this information in the computer. 

6.2 Bounding Overwatch 

The FSM architecture was tested on a platoon executing a Bounding Overwatch. Bounding Overwatch 
provides a simple and elegant way to test the architecture. In this behavior, a platoon advances by having 
its sections alternately move and overwatch the movement of the other section. The sections move until the 
pl atoon reaches an objective or enemy contact is made. By moving in this fashion, the platoon reduces the 
ri sk of being ambushed by enemy forces. 

[QB- Section A 
[DB- (Overwatch) 

.. ...... .. .. ... ....... [QB­
.... ..... ... ......... [QB-

(a) 

Section B 
(Bounding) 

.... .. .... [DB- Section A 

... .... ... [DB- (Bounding) 

[DB- Section B 

[DB- (Overwatch) 

(b) 

Figure 12: Bounding Overwatch. 
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The sections are in boundiflg or overwatch roles before the orders to start Bounding Overwatch are g iven. 
The Bounding Secti on moves towards an intermediate des tinati on always main ta ining line of sight with the 
Overwatch secti on, which is covering its movement (Figure 12(a)) . Once the Bounding Secti on reaches an 
intermed iate destinati on, the Secti on Commander sends a radio message that the secti on is ready to 
overwatch the movement of the other secti on. Altern atively, the Overwatch Section may observe that the 
Bound ing Secti on has stopped . Secti on Commanders use radio to communicate when enemy contact is not 
imminent while rely ing on observation if the chance of running into an enemy is high. 

In any case, there is a reversal of roles when the Bound ing Section stops. The Overwatch Secti on switches 
roles with the Bounding Section and overwatches its movement (Figure 12(b)). T hi s process continues until 

the objective is reached or e nemy contact is made. 

Secti ons 6.2. 1 through 6 .2.3 show FSMs for the Platoon, Secti on, and Vehicle Commanders for Bounding 
O verwatch. These FSMs communicate vi a radio messages (ex plici t cooperati on). Note that in the 

follow ing di scuss ion overwatch is also call ed "CoveL" 

6.2.1 Platoon Commander FSM 

<NULL> 

[sta rt_overwatchl 

Figure 13: Bounding Overwatch Platoon Commander FSM. 

To start the process, the Platoon Commander FSM sends a radio message, [sta r t_overwatch l, and 
transitions to the Wai t state (Figure 13) . It then stays there until it is info rmed (vi a event 
<pl t_bound_ don e» the platoon is at the objecti ve, when it goes to the Done state . 
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6.2.2 Section Commander FSM 

<wingman_complete> 

[start_cover ) 
(if (dest= =obj ) [sec_at_o ') 

else [ sec_bound_done)) 

[start_cover) 

<wingman_complete> 

start_cover) 
(i f (dest==obj ) [sec_a t _ obj ) 

else [sec_bound_done)) 

<my_bound_done> 

[plt_bound_done) 
[start_cover ) 

<wingman_complete > 
[plt_bound_done) 
[start_cover) 

Figure 14: Bounding Overwatch Section Commander FSM. 

Figure 14 shows the Section Commander FSM for Bounding Overwatch. Initially the FSM is in the 
Waiting state. When a Section Commander receives the order to move (via event <start_move» , it 
sends a rad io message, [start_move], to its Vehicle Commanders and transitions to the Move state. In 
this state the section moves toward an intermediate destination. When a Section Commander receives the 
order to cover (via event <start_cover», it sends a radio message, [start_cover], to its Vehicle 
Commanders and transitions to the Cover state where it overwatches the moving section. 

The moving section may arrive at the intermediate destination in two ways. Either the Section Commander 
arrives first (event <my _bound_done> arrives) followed by the Wingman (event 
<wingman_complete> arrives) or vice versa. If the Section Commander arrives first, the FSM 
transitions to the I_arrive state. When the Wingman arrives (event <wingman_complete> arrives) 
the FSM transitions to the Cover state and as part of the transition does this: First, the Section Commander 
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issues a radio message to its Vehicle Commanders to start cover and second , checks if the intermediate 
destination is the objective. If the section is at the objective it sends a radio message, [s e c_a t_obj 1 
(section at objective) , otherwise the section is at an intermediate destination and a radio message, 
[sec_bound_done 1 (section bound done), is sent. The section now overwatches the movement of the 
other section, which has transitioned from overwatch to move. 

6.2.3 Vehicle Commander FSM 

<tick 

{if 
(move_finished) 
[move_finished ] 
else [t i ck]} 

Move} 
<start cover> 

{SPAWN Cover} 

{SPAWN Move} {STOP Cover} 

<start_cover> 

{SPAWN Cover} (STOP Move} 

Figure 15: Bounding Overwatch Vehicle Commander FSM. 

Figure 15 shows the Bounding Overwatch Vehicle Commander FSM. Initially, the FSM is in the Wai t 
state. The order to start a move (via event <start_move» takes the FSM to the Mo ve state. As part of 
the transition the FSM spawns a ModSAF Move task (via STP {SPAWN Move}). This is a low level 
ModSAF behavior that a vehicle uses to travel. 

Periodically , the Vehicle Commander checks if it has finished traveling. This check is made every time the 
FSM receives a < tick> event. When the move is finished the Vehicle Commander sends a radio message, 
[v eh_bound_done 1 (vehicle bound done), and transitions to the Wai t state to receive further orders 
from its Section Commander. 

6.3 Describing Commander FSMs in Data Files 

FSMs describing the cooperative behavior of commanders are written in data files. This approach allows 
quick behavior specification ; a user only needs to change a data file to create a new behavior, code changes 
are not required . 

6.3.1 FSM Grammar Production Rules 

To describe FSMs production rules were developed. These production rules specify the structure of an 
FSM description . FSM descriptions are "parsed" based on production rules and a representation of the 
FSM is created inside the computer. 
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The production rules for the FSM grammar are: 

FSM 
State 
Event 
STP 
Acti ons 

PRED 
FUNC 

where: 

=> 
=> 
=> 
=> 
=> 

=> 
=> 

(State) 
(state_name (Event)) II (s tate_name (Event)) State 
(evencname next_state (STP)) II (evencname next_state (STP)) Event 
(TRUE (Actions)) STP II (PRED (Actions) (Acti ons)) STP II (FUNC) II £ 

MSG string Actions II EVENT string Actions II SPAWN string Actions II 
STOP string Actions II £ 

string 
string 

£ is the symbol for a NULL string. 

An operator (TRUE, PRED, and FUNC) spec ifies how Actions are to be treated. TRUE means execute 
unconditionally the Actions that follow. PRED is a user spec ifi ed predicate junction . Based on the result 
of the predicate functi on, true or false, the first or the second li st of Actions is executed. FUNC is a user 
defined functi on. The Actions specify what is to be done . MSG means to broadcast the string that follows 
as a radio message. EVENT means to put an internal event, string, on the internal event queue for 
processing. SPAWN means to spawn a ModSAF task specified by string. STOP means to stop a ModSAF 
task, specified by string, which was spawned earlier. 

6.4 Change in Command 

In the real world, when a commander becomes disabled , the next in command (deputy) comm ander takes 
charge. Shifting command enable units to continue their missions with minimal disruption. This important 
real world feature was implemented in this project. 

In the simulated battlefield, a deputy commander models hi s commander's cooperative behavior via an FSM 
similar to the commander's FSM. This model (FSM) is constantly updated through receipt of observation 
and radio messages. T his information keeps the model synchronized with the original commander's 
cooperative behavior. A deputy commander "knows" what his commander is doing because the deputy's 
commander's FSM goes through the same transitions as his commander's FSM. (An important 
characteristic of the model is that information flow is unidirectional; i.e ., information contained in 
observation and radio messages flows into the model but does not flow out, e.g., a deputy commander does 
not transmit radio messages which are intended for transmission by the original commander). If required, a 
deputy commander can assume command and continue the mission from the last executed command of the 
original commander. 

In the simulated battlefield, all entities watch out for each other and respond when someone is disabled . 
When an entity is di sabled, such as by a firepower kill , another Vehicle Commander is notified by a 
"vehicle destroyed" observation message from its Observation Module . The observation message contains 
the Vehicle ID of the disabled vehicle. Upon receipt of the Observation Message, the Vehicle Commander 
sends a "vehicle destroyed" radio message containing the disabled vehicle's Vehicle ID. This message is 
sent only once. 

A deputy commander runs a ModSAF FSM, called a Monitor FSM, to process vehicle-destroyed messages . 
Because deputy commanders are present at different levels in the command hierarchy, such as deputy 
commanders for Platoon and Section Commanders (Section 6.1), Monitor FSMs are also present at different 
levels. When a Monitor FSM receives a vehicle-destroyed message it checks the vehicle ID in the message 
with the vehicle ID of the original commander. If they are different, the message is discarded. Otherwise, 
the Monitor FSM changes the Role Matrix (Section 6.1) to reflect the change of command. 
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When a commander is di sabled, ModSAF des ignates another entity as the commander and restarts the unit's 
miss ion. ModSAF developers beli eve that restarting the miss ion re fl ects the change in command ; another 
entity is "promoted" to the commander. ModSAF's intern al architecture imposed a barri er to implementing 
thi s change of command process. The new comm ander plans and executes the tas k using the current 
vehicles and pos itions. 

Because changes to the ModSAF software, to disab le automatic miss ion restart , in volve a fun damental 
change to the ModS AF architecture, 1ST did not pursue thi s approach. However, to test the transfer of 
command, 1ST designated an entity to be the Platoon Commander which is different than the ModSAF­
designated Platoon Commander. When the 1ST-designated Platoon Commander is des troyed, control is 
transferred to the Platoon Sergeant. 
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7. Results 

The formal FSM DCA was implemented in ModSAF version 1.5 . 1. Bounding Overwatch with explicit and 
implic it cooperati on was impleme nted and tested. Section 7. 1 shows a platoon in Bounding Overwatch 
cooperating using radi o messages (explicit cooperat ion) while Secti on 7.2 shows a platoon in Bounding 
Overwatch using observed behavior (implic it cooperation). 

7.1 Platoon Bounding Overwatch Using Explicit Cooperation 

Overwatch Secti on Moving Section Inte rmediate destination 
Objecti ve 

Figure 16: Platoon Bounding Overwatch : Initi al position. 

Figure 16 shows a platoon at its initial position. The remaining figures in this and the following section 
show portions of the map where significant actions take place. All activities take place within the context of 
the scenario that starts and ends at the locations shown in thi s figure. Note that vehicles are shown enlarged 
from their actual size. 
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Overwatch Section Moving Secti on 

Figure 17: Start (explicit): One section starts moving. 

Figure 17 shows a platoon starting a Bounding Overwatch. Both the vehicles in the Moving Section have 
started moving at the same time which is shown by their being abreast of each other. The Section 
Commander of the Moving Section gives the order to move via radio and both Vehicle Commanders 
respond simultaneousl y. 
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Overwatch Section Moving Section 

Figure 18: Intermediate stage (explicit): Vehicle move together. 

Figure 18 shows Bounding Overwatch at the halfway mark. At this point, the original Bounding Section is 

in overwatch and the original Overwatch Section is moving. 
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Platoon at Objective Objective 

Figure 19: End (explicit): Platoon at Objective. 

Figure 19 shows the platoon has arrived at the Objective. One section arrives at the Objective first and 
overwatches the movement of the other as it arrives. 
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7.2 Platoon Bounding Overwatch Using Implicit Cooperation 

Overwatch Section Wingman (Moving Section) Section Commander 
(Moving Section) 

Figure 20: Start (implicit): Section Commander starts moving. 

Intennediate destination 

Figure 20 shows a platoon just starting a Bounding Overwatch using implicit cooperation. Note that the 
Section Commander has started moving (it is not facing where the other vehicles are facing) whereas th·! 
Wingman is still stationary. This is because the Wingman has not yet noticed that the Section Commander 
is moving . Soon. the Wingman notices the Section Commander is moving and starts following the Section 
Commander. 
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Overwatch Section Wingman (Movi ng Section) Intermediate destination 

Figure 21 : Start (implicit): Wingman starts moving. 

In Figure 21, the Wingman is starting to move. After the short delay in observing the Section Commander's 
movement, the Wingman is now following the Section Commander. 
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Overwatch Seclion Moving Section 

Figure 22: Intermediate stage (implicit): One section overwatches the movement of another. 

Figure 22 shows the sections about halfway to the Objective. The vehicles in the Overwatch Section are nOt 
aligned as they are in the explicit case (Figure 18). There is a gap between the Section Commander's 
position and that of the Wingman's . This is because the Wingman's start is delayed and thi s delay shows up 
as the gap between Wingman and Section Commander. 
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Platoon at the objec ti ve 

Figure 23: End (implicit): The platoon arrives at the Objective. 

Figure 23 shows the platoon at the Objective. 
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8. Conclusions 

To be effective enemy and adjunct friendly forces CGF systems must be able to portray cooperative 
behavior between entities reali stically. There are two ways to implement cooperative behav ior: Centralized 
and Decentralized control. Centralized control has been used in a variety of CGF systems. In thi s control 
an unseen "entity" controls and directs the behavior of subordinate entities. In addition to being unrealistic, 
thi s approach can become arbitrarily complex if larger echelons, such as battalions, are to be modeled 
(Section 4 .1). Decentralized control involves entities cooperating with each other directly and mirrors 
cooperation in the real world. DCAs have several advantages as discussed in Section 4.2 

This project has implemented a Decentrali zed Control Architecture (DCA) within the ModSAF CGF 
system. In addition to mirroring cooperation in the real world, DCAs allow cooperation within larger uni ts 
(companies, battalions, etc .) to be modeled with little increase in complexity . Explicit and implicit 
cooperation between entities has been demonstrated within a platoon engaged in a Bounding Overwatch. 

The cooperative behavior of an entity is implemented through FSMs. An entity's cooperative behavior is 
described in data fil es. These descriptions are read and converted into FSM representations inside the 
computer. Communication between entities is implemented by FSM communication . FSMs communicate 
by sending each other external events implemented as radio messages. An FSM communicates with itself 
by sending internal events. An FSM Engine, embedded within ModSAF, "reads" the description and 
executes the defined behavior. The FSM Engine is general purpose and can be used by other ModSAF 

code; ModSAF has been extended. 

The FSMs use low level ModSAF behaviors. For example, a ModSAF task is used for vehicle travel as the 
underlying fundamental behavior. This attempts to reuse code as much as possible. Thus, in addition to 
being extendible, the approach is built on top of ModSAF. 

Simpler implementations result as a consequence of the FSM approach. Instead of modeling various 
responsibilities of a commander as a large and complex FSM, responsibilities corresponding to different 
levels in the command hierarchy are modeled as separate FSMs which communicate with each other. 
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10. APPENDICES 

10.1 Glossary 

Term Description 
ADST Advanced Distributed Simulation Technology 
ARPA Army Research Projects Agency 
BB Blackboard 
CA Control Architecture 
CCA Centralized Control Architecture 
CGF Computer Generated Forces 
DARPA Defense Army Research Projects Agency 
DCA Decentrali zed Control Architecture 
DIS Distributed Interactive Simulation 
FSM Finite State Machine 
FUNC Function 
1ST Institute for Simulation and Training 
KS Knowledge Source 
ModSAF Modular Semi-Automated Forces 
MSG Message 
OPFOR Opposing Forces 
PC Platoon Commander 
PDU Protocol Data Unit 
PN Petri Net 
PrfTr PredicatefTransi tion 
PRED Predicate 
SAF/SAFOR Semi Automated Forces 
SC Section Commander 
STP State Transition Procedure 
STRICOM Simulation Training and Instrumentation Command 
VC Vehicle Commander 
WISSARD What If Simulation System for Advanced Research and Development 

Table I: Glossary 

10.2 Writing a New Cooperative Behavior 

The DCA, described in this report, is general enough to allow addition of new cooperative behaviors. 
Cooperative behaviors are described as FSMs in data files. To write a new cooperative behavior entails : 
Writing FSM descriptions and Code changes. 

10.2.1 Writing FSM descriptions 

Design FSM(s) for the new cooperative behavior. After FSMs have been designed and their operation 
verified, write FSM data files like the ones shown in Section 10.3 or refer to the files "uisfom_pltcmdr.rdr," 
"uisfom_seccmdr.rdr," and "uisfom_vehcmdr.rdr" in libraries "Iibpltcmdr," "libseccmdr," and "libvehcmdr" 
respectively . These data files contain Bounding Overwatch FSM descriptions for Platoon, Section, and 
Vehicle Commanders. 
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10.2.2 Code Changes 

Code changes entail: 

I. Create the beh avior task: This is a user-assignable task which starts the process. For example, 
assigning the "UISFOverwatchMove" to a unit executes a Bounding Overwatch usi ng explicit 
cooperation. Create thi s task (do the "advanced" exercise in creating new behaviors, (Loral 
[I995b))) and then modify the task FSM (refer to the file "uisfom_task.fsm" in library 
"Iibuisfoverwatchmove") to include the creation of the Role Matrix. Also, "spawn" the Platoon 
Commanders as done in "uisfom_task.fsm." 

2. Changes to Platoon and Section Commander ModSAF FSMs: Refer to the files "pcmdr_task.fsm" 
and scmdr_task.fsm" in libraries "Ii bpltcmdr" and "libseccmdr" respectively. These files contain 
Platoon and Section Commander ModSAF FSMs. In the ModSAF FSM state where subordinate 
commanders are spaw ned, "Spawn ingSecti onCommanders" and "SpawningVehicleCommanders" , 
introduce a "case" statement for the new behavior and spawn the subordinate commanders (refer to 
how subordinate commanders for Bounding Overwatch are spawned). 

After steps I and 2, the command hierarchy is established . Steps 3 to 7 pertain to the new 
behavior. 

3. Reading FSM descriptions: Refer to the tile "event_mgr. c" in library "Ii bcoopbhv." Modify the 
function "InitFSMData" so that FSM files, created in Section 10.2.1 , are read. The modification is 
addi ng a "case" statement for the new behavior. 

After this step, data file FSM descriptions are in the computer. 

4 . Mapping rad io messages to internal events: Refer to files "plcradi o_map.c," "sec_radio_map.c," 
and "veh_radio_map.c" in library "Iibcoopbhv." The new behavior may entail the creation of new 
radi o messages which must be mapped to internal events. Modify the "map" function in these files 
to include the new mapping. 

5. Mapping observation messages to internal events: Refer to files "picobs_map.c," 
"sec_obs_map.c," and "veh_obs_map.c" in library "Iibcoopbhv." The new behavior may entail the 
creation of new Observation Events which must be mapped to internal events . Modify the "map" 
function in these files to include the new mapping. 

After steps 4 and 5, external events are mapped to internal events . 

6. Predicate and other functions: The new behavior may call predicate and other functions . Write 
these function in an appropriate file and make sure that it is included in the system. 

7. Modifications to event di spatcher to use predicate and other functions : Refer to the file "queue.c" 
in "Iibcoopbhv." Predicate and other functions added in Step 6 have to be called. Modify the 
event dispatcher function, "DispatchEvents," to include calls to them. See how another predicate 
function, "MoveFinished," is used and repeat the process for the new functions . 

After following the procedure outlined above, a new cooperative behavior will be created. Compile and 
link the system. Run the ModSAF executable and assign the new behavior to a unit. Verify that the 
behavior is correct. For more information, contact the first author listed on this report. 

10.3 Bounding Overwatch FSM descriptions 

Sections 10.3.1 and 10.3.2 show data files describing the cooperative behavior of various commanders for 
Bounding Overwatch. Each data file has three sections. The first section, States, list the states of the FSM. 
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The second section, Events, li sts valid events for the FSM . The third section, FSM description , contains the 
FSM description in the format specified by the production rules of the FSM Grammar (Section 6.3.1). 

10.3.1 Explicit Cooperation 

10.3. 1.1 Platoon Commander Behavior 

; Platoon Commander FSM - Explicit Cooperation 
( 

; States 
( 

; Events 

; FSM description 
(S_WAIT 

) 
) 

) 

(E]LT_BOUND_DONE S_DONE 

o 

10.3. 1.2 Secti on Commander Behavior 

; Secti on Commander FSM - Explicit Cooperation 
( 

; States 
( 

S_WAITING 
S_EXEC_MOVE 
S_ WMAN_BOUND_FINISHED 
S_LARRIVE 
S_EXEC_COVER 
S_BETA_SEC_AT_OBJ 
S_WMAN_BOUND_FINISHED_WITH_BETA_SEC_AT_OBJ 
S_LARRIVE_WITH_BETA_SEC_AT_OBJ 
S_DONE 

; Events 

E_START_MOVE 
E_START_COVER 
E_ WINGMAN_COMPLETE 
E_MY _BOUND_DONE 
E_BET A_SEC_BOUND _DONE 
E_BETA_SEC_AT_OBJ 
E_ALPHA_SEC_AT_OBJ 
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; FSM description 
(S_WAITING 

(E_START_MOVE S_EXEC_MOVE 
(TRUE (MSG START_MOVE)) 

) 
(E_START_COVER S_EXEC_COVER 

(TRUE (MSG START_COVER)) 

(S_EXEC_MOVE 
(E_ WINGMAN_COMPLETE S_ WMAN_BOUND]INISHED 

o 
) 
(E_MY _BOUND_DONE S_CARRIVE 

o 

(S_ WMAN_BOUND]INISHED 
(E_MY _BOUND_DONE S_EXEC_COVER 

(TRUE (MSG START_COVER)) 
(DEST_EQUAL_OBJ (MSG SEC_AT_OBJ) (MSG SEC_BOUND_DONE)) 

(S_CARRIVE 
(E_ WINGMAN_COMPLETE S_EXEC_COVER 

(TRUE (MSG START_COVER)) 
(DEST_EQUAL_OBJ (MSG SEC_AT_OBJ) (MSG SEC_BOUND_DONE)) 

(S_EXEC_COVER 

) 
) 

(E_BETA_SEC_BOUND_DONE S_EXEC_MOVE 
(TRUE (MSG START_MOVE)) 

(E_ALPHA_SEC_AT_OBJ S_DONE 

o 
(E_BETA_SEC_AT_OBJS_BETA_SEC_AT_OBJ 

(TRUE (MSG START_MOVE)) 

(S_BETA_SEC_AT_OBJ 
(E_ WINGMAN_COMPLETE S_ WMAN_BOUND_FINISHED_ WITH_BETA_SEC_AT_OBJ 

o 
) 
(E_MY _BOUND_DONE S_CARRIVE_ WITH_BETA_SEC_A T_OBJ 

o 
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(S_ WMAN_BOUND_FINISHED_ WITH_BETA_SEC_AT _OBJ 
(E_MY _BOUND_DONE S_DONE 

) 
) 

(TRUE (MSG PLT_BOUND_DONE MSG START_COVER)) 

(S_CARRIVE_ WITH_BETA_SEC_A T _OBJ 
(E_ WINGMAN_COMPLETE S_DONE 

(TRUE (MSG PLT_BOUND_DONE MSG START_COVER)) 

) 
) 

) 

10.3 .1.3 Vehicle Commander Behavior 

; Vehicle Commander FSM - Explicit Cooperation 
( 

; States 
( 

S_WAIT 
S_EXEC_MOVE 
S_EXEC_COVER 

; Events 

E_START_MOVE 
E_START_COVER 
E_MOVE_FINISHED 
E_TICK 

; FSM description 
(S_WAIT 

(E_START_MOVE S_EXEC_MOVE 
(TRUE (SPAWN MOVE EVENT E_TICK)) 

) 
) 

(E_START_COVER S_EXEC_COVER 
(TRUE (SPAWN COVER)) 

(S_EXEC_MOVE 
(E_MOVE]INISHED S_WAIT 

(TRUE (MSG VEH_BOUND_DONE)) 

(E_TICK S_EXEC_MOVE 
(MOVE_FINISHED (EVENT E_MOVE_FINISHED) (EVENT E_TICK)) 

) 
(E_START_COVER S_EXEC_COVER 

(TRUE (STOP MOVE SPAWN COVER)) 
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(E_ST ART_MOVE S_EXEC_MOVE 
(TRUE (STOP COVER SPAWN MOVE EVENT E_TICK)) 

) 
) 

) 

10.3.2 Implicit Cooperation 

10.3.2.1 Platoon Commander Behav ior 

; Platoon Commander FSM - Implicit Cooperation 
( 

; States 
( 

; Events 
( 

; FSM description 
(S_WAIT 

) 
) 

) 

(E]LT_BOUND_DONE S_DONE 

o 

10.3.2.2 Section Commander Behavior 

; Section Commander FSM - Implicit Cooperation 
( 

; States 
( 

S_WAITING 
S_EXEC_MOVE 
S_ WMAN_BOUND_FINISHED 
S_CARRIVE 
S_EXEC_COVER 
S_BETA_SEC_AT_OBJ 
S_ WMAN_BOUND _FINISHED _WITH_BET A_SEC_A T _ OBJ 
S_CARRIVE_ WITH_BET A_SEC_A T _OBJ 
S_DONE 

; Events 
( 

E_START_MOVE 
E_START_COVER 
E_ WINGMAN_COMPLETE 
E_MY _BOUND_DONE 
E_BET A_SEC_BOUND _DONE 
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E_BETA_SEC_AT_OBJ 
E_ALPHA_SEC_AT_OBJ 

; FSM description 
(S_WAITING 

(E_START_MOVE S_EXEC_MOVE 

) 

(TRUE (MSG START_MOVE 
INSTALL_FUNC CHECK_ WINGMAN_COMPLETE 
INST ALL_FUNC CHECK_M Y _B OUND _DONE)) 

(E_START_COVER S_EXEC_COVER 
(TRUE (MSG START_COVER 

INSTALL_FUNC CHECK_BET A_SEC_BOUND_DONE 
INSTALL]UNC CHECK_BETA_SEC_AT_OBJ 
INSTALL_FUNC CHECK_ALPHA_SEC_A T _OBJ)) 

(S_EXEC_MOVE 
(E_ WINGMAN_COMPLETE S_ WMAN_BOUND]INISHED 

(TRUE (REMOVE_FUNC CHECK_ WINGMAN_COMPLETE)) 

) 
(E_MY _BOUND_DONE S_LARRIVE 

(TRUE (REMOVE_FUNC CHECK_MY _BOUND_DONE)) 

(S_ WMAN_BOUND_FINISHED 
(E_MY _BOUND_DONE S_EXEC_COVER 

(S_LARRIVE 

(TRUE (MSG START_COVER 
REMOVE_FUNC CHECK_MY _BOUND_DONE 
INSTALL]UNC CHECK_BETA_SEC_BOUND_DONE 
INSTALL_FUNC CHECK_BETA_SEC_A T_OBJ 
INSTALL_FUNC CHECK_ALPHA_SEC_A T _OBJ)) 

(E_ WINGMAN_COMPLETE S_EXEC_COVER 
(TRUE (MSG START_COVER 

(S_EXEC_COVER 

REMOVE_FUNC CHECK_ WINGMAN_COMPLETE 
INST ALL_FUNC CHECK_BET A_SEC_BOUND _DONE 
INSTALL]UNC CHECK_BETA_SEC_AT_OBJ 
INSTALL_FUNC CHECK_ALPHA_SEC_A T_OBJ)) 

(E_BET A_SEC_BOUND _DONE S_EXEC_MOVE 
(TRUE (MSG START_MOVE 

REMOVE_FUNC CHECK_BETA_SEC_BOUND_DONE 
REMOVE_FUNC CHECK_BETA_SEC_AT_OBJ 
REMOVE_FUNC CHECK_ALPHA_SEC_AT_OBJ 
INST ALL_FUNC CHECK_ WINGMAN_COMPLETE 
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) 
) 

(E_ALPHA_SEC_A T _OBl S_DONE 
(TRUE (REMOVE_FUNC CHECK_BETA_SEC_BOUND_DONE 

REMOVE_FUNC CHECK_BETA_SEC_AT_OBl 
REMOVE_FUNC CHECK_ALPHA_SEC_A T _OBl )) 

) 
(E_BETA_SEC_AT_OBlS_BETA_SEC_AT_OBl 

(TRUE (MSG START_MOVE 
REMOVE]UNC CHECK_BET A_SEC_BOUND _DONE 
REMOVE_FUNC CHECK_BETA_SEC_AT_OBJ 
REMOVE]UNC CHECK_ALPHA_SEC_AT_OBl 
INSTALL_FUNC CHECK_ WINGMAN_COMPLETE 
INSTALL]UNC CHECK_MY _BOUND_DONE)) 

(S_BETA_SEC_AT _OBl 
(E_ WINGMAN_COMPLETE S_ WMAN_BOUND _FINISHED_ WITH_BET A_SEC_A T _OBl 

(TRUE (REMOVE_FUNC CHECK_ WINGMAN_COMPLETE)) 

) 
(E_MY _BOUND_DONE S_CARRIVE_ WITH_BETA_SEC_AT_OBl 

(TRUE (REMOVE_FUNC CHECK_MY_BOUND_DONE)) 

(S_ WMAN_BOUND _FINISHED _WITH_BET A_SEC_A T _ OBl 
(E_MY _BOUND_DONE S_DONE 

(TRUE (MSG PLT_BOUND_DONE 

) 

) 

MSG START_COVER 
REMOVE]UNC CHECK_MY _BOUND_DONE)) 

(S_CARRIVE_ WITH_BETA_SEC_A T _OBJ 
(E_ WINGMAN_COMPLETE S_DONE 

(TRUE (MSG PL T_BOUND_DONE 

) 
) 

) 

MSG START_COVER 
REMOVE_FUNC CHECK_ WINGMAN_COMPLETE)) 

10.3 .2.3 Vehicle Commander Behav ior 

; Vehicle Commander FSM - Implicit Cooperation 

( 
; States 
( 

S_WAIT 
S_EXEC_MOVE 
S_EXEC_FOLLOW _SCMDR 
S_EXEC_COVER 
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; Events 
( 

E_START_MOVE 
E_START_COVER 
E_FOLLOW _SCMDR 
E]OLLOW _SCMDR_FINISHED 
E_MOVE_FINISHED 
E_TICK 

; FSM description 
(S_WAIT 

(E_START_MOVE S_EXEC_MOVE 
(TRUE (SPAWN MOVE EVENT E_TICK)) 

(E_START_COVER S_EXEC_COVER 
(TRUE (SPAWN COVER)) 

(E_FOLLOW _SCMDR S_EXEC]OLLOW _SCMDR 
(TRUE (SPAWN FOLLOW_SCMDR 

REMOVE_FUNC CHECK_SCMDR_MOVEMENT 
EVENT E_TICK)) 

(S_EXEC_MOVE 
(E_MOVE_FINISHED S_ WAIT 

o 
(E_TICK S_EXEC_MOVE 

(MOVE_FINISHED (EVENT E_MOVE]INISHED) (EVENT E_TICK)) 

) 
(E_START_COVER S_EXEC_COVER 

(TRUE (STOP MOVE SPAWN COVER)) 

(S_EXEC]OLLOW _SCMDR 
(E_FOLLOW _SCMDR_FINISHED S_EXEC_COVER 

(TR UE (INST ALL_FUNC CHECK_SCM DR_MOVEMENT 
STOP FOLLOW _SCMDR)) 

) 
(E_TICK S_EXEC_FOLLOW _SCMDR 

(FOLLOW _SCMDR_FINISHED (EVENT E_FOLLOW _SCMDR_FINISHED) 
(EVENT E_TICK)) 

(S_EXEC_COVER 
(E_START_MOVE S_EXEC_MOVE 

(TRUE (STOP COVER SPAWN MOVE EVENT E_TICK)) 

) 
(E]OLLOW _SCMDR S_EXEC_FOLLOW _SCMDR 

(TRUE (SPAWN FOLLOW_SCMDR 
REMOVE]UNC CHECK_SCMDR_MOVEMENT 
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