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This technical report is submitted as the first of two 
deliverable items specified under Task 3c of Workplan 2, dated 
13 November, 1989 for DARPA cont ract N61339-B9-C-0044, 
INTELLIGENT SIMULATED FORCES: EVALUATION AND EXPLORATION OF 
COMPUTATIONAL AND HARDWARE STRATEGIES. It discusses the 
configuration of the "Semi-Automated Forces" testbed hardware 
and software demonstrated at the May 1990 Quarterly Review at 
IST, and the capabilities of the testbed as planned and as 
currently implemented. 

1.2 DISTRIBUTED INTERACTIVE SIMULATION 

Distributed Interactive simulation (DIS) is a n exercise in 
which a number of simulation devices are interconnected and 
the individual entities generated thereon are able to interact 
within a shared virtual environment. The simulators may be 
interconnected at one geographic location by a Local Area 
Network (LAN), or they may be physically dispersed but linked 
via a Long Haul Network. 

DIS may be applied to simulations of many types but this 
discussion addresses the application of battle simUlation 
involving a number of different weapons or sensor platforms. 
A simulator may generate one or more platforms. Within this 
discussion, the term entity is used to describe a platform 
such as a single aircraft , armored vehicle, missile site, 
dismounted infantry unit, etc . 

Within a DIS exercise, a collection of simulated entities that 
are operationally linked to cooperate (or in this case , fight 
together as a unit) will be called a torce. A computer 
generated environment within which the simulated entities 
interact will be called an arena. 

1 . 3 ROLE OF AUTOMATION IN DIS 

Certain aspects of the training applications of DIS may 
require the generation of large numbers of entities in an 
arena to train a relatively small number of individuals. This 
is a valid use of a large scale system , however, using a fully 
manned simulator to generate each entity in a large force 
would require a large investment both in equipment and human 
resources. 

In some cases the training may be directed toward commanders 
and there may be no requirement to train the individual crews 
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and squads of manned vehicle simulators. In other cases an 
opposing force may be required and there may be few, if any, 
individuals familiar with enemy doctrine and procedures to 
provide the crews for manned enemy vehicle simulators. Indeed, 
there will probably be no manned simulators designed 
specifically to represent enemy vehicles. 

In such situations, the need exists for automated players. 
These are entities whose behavior, including that of their 
simulated crews to observe, maneuver, communicate, and 
generate and carry out plans, is generated by software. The 
term computer Generated Force (CGr) is used in this discussion 
to refer to the combined hardware and software system used to 
generate a set of automated players. It is also used to refer 
to the collection of players themselves as a cooperating 
military unit. 

Depending on the number of entities simulated and their 
organizational structure, a CGF may be tasked with certain 
missions or g o als. These goals may be specified at the 
beginr:ting of an exercise by a n individual acting as an 
exerC1se controller or they may be provided during the 
exercise by an individual acting as the commander of the 
automated force. At some level, though, there must be at least 
one instance of hUman mission assignment or control. 

An interaction or interleaving of hUman con'trol and software 
generated behavior is possible at levels below the highest. 
When the option is provided for replacement by direct human 
intervention of func tions available via software, a Semi­
Automated Force (SAFOR) exists. 

1.4 THE STATE OF THE ART OF AUTOMATED FORCES 

Many different approaches have been taken to solve the problem 
of simulating the behav ior and performance of military units. 
Few simulations, however, have been of the realtime/ DIS type. 
At the beginning of this project, a survey was conducted. It 
was the conclusion of the study that: 

It • • • the emphases of the activities in intelligent 
simulated forces could be classified into two categories. 
The first category can be referred to as Intelligent 
Simulated Forces .... This type of effort tends to focus on 
the development of models which exhibit realistic micro 
behavior at the individual vehicle to company level. The 
second category of models can be classified as 
Battlefield Simulation ... It tends to deal with larger 
units of the force and seems to emphasize exercising of 
strategies and tactics." [2] 
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Numerous efforts have been directed toward the second category 
such as the "hex-based" wargames like CACTUS . The report 
stated that the BSN SAFOR (vintage August 1989) exemplified 
the first category and ..• 

"was an example of a model that appeared efficient when 
directed toward the application for which it was 
intended, but began to break down when extended to cover 
both classes of models." {2] 

BBN's SAFOR, as currently implemented, (software version V3.9) 
requires intensive micromanagement by the human operator to 
the extent that he cannot play the part of the individual 
directing the force (platoon commander, squad leader, etc.) 
without concentrating considerable attention on the actions of 
individual entities. This result was apparently foreseen but 
judged to be an acceptable tradeoff for the risk inherent in 
attempting to implement an AI based solution to the generation 
of behavior. 

In August, 1989, a n independent panel reviewed BBN's efforts 
and made a number of observations and recommendations that 
have influenced the direction of this effort. They indicated 
that there is some value in improving route planning and 
terrain reasoning techniques and that some issues, such as 
learning, may be very difficult, but would contribute 
significantly to the realism of the behavior generated, see 
[5 J • 

IST researchers feel that it will not be possible to scale up 
such a system to generate large scale intelligent forces 
without a proportional scaling of the effort required by human 
controllers. They also feel that the specification of "new" 
behavior within that system will require a great deal of hard­
coded effort to compensate for a lack of a solid foundation of 
intelligent "automated " behavior from the entity level upward 
through all levels built upon them. 

At this time there is a need to determine the operations, 
functions, requirements and components that are fundamental to 
the generation of credible and robust behavior of automated 
entities in a DIS environment . This project is an attempt to 
discover, implement, and demonstrate these requirements in the 
form of a research testbed to be made accessible to others 
working in the area. 

1.5 COMPONENTS OF A COMPUTER GENERATED FORCE 

Within DIS, interaction between simulators is accomplished 
through the exchange of messages or Protocol Data units (PDU). 
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For the purposes of this discussion, a POll will be equated to 
a single message transmitted via a network. POlls are used to: 

• Convey the appearance or location of some entity 

• Describe some specific action, such as firing a weapon or 
energizing a radar 

• Describe a request on the part of an entity , such as a 
request for resupply or repair 

• Represent an acknowledgement of a request 

• convey simulated communications information , such as a 
radio transmission 

• Organize and control the simulation session and perform 
other tasks related to information gathering for training 
purposes 

All players on a DIS generate POUs describing themselves, and 
all will receive POlls generated by other players . Like a 
manned simulator, a CGF is a source of PDUs. The difference is 
that the behavior of the Vehicles and other entities provided 
by the CGF is generated by software and not by direct human 
control, see [23] . 

To be useful and to provide a credible simulation, the 
behavior expressed via a CGF's PDUs must be indistinguishable 
from that generated by manned simulators. Therefore, what is 
needed is a mechanism to simulate enough of the actions of the 
automated entities to allow PDUs to be built in realtime to 
give them the appearance on the network of manned simulators. 
They must move realistically, appear to make reasonable 
decisions, respond appropriately to changes in the environment 
and otherwise interact properly with the other elements of the 
DIS. 

For simulated entities to move reasonably and appear realistic 
to observers in the DIS, some aspects of physics must be 
considered when determining their locations, speeds, and 
accelerations. To accomplish this, a Dynamics Model must be 
implemented for each kind of entity. 

One of the fundamental requirements of an automated entity is 
that it appear correctly positioned in space . Correct 
placement of land vehicles on the surface of the terrain 
requires information about the elevation and slope of the 
surface and even about the material of which the surface is 
made. 
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The mec hanisms by which a vehiclels physica l b e hav ior is 
consistent with the physica l c haracteristics of 
environment is called Terrain Correlation. 

kept 
the 

In addition to generating cues describing the physical 
behavior and appearance of the entities (acceleration, roll, 
pitch, yaw, dust clouds, sound, smoke and flames, etc.) a CGF 
must generate the behavior that results in these changes in 
appearance. This often means simulating the human decision 
making that would be controlling these entities were they 
produced by manned simulators. 

The aspects of the indiv idual that must be considered here 
include e nvironmental sensing, reactions to stimuli, the 
generation and following of short and long term plans, 
communication and cooperation with other entities, and 
vulnerability to events. 

The ability of an entity to correlate and evaluate various 
aspects of its surroundings and its internal states may be 
called Situational Awareness . The data required for this 
includes information about the terrain and other entities in 
the vicinity. The mechanisms by which a decision making entity 
interprets the physical characteristics of its environment may 
be called Terrain Reasoning. This includes analysis of such 
features of the terrain as contours, obstacles, cover and 
concealment, and intervisibility. Short and long term planning 
will make extensive use of this facility. 

Situational Awareness must also incorporate the ability to 
detect, track, and interpret the actions of other simulated 
entities. Location of threats, tracking of moving objects, and 
detection of emissions from other simulated entities requires 
an ability to monitor the actions (expressed in their POUs) of 
other players. This facility may be called Environmental 
Monitoring. 

Collection of data describing the environment does not, by 
itself, generate behavior. The formation of sequences of 
actions directed toward goals is by far the most complicated 
and difficult portion of the task. 

Simulation of the thought processes performed by one or more 
players is a complex problem requiring the coordination of 
multiple cooperating (and sometimes conflicting) efforts. In 
order to gain a better understanding of its operation, one may 
attempt to partition hUman decision making into subcomponents. 
When this is done, it may appear that a number of different 
kinds of behavior are involved and these different tasks may 
require unique models for description and simulation. 
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Some aspects of behavior, such as control of a vehicle by a 
driver, may be most easily described as a series of states 
with definite transitions caused by certain events or 
conditions. Plans generated to carry out a mission might be 
expressed as combinations of lists of tasks to be accomplished 
serially and lists of tasks to be performed simultaneously. 
Rules for making decisions about the relative values of 
threats or choices of actions to take may sometimes be 
expressed as collections of conditional statements . 

Whatever the results of attempts to categorize and understand 
decision making requirements, there will be a requirement for 
various Behavioral Modeling facilities which will require 
information in some form to guide their operation. The static 
information used by a Behavioral Modeling component will be 
referred to as a Behavioral Database to differentiate it from 
the dynamic information derived from Environmental Monitoring 
and Terrain Reasoning. 

A CGF must interact with other simulation elements via a 
communications medium. Whether the simulated medium channels 
visual information, radio traffic, auditory cues, or 
information describing physical contact, some mechanism is 
required to coordinate transmission and reception of POUs 
which encode the information. This is referred to as the 
Network Management facility because computer network 
facilities are the prime mechanism at present. 

Finally, the CGF must be built on some sort of software 
structure that provides the computational resources, access t o 
behavioral databases, sequencing, and other tools required to 
perform a simulation. This may be performed by a computer's 
operating system or by a special purpose Executive or Monitor 
program. 

1.6 PROBLEMS IN BUILDING AUTOMATED FORCES 

Software implementation of anyone of the components mentioned 
in the previous section could probably be accomplished in a 
multitude of ways. Numerous algorithms could be devised to 
track moving entities and various commercially available 
expert system shells might be capable of generating decisions. 
However, some basic information requirements must be met to 
supply any of these specific solutions with data. 

1.6.1 COORDINATED TERRAIN REASONING 

Terrain Reasoning requires a Terrain Database arranged in a 
fashion that allows rapid and efficient access. This database 
must also correlate closely with the databases used by manned 
simulators to generate their own terrain interaction and with 
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visual databases used by Computer Image Generators to depict 
the environment . 

Terrain data has many uses. Rapid updates of elevation and 
ground slope data are used to allow a land vehicle to generate 
accurate orientation cues. Less often, the terrain data is 
required for obstacle avoidance and route planning. Data is 
required at different levels. Route planning may require 
information for a relatively small area or may require access 
to data structures describing entire networks of roads or 
rivers. The means by which a terrain database (or databases) 
is structured determines its suitability and convenience for 
various purposes. An excellent discussion of some of these 
problems is to be found in [27). 

Lack of correlation has the potential to lead to the 
appearance of unrealistic behavior on the part of CGF entities 
when they are viewed by individuals on other kinds of 
simulation nodes. 

1.6.2 VEHICLE DYNAMICS AND STABILITY 

Vehicle dynamics models must generate motion and attitude 
information of sufficient quality that the entities are not 
distinguishable from manned simulators by observers in the 
DIS. However, it appears that CGF vehicles do not always need 
to model everything with the same level of detail required by 
manned simulators, especially those incorporating motion 
platforms. They must, however, account for problems inherent 
in dynamic control systems, especially as there is no human 
feedback incorporated. Update rates and their consequent 
effects on stability must be considered. 

1.6.3 PARTITIONING, INTERFACE, AND MODIFICATIONS 

Partitioning of tasks between hardware resources (multiple 
CPUs) or software modules creates a requirement to specify 
their interfaces. A balance must be maintained between the 
specification of the details of the interfaces and the 
resultant effects on the functions a nd capabilities of the 
modules implementing the different categories. The interfaces 
must be developed together with the functions of the modules 
that use them. A judicious placement of interfaces eases the 
inevitable problems arising from later modifications to 
functionality. 

1.6.4 EXPANDABILITY 
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A desirable characteristic of a CGF would be the notio n of 
expandability . This concept of the potential for increased 
functionality after initial development may be viewed both 
horizontally and vertically. 

Development of "behavior" for a CGF is largely a process of 
Knowledge Engineering. Extraction of rules and descriptions of 
behavior from Domain Experts is necessary in order to gain 
some confidence that the behavior to be generated will be 
correct. If it were possible to reuse behavioral sub functions 
that were developed for, say, an armored vehicle, to develop 
the capability to simulate an unarmored wheeled scout vehicle, 
the potential to save immense amounts of work would be 
realized. For this reason, an Object-Oriented design is likely 
to be a wise approach to the overall design philosophy. 
Whether this would be best implemented using an "Object­
oriented ll language remains to be seen. However, the capability 
to expand horizontally, by adding new types of entities and 
new functions to preexisting entities is necessary and 
entirely possible using good software engineering techniques. 

In the vertical dimension, however, expandability means 
grouping lower level organizational units into higher levels 
and being able to construct new higher order behavior on top 
of robust and complete lower level capabilities. In order that 
a squad may be simulated faithfully, it may be necessary to 
simulate each individual or team within the squad to some 
level of detail and with some level of autonomy. 

While it may be possible to impose some organizational control 
on each individual element of a group via an artificial 
external control module, such mechanisms may break down when 
complicated interactions are required. It is more likely that 
coordinated behavior would be successfully generated when 
individual instantiations of the components execute autonomous 
behavior with cooperative goals included. 

This may be best illustrated by examples. First, take the case 
of maneuvering in formation. For a vehicle to maneuver to its 
assigned station in a moving formation it must determine a 
course and speed to generate the necessary relative movement 
within some period of time. This may be done independently by 
each individually simulated entity or it could be performed by 
a coordination algorithm that directed all vehicles within a 
formation. The first method would require a vehicle to make 
decisions based on its own observations of the behavior of 
surrounding entities . The second method would require a rather 
"omniscient" point of view. Both cases are complex and may be 
very difficult to solve in a manner that could avoid 
collisions. It is likely, however, that solutions based on the 
limited local knowledge of each entity would be more likely to 
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generate realistic "human ll behavior than solutions which had 
the benefit of complete knowledge of all parties' intentions. 

A second example involves organizational affiliation and 
control. If every entity maintains a concept of its chain of 
command and its own position within it, it may be more likely 
to model attrition realistically, including the confusion that 
may arise when a link is removed from the chain. Control 
should pass in a defined manner when a leader is eliminated 
and an entity should still be able to carry out its standing 
orders in the event it becomes leaderless. 

2 CONTRACT REQUIREMENTS 

Workplan Number 2, dated 13 November 1989 states that the goal 
of Task 3 is: 

Uto develop, evaluate, and demonstrate a testbed based on 
off-the-shelf advanced microcomputer and coprocessor 
technology as a viable implementation strategy for simulated 
opposing forces." 

The baseline testbed concept is to employ ASAT (Perceptronics 
PC-based Avionics Situational Awareness Simulator) technology 
as a framework to investigate applications and utilities of 
such technologies as off-the-shelf advanced 80386 multitasking 
personal computers, low cost CIGs, rule-based expert systems 
and neural net simulators. 

The testbed is to be capable of implementing a "narrow-slice 
simulated forces demonstration" interfaced to SIMNET. 

Subtask 3c requires the acquisition and development of 
hardware and software for the testbed, including schedulers 
and executives, man-machine interfaces, basic simulation 
models, intelligence modules and preliminary databases, 
displays, and network interfaces and various combinations of 
coprocessors. A prime concern is the capability of the 
testbed to operate as part of a SIMNET network at the end of 
the project. 

Subtask Deliverables include: 

1. A demonstration of the basic testbed capabilities. 
(Completed at the quarterly review on 15 May 1990 at IST) 

2. A technical report describing the configuration, 
parameters and results of the demonstration. 

3. A final report documenting the capabilities of the 
various combinations of coprocessors to simulate opposing 
forces. 
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This report is submitted as item 2 in the list above . 

3 TESTBED REQUIREMENTS 

The workplan requires a testbed that provides a flexible , 
reconfigurable tool for experimentation with, and evaluation 
of, hardware and software solutions to problems arising in the 
development of a CGF . 

There are many ' elements which must be investigated. The 
following is a partial list: 

• Simulation of vehicle dynamics 
• Simulation of human decision making 
• Rout e and Path planning and following 
• Simulation of communications traffic 
• Algorithms for packet filtering by Intelligent Gateways 
• Intervisibility calculations 

Terrain reasoning and navigation 
• Simulation of command, control, and coordination of 

multiple units 
• Determination of the capability of different types of 

coprocessors and computer architectures to perform these 
tasks 

• Development and optimization of interfaces for the 
runtime control of the simulated forces 

• Development of efficient tools for the creation of 
behavioral databases 

• Correlation of Visual and Navigational aspects of terrain 
databases 

With so many unknowns and so 
extremely flexible approach 
experimentation in one area may 
effects in others. 

many possible avenues, an 
is required so that 

proceed with minimal side-

The testbed was designed to satisfy the 
requirements: 

following 

• To initially provide a working simulation capability for 
at least two cooperating entities (vehicles , dismounted 
infantry squads, etc.) with the capability to accept and 
carry out one or t wo limited missions, and to operate and 
maneuver together. 

• To use off-the-shelf hardware. 

To be flexible in overall system design, allowing new 
modules and functionality to be added when they are 
discovered to be necessary, or allowing variations to be 
substituted for currently existing modules, all the while 
minimizing the side-effects on other modules . 

10 
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• To allow different commercially available software 
packa ges (such as expert systems s hells) to be i ntegrated 
in different a r eas . 

• 

• 

To minimize the constraints 
system software on the design 
the actual simulation. 

To be compatible with SIMNET. 

41ST'S APPROACH TO THE PROJECT 

imposed by hardware and 
of the portions which do 

In laying out a strategy for the design of the testbed, a 
number of requirements were considered. These ranged from firm 
specifications, such as the requirement for interfacing the 
system to SIMNET, through less well defined areas such as 
implementing a IInarrow-slice Semi-Automated Force", to 
requirements that were determined by the researchers to be 
implied by the uses to which a IItestbed" might be put (e.g. it 
must be flexible, reconfigurable, generic, portable, etc.) 

As defined earlier, the term "Semi-Automated Force" refers to 
a CGF wherein the option is provided for replacement by direct 
human intervention of functions available via software at 
levels below the highest echelon being simulated . 

This intervention may be useful for various purposes: 

• simulation of the decision making capabilities of a human 
is extremely complex and it would be very computationally 
expensive to simulate some functions faithfully. 

• selective human intervention would allow runtime 
modification of behavior with no modification of the 
software. 

• some training may be gained by the individuals performing 
the intervention, especially when the opportunity arises 
to employ them at differing tasks. 

However, to implement this sort of intervention would require 
complicated I/O interfaces to various levels of the simulation 
as well as a simUlation which was already mostly automatic to 
provide a "pool" of facilities from which certain elements 
could be removed and replaced by the combination of interfaces 
and hUman assistance. In other words, to build a "Semi -
Automated" System, one would first need to build an 
"Automated" System , then add facilities which would remove and 
replace selected parts and provided data formatting services 
to make the I / O interfaces act like the original interfaces 
between the software modules . 

11 
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Putting first things irst, the project has focused on: 

• Determining whic 
implement a robu 

functions or modules 
t automated system 

are necessary to 

• Specifying the minimal requirements of these modules 

• Implementing the modules to verify the completeness of 
the scheme and verifying its capacity to generate a 
credible simulation. 

The intent of the researchers is to develop a system with the 
potential for expansion in horizontal as well as vertical 
directions. Initial development, however, will keep these 
dimensions small. Horizontally, efforts will be concentrated 
on developing only a few types of entities, such as an M1Al 
tank and possibly dismo'J.nted infantry. Vertically, efforts 
will be limited to squads and possibly platoons. 

Development efforts will focus on structure. Models, such as 
those for vehicle dynamics, will be kept as simple as possible 
and possibly even rather artificial. The feeling is that more 
detail can be added later where necessary, if a robust and 
capable structure exists from the beginning. 

Behavioral capabilities for a few relatively simple missions 
will be developed to determine fundamental requirements for 
individual entities. An example from the Combat Instruction 
Sets developed by Perceptronics (see [25]) will be implemented 
as a guideline. The concept of a "Narrow-Slice ll will be 
applied both horizontally and vertically. 

The workplan stated that the testbed would be based on ASAT 
technology. This will be true in the sense that PC/AT 
architectures are used. The ASAT software design, however, was 
found to be unusable for a number of reasons: documentation is 
non-existent, and the code is uncommented, poorly structured, 
and very tightly integrated to the point that modifications 
and enhancements are impractical. As is explained below, a 
flexible, expandable software architecture has been developed 
from the ground up to provide the facilities for research. 

5 PLANNED CAPABILITIES OP THE TESTBED 

This section presents a description of the functionality to be 
implemented by the testbed at the end of the development 
process. Currently, a subset of this functionality has been 
implemented. Those modules already operable will be noted. 

5.1 NUMBER OP ENTITIES 
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The testbed will simulate the maneuvering, environmental 
sensing, communications, and decision making of two or more 
entities and will generate and receive SIMNET compatible 
messages to communicate with other nodes on the network. 

5.2 HUMAN CONTROL INTERFACE 

The testbed will communicate with an operator who will perform 
the tasks of the next higher level in the chain of command 
above the highest level simulated by the testbed. In other 
words, the operator will assign missions or tasks only to the 
highest echelon simulated and will receive feedback via text 
messages, visually, or computer synthesized speech. 

5.3 AUTONOMOUS BEHAVIOR 

The simulated entities will employ aspects of terrain 
reasoning to navigate through a locale described by a Terrain 
Database. Entities will plan routes which lead to a 
destination, avoid obstacles in the terrain, avoid other 
maneuvering entities, and may, in some cases, employ features 
of the terrain for cover or concealment. The terrain database 
will be compatible with that used by SIMNET. It may be one of 
the versions of the SIMNET terrain databases (such as that 
used by the MCC) or may be transformed from a version encoded 
according to SOlS (12] into a more usable version. 

Simulated entities will receive orders specifying missions, 
interpret those orders, generate their own internal plans to 
carry out those missions, follow their plans, and replan when 
necessary. 

5.4 SCOPE OF TME DEFINED BEHAVIOR 

A limited set of behavioral modules or contexts will be 
developed, probably using one or more of the ·Combat 
Instruction Sets listed in [25] as models. 

5.5 IMPLEMENTATION METHODS AND CONSIDERATIONS 

Simulated entities will generate their "behavior" using a 
variety of mechanisms. These may include: 

1. Algorithmic solutions to procedures that must be done 
repetitively and often. 

Example: Periodic computation of vehicle speed and 
location. 

13 
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Example: Relative motion problems such as station keeping 
or interception trajectories may be solved using 
Maneuvering Board methods (vector manipulation 
techniques), see (15). 

2. Finite state Machine solutions to procedures best modeled 
as sequences of discrete states. 

Example: Control of vehicle turning and acceleration 
parameters to come to a specified heading, brake to a 
stop, or pass through a given location. 

3. Production Systems for solutions best modeled as IF-THEN 
rules. 

Example: If GREATLY_OUTNUMBERED and FUEL_RANGE> 10 MILES 
THEN BEGIN RETREAT ELSE BEGIN HASTY_ATTACK. 

4. Inference Engines for solutions to problems 
partial data, levels of uncertainty, and 
educated guesses concerning the environment . 

involving 
requiring 

Example: ENEMY REPORTED IN REGION AND UNIDENTIFIED 
CONTACT SIGHTED AT EXTREME RANGE IMPLIES CONTACT IS ENEMY 
WITH CONFIDENCE FACTOR OF 75\. 

5. Lists and Tables for operations such as mission planning 
and route planning. 

Example: A Reconnaissance Mission might be compiled into 
a structure consisting of several lists: A list of 
intermediate destinations to be reached sequentially, a 
list of activities to be performed continuously during 
the mission, and a list of activities to be triggered by 
events. 

The testbed software is structured to permit integration of a 
wide variety of tools such as those listed above. 

6 DESCRIPTION OF THE TESTBED 

The design and configuration of the testbed hardware and 
software is described in this section . 

6.1 SYSTEM ARRANGEMENT 

The Testbed hardware located at IST is arranged as a Local 
Area Network with two nodes. One node consists of a SIMNET 
M1Al tank simulator running in standalone mode to provide a 
visual display of CGF entities or an entity for the CGF to 
play with or against . The other node is a single processor 
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host computer used to generate the CGF. The nodes are linked 
using thin ETHERNET cable (RG-58). 

6.2 CGF HARDWARE 

The CGF processor is a Hewlett-Packard RS/ 25C VECTRA computer. 
It is a PC/ AT machine with a n Intel 80386 processor running at 
25KHz., an 80387 math coprocessor, 4 Megabytes of main memory , 
a 304 MegaByte hard disk, a color VGA monitor, keyboard, and 
a 3COM Etherlink-II Ethernet interface board. 

The single processor architecture was used because it was 
sufficiently powerful to execute an initial prototype whose 
primary purpose was to determine fundamental requirements. 
From the beginning, however, it was suspected that the 
processing required to simulate a single vehicle would quickly 
overwhelm the capabilities of one 80386. When sufficient 
experience has been gained with the prototype, it will be 
possible to reassign various software modules to different 
hardware platforms suited to particular types of computation. 

In addition to the above equipment, Three RGB video monitors 
(borrowed from another contract) are used to provide a remote 
view of the M1Al driver's vision blocks. The monitors were 
located in the same room as the VECTRA to provide a convenient 
mechanism for observing the behavior of the computer generated 
entities. 

Two SIlmET STEALTH vehicles were installed at 1ST in mid­
summer 1990. They were, however, not ready for use at the time 
of the demonstration, so the monitors described above were 
substituted. The STEALTH vehicles prov ide a much better tool 
for observation and are being used extensivelY at this time. 

6 • 3 CGF SOFTWARE 

The software running on SIMNET equipment is BBN ' s Version 6.0. 
It is not described in this report, which is intended to 
describe the CGF software developed at 1ST. 
The CGF Software is grouped into two primary categories. 
OFFLINE software is used to develop behavioral databases, to 
link those databases with specific entity types in order to 
build simulation modules, and to create specific s t arting 
scenarios. ONLINE software generates CGF behavior in realtime 
and communicates with the SIMNET equipment. 

Development of online software has outpaced that of the 
offline portion because the offline tools must be tailored to 
accommodate the specific mechanisms used online to generate 
behavior . It appears at this point in the development of the 
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project that offline database creation tools will have to be 
developed after the mechanisms, such as state-machine 
executors, inference engines, and production rule 
interpreters, have been assigned to different tasks and have 
been tested using "hand-crafted" databases. 

The online software is described in the next section. The 
section on offline tools follows and is primarily a discussion 
of ideas that have been discussed, likely target areas for 
their implementation, and brief descriptions of likely 
implementations. 

6.3.1 ONLINE SOFTWARE 

The CGF runtime software is described in the following 
sections. 

6.3.1.1 DESIGN AND DEVELOPMENT PHILOSOPHY 

A software development strategy was adopted which provides a 
logical path from determination of requirements through 
specification of design to validation and optimization. Rapid 
prototyping methods were used to provide a working framework 
which permitted experimentation and testing at a very early 
stage. With this tool, a number of ideas were tried and a 
minimal list of required functions was compiled. Some of these 
were built and added to the framework until the capabilities 
discussed later in this report were realized. 

A software design strategy was adopted which uses an Object­
Oriented structure coupled with a message passing mechanism. 
For prototyping, this was implemented using a simple executive 
(or scheduler) written in c, running as a single software 
process to run on a single processor PC/AT type architecture 
under DOS 3.3. 

The Object-Oriented design strategy was chosen so that once 
the functions of the modules were determined and prototyped, 
they could be rehosted or "ported II with minimal change to a 
hardware base with a true multitasking operating system which 
would provide a more efficient framework for execution. Later 
they could be rehosted on a multi-processor system where 
shared busses, shared memory, a local area network, or some 
other mechanism could be used for message passing internal to 
the CGF and various processors could be chosen for the 
specific requirements of different modules. 

The overall plan was to develop various functional modules, to 
integrate them, determine the required communications and data 
requirements, determine the minimal set of functions required 
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to implement a IInarrow-slicell SAFOR, and then to determine 
where performanc e and capability might be enhanced by means of 
specific hardware devices such as advanced coprocessors, 
TRANSPUTERS, signal processors, pattern matchers, 
communications chips, neural nets, etc. 

By partitioning functions into objects from the beginning we 
felt that we increased our chances for making optimal 
assignments to specialized architectures . That is, we decided 
to determine what was necessary before we decided what 
resources we would acquire to accomplish the tasks. 

6.3.1.2 ORGANIZATION 

6.3.1.2.1 EXECUTIVE MODULES 

The first prototype is implemented using a very simple 
executive mechanism to schedule the execution of short term 
tasks for each of the functional modules within one CGF 
simulation node. The executive, along with most of the rest of 
the simulation, is written in C. The executive is described in 
more detail in (9]. 

The executive runs as a single process under OOS 3.3. 
Following its own initialization and that of some of the other 
modules of the simulator, the EXECUTIVE repetitively services 
three main functions in a loop. It locates and dispatches the 
highest priority message that has been queued for 
transmission, then checks a queue of items that have been 
assigned various timeout value, and then checks for external 
input via the console keyboard. 

The primary mechanism for scheduling task execution and for 
communication between modules is via message. Messages are 
placed on one of a number of priority queues by an executive 
service on behalf of the sender. Messages are serviced in a 
first in first out manner within a priority queue, but no 
message is serviced until all messages of a higher priority 
have been serviced. The priority queues are doubly-linked 
lists, as are all queues currently implemented. 

6.3 . 1.2.1.1 SCHEDULING AND DISPATCH 

Modules which must be able to receive messages or have tasks 
scheduled are assigned data structures called control blocks. 
A control block contains data describing the state of the 
module at some time and also contains the addresses of 
routines which may be called by some other facility to request 
that module to perform some action without knowing the 
internal details about how that module will perform the 
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requested action. These routines are usually used to interpret 
the contents of a message directed to that module. 

The EXECUTIVE maintains a list of all the control blocks in 
the system and their addresses. When the EXECUTIVE locates the 
highest priority message in the queues, it unlinks it and 
dispatches it to its intended destination by doing the 
following: 

1. It locates an 10 for the destination in a specified field 
in a header at the beginning of the message. 

2. It uses the 10 to index into its list of control blocks 
and obtains the address of the destination module I 5 

control block. 

3. It locates a specified field in the control block where 
the address of a service routine is located, calls that 
routine, and passes the address of the message to the 
routine as a parameter. 

The service routine called by the EXECUTIVE is responsible for 
performing any actions necessary on receipt of the message and 
returning control to the EXECUTIVE when finished. The control 
block must be used to save state variables between scheduled 
operations. 

6 .3. 1.2.1.2 MESSAGE PASSING 

Within a CGF simulation node, messages are passed between 
modules by a combination of EXECUTIVE services. Messages may 
be of variable size and are usually created dynamically, 
although they may be reused if the originator and destination 
agree not to release the buffer. 

A module sending a message provides the address of the buffer 
and a requested time delay to the executive service 
•• ncS_msq(). If the delay is zero, this service appends the 
message buffer to the priority message queue corresponding to 
the priority field in the message header. If the delay is 
other than zero, it specifies the number of hundredths of 
seconds the message should be delayed before being queued on 
a priority message queue. In that case, it will be inserted in 
the special sorted queue called the timeout chain. 

When the EXECUTIVE is ready to check the priority queues for 
a message to dispatch, it calls the service msq scan() which 
searches the queues and dispatches the highest priority 
message queued, if any. 

6 .3. 1.2 . 1 .3 TIMERS AND DELAYS 
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Periodic scheduling of actions at regular intervals, 
scheduling of operations after computed delays, and any other 
events that should take place after some minimum time period, 
is performed via the timeout chain which is a doubly-linked 
list. Messages queued on the chain are placed into the chain 
in chronological order, based on the time they are queued plus 
the delay parameter located in the message header. 

When the EXECUTIVE is ready to check the TIMEOUT CHAIN for 
messages to forward, it checks the first item to see if its 
expiration time has already passed. If it has, it unlinks that 
element and queues it to the proper priority message queue for 
future dispatch. It then continues to drain the TIMEOUT CHAIN 
until it encounters a message that has not yet expired or, 
when it has traversed the entire chain. 

6.3.1.2.1.4 INITIALIZATION 

Initialization of the EXECUTIVE involves initializing all of 
its queues to an empty condition. Other modules, such as the 
UPDATE MANAGER and the MOVING OBJECTS MANAGER are initialized 
by initializing their queues and sending them UPDATE messages 
(which they continue to reuse throughout the simulation). It 
is possible at this time to automatically create other 
entitles and to begin their simulation, either by specifying 
other routines or by reading and interpreting an 
initialization file. 

Once the simulation has started, messages may be sent to the 
INITIALIZATION MANAGER to request the creation of control 
blocks for simulated entities and their subsequent activation. 

6.3.1.2.2 SIMULATOR MODULES 

6.3.1.2.2.1 DISPLAY 

A simplified PLANVIEW display is implemented by a DISPLAY 
MANAGER. This consists of services to draw an aerial view of 
a part of the arena, services to locate the center of the area 
to be depicted and the scale at which items will be drawn, and 
routines to erase and redraw icons representing moving 
entities. 

The PLANVIEW DISPLAY currently draws entities being simulated 
in different colors. Entities being simulated locally are 
drawn YELLOW. Entities being tracked via the MOVING OBJECTS 
MANAGER are drawn RED when a Vehicle Appearance PDU provides 
appearance information and in GREEN whenever a dead reckoned 
position is computed. 

Orthogonal grid lines are drawn to aid in determining 
positions of objects and terrain features such as contour 
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polygons, trees, treelines, tree canopies, buildings, roads, 
and rivers are drawn in the currently active regions (for a 
definition of region see the discussion on the TERRAIN 
DATABASE MANAGER below) of the arena. For debugging purposes, 
intended tracks of vehicles may be sketched in as well as some 
intermediate information computed du ring terrain reasoning 
operations. 

6. 3 .1 .2 . 2 . 2 CONSOLE 

For debugging purposes, and to allow requests to be entered 
manually, a mechanism is included to accept keyboard. This 
allows keystrokes to be buffered as they are entered so that 
other processing does not have to be suspended while awai t ing 
a complete message. 

The keyboard is polled in the main executive loop and when a 
character is available it is appended to a keystroke buffer 
or, if the character is a backspace, causes the last character 
to be removed from the end of the b u ffer. When a carriage 
return is entered, the entire keystroke buffer is processed. 

Processing the keystroke buffer is a matter of locating 
destination, operation , and parameter fields in the buffer and 
using them to construct a message in a dynamically al l ocated 
message buffer . The new message is t hen sent via executive 
services and t he keyst roke buffer is cleared for reuse. 

Console messages may be directed toward a number of 
destinations : 

The DISPLAY MANAGER may be given an absolute or relative 
centering offset or a scale. 

The MOVING OBJECTS MANAGER may be given an update rate at 
which it will periodically recompute the DR positions of all 
the objects it is t r acking. 

The UPDATE MANAGER may be given an update rate at wh ich it 
will periodically execute the update routines of all the 
entities in its list . This varies the r ate at which vehicle 
dynamics models are computed. 

The INITIALIZATION MANAGER may be given a CREATE request to 
generate a new instance of an ent ity of some type at a given 
location with a given attitude. 

Entities, such as vehicles or drivers may be given commands. 
Vehicles may be given commands to change speed to a given 
value or turn left or right at some rate. Drivers may be told 
to go to some location and stop or they may be told to go to 
and pass through a location at a given speed. 
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The CONSOLE and DISPLAY MANAGERs described above are intended 
primarily for debugging and development. They do not represent 
a viable design approach for an OPERATOR INTERFACE. A 
flexible, user friendly mechanism to allow a non-programmer to 
control a CGF must be developed but this has not become a 
priority at the current stage of the project. 

6.3.1.2.2.3 UPDATE 

The UPDATE MANAGER is a periodically scheduled service that 
traverses a list of all entities (vehicles) and executes a 
routine to update each entity (vehicle dynamics). It locates 
the address of the update routine in the entity's control 
block. If the entit y is not initialized, and therefore not 
ready for updates, the value in the routine field is NULL and 
nothing is done. Specifying the update routine in the control 
block permits selection of routines tailored to the needs of 
different types of entities. 

The rate at which the UPDATE MANAGER reschedules itself is 
variable and may be controlled via a message to the UPDATE 
MANAGER. 

6.3.1.2.2.4 NETWORK 

The modules permi tting communication between one CGF 
simulation node and other nodes on a network form the NETWORK 
MANAGER. The services provided by this module include 
synchronous transmission and asynchronous reception of PDUs 
(via interrupt service routines) and byte swapping for 
incoming and outgoing packets. 

In the current implementation, only VEHICLE APPEARANCE PDUs 
are generated for transmission or handled -upon reception. 
Other PDU types are currently ignored when received. 

Use of the network for other types of messages is anticipated. 
This could include simulation configuration and control, and 
simulated message traffic between entities such as unit 
commanders. 

'.3.1.2.2.5 MOVING OBJECTS 

The behavior of entities generated on nodes external to the 
CGF simulation node must be monitored to provide up to date 
information to the CGF. This is handled by the MOVING OBJECTS 
MANAGER (MOM). 

The MOM receives a message from the NETWORK MANAGER 
corresponding to each VEHICLE APPEARANCE PDU received via the 
Network. The MOM creates a data structure for each entity the 
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first time it receives location or appearance data . Each time 
thereafter, it updates that data structure to reflect the last 
known " fix ll

, or accurate position and attitude. 

Periodically, at a rate that may be modified via the console 
interface, the MOM computes its best estimate of each entity's 
position and saves that in the data structure. 

Other modules make use of the dead reckoning (OR) information 
by calling services provided by the MOM. The DISPLAY MANAGER 
may use that data to draw entities on a planview screen. 
various modules may use the MOM ' s information to simulate the 
location via visual, aural, or electromagnetic means, of 
certain entities. 

6.3.1.2.2.6 TERRAIN DATABASE 

The TERRAIN DATABASE MANAGER provides information concerning 
the stable portion of the environment. It accesses a terrain 
database file containing terrain polygon information 
(including roads and rivers) and feature data such as the 
locations and sizes of trees, treelines, and buildings. The 
SIMNET MCC terrain database format is currently used . This is 
arranged in 500 meter square terrain patches. 

The TERRAIN DATABASE MANAGER uses a caching strategy to 
provide quick access to data without requiring the entire 
database to be kept in memory . Patches are read from the file 
and kept in the patch cache area. This system attempts to 
reduce the number of disk accesses by using a "Least Recently 
Used " (LRU) algorithm. The LRU scheme retains patches that are 
active or that have been recently used, letting patches that 
have become stagnant (relatively) leave the cache to make room 
for new patches being read from disk. 

6.3.1.2.2.7 TERRAIN DATABASE SERVICES 

Access to patches is provided through the use of local terrain 
regions . A region is defined to be a square area consisting 
of nine patches. Each entity is assigned a region when it is 
initialized. The patch containing the entity's location is the 
central patch and the eight surrounding patches are determined 
and added to the region. Whenever an entity moves across a 
patch boundary, its new centra l patch is determined and the 
region is updated. 

An entity can obtain terrain information from the patches 
within its region . Services are provided to extract specific 
data from a patch, such as a list of all the buildings or the 
l ocat ion of the nearest tree. The elevation at an XY 
coordinate can be computed from the surface polygon 
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information. This is used by another service which computes 
the orientation of an object placed on the terrain surface. 

6.3.1.2.3 SIMULATED ENTITIES 

Entities, whether vehicles, individuals, or combinations are 
r epresented by a combination of data structures and routines. 
Information concerning the state of an entity is kept in its 
control block, as are the addresses of specific routines such 
as the update routine or the message servicing routine for the 
entity type. 

6.3.1.2.3 . 1 SIMULATING VEHICLES 

A simplified vehicle dynamics model has been implemented which 
provides mechanisms to move a vehicle about with enough 
fidelity to avoid serious breaches of reasonability. 

Acceleration and deceleration is linear. Aerodynamic 
resistance is ignored. Braking to a stop is performed with a 
certain amount of cheating to avoid problems arising from 
variable update rates. A vehicle's speed does not change in a 
turn and, in fact, a vehicle may tUrn at any radius at any 
speed. Currently, vehicles may not be directed to a specific 
location in reverse, although they can be made to back up and 
to turn while backing. 

A vehicle may be given a desired acceleration rate to be used 
until specifically modified. When the vehicle is then given a 
desired speed it will begin to accelerate or decelerate at the 
specified acceleration rate until it has reached the desired 
speed, which it will then maintain. Turns may be made at zero 
speed by pivoting. 

6.3.1.2.3.2 SIMULATING INDIVIDUALS 

The system has been developed to allow entities other tha n 
vehicles to be simulated but current emphasis has been on 
implementation of a tank and its driver. The primary maneuver 
command for a tank driver may be expressed as: 

GO TO, AND PASS THROUGH, LOCATION (X,Y) AT'S' METERS PER 
SECOND 

A special 
equivalent 

case of this 
to saying: 

uses • S· equal 

GO TO, AND STOP AT, LOCATION (X,Y) 
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The required maneuvering is currently generated by a state 
machine that turns the vehicle toward the destination, 
accelerates or decelerates as required, and makes continual 
course and speed corrections until the conditions in the 
command have been satisfied. 

In addi ticn to the physical operations inval ved in vehicle 
control, a driver has a number of higher order functions. 
Obstacle Detection/Avoidance and Avoidance of Detection by 
others must be considered in short term route planning. 
Vehicle Status monitoring and some other tasks must be 
performed continuously . Some tasks will be performed as 
responses to specific events . 

Other simulated entities, such as the commander of a tank may 
be implemented. Functions performed by a commander could 
include accepting a mission assignment, planning a mission, 
determining a route for travel, issuing orders to subunits, 
monitoring the environment, directing weapons usage, etc. 

6.3.1 .2.3.3 SIMULATING SITUATIONAL AWARENESS 

For an entity to generate behavior appropriate to its 
circumstances it needs: 

information that describes the current state of its 
environment 

a means to organize and interpret that information to 
determine the "current situation" 

• a body of knowledge concerning what to do in different 
situations. 

• the capability to perform certain actions to effect the 
actions required 

• a means to keep track of its own actions, states, and 
processes 

Some categories of behavior considered in this project include 
maneuvering through terrain, avoidance or engagement of other 
entities, employment of weapons, and communications. 

Paths that bypass obstacles such as buildings , areas of steep 
slope, or rivers, may be generated by a number of methods, 
usually involving the determination of all possible path 
segments and a determination of the lowest cost path using 
graph search methods [18) [28) [29) [31). Calculation of headings 
and speeds required to achieve a position relative to other 
moving entities may be done arithmetically. Determination of 
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the boundaries of regions shielded from sight by intervening 
obstacles may be performe d using geometric methods. 

All of these problems may be solved in different ways using 
algorithms suited to the various purposes. However, it may be 
quite difficult to relate the courses available that avoid 
collision with a building to regions where the chances of 
being detected visually are minimized, all the while 
attempting to make progress along a thrust line. 

At this stage in the development of the project it appears 
that one of the most compl icated aspects of the hurnan 
cognitive processes that must be simulated involves the fusion 
of different kinds of environmental information into one 
cohesive internal model that can be used for a number of 
purposes, such as: 

Exploitation of Terrain Features for Route Planning and 
Obstacle Avoidance 
Determination of regions providing cover and/or 
concealment 
Monitoring and tracking threat entities 
Avoidance of collisions with other moving objects, 
especially when maneuvering in formation 
Determination of visibil ity of regions and entities 

Models of subsets of the environment may be constructed based 
on any number of different data structures and algorithms, but 
advantages are to be gained by adopting a unifying structure 
to accommodate as many of the above mentioned purposes as 
possible. 

If a single structure can accommodate information about the 
terrain and the entities located on it, then relationships 
between their positions may be more easily determined . 

One approach currently being investigated constructs a local 
JDap or "region of cognizance lt in memory to represent a 
geographical subset of the arena appropriate to the entity ' s 
situa tion. Information concerning terrain elevation and slope 
and the overlying features is obtained from the TERRAIN 
DATABASE MANAGER . Information concerning the locations and 
accelerations of entities , both friendly and threat, is 
obtained from the MOVING OBJECTS MANAGER and from other 
sources such as intelligence messages and sighting reports. 

A local JDAP may be constructed when needed, covering a 
specific area with the required level of detail and 
granularity. For initial mission planning, a large 
geographical area might be mOdeled with a coarse granularity 
u sing a ll the information available at the time relating to 
threat locations and desired destinations. 
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Portions of a pre-planned route might be periodically 
reevaluated during the execution of a mission or whenever new 
or more detailed information is made available concerning 
threats and sightings . 

At the small end of the scale, frequent analyses could be made 
of the region directly surrounding a maneuvering entity in 
order that courses and speeds may be calculated to avoid 
obstacles , to arrive at the correct location in a formation, 
to avoid collisions, or to acquire and engage targets. 

6.3 . 1.2.3.4 USE OF A GRID AS A LOCAL HAF 

preliminary work has used a local map implemented as a two 
dimensional grid composed of square regions of the terrain. 
Each square region is considered homogeneous and is 
represented by a data structure describing its 
characteristics, such as: 

• Whether or not the area is passable to the entity 

• Whether or not the area is visible to the entity or to 
others 

• Other costs of traversing the area, such as fuel or wear 
values 

• Whether the area contains a threat, and if so, its type 

Before using the local map, its grid is populated with 
information from the Terrain Database and other sources. Once 
a grid is built, a number of operations may be performed on it 
to extract information. 

- Paths may be derived which miss obstacles. The Lee­
Moore algorithm [3][19] which uses an expanding wavefront 
function with selective backtracking can find paths 
through mazelike regions. With extensions, this has the 
capacity to generate paths that avoid collisions with 
multiple moving objects. 

- Intersections of courses with threats, obs'tacles, and 
other entities may be extracted by "drawing ll a line 
across the grid and reading the contents of the grid 
squares that are intersected. 

Costs of traversal of paths may be calculated by 
assigning weights to grid locations based on factors such 
as nearness of threats, screening by squares representing 
cover or concealment, and terrain surface type such as 
roadway or mUd. 
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Al ternati ve paths may be generated by maski ng of 
regions or masking of certain grid information on all 
grid locations . 

Paths are c urrentl y generated which miss obstacles. These are 
returned as linked lists of locations. These locations are 
suppl ied to the driver's maneuvering mechanisms and a 
success fu l traversal of terrain results. The route 
finding/ following mechanism as currentl y implemented for a 
tank driver may be expressed as: 

FIND AND FOLLOW AN OBSTACLE AVOIDI NG ROUTE FROM YOUR 
CURRENT LOCATION TO LOCATI ON (X,Y) AND STOP AT THAT NEW 
(X , Y) • 

6.3.1.2.4 UTILITIES 

6.3.1.2.4.1 LINKED-LIST TOOLS 

The message services, timers, terrain database management, 
terrain r easoning a nd other modules a ll make extensive use of 
queues. A utility providing a variety ot capabilities based on 
a doubly-l inked list is included . Queues may be created and 
initialized . Items may be appended , prepended, or inserted 
into queues. Items may also be inserted in a sort ed order and 
items may be located by value. 

6.3.1.2.4.2 ARCHITECTURE SPECIFIC TOOLS 

A number of utility routines are provided to perform data 
convers ions. These are used to swap bytes for CPU 's which use 
different ordering schemes and to generate r otation matrices 
and to extract a ngles from these matrices in order to be 
compatible with SIMNET Version 6. 

6 . 3.1 .2 .4.3 MATHEMATICAL AND GEOMETRIC TOOLS 

A number of tools used in geometrical and numeric operations 
and debugging are grouped together. They inc lude functions 
which: 

• determine angular differences between pairs of bearings 

• dump various messages and s tructures to the screen fo r 
debugging 

• build local maps using data from a terrain database and 
the MOVING OBJECTS MANAGER 
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use local maps to locate routes and paths through 
obstacles 

• perform matrix operations used in computation of attitude 
and location in 3-space. 

6.3.2 OFFLINE SOFTWARE 

Functions performed "offline" in support of the CGF fall 
into two primary categories: 

1) Behavioral assemblages must be: 
• written 
• assigned to specific entity types 
• tested and validated 
• modified 

2) A starting scenario must be defined for a simulation 
exercise. This may include: 

• specification of a terrain database 
• creation and placement of players at initial 

locations 
• assignment of players to forces and operational 

units 
promulgation of initial operational orders and 
mission assignments 

The implementation of these functions is intimately related to 
the structure of the online software. Behavioral databases 
must be created in formats usable by the entities at runtime. 
Scenarios must be specified in a manner allowing runtime 
software to dynamically load terrain databases and create 
entities. 

6.3.2.1 GATHERING KNOWLEDGE FOR THE SYSTEM 

As mentioned earlier, simulated entities will generate their 
" behavior" using a variety of mechanisms which may include: 

Algorithmic solutions 
• Finite State Machines 

Production Systems 
Inference Engines 
Lists and Tables 

Information from Domain Experts is usually r equired in 
order to construct behavioral models which exhibit 
reasonable levels of credibility. However, experts in 
tactical areas are rarely programmers and the traditional 
means of extracting information has been through use of 
a Knowle4ge Engineer. This is an individual with intimate 
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knowledge of the details of the simulation process who 
interviews the Domain Expert and generates databases to 
drive the simulation. This has proved to be time 
consuming and difficult and is one of the worst 
bottlenecks in the knowledge transfer process. 

This project has investigated several ideas for the automation 
of part or all of the tasks performed by a Knowledge Engineer. 
Ideally , a system would be developed that would prompt a 
Domain Expert to provide the information appropriate and 
necessary to the behavior to be simulated and would convert 
that information to a form that could be utilized efficiently 
by the simulation. This does not appear to be practical for 
the areas best suited to efficient, algorithmic solutions . 
However, several approaches to the other areas are discussed 
below. 

6.3.2.1.1 FINITE STATE MACHINES 

A Finite state Machine (FSM), in the context of this 
investigation, refers to a collection of the states or 
conditions that an entity might be in at any time, the actions 
permitted or required while in each state , and the criteria 
for transition from one state to another . 

An FSM may be represented by a series of statements, by a 
mul tidimensional table, or by a graphical means such as a 
diagram that uses: 

• Named circles (bubbles) to represent states 
Directed lines (arrows) between states to indicate 
permissible transitions 

• Rectangular blocks on the transition lines holding text 
to describe the criteria for transition 
Text within the named circles to describe the action(s) 
to be taken while in that state 

A graphical approach would appear to be most suitable for non­
programmers. An interface could be developed which would allow 
a domain expert to define the overall structure of the state 
diagram through the use of a Graphics Editor using a menu and 
a pointing device such as a mouse. This might include placing 
the state " bubbles" and drawing the transition lines. 

Information describing the transition criteria and the state 
specific actions could be selected from a menu or could be 
entered as text. A system similar to this has been developed 
by Harris Corporation [24]. 1ST is currently examining this 
product, called AKATS, and is investigating ways to acquire it 
for integration and testing. 
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6.3.2.1.2 PRODUCTION RULE LISTS 

One area of investigation has resulted in the development at 
1ST of a tool to convert "English-like ll rules into executable 
code. 

Lists of It •• Then .• type statements, ca lled Production 
Rules, are generated by a Domain Expert using a text 
editor. These lists are submitted to a preprocessor which 
generates a file consisting of a series of C language 
subroutines and data structures relating them . The 
preprocessor's output format is compatible with an IST 
developed Produotion Rule Interpreter which efficiently 
executes these compiled lists of rules at runtime. 

For a Domain Expert to be able to generate these production 
rules there must be a defined set of testable conditions from 
which the "if II portions of the rules are constructed, and a 
defined set of executable functions from which the "then" 
consequents are built. In order that the process may be 
convenient and efficient, some method must be available to 
present these options to the individual as he writes the 
rules. A multi-window interface would seem to be appropriate 
here, with testable items listed in one window, executable 
functions in another, and the set of rules being edited 
displayed in a third. 

To ease the burden on the Domain Expert, a template should be 
provided to the user whenever he wishes to generate a new 
rule. The text editor should provide the expert the capability 
to modify or delete rules, save rulebases in files, merge 
files, etc. 

6 . 3 . 2.1.3 INFERENCE ENGINES 

An Inference Enqine is a software facility for making 
judgements based on the presence or absence of " facts" and on 
rules of implication. A number of systems , such as CLIPS and 
NEXPERT are commercially available for generating and 
executing databases constructed for this purpose. 1ST is 
currently using CLIPS in an attempt to derive some generalized 
rules for tactical movement. 

6.3.2.1 •• LISTS AND TABLES 

Some aspects of CGF behavior involving the generation of 
sequential actions are suited t o the use of data structures 
such as lists and tables. Mission planning and route 
specification are especially dependent upon the generation of 
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lists of actions which must take place serially or in 
parallel. 

1ST is developing the concept of "Mission scripts" which may 
be implemented as groups of lists containing information about 
actions to be taken, areas to be traversed, or messages to be 
sent, etc. These lists may be statically defined, as for a 
standard mission such as a road march, but at times, dynamic 
analysis of situations may require modification or replacement 
of lists as conditions mandate changes in plans, routes, or 
responses to events. 

One factor common to all of these knowledge acquisition 
and representation packages is that each must be tailored 
to the specific environment toward which the knowledge is 
targeted. Currently, no available system can accommodate 
all of the types of knowledge required by a CGF, although 
an attempt to integrate a number of approaches has been 
made by BBN in the development of KREME [1] . More work 
must be done defining the different types of required 
behavior before benefits will be gained by development of 
specific tools to create these different types of 
behavioral databases. 

6.3.2.2 SCENARIO GENERATION 

There are two reasons why an automated method 
scenario creation is necessary. They are complexity 
repeatability_ 

for 
and 

Creation and placement of individual entities within an arena 
involves making a large number of choices. Entities must: 

- be selected for their type 
be placed reasonably on the terrain 

• be assigned to operational units 
• be assigned behavioral databases 
- be assigned initial missions, standing orders, etc. 

For training purposes as well as for debugging and validation, 
it is important to be able to recreate specific conditions so 
that behavioral sequences may be observed more than once, or 
from different vantage points. 

A mechanism contributing to the satisfaction of both 
requirements might be implemented using a scenario file which 
could be built using an offline mechanism and would be read by 
the simulation at the beginning of execution. 

Such a mechanism could use a series of screens and menus 
to guide the user through the creation of the scenario. 
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The user would be asked what type of entity he wished to 
create, where to locate the entity on the terrain, ex, y, 
heading, etc.) and possibly what production rule 
databases or state machine definitions to use for the 
behavior of that entity if a non-standard entity was 
being assigned. The user might also be asked to enter a 
mission plan for an entity or force. This could be done 
with an editor which would guide the user in filling in 
specific items needed for a mission plan. 

A useful feature would be the ability to save a scenario 
under a unique name so that it might be reused. Another 
would be a feature to automatically generate and place 
units consisting of multiple entities. 

6.3.2.3 CONTROLLING THE DEVELOPMENT PROCESS 

Development of behavioral assemblages will likely require a 
Domain Expert to specify behavioral databases, test them by 
observing running simulations, and modify them as required. 
This cycle could be streamlined by use of a Development 
Executive which would allow the expert to specify whether he 
wanted to generate databases, assign them to entities, develop 
or modify a scenario, or select a scenario and invoke its 
simulation. Features could be developed such as the ability to 
"checkpoint" a running simulation, halt it, and restart the 
simulation at a named checkpoint. This would permit 
comparision of behavior resulting from different versions of 
a behavioral database. 

6.3.2.4 INTERFACES 

Standard and user friendly interfaces are desirable for 
all of the functions described above in order to remove 
the requirement for a user to learn multiple protocols. 
The interface could consist of a series of screens and 
menus. This interface would allow the calling of routines 
from a menu item to accomplish some task, such as file 
creation or field validation. With a totally menu driven 
system, all input from the user could be validated and 
unreasonable choices excluded. 

The use of a mouse is anticipated so that the user will 
have only to point to a menu item and click it to 
activate that item. The operator would also benefit from 
inclusion of IIHELP" screens. These text screens would be 
accessed via HELP menu items and would explain specific 
aspects of the system. 

7 CURRENT CAPABILITIES AND LIMITATIONS 
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The testbed currently permits simulation of multiple vehic les 
but generation of more than one vehicle per VECTRA requires a 
slower than optimal update r a te. This produces somewhat jerky 
movement . The highest possible update rate is determined by 
the number of entities being generated, the type of behavior 
specified for each, and the number of remotely generated 
entities being tracked by the MOVING OBJECTS MANAGER . 

The behavior currently implemented simulates a driver's 
a c tions in driving across terrain, turning, accelerating, and 
braking to reach a specified location while avoiding collision 
with static obstacles. This component will be used as a 
building block by higher level modules such as mission 
executors. 

Enti ties are created and placed via console input on the 
ground, at a given (x,y). This is an interim solution which 
will not be necessary once scenario generation is implemented. 

Commands currently implemented include the following: 

DISPLAY MANAGER 
• Center the Display Offset at (x,y) 

Set the Display Scale to N meters per pixel 
• Toggle the display of terrain polygons 

UPDATE MANAGER 
• Set the update rate for entities (vehicle dynamics) to N 

hundredths of a second 

MOVING OBJECTS MANAGER 
• Set the update rate used by the MOVING OBJECTS MANAGER 

for Dead-Reckoning to N hundredths of a second 
Toggle the displ ay of the MOVING OBJECTS MANAGER tracking 
data 

INITIALIZATION MANAGER 
• Create and place a vehicle at (x,y) with given heading 

INDIVIDUAL VEHICLES 
• Command a vehicle to accelerate/decelerate to N meters 

per second 
• Command a vehicle to use N meters per second per second 

as standard acceleration rate until further notice 
• Command a vehicle to turn right or left 

Command a vehicle to go to (x,y) and stop 
Command a vehicle to go to and pass through (x,y) at N 
meters per second 
Command a vehicle to set its main gun elevation to N 
radians 

• Command a vehicle to slew its turret azimuth to N radians 
relative to vehicle heading 
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Command a veh icle to devel op a nd follow an obstacle 
avoidi ng path to (x,y) a nd stop at that location 
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