
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-1990

A Testbed For Automated Entity Generation In Distributed A Testbed For Automated Entity Generation In Distributed

Interactive Simulation Interactive Simulation

Gilbert Gonzalez

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Gonzalez, Gilbert, "A Testbed For Automated Entity Generation In Distributed Interactive Simulation"
(1990). Institute for Simulation and Training. 8.
https://stars.library.ucf.edu/istlibrary/8

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/8?utm_source=stars.library.ucf.edu%2Fistlibrary%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

B 219-i

I
=

A Testbed for

Automated Entity
Generation in
Distributed Interactive
Simulation
Intelligent Simulated Forces Laboratorl

Gilbert Gonzalez
Daniel Mullally
Scott Smith
Amy Vanzant-Hodge
Jo hn Walkl, IS
•• I. ,. 1,_

August 15, 1990

Institute ~Cj Simulation and Training
12424 Research Parkway, Suite 300
Orlando Fl 32826

university of Central Florida
Division of Sponsored Research

IS •

lST·TR·90- 15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

h TESTBED FOR AUTOMATED ENTITY GENERATION IN
DISTRIBUTED INTERACTIVE SIMULATION

Technical Report

PUBLICATION NUMBER IST- TR-90-15

GILBERT GONZALEZ
DANIEL MULLALLY

SCOTT SMITH
AMY VANZANT-HODGE

JOHN WATKINS
DOUGLAS WOOD

INTELLIGENT SIMULATED FORCES LABORATORY

The Institute for Simulation and Training
12424 Research Parkway, Orlando, Florida 32826

15 AUGUST 1990

University of Central Florida

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Table of Contents

1 INTRODUCTION
1 . 1 PURPOSE
1.2 DISTRIBUTED INTERACTIVE SIMULATION
1.3 ROLE OF AUTOMATION IN DIB
1.4 THE STATE OF THE ART OF AUTOMATED FORCES
1.5 COMPONENTS OF A COMPUTER GENERATED FORCE
1.6 PROBLEMS IN BUILDING AUTOMATED PORCES

1.6.1 COORDINATED TERRAIN REASONING ..
1.6.2 VEHICLE DYNAMICS AND STABILITY
1.6,3 PARTITIONING, INTERFACE, AND MODIFICATIONS
1.6.4 EXPANDABILITY

2 CONTRACT REQUIREMENTS

3 TESTBED REQUIREMENTS

... 1ST'S APPROACH TO THE PROJECT

5 PLANNED CAPABILITIES OF THE TESTBED
5.1 NUMBER OP ENTITIES • ••
5.2 HUMAN CONTROL INTERFACE
5.3 AUTONOMOUS BEHAVIOR
5.4 SCOPE OP THE DEFINED BEHAVIOR
5.5 IMPLEMENTATION METHODS AND CONSIDERATIONS

6 DESCRIPTION OF THE TESTBED
6 . 1 SYSTEM ARRANGEMENT
6.2 CGP HARDWARE . . • •
6.3 CGF SOFTWARE • • • •

6.3.1 ONLINE SOFTWARE
6.3.1.1 DESIGN AND DEVELOPMENT PHILOSOPHY
6 .3. 1.2 ORGANIZATION • • • • •

6.3.1.2.1 EXECUTIVE MODULES .
6 . 3 . 1 . 2 . 3 SIMULATED ENTITIES
6 . 3 . 1 . 2 . 4 UTILITIES

6.3.2 OFFLINE SOFTWARE

•

6.3.2 . 1 GATHERING KNOWLEDGE FOR THE SYSTEM
6 . 3.2.1 . 1 FINITE STATE MACHINES
6 . 3 . 2.1 . 2 PRODUCTION RULE LISTS
6.3.2.1.3 INFERENCE ENGINES
6 . 3 . 2 . 1 . 4 LISTS AND TABLES

6.3.2.2 SCENARIO GENERATION
6.3. 2 .3 CONTROLLING THE DEVELOPMENT PROCESS
6 . 3 . 2 . 4 INTERFACE ...

7 CURRENT CAPABILITIES AND LIMITATIONS

1
1
1
1
2
3
6
6
7
7
7

9

10

11

12
1 2
13
13
13
13

14
14
1 5
1 5
1 6
1 6
17
17
23
2 7
28
28
29
30
30
30
31
32
32

32

I
I 1 INTRODUCTION

1.1 PURPOSE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

This technical report is submitted as the first of two
deliverable items specified under Task 3c of Workplan 2, dated
13 November, 1989 for DARPA cont ract N61339-B9-C-0044,
INTELLIGENT SIMULATED FORCES: EVALUATION AND EXPLORATION OF
COMPUTATIONAL AND HARDWARE STRATEGIES. It discusses the
configuration of the "Semi-Automated Forces" testbed hardware
and software demonstrated at the May 1990 Quarterly Review at
IST, and the capabilities of the testbed as planned and as
currently implemented.

1.2 DISTRIBUTED INTERACTIVE SIMULATION

Distributed Interactive simulation (DIS) is a n exercise in
which a number of simulation devices are interconnected and
the individual entities generated thereon are able to interact
within a shared virtual environment. The simulators may be
interconnected at one geographic location by a Local Area
Network (LAN), or they may be physically dispersed but linked
via a Long Haul Network.

DIS may be applied to simulations of many types but this
discussion addresses the application of battle simUlation
involving a number of different weapons or sensor platforms.
A simulator may generate one or more platforms. Within this
discussion, the term entity is used to describe a platform
such as a single aircraft , armored vehicle, missile site,
dismounted infantry unit, etc .

Within a DIS exercise, a collection of simulated entities that
are operationally linked to cooperate (or in this case , fight
together as a unit) will be called a torce. A computer
generated environment within which the simulated entities
interact will be called an arena.

1 . 3 ROLE OF AUTOMATION IN DIS

Certain aspects of the training applications of DIS may
require the generation of large numbers of entities in an
arena to train a relatively small number of individuals. This
is a valid use of a large scale system , however, using a fully
manned simulator to generate each entity in a large force
would require a large investment both in equipment and human
resources.

In some cases the training may be directed toward commanders
and there may be no requirement to train the individual crews

1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

and squads of manned vehicle simulators. In other cases an
opposing force may be required and there may be few, if any,
individuals familiar with enemy doctrine and procedures to
provide the crews for manned enemy vehicle simulators. Indeed,
there will probably be no manned simulators designed
specifically to represent enemy vehicles.

In such situations, the need exists for automated players.
These are entities whose behavior, including that of their
simulated crews to observe, maneuver, communicate, and
generate and carry out plans, is generated by software. The
term computer Generated Force (CGr) is used in this discussion
to refer to the combined hardware and software system used to
generate a set of automated players. It is also used to refer
to the collection of players themselves as a cooperating
military unit.

Depending on the number of entities simulated and their
organizational structure, a CGF may be tasked with certain
missions or g o als. These goals may be specified at the
beginr:ting of an exercise by a n individual acting as an
exerC1se controller or they may be provided during the
exercise by an individual acting as the commander of the
automated force. At some level, though, there must be at least
one instance of hUman mission assignment or control.

An interaction or interleaving of hUman con'trol and software
generated behavior is possible at levels below the highest.
When the option is provided for replacement by direct human
intervention of func tions available via software, a Semi­
Automated Force (SAFOR) exists.

1.4 THE STATE OF THE ART OF AUTOMATED FORCES

Many different approaches have been taken to solve the problem
of simulating the behav ior and performance of military units.
Few simulations, however, have been of the realtime/ DIS type.
At the beginning of this project, a survey was conducted. It
was the conclusion of the study that:

It • • • the emphases of the activities in intelligent
simulated forces could be classified into two categories.
The first category can be referred to as Intelligent
Simulated Forces This type of effort tends to focus on
the development of models which exhibit realistic micro
behavior at the individual vehicle to company level. The
second category of models can be classified as
Battlefield Simulation ... It tends to deal with larger
units of the force and seems to emphasize exercising of
strategies and tactics." [2]

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Numerous efforts have been directed toward the second category
such as the "hex-based" wargames like CACTUS . The report
stated that the BSN SAFOR (vintage August 1989) exemplified
the first category and ..•

"was an example of a model that appeared efficient when
directed toward the application for which it was
intended, but began to break down when extended to cover
both classes of models." {2]

BBN's SAFOR, as currently implemented, (software version V3.9)
requires intensive micromanagement by the human operator to
the extent that he cannot play the part of the individual
directing the force (platoon commander, squad leader, etc.)
without concentrating considerable attention on the actions of
individual entities. This result was apparently foreseen but
judged to be an acceptable tradeoff for the risk inherent in
attempting to implement an AI based solution to the generation
of behavior.

In August, 1989, a n independent panel reviewed BBN's efforts
and made a number of observations and recommendations that
have influenced the direction of this effort. They indicated
that there is some value in improving route planning and
terrain reasoning techniques and that some issues, such as
learning, may be very difficult, but would contribute
significantly to the realism of the behavior generated, see
[5 J •

IST researchers feel that it will not be possible to scale up
such a system to generate large scale intelligent forces
without a proportional scaling of the effort required by human
controllers. They also feel that the specification of "new"
behavior within that system will require a great deal of hard­
coded effort to compensate for a lack of a solid foundation of
intelligent "automated " behavior from the entity level upward
through all levels built upon them.

At this time there is a need to determine the operations,
functions, requirements and components that are fundamental to
the generation of credible and robust behavior of automated
entities in a DIS environment . This project is an attempt to
discover, implement, and demonstrate these requirements in the
form of a research testbed to be made accessible to others
working in the area.

1.5 COMPONENTS OF A COMPUTER GENERATED FORCE

Within DIS, interaction between simulators is accomplished
through the exchange of messages or Protocol Data units (PDU).

3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

For the purposes of this discussion, a POll will be equated to
a single message transmitted via a network. POlls are used to:

• Convey the appearance or location of some entity

• Describe some specific action, such as firing a weapon or
energizing a radar

• Describe a request on the part of an entity , such as a
request for resupply or repair

• Represent an acknowledgement of a request

• convey simulated communications information , such as a
radio transmission

• Organize and control the simulation session and perform
other tasks related to information gathering for training
purposes

All players on a DIS generate POUs describing themselves, and
all will receive POlls generated by other players . Like a
manned simulator, a CGF is a source of PDUs. The difference is
that the behavior of the Vehicles and other entities provided
by the CGF is generated by software and not by direct human
control, see [23] .

To be useful and to provide a credible simulation, the
behavior expressed via a CGF's PDUs must be indistinguishable
from that generated by manned simulators. Therefore, what is
needed is a mechanism to simulate enough of the actions of the
automated entities to allow PDUs to be built in realtime to
give them the appearance on the network of manned simulators.
They must move realistically, appear to make reasonable
decisions, respond appropriately to changes in the environment
and otherwise interact properly with the other elements of the
DIS.

For simulated entities to move reasonably and appear realistic
to observers in the DIS, some aspects of physics must be
considered when determining their locations, speeds, and
accelerations. To accomplish this, a Dynamics Model must be
implemented for each kind of entity.

One of the fundamental requirements of an automated entity is
that it appear correctly positioned in space . Correct
placement of land vehicles on the surface of the terrain
requires information about the elevation and slope of the
surface and even about the material of which the surface is
made.

4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The mec hanisms by which a vehiclels physica l b e hav ior is
consistent with the physica l c haracteristics of
environment is called Terrain Correlation.

kept
the

In addition to generating cues describing the physical
behavior and appearance of the entities (acceleration, roll,
pitch, yaw, dust clouds, sound, smoke and flames, etc.) a CGF
must generate the behavior that results in these changes in
appearance. This often means simulating the human decision
making that would be controlling these entities were they
produced by manned simulators.

The aspects of the indiv idual that must be considered here
include e nvironmental sensing, reactions to stimuli, the
generation and following of short and long term plans,
communication and cooperation with other entities, and
vulnerability to events.

The ability of an entity to correlate and evaluate various
aspects of its surroundings and its internal states may be
called Situational Awareness . The data required for this
includes information about the terrain and other entities in
the vicinity. The mechanisms by which a decision making entity
interprets the physical characteristics of its environment may
be called Terrain Reasoning. This includes analysis of such
features of the terrain as contours, obstacles, cover and
concealment, and intervisibility. Short and long term planning
will make extensive use of this facility.

Situational Awareness must also incorporate the ability to
detect, track, and interpret the actions of other simulated
entities. Location of threats, tracking of moving objects, and
detection of emissions from other simulated entities requires
an ability to monitor the actions (expressed in their POUs) of
other players. This facility may be called Environmental
Monitoring.

Collection of data describing the environment does not, by
itself, generate behavior. The formation of sequences of
actions directed toward goals is by far the most complicated
and difficult portion of the task.

Simulation of the thought processes performed by one or more
players is a complex problem requiring the coordination of
multiple cooperating (and sometimes conflicting) efforts. In
order to gain a better understanding of its operation, one may
attempt to partition hUman decision making into subcomponents.
When this is done, it may appear that a number of different
kinds of behavior are involved and these different tasks may
require unique models for description and simulation.

5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Some aspects of behavior, such as control of a vehicle by a
driver, may be most easily described as a series of states
with definite transitions caused by certain events or
conditions. Plans generated to carry out a mission might be
expressed as combinations of lists of tasks to be accomplished
serially and lists of tasks to be performed simultaneously.
Rules for making decisions about the relative values of
threats or choices of actions to take may sometimes be
expressed as collections of conditional statements .

Whatever the results of attempts to categorize and understand
decision making requirements, there will be a requirement for
various Behavioral Modeling facilities which will require
information in some form to guide their operation. The static
information used by a Behavioral Modeling component will be
referred to as a Behavioral Database to differentiate it from
the dynamic information derived from Environmental Monitoring
and Terrain Reasoning.

A CGF must interact with other simulation elements via a
communications medium. Whether the simulated medium channels
visual information, radio traffic, auditory cues, or
information describing physical contact, some mechanism is
required to coordinate transmission and reception of POUs
which encode the information. This is referred to as the
Network Management facility because computer network
facilities are the prime mechanism at present.

Finally, the CGF must be built on some sort of software
structure that provides the computational resources, access t o
behavioral databases, sequencing, and other tools required to
perform a simulation. This may be performed by a computer's
operating system or by a special purpose Executive or Monitor
program.

1.6 PROBLEMS IN BUILDING AUTOMATED FORCES

Software implementation of anyone of the components mentioned
in the previous section could probably be accomplished in a
multitude of ways. Numerous algorithms could be devised to
track moving entities and various commercially available
expert system shells might be capable of generating decisions.
However, some basic information requirements must be met to
supply any of these specific solutions with data.

1.6.1 COORDINATED TERRAIN REASONING

Terrain Reasoning requires a Terrain Database arranged in a
fashion that allows rapid and efficient access. This database
must also correlate closely with the databases used by manned
simulators to generate their own terrain interaction and with

6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

visual databases used by Computer Image Generators to depict
the environment .

Terrain data has many uses. Rapid updates of elevation and
ground slope data are used to allow a land vehicle to generate
accurate orientation cues. Less often, the terrain data is
required for obstacle avoidance and route planning. Data is
required at different levels. Route planning may require
information for a relatively small area or may require access
to data structures describing entire networks of roads or
rivers. The means by which a terrain database (or databases)
is structured determines its suitability and convenience for
various purposes. An excellent discussion of some of these
problems is to be found in [27).

Lack of correlation has the potential to lead to the
appearance of unrealistic behavior on the part of CGF entities
when they are viewed by individuals on other kinds of
simulation nodes.

1.6.2 VEHICLE DYNAMICS AND STABILITY

Vehicle dynamics models must generate motion and attitude
information of sufficient quality that the entities are not
distinguishable from manned simulators by observers in the
DIS. However, it appears that CGF vehicles do not always need
to model everything with the same level of detail required by
manned simulators, especially those incorporating motion
platforms. They must, however, account for problems inherent
in dynamic control systems, especially as there is no human
feedback incorporated. Update rates and their consequent
effects on stability must be considered.

1.6.3 PARTITIONING, INTERFACE, AND MODIFICATIONS

Partitioning of tasks between hardware resources (multiple
CPUs) or software modules creates a requirement to specify
their interfaces. A balance must be maintained between the
specification of the details of the interfaces and the
resultant effects on the functions a nd capabilities of the
modules implementing the different categories. The interfaces
must be developed together with the functions of the modules
that use them. A judicious placement of interfaces eases the
inevitable problems arising from later modifications to
functionality.

1.6.4 EXPANDABILITY

7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A desirable characteristic of a CGF would be the notio n of
expandability . This concept of the potential for increased
functionality after initial development may be viewed both
horizontally and vertically.

Development of "behavior" for a CGF is largely a process of
Knowledge Engineering. Extraction of rules and descriptions of
behavior from Domain Experts is necessary in order to gain
some confidence that the behavior to be generated will be
correct. If it were possible to reuse behavioral sub functions
that were developed for, say, an armored vehicle, to develop
the capability to simulate an unarmored wheeled scout vehicle,
the potential to save immense amounts of work would be
realized. For this reason, an Object-Oriented design is likely
to be a wise approach to the overall design philosophy.
Whether this would be best implemented using an "Object­
oriented ll language remains to be seen. However, the capability
to expand horizontally, by adding new types of entities and
new functions to preexisting entities is necessary and
entirely possible using good software engineering techniques.

In the vertical dimension, however, expandability means
grouping lower level organizational units into higher levels
and being able to construct new higher order behavior on top
of robust and complete lower level capabilities. In order that
a squad may be simulated faithfully, it may be necessary to
simulate each individual or team within the squad to some
level of detail and with some level of autonomy.

While it may be possible to impose some organizational control
on each individual element of a group via an artificial
external control module, such mechanisms may break down when
complicated interactions are required. It is more likely that
coordinated behavior would be successfully generated when
individual instantiations of the components execute autonomous
behavior with cooperative goals included.

This may be best illustrated by examples. First, take the case
of maneuvering in formation. For a vehicle to maneuver to its
assigned station in a moving formation it must determine a
course and speed to generate the necessary relative movement
within some period of time. This may be done independently by
each individually simulated entity or it could be performed by
a coordination algorithm that directed all vehicles within a
formation. The first method would require a vehicle to make
decisions based on its own observations of the behavior of
surrounding entities . The second method would require a rather
"omniscient" point of view. Both cases are complex and may be
very difficult to solve in a manner that could avoid
collisions. It is likely, however, that solutions based on the
limited local knowledge of each entity would be more likely to

8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

generate realistic "human ll behavior than solutions which had
the benefit of complete knowledge of all parties' intentions.

A second example involves organizational affiliation and
control. If every entity maintains a concept of its chain of
command and its own position within it, it may be more likely
to model attrition realistically, including the confusion that
may arise when a link is removed from the chain. Control
should pass in a defined manner when a leader is eliminated
and an entity should still be able to carry out its standing
orders in the event it becomes leaderless.

2 CONTRACT REQUIREMENTS

Workplan Number 2, dated 13 November 1989 states that the goal
of Task 3 is:

Uto develop, evaluate, and demonstrate a testbed based on
off-the-shelf advanced microcomputer and coprocessor
technology as a viable implementation strategy for simulated
opposing forces."

The baseline testbed concept is to employ ASAT (Perceptronics
PC-based Avionics Situational Awareness Simulator) technology
as a framework to investigate applications and utilities of
such technologies as off-the-shelf advanced 80386 multitasking
personal computers, low cost CIGs, rule-based expert systems
and neural net simulators.

The testbed is to be capable of implementing a "narrow-slice
simulated forces demonstration" interfaced to SIMNET.

Subtask 3c requires the acquisition and development of
hardware and software for the testbed, including schedulers
and executives, man-machine interfaces, basic simulation
models, intelligence modules and preliminary databases,
displays, and network interfaces and various combinations of
coprocessors. A prime concern is the capability of the
testbed to operate as part of a SIMNET network at the end of
the project.

Subtask Deliverables include:

1. A demonstration of the basic testbed capabilities.
(Completed at the quarterly review on 15 May 1990 at IST)

2. A technical report describing the configuration,
parameters and results of the demonstration.

3. A final report documenting the capabilities of the
various combinations of coprocessors to simulate opposing
forces.

9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

This report is submitted as item 2 in the list above .

3 TESTBED REQUIREMENTS

The workplan requires a testbed that provides a flexible ,
reconfigurable tool for experimentation with, and evaluation
of, hardware and software solutions to problems arising in the
development of a CGF .

There are many ' elements which must be investigated. The
following is a partial list:

• Simulation of vehicle dynamics
• Simulation of human decision making
• Rout e and Path planning and following
• Simulation of communications traffic
• Algorithms for packet filtering by Intelligent Gateways
• Intervisibility calculations

Terrain reasoning and navigation
• Simulation of command, control, and coordination of

multiple units
• Determination of the capability of different types of

coprocessors and computer architectures to perform these
tasks

• Development and optimization of interfaces for the
runtime control of the simulated forces

• Development of efficient tools for the creation of
behavioral databases

• Correlation of Visual and Navigational aspects of terrain
databases

With so many unknowns and so
extremely flexible approach
experimentation in one area may
effects in others.

many possible avenues, an
is required so that

proceed with minimal side-

The testbed was designed to satisfy the
requirements:

following

• To initially provide a working simulation capability for
at least two cooperating entities (vehicles , dismounted
infantry squads, etc.) with the capability to accept and
carry out one or t wo limited missions, and to operate and
maneuver together.

• To use off-the-shelf hardware.

To be flexible in overall system design, allowing new
modules and functionality to be added when they are
discovered to be necessary, or allowing variations to be
substituted for currently existing modules, all the while
minimizing the side-effects on other modules .

10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

• To allow different commercially available software
packa ges (such as expert systems s hells) to be i ntegrated
in different a r eas .

•

•

To minimize the constraints
system software on the design
the actual simulation.

To be compatible with SIMNET.

41ST'S APPROACH TO THE PROJECT

imposed by hardware and
of the portions which do

In laying out a strategy for the design of the testbed, a
number of requirements were considered. These ranged from firm
specifications, such as the requirement for interfacing the
system to SIMNET, through less well defined areas such as
implementing a IInarrow-slice Semi-Automated Force", to
requirements that were determined by the researchers to be
implied by the uses to which a IItestbed" might be put (e.g. it
must be flexible, reconfigurable, generic, portable, etc.)

As defined earlier, the term "Semi-Automated Force" refers to
a CGF wherein the option is provided for replacement by direct
human intervention of functions available via software at
levels below the highest echelon being simulated .

This intervention may be useful for various purposes:

• simulation of the decision making capabilities of a human
is extremely complex and it would be very computationally
expensive to simulate some functions faithfully.

• selective human intervention would allow runtime
modification of behavior with no modification of the
software.

• some training may be gained by the individuals performing
the intervention, especially when the opportunity arises
to employ them at differing tasks.

However, to implement this sort of intervention would require
complicated I/O interfaces to various levels of the simulation
as well as a simUlation which was already mostly automatic to
provide a "pool" of facilities from which certain elements
could be removed and replaced by the combination of interfaces
and hUman assistance. In other words, to build a "Semi -
Automated" System, one would first need to build an
"Automated" System , then add facilities which would remove and
replace selected parts and provided data formatting services
to make the I / O interfaces act like the original interfaces
between the software modules .

11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Putting first things irst, the project has focused on:

• Determining whic
implement a robu

functions or modules
t automated system

are necessary to

• Specifying the minimal requirements of these modules

• Implementing the modules to verify the completeness of
the scheme and verifying its capacity to generate a
credible simulation.

The intent of the researchers is to develop a system with the
potential for expansion in horizontal as well as vertical
directions. Initial development, however, will keep these
dimensions small. Horizontally, efforts will be concentrated
on developing only a few types of entities, such as an M1Al
tank and possibly dismo'J.nted infantry. Vertically, efforts
will be limited to squads and possibly platoons.

Development efforts will focus on structure. Models, such as
those for vehicle dynamics, will be kept as simple as possible
and possibly even rather artificial. The feeling is that more
detail can be added later where necessary, if a robust and
capable structure exists from the beginning.

Behavioral capabilities for a few relatively simple missions
will be developed to determine fundamental requirements for
individual entities. An example from the Combat Instruction
Sets developed by Perceptronics (see [25]) will be implemented
as a guideline. The concept of a "Narrow-Slice ll will be
applied both horizontally and vertically.

The workplan stated that the testbed would be based on ASAT
technology. This will be true in the sense that PC/AT
architectures are used. The ASAT software design, however, was
found to be unusable for a number of reasons: documentation is
non-existent, and the code is uncommented, poorly structured,
and very tightly integrated to the point that modifications
and enhancements are impractical. As is explained below, a
flexible, expandable software architecture has been developed
from the ground up to provide the facilities for research.

5 PLANNED CAPABILITIES OP THE TESTBED

This section presents a description of the functionality to be
implemented by the testbed at the end of the development
process. Currently, a subset of this functionality has been
implemented. Those modules already operable will be noted.

5.1 NUMBER OP ENTITIES

12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The testbed will simulate the maneuvering, environmental
sensing, communications, and decision making of two or more
entities and will generate and receive SIMNET compatible
messages to communicate with other nodes on the network.

5.2 HUMAN CONTROL INTERFACE

The testbed will communicate with an operator who will perform
the tasks of the next higher level in the chain of command
above the highest level simulated by the testbed. In other
words, the operator will assign missions or tasks only to the
highest echelon simulated and will receive feedback via text
messages, visually, or computer synthesized speech.

5.3 AUTONOMOUS BEHAVIOR

The simulated entities will employ aspects of terrain
reasoning to navigate through a locale described by a Terrain
Database. Entities will plan routes which lead to a
destination, avoid obstacles in the terrain, avoid other
maneuvering entities, and may, in some cases, employ features
of the terrain for cover or concealment. The terrain database
will be compatible with that used by SIMNET. It may be one of
the versions of the SIMNET terrain databases (such as that
used by the MCC) or may be transformed from a version encoded
according to SOlS (12] into a more usable version.

Simulated entities will receive orders specifying missions,
interpret those orders, generate their own internal plans to
carry out those missions, follow their plans, and replan when
necessary.

5.4 SCOPE OF TME DEFINED BEHAVIOR

A limited set of behavioral modules or contexts will be
developed, probably using one or more of the ·Combat
Instruction Sets listed in [25] as models.

5.5 IMPLEMENTATION METHODS AND CONSIDERATIONS

Simulated entities will generate their "behavior" using a
variety of mechanisms. These may include:

1. Algorithmic solutions to procedures that must be done
repetitively and often.

Example: Periodic computation of vehicle speed and
location.

13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Example: Relative motion problems such as station keeping
or interception trajectories may be solved using
Maneuvering Board methods (vector manipulation
techniques), see (15).

2. Finite state Machine solutions to procedures best modeled
as sequences of discrete states.

Example: Control of vehicle turning and acceleration
parameters to come to a specified heading, brake to a
stop, or pass through a given location.

3. Production Systems for solutions best modeled as IF-THEN
rules.

Example: If GREATLY_OUTNUMBERED and FUEL_RANGE> 10 MILES
THEN BEGIN RETREAT ELSE BEGIN HASTY_ATTACK.

4. Inference Engines for solutions to problems
partial data, levels of uncertainty, and
educated guesses concerning the environment .

involving
requiring

Example: ENEMY REPORTED IN REGION AND UNIDENTIFIED
CONTACT SIGHTED AT EXTREME RANGE IMPLIES CONTACT IS ENEMY
WITH CONFIDENCE FACTOR OF 75\.

5. Lists and Tables for operations such as mission planning
and route planning.

Example: A Reconnaissance Mission might be compiled into
a structure consisting of several lists: A list of
intermediate destinations to be reached sequentially, a
list of activities to be performed continuously during
the mission, and a list of activities to be triggered by
events.

The testbed software is structured to permit integration of a
wide variety of tools such as those listed above.

6 DESCRIPTION OF THE TESTBED

The design and configuration of the testbed hardware and
software is described in this section .

6.1 SYSTEM ARRANGEMENT

The Testbed hardware located at IST is arranged as a Local
Area Network with two nodes. One node consists of a SIMNET
M1Al tank simulator running in standalone mode to provide a
visual display of CGF entities or an entity for the CGF to
play with or against . The other node is a single processor

14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

host computer used to generate the CGF. The nodes are linked
using thin ETHERNET cable (RG-58).

6.2 CGF HARDWARE

The CGF processor is a Hewlett-Packard RS/ 25C VECTRA computer.
It is a PC/ AT machine with a n Intel 80386 processor running at
25KHz., an 80387 math coprocessor, 4 Megabytes of main memory ,
a 304 MegaByte hard disk, a color VGA monitor, keyboard, and
a 3COM Etherlink-II Ethernet interface board.

The single processor architecture was used because it was
sufficiently powerful to execute an initial prototype whose
primary purpose was to determine fundamental requirements.
From the beginning, however, it was suspected that the
processing required to simulate a single vehicle would quickly
overwhelm the capabilities of one 80386. When sufficient
experience has been gained with the prototype, it will be
possible to reassign various software modules to different
hardware platforms suited to particular types of computation.

In addition to the above equipment, Three RGB video monitors
(borrowed from another contract) are used to provide a remote
view of the M1Al driver's vision blocks. The monitors were
located in the same room as the VECTRA to provide a convenient
mechanism for observing the behavior of the computer generated
entities.

Two SIlmET STEALTH vehicles were installed at 1ST in mid­
summer 1990. They were, however, not ready for use at the time
of the demonstration, so the monitors described above were
substituted. The STEALTH vehicles prov ide a much better tool
for observation and are being used extensivelY at this time.

6 • 3 CGF SOFTWARE

The software running on SIMNET equipment is BBN ' s Version 6.0.
It is not described in this report, which is intended to
describe the CGF software developed at 1ST.
The CGF Software is grouped into two primary categories.
OFFLINE software is used to develop behavioral databases, to
link those databases with specific entity types in order to
build simulation modules, and to create specific s t arting
scenarios. ONLINE software generates CGF behavior in realtime
and communicates with the SIMNET equipment.

Development of online software has outpaced that of the
offline portion because the offline tools must be tailored to
accommodate the specific mechanisms used online to generate
behavior . It appears at this point in the development of the

15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

project that offline database creation tools will have to be
developed after the mechanisms, such as state-machine
executors, inference engines, and production rule
interpreters, have been assigned to different tasks and have
been tested using "hand-crafted" databases.

The online software is described in the next section. The
section on offline tools follows and is primarily a discussion
of ideas that have been discussed, likely target areas for
their implementation, and brief descriptions of likely
implementations.

6.3.1 ONLINE SOFTWARE

The CGF runtime software is described in the following
sections.

6.3.1.1 DESIGN AND DEVELOPMENT PHILOSOPHY

A software development strategy was adopted which provides a
logical path from determination of requirements through
specification of design to validation and optimization. Rapid
prototyping methods were used to provide a working framework
which permitted experimentation and testing at a very early
stage. With this tool, a number of ideas were tried and a
minimal list of required functions was compiled. Some of these
were built and added to the framework until the capabilities
discussed later in this report were realized.

A software design strategy was adopted which uses an Object­
Oriented structure coupled with a message passing mechanism.
For prototyping, this was implemented using a simple executive
(or scheduler) written in c, running as a single software
process to run on a single processor PC/AT type architecture
under DOS 3.3.

The Object-Oriented design strategy was chosen so that once
the functions of the modules were determined and prototyped,
they could be rehosted or "ported II with minimal change to a
hardware base with a true multitasking operating system which
would provide a more efficient framework for execution. Later
they could be rehosted on a multi-processor system where
shared busses, shared memory, a local area network, or some
other mechanism could be used for message passing internal to
the CGF and various processors could be chosen for the
specific requirements of different modules.

The overall plan was to develop various functional modules, to
integrate them, determine the required communications and data
requirements, determine the minimal set of functions required

16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

to implement a IInarrow-slicell SAFOR, and then to determine
where performanc e and capability might be enhanced by means of
specific hardware devices such as advanced coprocessors,
TRANSPUTERS, signal processors, pattern matchers,
communications chips, neural nets, etc.

By partitioning functions into objects from the beginning we
felt that we increased our chances for making optimal
assignments to specialized architectures . That is, we decided
to determine what was necessary before we decided what
resources we would acquire to accomplish the tasks.

6.3.1.2 ORGANIZATION

6.3.1.2.1 EXECUTIVE MODULES

The first prototype is implemented using a very simple
executive mechanism to schedule the execution of short term
tasks for each of the functional modules within one CGF
simulation node. The executive, along with most of the rest of
the simulation, is written in C. The executive is described in
more detail in (9].

The executive runs as a single process under OOS 3.3.
Following its own initialization and that of some of the other
modules of the simulator, the EXECUTIVE repetitively services
three main functions in a loop. It locates and dispatches the
highest priority message that has been queued for
transmission, then checks a queue of items that have been
assigned various timeout value, and then checks for external
input via the console keyboard.

The primary mechanism for scheduling task execution and for
communication between modules is via message. Messages are
placed on one of a number of priority queues by an executive
service on behalf of the sender. Messages are serviced in a
first in first out manner within a priority queue, but no
message is serviced until all messages of a higher priority
have been serviced. The priority queues are doubly-linked
lists, as are all queues currently implemented.

6.3 . 1.2.1.1 SCHEDULING AND DISPATCH

Modules which must be able to receive messages or have tasks
scheduled are assigned data structures called control blocks.
A control block contains data describing the state of the
module at some time and also contains the addresses of
routines which may be called by some other facility to request
that module to perform some action without knowing the
internal details about how that module will perform the

17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

requested action. These routines are usually used to interpret
the contents of a message directed to that module.

The EXECUTIVE maintains a list of all the control blocks in
the system and their addresses. When the EXECUTIVE locates the
highest priority message in the queues, it unlinks it and
dispatches it to its intended destination by doing the
following:

1. It locates an 10 for the destination in a specified field
in a header at the beginning of the message.

2. It uses the 10 to index into its list of control blocks
and obtains the address of the destination module I 5

control block.

3. It locates a specified field in the control block where
the address of a service routine is located, calls that
routine, and passes the address of the message to the
routine as a parameter.

The service routine called by the EXECUTIVE is responsible for
performing any actions necessary on receipt of the message and
returning control to the EXECUTIVE when finished. The control
block must be used to save state variables between scheduled
operations.

6 .3. 1.2.1.2 MESSAGE PASSING

Within a CGF simulation node, messages are passed between
modules by a combination of EXECUTIVE services. Messages may
be of variable size and are usually created dynamically,
although they may be reused if the originator and destination
agree not to release the buffer.

A module sending a message provides the address of the buffer
and a requested time delay to the executive service
•• ncS_msq(). If the delay is zero, this service appends the
message buffer to the priority message queue corresponding to
the priority field in the message header. If the delay is
other than zero, it specifies the number of hundredths of
seconds the message should be delayed before being queued on
a priority message queue. In that case, it will be inserted in
the special sorted queue called the timeout chain.

When the EXECUTIVE is ready to check the priority queues for
a message to dispatch, it calls the service msq scan() which
searches the queues and dispatches the highest priority
message queued, if any.

6 .3. 1.2 . 1 .3 TIMERS AND DELAYS

18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Periodic scheduling of actions at regular intervals,
scheduling of operations after computed delays, and any other
events that should take place after some minimum time period,
is performed via the timeout chain which is a doubly-linked
list. Messages queued on the chain are placed into the chain
in chronological order, based on the time they are queued plus
the delay parameter located in the message header.

When the EXECUTIVE is ready to check the TIMEOUT CHAIN for
messages to forward, it checks the first item to see if its
expiration time has already passed. If it has, it unlinks that
element and queues it to the proper priority message queue for
future dispatch. It then continues to drain the TIMEOUT CHAIN
until it encounters a message that has not yet expired or,
when it has traversed the entire chain.

6.3.1.2.1.4 INITIALIZATION

Initialization of the EXECUTIVE involves initializing all of
its queues to an empty condition. Other modules, such as the
UPDATE MANAGER and the MOVING OBJECTS MANAGER are initialized
by initializing their queues and sending them UPDATE messages
(which they continue to reuse throughout the simulation). It
is possible at this time to automatically create other
entitles and to begin their simulation, either by specifying
other routines or by reading and interpreting an
initialization file.

Once the simulation has started, messages may be sent to the
INITIALIZATION MANAGER to request the creation of control
blocks for simulated entities and their subsequent activation.

6.3.1.2.2 SIMULATOR MODULES

6.3.1.2.2.1 DISPLAY

A simplified PLANVIEW display is implemented by a DISPLAY
MANAGER. This consists of services to draw an aerial view of
a part of the arena, services to locate the center of the area
to be depicted and the scale at which items will be drawn, and
routines to erase and redraw icons representing moving
entities.

The PLANVIEW DISPLAY currently draws entities being simulated
in different colors. Entities being simulated locally are
drawn YELLOW. Entities being tracked via the MOVING OBJECTS
MANAGER are drawn RED when a Vehicle Appearance PDU provides
appearance information and in GREEN whenever a dead reckoned
position is computed.

Orthogonal grid lines are drawn to aid in determining
positions of objects and terrain features such as contour

19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

polygons, trees, treelines, tree canopies, buildings, roads,
and rivers are drawn in the currently active regions (for a
definition of region see the discussion on the TERRAIN
DATABASE MANAGER below) of the arena. For debugging purposes,
intended tracks of vehicles may be sketched in as well as some
intermediate information computed du ring terrain reasoning
operations.

6. 3 .1 .2 . 2 . 2 CONSOLE

For debugging purposes, and to allow requests to be entered
manually, a mechanism is included to accept keyboard. This
allows keystrokes to be buffered as they are entered so that
other processing does not have to be suspended while awai t ing
a complete message.

The keyboard is polled in the main executive loop and when a
character is available it is appended to a keystroke buffer
or, if the character is a backspace, causes the last character
to be removed from the end of the b u ffer. When a carriage
return is entered, the entire keystroke buffer is processed.

Processing the keystroke buffer is a matter of locating
destination, operation , and parameter fields in the buffer and
using them to construct a message in a dynamically al l ocated
message buffer . The new message is t hen sent via executive
services and t he keyst roke buffer is cleared for reuse.

Console messages may be directed toward a number of
destinations :

The DISPLAY MANAGER may be given an absolute or relative
centering offset or a scale.

The MOVING OBJECTS MANAGER may be given an update rate at
which it will periodically recompute the DR positions of all
the objects it is t r acking.

The UPDATE MANAGER may be given an update rate at wh ich it
will periodically execute the update routines of all the
entities in its list . This varies the r ate at which vehicle
dynamics models are computed.

The INITIALIZATION MANAGER may be given a CREATE request to
generate a new instance of an ent ity of some type at a given
location with a given attitude.

Entities, such as vehicles or drivers may be given commands.
Vehicles may be given commands to change speed to a given
value or turn left or right at some rate. Drivers may be told
to go to some location and stop or they may be told to go to
and pass through a location at a given speed.

20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The CONSOLE and DISPLAY MANAGERs described above are intended
primarily for debugging and development. They do not represent
a viable design approach for an OPERATOR INTERFACE. A
flexible, user friendly mechanism to allow a non-programmer to
control a CGF must be developed but this has not become a
priority at the current stage of the project.

6.3.1.2.2.3 UPDATE

The UPDATE MANAGER is a periodically scheduled service that
traverses a list of all entities (vehicles) and executes a
routine to update each entity (vehicle dynamics). It locates
the address of the update routine in the entity's control
block. If the entit y is not initialized, and therefore not
ready for updates, the value in the routine field is NULL and
nothing is done. Specifying the update routine in the control
block permits selection of routines tailored to the needs of
different types of entities.

The rate at which the UPDATE MANAGER reschedules itself is
variable and may be controlled via a message to the UPDATE
MANAGER.

6.3.1.2.2.4 NETWORK

The modules permi tting communication between one CGF
simulation node and other nodes on a network form the NETWORK
MANAGER. The services provided by this module include
synchronous transmission and asynchronous reception of PDUs
(via interrupt service routines) and byte swapping for
incoming and outgoing packets.

In the current implementation, only VEHICLE APPEARANCE PDUs
are generated for transmission or handled -upon reception.
Other PDU types are currently ignored when received.

Use of the network for other types of messages is anticipated.
This could include simulation configuration and control, and
simulated message traffic between entities such as unit
commanders.

'.3.1.2.2.5 MOVING OBJECTS

The behavior of entities generated on nodes external to the
CGF simulation node must be monitored to provide up to date
information to the CGF. This is handled by the MOVING OBJECTS
MANAGER (MOM).

The MOM receives a message from the NETWORK MANAGER
corresponding to each VEHICLE APPEARANCE PDU received via the
Network. The MOM creates a data structure for each entity the

21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

first time it receives location or appearance data . Each time
thereafter, it updates that data structure to reflect the last
known " fix ll

, or accurate position and attitude.

Periodically, at a rate that may be modified via the console
interface, the MOM computes its best estimate of each entity's
position and saves that in the data structure.

Other modules make use of the dead reckoning (OR) information
by calling services provided by the MOM. The DISPLAY MANAGER
may use that data to draw entities on a planview screen.
various modules may use the MOM ' s information to simulate the
location via visual, aural, or electromagnetic means, of
certain entities.

6.3.1.2.2.6 TERRAIN DATABASE

The TERRAIN DATABASE MANAGER provides information concerning
the stable portion of the environment. It accesses a terrain
database file containing terrain polygon information
(including roads and rivers) and feature data such as the
locations and sizes of trees, treelines, and buildings. The
SIMNET MCC terrain database format is currently used . This is
arranged in 500 meter square terrain patches.

The TERRAIN DATABASE MANAGER uses a caching strategy to
provide quick access to data without requiring the entire
database to be kept in memory . Patches are read from the file
and kept in the patch cache area. This system attempts to
reduce the number of disk accesses by using a "Least Recently
Used " (LRU) algorithm. The LRU scheme retains patches that are
active or that have been recently used, letting patches that
have become stagnant (relatively) leave the cache to make room
for new patches being read from disk.

6.3.1.2.2.7 TERRAIN DATABASE SERVICES

Access to patches is provided through the use of local terrain
regions . A region is defined to be a square area consisting
of nine patches. Each entity is assigned a region when it is
initialized. The patch containing the entity's location is the
central patch and the eight surrounding patches are determined
and added to the region. Whenever an entity moves across a
patch boundary, its new centra l patch is determined and the
region is updated.

An entity can obtain terrain information from the patches
within its region . Services are provided to extract specific
data from a patch, such as a list of all the buildings or the
l ocat ion of the nearest tree. The elevation at an XY
coordinate can be computed from the surface polygon

22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

information. This is used by another service which computes
the orientation of an object placed on the terrain surface.

6.3.1.2.3 SIMULATED ENTITIES

Entities, whether vehicles, individuals, or combinations are
r epresented by a combination of data structures and routines.
Information concerning the state of an entity is kept in its
control block, as are the addresses of specific routines such
as the update routine or the message servicing routine for the
entity type.

6.3.1.2.3 . 1 SIMULATING VEHICLES

A simplified vehicle dynamics model has been implemented which
provides mechanisms to move a vehicle about with enough
fidelity to avoid serious breaches of reasonability.

Acceleration and deceleration is linear. Aerodynamic
resistance is ignored. Braking to a stop is performed with a
certain amount of cheating to avoid problems arising from
variable update rates. A vehicle's speed does not change in a
turn and, in fact, a vehicle may tUrn at any radius at any
speed. Currently, vehicles may not be directed to a specific
location in reverse, although they can be made to back up and
to turn while backing.

A vehicle may be given a desired acceleration rate to be used
until specifically modified. When the vehicle is then given a
desired speed it will begin to accelerate or decelerate at the
specified acceleration rate until it has reached the desired
speed, which it will then maintain. Turns may be made at zero
speed by pivoting.

6.3.1.2.3.2 SIMULATING INDIVIDUALS

The system has been developed to allow entities other tha n
vehicles to be simulated but current emphasis has been on
implementation of a tank and its driver. The primary maneuver
command for a tank driver may be expressed as:

GO TO, AND PASS THROUGH, LOCATION (X,Y) AT'S' METERS PER
SECOND

A special
equivalent

case of this
to saying:

uses • S· equal

GO TO, AND STOP AT, LOCATION (X,Y)

23

to zero. This is

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The required maneuvering is currently generated by a state
machine that turns the vehicle toward the destination,
accelerates or decelerates as required, and makes continual
course and speed corrections until the conditions in the
command have been satisfied.

In addi ticn to the physical operations inval ved in vehicle
control, a driver has a number of higher order functions.
Obstacle Detection/Avoidance and Avoidance of Detection by
others must be considered in short term route planning.
Vehicle Status monitoring and some other tasks must be
performed continuously . Some tasks will be performed as
responses to specific events .

Other simulated entities, such as the commander of a tank may
be implemented. Functions performed by a commander could
include accepting a mission assignment, planning a mission,
determining a route for travel, issuing orders to subunits,
monitoring the environment, directing weapons usage, etc.

6.3.1 .2.3.3 SIMULATING SITUATIONAL AWARENESS

For an entity to generate behavior appropriate to its
circumstances it needs:

information that describes the current state of its
environment

a means to organize and interpret that information to
determine the "current situation"

• a body of knowledge concerning what to do in different
situations.

• the capability to perform certain actions to effect the
actions required

• a means to keep track of its own actions, states, and
processes

Some categories of behavior considered in this project include
maneuvering through terrain, avoidance or engagement of other
entities, employment of weapons, and communications.

Paths that bypass obstacles such as buildings , areas of steep
slope, or rivers, may be generated by a number of methods,
usually involving the determination of all possible path
segments and a determination of the lowest cost path using
graph search methods [18) [28) [29) [31). Calculation of headings
and speeds required to achieve a position relative to other
moving entities may be done arithmetically. Determination of

24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

the boundaries of regions shielded from sight by intervening
obstacles may be performe d using geometric methods.

All of these problems may be solved in different ways using
algorithms suited to the various purposes. However, it may be
quite difficult to relate the courses available that avoid
collision with a building to regions where the chances of
being detected visually are minimized, all the while
attempting to make progress along a thrust line.

At this stage in the development of the project it appears
that one of the most compl icated aspects of the hurnan
cognitive processes that must be simulated involves the fusion
of different kinds of environmental information into one
cohesive internal model that can be used for a number of
purposes, such as:

Exploitation of Terrain Features for Route Planning and
Obstacle Avoidance
Determination of regions providing cover and/or
concealment
Monitoring and tracking threat entities
Avoidance of collisions with other moving objects,
especially when maneuvering in formation
Determination of visibil ity of regions and entities

Models of subsets of the environment may be constructed based
on any number of different data structures and algorithms, but
advantages are to be gained by adopting a unifying structure
to accommodate as many of the above mentioned purposes as
possible.

If a single structure can accommodate information about the
terrain and the entities located on it, then relationships
between their positions may be more easily determined .

One approach currently being investigated constructs a local
JDap or "region of cognizance lt in memory to represent a
geographical subset of the arena appropriate to the entity ' s
situa tion. Information concerning terrain elevation and slope
and the overlying features is obtained from the TERRAIN
DATABASE MANAGER . Information concerning the locations and
accelerations of entities , both friendly and threat, is
obtained from the MOVING OBJECTS MANAGER and from other
sources such as intelligence messages and sighting reports.

A local JDAP may be constructed when needed, covering a
specific area with the required level of detail and
granularity. For initial mission planning, a large
geographical area might be mOdeled with a coarse granularity
u sing a ll the information available at the time relating to
threat locations and desired destinations.

25

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Portions of a pre-planned route might be periodically
reevaluated during the execution of a mission or whenever new
or more detailed information is made available concerning
threats and sightings .

At the small end of the scale, frequent analyses could be made
of the region directly surrounding a maneuvering entity in
order that courses and speeds may be calculated to avoid
obstacles , to arrive at the correct location in a formation,
to avoid collisions, or to acquire and engage targets.

6.3 . 1.2.3.4 USE OF A GRID AS A LOCAL HAF

preliminary work has used a local map implemented as a two
dimensional grid composed of square regions of the terrain.
Each square region is considered homogeneous and is
represented by a data structure describing its
characteristics, such as:

• Whether or not the area is passable to the entity

• Whether or not the area is visible to the entity or to
others

• Other costs of traversing the area, such as fuel or wear
values

• Whether the area contains a threat, and if so, its type

Before using the local map, its grid is populated with
information from the Terrain Database and other sources. Once
a grid is built, a number of operations may be performed on it
to extract information.

- Paths may be derived which miss obstacles. The Lee­
Moore algorithm [3][19] which uses an expanding wavefront
function with selective backtracking can find paths
through mazelike regions. With extensions, this has the
capacity to generate paths that avoid collisions with
multiple moving objects.

- Intersections of courses with threats, obs'tacles, and
other entities may be extracted by "drawing ll a line
across the grid and reading the contents of the grid
squares that are intersected.

Costs of traversal of paths may be calculated by
assigning weights to grid locations based on factors such
as nearness of threats, screening by squares representing
cover or concealment, and terrain surface type such as
roadway or mUd.

26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Al ternati ve paths may be generated by maski ng of
regions or masking of certain grid information on all
grid locations .

Paths are c urrentl y generated which miss obstacles. These are
returned as linked lists of locations. These locations are
suppl ied to the driver's maneuvering mechanisms and a
success fu l traversal of terrain results. The route
finding/ following mechanism as currentl y implemented for a
tank driver may be expressed as:

FIND AND FOLLOW AN OBSTACLE AVOIDI NG ROUTE FROM YOUR
CURRENT LOCATION TO LOCATI ON (X,Y) AND STOP AT THAT NEW
(X , Y) •

6.3.1.2.4 UTILITIES

6.3.1.2.4.1 LINKED-LIST TOOLS

The message services, timers, terrain database management,
terrain r easoning a nd other modules a ll make extensive use of
queues. A utility providing a variety ot capabilities based on
a doubly-l inked list is included . Queues may be created and
initialized . Items may be appended , prepended, or inserted
into queues. Items may also be inserted in a sort ed order and
items may be located by value.

6.3.1.2.4.2 ARCHITECTURE SPECIFIC TOOLS

A number of utility routines are provided to perform data
convers ions. These are used to swap bytes for CPU 's which use
different ordering schemes and to generate r otation matrices
and to extract a ngles from these matrices in order to be
compatible with SIMNET Version 6.

6 . 3.1 .2 .4.3 MATHEMATICAL AND GEOMETRIC TOOLS

A number of tools used in geometrical and numeric operations
and debugging are grouped together. They inc lude functions
which:

• determine angular differences between pairs of bearings

• dump various messages and s tructures to the screen fo r
debugging

• build local maps using data from a terrain database and
the MOVING OBJECTS MANAGER

27

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

use local maps to locate routes and paths through
obstacles

• perform matrix operations used in computation of attitude
and location in 3-space.

6.3.2 OFFLINE SOFTWARE

Functions performed "offline" in support of the CGF fall
into two primary categories:

1) Behavioral assemblages must be:
• written
• assigned to specific entity types
• tested and validated
• modified

2) A starting scenario must be defined for a simulation
exercise. This may include:

• specification of a terrain database
• creation and placement of players at initial

locations
• assignment of players to forces and operational

units
promulgation of initial operational orders and
mission assignments

The implementation of these functions is intimately related to
the structure of the online software. Behavioral databases
must be created in formats usable by the entities at runtime.
Scenarios must be specified in a manner allowing runtime
software to dynamically load terrain databases and create
entities.

6.3.2.1 GATHERING KNOWLEDGE FOR THE SYSTEM

As mentioned earlier, simulated entities will generate their
" behavior" using a variety of mechanisms which may include:

Algorithmic solutions
• Finite State Machines

Production Systems
Inference Engines
Lists and Tables

Information from Domain Experts is usually r equired in
order to construct behavioral models which exhibit
reasonable levels of credibility. However, experts in
tactical areas are rarely programmers and the traditional
means of extracting information has been through use of
a Knowle4ge Engineer. This is an individual with intimate

28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

knowledge of the details of the simulation process who
interviews the Domain Expert and generates databases to
drive the simulation. This has proved to be time
consuming and difficult and is one of the worst
bottlenecks in the knowledge transfer process.

This project has investigated several ideas for the automation
of part or all of the tasks performed by a Knowledge Engineer.
Ideally , a system would be developed that would prompt a
Domain Expert to provide the information appropriate and
necessary to the behavior to be simulated and would convert
that information to a form that could be utilized efficiently
by the simulation. This does not appear to be practical for
the areas best suited to efficient, algorithmic solutions .
However, several approaches to the other areas are discussed
below.

6.3.2.1.1 FINITE STATE MACHINES

A Finite state Machine (FSM), in the context of this
investigation, refers to a collection of the states or
conditions that an entity might be in at any time, the actions
permitted or required while in each state , and the criteria
for transition from one state to another .

An FSM may be represented by a series of statements, by a
mul tidimensional table, or by a graphical means such as a
diagram that uses:

• Named circles (bubbles) to represent states
Directed lines (arrows) between states to indicate
permissible transitions

• Rectangular blocks on the transition lines holding text
to describe the criteria for transition
Text within the named circles to describe the action(s)
to be taken while in that state

A graphical approach would appear to be most suitable for non­
programmers. An interface could be developed which would allow
a domain expert to define the overall structure of the state
diagram through the use of a Graphics Editor using a menu and
a pointing device such as a mouse. This might include placing
the state " bubbles" and drawing the transition lines.

Information describing the transition criteria and the state
specific actions could be selected from a menu or could be
entered as text. A system similar to this has been developed
by Harris Corporation [24]. 1ST is currently examining this
product, called AKATS, and is investigating ways to acquire it
for integration and testing.

29

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6.3.2.1.2 PRODUCTION RULE LISTS

One area of investigation has resulted in the development at
1ST of a tool to convert "English-like ll rules into executable
code.

Lists of It •• Then .• type statements, ca lled Production
Rules, are generated by a Domain Expert using a text
editor. These lists are submitted to a preprocessor which
generates a file consisting of a series of C language
subroutines and data structures relating them . The
preprocessor's output format is compatible with an IST
developed Produotion Rule Interpreter which efficiently
executes these compiled lists of rules at runtime.

For a Domain Expert to be able to generate these production
rules there must be a defined set of testable conditions from
which the "if II portions of the rules are constructed, and a
defined set of executable functions from which the "then"
consequents are built. In order that the process may be
convenient and efficient, some method must be available to
present these options to the individual as he writes the
rules. A multi-window interface would seem to be appropriate
here, with testable items listed in one window, executable
functions in another, and the set of rules being edited
displayed in a third.

To ease the burden on the Domain Expert, a template should be
provided to the user whenever he wishes to generate a new
rule. The text editor should provide the expert the capability
to modify or delete rules, save rulebases in files, merge
files, etc.

6 . 3 . 2.1.3 INFERENCE ENGINES

An Inference Enqine is a software facility for making
judgements based on the presence or absence of " facts" and on
rules of implication. A number of systems , such as CLIPS and
NEXPERT are commercially available for generating and
executing databases constructed for this purpose. 1ST is
currently using CLIPS in an attempt to derive some generalized
rules for tactical movement.

6.3.2.1 •• LISTS AND TABLES

Some aspects of CGF behavior involving the generation of
sequential actions are suited t o the use of data structures
such as lists and tables. Mission planning and route
specification are especially dependent upon the generation of

30

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

lists of actions which must take place serially or in
parallel.

1ST is developing the concept of "Mission scripts" which may
be implemented as groups of lists containing information about
actions to be taken, areas to be traversed, or messages to be
sent, etc. These lists may be statically defined, as for a
standard mission such as a road march, but at times, dynamic
analysis of situations may require modification or replacement
of lists as conditions mandate changes in plans, routes, or
responses to events.

One factor common to all of these knowledge acquisition
and representation packages is that each must be tailored
to the specific environment toward which the knowledge is
targeted. Currently, no available system can accommodate
all of the types of knowledge required by a CGF, although
an attempt to integrate a number of approaches has been
made by BBN in the development of KREME [1] . More work
must be done defining the different types of required
behavior before benefits will be gained by development of
specific tools to create these different types of
behavioral databases.

6.3.2.2 SCENARIO GENERATION

There are two reasons why an automated method
scenario creation is necessary. They are complexity
repeatability_

for
and

Creation and placement of individual entities within an arena
involves making a large number of choices. Entities must:

- be selected for their type
be placed reasonably on the terrain

• be assigned to operational units
• be assigned behavioral databases
- be assigned initial missions, standing orders, etc.

For training purposes as well as for debugging and validation,
it is important to be able to recreate specific conditions so
that behavioral sequences may be observed more than once, or
from different vantage points.

A mechanism contributing to the satisfaction of both
requirements might be implemented using a scenario file which
could be built using an offline mechanism and would be read by
the simulation at the beginning of execution.

Such a mechanism could use a series of screens and menus
to guide the user through the creation of the scenario.

31

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The user would be asked what type of entity he wished to
create, where to locate the entity on the terrain, ex, y,
heading, etc.) and possibly what production rule
databases or state machine definitions to use for the
behavior of that entity if a non-standard entity was
being assigned. The user might also be asked to enter a
mission plan for an entity or force. This could be done
with an editor which would guide the user in filling in
specific items needed for a mission plan.

A useful feature would be the ability to save a scenario
under a unique name so that it might be reused. Another
would be a feature to automatically generate and place
units consisting of multiple entities.

6.3.2.3 CONTROLLING THE DEVELOPMENT PROCESS

Development of behavioral assemblages will likely require a
Domain Expert to specify behavioral databases, test them by
observing running simulations, and modify them as required.
This cycle could be streamlined by use of a Development
Executive which would allow the expert to specify whether he
wanted to generate databases, assign them to entities, develop
or modify a scenario, or select a scenario and invoke its
simulation. Features could be developed such as the ability to
"checkpoint" a running simulation, halt it, and restart the
simulation at a named checkpoint. This would permit
comparision of behavior resulting from different versions of
a behavioral database.

6.3.2.4 INTERFACES

Standard and user friendly interfaces are desirable for
all of the functions described above in order to remove
the requirement for a user to learn multiple protocols.
The interface could consist of a series of screens and
menus. This interface would allow the calling of routines
from a menu item to accomplish some task, such as file
creation or field validation. With a totally menu driven
system, all input from the user could be validated and
unreasonable choices excluded.

The use of a mouse is anticipated so that the user will
have only to point to a menu item and click it to
activate that item. The operator would also benefit from
inclusion of IIHELP" screens. These text screens would be
accessed via HELP menu items and would explain specific
aspects of the system.

7 CURRENT CAPABILITIES AND LIMITATIONS

32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The testbed currently permits simulation of multiple vehic les
but generation of more than one vehicle per VECTRA requires a
slower than optimal update r a te. This produces somewhat jerky
movement . The highest possible update rate is determined by
the number of entities being generated, the type of behavior
specified for each, and the number of remotely generated
entities being tracked by the MOVING OBJECTS MANAGER .

The behavior currently implemented simulates a driver's
a c tions in driving across terrain, turning, accelerating, and
braking to reach a specified location while avoiding collision
with static obstacles. This component will be used as a
building block by higher level modules such as mission
executors.

Enti ties are created and placed via console input on the
ground, at a given (x,y). This is an interim solution which
will not be necessary once scenario generation is implemented.

Commands currently implemented include the following:

DISPLAY MANAGER
• Center the Display Offset at (x,y)

Set the Display Scale to N meters per pixel
• Toggle the display of terrain polygons

UPDATE MANAGER
• Set the update rate for entities (vehicle dynamics) to N

hundredths of a second

MOVING OBJECTS MANAGER
• Set the update rate used by the MOVING OBJECTS MANAGER

for Dead-Reckoning to N hundredths of a second
Toggle the displ ay of the MOVING OBJECTS MANAGER tracking
data

INITIALIZATION MANAGER
• Create and place a vehicle at (x,y) with given heading

INDIVIDUAL VEHICLES
• Command a vehicle to accelerate/decelerate to N meters

per second
• Command a vehicle to use N meters per second per second

as standard acceleration rate until further notice
• Command a vehicle to turn right or left

Command a vehicle to go to (x,y) and stop
Command a vehicle to go to and pass through (x,y) at N
meters per second
Command a vehicle to set its main gun elevation to N
radians

• Command a vehicle to slew its turret azimuth to N radians
relative to vehicle heading

33

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Command a veh icle to devel op a nd follow an obstacle
avoidi ng path to (x,y) a nd stop at that location

3 4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.

3 •

4 •

5.

6.

7.

8.

BIBLIOG~PHY

Abrett, G. and Burstein M. . liThe KREME Knowledge Editing
Environment (Revised)", Knowledge Based Systems Vol. 2, BBN
Systems and Technologies Corporation Advanced simulation
Division, Academic Press Limited (October 1988).

Bailey, M. and Companion, M., State-of-the - Art Assessment for
Simulated Forces, University of Centr al Florida Institute for
Simulation and Training, Orlando, FL (November 22 , 1989).

Bannister,
Constructs,

D. a nd Hair,
Academic Press

J.. The Evaluation of Personal
Inc., New York, NY (1968).

Bannister, D. (ed), Perspectives in Personal Construct Theory,
Academic Press Inc., New York, NY (1970).

Brooks, R., Buchanan, B., Lenat, D., McKeown Jr., D., and
Fletcher, J., Panel Review of the Semi-Automated Forces,
Institute for Defense Analyses, IDA Document 0-661 (September
1989) •

Cadiz, J., Ouyang, R., and Thompson, J., Interfacing of the
Silicon Graphics Networkable Flight Simu l ator with SIMNET,
University of Central Florida Institute for Simulation and
Training, Technica l Report IST-TR-89-1 (October 1 989).

Cadiz, J., Ouyang, R., and Thompson, J. , The Simnet Rotation
Matrix, University of Centra l Florida Institute for S i mulation
and Training, Technical Report IST-TR-89-4 (October 1989).

Ceranowicz, A., Downes-Martin, S., and Saffi M., Simnet Semi -
Automated
(Revised) ,
Simul ation

Force Version 3.0: A Functiona l Description
BBN Systems and Technologies Corporation Advanced
Division, Report No. 6939 (October 1988).

9 . Oanisas, K., Smith , S. and Wood D., Sequencer/Executive for
Modular Simulator Design, University of Centr a l Florida
Institute for Simulation a nd Training, Technical Report 1ST
TR-90-1 (January 1990).

10. Downes-Martin, 5 ., Replacing the Exercise Controller with the
Enemy: The simnet Semi-Automated Forces Approach, BSN Systems
and Technologies Corporation Advanced simulation Division,
Report No. 72 11 (December 1989).

11. Intelligent Simulated Forces: Evaluation and Exploration Qf
Computational and Hardware Strategies, University of Central
Fl orida Institute For Simul ation and Training, Work Plan
Report #2 CDRL A002 Contr act N61339-89-C-0044 (Novembe r 13,
1989) .

35

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

12. Lang, E. and Wever, P., SOlS version 3.0 User I 5 Guide:

13 •

Interchange Specification. Class Definitions. Application
Programmer's Interface, BBN Systems and Technologies
Corporation Advanced Simulation Division (August 1990).

Lee, C.. An Alqorithrn for Path Connection and
Applications, IRE Transactions on Electronic Computing,
1961, pp. 346-365.

Its
sept

14. Literature Review for Intelligent Simulated Forces, University
of Central Florida Institute for Simulation and Training
(October 1989).

15. Maneuvering Board Manual , Hydrographic Office Publication No.
217, U.S . Naval Oceanographic Office (1963).

16 . Marcus, S. (ed), Automating Knowledge Acquisition for EXDert
Systems, Kluwer Academic Publishers, Norwell, MA (1988).

17.

18.

19.

20 .

21.

22.

23.

24.

Military Standard (Draft)
Interactive Simulation,
Institute for Simulation
IST-PD-90-2 (June 1990).

Protocol Data Units for pistributed
University of Central Florida

and Training, Procedures Document

Mitchell, J., "An Algorithmic Aooroach to Some Problems in
Terrain Navigation ll

, Artificial Intelligence v37, December
1988, pp. 171- 201.

Moore, E., li The Shortest Path Through a Maze" , Proceedings of
the International Symposium on Switching Theory , Harvard
University Press, Vol. 1, 1959 , pp. 285-292.

Novak , J.
University

and Gowin D., Learning How
Press, New York, NY (1984).

to Learn, Cambridge

Peterson , J., Petri Net Theory and the Modeling of Systems,
Prentice-Hall, Inc., Englewood Cliffs, N.J. (1981).

pope, A., The Sirnnet Network and Protocols, BBN Systems and
Technologies Corporation Advanced Simulation Division, Report
No. 7 1 02 (July 1989).

Rationale Document Protocol Data units for Distributed
Interactive Simulation, University of Central Florida
Institute for Simulation and Training, Procedures Document
IST-PD- 90-1 (June 1990).

Sargeant, J. and Schuerger, J., "A Graphically Oriented
Automated Knowledge Acquisition Tool", Proceedings of Third
Florida Artificial Intelligence Research Symposium, Harris
Corporation, GESD (April 3-6, 1990) 107-111.

36

•

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

25. Simnet Semi-Automated Forces (Version 3. X) Functional
Specification , Perceptronics, Technical Report No. PTR-4043-
15-0200-4/90 (April 1990) .

26. Stahl, H., Ford, K., Adams-Webber J., and Novak, J . , II ICONKAT:
Integrated Constructivist Knowledge Acquisition Tool",
Proceedings of Third Florida Artificial Intellige nce Research
Symposium (April 3-6, 1990) 107 - 111.

27. stanzione, T., Terrain Reasoning in the SIMNET Semi Automated
Forces system, BBN Systems and Technologies corporation
Advanced Simulation Division, Report No. 7140 (October 1989) .

28. Thorpe, C. and Gowdy, J ., Annotated Maps for Autonomous Land
Vehicles, Unpublished, Carnegie Mellon University (1990) .

29. Thorpe, C., Path Relaxation;
Carnegie Mellon University
Report CMU-RI-TR- 84 - 5 (April

Path Planning for Mobile Robot,
Robotics Institute , Technical
1984) •

30. Thorpe, J., The New Technoloay of large Scale Simulator
Networking: Implications for Mastering the Art of 'Warfighting,
Ninth Interservice Industry Training Systems Conference
(November 1987).

31. Tarjan, R., Fast Algorithms for Solving Path Problems, JACM
28(3), July , 1981.

37

I
I
I
I
I
I
I •

I
I
I
I
I
I
I
I
I
I
I

• QOOJO\C\

	A Testbed For Automated Entity Generation In Distributed Interactive Simulation
	Recommended Citation

	0000019.pdf

