
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-1995

Data Analysis Tools Report On The Scanner Management System Data Analysis Tools Report On The Scanner Management System

(SMS) (SMS)

Kevin M. Kearns

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Kearns, Kevin M., "Data Analysis Tools Report On The Scanner Management System (SMS)" (1995).
Institute for Simulation and Training. 216.
https://stars.library.ucf.edu/istlibrary/216

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/216?utm_source=stars.library.ucf.edu%2Fistlibrary%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

I
I
I
I
I '"
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I [\j S T I I U T f F 0 f< sir VI U L A 1 I () f\j A N [) 1 r.(A I i'- j I N G

Contract Number N61339-94-C-0024
CORLAOOR
STRICOM
May 26, 1995

Data Analysis Tools Report
on the Scanner Management
System (SMS)

Institute for Simulaticn and Training
3280 Progress Drive
Orlando FL 32826

University of Ce:1tral Florida
Division of Sponsored Research 1ST -TR·95-12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

INSTITUT E FOR SIMULATION AND TRAINING

Data Analysis Tools Report on the
Scanner Management System (SMS)

IST-TR-95-12
May 26,1995

Prepared for:
STRICOM

Contract Number #N61339-94-C-0024
CDRL AOOR

Institute for Simulation and Training • 3280 Prcgresc Crivo • Orlando, Florida 32826

University of Central Florida • Division of Sponsored Research

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TABLE OF CONTENTS

Introduction .. 2
1. 1 Purpose. .. 2
1.2 Acronyms. .. 2

2 Background .. 2
2.1 Design Goals 2
2.2 System Design ... 3

3 Product. .. 4

4 Appendices ... 4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 Introduction

1.1 Purpose

This report is a contract deliverable item, CDRL AOOR, under subtask 3.2.5.3, entitled
"Data Analysis Tools", of the STRICOM contract N61339-94-C-0024, entitled "TRIDIS: A
Testbed For Research in Distributed Interactive Simulation".

1.2 Acronyms

2

OAT
DOL
DIS
1ST
IIITSEC
MsDOS
PDU
SGI
SUT

Background

- Digital Audio Tape
- Data Definition Language
- Distributed Interactive Simulation
- Institute for Simulation and Training
- InterservicelIndustry Training Systems and Education Conference
- Mircosoft Disk Operating System
- Protocol Data Unit
- Silicon Graphics Inc.
- System Under Test

The Institute for Simulation and Training (1ST) has endeavored to perform DIS
compliance testing of all simulators participating in . DIS interoperability simulations at the
InterservicelIndustry Training Systems and Education Conferences (lIITSEC). 1ST developed
several MsDOS-based tools to help in the compliance testing process, to include a Logger,
Playback, and a Scanner. The Scanner was designed prior to the 1993 IIITSEC to be an
offline, analysis tool that allowed the user to view packets from a logged binary file. That
program had several deficiencies, specifically, it does not perform tests in an automated
fashion, results of tests cannot be automatically recorded electronically, and it is not easily
reconfigurable. Therefore, in June 1994, an effort was started to build the Scanner
Management System to support testing during the 1994 IIITSEC.

2.1 Design Goals

The Scanner Management System was designed with several goals in mind:

• Develop a tool to automate the DIS-compliance testing process. Also, automate
the management of the testing information including the entire test process,
company-specific infonnation, tester infonnation, and SUT information. From
this infonnation be able to generate reports summarizing the results of the

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.2

•

•

•

testing process.

Design a system that is highly flexible and reconfigurable m order to
accommodate different versions of the DIS standard, different test specific
configurations, and different test procedures.

Include both manual and automated test modes. Manual mode will be similar
to the old DOS-based Scanner, but be augmented to include better filtering,
searching and reporting. The Automated mode will allow for on-the-fly
configuration of tests and contain code that is capable of automatically
determining if the logged data meets the requirements of the compliance tests.

Develop in an environment that ensures portability to other platforms.

• Be able to read different logged formats.

•

•

User friendly and easily understandable.

Well documented code, a detailed design document, and a useable users'
manual.

System Design

The Scanner Management System was designed to be similar to a data base
management system, in that, · all information about a SUT was to be saved within the data base
or test suite and could be retrieved later for further analysis. This provides the user with a
clean, organized method of managing the test results for each SUT. The program was also
designed to be highly configurable at runtime. This was achieved by creating ASCII text,
configuration files that defined the PDUs, network protocol layers, entity types, · enumerated
values, and entire management structure for a test suite. Users can easily add to or modify the
values in the configuration files and the program will automatically adapt to the new values.
The program also allows the user to specify which configuration files to load at runtime and
which configuration files to use to override the default configuration with more specific
configuration data.

The system allows the user to filter out unwanted packets and only look at those packets
that meet the criteria for a specific test. To ensure the highest l~vel of portability, the program
was designed around a X Windows Motif user interface and the code was written to the Unix
System V Release 4 standard. The exact, sanle source code has been compiled and run on both
the Motorola and Silicon Graphics environments.

3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3 Product

The first version of the Scanner Management System meets all of the design goals. The
system was used extensively prior to the 1994 I1ITSEC to perform DIS-compliance testing on
all of the simulators that were going to participate. Two executable versions of the software
are included in the OAT backups, a Motorola version and an SGI version, as well as, the
commented source code, configuration files, make files, and readme files.

In order to make the Scanner extremely configurable, a Data Definition Language
(DDL) was developed to define the structure of all DIS PDUs, as well as, the different network
protocol layers. This language allows users to define a PDU by specifying the format of each
field or a group of fields that make up the PDU. Its purpose was limited when it was created
for the Scanner, however, it could be the beginning of a more complete, robust language that
could be used as a baseline definition of each PDU by many other DIS-oriented software
programs.

4 Appendices

4

I
I
I
I
I
I
I APPENDIX A

I Scanner System Design Document

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SYSTEM DESIGN DESCRIPTION

FOR

1ST: SCANNER MANAGEMENT SYSTEM

VERSION 1.0

DATE REVISED: May 24, 1995

Prepared By: The Institute for Simulation and Training

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2

3

4

1ST: SCANNER

TABLE OF CONTENTS

INTRODUCTION
1. 1 Purpose.
1.2 Scope
1.3 Acronyms

REFERENCES

DECOMPOSITION DESCRIPTION
3.1 Module Decomposition

3.1.1 Graphical User Interface
3.1.1.1 Configuration Management Window
3.1.1.2 Test Suite Edit Window

3.1.1.2.1 System Configuration Window
3.1.1.2.2 Network Automated Test Window
3.1.1.2.3 PDU Automated Test Window

3.1.1.3 Timeline Window
3.1.1.4 Packet Count Window
3.1.1.5 Packet Display Window .
3.1.1.6 Packet Filter Window
3.1.1.7 Report Results Window

3.2 Data Decomposition .
3.2.1 Management Structure
3.2.2 Indextable Structure

1
1
1
3

4

DEPENDENCY DESCRIPTION .. 15
4.1 Test Suite File Management 15

SYSTEM DESIGN DESCRIPTION

I
I

1ST: SCANNER

4. 1 . 1 Create 15 I
4.1.2 Open 15
4.1.3 Edit
4.1.4 Save

16 I 16
4.1.5 Close 16
4.1.6 Delete

4.2 Edit
16 I 17

4.3 Testing 18
4.3.1 Automated Testing
4.3.2 Manual Testing

19 I 20
4.4 Report Generation

5 INTERFACE DESCRIPTION

20

22 I
5.1 Module Interface 22

5.1.1 PDU TBL.C
5.1.1.1 Build Default PDU Configuration Table

22 I 22
5.1.1.2 Build Default Network Configuration Table
5.1.1.3 Destroy Default PDU Configuration Table
5.1.1.4 Destroy Default Network Configuration Table

23

I 23
24

5.1.2 PDU UTIL.C
5.1.2.1 Fetch Size of Mapped List
5.1.2.2 Map PDU Configuration List to a Data Packet

25

I 25
25

5.1.2.3 Map default PDU Configuration List to Data
packet.

5.1.2.4 Map default Network Configuration List to Data
26 I

packet.
5.1.2.5 Destroy Mapped Configuration List

27

I 27
5.1.3 PDU VALID.C 29

5.1.3.1 Validate the contents of an entire Data Packet
5.1.3.2 Validate the contents a Data Field

29 I 30
5.1.4 PDU DISPLAY.C 31

5.1.4.1 Display the contents of a data packet in a X
Window Packet Display Screen. 31 I

5.1.5 INDEXTAB.C 32
5.1.5.1 Build the Indextable.
5.1.5.2 Complete the building of the Indextable

32 I 32
5.1.5.3 Identify the contents of a packet 33
5.1.5.4 Return the number of packets in the current binary

file. 34 I
5.1.6 DB.C 35

5.1.6.1 Read the next packet from disk. 35 I
SYSTEM DESIGN DESCRIPTION

11 I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

5.1.6.2
5.1.6.3
5.1.6.4

5.1.6.5

5.1.6.6

5.1.7 FILTER.C
5.1.7.1
5.1.7.2

1ST: SCANNER

Read a specific packet from disk. 35
Makes sure a packet is on a long boundary. 36
Find the first packet in a binary file that meets a
specified criteria 36
Find the next packet in a binary file that meets a
specified criteria 37
Return the number of the current packet being
processed. .. 38

....................................... 39
Initialize Filter structure. 39
Determines if current packet meets filtering
criteria. 39

5.1.8 ENTTYPES.C 41
5.1.8.1 Load the Entity Type Enumerated Table. 41
5.1.8.2 Search the Entity Type list with a string looking

for a match. 41
5.1.8.3 Search the Entity Type list with an Entity Type

structure looking for a match. 42
5.1.9 ENUM_CFG.C 43

5.1.9.1 Build Enumeration Table from Configuration
file. 43

5.1.9.2 Search a specific Enumerated Table looking for a
value ' . 43

5.1.10 MAINWIN.C 45
5.1.10.1 Main startup routine. 45
5.1.10.2 Initialize default settings. 45
5.1.10.3 Initialize default settings. 46

5.1.11 MAINMENU.C 47
5.1.11.1 Get the current test mode (Automated/Manual). 47
5.1.11.2 Set the current test mode flag. 47
5.1.11.3 Create the main menu. .. 48
5.1.11.4 Disable selection of main menu widgets. 48
5.1.11.5 Enables selection of main menu widgets. 49

5.1.12 AUTOTEST.C 50
5.1.12.l Determines the offset of a specific validation test

5.1.12.2

5.1.12.3
5.1.12.4
5.1.12.5

in the validation test array. 50
Generic procedure called to start Automated
testing 50
PDU Transmission test procedure. 51
Network Transmission test procedure. 52
Network Transmission test procedure. 52

SYSTEM DESIGN DESCRIPTION
III

1ST: SCANNER

5.1.12.6 Network and PDU Reception test procedure.
5.1.13 AUTONETTEST.C

5.1.13.1 Process the Network tests, specific configuration
file.

5.1.14 AUTOPDUTEST.C
5.1.14.1 Process the PDU tests, specific configuration file. . .

5.1.15 CO DIALOG.C
5.1.15.1 Build the Company abbreviation and S UT number

dialog.
5.1.16 CONFWIN.C

5.1.16.1 Create/Display the Configuration management

5.1.16.2
5.1.16.3

window
Initialize local management structure window.
Copy values from managment structure to screen
widgets

5.1.17 FILEMGMT.C
5.1.17.1 Try to open logged binary and test configuration

5.1.17.2

5.1.17.3

files.
Close currently used logged binary and test
configuration files.
Tells CreatelndexTableO which binary file to
use

5.1.17.4 Read test specific configuration file
5.1.18 LOG DIALOG.C

5.1.18.1 Display the logger window.
5.1.18.2 Open the pipe between the Scanner and the

Logger.
5.1.19 MANAGE.C

5.1.19.1 Rebuild the path to the test suite directory
5.1.19.2 Sets the default values in mana&ement structure
5.1.19.3 Loads the Management configuration file's

5.1.19.4

5.1.20 MGR.C
5.1.20.1
5.1.20.2
5.1.20.3
5.1.20.4
5.1.20.5
5.1.20.6

contents into memory.
Fill in the Management structure with any missing
tests.

Create a new management structure.
Open an existing management structure.
Saves the open management structure to disk.
Closes the opened management structure.
Deletes an existing management structure.
Load test suite-specific configuration files.

SYSTEM DESIGN DESCRIPTION
IV

I
I

53 I
54

54 I
55
55 I 56

56 I 57

57 I 57

58 I 59

59 I
59

I 60
60

I 62
62

62
63

I
63

I 63

64 I
64
66 I 66
66
67 I 67
68
68 I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

5.1.21 NETCONF.C
5.1.21.1
5.1.21.2

1ST: SCANNER

..................................... 70
Destroy Network user edit structure. 70
Create and display Network user-edit configuration
window 70

5.1.21.3 Build the Network user edit list. 71
5.1.21.4 Extract PDU header from Network header. 71

5.1.22 PDUCONFIG.C 73
5.1.22.1 Destroys the PDU user edit configuration screen

and widgets. 73
5.1.22.2 Creates and displays the PDU user edit window. . .. 73
5.1.22.3 Build PDU user edit list. 74
5.1.22.4 Free PDU edit list. 74
5.1.22.5 Extract PDU data from PDU list. 75

5.1.23 PC DIALOG.C 76
5.1.23.1 CreatelDisplay Packet Count Window. 76
5.1.23.2 Update packet count values. 76
5.1.23.3 Destroy the Packet Count Window. 77

5.1.24 PF DIALOG.C 78
5.1.24.1 CreatelDisplay Packet Filter Window. 78
5.1.24.2 Initialize contents of Packet Filter Window. 78
5.1.24.3 Fetch the contents of the Packet Filter Window. ... 79
5.1.24.4 Fetch the status of selected items in Packet Filter

Window. 79
5.1.24.5 Destroy the Packet Filter Window. ". 80

5.1.25 QRY_DIALOG.C 81
5.1.25.1 CreatelDisplay Query Window. , 81
5.1.25.2 Initialize contents of Query Window. 81
5.1.25.3 Fetch the contents of the Query Window. 82
5.1.25.4 Destroy the Query Window. 82

5.1.26 RP DIALOG.C 83
5.1.26.1 CreatelDisplay the Report Results Window. 83
5.1.26.2 Update Report Results Window with information

from management structure. 83
5.1.26.3 Add the results of the test to the Report Results

Window. 84
5.1.26.4 Assign the test status results to the Report Results

Window. 84
5.1.26.5 Copy information from the Report Results Window

to the management structure. 84
5.1.26.6 Destroy the Report Results Window. 85

5.1.27 SC DIALOG.C 86

SYSTEM DESIGN DESCRIPTION
v

5.1.27.1
5.1.27.2

1ST: SCANNER

Create/Display System Configuration Window.
Copy information from management structure to
System Configuration Screen.

5.1.27.3 Destroy the System Configuration Window.
5.1.28 TG DIALOG.C

5.1.28.1 Create/Display Test Selection Configuration
Window.

5.1.28.2 Destroy the Test Selection Configuration
Window.

5.1.29 TL DIALOG.C
5.1.29.1 Create/Display the Timeline Window.
5.1.29.2 Freshen the text for the current record highlighted

in the Timeline
5.1 .29.3 Delete list of time line entries.
5.1.29.4 Destroy the Timeline Window

5.1.30 TS AUTO DIALOG.C - -
5.1.30.1 Create the automated test selection dialog.
5.1.30.2 Fetch the Network user edit list.
5.1.30.3 Fetch the PDU user edit list.

5.1.31 TS_MAN_DIALOG.C
5.1.31.1 Create manual test selection dialog.

5.1.32 TS DIALOG.C
5.1.32.1 CreatelDisplay test suite selection dialog.

5.1.33 RPTLOGGER.C
5.1.33 .1 Open the report log
5.1.33.2 Close the report log.
5.1.33.3 Write the report log header.
5.1.33.4 Write the test header to the report log
5.1.33.5 Write report results to the report log
5.1.33.6 Write formatted information to the report log

5.1.34 RPTRESULTS.C
5.1.34.1 Create Results report

5.1.35 RPTSTATUS.C
5.1.35.1 Create Status report.

5.1.36 PACKET ID.C
5.1.36.1 Identify a packet.

5.2 Data Interface
5.2.1 Data Definition Language
5.2.2 Scanner Data Structures

5.2.2.1 PDU Data Entry
5.2.2.2 Default Group List

SYSTEM DESIGN DESCRIPTION
VI

86

86
87
88

88

88
90
90

90
91
91
92
92
92
93
94
94
95
95
96
96
96
97
97
98
98
99
99

100
100
101
101
102
102
III
111
115

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6

5.2.3

5.2.4

5.2.2.3
5.2.2.4
5.2.2.5
5.2.2.6
5.2.2.7
5.2.2.8
5.2.2.9
5.2.2.10
5.2.2.11

1ST: SCANNER

Mapped Group List .
Default Network Configuration Table
Default PDU Configuration Table
Logger Header
Management Structure
Default Management Structure
Indextable .
Filter
Automated Test Structure

Scanner Configuration Files
5.2.3.1 Scanner Configuration File
5.2.3.2 Manager Configuration File
5.2.3.3 Network Default Configuration File
5.2.3.4 PDU Default Configuration File
5.2.3.5 Entity Types Configuration File
5.2.3.6 Enumerated Values Configuration File
5.2.3.7 Network Test-specific Configuration File
5.2.3.8 PDU Test-specific Configuration File
Logged Binary File Format

DETAILED DESIGN
6.1 PDUlNetwork .. .

6.1.1 PDU Table Building - PDU_TBL
6.1.2 PDU Utility Routines - PDU _ UTIL
6.1.3 PDU Validation Routines - PDU VALID
6.1.4 PDU Display Routines - PDU_DISPLAY

6.2 Test Suite
6.2.1 Load Management Structure - MANAGE
6.2.2 Create a Test Suite - CO DIALOG and MGR
6.2.3 Select a Test Suite - TS DIALOG
6.2.4 Display contents of a Test Suite - CONFWIN
6.2.5 Open a Test Suite - MGR
6.2.6 Save a Test Suite - MGR
6.2.7 Close a Test Suite - MGR
6.2.8 Delete a Test Suite - MGR

6.3 Configuration .. .
6.3.1 Scanner Configuration file - MAINWIN
6.3.2 Entity Types Configuration file - ENTTYPES
6.3.3 Enumeration Tables Configuration file - ENUM_CFG
6.3.4 System Configuration window - SC_DIALOG
6.3.5 Test Selection window - TG DIALOG

SYSTEM DESIGN DESCRIPTION
Vll

117
117
118
119
120
125
126
129
131
132
132
133
135
135
136
136
137
138
138

140
140
140
143
147
152
163
163
166
168
171
173
175
176
177
178
178
180
183
185
187

I
I

1ST: SCANNER

6.4 Indextable 189 I
6.4.1 Indextable - INDEXTAB 189

6.5 Packet Filtering
6.5.1 Packet Filter Routines - FILTER

192 I 192
6.6 File Management 194

6.6.1 Logged Binary and Configuration files - FILEMGMT
6.7 Automated Testing

194 I 196
6.7.1 Automated test selection - TS AUTO DIALOG 196 - -
6.7.2 Network User Edit List - NETCONF
6.7.3 PDU User Edit List - PDUCONFIG

200 I 205
6.7.4 Common Automated test routines - AUTOTEST 208
6.7.5 Network-specific test routines - AUTONETTEST
6.7.6 PDU-specific test routines - AUTOPDUTEST

213 I 215
6.8 Manual Testing

6.8.1 Manual test selection - TS MAN DIALOG - -
6.9 Graphical User Interface Windows

219
219 I 223

6.9.1 Packet Count - PC DIALOG
6.9.2 Packet Display - PKT_DISP
6.9.3 Timeline - TL DIALOG

223
226 I 228

6.9.4 Packet Filter - PF DIALOG
6.9.5 Report Results - RP _DIALOG
6.9.6 Query Filter - QRY_DIALOG

232

I 235
238

6.10 Logger
6.10.1 Interfacing with the 1ST Logger - LOG_DIALOG

6.11 Reports

241

I 241
244

6.11.1 Status - RPTST A TUS
6.11.2 Results - RPTRESUL TS
6.11.3 Report Log - RPTLOGGER

244

I 245
246

7 APPENDIX A .. . 247 I
7.1 Scanner Development Environment 247
7.2 Scanner Runtime Environment 247

I
8 APPENDIX B 248

8.1 Hardware Requirements 248 I
I
I

SYSTEM DESIGN DESCRIPTION
Vlll I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

FIGURES

Figure 1: Default Group Listing (Fields only) .. 115
Figure 2: Default Group Listing (Groups and Fields) . 116
Figure 3: Example of Data Mapping 144

SYSTEM DESIGN DESCRIPTION
ix

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

INTRODUCTION

This Software Design Description (SDD) shows how the Scanner software system was
designed to aid in the testing of systems that plan on participating in a Distributed Interactive
Simulation (DIS).

1.1 Purpose

The Scanner is a utility program designed to aid in testing the interoperability
requirements of systems that will be participating in a Distributed Interactive Simulation. The
Scanner creates a test suite (or data base) for each System Under Test (SUT) being tested.
This provides the user a place to electronically store the results of each and every test as
opposed to having to record all test results on paper. The test suite is saved in it's own, unique
directory where all files associated with the test suite will also be kept.

For each test, the Scanner reads a binary (BIN) file logged using 1ST's Logger and
performs an initial range validation on all of the ,fields within each DIS packet in the file
looking for packets within the BIN file that contain erroneous data. The Scanner has two
different test modes, Manual and Automated. The Manual mode allows the user to look at any
packets in the BIN file based on filter criteria they specify. The user after looking at the
desired packets then fills in a report results window with the results they feel are appropriate.
In the Automated mode, the program runs the testing and evaluating of the appropriate packets
in a BIN file and automatically fills in the report results windows with the correct results.
Currently, only a subset of the possible tests to choose from can be run in the Automated
mode.

After each test is run and the report results window is correctly filled in, the program
will save all of the results within the test suite. Also, all information encountered during the
running of the test, to include errors found in a packet, are written to a report log. The report
log can be considered a diary of each test that was run and what happened during the running
of the test. At any time, the user can generate either of the two report formats supported by
the Scanner. The Status and Summary reports, in different levels of specificity, list each test
that was selected to be run and the results of each.

1.2 Scope

This document is divided into four separate design views to be used as required. These
sections are:

SYSTEM DESIGN DESCRIPTION

Section 3:

Section 4:

Section 5:

Section 6:

1ST: SCANNER

Decomposition Description partitions the system into design entities and
can be used by designers and maintainers to identify the major design
entities of the system. This allows tracing requirements and functions in
order to design entities.

Dependency Description describes the relationship among entities and
system resources and can be used by maintainers to isolate modules
causing system failures or resource bottlenecks. It also aids in
integration testing.

Interface description lists all interfaces and can be used by application
programmers, designers, and testers to gain information as to how to use
a design entity.

Detail Description describes the internal design details of all modules and
is used by the programmer during implementation and unit testing.

SYSTEM DESIGN DESCRIPTION
2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.3 Acronyms

DDL
DIS
PDU
SUT

1ST: SCANNER

- Data Definition Language
- Distributed Interactive Simulation
- Protocol Data Unit
- System Under Test

SYSTEM DESIGN DESCRIPTION
3

2

1ST: SCANNER

REFERENCES

1.

2.

3.

4.

Technical Report, Test Documents for DIS Interoperability, Institute for
Simulation and Training.

Standard for Distributed Interactive Simulation -- Application Protocols, Version
2.0, Third Draft.

Enumeration and Bit-encoded Values for use with IEEE 1278.1-1994,
Distributed Interactive Simulation -- Application Protocols.

Motif Reference Manual for OSF/MOtif, Release 1.2, Editions 6A, 6B, O'Rielly
& Associates, Inc.

SYSTEM DESIGN DESCRIPTION
4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

3 DECOMPOSITION DESCRIPTION

This section decomposes the software into major system entities and describes the
attributes of each entity.

The software is composed of 10 major entities: Graphical User Interface, Management,
Testing, Reports, Packet Identification, Data Mapping, Packet Validation, Packet Display,
Database, and Utility Routines.

3.1 Module Decomposition

3.1.1 Graphical User Interface

The Graphical User Interface allows the user to access test suite infonnation, run tests,
record test results, view binary log files, and view the contents of the data packets.

3.l.1.l Configuration Management Window

This window allows the user to enter infonnation about the SUT being tested, the
company who designed the SUT, and the Testbed environment being used to perfonn the tests.

The SUT information includes:

Name:
Number:
IP Address:

Name of the site being tested.
Number associated with the SUT.
IP address of the SUT.

Ethernet Address: Ethernet address of the SUT.
Version:

Platform:

Internal company version number of the SUT (filled In

automatically from previously entered infonnation).
Platform the SUT runs under.

The Company information includes:

Name: Name of the company perfonning the test.
Abbreviation: 3-character abbreviation of company name (filled in

automatically from previously entered infonnation).

Address 1: Street address of company.

SYSTEM DESIGN DESCRIPTION
5

Address 2:
Point of Contact:

E-Mail:
Phone:

1ST: SCANNER

City, State, Zip Code of company.
Person to contact at the company regarding testing
information.
E-mail address.
Phone number.

The Testbed information includes:

3.1.1.2

Tester:
Date:
Terrain Database:
Data Directory:
IP Address:
Ethernet Address:
CGF Version:

Name of the user running the test.
The date the test is being run.
The name of the terrain database being used.
The directory where the binary logged files can be found.
The IP address of the testbed.
The ethernet address of the company performing the test.
The version of the CGF being used for the test.

Test Suite Edit Window

From the Test Suite Edit window, the user can configure how the Scanner Management
System runs, what configuration files the system uses, what tests are going to be run, and what
logged binary files are going to be tested. This drop-down menu window contains several
entries, including System Configuration and list of test groups.

The specific tests groups or levels of tests are derived from the Institute for Simulation
and Training's Technical Report, Test Documents for DIS Interoperahility. See that document
for specific definitions of what the criteria is for each of these tests. The tests include
Network, PDU, Terrain Orientation, Appearance, Interactivity, System Test, Manned Simulator,
Protocol Translator, and Capabilities tests. Because of the number of tests, PDU, Appearance,
and Interactivity are broken down into separate menus for Reception, Transmission, Adverse,
and Erroneous.

3.1.1.2.1 System Configuration Window

The System Configuration window allows the user to change the names of the
configuration files that the Scanner uses as well as the default port addresses. The Scanner
loads the default configuration files at startup. If the user wants to use different configuration
files or ports, go to this screen and change the desired values and the new values will be
automatically loaded. The Scanner will also remember to load those same files next time that
test suite is loaded.

SYSTEM DESIGN DESCRIPTION
6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

3.1.1.2.2 Network Automated Test Window

The Network Automated Test window allows the user before performing an automated
network test to enter more specific range-checking values than the values specified in the
default network configuration file. This window, when it first appears on the screen, is loaded
with the MINIMAX values from the default configuration file for each field from all of the
types of network interfaces the Scanner recognizes. The program, when performing the test,
will use the values listed on the screen as the range of acceptable values for each field of a
network header.

3.1.1.2.3 PDU Automated Test Window

The PDU Automated Test window allows the user before performing an automated
PDU test to enter more specific range-checking values than the values specified in the default
PDU configuration file. This window when it first appears on the screen is loaded with the
MINIMAX values from the default configuration file for each field of the PDU to be tested.
The program, when performing the test, will use the values listed on the screen as the range
of acceptable values for each field of the PDU as it is being tested for the specific PDU test.

3.1.1.3 Timeline Window

The Tirneline window shows, in a list format, all of the packets that met the
requirements specified within the Packet Filter. It appears for both Automated and Manual
tests. For Manual tests, the user fills in the Packet filter with the desired criteria. With
Automated tests, the Filter is automatically filled in with the appropriate criteria for each test.
For each packet that meets the Packet Filter's criteria, it shows the number of the packet within
the logged binary file, time the packet was logged, what type of packet it is, what type of DIS
PDU the packet is, the source Entity ID number from the packet, and the delta-time from last
packet with the same source Entity ID. If the packet does not pass packet validation, the first
character in the line will be an '*'. At the bottom of the Timeline window, the number of total
packets, the number of the current packet highlighted, the start and end times of the packets,
and the time of the current packet highlighted are shown. The user uses the Timeline window
to select which packet will be displayed in the Packet Display window by clicking the mouse
on the desired pac~et shown in the Timeline window.

SYSTEM DESIGN DESCRIPTION
7

1ST: SCANNER

3.1.1.4 Packet Count Window

The Packet Count window displays the number of packet types in the file of the
following types: DIS, SIMNET, EAGLE, 1ST Message, Total, and Unknown. For DIS
packets, the count is broken down further for each specific DIS PDU packet type.

3.1.1.5 Packet Display Window

The Packet Display window displays the contents of the packet highlighted in the
Timeline window. At the top of the window will be a hex dump of the entire contents of the
packet. This is followed by a detailed breakdown of the network header, the transport layer,
and the specific DIS PDU type. Each field of the network header and the PDU is displayed
on its own line. If the field has an associated enumerated table, the appropriate enumeration
is displayed at the end of the line. For groups, such as Entity ID or Entity Type, the group
name is displayed and then each element of the group is listed afterwards. If any field or
group failed packet validation, the beginning of the line will contain an ''''' for quick
identification of problem areas within the packet.

3.1.1.6 Packet Filter Window

The Packet Filter window allows the user to define which packets are to be displayed
in the Timeline window. The user can select/deselect based on Entity Types, Entity IDs, DIS
PDU types, start/end time frames, Exercise number, and Port number. The filter can be set to
show DIS only packets, non-DIS only packets (i.e. unrecognizable packets), all packets, and
exclude Testbed generated packets.

3.1.1.7 Report Results Window

The Report Results window is where the information is entered concerning whether or
not the test passed or failed; if it failed, the reason(s) for failing; and any comments about the
test. For manual tests, the user must enter these comments, however, for automated tests, the
test status and reason field's are automatically filled in by the program. This window is also
the control point for continuing or exiting the testing module. Clicking on the "Quit" button
in this window exits the testing mode and removes all related windows. After closing this
window, all test information is written to the report log file. Clicking on the "Next" button
will close all windows, write the test information to the report log, and return the user to the
Test Selection window.

SYSTEM DESIGN DESCRIPTION
8

I
I
1
I
1
1
1
I
I
1
I·
1
I
I
I
I
1
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

3.1.2 Management

The Scanner Management System is designed to maintain a test suite or data base for
each SUT. Inherent in this logic is the concept that the Scanner will have access to all
information regarding the current test being conducted or any previous test, as well as future
tests. The idea of maintaining a test suite will help users focus there thoughts regarding what
and how to test a SUT.

When the user creates a new test suite, a directory is created to hold the test suite,
report log, and any other files created by the Scanner. This way the Scanner knows where to
find all files necessary to test a SUT.

3.l.3 Testing

The Scanner contains incorporates all of the tests listed in the Institute for Simulation
and Training's Technical Report, Test Documents for DIS Interoperability. The method of
performing those tests have been broken up into two forms, Automated and Manual. All tests
can be performed using the Manual method, but only Level 1 - Network tests and Level 2 -
PDU tests can be performed using the Automated method.

Manual testing allows the user to look at any packet within a logged binary file and
selectively narrow the search criteria to look at specific packets. It is the user's responsibility
to determine if the contents of the binary file meet the requirements of the test being run. In
Automated testing, the user is shown only those packets that meet the criteria specific to the
test being run. The program will automatically filter out the packets that are not relevant to
the test.

3.1.4 Reports

The Scanner Management System has two similar reports pre-defined within the
program, the Status Summary and the Results Summary. The two reports show basically the
same information, however, the Results Summary is more detailed.

3.1.5 Packet Identification

The Packet Identification routines determine all layers of a packet, including the board
level (Ethernet or 802.3), Lan and Net layers (AP, UDP, TCP, IP), and the application layer
(DIS, SIMNET, 1ST Eagle, and 1ST Message). A packet to be analyzed and an

SYSTEM DESIGN DESCRIPTION
9

1ST: SCANNER

PACKET_IDENTIFICATION_STRUCT are both passed to the packet identification routines.
As the packet is analyzed, the PACKET_IDENTIFICATION_STRUCT is filled in with the all
of the pertinent information about the packet.

3. 1.6 Data Definition Language

The Data Definition Language (DDL) is used to define the contents of a data packet.
Each protocol layer of a data packet is defined separately. The current protocol layers are the
network layer, transport layer, and application layer.

The reasoning behind the DDL is to allow a generic method for defining the contents
of a protocol layer, rather than defining fixed data structures. A generic method allows one
set of routines to be used for all the protocol layers. Staticly defined data structures would
require a separate function for each protocol layer, and separate functions to process the
various types of data structures within the protocol layers (i.e. Separate functions would be
needed to process all 27 PDU types). The generic method allows all data types to be handled
through a common set of routines. Fields and groups requiring special processing are
identified during the parsing of a data packet, and have associated routines to handle the special
requirements of these fields or groups.

The DDL allows for defining the attributes of the data field, such as: name, data type,
size, minimum value, maximum value, and an associated enumeration table.

The DDL also allows grouping sets of fields into logical groups. Groups are used for
clarity, defining variable data sections, and to define sets of fields that should be processed
together as a unit (i.e. The entity type structure is a group of fields which have meaning
independently, and as a group). Grouping fields together allows for special processing during
validation and display of a data packets contents. A variable section is a group that repeats
(N) times. Where (N) is defined in another data field within the data packet. Since (N) is
defined within the data packet, it may vary from one data packet to the next.

The configuration files containing the DDL data is read at program startup, and default
configuration tables are created. Each table contains default lists describing the contents of a
protocol layer. These tables are used to build the data mapping lists which are used during
packet validation and display. These lists are also used to generate the automated test screens
for network and PDU testing.

3.1. 7 Default Network Configuration Table

SYSTEM DESIGN DESCRIPTION
10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

The default network table is a collection of lists that are built at program startup. and
contains the default data field definitions used for the network and transport layers. These
default lists may then be used to validate and display the data contents of the network and
transport layers of a data packet. They are also used to generate the network automated test
screen.

A configuration file contains the definition of the default network table, and is read
during the creation of the default network table. The data within the configuration file is
defined using the Data Definition Language.

3.1.8 Default PDU Configuration Table

The default PDU table is a collection of lists that are built at program startup, and
contains the default data field definitions used to define the various PDUs in the DIS PDU
application layer. These default lists may then be used to validate and display the data contents
of a PDU within the application layer of a data packet. They are also used to generate the PDU
automated test screen.

A configuration file contains the definition of the default PDU table, and is read during
the creation of the default PDU table. The data within the configuration file is defined using
the Data Definition Language.

3.1.9 Data Mapping

This module is used to map either default or user defined configuration lists describing
data field information to a binary data packet.

Even though the default configuration lists define the data fields within the various
protocol layers of a data packet, they may not directly map to the contents of the data packet.
Fixed data structures will map directly to the data within a data packet, but data structures that
contain variable sections will not. The default lists describe what one occurrence of a variable
section would contain. A field within the data packet defines the number of times the variable
section is repeated. This will affect the position of the fields within the variable sections, and
any groups or fields following variable sections. For this reason, the default lists are mapped
to the data packet before the contents of the data packet is processed for validation or display
purposes.

During the data mapping process, a new list is created that overlays the data packet.
The new list contains information about each data field, such as: the name of the data field,

SYSTEM DESIGN DESCRIPTION
11

1ST: SCANNER

offset into the data packet, size and type of the data item, minimum and maximum data values,
and an associated enumeration list.

This module uses generic routines to decipher the configuration lists allowing one set
of routines to support mapping of configuration lists to data packets.

During the mapping phase, groups are updated with the size of their children. After
mapping, the top group of each protocol layer contains the size of the mapped layer. The size
of the protocol layers within the data packet should add up to be the size of the data packet.

3.1.10 Packet Validation

The packet validation module is used to validate the fields within a packet. This
module uses the data mapping routines to obtain access to the fields within the packet.

The packet validation routines allow the caller to validate an entire packets contents, a
protocol layer, or a single field within the packet.

The code in this module is designed to traverse a list that has been mapped to a data
packet, and validate the fields within the data packet. If a data group requiring special
processing is identified, a function designed to handle this group type is called. If a data field
requiring special processing is identified, a function designed to handle this field type is called.
Otherwise, the individual fields are validated against the minimum and maximum values stored
in the mapped configuration list.

If a field or group fails validation, an error message is written to the report log.

3.1.11 Packet Display

The packet display module is used to display the fields within a packet in the X
Window Packet Display screen. This module uses the data mapping routines to obtain access
to the fields within the packet.

The packet display routines allow the caller to display an entire packet's contents, or
a protocol layer within the packet. If the caller is displaying a packet's contents, a hex dump
of the packet is displayed, followed by the network and transport layers, and finally the
application layer. At this time, only DIS PDU application layers have been defined. If a
specified protocol layer is displayed, only the data fields within the configuration list are
displayed.

SYSTEM DESIGN DESCRIPTION
12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

The code in this module is designed to traverse a list that has been mapped to a data
packet, and validate the data fields before displaying them. If a data group requiring special
processing is identified, a function designed to handle this group type is called. If a data field
requiring special processing is identified, a function designed to handle this field type is called.
Otherwise, the individual fields are displayed.

If a field fails validation during the display process, the field is flagged with an asterisk. This
allows the user to identify fields that fail validation without having to read the report log.

3.1.12 Database Routines

The database routines in the Scanner are controlled by the data stored within the
Indextable structure. Since the Indextable contains the offset and size of each packet in the
logged binary file, it is straightforward to access any PDU within a binary file.

3.2 Data Decomposition

3.2.1 Management Structure (Test Suite)

The Scanner creates a separate management structure on disk for each SUT. The
management structure contains fields for all of the Configuration Management Window
information. This includes Company, SUT, and Testbed information, as well as, which tests
to run, which binary files to use, if there are specific test configuration files, test results,
reasons for failing tests, and much more. The memory reserved for a management structure
is allocated at startup of the Scanner.· The same structure is used for every management that
will be opened by the Scanner.

The management structure is set up as an array of test groups each made up of an array
of test entries. These arrays have a finite number of elements, however, what information is
stored in each element is driven by the management configuration file, "manage.efg". That file
contains a list of all of the test groups and the specific tests for those groups recognized by the
program. The user has the ability to change the names of any of the tests in the configuration
file and the program will use the new test name automatically.

3.2.2 Indextable Structure

The Indextable is a array that contains an element for each packet within the logged

SYSTEM DESIGN DESCRIPTION
13

1ST: SCANNER

binary file currently being tested. The Indextable is dynamically created each time a new
binary file is read. The Indextable contains pertinent information about each packet within the
binary file, including size of packet, offset of packet within binary file, time packet was logged,
specific DIS information about the packet, and packet identification and validation information.
The Indextable contains enough information so that all searching required to meet a specific
filter criteria can be performed on the Indextable rather than searching the binary file on disk.

SYSTEM DESIGN DESCRIPTION
14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

4 DEPENDENCY DESCRIPTION

This section defines the system dependencies and provides the flow control between the
different modules for each functional thread. The functional threads are:

4.1 Test Suite File Management

The Scanner Management System creates a test suite (data base) for each SUT being
tested. The test suite provides the user with an electronic means of recording the results of all
tests conducted on a SUT. A test suite is a fixed size, therefore, it is possible to perform a
block read/write on the data.

4.1.1 Create

From the File drop down menu, choosing New allows the user to create a new test suite.
Upon selecting this option, the user will be prompted to input a 3-character company
abbreviation and a I-character SUT number. The Scanner will concatenate the company
abbreviation and the SUT number to form a unique name. A subdirectory with that name will
be created below the directory where the user is working. In that directory, all Scanner-created
files will be stored. By default, the Scanner will create two files, a test suite management file
and a report log file, both beginning with the unique name formed by the company
abbreviation and the SUT number.

The user can then enter information about the Testbed, Company, and SUT. To select
tests, the user goes to the Edit menu where he will see several levels of tests, each made up
of numerous individual tests. Each test has a uniquely named file associated with it. This is
the default name of the logged binary file for that test. The default name is made up of the
company 3-character name and the I-character SUT number followed by a unique number that
has been associated with that test. The user can change any of the default binary filenames
and the program will automatically use the new name as the name of the file for that test.

4.1.2 Open

Opening an existing test suite can be accomplished by choosing Open from the File
drop down menu. This option permits the user to open a previously created test suite and
continue testing with it. A list of all unopened test suites will appear. To select a test suite,
the user should left-click on the test suite name and then left-click on the "OK" button. For
a test suite to show up in the list, a directory must contain a file with the same name as the

SYSTEM DESIGN DESCRIPTION
15

1ST: SCANNER

directory and a ".mgt" file extension.

The contents of the test suite file are read into a pre-allocated block of memory. If the
test suite read in from disk has less tests or test groups than the default listing from the
configuration file, the program will automatically add the extra tests from the default list to the
test suite.

4.1.3 Edit

For a test suite, a user can edit any of the fields describing the Testbed, Company, or
the SUT. The user can also go to the Edit drop down menu and change which tests are to be
run and which logged binary files to use for each test.

4.1.4 Save

A test suite is automatically saved, that is written to disk, whenever a test suite is
clo;;;ed, a new one is opened, or after each test has been completed. The user can also force
the program to write the management structure to disk by choosing Save on the File drop down
window.

4.1.5 Close

Before creating a new test suite, editing an existing test suite, or quitting the program
the Scanner will automatically close the currently opened test suite. The user can also
manually close a test suite by choosing Close from the File menu. Any changes made to the
test suite since the last save will automatically be written to disk before closing the test suite.

4.1.6 Delete

Because there are several files associated with a test suite, the Scanner contains an
option to delete an entire test suite and any files stored in the directory containing the test suite.
Only closed test suites can be deleted. After selecting the test suite to delete, a warning
message will appear asking the user if he is sure whether or not he wants to delete the test
suite. If the user chooses Yes, the entire test suite directory will be removed from the hard
drive.

SYSTEM DESIGN DESCRIPTION
16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

4.2 Edit

The Edit option allows the user to configure the Scanner Management System for
specific testing purposes. Clicking on the Edit option will pull down a menu with several areas
to choose from including editing the system's configuration and choosing which tests to run
from the multiple levels of tests.

The System Configuration option allows the user to change the names of the
configuration files that the Scanner uses. The Scanner loads the default configuration files at
startup. If the user wants to use different configuration files or ports, go to this screen and
change the desired values and the new values will be automatically loaded. The Scanner will
save these changes and load them every time the test suite is opened.

The Scanner has several configuration files that are read into the program at startup.
They are:

scanner.cfg

manage.cfg

stdV2D3. pdu.cfg

stdV2D3.network.cfg

Contains a listing of all of the configuration files the Scanner will
use as the default configuration files, as well as, information
about the port settings and the logged binary file timestamp.

The file contains all of the data signifying the format of the
management structure, to include the names of the test groups,
names of the individual tests for each of the groups, and all of the
default information about each test.

Contains the Data Definition Language description of all 27 DIS
PDUs recognized by the Scanner.

Contains the Data Definition Language description of the network
and transport protocol layers recognized by the Scanner.

stdV2D3 .entity _ types.cfg
Contains a listing of the entity types recognized by the Scanner.

stdV2D3.enumerations.cfg
Contains a listing of the enumerated values recognized by the
Scanner.

SYSTEM DESIGN DESCRIPTION
17

1ST: SCANNER

The following is a list of all of the different levels of tests supported by the Scanner as
defined in the Institute for Simulation and Training's Technical Report, Test Documents for
DIS Interoperability. See that document for specific definitions of what the criteria is for each
of these tests. The test categories include Network, PDU, Terrain Orientation, Appearance,
Interactivity, System Test, Manned Simulator, Protocol Translator, and Capabilities tests. To
choose a test, left-click on the square to the left of the test name to select that test. Left
clicking on the Select All button will turn all of the tests on, left-clicking on the Clear All
button turns all of the tests off.

To the right of the test name is the name for the binary file associated with that
particular test. The default binary file name for the test is displayed but the user may change
this. Whatever name is entered in that field is the name that the Scalmer will expect the test's
data to be logged to. To the right of the binary filename field is a field to enter the name of
a configuration file specific to that test. If a filename is entered here, when Automated testing
begins, the program will read the contents of the configuration file, take the values specified
and replace the default validation values with the new configuration values. This concept
allows the user to overwrite the default values on a test-by-test basis.

4.3 Testing

The Scanner performs all testing and validating of packets by taking an exact mapping
of the data to be checked, i.e., network layer or DIS PDU, and doing a field-by-field
comparison of the data in the packet against the default values in the mapping. If the packet's
values do not fall within the range specified, then an error exists in the packet.

The Testing option allows the user to perform Automated or Manual tests. After
selecting either Manual or Automated Testing, the user is presented with a window listing all
of the tests selected in the Edit option. If the test has been previously run, the first character
on the line will contain the first character of the result of the test, (P - Passed, F - Failed, or
I - Incomplete). Also, if any comments were written about the test, a portion of the comments
will appear after the name of the test.

After selecting the test to run and clicking the OK button, the 1ST Logger dialog box
appears. If there is a pipe setup between the Scanner and the Logger, all of the buttons in the
1ST Logger dialog are functional. If the logged binary file exists, the OK button is active. If
the binary file does not exist, the user MUST create the binary file. The name of the binary
file to create is displayed in the Log File text window. Note that the Scanner looks for all
binary files in the directory specified in the Data Directory field of the Testbed information.
To either create the binary file necessary for the test or re-Iog the binary file, choose the
Record button. To stop recording, press the Stop button. To begin the test, click on the OK

SYSTEM DESIGN DESCRIPTION
18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

button. Also, if the user changes the filename of the binary file to use, the new name will
automatically be changed int he Edit test selection menus.

For all tests, the Scanner performs an initial validation on the logged binary file to be
tested checking both the network and PDU information. The validation scans all fields in
every packet to see if the values in those fields fall within the default specified parameters.
If any errors are found, the field, its value, and the acceptable values are written to the report
log. As each test is run, all information about that test (i.e., test results, packet validation
results, etc.) is written to a report log file.

4.3.1 Automated Testing

Automated testing provides a way for users to conduct a significant amount of DIS
compliance testing with very little manual effort. After choosing the test to be run, the
program will fetch the default values for the range checking to be performed in the test. If a
test-specific configuration file is specified for this test, the default range values will be
overwritten by the configuration file's values. A dialog window will appear showing the user
all fields to be tested and the range of acceptable values for that field. At this time, the user
can change the values, if so desired.

After selecting the Run button on that dialog window, each packet that meets the criteria
of the test is passed to the validation routines to verify that those packets have values in all
fields that fall within the specified ranges. If any errors were found in the packet during
testing, the program will automatically write all errors to the report log and fill in the Report
Dialog with a test status of Failed and give the reason for failure in the reason field. If there
were no errors found, the test status field is assigned a value of Passed. Internally, the
Indextable is updated with results of the validation procedure.

When the test has completed running, the Packet Display window and the Timeline
window will appear. These windows allow the user to look at all packets that meet the criteria
of the search. If any of the packets did not pass the test, the first character of the line in the
Timeline for that packet will be marked with an "*" for easy recognition. Highlighting that
packet will display it in the Packet Display window. For each field that had a value out of
range, the first character of the line in the Packet Display window will contain an "*".

After the user verifies that the Scanner assigned the appropriate test result, the user can
enter comments into the Report Results window. When the user chooses Quit or Next to leave
this test, the program will write all test results to the report log, as well as, updating the test
suite structure.

SYSTEM DESIGN DESCRIPTION
19

1ST: SCANNER

Currently, only two levels of automated testing have been defined within the Scanner,
Network header verification and PDU verification. There are spaces listed for multitudinous
other tests, but they are not yet defined. However, the user could run the tests in Manual mode
and still assign them the appropriate test status result and comments.

4.3.2 Manual Testing

Because not all possible tests have been automated and since a user may want to look
at all or any select portion of packets within a binary file, not just the ones appropriate for a
test, the Scanner has a manual testing option. After selecting the test to run, the program
performs packet validation on each packet in the binary file using the default values specitied
in the configuration files. Internally, the Indextable is updated with results of the validation
procedure. Then the program will open several windows for the user, including the Packet
Count, Packet Display, Timeline, Packet Filter, and the Report Results windows. By default,
all DIS-only, non-testbed generated packets show up in the Timeline.

By changing the filtering criteria in the Filter screen, the user can narrow or expand the
list of items that will appear in the Timeline window. If any of the packets did not pass the
initial default validation performed by the Scanner, the first character of the line in the
Timeline listing that packet will contain an "*". By highlighting and selecting a packet in the
Timeline window, the user can view the contents of the packet in the Packet Display window.
The Packet Display window shows all of the information in the packet, including the entire
network layer as well as the PDU. If there are text enumerations for specific fields in the
packet, the full enumeration is shown. If the packet being displayed had any fields that did
not pass initial default validation, the first character of the line containing that field will be
marked with an "*".

After the user examines the appropriate packets and determines if the binary file meets
the requirements of the test being conducted, the user fills in the Report Results window.
When the user chooses Quit or Next to leave this test, the program will write all test results
to the report log.

4.4 Report Generation

The Scanner Management System has two pre-defined reports already incorporated
within the program, the Status Summary and the Results Summary. All reports are generated
as formatted text files in the same directory as the test suite data base. Both reports contain
a header that summarizes the Testbed, Company, and SUT information and then lists each level
of testing as a discrete section within the report. The main difference between the two reports

SYSTEM DESIGN DESCRIPTION
20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

is the amount of information presented in the report.

The Results Summary report is the more verbose of the two reports. It includes the
unique number and name of the test, the test status (PassedlFailedllncomplete), number of
times the test was run, specific type of test (TransmissioniReceptioniAdverse/Erroneous), name
of the binary file tested, reason for failure of test, and comments about test. The Status
Summary is a simpler report that includes only the Test status and test name and number.

The Scanner also generates a report log that lists significant information about all tests
that have been conducted, to include the result of the test, the number of times run, and user
comments. If an error is found in a packet during either initial packet validation or specific
packet validation, the erroneous field, it's value, and the correct value range are written to the
report log. The report log provides a user with a complete, historical listing of what tests were
run, the results of those tests, and any errors that were found while running the tests.

SYSTEM DESIGN DESCRIPTION
21

5

5.1

1ST: SCANNER

INTERF ACE DESCRIPTION

This description covers the details of external and internal interfaces.

Module Interface

This section describes the entry points in each of the scanner's main modules.

NOTE: All references to widgets and shells releate to the x Windows Motif
language. This manual will not go into a detailed explanation of these
points. Please see Motif Reference Manual for OSF/MOtif, Release 1.2,
Editions 6A, 6B for a description/definition of these topics.

5.1.1 PDU TBL.C

This module is used to build the default configuration tables for network, transport, and
application layers of a DIS data packet. Currently, the only application layer defined is the
DIS PDU.

5.1.1.1 Build Default PDU Configuration Table

SYNTAX

buildPduConfigTable (filename);

PARAMETERS

char * filename specifies the name of the configuration file
containing the PDU data definition.

DESCRIPTION

This function is used to create the default configuration lists for the application
layer of the data packet. Specifically, DIS PDUs. This table is used during data
mapping, and generation of the PDU automated test window.

RETURNS

TRUE The configuration file was read and the PDU table
was built.

SYSTEM DESIGN DESCRIPTION
22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FALSE

1ST: SCANNER

Unable to open the configuration file. The PDU
table was not built.

5.1.1.2 Build Default Network Configuration Table

SYNTAX

buildNetConfigTable (filename);

PARAMETERS

char * filename specifies the name of the configuration file
containing the network data definition.

DESCRIPTION

This function is used to create the default contiguration table for the network
layer of the data packet. This table is used during data mapping, and generation
of the network automated test window.

RETURNS

TRUE

FALSE

The configuration file was read and the network
table was built.

Unable to open the configuration file. The
network table was not built.

5.1.1.3 Destroy Default PDU Configuration Table

SYNTAX

destroyPduConfigTable (void);

PARAMETERS

None.

DESCRIPTION

SYSTEM DESIGN DESCRIPTION
23

1ST: SCANNER

This function is used to destroy the default PDU configuration table.

RETURNS

None.

5.1.1.4 Destroy Default Network Configuration Table

SYNTAX

destroyNetConfigTable (void);

PARAMETERS

None.

DESCRIPTION

This function is used to destroy the default network configuration table.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.2 PDU_UTIL.C

5.1.2.1

5.1.2.2

This module is used to map the contents of a configuration list over a binary data
packet.

Fetch Size of Mapped List

SYNTAX

fetchMappedPduSize (list);

PARAMETERS

LL * list

DESCRIPTION

List is a pointer to the first element in the mapped
list.

This function is used to fetch the size of a mapped list. The first element of a
mapped list is a group structure holding the configuration name, and size in
bytes.

RETURNS

Zero

Size

The parameter specified does not exist, or there is
nothing to map.

The size of the mapped list.

Map PDU Configuration List to a Data Packet

SYNTAX

mapPduListToData (pduList, packet, length);

PARAMETERS

LL * pduList pduList is a pointer to the first element in the
configuration list to be mapped to a data packet.

SYSTEM DESIGN DESCRIPTION
25

5.1.2.3

char * packet

DESCRIPTION

1ST: SCANNER

The base address of the packet layer within the
data packet to be mapped.

Length of the PDU data section within the data
packet.

This function maps a PDU configuration list to the data within a packet. A new
list is created containing the mapped data list.

RETURNS

LL * newList A pointer to the newly created list is returned.

Map default PDU Configuration List to Data packet.

SYNTAX

mapCfgPduToData (pduType, packet, length);

PARAMETERS

int pduType

char * packet

u _short length

DESCRIPTION

The pduType field contains the DIS PDU number
to be mapped. It is also the index into the default
PDU configuration table.

The base address of the packet layer within the
data packet to be mapped.

Length of the PDU data section within the data
packet.

This function maps a default PDU configuration list to the data within a packet.
A new list is created containing the mapped data list. The pduType parameter
contains a DIS PDU type, and is used to index the default PDU configuration
table.

SYSTEM DESIGN DESCRIPTION
26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

RETURNS

LL * newList A pointer to the newly created list is returned.

5.1.2.4 Map default Network Configuration List to Data packet.

5.1.2.5

SYNTAX

mapCfgNetToData (netType, packet, length);

PARAMETERS

int netType

char * packet

DESCRIPTION

The netType field contains the index into the
default network configuration table.

The base address of the packet layer within the
data packet to be mapped.

Length of the PDU data section within the data
packet.

This function maps a default network configuration list to the data within a
packet. A new list is created containing the mapped data list. The netType
parameter contains an index into the default network configuration table.

RETURNS

LL * newList A pointer to the newly created list is returned.

Destroy Mapped Configuration List

SYNTAX

destroyPduMapping (pduList);

PARAMETERS

SYSTEM DESIGN DESCRIPTION
27

LL * pduList

DESCRIPTION

1ST: SCANNER

pduList is a pointer to the first element of a
mapped list.

This function destroys previously created mapped lists.

RETURNS

NULL The mapped list was destroyed.

SYSTEM DESIGN DESCRIPTION
28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.3 PDU V ALID.C

This module is used to validate fields within a data packet.

5.1.3.1 Validate the contents of an entire Data Packet

SYNTAX

PacketValidation (packet, netHdr, pduList, pis, length, index);

PARAMETERS

char * packet Pointer to the start of the data packet.

PDU DATA HEADER *netHdr - -

LL * pduList

Pointer to the network header table to be used
during network and transport layer validation.
NULL specifies that the default configuration table
should be used during validation.

Pointer to the application list to be used during
validation. NULL specifies that the default
configuration list should be used during validation
of the application layer.

PACKET_IDENTIFICATION_STRUCT * pis

u _short length

DESCRIPTION

Pointer to the packet identification structure
containing the packet identification information.

The length of the data packet as defined by the
data logger.

The index of the packet within the binary file of
logged data packets.

This function validates all layers of a data packet. The caller may specify the
use of the default configuration lists, or a user defined configuration list. If a
packet fails any part of the validation process, an error message is written to the

SYSTEM DESIGN DESCRIPTION
29

5.1.3.2

1ST: SCANNER

report log describing the reason for the failure. The index parameter indicates
which packet within the binary log file failed validation.

RETURNS

TRUE

FALSE

The packet passed validation.

The packet failed validation at some point during
the validation thread. The report log has a detailed
definition of the failure.

Validate the contents a Data Field

SYNTAX

ValidatePduField (packet, pduField);

PARAMETERS

char * packet Pointer to the start of the desired layer within the
data packet.

PDU_DATA_ENTRY * pduField

DESCRIPTION

Pointer to the data fields entry within the mapped
list.

This function is used to validate a single field within the data packet. The field
structure defining the data field must come from a mapped list.

RETURNS

TRUE

FALSE

The field passed validation.

The field failed validation. The report log has a
detailed definition of the failure.

SYSTEM DESIGN DESCRIPTION
30

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5. l.4 PDU DISPLAY.C

5.l.4.1

Displays the contents of a packet in the X Window Packet Display Screen.

Display the contents of a data packet in a X Window Packet Display Screen.

SYNTAX

packetDisplay (packet, netHdr, pduList, pis, length);

PARAMETERS

char * packet Pointer to the start of the data packet.

PDU DATA HEADER *netHdr - -

LL * pduList

Pointer to the network header table used while
displaying the network and transport layer. NULL
specifies that the default configuration table .should
be used.

Pointer to the application list to be used while
displaying the application layer. NULL specifies
that the default configuration list should be used.

PACKET_IDENTIFICATION_STRUCT * pis

DESCRIPTION

Pointer to the packet identification structure
containing the packet identification information.

Length of the packet as defined by the data logger.

This function is used to display the contents of a data packet. The configuration
lists are mapped to the data packet and then traversed for display purposes. The
hex dump of the data packet is displayed first, followed by the network layer,
transport layer, and application layer. Each field is validated before being
displayed. If a field fails validation, the display screen indicates this with an
asterisk next to the fields name.

RETURNS
None.

SYSTEM DESIGN DESCRIPTION
31

1ST: SCANNER

5.1.5 INDEXTAB.C

5.1.5.1

5.1.5.2

This module is used to build the Indextable.

Build the Indextable.

SYNTAX

void CreatelndexTable(FILE *bfile);

PARAMETERS

FILE * bfile the bin file to use when creating the Indextable.

DESCRIPTION

The creation of the Indextable is two step process. First, the binary file must
be scanned to determine how many packets are in the file. That is what this
function does. This function also allocates the required memory for the
Indextable and calls IndexTableSecondPass to actually put values into the
Indextable. See IndexTableSecondPassO for more information.

RETURNS

TRUE

FALSE

If no errors occurred.

Not enough memory to create Indextable or an
invalid packet was read.

Complete the building of the Indextable

SYNTAX

BOOLEAN IndexTableSecondPass(FILE *bfile);

PARAMETERS

FILE *bfile the binary file to use to create the Indextable.

DESCRIPTION

SYSTEM DESIGN DESCRIPTION
32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

5.1.5.3

1ST: SCANNER

This function is the second part of creating an Indextable. It re-reads the binary
file and pulls out select information from the file and stores it within the
Indextable. The plan is to store as much of the pertinent information from a
packet in the Indextable as possible to avoid having to go to disk when doing
queries later in the program.

RETURNS

TRUE

FALSE

I f no errors occurred.

Not enough memory to create Indextable or an
invalid packet was read.

Identify the contents of a packet

SYNTAX

void Identify _Packet(char *packet, long length, TIME time_stamp,
PACKET_IDENTIFICATION_STRUCT *pis);

PARAMETERS

char * packet the packet to be identified.

long length length of packet

TIME time_stamp time stamp from logger header

PACKET_IDENTIFICATION_STRUCT *pis

DESCRIPTION

the address of the structure to be filled in by the
packet identification code

Calls the packet identification code inherited from the DOS CGF to determine
what kind of packet the Scanner is looking at. The packet identification
information is stored in the Indextable.

RETURNS

SYSTEM DESIGN DESCRIPTION
33

5.1.5.4

1ST: SCANNER

Nothing

Return the number of packets in the current binary file.

SYNTAX

long PacketCount(void);

PARAMETERS

None.

DESCRIPTION

Returns the value of a static, local variable containing the number of packets in
the current binary file. The number of packets in a binary file directly equates
to the number of array clements in the Indextable.

RETURNS

long The number of packets in the current binary file.

SYSTEM DESIGN DESCRIPTION
34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.6 DB.C

This file contains routines for reading packets from disk and making sure packets are
on a long boundary. There are also some "data base" management routines used with the
filtering routines to loop through the selected packets looking for packets that meet specific
requirements.

5.1.6.1 Read the next packet from disk.

SYNTAX char * GetNextPacketFromDisk(FILE *bfile, long packet_num)

PARAMETERS

FILE *bfile the binary file to read from.

long packet_num the number of the packet to read. The Indextable
contains the offset into binary file where each
record begins.

DESCRIPTION

Called to read the next packet from disk into the global variable, "packetBuffer".

RETURNS

char * a pointer to the beginning of a string containing the
packet.

5.1.6.2 Read a specific packet from disk.

SYNTAX

char * ReadPacketFromDisk(FILE *bfile, long packet_num)

PARAMETERS

FILE *bfile the binary file to read from.

long packet_ num the number of the packet to read. The Indextable
contains the offset into binary file where each

SYSTEM DESIGN DESCRIPTION
35

1ST: SCANNER

record begins.

DESCRIPTION

Called to read a specific packet from disk into the global variable packetBuffer.
The tirst time the function is called it allocates the memory for the largest
(MAXSHORT) packet we will read.

RETURNS

char * a pointer to the static variable packetBuffer.

5.1.6.3 Makes sure a packet is on a long boundary.

SYNTAX

char * AlignPacket(char *packet, short len)

PARAMETERS

char * packet the address of the packet to be aligned

short len the number of characters to align

DESCRIPTION

Takes a string containing a packet and copies "len" characters to another string
to make sure that the contents start on a long boundary.

RETURNS

char * the address to the beginning of an aligned packet.

5.1 .6.4 Find the first packet in a binary file that meets a specified criteria

SYNOPSIS

SYSTEM DESIGN DESCRIPTION
36

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I 5.1.6.5

I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

PARAMETERS

DB FILTER STRUCT * fs - -

DESCRIPTION

the filter structure containing the information the
user wants filter the packets on.

Finds the first packet in a binary file that meets the specific requirements
specified in the variable (fs). It returns the number of the packet that meets the
requirement or -1 if nothing is found. The programmer must load the packet
from disk to make a packet the active packet.

RETURNS

long -1 if no packets matched the filter, the Indextable
offset if a match was found.

Find the next packet in a binary file that meets a specified criteria

SYNOPSIS

PARAMETERS

DB FILTER STRUCT * fs - -
the filter structure containing the information the
user wants filter the packets on.

DESCRIPTION

Finds the next packet after the current packet in a binary file that meets the
specific requirements specified in the variable (fs). It returns the number of the
packet that meets the requirement or -1 if nothing is found. The programmer
must load the packet from disk to make a packet the active packet.

RETURNS

long -1 if no packets matched the filter, the Indextable
offset if a match was found.

SYSTEM DESIGN DESCRIPTION
37

5.1.6.6

1ST: SCANNER

Return the number of the current packet being processed.

SYNTAX

long CurrentPacket(void)

PARAMETERS

None.

DESCRIPTION

Returns the number of the currently active packet within a binary file.

RETURNS

long the current packet read in from disk.

SYSTEM DESIGN DESCRIPTION
38

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.7 FILTER.C

Contains the routines for actually checking to see if a packet meets the requirements
specified in a filter structure, DB_FILTER_STRUCT.

5.1.7.1 Initialize Filter structure.

5.1.7.2

SYNTAX

PARAMETERS

DB FILTER STRUCT * fs - -
the filter structure to be initialized.

DESCRIPTION

This function is called before assigning any values to a DB_FILTER_STRUCT
to make sure no erroneous values are assigned in the structure. Since the user
may only be filling in just a few fields in DB_FILTER_STRUCT, the other
fields must be blank.

RETURNS

Nothing.

Determines if current packet meets filtering criteria.

SYNTAX

short Do_Filtering(DB_FILTER_STRUCT *fs, long i)

PARAMETERS

DB FILTER STRUCT * fs - -

long

the filter structure containing the "values" the user
wants to search for.
the index into the Indextable of the packet to

SYSTEM DESIGN DESCRIPTION
39

1ST: SCANNER

search.

DESCRIPTION

This function calls several local functions, each of which performs a specific test
comparing the filter criteria, specified in the DB_FILTER_STRUCT, against the
data saved within the Indextable for packet "i". If the packet meets each of the
specific tests, then it passes the filtering and returns TRUE value.

RETURNS

short TRUE if packet passed filtering,
FALSE if the packet does not meet the filtering
criteria.

SYSTEM DESIGN DESCRIPTION
40

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.8 ENTTYPES.C

Contains the routines for loading, parsing, and searching the Entity Type Enumerated
table. The table contains all Entity Types recognized by the Scanner Management System.
The table is created and loaded at runtime.

5.1.8.1 Load the Entity Type Enumerated Table.

5.1.8.2

SYNTAX

void LoadEntTypeEnumTable(void)

PARAMETERS

char * filename the name of the Entity Type file to be loaded

DESCRIPTION

This function opens the configuration file containing a listing of the valid DIS
entity types. The contents of the file are read into a table that is ordered
alphabetically to facilitate faster searching.

RETURNS

BOOLEAN TRUE if no errors were found
FALSE if an error opening the file occurred

Search the Entity Type list with a string looking for a match.

SYNTAX

char EntTypeBinarySearchStr(char *str, short *ppos, char IsCode)

PARAMETERS

char *str
short *ppos

char IsCode

contains the entity that is to be searched for.
will contain -1 if not found or an index into the
Entity Table List if found.
if "str" is in the format "1.1.225.1.1", IsCode is

SYSTEM DESIGN DESCRIPTION
41

5.1.8.3

DESCRIPTION

1ST: SCANNER

FALSE (i.e. it needs to be converted to an array of
unsigned characters), if "str" is an array of
unsigned characters, IsCode is TRUE.

This function searches for "str", a NULL-terminated string, in the Entity Table
list by performing a binary search.

RETURNS

char TRUE if "str" was found in the Entity Table List.

Search the Entity Type list with an Entity Type structure looking for a match.

SYNTAX

char EntTypeBinarySearchStruct(ENTITY _TYPE *et, short *ppos)

PARAMETERS

ENTITY TYPE * et

short *ppos

DESCRIPTION

the entity type the user wants to search for.
will contain -1 if not found or an index into the
Entity Table List if found.

This function copies the contents of the ENTITY_TYPE structure into a string
of unsigned characters and then calls EntTypeBinarySearchStrO.

RETURNS

char TRUE if "et" was found in the Entity Table List.

SYSTEM DESIGN DESCRIPTION
42

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.9 ENUM CFG.C

Contains code for reading the enumeration table configuration file into memory. The
table is stored in memory as a linked list of tables with each table being a linked list of
elements for defining the table. The table element lists are searched to see if a value has a
match within the range of acceptable values for that table element.

5.1.9.1

5.1 .9.2

Build Enumeration Table from Configuration file.

SYNTAX

PARAMETERS

FILE
LL

DESCRIPTION

* input
* head

the input file
the head of the linked list to be

Reads the input file and builds the table from the file in linked list fashion.
NOTE: head MUST be initialized via II initO before this function is called

RETURNS

int 1 on success, 0 otherwise

Search a specific Enumerated Table looking for a value.

SYNTAX

char *FindElementFromMinMax(LL *e head, short sval)

PARAMETERS

LL *e head head of element list
search value

-
short sval

DESCRIPTION

SYSTEM DESIGN DESCRIPTION
43

1ST: SCANNER

Searches for and fetches the enumeration string for the seach value (sval).

RETURNS

char * : string of text for sval

SYSTEM DESIGN DESCRIPTION
44

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.10 MAINWIN.C

Contains the main startup routine for the Scanner Management System, as well as, the
code for loading the Scanner's main configuration file.

5.1.10.1 Main startup routine.

SYNTAX

int main (int argc, char **argv)

PARAMETERS

int argc number of command line parameters

char **argv actual command line parameters

DESCRIPTION

This is the routine that is called at startup of the program. It calls the
initialization routines and the screen management routines.

RETURNS

int exit code - 0 always

5.1.10.2 Initialize default settings.

SYNTAX

BOOLEAN Init(void)

PARAMETERS

None.

DESCRIPTION

This function calls functions to load the Entity Type Tables, management

SYSTEM DESIGN DESCRIPTION
45

IST: SCANNER

configuration defaults, and other configuration tables and values. Also, if a pipe
is to be setup between the Scanner and the IST Logger, this function establishes
the pipe.

RETURNS

BOOLEAN FALSE if error(s) occurred.

5.1.10.3 Initialize default settings.

SYNTAX

BOOLEAN LoadScannerConfig(void)

PARAMETERS

None.

DESCRIPTION

This function opens the "scanneLcfg" file and parses it, determining what config
options/files the user wants to use.

RETURNS

BOOLEAN FALSE if an error occurred

SYSTEM DESIGN DESCRIPTION
46

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.11 MAINMENU.C

5.1.11.1 Get the current test mode (Automated/Manual).

SYNTAX
int currentTestMode (void)

PARAMETERS

None.

DESCRIPTION

Returns a flag indicating what type of test the user is currently running, either
automated or manual.

RETURNS

int 1 if automated test;
2 if manual test.

5.1.11.2 Set the current test mode flag.

SYNTAX

void SetTestMode(int tm)

PARAMETERS

int tm

DESCRIPTION

1 if automated test;
2 if manual test.

Sets a local variable to indicate what type of test the user is currently running.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
47

1ST: SCANNER

5.1.11.3 Create the main menu.

SYNTAX

Widget create_main _win (Widget top_level)

PARAMETERS

top_level Top level shell.

DESCRIPTION

Create the application main window and create a menu bar attached to the main
window.

RETURNS

Widget Main Window widget

5.1.11.4 Disable selection of main menu widgets.

SYNTAX

void disable menu selections (void)

PARAMETERS

None.

DESCRIPTION

Makes inactive the main menu's drop-down menus. The user can not select any
menu option when it is inactive.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
48

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.11.5 Enables selection of main menu widgets.

SYNTAX

void enable_menu_selections (void)

PARAMETERS

None.

DESCRIPTION

Makes active the main menu drop-down menus.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
49

1ST: SCANNER

5.1.12 AUTOTEST.C

Contains the generic functions necessary to perform any of the manual or automated
PDU or Network tests. Routines for actually running the test, loading a test-specific,
configuration file, and determining which test to run can be found in this file. Because the
actual PDU or Network tests are called from a generic routine, the address of the function that
actually performs the validation is passed to the generic routine. The definitions of the specific
validation routines are listed in this file as well as the data structures containing the address
of these functions.

5.1.12.1 Determines the offset of a specific validation test in the validation test array.

SYNTAX

BOOLEAN AutomatedTestFunctionslndex(char *str, TEST_SUITE_ENTRY
*tse)

PARAMETERS

char *str

TEST SUITE ENTRY - -
*tse

a string containing which enumeration validation
function is to be called.

a pointer to the test suite entry to be modified.

DESCIUPTION

This function is called when reading in the "manage.cfg" file. This function will
return the correct offset into the automated test array for the desired test. The
offset is entered into the variable tse. This offset indicates the address of which
test function will be called when the current test is activated.

RETURNS

BOOLEAN returns TRUE if tse was properly set, otherwise
FALSE is returned.

5.1.12.2 Generic procedure called to start Automated testing.

SYNTAX

SYSTEM DESIGN DESCRIPTION
50

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

void RunAutomatedTest (void * list)

PARAMETERS

void *list a void pointer to either the Network or PDU linked
list.

DESCIUPTION

This function displays the Packet display window and the Timeline window and,
depending upon what type of test is to be run, calls the appropriate validation
routines. The function is a central point that determines which specific
automated test function to invoke.

RETURNS

None.

5.1.12.3 PDU Transmission test procedure.

SYNTAX

BOOLEAN PDUTest Transmission(int pdu)

PARAMETERS

int pdu which of the 27 pdus is to be tested

DESCIUPTION

This function is called for all Level 2 PDU Transmission tests. It loops through
all packets in a binary file looking for packets that are of the correct PDU type.
Each packet is loaded into memory and validated against the values in the
user-specified edit list.

RETURNS

BOOLEAN returns the result of the test.

SYSTEM DESIGN DESCRIPTION
51

1ST: SCANNER

5.1.12.4 Network Transmission test procedure.

SYNTAX

BOOLEAN NetworkTest_ Transmission(void)

PARAMETERS

None.

DESCRIPTION

Called to conduct all Network Transmission tests, only packets that are
DIS-only, non-testbed generated packets are compared against the minimax
values specified in the user's edit list.

RETURNS

5.1.12.5

BOOLEAN TRUE if file passed test;
FALSE if file failed test.

Network Transmission test procedure.

SYNTAX

BOOLEAN Network_PDU_Test_Reception(void)

DESCRIPTION

This function is called for all Level 2 PDU Reception, Adverse, and Erroneous
tests. It looks for any non-DIS packet, not generated by the testbed, in the
binary file. If a packet is found, an error exists in the logged binary file.

PARAMETERS

None.

RETURNS

BOOLEAN returns the result of the test

SYSTEM DESIGN DESCRIPTION
52

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.12.6 Network and PDU Reception test procedure.

SYNTAX

BOOLEAN Networ~PDU_Test_Reception(void)

DESCRIPTION

This function is called for all Network and PDU Reception, Adverse, and
Erroneous tests. It looks for any non-DIS packet, not generated by the testbed,
in the logged binary file. If a packet is found, an error exists in the binary file .

PARAMETERS

None.

RETURNS

BOOLEAN returns the result of the test

SYSTEM DESIGN DESCRIPTION
53

1ST: SCANNER

5.1.13 AUTONETTEST.C

Contains the routines for conducting all of the Network-specific tests. There is a routine
for parsing a Network configuration file as well as routines for performing all of the Network
tests.

5.1.13.1 Process the Network tests, specific configuration file.

SYNTAX

void ProcessNetworkTestConfigFile(NET_DISPLA Y _HEADER *netList)

PARAMETERS

NET DISPLAY HEADER - -
netList

DESCRIPTION

a pointer to the list of recognized network
headers.

This function reads the configuration file for the current network test and parses
the contents of the file. The file contains a list of fields and the new minimax
values for those fields. The contents of the file are used to search the
NETWORK DISPLAY HEADER looking for a match. If a match is found the
new minimax values from the configuration file are used to overwrite the default
minimax values.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
54

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.14 AUTOPDUTEST.C

Contains the functions for performing all of the specific POU tests. There is one
routine for properly parsing a POU configuration file and the rest of the routines are used to
perform the actual POU tests.

5.1.14.1 Process the POU tests, specific configuration file.

SYNTAX

void ProcessPduTestConfigFile(LL *deflist)

PARAMETERS

LL *deflist

DESCRIPTION

a linked list of the format of the current PDU to be
tested.

This function reads the configuration file for the current PDU test and searches
the "defList" looking for all fields specified in the configuration file. If a
matching field is found, the minimax values from the configuration file are used
to overwrite the contents in the "defList".

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
55

1ST: SCANNER

5.l.15 CO DIALOG.C

Create and display the dialog screen that allows for input of the 3 character company
abbreviation and the 1 character SUT number.

5. l.15.1 Build the Company abbreviation and SUT number dialog.

SYNTAX

PARAMETERS

Widget mam w the main window widget

DESCRIPTION

The function creates the dialog in which the user inputs the 3 character company
abbreviation and 1 character SUT number for the new test suite being created.
If the dialog window is not already created, it will call function
"co_dialog_create" to create the dialog widget.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
56

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.16 CONFWIN.C

This file contains the functions to create and manage the test suite configuration screen.
This is part of the main Scanner window. It contains the current test suite information for the
Testbed, Company, and SUT being tested.

5.1.16.1 Create/Display the Configuration management window.

SYNTAX

void display_conCmanager (Widget main_window, MANAGEMENT *mgr)

PARAMETERS

Widget main window -

MANAGEMENT
*mgr

DESCRIPTION

shell to hang objects from

company manager

Displays the configuration manager and sets up display.

RETURNS

None.

5.1.16.2 Initialize local management structure window.

SYNTAX

MgmtRec * init_mgmt_rec (MANAGEMENT * m)

PARAMETERS

MANAGEMENT

DESCRIPTION

*m a pointer to the management structure

SYSTEM DESIGN DESCRIPTION
57

1ST: SCANNER

This function copies values from the Management structure to another structure
that is used to populate the screen widgets on the main window, where the
Testbed, SUT, and Company information is displayed.

RETURNS

MgmtRec * a pointer to a locally-created structure that
is used for holding the values that will go
into the widgets used on the main startup
screen (admin area) .

5.1.16.3 Copy values from managment structure to screen widgets.

SYNTAX

void populate_conCmanager_display (MgmtRec *mgmtrec)

PARAMETERS

MgmtRec

DESCRIPTION

*mgmtrec management record for company being
di'splayed

Puts values in the screen widgets from the management structure.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
58

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.17 FILEMGMT.C

This file contains routines that open and close the logged binary file that is to be used
for the next test. The variables to hold the pointer to the FILE structure are statically-defined
within this file. BuildIndexTable and LoadPacket are interim functions in this file that pass
the locally-defined, static variable UserBinFile to the functions that actually build the
Indextable and read a packet from disk, respectively.

5.1.17.1 Try to open logged binary and test configuration files.

SYNTAX

BOOLEAN OpenUserFiles(int tg, int te)

PARAMETERS

int tg
int te

specifies which test group is to be used.
specifies which test entry is to be used.

DESCRIPTION

For the test group (tg), test entry (te) specified, the appropriate binary file and,
if not empty, the Config file are opened. The function will first look in the
default data directory for the binary files. If it cannot be found, it will look in
the directory containing the management structure.

RETURNS

BOOLEAN TRUE if all files opened properly, otherwise,
FALSE is returned.

5.1.17.2 Close currently used logged binary and test configuration files.

SYNTAX

BOOLEAN CloseUserFiles(void)

PARAMETERS

None.

SYSTEM DESIGN DESCRIPTION
59

1ST: SCANNER

DESCRIPTION

Closes the currently opened logged binary file and the configuration file
associated with the current, active test.

RETURNS

None.

5.1.17.3 Tells CreatelndexTableO which binary file to use.

SYNTAX

BOOLEAN BuildlndexTable(void)

PARAMETERS

None.

DESCRIPTION

This function calls CreatelndexTableO to create the Indextable with the correct
binary file. If the binary file is the same as the last binary file tested, the
Indextable has already been created, therefore it does not need to be created
again. However, the Packet Count window initialization code is called to
display the correct packet counts. The Indextable is not freed every time,
therefore, it will remember the previous logged binary file's information.

RETURNS

BOOLEAN TRUE if able to create Indextable, else FALSE.

5.1.17.4 Read test specific configuration file.

SYNTAX

LL *ReadTestConfigFile(void)

PARAMETERS

SYSTEM DESIGN DESCRIPTION
60

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

--------------------.................. .
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

None.

DESCRIPTION

Reads the information contained in the test-specific configuration file into a
linked list that can then be passed to a function for processing.

RETURNS

LL * Linked list of lines of data found in configuration
file.

SYSTEM DESIGN DESCRIPTION
61

1ST: SCANNER

5.1.18 LOG DIALOG.C

This file contains the logger window support routines.

5.1.18.1 Display the logger window.

SYNTAX

void logger_dialog_display (Widget parent, char * name, XtPointer data)

PARAMETERS

Widget
char
XtPointer

DESCRIPTION

mam w -
* name
data

main window widget
label for dialog
default Xwindows parameters

Creates and displays the logger dialog window.

RETURNS

None.

5.1.18.2 Open the pipe between the Scanner and the Logger.

SYNTAX

logger_open (char * fifo_name)

PARAMETERS

char * name filename to open

DESCRIPTION

Open the named pipe for writing.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
62

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.19 MANAGE.C

This file contains the support routines for managmg, creating, and updating the
management structure.

5.1.19.1 Rebuild the path to the test suite directory

SYNTAX

void RebuildT estBedDirectory(void)

PARAMETERS

None.

DESCRIPTION

This function takes the company's 3-character name and the SUT's I-digit
number and concatenates them together to rebuild and "freshen" the management
structures internal directory references. This function is called in several places
to make sure that if the user changes the values in the company name and SUT
number, the program will reference the appropriate directory.

RETURNS

None.

5.1.19.2 Sets the default values in management structure.

SYNTAX

void RelnitManagement(char *cname, char *sutno)

PARAMETERS

char *cname contains the company's 3-char name

char *sutno

DESCRIPTION

contains a I-char SUT number

SYSTEM DESIGN DESCRIPTION
63

1ST: SCANNER

This function resets the contents of the company, testbed, and sut fields to
NULL. The other information is selectively reset to NULL. If the two
parameters passed in are not empty, then the data directory, default logged
binary test filenames, and specific test configuration files are set to values
representing the company abbreviation and SUT number. The numbers for the
test file names come from the values specified in the management configuration
file.

RETURNS

None.

5.1.19.3 Loads the Management configuration file's contents into memory.

SYNTAX

BOO LEAN LoadManagementConfig(char * filetouse)

PARAMETERS

char *filetouse Name of the management config file to use.

DESCRIPTION

This function opens the management config file and calls the appropriate
functions to read the file and parse it up and actually build a default
management structure based on the contents in the configuration file.

RETURNS

BOOLEAN FALSE if an error occurred.

5.1.19.4 Fill in the Management structure with any missing tests.

SYNTAX

void Copy DefaultManagementConfig(void)

PARAMETERS

SYSTEM DESIGN DESCRIPTION
64

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

None.

DESCRIPTION

This function copies the default values for each test from the default
management structure (defMgrPtr) to the actual management structure (mgrPtr).
The management structure has room for many tests for each level of testing,
however, there are currently not as many tests defined as there are spaces for
tests in the management structure. If the user creates a new test and enters it
into "manage.cfg", the default management structure will contain it, but any
existing management structure saved to disk will not. Therefore, after an
existing management structure is read in from disk into the actual management
structure, any test that exists in the default management structure but does not
exist in the actual structure needs to be copied to the actual management
structure. This function does the checking and copying.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
65

1ST: SCANNER

5.1.20 MGR.C

Contains the support routines for the "File" main menu item, i.e., New, Close, Save,
Delete and Open.

5.1.20.1 Create a new management structure.

SYNTAX

BOOLEAN mgr_new(char * co, char * sut)

PARAMETERS

char *co The three-character company name

char *sut The one-digit SUT number

DESCRIPTION

This function tries to create a new management structure using the
three-character company name and one-digit SUT number. The company name
and SUT number are concatenated to form a unique directory name where the
management structure will be stored.

RETURNS

BOOLEAN TRUE if the function was able to create a new
management structure

5.1.20.2 Open an existing management structure.

SYNTAX

BOOLEAN mgr_open (char dirtouse)

PARAMETERS

char

DESCRIPTION

dirtouse the name of the file/directory to use

SYSTEM DESIGN DESCRIPTION
66

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

This function tries to open an existing management structure. If a management
structure cannot be found in a directory of the same name an error occurs.
Before opening the file and reading its contents in to the management structure,
the file is locked to avoid one user from writing to the file while another is
reading.

After the test suite is opened, a function is called to load any configuration files
specified in the test suite that are not already loaded.

RETURNS

5.1.20.3

BOOLEAN TRUE if opening the file and reading its
contents was OK

Saves the open management structure to disk.

SYNTAX

void mgr_save (MANAGEMENT mgr)

PARAMETERS

MANAGEMENT mgr the management structure to write to disk

DESCRIPTION

This function tries to write the contents of the management structure to disk.
Before writing, the file is locked to avoid corruption of data.

RETURNS

None.

5.1.20.4 Closes the opened management structure.

SYNTAX

void mgr_close (MANAGEMENT mgr)

SYSTEM DESIGN DESCRIPTION
67

1ST: SCANNER

PARAMETERS

MANAGEMENT mgr the management structure to write to disk

DESCRIPTION

This function saves the contents of the management structure, closes the report
log, and resets the management structure variable back to blanks.

RETURNS

None.

5.1.20.5 Deletes an existing management structure.

SYNTAX

void mgr _delete (char dirtodel)

PARAMETERS

char dirtodel the name of the file/directory to delete

DESCRIPTION

This function physically removes a management structure and the directory it is
loaded in from the disk.

RETURNS

None.

5.1.20.6 Load test suite-specific configuration files.

SYNTAX

void LoadManagementsConfigF iles(void)

DESCRIPTION

SYSTEM DESIGN DESCRIPTION
68

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

------------------_ ..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

This function is called after a each test suite is opened to determine if a new set
of configuration files needs to be loaded. Since each test suite can contain it's
own unique configuration files, the configuration files need to be loaded each
time a new test suite is opened.

PARAMETERS

None.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
69

1ST: SCANNER

5.1.21 NETCONF.C

Screen and management functions for Network header validation.

5.1.21.1 Destroy Network user edit structure.

SYNTAX

void net_conCdestroy (void)

PARAMETERS

None.

DESCRIPTION

Frees up the memory reserved for the network user-edit list structure and the
associated widgets.

RETURNS

None.

5.1.21.2 Create and display Network user-edit configuration window.

SYNTAX

void net_conCdisplay (Widget w, NET_DISPLAY_HEADER * list,
char * label)

PARAMETERS

Widget w
NET DISPLAY HEADER - -

char

DESCRIPTION

*list
*label -

parent widget

list to create
label for shell

Creates a shell widget for the network user edit list and then displays it.

SYSTEM DESIGN DESCRIPTION
70

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

RETURNS

None.

5.1.21.3 Build the Network user edit list.

SYNTAX

NET DISPLAY HEADER * buildNetEditList (PDU_DATA_HEADER *
deflist)

PARAMETERS

LL *defNetList pointer to the default Network data array

DESCRIPTION

Create a temporary list of net data elements for editing. The calling routine
must supply the default Network list which is then copied to create the
temporary list.

RETURNS

LL * pointer to a copy of the PDU data fields for editing

5.1.21.4 Extract PDU header from Network header.

SYNTAX

PDU DATA HEADER * extractPduHeader (NET_DISPLAY_HEADER *
header)

PARAMETERS

NET DISPLAY HEADER *header- network header - -

DESCRIPTION

SYSTEM DESIGN DESCRIPTION
71

1ST: SCANNER

This function extracts the network pdu header from a network user edit list.

RETURNS

PDU DATA HEADER * network header LL

SYSTEM DESIGN DESCRIPTION
72

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.22 PDUCONFIG.C

This file contains functions for handling the PDU (Level 2) automated test screen.
Builds the configuration screens for packet validation and editing. This module also contains
functions for building and freeing PDU edit lists.

5.1.22.1 Destroys the PDU user edit configuration screen and widgets.

SYNTAX

void pdu_conCdestroy (void)

PARAMETERS

None.

DESCRIPTION

This function destroys the PDU configuration screen and frees the PDU edit list
that was used by the PDU configuration screen.

RETURNS

None.

5.1.22.2 Creates and displays the PDU user edit window.

SYNTAX

pdu_conf_display (Widget main_w, LL * pduList, char * label)

DESCRIPTION

This function will create and display the PDU edit screen if it is not already
displayed.

PARAMETERS

Widget
LL

mam w
*pduList

parent widget for this screen
A linked list of PDU DISPLAY FIELDS

SYSTEM DESIGN DESCRIPTION
73

1ST: SCANNER

XmString label Window title

RETURNS

None.

5.1.22.3 Build PDU user edit list.

SYNTAX

LL * buildPduEditList (LL * defaultList)

PARAMETERS

LL * defaultList - pointer to the default PDU data fields

DESCRIPTION

Create a temporary list of pdu data elements for editing. The calling routine
must supply the default PDU list which is copied to create the temporary list.

RETURNS

LL * pointer to a copy of the PDU data fields for editing

5.1.22.4 Free PDU edit list.

SYNTAX

void freePduEditList (LL * editPduList)

PARAMETERS

LL *editPduList - pointer to a linked list of PDU _DISPLA Y _FIELDs

DESCRIPTION

This routine will free the PDU edit list created by buildPduEditListO.

SYSTEM DESIGN DESCRIPTION
74

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

RETURNS

None.

5.1.22.5 Extract PDU data from PDU list.

SYNTAX

LL * extractPduDataList (LL * displayList)

PARAMETERS

LL *displayList - pointer to the PDU display list

DESCRIPTION

This function extracts the PDU data from a PDU display list. The PDU core
routines require pointers to linked list (LL *) of PDU data.

RETURNS

LL * pointer to the newly created PDU data list

SYSTEM DESIGN DESCRIPTION
75

1ST: SCANNER

5.1.23 PC DIALOG.C

Contains the support routines for the Packet Count Window.

5.1.23.1 Create/Display Packet Count Window.

SYNTAX

displayPacketCountWindow 0

PARAMETERS

None.

DESCRIPTION

Creates the shell for the packet count window

RETURNS

None.

5.1.23.2 Update packet count values.

SYNTAX

void updatePacketCounts(enum Applications_Recognized ar, int dispdu)

PARAMETERS

enum Applications _ Recogized
ar

int dispdu

DESCRIPTION

The type of PDU the current packet
contains.
If "ar" is a DIS PDU, then it
contains one of the valid DIS PDU
number, else it contains -1.

Updates the packet counts in the packet count window. Which packet count

SYSTEM DESIGN DESCRIPTION
76

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

widget to update is determined by the values in the parameters.

RETURNS

None.

5.1 .23.3 Destroy the Packet Count Window.

SYNTAX

void packet_ count_ destroy(void)

DESCRIPTION

Destroys the packet count shell widget.

PARAMETERS

None.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
77

1ST: SCANNER

5.1.24 PF DIALOG.C

Contains all of the support routines for the Packet Filter dialog window.

5.1.24.1 Create/Display Packet Filter Window.

SYNTAX

void pCdialog_display (Widget main_w)

PARAMETERS

Widget

DESCRIPTION

mam w main window to pop up / create

Creates and pops up the packet filter window.

RETURNS

None.

5.1.24.2 Initialize contents of Packet Filter Window.

SYNTAX

void pCinitialize _ display(void)

PARAMETERS

None.

DESCRIPTION

Initializes the display after the window is first created.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
78

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

--------.............................
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.24.3 Fetch the contents of the Packet Filter Window.

SYNTAX

DB_FILTER_STRUCT *GetManuaIFilter(void)

PARAMETERS

None.

DESCRIPTION

Returns a pointer to the manual filter structure.

RETURNS

5.1.24.4

DB FILTER STRUCT * A pointer to the locally defined filter
structure that represents the contents of the
packet filter window.

Fetch the status of selected items in Packet Filter Window.

SYNTAX

IsPFTogglePDUSelected(short i)
ISPFSrcIDSelected(XmString item)
I SPFEntityTypeSe1ected(XmString item)

PARAMETERS

Either item or index to item.

DESCRIPTION

Basic query functions as to the state of the appropriate object in the packet filter
window.

RETURNS

BOOLEAN (TIF, yes/no, etc.)

SYSTEM DESIGN DESCRIPTION
79

1ST: SCANNER

5.1.24.5 Destroy the Packet Filter Window.

SYNTAX

void pC dialog_destroy (void)

PARAMETERS

None.

DESCRIPTION

Destroys the packet filter dialog.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION

80

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.25 QRY_DIALOG.C

Contains all of the support routines for the Query dialog window.

5.1.25.1 Create/Display Query Window.

SYNTAX

void qry _ dialog_display (Widget main _ w)

PARAMETERS

Widget

DESCRIPTION

mam w main window to pop up / create

Creates and pops up the query window.

RETURNS

None.

5.1.25.2 Initialize contents of Query Window.

SYNTAX

void qry _initialize _ display(void)

PARAMETERS

None.

DESCRIPTION

Initializes the display after the window is first created.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
81

1ST: SCANNER

5.1.25.3 Fetch the contents of the Query Window.

SYNTAX

DB_FILTER_STRUCT *GetQueryFilter(void)

PARAMETERS

None.

DESCRIPTION

Returns a pointer to the query windows filter data.

RETURNS

DB FILTER STRUCT *

5.l.25.4 Destroy the Query Window.

SYNTAX

void qry _ dialog_destroy (void)

PARAMETERS

None.

DESCRIPTION

Destroys the query dialog.

RETURNS

None.

A pointer to the locally defined filter
structure that represents the contents of the
query window.

SYSTEM DESIGN DESCRIPTION
82

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.26 RP DIALOG.C

Contains all of the support routines for the report results dialog window.

5.1.26.1 Create/Display the Report Results Window.

SYNTAX

void rp _ dialog_display (Widget main _ w)

PARAMETERS

Widget mam w main window to pop up / create

DESCRIPTION

Creates and pops up the report results dialog window.

RETURNS

None.

5.1.26.2 Update Report Results Window with information from management structure.

SYNTAX

void UpdateRpDialog(void)

PARAMETERS

None.

DESCRIPTION

Copies appropriate values from the management structure to the report results
dialog.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
83

rST: SCANNER

5.1.26.3 Add the results of the test to the Report Results Window.

SYNTAX

void AppendReportReasons(char *s)

PARAMETERS

char *s reason string to insert

DESCRIPTION

Appends reasons for pass/fail to reason field in Report Results dialog.

RETURNS

None.

5.1.26.4 Assign the test status results to the Report Results Window.

SYNTAX

void AssignTestStatus(TEST _STATUS ts)

PARAMETERS

TEST STATUS ts test status

DESCRIPTION

Assigns the specified test status (Passed, Failed, Incomplete) In the Report
Results dialog test status field.

RETURN

5.1.26.5

None.

Copy information from the Report Results Window to the management structure.

SYSTEM DESIGN DESCRIPTION

84

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

SYNTAX

void UpdateManagementFromRpDialog(void)

DESCRIPTION

Updates the management structure with data from the report dialog.

PARAMETERS

None.

RETURNS

None.

5.1.26.6 Destroy the Report Results Window.

SYNTAX

void rp_dialog_destroy (void)

PARAMETERS

None.

DESCRIPTION

Destroys the report results dialog.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
85

1ST: SCANNER

5.1.27 SC DIALOG.C

Build the system configuration screen listing the configuration files to use for this test
suite. If the user modifies any of the values in the configuration fields, the new configuration
files are loaded and used from then on for that test suite.

5.l.27.1 Create/Display System Configuration Window.

SYNTAX

int sc _display (void)

PARAMETERS

None.

DESCRIPTION

This is the main entry for creating the system configuration xWindows screen.
If the screen has already been created it will not be recreated, but it will be
updated and displayed.

RETURNS

None.

5.1.27.2 Copy information from management structure to System Configuration Screen.

SYNTAX

int scyopulate_display (void)

PARAMETERS

None.

DESCRIPTION

This function fetches the configuration filenames from the management structure
and initializes the display.

SYSTEM DESIGN DESCRIPTION
86

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

RETURNS

None.

5.1.27.3 Destroy the System Configuration Window.

SYNTAX

int sc _destroy (void)

PARAMETERS

None.

DESCRIPTION

This function is used to destroy the contiguration screen and destroy all
x Windows widgets.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
87

1ST: SCANNER

5.1.28 TG DIALOG.C

Builds a configuration screen for each test group and allows the user to select which
tests to run.

5.1 .28.1 Create/Display Test Selection Configuration Window.

SYNTAX

void tg_ conC display (Widget main_ w, int group, char * label)

PARAMETERS

Widget mam w main window for everything

int group which test group to display

char * label label for window

DESCRIPTION

This function displays a window for a specific test group and allows the user to
select which tests to run from that test group.

RETURNS

None.

5.1.28.2 Destroy the Test Selection Configuration Window.

SYNTAX

void tg_conCdestroy(void)

PARAMETERS

None.

DESCRIPTION:

SYSTEM DESIGN DESCRIPTION
88

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

Destroys the Test Selection Configuration window.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
89

1ST: SCANNER

5.1.29 TL DIALOG.C

Contains the support routines for managing and displaying the Timeline window.

5.1 .29.1 Create/Display the Timeline Window.

SYNTAX

void tl_ time_line _ display(void)

PARAMETERS

None.

DESCRIPTION

Creates and displays the Timeline window.

RETURNS

None.

5.1.29.2 Freshen the text for the current record highlighted in the Timeline.

SYNTAX

void update_timeJine_text(void)

PARAMETERS

None.

DESCRIPTION

Makes sure the textual information displayed at the bottom of the Timeline
window is up to date.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
90

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.29.3 Delete list of time line entries.

SYNTAX

void tl_Iist_ delete(void)

PARAMETERS

None.

DESCRIPTION

A list of all entries to appear in the Timeline is built during the creation of the
Timeline display. That list must be freed up after the Timeline is built. This
function frees the memory reserved by that list.

RETURNS

None.

5.1.29.4 Destroy the Timeline Window.

SYNTAX

void tl_ dialog_ destroy(void)

PARAMETERS

None.

DESCRIPTION

Destroys the Timeline window's widget.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
91

1ST: SCANNER

5.1.30 TS AUTO DIALOG.C - -

This file contains the functions to create the Automated testing windows and callback
routines for Automated testing functions.

5.1.30.1 Create the automated test selection dialog.

SYNTAX
ts _auto _ dialog_display (Widget main _ w)

PARAMETERS

Widget mam w main window widget

DESCRIPTION

This function is the external interface to create and display the automated test
selection window.

RETURNS

None.

5.1.30.2 Fetch the Network user edit list.

SYNTAX

NET _ DISPLA Y _HEADER *GetUserNetList(void)

PARAMETERS

None.

DESCRIPTION

Returns a pointer to the locally-defined, network-tests user edit list.

RETURNS

NET DISPLAY HEADER * pointer to network user edit list

SYSTEM DESIGN DESCRIPTION
92

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.30.3 Fetch the PDU user edit list.

SYNTAX

LL *GetUserPduList(void)

PARAMETERS

None.

DESCRIPTION

Returns a pointer to the locally-defined, PDU-tests user edit list.

RETURNS
LL * pointer to PDU user edit list

SYSTEM DESIGN DESCRIPTION
93

1ST: SCANNER

5.1.31 TS MAN DIALOG.C - -

Contains the routines for creating and displaying the manual test selection dialog and
beginning the manual test process.

5.1.31.1 Create manual test selection dialog.

SYNTAX

PARAMETERS

Widget maIn w main window widget

DESCRIPTION

Creates and displays the manual test selection dialog.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
94

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.32 TS DIALOG.C

Contains the routines for creating a selection dialog of all of the test suites existing on
the hard drive that the user can choose from.

5.1.32.1 Create/Display test suite selection dialog.

SYNTAX

void ts _ dialog_display (Widget main _ w, short doingDelete)

PARAMETERS

Widget

short

DESCRIPTION

mam w

doingDelete

main window iwdget

TRUE if this function is called for deleting
a test suite;
FALSE if not.

Creates and displays a dialog listing all of the test suites created on the hard
drive in the directory you are running the Scanner from.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
95

1ST: SCANNER

5.1 .33 RPTLOGGER.C

Contains the support routines for creating and updating the report log file.

5.1.33.1 Open the report log.

SYNTAX

ReportLogOpen (char * fname)

PARAMETERS

char *fname

DESCRIPTION

File name of the report log to be opened.

Open the report log for output. The report log is opened in an append mode.

RETURNS

None.

5.1.33.2 Close the report log.

SYNTAX

void ReportLogClose(void)

PARAMETERS

None

DESCRIPTION

Closes the report log file.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
96

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.33.3 Write the report log header.

SYNTAX

void ReportLogHeader(void)

PARAMETERS

None

DESCRIPTION

Output the report log header, which contains the testbed. company, and SUT
information from the management structure.

RETURNS

None.

5.1.33.4 Write the test header to the report log.

SYNTAX

void ReportLogTestHeader(int testGroup, int testEntry)

PARAMETERS

int

int

DESCRIPTION

testGroup

testEntry

Test group from management structure
(Network, PDU, ...)

Test entry within test group.

Output a header for the individual test specfied by the two parameters.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
97

1ST: SCANNER

5.1.33.5 Write report results to the report log.

SYNTAX

void ReportLogResults(int testGroup, int testEntry)

PARAMETERS

int

int

DESCRIPTION

testGroup

testEntry

Test group from management structure
(Network, PDU, ...)
Test entry within test group.

Output the test results to the report log file.

RETURNS

None.

5.1.33.6 Write formatted information to the report log.

SYNTAX

ReportLogPrintfO - Print a formatted report message.

PARAMETERS

va alist

DESCRIPTION

variable argument list (format and arguments of string to
add)

Print a formatted string to the report log file. This function works the same as
printfO·
Calling convention:

RETURNS

None.

ReportLogPrintf ("format string", args ...);

SYSTEM DESIGN DESCRIPTION
98

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.34 RPTRESUL TS.C

Generates the Results Summary report and writes it to a text file.

5.1.34.1 Create Results report.

SYNTAX

void ReportResultsSummary (void)

PARAMETERS

None.

DESCRIPTION

Creates a report as a text file. For each test selected in the management
structure, the results of the report are written to the report.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
99

1ST: SCANNER

5.1.35 RPTSTATUS.C

Generates the Results Status report and writes it to a text file.

5.1.35 . 1 Create Status report.

SYNTAX

void ReportStatusSummary (void)

PARAMETERS

None.

DESCRIPTION

Creates a report as a · text file. For each test selected in
structure, the results of the report are written to the report.

RETURNS

None.

SYSTEM DESIGN DESCRlPTION
100

I
I
I
I
I
I
I
I

the management

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.1.36 PACKET ID.C

Contains the higher level packet identification code.

5.1.36.1 Identify a packet.

SYNTAX
void HandlePacket(int screen_output, FILE * text_file, int packet_dump, int

verbose, int interp, void *pkt, long plen, TIME
packet_time, PACKET_IDENTIFICATION_STRUCT *pis
)

PARAMETERS

int
FILE
int
int
int
void
long
TIME

screen_output -
*text file
packet_dump -
verbose
interp
*pkt
plen
packet_time

Ignored.
Ignored.
Ignored.
Ignored.
Ignored.
A pointer to a buffer containing a packet
The length of the packet
The time stamp from the Logger header for
the packet

PACKET IDENTIFICATION STRUCT
- -

*pis

DESCRIPTION

A structure to be filled in by the routines
called by HandlePacketO. The structure
contains information about what kind of
packet it is.

Process an incoming packet to determine what values are in the different
protocol layers. The PACKET_IDENTIFICATION_STRUCT is filled in by the
lower level routines called from this function. The structure contains the
information about what type of network headers are on the packet and what type
of packet it is.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
101

1ST: SCANNER

5.2 Data Interface

5.2.1 Data Definition Language

Rather than defining specific data structures for each PDU and Network type, and the
associated code to process the data structures, the Data Definition Language (DDL) was created
to allow generic processing of the various data packets.

Certain fields require special processing. These fields are also defined in the default
DDL format, but are identified and processed accordingly during the traversal of the packet
definition list. The majority of the fields within the PDUs do not require special processing.

The DDL also allows variable sections to be defined. Variable sections must he
grouped. The variable group is only defined once. When the data packet is being procc5sed,
the variable group fetches its CQunt parameter from the data packet, and is repeated the
appropriate number of times. The data field containing the count parameter must appear in the
data packet before the variable section. This allows the generic definition and processing to
be used for all possible variations of the currently defined PDU types.

Since the data defined using the DDL is kept in ASCII files and read in at runtime, the
keywords and associated data are quoted. This allows spaces to be used in the definitions, and
parsing of the configuration line is simplified to reading and parsing of strings. This does not
limit .the data types that may be defined. To keep the parser simple, there is a requirement that
a definition must be contained on a single line. Each line must start with a comment character
or a keyword. The parameters for a keyword must be on the same line as the keyword.
Keywords may be preceded by spaces or tabs for readability. The parser will skip blank lines
and comment lines.

The DDL uses the following key words:

* This character at the start of a line indicates that this is a comment line.

PDU
This keyword defines the start of a PDU definition. This keyword requires two
parameters, PDU name, and PDU number. PDU definitions may not be nested. The
PDU keyword does require a corresponding ENDPDU.

Usage: PDU
PDU NAME
PDU NUMBER

Keyword
ASCII name of the PDU
PDU Number. Must be unique. Used to index the
PDU table

SYSTEM DESIGN DESCRIPTION
102

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

Format: "PDU", "PDU NAME", "PDU NUMBER"

Example: "PDU", "ENTITY_STATE", "1"

ENDPDU
This keyword defines the end of a PDU definition. Each PDU keyword reqUIres a
corresponding ENDPDU keyword.

Usage: ENDPDU Keyword

Example: "ENDPDU"

NETWORK
This keyword defines the start of a Network level definition. This keyword requires
two parameters, Network name, and Network number. Network definitions may not be
nested. They do require a corresponding ENDNETWORK.

Usage:

Format:

Example:

Example:

ENDNETWORK

Keyword NETWORK
NETWORK NAME
NETWORK NUMBER

ASCII name of the Network
Network Number. Must be unique. Used
to index the Network table

"NETWORK", "NETWORK NAME", "NETWORK NUMBER"

"NETWORK", "ETHERNET", "1"

"NETWORK", "UDPIIP", "I"

This keyword defines the end of a Network definition. Each NETWORK. keyword
requires a corresponding ENDNETWORK keyword.

Usage: ENDNETWORK Keyword

Example: "ENDNETWORK"

GROUP
This keyword defines the start of a group. The group may be a fixed group or a
variable group. A fixed group defines a group of elements that are to be repeated a
known number of times, usually once. A variable group is a group that is to be
repeated, but the number of times is determined by a data field within the data packet,

SYSTEM DESIGN DESCRIPTION
103

1ST: SCANNER

and is therefore unknown at this time. If a group name contains the keyword _BITS,
the group elements are treated as a bitfield. Groups may be nested, but each group
requires a corresponding ENDGROUP.

Fixed groups:
Usage: GROUP

GROUP NAME

FIXED
COUNT

Keyword
Group Name, must be umque for this PDU or
Network definition.
Keyword
Number of iterations

Example: "GROUP", "PDU_HEADER", "FIXED", "1"

Variable groups:
Usage: GROUP

GROUP NAME

VARlABLE
CTRL GROUP

CTRL FIELD

Keyword
Group Name, must be unique for this PDU or
Network definition.
Keyword
Name of group containing the field with the count
value.
Name of field containing the count value
specifying this groups number of copies.

Example: "GROUP", "ART_PARMS", "VARlABLE", "ENTITY_STATE",
"NUMBER ART PARMS" - -

ENDGROUP

ELEM

This keyword defines the end of a group definition.

Usage:

Example:

ENDGROUP
GROUP NAME

Keyword
Group Name

"ENDGROUP" "ART PARMS" , -

This keyword defines an element, whether it is part of the PDU or a sub-group. An
element defines the attributes of a data field. Elements are self contained in one line,
and do not require an end type keyword.

Usage: ELEM Keyword
PARENT GROUP The name of this field's immediate parent

SYSTEM DESIGN DESCRlPTION

104

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

FIELD NAME
DATA TYPE

DISPLA Y TYPE

MINIMUM VALUE

MAXIMUM VALUE

group.
The name of this data field .
The data type for this data field. See the
list below.
Display type for this data field. See list
below.
The minimum value for this data field, or
the word "MIN" which will be translated to
the minimum value for this fields data type.
The maximum value for this data field, or
the word "MAX" which will be translated
to the maximum value for this fields data
type.

ENUMERATION TABLE An associated enumeration table name if

GROUP DIVISOR
there is one, otherwise "NONE".
The group divisor is used in calculating the
iteration count for variable fields. Not all
count fields are a number of iterations.
Some are total number of bits, therefore
they must be divided by this value to obtain
a count. The default value is "1". Only a
few PDUs require a different value. See
the PDU Configuration File section for a
more complete definition.

Example: "ELEM", "PDU_HEADER", "PROTOCOL_VERSION", "U8", "DEC",
"1", "4", "PROTOCOL_VERSION", "1"

A list of possible display types:

DEC Decimal
HEX Hexadecimal
FLOAT Decimal
ASCII ASCII text
DATA Data block

A list of possible element data types:
U8 Unsigned character
S8 Signed character
U 16 Unsigned short
S 16 Signed short

SYSTEM DESIGN DESCRIPTION

105

U32
S32
F32
U64
F64
A

B

D

1ST: SCANNER

Unsigned long
Signed long
32-bit Float
Possibly two unsigned longs
64-bit Float
Ascii string with length (A#)

A 15 means 15 ascii characters.
Bit fields (bits#mask#shift)

B8#FO#4 means its an 8 bit field, the mask is hex FO and
the right shift count used to align the data is 4.

Data area with count (D#)
D 15 means 15 data bytes.

SYSTEM DESIGN DESCRIPTION

106

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- - - - - - - - - - -. - - - -
1ST: SCANNER

The following is an example of the Network Configuration File.

"NETWORK", "ETHERNET", "1"
"GROUP", "ETHERNET", "FIXED", "1"

"ELEM", "ETHERNET", "DESTINATION",
"ELEM", "ETHERNET", "SOURCE",
"ELEM", "ETHERNET", "ETHER_TYPE",

"ENDGROUP" , "ETHERNET"
"ENDNETWORK "

"NETWORK", "UDP/IP" ,
"GROUP", "UDP/IP" ,

"2"
"FIXED",

"GROUP", "IP", "FIXED", "1"

111"

"GROUP", "IP HEADER BITS", "FIXED", "1"

"D6",
"D6",
"U16 " ,

"ELEM", "IP_HEADER_BITS" , "IP HEADER LENGTH",
"ELEM", "IP HEADER BITS", "VERSION",

"ENDGROUP" , "IP HEADER BITS"

"ELEM", "IP",
"ELEM", "IP",
"ELEM", "IP",

"TYPE OF SERVICE",
"TOTAL LENGTH",
"PACKET ID",

"U8" ,
"U16" ,
"U16",

"GROUP", "IP FRAG BITS", "FIXED", "1"
"ELEM", "IP_FRAG_BITS", "FRAGMENT OFFSET",
"ELEM", "IP_FRAG_BITS", "FLAGS",

"ENDGROUP", "IP FRAG BITS"

"ELEM", IP" , "TIME TO LIVE", "U8" ,
"ELEM", IP" , " PROTOCOL" , "U8" ,
"ELEM", IP" , "HEADER CHECKSUM" "U16" ,
"ELEM" , IP" , "SOURCE ADDRESS [0] ", "U8" ,
"ELEM", IP" , "SOURCE-ADDRESS [1] ", "U8" ,
"ELEM", IP" , "SOURCE-ADDRESS [2] ", "U8" ,
"ELEM", IP" , "SOURCE-ADDRESS [3] " "U8" ,
"ELEM", IP" , "DESTINATION ADDRESS [0] ", "U8" ,
"ELEM", IP" , "DESTINATION-ADDRESS [1] ", "U8" ,
"ELEM", IP" , "DESTINATION:=ADDRESS[2] ", "U8" ,

"HEX",
"HEX",
"HEX" ,

"B8#FO#4" ,
"B8#OF#0" ,

"DEC" ,
"DEC" ,
"DEC" ,

"MIN", "MAX",
"MIN", "MAX",
"Oil, "MAX" I

"NONE"
"NONE"
"NONE"

"DEC",
"DEC" ,

"MIN" ,
"MIN" ,

"MAX II ,

"MAX II ,

"MIN" ,
"MIN" ,
"MIN",

"MAX II ,

II MAX II ,

II MAX II ,

"NONE"
"NONE"
"NONE"

"NONE"
"NONE"

"B16#FFF8#3", "DEC", "MIN",
"B16#0007#0", "HEX", "MIN",

"MAX", "NONE"
"MAX", "NONE"

"DEC" , "MIN", "MAXII, "NONE"
"DEC" , "MIN", II MAX II , "NONE"
"DEC", "MIN", IlMAX", "NONE
"DEC" , "MIN", "MAX II , "NONE
"DEC" , "MIN" , II MAX II , "NONE
"DEC" , "MIN", II MAX II , "NONE
"DEC" , "MIN", II MAX II , "NONE
"DEC" , "MIN", "MAX", "NONE
"DEC" , "MIN", "MAXII, "NONE '
"DEC" , "MIN", "MAX", "NONE"

SYSTEM DESIGN DESCRIPTION

107

- - - -

-

1ST: SCANNER

"ELEM", "IP", "DESTINATION_ADDRESS [3]", "U8",
"ENDGROUP", "IP"

"GROUP", "UDP", "FIXED", "1"
"ELEM", "UDP", "SOURCE PORT",
"ELEM", "UDP", "DESTINATION PORT",
"ELEM", "UDP", "LENGTH [HDR+TEXT]" ,
"ELEM", "UDP", "CHECKSUM",

"ENDGROUP", "UDP"

"ENDGROUP", "UDP/IP"
"ENDNETWORK"

"U16" ,
"U16" ,
"U16" ,
"U16" ,

SYSTEM DESIGN DESCRIPTION

108

- - - - - - - - -

"DEC", "MIN", "MAX", "NONE"

"DEC", "MIN", IlMAX", "NONE"
"DEC", "MIN", IlMAXII, "NONE"
"DEC", "MIN", "MAX!!, "NONE"
"DEC", "MIN", II MAX II , "NONE"

- - - - - - - - -

- - - - - - - - - -
1ST: SCANNER

The following is an example of the PDU Configuration File.

"PDU" , "ENTITY_STATE_PDU" 1

"GROUP", "ENTITY_STATE", "FIXED", "1"

"GROUP" , "PDU HEADER",
"ELEM", "PDU HEADER",
"ELEM", "PDU-HEADER",
"ELEM", "PDU-HEADER",
II ELEM " , "PDU-HEADER",
"ELEM", "PDU-HEADER",
"ELEM", "PDU-HEADER",
"ELEM", "PDU-HEADER",

"ENDGROUP", "PDU-HEADER"

"GROUP". "ENTITY ID",
"ELEM", "ENTITY ID",
"ELEM", "ENTITY-ID",
"ELEM", "ENTITY-ID",

"ENDGROUP", "ENTITY-ID"

"ELEM",
"ELEM" ,

"ENTITY STATE".
"ENTITY::::STATE" •

"GROUP" ,
"ELEM",
"ELEM" ,
"ELEM" ,
"ELEM" ,
"ELEM" ,
"ELEM" ,
ttELEMI1 ,

"ENDGROUP" ,

"GROUP" •
"ELEM",
IIELEM",
"ELEM",
"ELEM" •
"ELEM" ,
"ELEM" ,
"ELEM" ,

"ENDGROUP" •

"GROUP" •
IIELEMII,
"ELEM" •
"ELEM",

"ENTITY TYPE".
" ENTITY TYPE".
"ENTITY-TYPE",
"ENTITY-TYPE" •
"ENTITY-TYPE" •
"ENTITY-TYPE" ,
"ENTITY-TYPE" ,
"ENTITY-TYPE" •
"ENTITY::::TYPE"

"ALT ENTITY TYPE" .
"ALT ENTITY TYPE",
"ALT-ENTITY-TYPE" •
"ALT-ENTITY-TYPE" •
"ALT-ENTITY-TYPE" •
"ALT-ENTITY-TYPE" •
"ALT-ENTITY-TYPE" ,
"ALT-ENTITY-TYPE" ,
"ALT::::ENTITY::::TYPE"

"ENTITY LINEAR VELOCITY".
"ENTITY LINEAR VELOCITY".
"ENTITY-LINEAR-VELOCITY".
"ENTITY-LINEAR::::VELOCITY".

II FIXED II , "1"
"PROTOCOL VERSION".
"EXERCISE-ID" •
"PDU TYPE",
"PADDING" •
"TIME STAMP",
"LENGTH" ,
"PADDING" •

IIFIXED", 111"
"SITE" I

"APPLICATION" ,
"ENTITY" ,

"FORCE ID".
"NUMBER ART PARAMS",

"FIXED" I "I"
"ENTITY KIND",
"DOMAIN".
"COUNTRY" •
"CATEGORY" ,
"SUBCATEGORY" •
"SPECIFIC",
II EXTRA" ,

"FIXEDII, Ill"
"ENTITY KIND",
"DOMAIN",
"COUNTRY" ,
"CATEGORY" •
"SUBCATEGORY" •
"SPECIFIC" ,
"EXTRA" ,

"FIXED".
IIXI',
Ily",
IIZII,

Ill"

IIU8 11 ,

l'U8" ,
"U8",
IIU8 11 ,

IIU32",
"U16'1,
"U16 11

,

l'U16",
IIU16 11 ,

IIU16 11 ,

"U8 11
,

"U8 11
I

"U8 11
,

"U8 11
,

IIU16 1.,

IIU8 11 ,

IIU8 I',

IIU8 11 ,

IIU8",

IIU8 11 ,

IIU8 11 ,

IIU16 11 ,

IIU8 11 ,

IIU8 11 ,

IIU8 11 ,

tIU8",

"F32",
"F32 1I

,

"F32",

SYSTEM DESIGN DESCRIPTION

109

-

IIDEe" ,
II DEC" ,
IIDEe'I,
IIDEC",
lIHEXlI,
"DECII,
IIDEe" ,

IIDEe" ,
"DEC",
"DEC",

IIDEe",
IIDEC" ,

"DEC" ,
"DEC",
"DEC" ,
"DEC" ,
I'DEC" ,
IIDEC " I

"DEC",

"DEC" ,
"DEC",
"DEC" ,
"DEC" ,
II DEC" ,
tlDEC" ,
"DEC" ,

"FLOAT" •
"FLOAT" •
"FLOAT" •

- -

"l",
"MIN",
"l" ,
"0 " ,
"MIN",
"144",
"0" ,

"MIN",
"MIN",
I'MIN",

"0",
"MIN",

110" ,
"MIN",
"0",
"MIN" ,
"MINI! ,
"MIN",
"MIN",

"0" ,
"MIN",
110" ,
"MIN I',
"MIN",
"MIN",
"MIN" ,

"MIN",
"MIN",
"MIN",

"4" ,
"MAX II ,

"111 ,
"0" ,
"MAX",
"MAX",
liD",

"MAX",
"MAX",
"MAX",

"3" ,
"MAX",

"7" ,
"MAX " ,
"266" ,
"MAX" ,
"MAX",
"MAXII,
"MAXII,

"7" ,
"MAX",
11266" ,
II MAX " ,
"MAX ",
"MAX" ,
lI MAX",

"MAXII,
"MAX",
"MAX",

- - - -

"PROTOCOL VERSION" , "1"
"NONE II I "111
"PDU TYPE ", II 1 "
IINONE", "1"
"NONE", "111
"NONE", "1"
"NONE", "111

"NONE" , "1"
IrNONE" , "111
"NONE" , 11111

"FORCE ID", "111
"NONErl~ "1 "

"ENTITY KIND "
II NONE " , - "1 11 '
"COUNTRY" I "111
"NONE", "1 "
"NONE", "1"
"NONE" I "1 11
IINONE" I "1"

" 1 11

"ENTITY KIND",
"NONE", -"1"
"COUNTRY", "111
"NONE II , "1"
"NONE " , " 1 "

Ill"

II NONE " I "1 "
II NONE tt I " 1 "

"NONE",
"NONE",
"NONEII,

"1'1
"1"
"1"

- -

-

"ENDGROUP" ,

"GROUP" ,
"ELEMII,
"ELEM'I,
"ELEM",

"ENDGROUP" ,

"GROUP" ,
"ELEMII,
"ELEMII,
"ELEMII,

"ENDGROUP" ,

IIELEMII,

"GROUP" ,
"ELEMII ,
IIELEMII ,
IIELEM",
"ELEMII,
IIELEM",
IIELEMII,
"ELEM" ,
IIELEMII,

" ENDGROUP" ,

IIGROUP",
"ELEM",
IIELEMu,

" ENDGROUP" ,

1ST: SCANNER

"ENTITY_LINEAR_VELOCITY"

"ENTITY LOCATION",
"ENTITY LOCATION",
"ENTITY-LOCATION" ,
"ENTITY-LOCATION" ,
"ENTITY-LOCATION"

"ENTITY ORIENTATION",
"ENTITY ORIENTATION",
"ENTITY-ORIENTATION" ,
"ENTITY-ORIENTATION",
"ENTITY-ORIENTATION"

"ENTITY_STATE",

"DEAD RECK PARAMS",
"DEAD RECK PARAMS",
"DEAD-RECK-PARAMS" ,
"DEAD-RECK-PARAMS" ,
"DEAD-RECK-PARAMS" ,
"DEAD-RECK-PARAMS" ,
"DEAD-RECK-PARAMS" ,
"DEAD-RECK-PARAMS" ,
"DEAD-RECK-PARAMS" ,
" DEAD-RECK-PARAMS "

"ENTITY MARKING",
"ENTITY MARKING",
"ENTITY-MARKING" ,
"ENTITY-MARKING"

"FIXEDII , "111
fiX" ,
Uyll,
liZ",

"FIXED" , "1"
IIPSI II

I

"THETA" ,
II PHI II ,

"APPEARANCE" ,

IIFIXED", "1"
"DR ALGORITHM",
nOTHER Ii ,

"EN LIN ACC. X" ,
"EN-LIN-ACC. Y",
"EN-LIN-ACC.Z",
"EN-ANG-VEL . X",
"EN-ANG-VEL. Y",
"EN::::ANG::::VEL . Z" ,

II FIXED" , Ill"
"CHARACTER SET",
"RECORD", -

"F64 11
, II FLOAT" , "MIN" , "MAX" , "NONE II I "I"

"F64 II , II FLOAT" , "MINI! , 1IM1\X1I I IJNONEII, "1"
"F64" , "FLOAT" , "MIN" , IlMAX", "NONE!!, "111

IIF32", IIFLOATII, "MINII, "MAXI1, "NONE!!, 1'111
IIF32", IIFLOATII, "MINII, IlMAX", "NONEII, "1"
"F32", IIFLOAT", "MIN", "MAX", "NONE", "1"

"U32", IIHEX", "MINII, IlMAX", "NONEII, "III

"US II, IIDEC", II 0" , "9 II I "DEAD RECKONING ALGORITHM " , "I"
IIDlslI, IIHEXII, "0", "Oil, "NONEI',1I1 11 -

"F32 11 , "FLOAT II , "MIN II , II MAX II , "NONE!!,1I111
IIF32 11

, uFLOAT", "MIN", IlMAXII, "NONE", 111"
IIF32", II FLOAT" , "MINII, "MAX", "NONE", "I"
IIF32", "FLOAT II

, "MIN", "MAX", "NONEII, "111
"F32", lIFLOAT", "MIN", "MAX", "NONE", 11111
IIF32", "FLOAT", "MINII, II MAX " I "NONE", 11111

lIua ll , "HEXII, IIMIN!!, "MAXII, IIENTITY MARKING TABLE", "111
"Al111, IIASCII!!, IIMIN", IlMAX", "NONE"~ filII -

"ELEM", "ENTITY_STATE", "CAPABILITIES" , uU32" I "HEX", "MINI! I "MAX", "NONE", "111

"GROUP" ,
IIELEM",
"ELEM",
"ELEM" ,
"ELEM" ,

II ENDGROUP" ,

"ENDGROUP" ,

"ENDPDU"

- -

"ART PARAMS",
IIART PARAMS" ,
"ART-PARAMS" ,
"ART::::PARAMS" ,
IIART PARAMS",
"ART-PARr1S"

"ENTITY STATE"

- -

"VARIABLE" , "ENTITY STATE",
II CHANGE II , l'U16" ,
"lOll I "U16" ,
"TYPE", "U32 11

,

IIV~UE", "U64" ,

SYSTEM DESIGN DESCRIPTION

110

- - - - -

"NUMBER ART PARAMS"
"DEC" , "MIN",- "MA.XII , "NONE II , "111
"DEC" , "MIN" , "MAX", "NONE", "1"
"HEX" , IIMIN" , "MAXII, IINONE", "1"
IIHEX" j IIMIN" , "MAXII, "NONE" , "111

- - - - - - - - -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.2.2 Scanner Data Structures

The main data structures used by the Scanner are defined in this section.

5.2.2. 1 PDU Data Entry

The PDU_DATA_ENTRY structure is the core of the configuration list data definition
structures used to identify fields within a data packet. It is used for both default lists, and
mapped lists. The data element is used as a link in the linked lists defining the various packet
data definition lists.

Each link in the data definition lists is used to describe either a field or a group. Field
entries are contained within this structure. Group entries will create a new linked list for their
children. The children may be field and/or group definitions. The chain continues until there
are no more group definitions.

typedef enum
{

PDL_DATA_GROUP,
PDL DATA ELEM - -

} PDL_DATA_TYPE;

typedef enum
{

PDL_ CONTROL_FIXED,
PDL CONTROL VARIABLE - -

} PDL_ CONTROL_TYPE;

SYSTEM DESIGN DESCRIPTION

111

1*
**
*1

Field data types

typedef enum
{

1ST: SCANNER

1* No field descriptor
1* Unsigned character
1* Signed character
1* Unsigned short
1* Signed short
1* Unsigned long
1* Signed long
1* 32-bit Float

*1
*1

*1
*1

*1
*1

*1

FIELD_NONE = 0,
FIELD_U8,
FIELD_S8,
FIELD_UI6,
FIELD_SI6,
FIELD_U32,
FIELD_S32,
FIELD_F32,
FIELD_U64,
FIELD_F64,
FIELD_A,
FIELD_B,

1* possibly two unsigned longs
1* (2) 32-bit floats *1
1* Ascii string with length
1* Bit fields (bits#mask#shift)

FIELD D
} FIELD DATA TYPE; - -

1*
**
*1

Field display types

typedef enum
{

FDT_DECIMAL = 0,
FDT_HEX = I,
FDT _FLOAT = 2,
FDT _ASCII = 3,
FDT DATA = 4

1* Data area with count

} FIELD DISPLAY TYPE; - -

#define GROUP NAME SIZE 60 - -
#define FIELD NAME SIZE 40

- -
#define FIELD DATA SIZE 40 - -

*1
*1
*1

*1

*1

SYSTEM DESIGN DESCRIPTION

112

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

The following is a definition of the PDU Data Entry structure.

typedef struct --'pdu _data
{

short

short
char
char
char

ctrlGrpDiv;

ctrlCount;
ctrlGroup[GROUP _NAME_SIZE];
ctrlName[FIELD _NAME_SIZE];
groupName[GROUP _NAME_SIZE];

char fieldName[FIELD_NAME_SIZE];
FIELD _DATA_TYPE dataType;
FIELD _ DISPLA Y _TYPE dispType;

short

short
short
unsigned short
unsigned short

unsigned short

unsigned short
short

short

dataSize;

maxLength;
display _len;

offset;
grpSize;

index;

ofMaxGroups;
bits;

shift;

unsigned long mask;
char min[FIELD_DATA_SIZE];
char max[FIELD_DATA_SIZE];
enum Enum_Enum enumTable;

LL * children;

1* PDL_DATA_GROUP,
1* PDL DATA ELEM
1* PDL_CONTROL_(FIXED,
1* VARIABLE)
1* group count divisor
1* (def: l)
1* FIXED: number of groups
1* Controlling group
1* Controlling group field

*1
*1
*1
*1
*1
*1
*1
*1
*1

1* PDL_DATA_GROUP: Group *1
1* PDL DATA ELEM: *1 - -
1* Parent's group * I
1* PDU field name * I
1* Data type of PDU field * I
1* Display type of PDU *1
1* field *1
1* Size of data field in
1* bytes
1* Max chars accepted in X
1* Size of X display field
1* PDU field offset
1* Size of children in
1* bytes
1* Current index into
1* multiple
1* copies of this group
1* Size of bitfield in
1* bytes
1* Shift Right count in
1* bits
1* Bit field mask
1* Minimum field value
1* Maximum field value
1* Table index for
1* validation
1* pointer to a groups

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

SYSTEM DESIGN DESCRIPTION
113

I
I

1ST: SCANNER

1* children *1 I
} PDU_DATA_ENTRY;

I
I
I
I
I
I
I
I
I
I
I
I
I
I

SYSTEM DESIGN DESCRIPTION

I 114

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.2.2.2 Default Group List

The default group lists are defined in configuration files. The Data Definition Language
is used to define the groups and there fields.

The default group lists are a direct translation of the contents found within the
configuration files. They will define the format of each variable section, but until a packet is
actually mapped to this list, the number of variable parameters is unknown, therefore, at this
time the program is unable to completely generate the data lists. The count used to define a
variable section is located within the data packet. This structure allows us to duplicate the base
variable section (N) number of times, when (N) is read from the data packet.

The following illustration is of a group that has only data field definitions as it's
children.

Group:
PDU Header
children

- Field:
Protocol Version

- Field:
Exercise id

.

Field:
'--- Padding

Figure 1: Default Group Listing (Fields only)

SYSTEM DESIGN DESCRIPTION
115

1ST: SCANNER

The following illustration is of a group that has both groups and data fields as it's
children. There is no fixed limit as to how far the group nesting can be defined.

Group:
children

Field:

Group:
children

Field:

Field:

Field:

Field:

Figure 2: Default Group Listing (Groups and Fields)

SYSTEM DESIGN DESCRIPTION

116

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.2.2.3 Mapped Group List

Mapping consists of overlaying either a default configuration list or a user defined
configuration list over a section of the data packet. The sections of the data packet are defined
by the protocol layers, and their sizes. While mapping the configuration list to the data packet,
the values within the data packet are used to resolve variable data section sizes. When
mapping a variable data section, the count value is fetched from the data packet, and used to
determine how many times to duplicate the variable section in the mapped list. When the data
mapping is completed, the newly created mapped list contains a linked list of data fields that
cover the data elements within the section of the data packet that was mapped.

The mapped configuration list has the same structure as the default configuration list
defined. above. The difference is that the variable groups are expanded to meet the
requirements of the data packet being mapped to.

The mapped list allows the Scanner to access the fields within a data packet for
validation or display purposes.

During mapping, the size of a group is calculated and placed into the group size field
of the group structure (PDU_DATA_ENTRY).

5.2.2.4 Default Network Configuration Table

The default network header is defined as an array of PDU _DA T A_HEADERs. This
allows the same translation code to be used for all packet layers.

The default network table contains both network and transport layer definitions.

The following is a list of supported network and 'transport layer definitions.

enum
{

1*

NET _ 8023 _TYPE = 0,
NET_ETHER _TYPE,
TL_UDP _IP _TYPE,
TL_TCP _IP _TYPE,
TL _ ARP _TYPE,

SYSTEM DESIGN DESCRIPTION
117

1ST: SCANNER

** Default definition header
*1

typedef struct {
LL * children;
int pduNumber;
char pduName[FIELD _NAME_SIZE];

} PDU_DATA_HEADER;

5.2.2.5 Default PDU Configuration Table

1* pointer to the main PDU group *1
1* Number of Network or Transport *1
1* Network enumeration *1

The default PDU table holds the definitions of DIS PDUs. This is currently the only
application layer defined. Other application layer tables may be defined and easily integrated
into the Scanner.

The following is a list of possible PDU types used to index the default PDU table.

enum
{

OTHER_PDU_KIND = 0, 1* Types of PDUs *1
ENTITY _STATE_PDU_KIND,
FIRE_PDU_KIND,
DETONATION_PDU _KIND,
COLLISION_PDU_KIND,
SERVICE_REQUEST_PDU_KIND,
RESUPPLY_OFFER_PDU_KIND,
RESUPPL Y _RECEIVED _PDU _KIND,
RESUPPL Y _CANCEL _PDU _KIND,
REPAIR_COMPLETE _PDU _KIND,
REPAIR_RESPONSE_PDU_KIND,
CREATE_ENTITY _ PDU _KIND,
REMOVE_ENTITY _PDU_KIND,
START_RESUME_PDU_KIND,
STOP _FREEZE_PDU_KIND,
ACKNOWLEDGE _PDU _KIND,
ACTION_REQUEST_PDU_KIND,
ACTION_RESPONSE_PDU_KIND,
DATA_QUERY _PDU_KIND,
SET _DATA_PDU _KIND,
DATA_PDU_KIND,

SYSTEM DESIGN DESCRIPTION
118

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

} ;

EVENT_REPORT_POU_KINO,
MESSAGE _POU _KINO,
EMISSION_POU _KINO,
LASER _POU _KINO,
TRANSMITTER _POU _KINO,
SIGNAL_POU_KINO,
RECEIVER POU KINO - -

1ST: SCANNER

The default POU configuration table is defined as an array of POU _ OA T A _ HEAOERs.

typedef struct {
LL * children; 1* pointer to the main PDU group *1
int pduNumber; 1* Number of PDU *1
char pduName[FIELD _NAME_SIZE]; 1* PDU name ("FIRE ... ") *1

} PDU_DATA_HEADER;

5.2.2.6 Logger Header

The logger header is concatenated to the beginning of each logged packet. It contains
the time . the packet was logged, in seconds and microseconds, and the length of the packet.
The following is the definition of the UNIX Logger's header:

1*
**
**
**

Defines the Timestamp used in the Logger header for the time
that each individual packet was created. It is used throughout
the program whenever a reference to time is made.

*1
typedef struct
{

unsigned
unsigned

} TIME;

long sec;
long usec;

1*
** The structure of 1ST's UNIX Logger's header.
*1
typedef struct

SYSTEM DESIGN DESCRIPTION
119

{
long size;
TIME time;

} LOGGER_HEADER;

5.2.2.7 Management Structure

1ST: SCANNER

1*
1*

Size of packet to follow
Time packet was logged

*1
*1

The Management structure, also known as a Test Suite, is the structure in which the
Scanner holds all of the information about each test and the environment in which the test is
run. At the startup of the Scanner, the memory for a Management structure is allocated. The
program then reads the default Management configuration file, parses off each line, and copies
the data from the line into the appropriate fields in the structure. The configuration file
determines what the test group names are and what and how many tests appear in each group.
Each line of the configuration file contains a unique test number which, for all Automated
tests, is passed to a function that returns the address of the function that will perform the actual
test. This way the Management structure knows everything about the test.

The Management structure is also the repository for all test results and comments. That
information is input by the user or the program into the report results screen upon completing
the test. I t is then copied into the appropriate fields in the Management structure. These
results are then summarized on either of the two reports created by the Scanner.

To help insure compatibility between versions of the Scanner, when the Management
structure is being created, a copy of the data being read from the default configuration file is
being saved in a separate default management structure. Then when an existing test suite is
opened, if the number of tests and test groups specified in test suite do not correspmd wi tb nil ..
number in the default management structure the program will automatically add the missing
tests and test groups to the existing test suite. This way if the user wants to add a test to an
existing test suite, adding a line to the configuration file will solve the problem.

The following is a list of the structures that make up the management structure as well
as the management structure itself:

1*

* Testbed information structure

*1

typedef struct {

SYSTEM DESIGN DESCRIPTION
120

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

char tester[80]; 1* Name of tester
char date[9]; 1* Date of test
char terrainDB[80]; 1* Terrain Database name
char dataDir[FILE_NAME_SIZE];

1* Directory holding log files
char testIPA[20]; 1* IP address of test node
char testET A[28]; 1* Eathernet address of test node
char ver[20]; 1* CGF version

} TESTBED;

1*

* Company information structure

*1

typedef struct {
char name[80];
char nameAbbr[4];
char addrl [80];
char addr2[80];
char poc[80];
char phone[20];
char email[40];

} COMPANY;

/*
/*
1*
/*
1*
1*
/*

Company name
3 character abbreviation
Address line 1
Address line 2
Point of Contact
Phone number of POC
Email address

/*

* S UT information structure

*/

typedef struct {
char name[80];
char number[2];
char sutIPA[20];
char sutETA[28];
char ver[20];
char platform [40];

} SUT;

/* SUT name
1* SUT number
1* IP address of SUT
1* Ethernet address of SUT
/* SUT version
/* Hardware platform

SYSTEM DESIGN DESCRIPTION
121

*1
*1
*1

*1
*1
*1
*1

*/
*1
*/
*/
*1
*/
*1

*1
*/
*1
*/
*/
*1

1ST: SCANNER

1*

* Test Suite Entry information structure

*1

#define
#define

REASON SIZE 322 1*
COMMENT SIZE 322 1*

typedef enum
{

N A = -I,
Failed = 0,
Passed = I,
Incomplete = 2

} TEST_STATUS;

typedef struct
{

char testNumber[20];
char testDesc[40];
char testDate[9];

4x80 plus pad & null termination
4x80 plus pad & null termination

1* Test number "1.1.1.1"
.1* Test Description
1* Date test was last run

*1
*1

*1
*1
*1

char testType; 1* Transmission, Reception *1
TEST STATUS

char

short

short

int

char
char
char

testStatus; 1*

scheduled; 1*

timesRun; 1*

automated; 1*

pduLLoffset; 1*

reason[REASON _SIZE]; 1*
comments[COMMENT_SIZE]; 1*
binaryLogFile[FILE_NAME_SIZE];

1*

SYSTEM DESIGN DESCRIPTION

122

NA Passed, Failed"
Incomplete
Test was selected to b~
run
Number of times te:;t
run
-I Manual, Index into
of automated test
functions
offset into linked list
of default PDUI
Network values
reason for failure
user defined comment

Logged binary file

"

' /

*1
was

*1
array

*1

*1
*1
*1

*1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

char
char

1ST: SCANNER

configFile[FILE_NAME_SIZE];
testfileNumber[4];

1*
1*

Configuration file
Unique number in file
name

1*

* Test Group Structure

*1

#define MAX TEST ENTRIES 50

*1

*1

typedef struct {
char
char

groupName[40]; 1*
subgroupName[40]; 1*

Test group name 'PDU' ... *1
Name of specific test
'Transmission' * I

short count; 1* Number of test entries *1
TEST SUITE ENTRY testEntry[MAX _TEST_ENTRIES];

1* Each of the specific tests *1
} TEST_GROUP;

1*

* Test Suite Structure

*/

#define MAX TEST GROUPS 40 - -

typedef struct {
int overall_ test_count; /* # of tests available to choose

int

int

short

short

current_tg; 1*

current_te; 1*

printed Jeport _header;
1*

count; 1*

SYSTEM DESIGN DESCRIPTION
123

from *1
Current test group being
tested */
Current test entry being
tested *1

TRUE if printed report
header *1
Number of test groups *1

1ST: SCANNER

TEST GROUP testGroup[MAX _TEST_GROUPS];
1* Each of the test group *1

} TEST SUITE;

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

1*
**
*1

MAX CONFIG DIRS - -
SYSTEM CONFIG DIR - -
NETWORK DIR
PDU DIR
LEVEL 3 DIR
LEVEL 4 DIR
LEVEL 5 DIR
LEVEL 6 DIR
LEVEL 7 DIR
LEVEL 8 DIR
LEVEL 9 DIR
LEVEL 10 DIR
LEVEL II DIR
LEVEL 12 DIR
LEVEL 13 DIR
LEVEL 14 DIR
LEVEL 15 DIR
LEVEL 16 DIR
LEVEL 17 DIR
LEVEL 18 DIR
LEVEL 19 DIR

System configuration information.

20
0
I
2
3
4
5
6
7
8
9
10
II
12
13
14
15
16
17
18
19

typedef struct
{

1*

char portN umber[40];
str80 configDirs[MAX_CONFIG_DIRS];

1* The name of the directory for the
configuration file for each level of
testing. *1

SYSTEM DESIGN DESCRIPTION
124

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

** The actual structure of a management configuration file, i.e. test suite.
*1
typedef struct
{

char directory[8]; 1* Name of directory contammg test
suite, i.e., company 3-char name and
SUT number *1

System_ Config_ Struct sc; 1* System configuration directories *1
long tlongl;
long tlong2;
short tshortl;
short tshort2;
short tshort3;
short tshort4;
char strl [20]; ,
char str2[40];
char str3[80];
TESTBED testbed;
COMPANY company;

SUT sut;
TEST SUITE ts· ,

} MANAGEMENT;

1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*

1*
1*

Extra field. Not used. *1
Extra field. Not used. *1
Extra field. Not used. *1
Extra field. Not used. *1
Extra field. Not used. *1
Extra field. Not used. *1
Extra field. Not used. *1
Extra field. Not used. *1
Extra field . Not used. *1
Contains the Testbed information. *1
Contains the Company
information. * I
Contains the SUT information. *1
Contains all test groups and specific
tests within those groups *1

5.2.2.8 Default Management Structure

When the Scanner starts up, it creates a management structure from the specified
management configuration file. A default management structure is also created. This default
management structure is a subset of the overall management structure. This default
management structure will be the base line to judge whether any test suite opened in the future
is complete or not. If a test suite is opened and it does not contain as many test groups or test
entries as the default management structure, the missing elements are copied from the default
management structure to the recently opened test suite. This way the user can add tests to an
existing management structure by adding new tests or test groups to the management
configuration file.

typedef struct {
char testNumber[20]; 1* Test number "1.1.1.1"

SYSTEM DESIGN DESCRIPTION
125

*1

1ST:

char testDesc[40];
char testType;
short automated;

int pduLLoffset;

SCANNER

1*
1*
1*

1*

1*

Test Description *1
Transmission, Reception * I
-I Manual, Index into array of
automated test functions * I
offset into linked list of default *1

char testtileNumber[4]; 1*
PDUlNetwork values
Unique number in filename

*1
*1

} DEF _TEST_SUITE_ENTRY;

typedef struct {
char
char

groupName[40]; 1*
subgroupName[40]; 1*

Test group name 'PDU' ...
name of specific test
'Transmission'

short count; 1* Number of test entries
DEF TEST SUITE ENTRY - - -

typedef struct {
int

testEntry[MAX _TEST_ENTRIES];
1* Each default test entry

overall_ test_count; 1* Number of tests available to
choose from

short count; 1* Number of test groups
DEF TEST GROUP - -

testGroup[MAX _TEST_GROUPS];
1* Each default test group

5.2.2.9 Indextable

*1

*1
*1

*1

*1
*/

*1

The Indextable is critical to the speed and functionality of the Scanner Management
System. The Indextable is dynamically allocated for each binary file being scanned. The
Indextable is an array made up of one record (lNDEX_STRUCT) for each packet in the binary
file. Each array element of the Indextable contains enough information about it's respective
packet in the binary file that when searching or filtering the binary file, only the Indextable
needs to be searched. This avoids having to read each packet from disk to do a search,
thereby, speeding up the execution of the program. The Indextable is made up of the following

SYSTEM DESIGN DESCRIPTION
126

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

structures:

1*
** The format of a DIS standard's version 2.03 PDU header.
*1
typedef struct
{

unsigned char
unsigned char
unsigned char
unsigned char
unsigned long
unsigned short
unsigned short

} DIS_PDU_HEADER;

verslon;
exerclse;
kind;
unused _ 8_2;
time_stamp;
length;
unused_l 6_2;

1*
** The format of an Entity ID structure used throughout most DIS PDUs.
*1
typedef struct
{

unsigned short
unsigned short
unsigned short

} entity _ ID;

site;
application;
entity;

1*
** The format of an Entity Type structure.
*1
typedef struct
{

unsigned char
unsigned char
unsigned short
unsigned char
unsigned char
unsigned char
unsigned char

} ENTITY_TYPE;

1*

1* DIS Entity type *1

kind;
domain;
country;
category;
sub_category;
specific;
extra;

SYSTEM DESIGN DESCRIPTION
127

1ST: SCANNER

** Contains information about what comprises the contents of a packet.
*1
typedef struct {

enum Applications_Recognized
enum Networks_Recognized
enum Lans _Recognized
long
short

short

short

short

short
unsigned short

unsigned short

unsigned char

unsigned char

unsigned char

unsigned short

Application; 1* Which App. protocol
Network; 1* Which Network protocol
Lan; 1* Which LAN protocol
Port; 1* Port # of packet
Brd _Header_Length;

1* Len. of Brd header
Lan_Header _Length;

Net_Header _Length;

DIS_PDU_offset;

disType;
Source_PortNum;

1* Len. of Lan header

1* Len. of Net header

1* Beginning of PDU in packet
1* if DIS PDU, which one

1* Source's Port #

1* Dest.' sPort #

1* Source's IP Address

1* Destination's IP Address
Dest_ Ether _ Addr[6];

1* Dest.' s Ethernet Address
Ether_Type; 1* Value from Ethernet's Typ

field
unsigned char IP _Protocol; 1* IP Protocol value

} PACKET_IDENTIFICATION_STRUCT;

1*
**
**
**
*1

Contains the information for one element of the Indextable.
The Indextable contains one INDEX STRUCT for each packet in
a binary file.

typedef struct {

*1
*1
*1
*1

* I ,

*1

*1

*1
*1

*1

*1

*1

*1

*1
*1

DIS PDU HEADER - -
ENTITY TYPE

PDU_Header;
Entity_Type;

1*
1*

DIS PDU header *1
Entity Type for Entity State

SYSTEM DESIGN DESCRIPTION
128

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

entity_ID Entity _ID I; 1*
TIME Time_Stamp; 1*
unsigned long Packet_Size; 1*
unsigned long Offset; 1*

int Passed Initial Validation;
1*

PACKET IDENTIFICATION STRUCT - -
1*

INDEX STRUCT * Indextable; 1*

5.2.2.10 Filter

PDUs *1
Entity ID information *1
Time packet was logged * I
Length of packet * I
Offset in binary file of where
packet begins * I

Indicates whether packet
passed packet validation * I

Misc. information
packet

about
*1

A dynamically, allocated
structure containing one
INDEX STRUCT record for
each packet within a binary
file. *1

The filter structure is used to internally narrow the list of packets the user will see in
the Timeline window. For Automated tests, the structure is automatically filled in by the
program to only show the packets that are relevant for the test being run. The user cannot
change the filter criteria. For Manual tests, the filter structure is initialized to show the user
all DIS-only packets not generated by the testbed. The user can change the filter criteria using
the Packet Filter window. The Packet Filter windows's data is copied into the filter structure
and then the data base functions, FindFirstO and FindNextO, are used to find all packets that
meet the criteria specified within the filter.

To determine whether or not a packet meets the criteria specified in the filter, the
contents of the filter are compared against the appropriate values in the Indextable. To make
the program as fast as possible, the Indextable contains all of the important information
necessary to perform the checks between the Indextable and the filter structure.

SYSTEM DESIGN DESCRIPTION
129

#define
#define

1*

**
**
*1

MAX ENTITY 10 - -
MAX ENTITY TYPE - -

1ST: SCANNER

500
500

Used for filtering against the Indextable looking for packets that meet
the criteria specified with the OB_FILTER_STRUCT.

typedef struct {
short POU[MAX_PDUS]; 1* Checked if filtering on that specific

POU *1
short
entity _10

short
ENTITY TYPE

short

TIME
TIME
short
short
short

short
unsigned short

short

unsigned short

short

unsigned short

short

} DB FILTER STRUCT; - -

Search_On_POU; 1*
10[MAX_ENTITY _10];

TRUE if filtering on PDUs *1

1* All Entity IDs to filter on *1
Search_On_Ent_IO; 1* TRUE if filtering on Entity IDs *1
Type[MAX _ENTITY _TYPE];

1* All Entity Types to filter on *1
Search_On _ Ent_ Type;

1*

Start_Time; 1*
End_Time; 1*
Search_On _Time; 1*
DIS_Only; 1*
Excl_ Testbed; 1*

nonDIS _Only; 1*
Exercise_ID; 1*

Search_ On_Exer_ID;
1*

Version_Num; 1*

Search_On_ Ver_Num;
1*

Search_On_Port_Num;
1*

TRUE if filtering on Entity
Types */
Find all packets after this time * I
Find all packets before this time *1
TRUE if tiltering on Time *1
TRUE if only DIS packets pass *1
TRUE if excluding
testbed-generated packets * I
TRUE if only non-DIS packets *1
Find all packets with this Exerci.;e
10 *1

TRUE if filtering on Ex. 10
Find all packets with
Version Num

*' I

this
*1

TRUE if filtering on Version
Number *1
Find all packets with this Port
Number *1

TRUE if filtering on Port # *1

SYSTEM DESIGN DESCRIPTION
130

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

5.2.2.11 Automated Test Structure

In order to perform an automated test, there needs to be a function that can be called
to perform the actual test. To facilitate this, the addresses of all of the automated test functions
have
been loaded into an array of AUTO_TEST_FUNCTIONS structures. Each structure contains
an unique identifier that can be compared against the information read in from the
configuration files. If the unique identifier read from the configuration file matches with a
specific array element, then the offset of that array element is loaded into the management
structure. Then when that specific test is activated as an automated test, the program will go
to the management structure, fetch that offset, and then activate the automated test defined at
that offset.

The AUTO TEST FUNCTIONS structure also contains address of a function that will - -
parse the test-specific, configuration file if one is specified, for this test. The "lloffset" field
is used for PDU testing to determine which PDU is being tested. The following is a copy of
the format of the AUTO TEST FUNCTIONS data structure: - -

typedef struct {
char uniquestr[8];
BOOLEAN (*test)(void);
void (* loadconfig)(void *);
int lloffset;

} AUTO_TEST_FUNCTIONS;

Here are some excerpts from the array that contains all of the automated test definitions:

{lOTI 11 TAli, Test_TIl ITA, ProcessNetworkTestConfigFile, 0 },
{lOTI 1 1 RAil, Test_TIl IRA, NULL, 0 }
{ITlllAA", Test_Tl11AA, ProcessNetworkTestConfigFile, 0 },
{ITlllEA", Test_TIl lEA, NULL, 0 },
{IT201TA", Test_T201TA, NULL, ENTITY_STATE_PDU_KIND},
{IT202TA", Test_T202TA, NULL, FIRE_PDU_KIND }

The first four are the first four Network tests and the last two represent the first two PDU tests.
Leaving a NULL in the third parameter is indicating that even though the user may specify a
configuration file for that test, the contents of that file will not be parsed or used.

SYSTEM DESIGN DESCRIPTION
131

1ST: SCANNER

5.2.3 Scanner Configuration Files

The configuration files used by the scanner are defined in this section. The Scanner
was designed to be highly configurable at runtime. To do this, there are several text-based
configuration files that are loaded when the program starts up. The text-based files allow the
user to change the contents of the files, thereby, quickly changing the configuration both in
how the program works and how it interprets specific data.

Each test suite can have specific configuration files associated with it different from the
default Scanner configuration files. If after opening a test suite the program finds that the
names of the configuration files saved within the test suite are different than the default
configuration files, the program will automatically destroy the default configuration data and
read the data in memory from the appropriate configuration file.

5.2.3.1 Scanner Configuration File

The file contains some of the default information used by the Scanner. The format of
the Scanner Configuration file is as follows. Note: The names of the files listed are the
current default names used by the Scanner:

"MANAGE_CONFIG" = "manage.cfg"

"PORTS" = "6994,3001,3002,3003"

"PDU_CONFIG" = "stdV2Dd.pdu.cfg"

"NETWORK_CONFIG" = "stdV2D3.network.cfg"

"ENTITY_TYPES _ CONFIG" = "stdV2D3 .entity _ types.cfg"

"ENUMERATIONS_CONFIG" = "stdV2D3.enumerations.cfg"

"BINFILE TIMESTAMP SIZE" = "0" - -

MANAGE CONFIG - Contains the name of the management structure (test suite)
configuration file. See Section 5.2.3.2 - Manager
Configuration File for format of this file.

SYSTEM DESIGN DESCRIPTION
132

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

5.2.3.2

PORTS -

PDU CONFIG -

NETWORK CONFIG -

1ST: SCANNER

Contains a string of four port addresses. The first port is
the address of the DIS port. The second, third, and fourth
ports are the SIMNET, 1ST MESSAGE, and EAGLE
addresses, respectively. The Scanner uses these numbers
internally to determine if a packet is a DIS, SIMNET, 1ST
MESSAGE, or EAGLE packet.

Contains the name of the file that defines each DIS PDU
using the Data Definition Language. See Section 5.2.1 -
Data Definition Language for a description of the format
of the configuration file.

Contains the name of the file that defines the recognized
network headers using the Data Definition Language. See
Section 5.2.1 - Data Definition Language for a description
of the format of the configuration file.

ENTITY TYPES CONFIG -
Contains the name of the file holding the list of all of the
Entity Types recognized by the Scanner Management
System. See Section 5.2.3.5 - Entity Types Configuration
File for format of this file.

ENUMERATIONS CONFIG -
Contains tables of enumerations. Each row of the table
contains a minimax range and a text string. The minimax
values indicate the range that applies to that enumerated
text string.

BINFILE TIMESTAMP SIZE -- -
A timestamp may be written once at the top of a binary
file indicating when the binary file was created. This line
in the configuration file contains the length of that
timestamp. Whether or not a timestamp is included at the
beginning of the binary file, this field must have a value
that represents the length of the timestamp, inorder for the
Scanner to know where the first packet begins.

Manager Configuration File

SYSTEM DESIGN DESCRIPTION
133

1ST: SCANNER

This configuration file is used to fill in the format of a test suite management structure.
Initially, the structure has no substance to it. As this configuration file is read in and parsed,
it's information is used to determine how many test groups the management structure contains
and what the tests are for each group, as well as, specific information about each test. This
approach allows the user to re-define a test or group of tests at runtime. Note, however, for
automated tests, changes would still need to be made to the executable to actually perform the
test differently than the way the test was originally defined. Even this is made relatively easy,
since all the user would have to do is just write the new routine and then recompile. Very
little or nothing else needs to be done to make the new test functional.

The format of the configuration file is listed and explained below:

#GROUP "NAME" "SubGroup"
"Number", "Desc", "Type", "Mode", "Func", "FileID"

The #GROUP moniker is used to distinguish the beginning of a new group of tests. This field
is followed by the name of the group, in quotes. The group name is followed by a sub-group
name. If there is not a sub-group name, the tag contains "NONE".

Each line that follows lists an individual test for that group. The first field contains the
unique test number for that test as defined in 1ST's document - Technical Report, Test
Documents for DIS Interoperability. The next column is a textual description of the test. The
third field indicates what type of test this test is. The codes translate to "T" for Transmission,
"R" for Reception, "A" for Adverse and "E" for Erroneous.

The next column contains either an "A" for Automated tests or a "M" for manu. I tests.
The fifth column is a unique code that is used to get the address of the specific functllJn to
perform this test as an automated test. The last column is used during the creation of the test
suite. This string, along with the 3-character company name and the SUT number, are
combined to come up with a unique logged binary file filename for each test.

The following is a partial sample listing of two groups from the Manager Configuration
file:

1***
*
*
*
*
*

Configuration file structure for Management

GROUP Name: Text name of group ("Network", "PDU", ...)
Number : Test number ("1.1.1.1", "1.1.1.2", ...)
Desc : Description of test ("Network IP", "Entity State", ...)

SYSTEM DESIGN DESCRIPTION
134

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

*
*
*
*
*

Type
Mode
Func
File ID

1ST: SCANNER

: (T)ransmission, (R)eception, (A)dverse, (E)rroneous
: (A)utomated, (M)anual

: Automated test function enum or NONE
: Unique 3 digit file number

* #GROUP NAME

*
*
*
*

Number, Desc, Type, Mode, Func

#GROUP "Network"
"1.1.1", "Network IP Test", "T", "A", "TIIITA", "Ill"

*
***/

#GROUP "Network" "NONE"
"1.1.1.1.1", "Broadcast-Transmission", "T", "A", "TIIITA",
"1.1.1.1.2", "Broadcast -Reception", "R", IIAtt, "TlllRA",
"1.1.2.1.1 ", "Broadcast-Adverse" , "A", "Au, "TlllAA",
"1.1.3.1.1", "Broadcast-Erroneous" , "E", "A", "TIIIEA",

#GROUP "PDU" "Transmission"
"2.2.1.1 ", "Entity State Transmission", "T", "A", "T201TA",
"2.2.1.2", "Fire Transmission", "T", "A", "T202TA",
"2.2.1.3", "Detonation Transmission", "T", IIAIf, "T203TA",

5.2.3.3 Network Default Configuration File

" Ill"
"111 "
"111"
"111 "

"201 "
"202"
"203"

This file contains the format of all of the recognized Network headers defined using the
Data Definition Language. See Section 5.2.1 - Data Definition Language for an explanation
of the Data Definition Language and the format of the file.

5.2.3.4 PDU Default Configuration File

This file contains the format of all of the DIS PDUs defined using the Data Definition
Language. See Section 5.2.1 - Data Definition Language for an explanation of the Data
Definition Language and the format of the file.

SYSTEM DESIGN DESCRIPTION
135

1ST: SCANNER

5.2.3.5 Entity Types Configuration File

The file contains a listing of all Entity Types recognized by the Scanner Management
System. Currently, the Scanner only recognizes a fraction of the entire Entity Type list as
defined in 1ST's document - Enumeration and Bit-encoded Values for use with IEEE 1278.1-
1994, Distributed Interactive Simulation -- Application Protocols. However, the file is easily
configurable to include all of the possible Entity Types and the program will automatically
adapt to any number of possible Entity Types.

An example of several lines from the configuration file and the format of the file is as
follows:

{ "1.1.225.1.1.0",
{ "1.1.225.1.1.1",
{ "1.1.225.1.1.2",

Ox2882080c,
Ox2882080c,
Ox2882080c,

"Ml *" },
"MlAl" },
"MlA2" },

The first column symbolizes the Entity Type code; the second column is the SIMNET code
(not used by the Scanner, but is used by some other software programs and was kept for
compatibility); and the third column is a text description of the Entity Type code. Each entry
was formatted this way so that if it ever needed to be loaded into a static structure within the
code, it could be read in as is without having to be changed.

5.2.3.6 Enumerated Values Configuration File

This file contains a listing of all of the enumeration values recognized by the Scanner.
The source of this file can be found in 1ST's document - Enumeration and BiI-t'I'lCodl ,1 Value. ·
for use with IEEE 1278.1-1994, Distributed Interactive Simulation -- Application Prot.lculs
The file is structure as a series of tables. Each table starts with a line beginning with the "@"
character followed by a textual description of the table. The following lines indicate the ro -},<~

of acceptable values within that table. Each row contains a minimum and maximum value for
that row, as well as, the textual description for that range. The minimax range is used for
validation checking of an enumerated field value and for finding the correct enumeration text
string to return.

The Scanner reads the contents of the file and stores the contents in memory as a linked
list of tables, each made up of a linked list of rows from the table. The management structure
contains a pointer to the one of the linked list for each field in the management structure that
references an enumeration table.

The following is a small subset of the contents of the enuerations configuration file:

SYSTEM DESIGN DESCRIPTION
136

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

@PROTOCOL_VERSION
"1", "1", "DIS PDU version "1.0 (May "92)",
"2", "2", "IEEE" 1278-1993",
"3", "3", "DIS PDU version "2.0 - third draft (May "93)",
"4", "4", "IEEE "1278.1-1994"

"a", "0", "Other",
"1", "1 ", "Entity InformationlInteraction",
"2", "2", "Warfare",
"3", "3", "Logistics",
"4", "4", "Radio Communication",
"5", "5", "Simulation Management",
"6", "6", "Distributed Emission Regeneration"

@DEAD_REACKONING_ALGORITHM
"0", "0", "Other",
tI 1", It 1", "Static (Entity does not move.)",
"2", "2", "DRM(F P W)" " ,
"3", "3", "DRM(R P W)" " ,
"4", "4", "DRM(R, V, W)",
"5 11

, "5", "DRM(F, V, W)",
"6", "6", "DRM(F P B)" " ,
"7", "7", "DRM(R, P, B)",
"8", "8" , "DRM(R, V, B)",
"9", "9", "DRM(F, V, B)"

5.2.3.7 Network Test-specific Configuration File

The Network Default Configuration file (see Section 5.2.3.3) contains the default range
values for each field of all network headers recognized by the Scanner. However, for some
tests, the test requires very specific values for certain fields, not just a range of acceptable
values. To accomplish this need, the user can specify for each Network test to be run a
configuration file that contains values that will override the default values specified in the
Network Configuration File.

To facilitate commonality between configuration files, this file is formatted very
similarly to the Network Configuration file. See Section 5.2.1 - Data Definition Language for
an explanation of the Data Definition Language and the format of the file. Since the program
already knows the format, data type, length, etc. about all network fields, this configuration file
only needs to specify the group name, field name and the new min/max values for that field.

SYSTEM DESIGN DESCRIPTION

137

1ST: SCANNER

Note that each Group, Field combination must be entered in the EXACT format that
they exist in the "network.cfg" file. Also, the MINIMAX values must be entered in this file
in the same data format as they are to be read from a packet, i.e., if a field is to be read as if
it were in hexadecimal format, then it must be entered as "0800" not "2048" to be properly
parsed.

The following is an example of a Network Test-specific Configuration File:

5.2.3.8

#Group Field

"ETHERNET" "DESTINATION ADDRESS [0] "
"ETHERNET" "DESTINATION-ADDRESS [1] "
"ETHERNET" "DESTINATION-ADDRESS [2] "
"ETHERNET" "DESTINATION-ADDRESS [3] "
"ETHERNET" "DESTINATION-ADDRESS [4] "
"ETHERNET" "DESTINATION:=ADDRESS[5] "

"IP" "DESTINATION ADDRESS [0] "
"IP" "DESTINATION-ADDRESS [1] "
"IP" "DESTINATION-ADDRESS [2] "
"IP" "DESTINATION:=ADDRESS[3] "

"ETHERNET" "ETHER TYPE"

"IP" "PROTOCOL"

"UDP" "DESTINATION PORT"

PDU Test-specific Configuration File

MIN

"255"
"255"
"255"
"255"
"255"
"255"

"164"
"217"
"255"
"255"

"0800"

"17"

"6994"

MAX

"255"
"255"
"255"
"255"
"255"
"255"

"164"
"217"
"255"
"255"

"0800"

"17"

"6994"

This configuration file allows the user to specify values for specific fields jJl spp.cific
PDUs that will override the default values for those fields. The format has exactly the 3ame
requirements as the Network, test-specific configuration, therefore, see Section 5.2.3.7 -
Network Test-specific Configuration File for a detailed description of the format of this file.

5.2.4 Logged Binary File Format

The logged binary (BIN) file discussed below is based on a file logged using 1ST's
UNIX-based logger. The logger captures all packets, DIS and non-DIS, as they are being
transferred over the net. Each captured packet is written to a file as is, except that a header
is placed at the beginning of the packet. The logger's header is made up of two structures, a
long value for holding the length of the packet to follow and two longs to hold the seconds and
microseconds of when the packet was logged. See Section 5.2.2.6 for an additional explanation
of the logger's header structure.

SYSTEM DESIGN DESCRIPTION
138

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

In one version of 1ST's logger an additional timestamp is placed once at the beginning
of the file when the file is first created. This usually contains the time and date that the file
was created. Whether or not that timestamp is included, BINFILE _ TIMEST AMP_SIZE
parameter in the Scanner Configuration file (Section 5.2.3.1) must contain a value that
represents the length of that timestamp.

The packet is read into the Scanner as raw data. After the packet identification code
identifies that the packet is a DIS PDU, the DOL (Data Definition Language) structures are
"overlayed" onto the data. See Section 5.2.1 for a definition of the Data Definition Language
and how it is used.

SYSTEM DESIGN DESCRIPTION
139

1ST: SCANNER

6 DETAILED DESIGN

6.1 PDUlNetwork

6.1.1 PDU Table Building - PDU _ TBL

6.1.1.1 Overview

This module is used to build the default configuration tables for network, transport, and
application layers of a DIS data packet.

The following protocol layers are defined:
Network : Ethernet, IEEE 802.3
Transport : UDPIIP, TCPIIP
Application : DIS PDU

6.1.1.2 Data Structures

The default configuration tables used to define the various protocol layers use a
common data structure, the PDU_DATA_HEADER. The definition of the
PDU _DATA_HEADER can be found in Section 5.2. Each default configuration table is
defined as an array of PDU _ DATA_HEADERs. Using the same data type allows all tables
to be processed using one set of routines.

The PDU_DATA_HEADERs contain pointers to default configuration lists. The default
configuration lists are lists of data elements (PDU_DATA_ENTRY) that describe the default
structure of a protocol layer. The definition of the PDU_DATA_ENTRY can be found ir,
Section 5.2.

PDU_DATA_ENTRY - This is the base structure used to define each entry in the
default configuration lists. The pdlType field is used to specify if the element is a data field,
or a group reference. For group references, the fields used to define the groups contents are
placed in a new list pointed to by the children field pointer of the group element.

PDU OAT A HEADER This is the base structure used to define the default - -
configuration tables. The default configuration tables are arrays of PDU_DATA_HEADERs.
Each PDU_DATA_HEADER contains information about a specific protocol layer type, and
a pointer to the list of elements describing the protocol layer.

SYSTEM DESIGN DESCRIPTION
140

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.1.1.3 Processing

A separate entry point for each table allows for table identification. The parameter to
the entry point identifies the configuration file containing the DOL protocol layer definitions.

The following pseudo code describes how a default configuration table is built. The
entry point is buildConfigTableO:

procedure processElem 0
BEGIN

END

Initialize a new PDU_DATA_ENTRY structure;
Parse the input line and fill in the data structure;
Translate the data type to an enumeration value;
Translate the display type to an enumeration value;
Translate the "MIN" and "MAX" strings to numeric values.
return PD U _ DA T A_ENTRY structure;

procedure processGroup 0
BEGIN

END

Allocate a new PDU_DATA_ENTRY;
Define the PDU_DATA_ENTRY to be a group;
Parse the input line and initialize the PDU _ DATA_ENTRY structure;
Start a new list for this groups children;
buildFamilyTree (PDU_DATA_ENTRY.children);
return the PDU_DATA_ENTRY structure;

procedure buildFamilyTree (PARENT_PDU_DATA_ENTRY.children)
BEGIN

WHILE (NOT EOF) DO
Read the next line in the file;
Parse the line identifying the keyword;
IF keyword equals ENDPDU OR

keyword equals ENDNETWORK OR
keyword equals ENDGROUP THEN

exit while loop;
ENDIF
IF keyword equals ELEM THEN

element = processElem 0;
Insert data element information into the linked list;

SYSTEM DESIGN DESCRIPTION
141

END

1ST: SCANNER

ELSEIF keyword equals GROUP THEN
group = processGroup 0;
Insert group information into linked list;

ENDIF
ENDWHILE

procedure Process File 0
BEGIN

END

WHILE (NOT EOF) DO
Read the next line in the file;
Parse the line to identify the keyword PDU or NETWORK;
IF keyword was found THEN

ENDIF
ENDWHILE

Initialize table entry with name and number;
buildFamilyTree 0;

procedure buildConfigTable (filename)
BEGIN

END

Open the configuration file;
Initialize the default configuration table;
ProcessFile 0;
Close the configuration file;

SYSTEM DESIGN DESCRlPTION
142

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I 1ST: SCANNER

I 6.1.2 PDU Utility Routines - PDU _ UTIL

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6.1.2.1 Overview

This module allows the default configuration lists to be expanded to overlay the data
within the data packet. Configuration lists that do not contain variable sections map directly
to a data packet. Configuration lists that contain variable sections must be expanded and then
mapped to the data within the data packet.

Before any routine may access the data within the data packet, a configuration list
describing the data contents of a protocol layer must be mapped to the protocol layer of the
data packet.

6.1.2.2 Data Structures

The data structures used during mapping are the same as the ones used to build a
default configuration list. The difference is that the mapped list will duplicate variable
sections, giving a complete mapping to the data within a protocol layer. See section 5.2 for
a description of the data structures used to define default configuration lists, and mapped
configuration lists.

6.1.2.3 Processing

Mapping consists of overlaying either a default configuration list or a user defined
configuration list over a section of the data packet. The sections of the data packet are defined
by the protocol layers, and their sizes. While mapping the configuration list to the data packet,
the values within the data packet are used to resolve variable data section sizes. When
mapping a variable data section, the count value is fetched from the data packet, and used to
duplicate the variable section in the mapped list. When the data mapping is completed, the
newly created mapped list contains a linked list of data fields that cover the data elements
within the section of the data packet that was mapped. The offset field of each element in the
mapped list contains the elements starting location in the data packet. The group elements of
the mapped list are filled in with the size of their children.

SYSTEM DESIGN DESCRIPTION
143

- -

1ST: SCANNER

Default List Mapped List

Group: Enti ty List
Fixed: 1
grpSize, N/"
children "----+-

Field , PDU Type
Size 1 byte
Offset, N/ A

Field
Size
Offset

Croup
Variable:
grpSize :
children

" ot Pa.rts
1 byte
N/A

Field
Size
Offset

Group
Fixed
grpSize
children

Name
6 by:.es
N/A

Entity List
1
14

Figure 3: Example of Data Mapping

144

Field
Size
Offset

Field
Size
Offset

PDU Type
1 Byte
o

~ of Parts
byte

Group Parts
Variable # of
Size 1:2
children

- - - - - - - - - -

Data racket

Offset DATA

OxOl

Ox02

'A'

'H'

, 6'

'4'

OxOO

'M'

Field Name ' I '
Size 6 bytes
Offset: 2

Field Name
Size 6 by tes
Offset; 8

10

~ 11 'I'

12 DxOO

13 OxOO

- - - - - - -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

The above illustration shows the expansion of a default configuration list to a mapped
list for a specific section of a data packet. The default list contains a number of fields that are
not applicable until the list is mapped to the data packet. During the mapping process, these
fields are filled in with the appropriate values. Traversal of the mapped list allows access to
the elements of the data packet.

During the traversal of the default configuration lists, when a group entry is
encountered, the mapping routines are called recursively to traverse the children of the group.

The following pseudo code describes how a default configuration list is mapped to a
data packet.

procedure buildMapping (default list, data packet, mapped_list_size)
BEGIN

mapped_list = Initialize a new linked list;
mapped_list_size = 0;
default element = Fetch the first element in the default_list;
WHILE default_element is not equal to NULL DO

mapped_element = Allocate a new PDU _ DA T A_ENTRY structure;
Copy the default_element to the mapped_element;
IF mapped_element is a GROUP THEN

IF group type is variable THEN
** Note: By the time we hit a variable group definition, the
* * controlling field has already been defined and mapped
* * to the data packet.
Search the mapped_list for the controlling field;
Fetch the count from the data packet using the offset from the
controlling field;

ELSE 1* it is a fixed size *1
Fetch the count from the mapped_element;

ENDIF
LOOP count TIMES

mapped _ element.offset = current offset;
mapped_element.children = buildMapping (

default_ element.children,
data packet,
size_oCchildren);

mapped_element.grpSize = size_oCchildren;
mapped_list_size = mapped_list_size + size_oCchildren;
Insert the mapped_element into the mapped_list;

END LOOP
ELSE 1* It is a data element *1

145

END

ENDIF

1ST: SCANNER

mapped _ element.offset = current offset;
increment current offset by default element.dataSize;
increment mappedJist_size by default_element.dataSize;
Insert the mapped_element into the mapped_list;

default_element = Fetch the next element in the default_list;
ENDWHILE
return mapped_list, and mappedJist_size;

SYSTEM DESIGN DESCRIPTION
146

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.1.3 PDU Validation Routines - PDU _ VALID

6.1.3.1 Overview

This module is used to validate the contents of a data packet. Each protocol layer of
the packet is validated. Each field within a protocol layer is compared against expected range
values for the field. The length of each protocol layer, and the length of the entire packet is
also validated.

6.1.3.2 Data Structures

The validation routines map the default lists to mapped lists before validation occurs.
There are no new internal structures used by the validation routines.

6.1.3.3

The following data types may be validated:
Signed and Unsigned 8-Bit fields
Signed and Unsigned 16-Bit fields
Signed and Unsigned 32-Bit fields
32-Bit Floating point fields (Single precision)
64-Bit Floating point fields (Double precision)
8, 16, and 32-Bit fields containing grouped Bit-Fields

Note: The following field types may be defined, but there are no validation
routines for these data types:

Unsigned 64-Bit Fields
ASCII strings
Data blocks

Processing

Before validation can occur, either the default list or the user edit list must be mapped
to the data packet. This allows the validation routines to obtain access to the data values
within the data packet.

The following pseudo code describes the basic flow of the validation logic.
PacketValidationO is the main entry point for this module.

The compare routines described below are grouped based on similar processing logic.

procedure compareUnsigned_8_Bit (data-packet, element)

SYSTEM DESIGN DESCRIPTION
147

1ST: SCANNER

procedure compareSigned_8_Bit (data_packet, element)
procedure compareUnsigned_16_Bit (data_packet, element)
procedure compareSigned_16_Bit (datajlacket, element)
BEGIN

END

Convert the element.minimum string to a value min;
Convert the element.maximum string to a value max;
Fetch the data_value from data~acket[element.offset];

-- Check the data value against the min and max range.
-- Then check against the enumeration table.
-- SearchEnumTableO returns TRUE if the data_value is in the enum table.
-- SearchEnumTableO returns TRUE if the enum table does not exist.
IF data value >= min AND data value <= max THEN

- -
return SearchEnumTable (element.enumTable, data_value);

ENDIF
return FALSE;

procedure compareUnsigned_32_Bit (datajlacket, element)
procedure compareSigned_32_Bit (data_packet, element)
procedure compareFloat_32_Bit (data_packet, element)
procedure compareFloat_64_Bit (datajlacket, element)
BEGIN

END

Convert the element.minimum string to a value min;
Convert the element.maximum string to a value max;
Fetch the data_value from data ~acket[element.offset];

-- Check the data value against the min and max range.
IF data value >= min AND data value <= max THEN - -

return TRUE;
ELSE

return FALSE;
ENDIF

procedure compareGroupedBitFields (datajlacket, element)
BEGIN

Convert the element.minimum string to a value min;
Convert the element.maximum string to a value max;

-- Pull the bit field value from the group element

SYSTEM DESIGN DESCRIPTION

148

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

END

1ST: SCANNER

Fetch the group data_value from data~acket[element.offset];
Mask the data_value using element.mask;
Shift the data_value to the right element.shift times;

-- Check the data value against the min and max range.
-- Then check against the enumeration table.
-- SearchEnumTableO returns TRUE if the data_value is in the enum table.
-- SearchEnumTableO returns TRUE if the enum table does not exist.
IF data value >= min AND data value <= max THEN - -

return SearchEnumTable (element.enumTable, data_value);
ENDIF
return FALSE;

procedure validateField (data-packet, element)
BEGIN

END

status = TRUE;
status = Call the comparison routine for this data type;
return status;

procedure group Validation (data-packet, element)
BEGIN

END

status = TRUE;
status = Call the special group validation routine if it is a special group;
return status;

procedure validateFields (data-packet, mapped_list)
BEGIN

element = Fetch the first element in mapped_list;
WHILE element is not equal to NULL DO

IF element.pdlType equals ELEMENT THEN
status = validateField (data~acket, element);
Record any errors to the report log;

ELSE -- It is a group
-- Check for special group processing
status = groupValidation (data~acket, element);
-- Traverse the groups children validation them
status = validateFields (data~acket, element.children);

ENDIF

SYSTEM DESIGN DESCRIPTION
149

END

1ST: SCANNER

element = Fetch the next element in mapped_list;
ENDWHILE
return status;

procedure packetValidationList (data-packet, default_list, length)
BEGIN

END

mapped_list = mapListToData (default_list, datayacket, length);
status = validateFields (datayacket, mappedJist);
destroyMapping (mapped_list);
return status;

procedure packetNetworkValidation (data-packet, network_table, app_list, pkt_id, length
)
BEGIN

END

status = TRUE;
CASE pkt_id.Lan DO

ETHERNET
status = packetValidationList (...

network_ table[NET _ETHER _ TYPE].children ...);

IEEE 8023 -
status = packetValidationList (...

ENDCASE
return status;

network_ table[NET _8023_ TYPE] .children ...);

procedure packetTransportValidation (datayacket, network_table, app_list, pkt_id.
length)
BEGIN

status = TRUE;
CASE pkt_id.Network DO

TCP IP -
status = packetValidationList (...

network_table [TL_TCP _IP _TYPE].children ...);

UDP IP -
status = packetValidationList (.,.

network_ table[TL _ UDP _IP _ TYPE].children ...);

SYSTEM DESIGN DESCRIPTION
150

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

END

1ST: SCANNER

NOVELL
-- No default Table defined as of yet

FILE TRANSFER:
-- No default Table defined as of yet

AP NETWORK :

ENDCASE
return status;

-- No default Table defined as of yet

procedure packetApplicationValidation (data_packet, app_list, pkt_id, length)
BEGIN

END

status = TRUE;
CASE pkt_id.Application DO

DIS PDU
Supply the default DIS application list for a NULL parameter;
status = packetValidationList (...);
IF networkJength + transport_length + application_length

is not equal to data-'packet_length THEN

ENDIF
SIMNET
EAGLE

status = FALSE;

1ST MESSAGE
OTHER DIS -- No default Table defined as of yet

ENDCASE
return status;

procedure PacketValidation (datajlacket, network_table, app_list, pkt_id, length)
BEGIN

END

Supply the default network table if the parameter network_table is NULL;
packetNetworkValidation (...);
packetTransportValidation (...);
packetApplication Validation (...);
IF all layers passed validation THEN

return TRUE;
ELSE

return FALSE;
ENDIF

SYSTEM DESIGN DESCRIPTION
151

1ST: SCANNER

6.1.4 PDU Display Routines - PDU_DISPLAY

6.1.4.1 Overview

This module is used to display the contents of a data packet in the Packet Display
Window. Each protocol layer of the packet is displayed. Each field within a protocol layer
is validated against expected range values for the field. If a field fails validation, an asterisk
(*) appears next to the field being displayed.

6.1.4.2 Data Structures

The display routines map the default lists to mapped lists before the packet is displayed.
During the display process, all display text is built into a large display buffer. This buffer is
written to the Packet Display Window at the end of the display processing. X Windows was
visibly too slow when we tried to display each line independently. Displaying the buffer in
one X Window call is very fast.

The packet display routines will display the following data types:
Signed and Unsigned 8-Bit fields
Signed and Unsigned 16-Bit fields
Signed and Unsigned 32-Bit fields
Unsigned 64-Bit fields
32-bit Floating point fields (single precision)
64-bit Floating point fields (double precision)
Ascii string with length (A#), Al5 means 15 ascii characters.
Bit fields (bits#mask#shift), B8#FO#4 means its an 8 bit field, the mask is

hex FO and the shift count used to align the data is 4.
Data area with count (D#), D 15 means 15 data bytes.

The display routines will also handle special groups and fields, if they are defined in
the special group table, or special field table. They must also have routines for handling them.

6.1.4.3 Processing

Before a packets contents can be displayed, the default lists must be mapped to the data
packet. This allows the display routines to obtain access to the data values within the data
packet.

The display buffer must be initialized to NULL before the display routines start
dumping the elements. After the data packet has been processed, the display buffer is written
to the Packet Display Window.

SYSTEM DESIGN DESCRIPTION
152

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

The following pseudo code describes the basic flow of the display logic.
PacketDisplayO is the main entry point for this module.

The dump routines described below are grouped based on similar processing logic.

procedure hexDumpUnsigned_8_Bit (data_packet, element)
procedure hexDumpSigned_8_Bit (data_packet, element)
procedure hexDumpUnsigned_16_Bit (datajlacket, element)
procedure hexDumpSigned_16_Bit (data_packet, element)
procedure hexDumpUnsigned_32_Bit (datajlacket, element)
procedure hexDumpSigned_32_Bit (data_packet, element)
BEGIN

END

Fetch the data_value from data~acket[element.offset];
string = fetchEnumTableStr (element.enumTable, data value);

print to a buffer (element.name, data_value in hex, data_value in decimal, string);
return buffer and string;

procedure hexDumpUnsigned_64_Bit (datajlacket, element)
BEGIN

END

Fetch the data_value from data~acket[element.offset];
string = NULL;
print to a buffer (element.name, first 32-bits of data -,-value,

second 32-bits of data_value);
return buffer and string;

procedure hexDumpFloat_32_Bit
procedure hexDumpFloat_64_Bit
BEGIN

(datajlacket, element)
(datajlacket, element)

END

Fetch the data_value from data~acket[element.offset];
print to a buffer (element.name, data_value);
string = NULL;
return buffer and string;

procedure hexDumpAscii (datajlacket, element)
BEGIN

LOOP element.dataSize TIMES
Fetch the next ASCII character from

SYSTEM DESIGN DESCRIPTION
153

END

1ST: SCANNER

data ~acket[element.offset + LOOP index];
Add ASCII character to ASCII_string;

ENDLOOP
print to a buffer (element.name, ASCII_string);
string = NULL;
return buffer and string;

procedure hexDumpBitField (data_packet, element)
BEGIN

END

Fetch data_value from data ~acket[element.offset];
Mask data_value with element.mask;
Shift data_value right element.shift times;
string = fetchEnumTableStr (element.enumTable, data_value);
print to a buffer (element.name, data_value in hex,

data_value in decimal, string);
return buffer and string;

procedure hexDumpData (datayacket, element)
BEGIN

END

LOOP element.dataSize TIMES
Fetch the next character from

data ~acket[element.offset + LOOP index];
Add hex representation of character to data_string;

END LOOP
print to a buffer (element.name, data_string);
string = NULL;
return buffer and string;

procedure. dumpField (datayacket, element)
BEGIN

END

validStatus = ValidateField (data~acket, element);
enumString, buffer = Call hexDump 0 routine based on element.dataType;
print to a buffer (validStatus, buffer, enumString);
return TRUE;

procedure groupDisplay (datayacket, element, dumpChildren)
BEGIN

SYSTEM DESIGN DESCRIPTION
154

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

END

1ST: SCANNER

status = TRUE~

dumpChildren, status = Call the special group display routine if it is a
special group;

return dumpChildren and status;

procedure dumpFields (data-packet, mapped_list)
BEGIN

END

element = Fetch the first element in mapped_list;
WHILE element is not equal to NULL DO

IF element.pdlType equals ELEMENT THEN
-- Check for special field processing
IF element requires special processing THEN

status = processSpecialField (datayacket, element);
ELSE

status = dumpField (datayacket, element);
ENDIF
Print the display line that was just built;

ELSE -- It is a group
-- Check for special group processing
status = groupDisplay (data yacket, element)~

-- Traverse the groups children displaying them
status = dumpFields (data yacket, element.children);

ENDIF
element = Fetch the next element in mapped_list;

ENDWHILE
return TRUE~

procedure disDump (data-packet, default_list, length)
BEGIN

END

mapped_list = mapListToData (default_list, datayacket, length)~
status = dumpFields (datayacket, mapped_list);
destroy Mapping (mapped_list);
return status~

procedure packetNetworkDump (data-packet, network_table, app_Iist, pkt_id, length)
BEGIN

status = TRUE~
CASE pkt_id.Lan DO

SYSTEM DESIGN DESCRIPTION
155

END

1ST: SCANNER

ETHERNET
Print header (" ----- Ethernet Network Layer ----- ");
status = disDump (...

network _ table[NET _ETHER_TYPE] .children ...);

IEEE 8023 -
Print header (" ----- IEEE 802.3 Network Layer ----- ");
status = disDump (.. .

ENDCASE
return status;

network _ table[NET _ 8023 _TYPE] .children ...);

procedure packetTransportDump (data-packet, network_table, app_list, pkt_id, length)
BEGIN

END

status = TRUE;
CASE pkt_id.Network DO

TCP IP -
Print header (" ----- TCP/IP Transport Layer ----- ");
status = disDump (...

network_table[TL_TCP _IP _TYPE].children ...);

UDP IP -
Print header (" ----- UDP/IP Transport Layer ----- ");
status = disDump (...

network_table[TL_UDP _IP _TYPE].children .. .);

NOVELL
Print header (" ----- Novell Transport Layer ----- ");

-- No default Table defined as of yet
FILE TRANSFER:

Print header (" ----- File Transfer Transport Layer ----- ");
-- No default Table defined as of yet

AP NETWORK :
Print header (" ----- AP Transport Layer ----- ");

-- No default Table defined as of yet
ENDCASE
return status;

procedure packetApplicationDump (data_packet, app_list, pkt_id, length)

SYSTEM DESIGN DESCRIPTION
156

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

BEGIN

END

status = TRUE;
CASE pkt_id.Application DO

DIS PDU
Print header (" ----- DIS Simulation PDU ----- ");
Fetch the default DIS appList if appList is NULL;
disDump (data-'packet, appList, pkt_id.appLength);

SIMNET
Print header (" ----- SIMNET Application Layer ----- ");

-- No default Table defined as of yet
EAGLE

Print header (" ----- EAGLE Application Layer ----- ");
-- No default Table defined as of yet

1ST MESSAGE:
Print header (" ----- 1ST Message ----- ");

-- No default Table defined as of yet
OTHER DIS

ENDCASE
return status;

-
Print header (" ----- Experimental DIS PDU ----- ");

-- No default Table defined as of yet

procedure PacketDisplay (dataj'acket, network_table, app_list, pkt_id, length)
BEGIN

END

Supply the default network table if the parameter network_table is NULL;

Initialize the Packet Display Window;
Display the hex dump of the data packet;
packetNetworkDump (...);
packetTransportDump (...);
packetApplicationDump (...);
Display the packet information in the Packet Display Window;

SYSTEM DESIGN DESCRIPTION
157

1ST: SCANNER

6.1.4.4 Sample Packet Display Output

The following is a sample from the Packet Display Window. The data being displayed
is an Entity State PDU with 2 variable parts.

Hex Dump of Packet - -- - -

0 : FF FF FF FF FF FF 00 60 8C 55 Bl 7B 08 00 45 00 •. U. { .. E .
10: 00 CC 00 00 00 00 3C 11 23 6E A4 09 11 01 A4 09 < .lIn
20 : FF FF lB 52 lB 52 00 B8 31 07 03 01 01 00 Al 47 .. . R.R .. l G
30 : E4 64 00 BO 00 00 00 11 00 01 00 64 01 02 01 01 . d d
40 : 00 EO 01 03 00 00 00 00 00 00 00 00 00 00 00 00
50 : 00 00 00 00 00 00 00 00 00 00 Cl 44 61 92 06 DB Da . ..
60: 21 18 Cl 50 E2 DE F3 7B 89 34 41 4C 69 lE FC 07 ! .. P ... { . 4ALi .. .
70: CE 4F 3F 83 8C 07 BF 79 05 03 40 46 F4 63 00 00 . O? y .. @F. c . .
80: 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 ,

90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
AD: 00 00 00 00 00 00 00 00 00 00 01 48 31 30 30 00 Hl00.
BO : 00 00 00 00 00 00 00 00 00 03 00 01 00 00 00 00
CO : 10 DB 80 00 00 00 00 00 00 00 00 01 00 01 00 00
DO: 11 40 00 00 00 00 00 00 00 00 . M

----- Ethernet Network Layer

ETHERNET :
DESTINATION
SOURCE
ETHER TYPE

DATA: FF FF FF FF FF FF
DATA: 00 60 8C 55 Bl 7B
x0800 (2048)

UDP/IP Transport Layer -----

UDP/IP :

IP:

IP HEADER BITS :
- IP HEADER LENGTH

VERSION

TYPE OF SERVICE
TOTAL LENGTH
PACKET 10

IP FRAG BITS:
- FRAGMENT OFFSET

FLAGS

UDP:

TIME TO LIVE
PROTOCOL
HEADER CHECKSUM
SOURCE ADDRESS[O]
SOURCE-ADDRESS [1]
SOURCE-ADDRESS [2]
SOURCE-ADDRESS [3]
DESTINATION ADDRESS [0]
DESTINATION-ADDRESS [1]
DESTINATION-ADDRESS [2]
DESTINATION=ADDRESS[3]

SOURCE PORT
DESTINATION PORT
LENGTH [HDR+TEXT]
CHECKSUM

----- DIS Simulation PDU

x04 (4)
x05 (5)

xOO (0)
xOOCC (204)
xOOOO (0)

xOOOO (0)
xOOOO (0)

x3C (60)
xll (17)
x236E (9070)
xA4 (164)
xD9 (217)
xl1 (17)
xOl (1)
xA4 (164)
xD9 (217)
xFF (255)
xFF (255)

xlB52 (6994)
xlB52 (6994)
xOOB8 (184)
x31D7 (12759)

SYSTEM DESIGN DESCRIPTION

158

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ENTITY_STATE :

PDU HEADER:
PROTOCOL VERSION
EXERCISE-ID
PDU TYPE
PADDING
TIME STAMP
LENGTH
PADDING

ENTITY ID: 17:1:100
SITE
APPLICATION
ENTITY

FORCE ID
NUMBER_ART_PARAMS

1ST: SCANNER

x03
xOl
xOl
xOO
xA147E464
xOOBO
xOOOO

xOOll
xOOOl
x0064

xOl
x02

(3)
(1)
(1)
(0)
(2705843300)
(176)
(0)

(17)
(1)
(100)

(1)
(2)

DIS PDU version 2.0 - third draft (May 93)

Entity State

Friendly

ENTITY TYPE: 1.1.224.1 . 3.0.0 Challenger MBT
ENTITY KIND xOl
DOMAIN- xOl
COUNTRY xOOEO
CATEGORY xOl
SUBCATEGORY x03
SPECIFIC xOO
EXTRA xOO

(1)
(1)
(224)
(1)
(3)
(0)
(0)

Platform
Land
United Kingdom
Tank

ALT ENTITY TYPE: 0.0.0.0.0.0.0 Zero IN, Zero OUT
- ENTITY KIND

DOMAIN
COUNTRY
CATEGORY
SUBCATEGORY
SPECIFIC
EXTRA

ENTITY LINEAR VELOCITY :
X -
Y
Z

ENTITY LOCATION:
X
Y
Z

ENTITY ORIENTATION:
PSI
THETA
PHI

APPEARANCE

xOO (0)
xOO (0)
xOOOO (0)
xOO (0)
xOO (0)
xOO (0)
xOO (0)

Sqrt(x2 + y2 + z2) = O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O. OOOOOOOOOOE+OO

: O. OOOOOOOOOOE+OO

-2 . 6713960535622947E+06
-4.4257878044150360E+06
3.7238379753358732E+06

1.0277355909E+00
-9.7274512052E-Ol
3.1086661816E+00

xOOOOOOOO (0)
DIS PAINT SCHEME UNIFORM
DIS MOBILITY KILL NONE
DIS FIREPOWER KILL NONE
DIS DAMAGE NONE
DIS SMOKE NONE
DIS TRAILING EFFECTS NONE
DIS HATCH NONE
DIS LIGHTS NONE
DIS FLAMES NONE
DIS ENTITY ACTIVE
DIS LAUNCHER NOT RAISED
DIS DESERT CAMOUFLAGE
DIS NOT CONCEALED

Other

Other

SYSTEM DESIGN DESCRIPTION
159

DEAD RECK PARAMS :
- DR ALGORITHM

OTHER
EN LIN ACC . X
EN-LIN-ACC.Y
EN-LIN-ACC.Z
EN-ANG-VEL . X
EN-ANG-VEL.Y
EN-ANG-VEL.Z

ENTITY MARKING:
CHARACTER SET
RECORD -

CAPABILITIES
Ammo Supply :
Fuel Supply :
Recovery:
Repair :

ART PARAMS [1] :
CHANGE
ID
TYPE
VALUE

ART PARAMS [2]:
- CHANGE

ID
TYPE
VALUE

True
True
False
False

1ST: SCANNER

x02 (2) DRM(F, P, W)
DATA : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
O. OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O. OOOOOOOOOOE+OO
O. OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO

xOl (1)
ASCII : HI00

x00000003

xOOOl
xOOOO
xOOOOl00B
x80000000

xOOOl
xOOOl
xOOOO1l4D
xOOOOOOOO

(3)

(1)
(0)
(4107)

xOOOOOOOO

(1)
(1)
(4429)

xOOOOOOOO

ASCII

SYSTEM DESIGN DESCRIPTION
160

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

The following is a sample from the Packet Display Window. The data being displayed
is an Emission PDU. The emitter name was out of range according to the data in the default
PDU configuration file. The invalid field was marked with an asterisk.

- - - - - Hex Dump of Packet - - - - -

0 : FF FF FF FF FF FF 00 60 8C 55 B1
10 : 00 80 00 OE 00 00 3C 11 23 AC A4
20 : FF FF 1B 52 1B 52 00 6C 5B
30: 66 D2 00 64 00 00 00 11 00
40: 00 01 01 01 00 00 12 01 00
50: 00 00 00 00 00 00 00 00 00
60 : OD 18 00 00 00 00 42 DC 00
70 : 00 00 00 00 00 00 40 49 OF
80 : 00 00 00 00 00 00 01 00 00

----- Ethernet Network Layer

ETHERNET:
DESTINATION
SOURCE
ETHER TYPE

C6 03
01 00
00 00
00 OD
00 44
DB 00
00 00

UDP/IP Transport Layer -----

UDP/IP :

IP:

IP HEADER BITS:
IP HEADER LENGTH
VERSION

TYPE OF SERVICE
TOTAL LENGTH
PACKET 10

IP FRAG BITS:
- FRAGMENT OFFSET

FLAGS

UDP:

TIME TO LIVE
PROTOCOL
HEADER CHECKSUM
SOURCE ADDRESS [0]
SOURCE-ADDRESS [1]
SOURCE-ADDRESS [2]
SOURCE-ADDRESS [3]
DESTINATION ADDRESS [0]
DESTINATION-ADORESS[l]
DESTINATION-ADDRESS [2]
DESTINATION=ADDRESS[3]

SOURCE PORT
DESTINATION PORT
LENGTH (HOR+TEXT]
CHECKSUM

DIS Simulation PDU -----

EMISSION :

PDU HEADER:
- PROTOCOL VERSION

EXERCISE-m
PDU T¥PE-

7B 08 00 45 00•. U. { .. E .
D9 11 01 A4 D9 <.fL
01 17 00 F8 C3 ... R.R.l [.
64 00 11 00 01 f .. d d
18 03 01 00 00
01 00 35 4E 8F 5N .
7A 00 00 40 00 B ... Dz .. @.

00 00 00 00 00 @I
00 00 00

DATA: FF FF FF FF FF FF
DATA : 00 60 8C 55 B1 7B
x0800 (2048)

x04
x05

xOO
x0080
xOOOE

xOOOO
xOOOO

x3C
xlI
x23AC
xA4
xD9
xlI
x01
xA4
xD9
xFF
xFF

x1B52
x1B52
x006C
x5BC6

x03
x01
x17

(4)
(5)

(0)
(128)
(14)

(0)
(0)

(60)
(17)
(9132)
(164)
(217)
(17)
(1)
(164)
(217)
(255)
(255)

(6994)
(6994)
(108)
(23494)

(3)
(1)
(23)

DIS PDU version 2 . 0 - third draft (May 93)

Electromagnetic Emission

SYSTEM DESIGN DESCRIPTION
161

PADDING
TIME STAMP
LENGTH
PADDING

EMITTING ENTITY 10: 17 : 1 : 100
SITE -
APPLIC
ENTITY

EVENT 10 :
-SITE

APPLICAT
ENTITY

STATE UPDATE INDICATOR
NUMBER OF SYSTEMS
PADDING

SYSTEMS:
SYSTEM DATA LENGTH
NUMBER-OF BEAMS
PADDING -

EMITTER SYSTEM :
* EMITTER NAME

FUNCTION
ID NUMBER

LOCATION:

BEAMS:

X
Y
Z

BEAM DATA LENGTH
BEAM-ID NUMBER
BEAM=PARAMETER_INDEX

FUND PARAM DATA:
FREQUENCY
FREQ RANGE
ERP -
PRF
PULSE WIDTH
BEAM AZ CENTR
BEAM-AZ-SWEEP
BEAM-EL-CENTR
BEAM-EL-SWEEP
BEAM-SWP SYNC

BEAM FUNCTION
NUM OF TARGET IN TRACK JAM
HIGH DENSITY TRACK/JAM-
PADDING -
JAMMING_MODE_SEQUENCE

1ST: SCANNER

xOO
xF8C366D2
x0064
xOOOO

x0011
xOO01
x0064

x0011
xOO01
xOO01

x01
x01
xOOOO

x12
x01
xOOOO

xOO18
x03
x01

(0)
(4173555410)
(100)
(0)

(17)
(1)
(100)

(17)
(1)
(1)

(1)
(1)
(0)

(18)
(1)
(0)

(24)
(3)
(1)

O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO

xOD
x01
x0035

(13)
(1)
(53)

1 . 2000000000E+09
O.OOOOOOOOOOE+OO
1.1000000000E+02
1.0000000000E+03
2 . 0000000000E+00
O. OOOOOOOOOOE+OO
3.1415927410E+00
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO

x01 (1)
xOO (0)
xOO (0)
xOO (0)
xOOOOOOOO (0)

ESF Naval Surveillance

Search

SYSTEM DESIGN DESCRIPTION

162

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.2 Test Suite

6.2.1 Load Management Structure - MANAGE

6.2.1.1 Overview

The management structure or test suite is basically an array of arrays. The array of test
groups is made up of an array of specific test entries. A test group, for example, is PDU
Transmission tests; a specific test entry might be Entity State or Fire PDU. The configuration
file determines how many test groups there are and how many individual test entries each test
group has. The management structure is accessed by the management pointer, mgrPtr. A
separate structure is maintained to access the default management structure, defMgrPtr.

When a user saves a test suite for a SUT, that test suite knows the name of the
configuration files currently active and saves the name of them within the test suite. When that
test suite is opened at a later time, the current configuration in memory is removed and
replaced with the configuration specified by the configuration files saved within the test suite.
Obviously, if the test suite's configuration is the same as the current configuration in memory,
the test suite's configuration is not reloaded. However, if the configurations are the same but
the test suite after being read in from disk does not contain as many test entries for each test
group as the default management configuration file specifies, the test suite is automatically
adjusted to include the missing test entries. This is done so that, for example, if a new test is
to be added to a test suite, it can be added to the end of the list in the configuration file and
program will automatically add it to the test suite. Note that it only applies up to the
maximum test groups and test entries allowed. Also note that the test groups could be updated
similarly, however, the test selection menu under the Edit menu would not reflect the new test
groups.

6.2.1.2 Data Structures

See Section 5.2 for a detailed description of the following data structures:

MANAGEMENT - This is the "grouping" structure that encapsulates the test groups,
test entries, configuration information. This is the actual structure that is written to disk when
a test suite is written to disk. If the format of this structure changes, special routines will need
to be written to read or convert existing test suites.

SYSTEM CONFIG STRUCT - Contains the port numbers for recogmzmg DIS,
SIMNET, Eagle, and 1ST Message packets as well as names of the configuration files used to
create this test suite.

SYSTEM DESIGN DESCRIPTION
163

1ST: SCANNER

TEST_SUITE - Enough space is allocated for MAX_TEST_GROUPS with
MAX_TEST_ENTRIES each, however, as the management configuration file is being read in,
only as many of the allotted spaces are used as required.

DEF _TEST_SUITE - It is very similar to the TEST SUITE structure but contains only
the minimum fields necessary to save the important test group and test entry information.

6.2.1.3 Processing

The following code describes how the management structure configuration file is read
in from disk to create a structure within memory.

procedure LoadManagementConfig(fiIetouse)
BEGIN

END

Open filetouse;
DO WHILE NOT EOFO

Get line from file;
Process line;

ENDDO
Close filetouse;

procedure ProcessConfigLine(line)
BEGIN

IF too many tests or comment line
RETURN

ENDIF
IF line is a GROUP identifier line

IF too many test groups
RETURN

ENDIF
Increment count of test groups;
Fetch test group name from line;
Fetch test sub-group name from line;
Assign group name to management structure and default management structure;
Assign sub-group name to management structure and default management
structure;

ELSEIF line is a test ENTRY line
Initialize test ENTRY fields;
Fetch all of the fields from the line;
Convert automated test functions index to enumerated value;

SYSTEM DESIGN DESCRIPTION
164

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

END
ENDIF

1ST: SCANNER

Assign values or converted values to both mangement and default management
structure;

SYSTEM DESIGN DESCRIPTION
165

1ST: SCANNER

6.2.2 Create a Test Suite - CO DIALOG and MGR

6.2.2.1 Overview

See section 6.2.1 and it's subsections for a detailed explanation of the management and
default management structure. Before the actual creation of a test suite management structure,
the user needs to supply the program with a three-character company name and a one-character
SUT number. These values are used to create a unique identifier for the test suite by
contcatenating the two values together. The concatenated string is used as the name of the test
suite, the directory where the test suite is stored, and the beginning characters of the default
binary filenames.

6.2.2.2 Data Structures

Same data structures as mentioned in section 6.2.1.1.

6.2.2.3 Processing

The following pseudo code shows the creation of the dialog for inputting the company
name and SUT number, as well as, how the new test suite is created.

procedure co _ dialolL display(main _widget)
BEGIN

END

IF company_sut_widget DOES NOT Exist
Create Widget(main_w);

ENDIF
Display Widget;

procedure co _ dialolL create (main_widget)
BEGIN

END

Define widget;
Create widget;
Attach fields to widget;
Attach buttons and callbacks to widget;
RETURN widget;

procedure co_dialog_ok_cb(widget, client_data, call_data)
BEGIN

IF able to create a new management structure

SYSTEM DESIGN DESCRIPTION
166

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

END

ENDIF

1ST: SCANNER

Display Company, SUT, and Testbed data;
Enable main menu;

Destroy widget;

procedure mgr _ new(co, sut)
BEGIN

END

Convert co and sut to uppercase;
Concatenate co and sut together;
Try to make a directory with the concatenated string;
IF NOT able to make directory

ERROR;
RETURN FALSE;

ENDIF
Create a test suite file named co + sut + ".mgt" in the new directory;
IF NOT able to create test suite

ERROR;
RETURN FALSE;

ENDIF
Close new test suite file;
Reinitialize the management structure in memory to use co and sut;
Copy Scanner's current config options to test suite structure;
Create and open Report Log;
Save test suite to disk;

SYSTEM DESIGN DESCRIPTION
167

1ST: SCANNER

6.2.3 Select a Test Suite - TS DIALOG

6.2.3.1 Overview

Selecting a test suite is necessary when opening an eXlstmg test suite or deleting an
existing test suite. To select a test suite requires building a list of all of the test suites
available, adding that list to a selection dialog, and then allowing the user to select one of the
tests. The criteria for determining what should be added to the list of test suites is as follows,
a directory must exist below the current directory that starts with 3 uppercase character.~

followed by a number. Also, within that directory, there must be a file with the same 3
character, I number name followed by a ".mgt" extension.

6.2.3.2 Data Structures

See Section 5.2 for a detailed description of the following data structures:

MANAGEMENT - This is the "grouping" structure that encapsulates the test groups,
test entries, configuration information. This is the actual structure that is written to disk when
a test suite is written to disk. If the format of this structure changes, special routines will need
to be written to read or convert existing test suites.

SYSTEM CONFIG STRUCT - Contains the port numbers for recogntzmg DIS,
SIMNET, Eagle, and 1ST Message packets as well as names of the configuration files u:;ed to
create this test suite.

TEST SUITE - Enough space is allocated for MAX_TEST_GROlJPS with
MAX_TEST_ENTRIES each, however, as the management configuration tile is eing read in,
only as many of the allotted spaces are used as required .

DEF _TEST_SUITE - It is very similar to the TEST SUITE structure but contains only
the minimum fields necessary to save the important test group and test entry information.

6.2.3.3 Processing

The next several routines show how a test suite selection dialog is created.

1* doingDeleteFlag will be FALSE for all calls to this function except when calling from
the 'Delete a Test Suite' option *1

procedure ts_dialog_display (MainWindowWidget, doingDeleteFlag)
BEGIN

IF test suite selection dialog is not already popped up

SYSTEM DESIGN DESCRIPTION
168

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ENDIF
END

1ST: SCANNER

Set file counter to 0;
Set list of files to NULL;
Create test suite selection dialog;
Pop it up;

procedure ts_dialog_create (MainWindowWidget, doingDeleteFlag)
BEGIN

END

Create Widget;
Set parameters within Widget;
Attach text and button Widgets;
Create a list of test suites on disk;
Add contents of test suite list to Widget sorted in alphabetical order;
RETURN Widget;

procedure ts_Iist_createO
BEGIN

END

Scan current directory looking for sub-directories;
IF FOUND

ENDIF

Check to see if a file exists in the directory with the same name as the directory
with a ".mgt" extension;
IF TRUE

ENDIF

Copy that directory name to global list of test suites;
Increment file counter;

/* When user selectslhighlights a test suite in the list */
procedure ts_select_cb (Widget, client_data, call_data)
BEGIN

Get the index of the selected test suite from list;
Copy the value from the selected test suite to a static global testsuitename variable;

END

procedure ts_dialog_ok_cb(Widget, client_data, call_data)
BEGIN

IF nothing is SELECTED
RETURN

SYSTEM DESIGN DESCRIPTION
169

END

1ST: SCANNER

ENDIF
Fetch just the test suite name out of the static variable, testsuitename;
IF able to Open the selected management structure

ENDIF

Display Company, SUT, and Testbed data;
Enable main menu;

Pop down widget;
Free memory reserved by Widgets;
Free memory reserved by test suite list;

SYSTEM DESIGN DESCRIPTION
170

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.2.4 Display contents of a Test Suite - CONFWIN

6.2.4.1 Overview

On the main menu screen after a test suite is opened, the testbed, company, and SUT
information for that test suite is displayed within it's own framed area. The information is
copied from the management structure to a temporary structure containing widgets for the
necessary screen interface.

6.2.4.2 Data Structures

The MgmtRcc temporary structure used in the following routines is a list of label fields
for each field in each section of the test suite and a count of the number entries for each
section. The sections include company, testbed, and SUT. The structure is allocated the first
time the function is called. Every other time, the data from the test suite being processed
overwrites the previous data for each field.

6.2.4.3 Processing

proced ure display _ conf _ manager(main_ widget, *managementPtr)
BEGIN

END

IF temporary structure to hold widgets and text DOES NOT Exist
Create temporary structure (init_mgmt_recO);
Create Widgets to hold Company, SUT, and Testbed information;

ENDIF
Copy values from temporary structure to widgets;
Display widgets in main menu window;

procedure init_mgmt_rec (managementPtr)
BEGIN

END

Allocate a temporary structure to hold the widgets and text that will be displayed in the
main menu window;
Copy values from the Management Structure to the temporary structure;
RETURN a pointer to the temporary structure;

procedure populate_cone manager _ display(managementPtr)
BEGIN

FOR I := 1 TO # of fields in testbed area

SYSTEM DESIGN DESCRIPTION
171

END

1ST: SCANNER

Copy value from text string to widget;
NEXT
FOR I := 1 TO # of fields in company area

Copy value from text string to widget;
NEXT
FOR I := 1 TO # of fields in SUT area

Copy value from text string to widget;
NEXT

SYSTEM DESIGN DESCRIPTION

172

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.2.5 Open a Test Suite - MGR

6.2.5.1 Overview

Opening a test suite is in reality opening the selected test suite management structure
file, reading the contents into memory, and then closing the file.

6.2.5.2 Data Structures

Same data structures as mentioned in Section 6.2.1.2.

6.2.5.3 Processing

Once the test suite is selected (see Section 6.2.3), the following pseudo code shows how
the test suite is actually "opened".

procedure mgr_open (filetouse)
BEGIN

Close open test suite, if any;
IF filetouse DOES NOT Exist

ERROR;
RETURN FALSE;

ENDIF
IF NOT able to open file

ERROR;
RETURN FALSE;

ENDIF
Try to Lock file;
IF NOT able to Lock file

ERROR;
RETURN FALSE;

ENDIF
Read contents of file into management pointer;
UnLock file;
Close file;

Set Ports to management structures Port settings;
Open Report Log;
Verify completeness of management structure (Copy DefaultManagementConfigO);
Load management configuration files;
RETURN TRUE;

SYSTEM DESIGN DESCRIPTION
173

1ST: SCANNER

END

procedure CopyDefaultManagementConfigO
BEGIN

END

FOR I := management structures test group count TO default management
structures test group count

FOR J := management structures test count TO default management
structures test count

Copy missing tests from default management structure;
NEXT
Copy missing tests groups from default management structure;

NEXT

procedure LoadManagementsConfigFilesO
BEGIN

END

Compare currently loaded port settings against the management structures port settings;
IF different

Set Ports to management structures Port settings;
ENDIF
FOR I := 1 TO MAX CONFIGURABLE FILES - -

Compare currently loaded config file[l] against the management structures
config file[I];
IF different

ENDIF
NEXT

IF management config file DOES NOT Exist
ERROR;

ELSE
Copy value from management structure to currently loadl~d file
listing;
Free the memory for the old configuration file and Load the new
configuration file;

SYSTEM DESIGN DESCRIPTION
174

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.2.6 Save a Test Suite - MGR

6.2.6.1 Overview

See Section 6.2.1 and it's subsections for a detailed explanation of the management and
default management structure. Saving a test suite is equivalent to writing the contents of the
management structure in memory to a file on disk. The file is locked beforehand to ensure
data integrity. If the user has changed the name of the company or the SUT number during
the current session, the program will update it's internal reference as to which directory to
reference to find files . However, the program will still expect binary and configuration files
to be named using the old company name and SUT number combination.

6.2.6.2 Data Structures

Same data structures as mentioned in Section 6.2.1.2.

6.2.6.3 Processing

procedure mgr_save (managementPtr)
BEGIN

END

IF no management structure open
RETURN

ENDIF
Rebuild reference to Testbed directory;
IF NOT able to open management structure file

ERROR;
RETURN FALSE;

ENDIF
IF NOT able to Lock file

ERROR;
RETURN FALSE;

ENDIF
Write contents of management structure to disk;
Unlock and Close file;

procedure RebuildTestBedDirectoryO
BEGIN

END

Replace internal management structure value for directory with the concatenation of the
current values of the Company and SUT Number fields;

SYSTEM DESIGN DESCRIPTION
175

1ST: SCANNER

6.2.7 Close a Test Suite - MGR

6.2.7.1 Overview

See Section 6.2.1 and it's subsections for a detailed explanation of the management and
default management structure. Closing a test suite also means closing the report log and setting
a flag indicating that there are no open test suites.

6.2.7.2 Data Structures

Same data structures as mentioned in Section 6.2.1.2.

6.2.7.3 Processing

procedure mgr_close (managementPtr *)
BEGIN

END

IF no management structure open
RETURN

ENDIF
Save current test suite to disk;
Close Report Log;

1* to indicate not management structures are open *1
Set internal management filename to NULL;
Clear management structure pointer;

SYSTEM DESIGN DESCRIPTION
176

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.2.8 Delete a Test Suite - MGR

6.2.8.1 Overview

See Section 6.2.1 and it's subsections for a detailed explanation of the management and
default management structure. To delete a test suite, the program will remove the directory
created to store the test suite and also delete ALL files within that directory.

6.2.8.2 Data Structures

Same data structures as mentioned in Section 6.2.1.2.

6.2.8.3 Processing

Once a test suite is selected (see Section 6.2.3), the following pseudo code shows how
the selected test suite is deleted.

procedure mgr _delete (dirtodel)
BEGIN

END

IF trying to delete the open test suite
RETURN

ENDIF

Execute the system command "rm -r " + dirtodel to remove directory and all files in
directory;

SYSTEM DESIGN DESCRIPTION
177

1ST: SCANNER

6.3 Configuration

There are several different configuration files that are used by the Scanner Management
System. For a detailed description of the Network or PDU configuration files and how they
are used, see Section 6.1 - PDUlNetwork. For the Management structure configuration file,
see Section 6.2 - Test Suite. The following is a listing of the types of contiguration files and
how they work.

6.3.1 Scanner Configuration file - MAINWIN

6.3.1.1 Overview

The Scanner Configuration file lists the management, pdu, network, and entity type
default configuration filenames. These are the names of the configuration files that the Scanner
will use when creating a new Test Suite. The port numbers for DIS, SIMNET, Eagle, and 1ST
Message can also be found in this configuration file. There is one other field for the binfile
timestamp size. This field contains a value indicating how much of the data at the beginning
of a binary file is reserved for the time stamp for when the binfile was logged. For example,
if this field contains a 0, then the beginning of the file equates to the beginning of the first
packet.

6.3.1.2 Data Structures

SYSTEM_CONFIG_STRUCT - The structure contains two fields. One is for the string
containing the port numbers for indicating if a packet is DIS, SIMNET, Eagle, or 1ST Message.
The other field is an array containing the filename of the different configUl abon tiles thi:
Scanner recognizes. Currently, most of them are ignored, but the first three contain values.
The first position contains the name of the Management configuration file, "manage.cfg", the
second contains the Network definition configuration file, "network.cfg", and the third contains
the PDU definition file, "pdu.cfg".

6.3.1.3 Processing

The pseudo code below summarizes how the Scanner main configuration file is read and
loaded.

procedure LoadScannerConfigO
BEGIN

Set the local variable, scandir to the path set by the environmental variable, SCANPROJDIR;

SYSTEM DESIGN DESCRIPTION
178

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

END
/*

1ST: SCANNER

Try to open "scanner.cfg" in current directory or SCANDIR directory;
IF ERROR

RETURN FALSE;
ENDIF
DO WHILE NOT EOFO

Get line;
Process line;

ENDDO
Close "scanner.cfg";

** See Section 5.2.3.1 - Scanner Configuration File for format of a line.
*/
procedure ProcessScannerLine(line)
BEGIN

END

Fetch the config. option from line;
Fetch the config. value from line;
Compare config. option against all recognizable options;
IF match was found

ENDIF

Copy the config. value into the appropriate SCANNER_CONFIG_STRUCT
field;

SYSTEM DESIGN DESCRIPTION
179

1ST: SCANNER

6.3.2 Entity Types Configuration file - ENTTYPES

6.3.2.1 Overview

To facilitate easy modification of the entity type list as defined in 1ST's document -
Enumeration and Bit-encoded Values for use with IEEE 1278.1-1994, Distributed Interactive
Simulation -- Application Protocols, the Scanner loads the entity type list from a configuration
file. See Section 5.2.3.5 - Entity Types Configuration File for the format of the file. The
contents of the file are read into a linked list and stored in alphabetical order. After the
contents of the file have been read into the linked list, the contents of the linked list are copied
to an array so that they can be binary searched to see if an entity type is valid or not.

6.3.2.2 Data Structures

DIS_ENUMS - Contains the entity type code string, "1.2.225.3.4", the simnet guise. as
a long, a character description of the entity type, and a conversion of the entity type code string
into a string of unsigned characters. An array of these structures is created to hold all of the
recognizable entity. types.

DIS_ENUMS_LL - Contains a DIS_ENUM structure with two pointers to
DIS_ENUM_LL structures, a next and previous pointer. The linked list of recognizable entity
types is created with these structures.

6.3.2.3 Processing

Shows how to load the Entity Type default configuration file. Also, the routines to
convert the initial format for saving the data in a linked list into an array are listed.

procedure LoadEntTypeEnumTable(filename)
BEGIN

END

IF NOT able to open filename

ENDIF

IF NOT able to open filename in Scanner directory
RETURN FALSE;

ENDIF

Load the contents of the file into a linked list;
Close file;

Convert linked list to an array;

SYSTEM DESIGN DESCRIPTION

180

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

procedure LoadTable(file)
BEGIN

END

DO WHILE NOT EOFO
Get a line of text from the file;
Process the line of text;

ENDDO

proced ure ProcessLine(line)
BEGIN

END

IF line[O] == "*" OR line does not start/end with II { } ", respectively
RETURN

ENDIF

Allocate memory for a linked list element;
Fetch the entity type code as string from line and store in linked list element;
Fetch the Simnet code from the line and store in linked list element;
Fetch the entity type description from the line and store in linked list element;
Convert entity type string into an array of unsigned characters;
Add linked list element to linked list;

procedure ConvertEntityTypeCode(codestr, code)
BEGIN

END

/* codestr is in format "1.2.225.3.4"; needs to be changed to something searchable */
DO WHILE NOT End of String

Find pos of ".";
Copy from last ". II to next ". II to a temporary string;
Convert temporary string to unsigned char.;
Move unsigned char. into correct position in code;

ENDDO

procedure AddToLinkedList(DIS_Enums_LL)
BEGIN

IF global linked list of entity types is NULL
global linked list = disenum;
RETURN

ENDIF
temp = start of global linked list;
DO WHILE NOT at end of Linked List

SYSTEM DESIGN DESCRIPTION
181

END

1ST: SCANNER

IF disenum's contents greater than temp's contents
Insert disenum into linked list;

ELSE

ENDIF

ENDDO

temp = next linked list element;
RETURN;

Add disenum element to end of global linked list;

procedure ConvertToArrayO
BEGIN

END

Allocate memory for array of DIS_ENUMs;
DO WHILE NOT at end of global linked list

Copy values from linked list element into array element;
Free memory for linked list element;

ENDDO

procedure EntTypeBinarySearchStr(str, ppos, IsCode)
BEGIN

END

IF str is NOT a string of unsigned characters
Convert str to a string of unsigned characters

ENDIF

Perform a binary search for str in array of entity types;
Set ppos to position in array of matching entity type;

RETURN TRUE if found; otherwise return FALSE;

SYSTEM DESIGN DESCRIPTION

182

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

..
I
I 1ST: SCANNER

I 6.3.3 Enumeration Tables Configuration file - ENUM_CFG

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6.3.3 .1 Overview

To facilitate easy modification of the enumerations list as defined in 1ST's document -
Enumeration and Bit-encoded Values for use with IEEE 1278.1-1994, Distributed Interactive
Simulation -- Application Protocols, the Scanner loads the enumeration table list from a
configuration file. See Section 5.2 for the format of the file. The contents of the file are read
into a linked list of "table records". Each "table record" is made up of a linked list of "table
elements".

6.3.3.2 Data Structures

The enumeration table is a linked list of TABLE structures. Each TABLE structure has
a pointer to the linked list of ELEMENTs that make up that TABLE.

TABLE - Contains the name of the table and a pointer to the list of elements that make
up that table.

ELEMENT
enumerations string.

Contains the enumeration string and the minimax values for that

6.3.3.3 Processing

int LoadEnumerationTable(char *fiIename)
BEGIN

END

Initialize Enumerated Table Linked List;
DO WHILE NOT EOF(filename)

Read line;
IF line is start of a new table

Allocate new table pointer;
Attach new table pointer to table linked list;
Copy table name to new pointer;
Initialize element pointer for new table pointer;

ELSE 1* element for a table *1
Allocate new element pointer;

ENDIF
ENDDO

Fetch values from line and copy into element pointer;
Add element pointer to element linked list;

SYSTEM DESIGN DESCRIPTION
183

1ST: SCANNER

LL *FindElementListFromTable(char *table reference)
BEGIN

END

DO WHILE NO more Tables to search
IF TablePtr->TableName == table reference

RETURN TablePtr->ElementPtr;
ENDIF

ENDDO
RETURN NULL;

char *FindElementFromMinMax(LL* elementptr, short searchval)
BEGIN

END

DO WHILE NO more Elements in list to search
IF searchval is between MINIMAX values for element

RETURN elementptr->enumeration _string;
ENDIF

ENDDO

void destroyEnumLL(void)
BEGIN

END

DO WHILE more Tables
Free elementptr;

ENDDO
Free tableptr;
Set tableptr to NULL;

SYSTEM DESIGN DESCRIPTION
184

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.3.4 System Configuration window - SC_DIALOG

6.3.4.1 Overview

The System Configuration window lists the management, pdu, and network default
configuration filenames. The port numbers for DIS, SIMNET, Eagle, and 1ST Message can
also be found on this configuration screen. The default values for these fields come from the
Scanner Configuration file (see Section 6.3.1). These values are saved within the test suite.
When the test suite is opened, the configuration of the new test suite is compared against the
current configuration and if there are differences the new configuration is loaded in place of
the old configuration.

6.3.4.2 Data Structures

SYSTEM CONFIG STRUCT - The structure contains two sections. One is for the - -
string containing the port numbers for indicating if a packet is DIS, SIMNET, Eagle, or 1ST
Message. The other field is an array containing the filename of the different configuration files
the Scanner recognizes. Currently, most of them are ignored, but the first three contain values.
The first position contains the name of the Management configuration file, "manage.cfg", the
second contains the Network definition configuration file, "network.cfg", and the third contains
the PDU definition file, "pdu.cfg".

6.3.4.3 Processing

procedure sc_displayO
BEGIN

END

Disable main menu options;
IF System Config dialog does NOT exist

Create it;
ENDIF
Fill dialog with appropriate values;
Display dialog;

procedure sc _ create(main WindowWidget)
BEGIN

Create popup shell widget;
Create a pane for popup shell widget;
Add controlling buttons and fields;
Manage pane widget;

SYSTEM DESIGN DESCRIPTION
185

IST: SCANNER

END

procedure FieldExit_cb(value_widget, con fig. data field pointer, not used)
BEGIN

END

IF value in value_widget is NOT NULL
Copy value in value_widget to config.data field pointer;

ENDIF

procedure sc_ok_cb(not used)
BEGIN

END

Update the port numbers variable if the port numbers were changed and let the packet
ID code use the new port number;

FOR I := 1 to # of configuration directories
IF config file[l] NOT the same as management structure' s config file

IF config file[l] exists

ENDIF
NEXT

Copy config file[I] to management structure;
ELSE

ERROR;
ENDIF
Destroy appropriate configuration information;
Load newly specified configuration information;

Destroy system configuration widget;
Enable main menu options;

SYSTEM DESIGN DESCRIPTION
186

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I 1ST: SCANNER

I 6.3.5 Test Selection window - TG DIALOG

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6.3.5.1 Overview

This dialog window is a generic window showing the tests selected from within a
specified test group. From the edit test window, the user is presented with a list of several
different test groups to choose from. When the user picks one, the program automatically
fetches the offset for that test group within the management structure. This code works
generically for all test groups. It will adapt to show the number test entries for the specified
test group.

The test group information for the selected test group is copied to a temporary variable.
The address of each of the test entries for the test group is also "copied" to the temporary
variable. The contents of the temporary variable are then copied into the test selection dialog.
When the user selects/deselects a test or changes the binary filename or configuration file
name, the new values are automatically copied into the appropriate fields in the management
structure.

6.3.5.2 Data Structures

The TestGroupRec and TestEntryRec structures are used for performing these routines.
The TestGroupRec contains a count of the number of TestEntryRecs contained in the
TestGroupRec and the name of the test group. The TestEntryRec contains three widgets for
binary filename, configuration filename, and test selection as well as a field pointing to the
address of the associated test entry in the management structure. These structures are used
with temporary variables for holding the information displayed and entered on the screen.

6.3.5.3 Processing

procedure tg_dialo~display(mainWindowWidget, test group, label)
BEGIN

END

IF test group dialog does NOT exist
Reset local variables;

ENDIF

Copy test group information to local variable;
Create test group dialog;

Populate dialog widget;
Display dialog widget;
Disable main menu options;

SYSTEM DESIGN DESCRIPTION
187

1ST: SCANNER

procedure tg_conCcreate(mainWindowWidget, label)
BEGIN

END

Create popup shell widget;
Create a pane for popup shell widget;
Add controlling buttons;
Add test group information to widget;

Add test entry information for each group;
Manage pane widget;

procedure init_test_group(local test group variable, management structure's test group)
BEGIN

END

Copy all information about management structure's test group to local test group
variable;
Copy the address of test entry information from management structure to local test
group variable;

procedure populate_test_group(local test group variable)
BEGIN

END

FOR I := 1 TO # of test entries for test group
Set appropriate selection toggle state for each test entry;
Copy binary filename to widget;
Copy configuration filename to widget;

NEXT

procedure cnfFileCB(value widget, pointer to test suite entry, not used)
procedure binFileCB(value widget, pointer to test suite entry, not used)
BEGIN

END
Copy value from widget into pointer to test suite entry field;

SYSTEM DESIGN DESCRIPTION
188

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.4 Indextable

6.4.1 Indextable - INDEXT AB

6.4.1.1 Overview

This module is used to create the Indextable. The Indextable is a list with one element
for each packet within a logged binary file. The Indextable was designed to hold, for each
packet in the binary file, all of the information necessary to perform very fast filtering. This
was done to avoid having to go to disk to perform the filtering. A new Indextable is created
for each binary file tested. However, if the next test to be run uses the same file as the last,
the Indextable is not destroyed, but rather reused.

6.4.1.2 Data Structures

DIS_PDU_HEADER - Contains the DIS PDU header information as defined in the
document Standard for Distributed Interactive Simulation -- Application Protocols, Version 2.0,
Third Draft. The version, exercise and time_stamp fields from this structure are used as
possible criteria on which to filter packets.

ENTITY_TYPE - This structure is only filled in for Entity State PDUs. It contains the
information about the entity in a format defined in the Institute for Simulation and Training's
Enumeration and Bit-encoded Values for use with IEEE 1278.1-1994, Distributed Interactive
Simulation -- Application Protocols. The contents of this structure are used when the user
wants to filter on entity type values.

ENTITY_ID - Contains the identifier for the source entity in the PDU.

PACKET_IDENTIFICATION_STRUCT - This structure is filled in by the packet
identification code. It contains significant information about the contents of the packet,
including what specific type of Network, Transport, and Application protocol layers appear in
the packet, the size of each layer, port number the packet was logged on, and IP and Ethernet
address.

6.4.1.3 Processing

The Indextable is built as a two-step process. The first step scans the binary file to
determine how many packets are within the file, in order to, know how large of an Indextable
to allocate from memory. The second pass actually reads data from the binary file into the
appropriate cell of the Indextable. The following pseudo code describes how the process is

SYSTEM DESIGN DESCRIPTION
189

1ST: SCANNER

completed:

procedure CreateIndexTable(fiIe)
BEGIN

END

Free memory of previously created Indextable, if necessary;
DO WHILE NOT EOFO

Read Logger header;
IF full packet is there

(Number of Packets) ++;
ENDIF
Skip packet to position file pointer at next Logger header;

ENDDO

IF > 0 packets found
Allocate memory for (Number of Packets);

ELSE
Return FALSE;

ENDIF

Get TestBed Address from management structure;
IndexTableSecondPass(fiIe, Testbed Address);
RETURN TRUE;

procedure IndexTableSecondPass(fiIe, Testbed Address)
BEGIN

END

DO WHILE NOT EOFO
Read Logger Header;
Read Packet;
Identify Packet;
Add Packet and Logger Header information to Indextable;
Update Packet Count window;
IF packet is NOT from Testbed

Perform Packet Validation;
ENDIF
Packet Count++;

ENDDO
Make sure Packet Count window is up to date;

procedure Add_PacketInfo_to_IndexTable(packet #, Packet)

SYSTEM DESIGN DESCRIPTION
190

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

...................................... ----
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

BEGIN
IF Packet is DIS PDU

ENDIF
END

Move PDU header from Packet to Indextable;
Move Entity ID from Packet to Indextable;
Set field indicating what type of DIS PDU the packet is;
IF Packet is ENTITY STATE PDU

- -
Move Entity Type from Packet to Indextable;

ENDIF

SYSTEM DESIGN DESCRIPTION
191

1ST: SCANNER

6.5 Packet Filtering

6.5.1 Packet Filter Routines - FILTER

6.5.1.1 Overview

Packet filtering is used to narrow the number of packets the user sees in the Timeline
window to only those packets that meet the filter criteria. The user can filter on a number of
criteria, specifically, PDU type, entity id, entity type, time frame, exercise id, exercise number,
port number, if DIS only, if not DIS only, if testbed-generated, and if not testbed-generated.
All of the data necessary to determine if a packet meets one of the filter criteria is stored
within the Indextable to allow for very fast searching.

6.5.1.2 Data Structures

DB FILTER STRUCT - This structure contains all of the fields the user can filter a - -
packet upon. It was defined to allow the user to filter on as many as 500 different Entity Ids
and Entity Types. Each of those values is stored in an array. The user can also check of any
or all of the 27 different DIS PDUs to filter on, as well as, other unknown DIS PDUs. With
one structure to hold all of the values to be filtered on, it makes the filtering process very
generic.

6.5.1.3 Processing

Once the DB_FILTER_STRUCT is filled in it is passed to the Do_Filtering procedure
to check each of the possible filter criteria to see which ones are to be tested.

procedure Do_Filtering(fiIter structure, packet #)
BEGIN

Filter on PDU~
Filter on Entity ID~
Filter on Entity Type;
Filter on Time~
Filter on DIS only packets;
Filter on Excluding Testbed generated packets~
Filter on Exercise 10;
Filter on Version Number~
Filter on Port Number;
Filter on Non-DIS only packets;

IF all of the above filtering passed

SYSTEM DESIGN DESCRIPTION

192

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

END

RETURN TRUE
ELSE

RETURN FALSE
ENDIF

IST: SCANNER

procedure Filter_On_PDU(fiIter structure, packet #)
BEGIN

END

IF Search_On_PDU field is FALSE OR NOT a DIS packet
RETURN TRUE

ENDIF
IF DB_FILTER_STRUCT.PDU[I] is checked off AND

Indextable[packet #] is a ENTITY_STATE_PDU
RETURN TRUE

ENDIF

IF DB_FILTER_STRUCT.PDU[27] is checked off AND
Indextable[packet #] is a RECEIVER_PDU
RETURN TRUE

ENDIF

RETURN FALSE

procedure Filter_On_Entity_Type(fiIter structure, packet #)
BEGIN

END

IF NOT searching on Entity Type
RETURN TRUE

ENDIF
IF NOT Indextable[packet #] NOT an ENTITY_STATE_PDU

RETURN TRUE
ENDIF

FOR I := 1 TO MAX ENTITY TYPES - -
IF DB _ FILTER _ STRUCT[I].Entity _Type = Indextable[packet #] .Entity _Type

RETURN TRUE
ENDIF

NEXT

RETURN FALSE

SYSTEM DESIGN DESCRIPTION
193

1ST: SCANNER

6.6 File Management

6.6.1 Logged Binary and Configuration files - FILEMGMT

6.6.1. I Overview

The routines in this file provide a central point for opening and closing the logged
binary files and the test-specific configuration files. Several other functions, like building the
Indextable and reading a specific packet in from disk require the name of the logged binary
file to use, therefore, function calls to perform those tasks are made from within this file.

6.6.1.2 Data Structures

Static variables to hold the name of the last binary file processed which can be used to
determine if the program can use the existing Indextable or not. There are also static variables
to hold a file pointer to the currently opened logged binary file and test-specific configuration
file.

6.6.1.3 Processing

procedure OpenUserFiles(test_group, specific_test)
BEGIN

Search the test suite's data directory for the appropriate binary file;
IF NOT FOUND

ENDIF

Search the current directory for the appropriate binary file;
IF NOT FOUND

ERROR;
RETURN FALSE;

ENDIF

Set flags to remember name of opened binary file;

Search the test suite's data directory for the appropriate test-specific configuration file;
IF NOT FOUND

ENDIF

Search the current directory for the appropriate test-specific configuration file;
IF NOT FOUND

ENDIF

ERROR;
RETURN FALSE;

SYSTEM DESIGN DESCRIPTION
194

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

...
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

RETURN TRUE
END

procedure CloseUserFilesO
BEGIN

END

IF binary file open
Close binary file;

ENDIF
IF test-specific configuration file open

Close configuration file;
ENDIF

procedure BuildlndexTableO
BEGIN

END

IF binary file currently being processed is same as last binary file
Freshen Packet count window;

ELSE
Create a new Indextable;

ENDIF

procedure ReadTestConfigFileO
BEGIN

END

IF no test-specific configuration file is open
RETURN NULL

ENDIF

Start a new linked list;
DO WHILE not EOFO of configuration file

Get a line from configuration file;
IF line is not blank, comments, etc.

Add line to linked list;
ENDIF

ENDDO

RETURN linked list;

SYSTEM DESIGN DESCRIPTION
195

1ST: SCANNER

6.7 Automated Testing

6.7.1 Automated test selection - TS AUTO DIALOG - -

6.7.1.1 Overview

This module is used to build the list of pre-selected tests from which the user can
choose which one will be executed. The names of all tests chosen earlier under the Edit
configuration window by the user are copied to a list. At the same time, a second list is
created that contains the test group and test entry offset from within the management structure
for each test in the test selection window. This second list is necessary in translating from the
list of tests to choose from to the management structures list of tests.

6.7.1.2 Data Structures

TEST_OFFSETS - A structure that holds the test group and test entry offsets for a
specific test in the management structure. An array of these structures is created to hold the
test group and test entry offsets for all tests that the user can choose from on the automated
test selection window. When a test is chosen, the selected test's offset into the array indicates
which specific test was actually chosen.

6.7.l.3

typedef struct
{

short tg_index;
short te jndex;

} T est_Offsets;

Processing

The following pseudo code shows the creation and display of the list of automated tests.
Once the test is selected from the list, a function is called to display the appropriate windows
and call the automated test procedures.

procedure ts_auto_dialog_display(main_window_widget)
BEGIN

END

Set the number of tests to choose from counter to 0;
Clear all test selection structures;
Create automated test selection dialog;
Display automated test selection dialog;

SYSTEM DESIGN DESCRIPTION
196

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.. I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

procedure ts _auto _ dialo~ create(main _window_widget)
BEGIN

END

Create a pop-up shell widget;
Create list widget and attach to shell widget;
Add "OK"/"Cancel" buttons to shell widget;
Create a list of automated tests that can be conducted.
Copy contents of list to list widget;
Delete automated test list;

procedure auto _ test_list_create(startpos)
BEGIN

END

FOR i := 1 to # of test groups

NEXT

FOR j := 1 to # of test entries for test group i
IF test[ij] is NOT scheduled .OR.

test[i,j] is NOT automated
LOOP

ENDIF
Copy test status (PassedlFailed, etc) to temp. string;
Concatenate test number and test description to temp. string;
Concatenate test comments to end of temp. string;
Convert temp. string to XmString;
Append XmString to automated test list;

IF have not picked a default test yet .AND.
test status of test[ij] is NI A

Assign startpos number of tests counter;
ENDIF
Increment number of tests counter;
Add test[i,j] test group, test entry offsets to TestOffset array;

NEXT

procedure auto_test_list_deleteO
BEGIN

FOR I := I to number of tests counter

NEXT

IF automated test list[i] is NOT NULL
Free XmString;

ENDIF

SYSTEM DESIGN DESCRIPTION
197

1ST: SCANNER

END

procedure ts_auto_select_cb (widget, not used, automated test selection list)
BEGIN

Fetch the selected item position in automated test selection list and store in a global
variable;

END

procedure ts_auto_dialo~ok_cb(not used)
BEGIN

END

IF nothing is selected in test selection window
RETURN

ENDIF

Fetch the test group and test entry offsets for the selected test using the variable set in
function ts_auto_select_cbO;
Set the management structures internal pointer to the same test group/entry offsets;

Fetch the name of the binary file required for that test from the management structure;
Display the Logger dialog;

Close test selection window;
Destroy the test selection widget;

procedure ts_auto_exec(namc_oCbinary_fiIe)
BEGIN

/*
** User could have changed the name_oCbinary_file in the logger dialog. Just making
* * sure management structure is up to date.
*/
Copy name_oCbinary_file to management structure position pointed to by selected
test's test group and entry offsets;

IF test suite has NOT had it's report log header printed
Print it;
Set internal flag in management structure to TRUE to avoid printing again;

ENDIF

Try to open appropriate logged binary file and associated configuration file;
IF able to

SYSTEM DESIGN DESCRIPTION
198

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I END

I
I
I

1ST: SCANNER

IF Automated NETWORK test
Fetch the default network edit list;

ELSE IF Automated PDU test
Fetch the default PDU edit list;

ELSE
ERROR
RETURN;

ENDIF

Display Packet Count window;

IF NETWORK test
Build Network Edit List;
Load Network test-specific configuration file;
Display Network Edit List;

ELSE IF PDU test

ENDIF

Build PDU Edit List;
Load PDU test-specific configuration file;
Display PDU Edit List;

Display Report Results window;
Try to build Indextable;
IF able to

ELSE

ENDIF
ENDIF

Display the binary filename in Report Results dialog;
Update Report Results dialog;
IF no packets were found in logged binary file

Set Report Results dialog reason to "BIN file contains 0 records"
ENDIF
Disable main menu widgets;

Destroy Packet Count window;
Destroy Report Results window;
Destroy Network test Edit window;
Destroy PDU test Edit window;
Enable main menu widgets;

SYSTEM DESIGN DESCRIPTION
199

1ST: SCANNER

6.7.2 Network User Edit List - NETCONF

6.7.2.1 Overview

This file contains functions for handling the Network header (Levell) automated test
screen. Network testing is made up of testing both the network layer and the transport layer.
It builds the configuration screen that allows the user to edit the minimax values that will be
used when performing packet validation on each matching packet within a binary file.

Network validation is a little different than PDU validation in that in PDU validation,
the user specifies which PDU is to be tested. All other PDU types are ignored. With network
validation, the network layer could be Ethernet or IEEE 802.3 and the transport layer could be
UDP/IP or TCPIIP (these are the only types the Scanner recognizes). Therefore, we need to
allow the user to enter minimax values for any combination of network and transport layers
that could appear within a packet in a binary file.

6.7.2.2 Data Structures

The default network configuration table uses a common data structure, the
PDU DATA HEADER. The definition of the PDU DATA HEADER can be found in - - - -
Section 5.2. The network configuration table is defined as an array of
PDU_DATA_HEADERs. Using the same data type allows all tables to be processed using one
set of routines.

The PDU _DATA_HEADERs contain pointers to default, field-definition, configuration
lists. The default configuration lists are lists of data elements (PDU _ DA T A _ ENTRY) that
describe the default structure of a protocol layer. The definition of the PDU _DATA_ENTRY
can be found in Section 5.2.

PDU _ DATA_ENTRY - This is the base structure used to define each entry in the
default configuration lists. The pdlType field is used to specify if the element is a data field,
or a group reference. For group references, the fields used to define the groups contents are
placed in a new list pointed to by the children field of the group element.

PDU DATA HEADER This is the base structure used to define the default
configuration tables. The default configuration tables are arrays of PDU_DATA_HEADERs.
Each PDU_DATA_HEADER contains information about a specific protocol layer type, and
a pointer to the list of elements describing the protocol layer.

6.7.2.3 Processing

SYSTEM DESIGN DESCRIPTION
200

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.. I .. •

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

The network configuration user edit list pseudo code is listed below. The list is built,
displayed, edited and then passed to the automated test procedures.

proced ure buildN etEditList(default _Network_List)
BEGIN

END

1* Copy the default Network linked list into a structure that contains the same
information as well as widgets for screen management. * I

Allocate as much memory as the array of recognizable network headers;
FOR I := I TO # of recognizable network headers

Copy information from default list to new display list;
IF children for default Network List current element - -

Copy the network children's values to new display list;
ENDIF
Set display list's widget to NULL;

NEXT
RETURN newly created display list;

proced ure copy N etList(linked _list _ptr)
BEGIN

END

Create a new list for editing;
Set a pointer to the beginning of linked_listjJtr;
DO WHILE not at end of linked _listjJtr

Copy values from current element to temp. variable;
Set temp. variable's children pointer to NULL;
IF current element has children

Call copyNetListO with pointer to children;
ENDIF
Insert temp. variable's data in new list;
Get next element in linked_listjJtr;

ENDDO
RETURN new list for editing;

procedure net_conCdisplay(mainWindowWidget, NetworkDefaultListPtr, window label)
BEGIN

IF local Network Edit list already exists
Free local Network Edit List;

ENDIF
Set local Network Edit List to NetworkDefaultListPtr;
IF NOT created already

SYSTEM DESIGN DESCRIPTION
201

END

1ST: SCANNER

Create Network Edit window;
ENDIF
Display Network Edit window;

procedure freeNetEditList(NetLinkedList)
BEGIN

END

Set pointer to beginning of NetLinkedList;
DO WHILE NOT end of NetLinkedList

IF element has children

ENDIF

Call freeNetEditListO with pointer to children;
Free children's linked list;

Get next element in list;
ENDDO

procedure net_conf_run_cb(not used)
BEGIN

END

Create a copy of the user edit list the user just finished editing; (extractPduHeaderO)
Call the central point for running automated tests;
Free up memory reserved by copy of user edit list;

procedure extractPduHeader(Network _Display_Header _List)
BEGIN

END

Allocate as much memory as the array of recognizable network headers;
Set a pointer to the beginning of the allocated memory;
Set a pointer to the beginning of Network_Display_Header_List;
FOR I := 1 TO # of recognizable network headers

Copy just the data not widget values from Network_Display_Header_List;
IF Network_Display_Header_List has children

Copy the list of children; (extractPduListO)
ENDIF
Move pointers to next element;

NEXT

RETURN newly allocated network header list;

SYSTEM DESIGN DESCRIPTION
202

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

proced ure extractPduList(List _of_children)
BEGIN

END

Create a new list;
DO WHILE NOT end of List of children

Copy values from List_oCchiidren to temp. variable;
IF current element in List_oCchildren has children

Copy the list of children to temp. variable;
ENDIF
Insert contents of temp. variable into new list;
Get next element in List_of_children;

ENDDO
RETURN new list;

proced ure create_net _ fields(main Window Widget, N etwo rkDisplay Header List)
BEGIN

END

Create a frame widget and save within NetworkDisplayHeaderList;
Create a row/column widget using frame widget;
IF NetworkDisplayHeaderList has children

ENDIF

Get first child;
DO WHILE more children

IF child data type is DATA_ELEMENT
Create Network Field; (createNetFieldO)

ELSE IF child data type is DATA_GROUP
Create Network Group; (createNetGroupO)

Get next child;
ENDDO

Manage widgets;

procedure createNetGroup(parentWidget, NetDisplayField)
BEGIN

Create frame widget and save within parentWidget;
Create row/column widget using frame widget;
IF parentWidget has children

Get first child;
DO WHILE more children

IF child data type is DATA_ELEMENT
Create Network Field; (createNetFieldO)

ELSE IF child data type is DATA_GROUP

SYSTEM DESIGN DESCRIPTION
203

END

ENDIF

1ST: SCANNER

Create Network Group; (createNetGroupO)
Get next child;

ENDDO

Manage widgets;

procedure createNetField(parentWidget, NetDisplayField)
BEGIN

END

Create a form widget from parentWidget;
Create a label widget from form widget;
Set parameters of label widget;
Set minimax text widgets, fields, and callbacks;

SYSTEM DESIGN DESCRIPTION
204

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

--I .. •
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.7.3 PDU User Edit List - PDUCONFIG

6.7.3.1 Overview

This file contains functions for handling the PDU (Level 2) automated test screen. It
builds the configuration screen that allows the user to edit the minimax values that will be used
when performing packet validation on each matching packet within a binary file. This module
also contains functions for building and freeing PDU edit lists.

6.7.3.2 Data Structures

An array of PDU_DATA_HEADERS exists, each with a linked list of data elements
(PDU_DATA_ENTRYs) that contain the information necessary to determine the format of each
PDU. The array contains 27 elements, each representing one of the 27 DIS PDUs. The
program knows which list in the array is the correct one to pass for processing. See Section
5.2 for more detail.

PDU _ DATA _ ENTRY - This is the base structure used to define each entry in the
default configuration lists. The pdlType field is used to specify if the element is a data field,
or a group reference. For group references, the fields used to define the groups contents are
placed in a new list pointed to by the children field of the group element.

6.7.3.3 Processing

The following pseudo code shows the creation of the user's PDU edit list for specific
minimax range validation during automated tests.

procedure buildPduEditList(defaultPD UList)
BEGIN

Create a new list of PDU DISPLAY FIELDS for editing;
Set a pointer to beginning of defaultPDUList
DO WHILE NOT END OF defaultPDUList

Copy defaultPDUList element's data to temporary variable;
Set temporary variable's children pointer to NULL;
IF defaultPDUList has children

Call buildPduEditListO with pointer to children;
ENDIF
Insert copy of temporary variable into new list;
Get next element in defaultPDUList;

ENDDO
RETURN new PDU DISPLAY FIELDS list;

SYSTEM DESIGN DESCRIPTION
205

1ST: SCANNER

END

procedure pdu_conf_display(mainWidget, PDUEditList, screen label)
BEGIN

END

IF local PDU Edit list already exists
Free local PDU Edit List;

ENDIF
Set local PDU Edit List to PDUEditList;
IF NOT created already

Create PDU Edit window;
ENDIF
Display PDU Edit window;

procedure freePduEditList(pduLinkedList)
BEGIN

END

IF pduLinkedList != NULL
Set pointer to beginning of pduLinkedList;
DO WHILE NOT end of pduLinkedList

IF element has children
Call freePduEditListO with pointer to children;

ENDIF
ENDDO
Free element;

ENDIF

procedure displayPduList(screen Widget, PDU _Display _Fields_Linked _List)
BEGIN

/* Traverse recursive linked list building entries for each PDU field * /
DO WHILE NOT END OF PDU_Display_Fields_Linked_List

IF current element in list is a DATA ELEMENT
Display individual PDU field;

ELSE IF element is DATA GROUP
IF element has children

ENDIF

Create a frame widget and save in current element;
Label the widget with the group name;
Create a row/column widget for frame widget;
Call displayPduListO with row/col widget and pointer to children;
Manage all widgets;

SYSTEM DESIGN DESCRIPTION
206

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

END

ENDIF
ENDDO

1ST: SCANNER

procedure pdu_conf_run_cb(not used)
BEGIN

END
Run the automated test using the user edit list just edited;

SYSTEM DESIGN DESCRIPTION
207

1ST: SCANNER

6.7.4 Common Automated test routines - AUTOTEST

6.7.4.1 Overview

Similar functionality is used to perform both automated network and PDU tests. This
file contains the generic functions necessary to perform the actual tests. The central automated
test function, RunAutomatedTestsO is located in this file and it provides a single function to
call all automated testing. Routines for actually running the test, loading test-specific
configuration files and determining which type of test to run can also be found in this file.

Testing is broken up into four types, Transmission, Reception, Adverse, and Erroneous.
Transmission requires the SUT to create and send a specific type of packet which will be
analyzed by the Scanner to determine if the data in the packet is in the correct format and has
values between the specified minimax ranges. The other three types are all reception tests.
These tests require the testbed to generate packets and send them to the SUT to see if the SUT
properly "handles" them without crashing. The regular Reception test requires sending good
data, Adverse requires sending packets with data outside of the norm, and Erroneous requires
sending packets with completely out of range or missing data. The Scanner performs the
reception tests by searching all packets in the logged binary file not generated by the testbed.
If any packets are found that are not DIS PDUs, an error has occurred and the test fails.

6.7.4.2 Data Structures

The automated test functionality is made possible by creating a central function that can
be called for automated testing that is "smart" enough to know which specific automated test
to call. In the Scanner, this is made possible by loading addresses of each of thv. specific
automated test functions into a array. Then, using the appropriate offset, the Scan.uer Imow:'
exactly which test function to execute. The definition for this internal structure can be found
in Section 5.2.2.11 of the manual.

The functionality within this file also uses the DB_FILTER_STRUCT to allow the
program to "filter" the Indextable to locate packets that meet the criteria of the test.

6.7.4.3 Processing

Each test listed in the management configuration file (manage.cfg) has a unique
identifier associated with it. When the management configuration file is read in, the unique
identifier is passed to a function that searches a list to find that unique identifier. When it is
found, the offset of the identifier is returned and loaded into the management structure for that
test. When that test is to be run in the automated mode, the offset is used to determine which
automated test to execute from the array of pointers to automated test functions.

SYSTEM DESIGN DESCRIPTION
208

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

procedure AutomatedTestFunctionslndex(unique_id, test_suite_entry _ptr)
BEGIN

END

IF unique_id == "NONE"

ENDIF

Set test_suite_entry -IJtr automated flag to -1;
Set test_suite_entry-IJtr pdu offset to 0;
RETURN FALSE

FOR I := 1 TO # of automated tests

NEXT

IF unique_id == automated test array[I]'s unique_id
Set test_suite _entry _ptr automated flag to I;
Set test_suite_entry_ptr pdu offset to automated test array[I]'s pdu
offset;
RETURN TRUE

ENDIF

ERROR;
RETURN FALSE;

procedure RunAutomatedTest(user _edit_list)
BEGIN

END

IF performing a network test
Set local pointer to user_edit_list;
Call Network validation procedure;

ELSE IF performing a PDU test

ELSE

Set local pointer to user _edit_list;
Call POU validation procedure;

ERROR;
RETURN;

ENDIF

Display packet display window;
Display Timeline window;

procedure NetworkValidationO
procedure PDUValidationO
BEGIN

SYSTEM DESIGN DESCRIPTION
209

END

1ST: SCANNER

Call the function pointed to in the automated test array with the offset from the
management structure for the currently selected test;
IF the return value is TRUE

Assign PASSED to the test result;
ELSEIF the return value is FALSE

Assign FAILED to the test result;
ENDIF

Each automated test initializes the DB_FILTER_STRUCT with the appropriate values
to narrow the selection of packets for testing to only those packets that meet the specified
criteria for that test. For network and PDU tests, the filter is initialized to find only DIS
packets and they must not be generated by the testbed. A further qualification for PDU testing
is that the matching packets must be DIS PDUs of the appropriate type for that test. Actually,
once the filter structure is initialized, one generic function can be called to perform all
reception tests since the Scanner is only looking for "junk" within the logged binary file. A
separate function for network and PDU transmission testing is required because they are
looking for slightly different information.

The following pseudo code shows the loading of matching packets and the actual test
procedures.

procedure LoadPacketForTest(Filter, firsttimerun)
BEGIN

END

IF this is the first time to call this function

ELSE

Find FIRST packet in Indextable that meets the Filter;
IF one is FOUND

ENDIF

Load the Packet from disk;
Reset Validation flag to TRUE;
RETURN TRUE;

Find NEXT packet in Indextable that meets the Filter;
IF one is FOUND

Load the Packet from disk;
Reset Validation flag to TRUE;
RETURN TRUE;

ENDIF
ENDIF
RETURN FALSE;

SYSTEM DESIGN DESCRIPTION
210

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

procedure PDUTest_ Transmission(whichpdu)
BEGIN

END

Clear contents of filter structure;
Set filter to filter for PDU whichpdu, DIS only, and non-testbed generated;
DO WHILE TRUE

Find the "next" packet that meets the filter;
IF none where ever found

RETURN FALSE;
ELSE IF no more where found

EXIT;
ENDIF
Call packet validation with user edit list for this test;
IF failed packet validation

Write to report dialog failure message;
Set Indextable's validation flag to FALSE;

ENDIF
ENDDO
RETURN TRUE if no errors were found, otherwise return FALSE;

procedure NetworkTest_TransmissionO
BEGIN

END

Clear contents of filter structure;
Set filter to filter for DIS only, and non-testbed generated packets;
DO WHILE TRUE

Find the "next" packet that meets the filter;
IF none where ever found

RETURN FALSE;
ELSE IF no more where found

EXIT;
ENDIF
Call packet validation with user edit list for this test;
IF failed packet validation

Write to report dialog failure message;
Set Indextable's validation flag to FALSE;

ENDIF
ENDDO
RETURN TRUE if no errors were found, otherwise return FALSE;

SYSTEM DESIGN DESCRIPTION
211

1ST: SCANNER

procedure Network_PDU_Test_ReceptionO
BEGIN

END

Clear contents of filter structure;
Set filter to filter for DIS only, and non-testbed generated packets;
Find any packet that meets the filter;
IF one was found

ENDIF

Write to report dialog failure message;
Set Indextable's validation flag to FALSE;
RETURN FALSE;

RETURN TRUE;

As mentioned above, the addresses of all automated test functions are saved in an array.
That array also contains the unique identifier for that test and the address to a function for
loading the test-specific configuration file, if one is specified. The test-specific configuration
file allows the user to specify values to override the defaults on a test-by-test basis. The
function for loading the configuration file is passed the appropriate default user-edit list for that
type of test. When the configuration file is read and parsed, the values from the default user
edit list are overwritten by the matching values from the test-specific configuration file.

procedure LoadPduTestConfigFile(UserEditListPtr)
procedure LoadNetTestConfigFile(UserEditListPtr)
BEGIN

END

IF there is a configuration file load routine for this test
Call configuration file load function with UserEditListPtr;

ENDIF

SYSTEM DESIGN DESCRIPTION
212

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

1ST: SCANNER

6.7.5 Network-specific test routines - AUTONETTEST

6.7.5.1 Overview

This file contains the specific, unique network tests. For Network and PDU testing, the
requirements of testing are very similar. See Section 6.7.4 for description of the types of tests.
Because the program can use the common functions mentioned in Section 6.7.4 to perform the
actual tests, the specific network tests only need to call the common functions, passing along
the appropriate parameters.

6.7.5.2 Data Structures

The linked list structure is used to contain all items read from the test-specific
configuration file that are to be changed in the default user edit list.

6.7.5.3 Processing

The following routine highlights the concept of reading a network, test-specific
configuration file and using the contents of that file to overwrite the contents of the Network
default user edit list.

procedure ProcessNetworkTestConfigFile(defauIt_user_edit_list)
BEGIN

END

Read the appropriate test-specific configuration file and return a linked list of the
contents of the file;

LOOP through the linked list processing each element;
Fetch the group and field names from the current element;
Fetch the minimax values from the current element;
FOR I := 1 TO # of recognizable Network headers

NEXT

Try to find group name in default_user_edit_list[I];
IF FOUND

Replace minimax values with values from configuration file;
ENDIF

Get next element in linked list;
ENDLOOP
Free memory for linked list;

SYSTEM DESIGN DESCRIPTION
213

1ST: SCANNER

The format for each of the specific network configuration tests is very similar. The
functions call either the Reception or Transmission generic validation routine depending upon
the requirements of the test. The structure of the test name is made up of the 6 unique
characters associated with each test listed in the management configuration file.

procedure Test_TlllTAO
procedure Test_Tl11RAO
procedure Test_TI11AAO
procedure Test_TI11EAO
procedure Test_T112TAO
procedure Test_T112RAO
procedure Test_T112AAO
procedure Test_Tl12EAO
procedure Test_T113TAO
procedure Test_T113RAO
procedure Test_Tl13AAO
procedure Test_Tl13EAO
procedure Test_T121TAO
procedure Test_T121RAO
procedure Test_T121AAO
procedure Test T121EAO
procedure Test_T131TAO
procedure Test T131RAO
BEGIN

IF test is a TRANSMISSION test

END

Call Network Transmission test;
ELSEIF test is any kind of RECEPTION test

Call Network/PDU Reception test;
ENDIF

SYSTEM DESIGN DESCRIPTION
214

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

...
I
I 1ST: SCANNER

I 6.7.6 POU-specific test routines - AUTOPDUTEST

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6.7.6.1 Overview

This file contains the specific POU tests. For Network and POU testing, the
requirements of testing are very similar. See Section 6.7.4 for description of the types of tests.
Because the program can use the common functions mentioned in Section 6.7.4 to perform the
actual tests, the specific PDU tests only need to call the common functions and pass along the
appropriate parameters.

6.7.6.2 Data Structures

The linked list structure is used to contain all items read from the test-specific
configuration file that are to be changed in the default user edit list.

6.7.6.3 Processing

The following routine highlights the concept of reading a PDU, test-specific
configuration file and using the contents of that file to overwrite the contents of the PDU
default user edit list.

procedure ProcessPduTestConfigFile(default_user _edit_list)
BEGIN

END

Read the appropriate test-specific configuration file and return a linked list of the
contents of the file;

LOOP through the linked list processing each element;
Fetch the group and field names from the current element;
Fetch the minimax values from the current element;
Try to find group name in default_user_edit_list;
IF FOUND

Replace minimax values with values from configuration file;
ENDIF
Get next element in linked list;

END LOOP
Free memory for linked list;

The format for each of the specific PDU configuration tests is very similar. They call
either the Reception or Transmission generic validation routine depending upon the
requirements of the test. The structure of the test name is made up of the 6 unique characters

SYSTEM DESIGN DESCRIPTION
215

1ST: SCANNER

associated with each test listed in the management configuration file.

procedure Tcst_T201TAO
procedure Test_T202TAO
procedure Test_T203TAO
procedure Test_T204TAO
procedure Test_T20STAO
procedure Test_T206TAO
procedure Test_T207TAO
procedure Test_T20STAO
procedure Test_T209TAO
procedure Test_T210TAO
procedure Test_T211TAO
procedure Test_T212TAO
procedure Test_T213TAO
procedure Test_T214TAO
procedure Test_T21STAO
procedure Test_T216TAO
procedure Test_T217TAO
procedure Test_T21STAO
procedure Test_T219TAO
procedure Test_T220TAO
procedure Test_T221TAO
procedure Test_T222TAO
procedure Test_T223TAO
procedure Test_T224TAO
procedure Test_T22STAO
procedure Test_T226TAO
procedure Test_T227TAO
procedure Test_T201RAO
procedure Test_T202RAO
procedure Test_T203RAO
procedure Test_T204RAO
procedure Test_T20SRAO
procedure Test_T206RAO
procedure Test_T207RAO
procedure Test_T20SRAO
procedure Test_T209RAO
procedure Test_T210RAO
procedure Test_T211RAO
procedure Test_T212RAO

SYSTEM DESIGN DESCRIPTION
216

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

procedure Test_T213RAO
procedure Test_T214RAO
procedure Test_TIlSRAO
procedure Test_T216RAO
procedure Test_TI17RAO
procedure Test_T21SRAO
procedure Test_TI19RAO
procedure Test_TI20RAO
procedure Test_TI21RAO
procedure Test_T222RAO
procedure Test_T223RAO
procedure Test_TI24RAO
procedure Test_T22SRAO
procedure Test_T226RAO
procedure Test_T227RAO
procedure Test_T201AAO
procedure Test_T202AAO
procedure Test_T203AAO
procedure Test_T204AAO
procedure Test_T20SAAO
procedure Test_TI06AAO
procedure Test_TI07AAO
procedure Test_T20SAAO
procedure Test_T209AAO
procedure Test_TII0AAO
procedure Test_TIllAAO
procedure Test_TI12AAO
procedure Test_T213AAO
procedure Test_T214AAO
procedure Test_TIlSAAO
procedure Test_TI16AAO
procedure Test_T217AAO
procedure Test_T21SAAO
procedure Test_T219AAO
procedure Test_T220AAO
procedure Test _ T221AAO
procedure Test_T222AAO
procedure TesCT223AAO
procedure Test_TI24AAO
procedure Test_TI2SAAO
procedure Test_T226AAO

1ST: SCANNER

SYSTEM DESIGN DESCRIPTION
217

procedure Test_T227AAO
procedure Test_T201EAO
procedure Test T202EAO
procedure Test_T203EAO
procedure Test T204EAO
procedure Test_ T20SEAO
procedure Test T206EAO
procedure Test_T207EAO
procedure Test_T20SEAO
procedure Test_T209EAO
procedure Test_T210EAO
procedure Test_T211EAO
procedure Test_T212EAO
procedure Test_T213EAO
procedure Test_T214EAO
procedure Test_T21SEAO
procedure Test_T216EAO
procedure Test_T217EAO
procedure Test_T21SEAO
procedure Test_T219EAO
procedure Test_T220EAO
procedure Test_T221EAO
procedure Test_T222EAO
procedure Test_T223EAO
procedure Test_T224EAO
procedure Test_T22SEAO
procedure Test_T226EAO
procedure Test_T227EAO
BEGIN

1ST: SCANNER

IF test is a TRANSMISSION test
Call POU Transmission test;

END

ELSEIF test is any kind of RECEPTION test
Call NetworkIPOU Reception test;

ENOIF

SYSTEM DESIGN DESCRIPTION
218

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.8 Manual Testing

6.8 .1 Manual test selection - TS MAN DIALOG - -

6.8.1.1 Overview

This module is used to build the list of previously-selected tests from which the user
can choose which one will be executed. The names of all tests chosen by the user are copied
to a list. At the same time, a second list is created that contains the test group and test entry
offset from with the management structure for each test in the test selection window. This
second list is necessary in translating from the list of tests to choose from to the management
structures list of tests.

6.8.1.2 Data Structures

TEST_OFFSETS - A structure that holds the test group and test entry offsets for a
specific test in the management structure. An array of these structures is created to hold the
test group and test entry offsets for all tests that the user can choose from on the manual test
selection window. When a test is chosen, the selected test's offset into the array indicates
which specific test was actually chosen.

6.8.1.3

typedef struct
{

short tg_index;
short te jndex;

} Test_Offsets;

Processing

The following code shows how the manual test selection dialog is created and displayed.
Once the user selects a test to run, the program will open the appropriate logged binary file and
display the contents in appropriate gui-windows.

procedure ts _man _ dialolL display(main _window_widget)
BEGIN

END

Set the number of tests to choose from counter to 0;
Clear all test selection structures;
Create manual test selection dialog;
Display manual test selection dialog;

SYSTEM DESIGN DESCRIPTION
219

1ST: SCANNER

procedure ts_man_dialoJLcreate(main_window_widget)
BEGIN

END

Create a pop-up shell widget;
Create list widget and attach to shell widget;
Add "OK"I"Cancel" buttons to shell widget;
Create a list of manual tests that can be conducted.
Copy contents of list to list widget;
Delete manual test list;

procedure man _ test_list_create(startpos)
BEGIN

END

FOR i := 1 to # of test groups

NEXT

FOR j := 1 to # of test entries for test group i
IF test[ij] is NOT scheduled

LOOP
ENDIF
Copy test status (Passed/Failed, etc) to temp. string;
Concatenate test number and test description to temp. string;
Concatenate test comments to end of temp. string;
Convert temp. string to XmString;
Append XmString to manual test list;

IF have not picked a default test yet .AND.
test status of test[ij] is NI A

Assign startpos number of tests counter;
ENDIF
Increment number of tests counter;
Add test[i,j] test group, test entry offsets to TestOffset array;

NEXT

procedure man_test_list_deleteO
BEGIN

END

FOR I := 1 to number of tests counter

NEXT

IF manual test list[i] is NOT NULL
Free XmString;

ENDIF

SYSTEM DESIGN DESCRIPTION
220

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

procedure ts_man_select_cb (widget, not used, man. test selection list)
BEGIN

Fetch the selected item position in man. test selection list and store in a global variable;
END

procedure ts_man_dialog_ok_cb(not used)
BEGIN

END

IF nothing is selected in test selection window
RETURN

ENDIF

Fetch the test group and test entry offsets for the selected test using the variable set in
function ts_man_select_cbO;
Set the management structures internal pointer to the same test group/entry offsets;

Fetch the name of the binary file required for that test from the management structure;
Display the Logger dialog;

Close test selection window;
Destroy the test selection widget;

procedure ts_man_exec (name_oCbinary _file)
BEGIN

/*
** User could have changed thename_oCbinary_fiIe in the logger dialog. Just making
* * sure management structure is up to date.
*/
Copy name_oCbinary_fiIe to management structure position pointed to by selected
tests test group and entry offsets;

IF test suite has NOT had it's report log header printed
Print it;
Set internal flag in management structure to TRUE to avoid printing again;

ENDIF

Try to open appropriate logged binary file and associated configuration file;
IF able to

Display Packet Count window;
Display Packet Display window;
Display Report Results window;

SYSTEM DESIGN DESCRIPTION
221

END

1ST: SCANNER

Display Packet Filter window;
Display Timeline window;

Set cursor to watch while waiting;
Try to build Indextable;
IF able to

ELSE

Display the binary filename in Report Results dialog;
Initialize packet filter;
Update Report Results dialog;
IF no packets were found in logged binary file

Set Report Results dialog reason to "BIN file contains 0 records"
ENDIF
Update Timeline dialog;
Disable main menu widgets;

Destroy Packet Count window;
Destroy Packet Display window;
Destroy Report Results window;
Destroy Packet Filter window;
Destroy Timeline window;
Enable main menu widgets;

ENDIF
Reset cursor;

ENDIF

SYSTEM DESIGN DESCRIPTION
222

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.9 Graphical User Interface Windows

6.9.1 Packet Count - PC DIALOG

6.9.1 .1 Overview

The packet count dialog window shows the user the number of recognizable protocol
application layers found in the packets in a logged binary file. The Scanner recognizes several
different protocol application layers including, DIS PDU, SIMNET, 1ST Message, and EAGLE.
The Scanner also keeps a count of unrecognizable protocol application layers and a total count
of all values. If the application layer is a DIS PDU, the program also keeps a count of which
specific DIS PDUs were found.

As each packet is being read from the logged binary file during the creation of the
Indextable, the packet is passed to the packet identification code. The application type and DIS
PDU information are passed to a function to update the appropriate packet count widgets. Too
speed up the processing, since xWindows screen output is relatively slow, only after every 100
packets are processed is the screen actually updated with new counts. After the entire binary
file is processed, a routine is called to make the final screen update.

6.9.1.2 Data Structures

For each type of application layer from a packet that the Scanner recognizes, the
program needs to keep a count of the number of occurrences within the logged binary file. To
do this, a structure is defined to save the textual name of the application layer, a count of the
number times the application layer was found in the binary file, a widget for the xWindows
interface, and the length of the field in the xWindows display. This structure is defined in
DisplayCountField. This same structure is used for recording the number of specific DIS
PDUs that appeared within the binary file. The following is the definition of the
DisplayCountField structure:

6.9.1.3

typedef struct
{

char * label;
int width;
Widget widget;
int value;

} DisplayCountField;

Processing

SYSTEM DESIGN DESCPJPTION
223

1ST: SCANNER

The following is the pseudo code for the creation and destruction of the packet count
window:

procedure displayPacketCountWindowO
BEGIN

END

IF window does not already exist

ENDIF

Create a popup shell widget, i.e. packet count window widget;
Create a scrolled window child of the shell widget;
Create and attach the binary filename widget;
Create and attach the packet types widgets;
Create and attach the DIS packet types widgets;

Display packet count window;

procedure packet_count_destroyO
BEGIN

END

IF packet count window exists

ENDIF

Destroy packet count window widget;
Reset all packet type widgets to NULL and counts to 0;
Reset all DIS packet type widgets to NULL and counts to 0;

The pseudo code below shows the routines for updating the contents of the packet count
window:

procedure updatePacketCounts(Application, DISpdu)
BEGIN

IF Application is recognizable

ENDIF

Increment counter for that type of application;
Increment TOTAL counter;
IF another 100 packets have been processed

Convert the counter values and store them in the associated widgets;
ENDIF

IF Application is DIS
Increment counter for that type of DIS application;
IF another 100 DIS packets have been processed

Convert the counter values and store them in the associated widgets;
ENDIF

SYSTEM DESIGN DESCRIPTION
224

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

----------.. ..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

ENDIF
END

procedure finalUpdatePacketCountsO
BEGIN

END

For all application types
Convert the counter values and store them in the associated widgets;

For all DIS application types

Convert the counter values and store them in the associated widgets;

SYSTEM DESIGN DESCRIPTION
225

1ST: SCANNER

6.9.2 Packet Display - PKT DISP

6.9.2.1 Overview

The Packet Display code creates a text widget and displays the contents of the widget
in a scrollable window. The screen displays the entire contents of the packet, broken down
into the different protocol layers. See Section 6.1.4 - PDU Display Routines for a detailed
description of how and what text is written to the screen.

A text string is allocated to hold all of the text to display in the text window. The text
string is initially set to NULL. Then each text string describing more of the contents of the
packet is concatenated to the end of the string. Finally, the entire string is copied to the Packet
Display widget, thereby, having it appear on the screen. Having each text string concatenated
to one master string as opposed to having each text string copied into the widget was done to
speed up the update time of the xWindows interface.

6.9.2.2 Data Structures

A large, static text string is used to hold the text to be displayed within the window.

6.9.2.3 Processing

The following functions represent in pseudo code the creation and destruction routines
for the Packet Display window.

procedm'e PktDisp Winlnit(main WindowWidget)
BEGIN

END

Set the local flag to indicate the window is open;
Set the cursor ~osition flag to 0;
IF Packet Display widget does not exist

Create a top level shell for the text window;
Create a scrollable text window widget;
Add a callback to update current cursor position;
Allow window manager to manage and display the text window;

ENDIF
Display text window;

procedure PktDisp WinCloseO
BEGIN

IF Packet Display window is active

SYSTEM DESIGN DESCRIPTION
226

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ENDIF
END

1ST: SCANNER

Destroy window;
Set local flag to indicate the window is open to FALSE;
Set all widgets to NULL;

The following functions show how the text string displayed In the packet display
window is created and displayed.

procedure PktDisplnitMsgO
BEGIN

Set internal message string to NULL;
END

procedure PktDispBuildTextMsg(text_to_add)
BEGIN

END

IF text_to_add plus current length of internal message string is not too long
Concatenate text_to_add to internal message string;

ENDIF

proced ure PktDisp WriteMsgO
BEGIN

END

IF packet display window is active
Set packet display window widget ,with the internal message string;
Reset the text window to the previous text windows position;

ENDIF

SYSTEM DESIGN DESCRIPTION
227

1ST: SCANNER

6.9.3 Timeline - TL DIALOG

6.9.3.1 Overview

The Timeline shows the user a list of packets that can be selected and then have the
contents of that packet appear in the Packet Display window. The contents of the Timeline
is driven by different sources depending upon the type of testing being conducted. If the test
being run is a manual test, the items selected in the Packet Filter window drive what packets
will appear in the Timeline. If the test is an automated test, the attributes of the specific test
being run are set in a DB_FILTER_STRUCT, and those values drive which packets will appear
in the Timeline. Very similar in functionality, however, in manual tests, the user has the
ability to change the filter criteria~ in the automated tests the user does not. The contents of
the Timeline can be furthered narrowed by entering information into the query filter dialog.

. 6.9.3.2 Data Structures

A list of values is created for every packet the meets the criteria specified. The values
are actually Motif XmString structures. An array of XmStrings is allocated during the creation
of the creation of the Timeline and the array contents are added to the xWindows scroll widget
used for the Timeline.

6.9.3.3 Processing

The creation and destruction of the Timeline widget (window) is described in the
pseudo-code below:

procedure tl_ dialolL display(main WindowWidget)
BEGIN

END

IF Timeline widget does NOT exist
Create Timeline widget

ENDIF
Display Timeline widget (window)

procedure tl_dialolLcreate(mainWindowWidget)
BEGIN

Create popup shell widget for Timeline;
Create pane for dialog~
Create each row for dialog~
Attach a label to the dialog;
Create the Timeline display window;

SYSTEM DESIGN DESCRIPTION
228

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.. -
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

END

1ST: SCANNER

Attach button bar button widgets;
Attach help line widget;
Manage widgets;
RETURN popup shell widget;

procedure t1_time_line_displayO
BEGIN

END

Build an array of the packets that should be displayed in the Timeline;
IF Timeline list widget exists

ENDIF

Delete all items in the Timeline list widget;
Add to the Timeline list widget the contents of the array;
Select the first item in the list;

Delete the contents of the array;

procedure buiId_time_lineO
BEGIN

END

Set counters;
Allocate array of XmStrings;
IF manual test

Get the manual test filter structure;
ELSEIF automated test

Get the automated test filter structure;
ENDIF
Get the query filter structure;

FOR I := 1 TO # of packets in binary file
IF packet[l] passes test filter

NEXT

IF packet[l] passes query filter

ENDIF
ENDIF

Build the contents of string to be displayed in the Timelinc;
Convert string to XmString and add to XmString array;
Increment counter of array elements;

procedure tI_list_deleteO
BEGIN

SYSTEM DESIGN DESCRIPTION
229

END

1ST: SCANNER

IF list of XmStrings to appear in Timeline is not EMPTY
FOR I := I TO # of elements in XmString array

Free each element's XmString;
NEXT
Free pointer to array of XmStrings;

ENDIF

procedure tl_dialolLdestroyO
BEGIN

END

IF Timeline widget exists
Destroy widget;
Reset all flags;
Free memory of local variables;

ENDIF

The following are the callback routines executed when the user selects a specific entry
in the Timeline or one of the buttons below the Timeline window:

procedure tl_list_select_cb(not used, not used, pointer to line selected in Timeline)
BEGIN

END

Get actual text for selected line in Timeline window;
Get the packet number for the selected line;
Load packet from disk;
Update the Timeline's text window;
IF running an automated test

Fetch the network test's user edit list;
Fetch the PDU test's user edit list;

ENDIF
Freshen Packet Display window;
IF running automated test

Free locally defined network header pointer;
ENDIF

procedure tl_query_cb(not used)
BEGIN

IF Query window is not already open
Set Query-window-open flag to TRUE;
Open Query window;

SYSTEM DESIGN DESCRIPTION
230

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

END

1ST: SCANNER

Initialize Query window contents;
ENDIF

procedure t1_c1ear_cb(not used)
BEGIN

END

Set Query-window-open flag to FALSE;
Destroy Query window;
Call Packet Filter callback routine to freshen Timeline window;

SYSTEM DESIGN DESCRIPTION
231

1ST: SCANNER

6.9.4 Packet Filter - PF DIALOG

6.9.4.1 Overview

The Packet Filter dialog window only appears during manual testing. During automated
testing the underlying DB _FILTER _ STRUCT is automatically filled in with the appropriate
values in the specitic automated test function. For manual testing, however, the user can
change any of the criteria they want to filter the packets. All packets that passedthe filter
appear in the Timeline window.

6.9.4.2 Data Structures

The DB_FIL TER_STRUCT structure is integral to the Packet Filter dialog. After the
user selects the appropriate criteria in the Packet Filter window for manual testing, those
choices are translated and summarized in one place, a DB_FILTER_STRUCT structure. See
Section 5.2.2.10 for a detailed description of the DB_FILTER_STRUCT.

6.9.4.3 Processing

The following pseudo code shows how the Packet Filter window is created:

procedure pC dialog_ display(main WindowWidget)
BEGIN

END

IF packet filter widget does NOT exist
Create the widget (window)~
Initialize the widget with default values;

ENDIF
Display packet filter widget (window);

procedure pC dialo~ create(main WindowWidget)
BEGIN

END

Create popup shell widget for packet filter;
Create pane for dialog;
Create pdu types, source id, entity types, and packet info. panes (widgets) and attach
to popup shell widget~
Create the buttons;
Create the packet filter window;
Manage widgets;
RETURN popup shell widget;

SYSTEM DESIGN DESCRIPTION
232

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

procedure pCinitialize _ displayO
BEGIN

END

Build the source ID list for displaying in window;
Build the entity type list for displaying in window;
Set toggle widgets to appropriate default settings;
Apply the contents of filter window and show results in Timeline window;

procedure pf_Build_Src_Id_ListO
BEGIN

END

IF source ID list widget does not exist
RETURN

ENDIF

Delete contents of source ID list widget;
FOR I := 1 TO # of packets

NEXT

IF packet[l] is DIS packet
Check to see if packet[I]'s Source ID is in list widget already;
IF NOT

ENDIF
ENDIF

Convert packet[l]' s Source ID to XmString;
Add XmString to source ID list widget;
Free XmString;

procedure pf _Build_Entity _Type _ ListO
BEGIN

IF entity type list widget does not exist
RETURN

ENDIF

Delete contents of entity type list widget;
FOR I := 1 TO # of packets

IF packet[l] is Entity State PDU packet
IF packet[l]'s entity type is in Scanner's Entity Type list

Fetch the textual description of entity type;
ENDIF
Check to see if packet[l] , s Entity Type is in list widget already;
IF NOT

SYSTEM DESIGN DESCRIPTION
233

NEXT
END

ENDIF
ENDIF

1ST: SCANNER

Convert entity type information to XmString;
Add XmString to entity type list widget;
Free XmString;

The following is the callback routine called when the user wants to apply the contents
of the packet filter window as a filter and show the results in the Timeline window:

procedure pC dialog_apply _ cb(not used)
BEGIN

END

Clear the local manual filter structure;
Set the default filter criteria;
Select all pdu types in manual filter that are selected in packet filter window;
Convert start/end times from screen values to filterable values;
Copy values from filter window and set flags within manual filter;
Fetch all selected entity types and source entity IDs from scroll list and add them to
manual filter;
Freshen Timeline display using new filter values;

SYSTEM DESIGN DESCRIPTION
234

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.9.5 Report Results - RP _DIALOG

6.9.5.1 Overview

The Report Results window provides the user a means of entering comments and test
status information about the current test being processed and having those values saved within
the management structure so that the can be printed on a summary report at a later date. This
window is a controlling point for both automated and manual testing. The only way to return
to the main menu after starting a test is to choose either the "Quit" or "Next" buttons on this
window. Those two buttons control the resetting of the main menu as well as the destruction
of the currently opened windows.

6.9.5 .2 Data Structures

There is a structure defined to contain all "fields" that can be filled in on the screen.
The structure contains the name of the field, the displayable length of the field, the total length
of the field, a widget, and the string that contains the value input into the "field".

6.9.5.3 Processing

procedure rp _ dialog_ display(main WindowWidget)
BEGIN

END

IF report dialog widget does NOT exist
Create the widget (window);
Initialize the widget with default values;

ENDIF
Display report dialog widget (window);

procedure rp _ dialo~ create(main WindowWidget)
BEGIN

END

Create popup shell widget for packet filter;
Create pane for dialog;
Create and attach each of the "fields" to the pane;
Create and attach the buttons;
Manage widgets;
RETURN popup shell widget;

procedure UpdateRpDialogO

SYSTEM DESIGN DESCRIPTION
235

BEGIN

END

1ST: SCANNER

Copy information from the management structure to the "fields" in the report dialog
window;
Write the Report Log test header;

After the completion of an automated test, the program determines if the binary file
being tested passed the criteria of the test or not. The functions called to assign the resulting
test status and reasons for failure are listed below:

procedure AssignTestStatus(test_status)
BEGIN

END

Assign test_status to widget for result field on report dialog window;
Copy the string value in test_status to the local test status string variable;

procedure AppendReportReasons(new _reason_str)
BEGIN

END

Fetch the string from the reason widget;
IF the length of that string + length of new _reason_str < max. string length

Concatenate the two strings.
Put resultant string back into widget;

ENDIF

There are several callback routines that are called either upon exiting a field or when
the user has selected either the "Quit" or "Next" buttons.

proced ure rp _result _ exit_ cb(results_field_widget, field_structure)
BEGIN

END

Fetch the field_structure data;
Fetch the text from the results_field_widget;
Make sure the result (PASSED, FAILED, ...) is completely spelled out in the text;
Replace the text back into the results_field_widget;
Copy the text into the results text string;
Free text;

procedure rp_dialoJLnext_cbO
BEGIN

Update management structure with information in Report dialog window;

SYSTEM DESIGN DESCRIPTION
236

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

END

1ST: SCANNER

Write the results to the report log;
Destroy all open windows except main menu;
Close binary and test-specific configuration files;
Write the management structure to disk;
IF manual test mode

Call manual test selection dialog function;
ELSEIF automated test mode

Call automated test selection dialog function;
ENDIF

procedure rp_dialog_quit_cbO
BEGIN

END

Update management structure with information in Report dialog window;
Write the results to the report log;
Clear flag remembering last binary file processed;
Destroy all open windows except main menu;
Close binary and test-specific configuration files;
Write the management structure to disk;
Enable the main menu choices;

procedure UpdateManagementFromRpDialogO
BEGIN

END

Convert and copy all pertinent information from the report dialog window to the
management structure for the appropriate test;

SYSTEM DESIGN DESCRIPTION
237

1ST: SCANNER

6.9.6 Query Filter - QRY_DIALOG

6.9.6.1 Overview

The Query Filter window is almost exactly the same as the Packet Filter window. The
purpose of this window is to allow the user to further narrow the selected set of packets
without having to change the baseline filter, set in the Packet Filter window. The only
substantial difference between the two is that the Query window will only allow the user to
choose from a subset of items that were selected in the Packet Filter window.

This window can only be selected from the Timeline window by selecting the "Query"
button on that window. A window very similar to the Packet Filter window will appear with
only the Packet-Filter-selected items selectable. To exit the Query window, the user needs to
choose the "Clear Query" button on the Timeline.

6.9.6.2 Data Structures

The DB_F1LTER_STRUCT structure is integral to the Query Filter dialog. After the
user selects the appropriate criteria in the Query Filter window, those choices are translated and
summarized in one place, a DB_FILTER_STRUCT structure. See Section 5.2.2.10 for a
detailed description of the DB_FILTER_STRUCT.

6.9.6.3 Processing

The following pseudo code shows how the Query Filter window is created:

procedure qry _ diaJog_dispJay(main WindowWidget)
BEGIN

END

IF query filter widget does NOT exist
Create the widget (window);
Initialize the widget with default values;

ENDIF
Display query filter widget (window);

procedure qry_diaJog_create(mainWindowWidget)
BEGIN

Create popup shell widget for query filter;
Create pane for dialog;
Create pdu types, source id, entity types, and packet info. panes (widgets) and attach
to popup shell widget;

SYSTEM DESIGN DESCRIPTION
238

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

END

1ST: SCANNER

Create the buttons;
Create the query filter window;
Manage widgets;
RETURN popup shell widget;

procedure qry _initialize_displayO
BEGIN

END

Build the source ID list for displaying in window;
Build the entity type list for displaying in window;
Set toggle widgets to appropriate default settings;
Apply the contents of filter window and show results in Timeline window;

procedure qry_Build_Src_Id_ListO
BEGIN

END

IF source ID list widget does not exist
RETURN

ENDIF

Delete contents of source ID list widget;
FOR I := 1 TO # of packets

NEXT

IF packet[l] is DIS packet
IF source ID selected in Packet Filter

Check to see if packet[l]' s Source ID is in list widget already;
IF NOT

ENDIF
ENDIF

ENDIF

Convert packet[l]'s Source ID to XmString;
Add XmString to source ID list widget;
Free XmString;

procedure qry_Build_Entity_Type_ListO
BEGIN

IF entity type list widget does not exist
RETURN

ENDIF

SYSTEM DESIGN DESCRIPTION
239

END

1ST: SCANNER

Delete contents of entity type list widget;
FOR I := I TO # of packets

NEXT

IF packet[l] is Entity State PDU packet
IF packet[l]'s entity type is in Scanner's Entity Type list

Fetch the textual description of entity type;
ENDIF
IF entity type is selected in packet filter window

Check to see if packet[l]'s Entity Type is in list widget already;
IF NOT

ENDIF
ENDIF

ENDIF

Convert entity type information to XmString;
Add XmString to entity type list widget;
Free XmString;

This procedure is called when the user presses the "Clear Query" button on the Timeline
window:

procedure ClearQueryFilterO
BEGIN

END

Set query filter to NULL;
Destroy the Query Filter window;

The following is the callback routine called when the user wants to apply the contents
of the query filter window as a filter and show the results in the Timeline window:

procedure qry_dialog_apply_cb(not used)
BEGIN

END

Clear the local query filter structure;
Set the default filter criteria;
Select all pdu types in query filter that are selected in query filter window;
Convert start/end times from screen values to filterable values;
Copy values from filter window and set flags within query filter;
Fetch all selected entity types and source entity IDs from scroll list and add them to
query filter;
Freshen Timeline display using new filter values;

SYSTEM DESIGN DESCRIPTION
240

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.10 Logger

6.10.1 Interfacing with the 1ST Logger - LOG_DIALOG

6.10.1.1 Overview

To facilitate the scanning process, the Scanner was designed to interface directly with
1ST's Logger. This is done through a FIFO or pipe. A pipe is actually a file that is opened
by both programs and is used as a conduit to send information from one program to another.
The Scanner opens the pipe as a write-only file and the Logger opens the file as a read-only
file. 1ST's Logger must open the pipe first before the Scanner can attach to the pipe. This is
done to assure that there is a complete connection between the two programs.

Once the pipe is established, the Scanner can send messages from the Logger Dialog
window to the Logger. The Logger is set in a loop reading information from the pipe and then
acting upon the information. The Scanner sends specific messages based upon the buttons
pressed on the dialog window. If the use presses the "RECORD" button, a message is passed
to the Logger to begin logging data and saving it into the file specified in the Logger dialog's
filename window. The Logger will continue logging until the "STOP" button is pressed.

6.10.1.2 Data Structures

A file pointer is maintained to allow access to the pipe.

6.10.1.3 Processing

The following pseudo code shows the routines to build the logger dialog:

procedure logger _ dialo~ display(main WindowWidget, testname, FuncToCallOnExit)
BEGIN

END

Create logger dialog window;
Display logger dialog window;

procedure logger _dialo~ create(main WindowWidget, testname, FuncToCallOnExit)
BEGIN

Create the application shell widget;
Create the pane;
Create a single text field widget for test name;
Create and add the buttons;
Manage widgets;

SYSTEM DESIGN DESCRIPTION
241

1ST: SCANNER

END

The following are the callbacks for the binary file text widget and the buttons:

procedure log_file_cb(text_widget, not used)
BEGIN

END

Fetch binary filename from text_widget;
IF EMPTY(binary filename)

ELSE

Set temp. variable to "default. bin";
Set text_widget to "defauILbin";

Copy binary filename to temp. variable
ENDIF
IF temp. variable is an invalid filename

ERROR;
RETURN;

ENDIF

Copy the temp. variable back into the management structure binary filename for the
current test;

IF that temp. variable filename already exists
Set "OK" button to TRUE;

ENDIF

procedure logger_ok _ cb(button _widget, pointer_to _func _to_call, not used)
BEGIN

END

IF pointer_to_func_to_call NOT NULL
Call function pointed to by pointer_to_func_to_call;

ENDIF
Destroy logger dialog;

procedure logger_stop_cb(not used)
BEGIN

END

Write to pipe "STOP\n";
Set sensitivity of STOP button to FALSE;
Set sensitivity of OK button to TRUE if binary file exists;
Set sensitivity of RECORD button to TRUE;

SYSTEM DESIGN DESCRIPTION
242

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

procedure logger_record _ cb(not used)
BEGIN

END

Write to pipe "RECORD" + binary filename + "\n";
Set sensitivity of STOP button to TRUE;
Set sensitivity of OK button to FALSE;
Set sensitivity of RECORD button to FALSE;
Reset flag remembering last binary file tested;

The next two routines represent the code necessary to communicate between the
Scanner and the 1ST Logger via the pipe:

procedure logger_open(fiIename)
BEGIN

END

IF EMPTY(filename)
RETURN;

ENDIF
IF ! FileExists(filename)

RETURN
ENDIF

Open a pipe for write only access;
IF pipe has NOT been previously opened in read only access from the Logger

RETURN;
ENDIF

Change the pointer to the pipe to a stream pointer so that the stream can be flushed
after a write;

procedure logger_write(strin~to_write)
BEGIN

END

IF pipe is open

ELSE

Write string to pipe;
Flush pipe;

Print string to screen;
ENDIF

SYSTEM DESIGN DESCRIPTION
243

1ST: SCANNER

6.11 Reports

6.11.1 Status - RPTST A TUS

6.11.1.1 Overview

The Status report includes a one line summation of the intormation about each
scheduled test. As mentioned in Section 5, the Scanner creates all reports as a text tile. The
files are created in the management structures directory in order to keep everything together.

6.11.1.2 Data Structures

The management structure is used as the source for the information that is printed on
the report.

6.11.1.3 Processing

procedure ReportStatusSummaryO
BEGIN

END

Create a report text file in the management structure directory;
Write the testbed information to the file;
Write the company information to the file;
Write the SUT information to the file;
FOR I := 1 TO # of tests groups

NEXT

Write header for group to file;
FOR J := 1 TO # of test entries

IF test[I,J] is scheduled

NEXT

Write test number, description, type, and status to the file;
ENDIF

Close the report file;

SYSTEM DESIGN DESCRIPTION
244

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

6.11.2 Results - RPTRESUL TS

6.11.2.1 Overview

The Results report includes all of the information about each scheduled test. As
mentioned in Section 5, the Scanner creates all reports as a text file. The files are created in
the management structures directory in order to keep everything together.

6.11.2.2 Data Structures

The management structure is used as the source for the information that is printed on
the report.

6.11.2.3 Processing

procedure ReportResultsSummaryO
BEGIN

END

Create a report text file in the management structure directory;
Write the testbed information to the file;
Write the company information to the file;
Write the SUT information to the file;
FOR I := 1 TO # of tests groups

NEXT

Write header for group to file;
FOR J := 1 TO # of test entries

IF test[I,J] is scheduled

ENDIF
NEXT

Write test number, description, type, and status to the file;
Write # of times run, binary filename, test-specific configuration
filename, reason field, and comments to file;

Close the report file;

SYSTEM DESIGN DESCRIPTION

245

1ST: SCANNER

6.11.3 Report Log - RPTLOGGER

6.11.3.1 Overview

The report log is a text file stored in the same directory as the management structure.
The file is a record of each test that was run within that management structure. A summary
of the tester, test name, times run is written for each test that is run. Also, if any errors occur
during initial validation or specific validation, an error message is written to the log, listing the
packet number in question, the specific field, it's value, and the minimax validation values.

As each test is run, information about each test is appended to the end of this file. The
report log could grow to a very large size if many errors occur during testing and a large
number of tests are run. The Scanner was designed in such a way that if that file does not
exist, the program will automatically create it. Therefore, if the file gets too large, it can be
erased and the Scanner will still function properly.

6.11.3 .2 Data Structures

The management structure is used as the source for the information that is written to
the report log.

6.11.3.3 Processing

procedure ReportLogOpen(fiIename)
BEGIN

Open filename as a text file in read/write append mode;
END

procedure ReportLogTestHeader(testGroup, testEntry)
BEGIN

END

IF report log is open
Write testbed and test information to the report log for the current test;

ENDIF

procedure ReportLogResults(testGroup, testEntry)
BEGIN

END

IF report log is open
Write test result, reason and comments to the report log;

ENDIF

SYSTEM DESIGN DESCRIPTION
246

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

--------.....................
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1ST: SCANNER

7 APPENDIX A

7.1 Scanner Development Environment

Described below are the environment variables that need to be set up for the Scanner
development environment to work correctly. These are normally placed in the file, .profile

Allow the developer and the Scanner to create files that are
accessible by everyone in the development team.

umask 002

Define the base directory for the Scanner development
environment. The Makefiles use this environment variable
to locate files.

SCANDIR=/usr/tridislproj/scanner

7.2 Scanner Runtime Environment

Defined below are the environment variables that need to be set up for the Scanner
runtime environment to work com~ct1y. These are normally placed in the file, .profile

Allow the Scanner to create files that are
accessible by everyone in the test team.

umask 002

Define the Scanner runtime configuration directory.
If the config files are not in the current directory, the
Scanner will look in this directory for the configuration files.

SCANPROJDIR=/usr/tridis/proj/scanner/config

SYSTEM DESIGN DESCRIPTION

247

1ST: SCANNER

8 APPENDIX B

8.1 Hardware Requirements

The Scanner requires a Unix System based on a big endian architecture, and running
X Windows Version Xl IRS, Motif Version 1.2, and System V. The X Window and Motif
versions are minimum versions. The Scanner should not have a problem with later versions
of X Windows or Motif. Currently, hardware based on the little endian architecture is not
supported. The Scanner could be modified to run on both environments with a minimal set
of changes. The Motorola system that the Scanner has been running on, has 64 megabytes of
system ram. The Scanner does not require this much memory. We have not officially tested
for the minimal memory requirements. The variable part of the equation is the size of the
binary file you wish to support without having to page swap. Keep in mind that X Windows
consumes a large chunk of memory while running.

The current development environment for the Scanner requires approximately 50
megabytes of disk space. This includes all source and object files, configuration files, libraries,
logged binary files for testing purposes, two management directories for testing purposes, the
Scanner executable, and a few tar files holding the last few versions of the Scanner source
code.

The current runtime environment is based on the number of test suites supported. The
Scanner and it's configuration files are under 8 megabytes in size. The actual size depends on
whether or not the Scanner is built with the debug options turned off. The Scanner currently
has all debug options turned on. Each test suite requires it's own directory. The test suite
directory contains a 2 megabyte management structure, report logs, and binary log files. The
number of test suites supported is based on available disk space.

A Silicon Graphics version has been built and tested. The code is exactly the same as
the Motorola's version except that a "SGI_ VERSION" #define is passed to the compiler to
handle a difference in include file declarations between the two environments.

SYSTEM DESIGN DESCRIPTION
248

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

APPENDIX B

I Scanner Users' Manual

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Scanner Management System

Institute for Simulation and Training
3280 Progress Drive
Orlando, Florida 32826

University of Central Florida
Division of Sponsored Research

Users' Manual

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 In trod uction

This Users' Manual shows how to use the Scanner Management System to aid in the testing of systems
that plan on participating in a Distributed Interactive Simulation (DIS). The Scanner is a utility program designed
to aid in testing the interoperability requirements of systems that will be participating in a Distributed Interactive
Simulation. The Scanner creates a test suite (or data base) for each System Under Test (SUT) being tested. This
provides the user a place to electronically store the results of each and every test as opposed to having to record
all test results on paper. The test suite is saved in its own, unique directory where all files associated with the
test suite will also be kept.

For each test, the Scanner reads a binary (BIN) file logged using the Institute for Simulation and
Training's (1ST) Logger and perfonns an initial range validation on all of the fields within each DIS packet in
the file looking for packets within the BIN file that contain erroneous data. The Scanner has two different test
modes, Manual and Automated. The Manual mode allows the user to look at any packets in the BIN file based
on filter criteria they specify. The user after looking at the desired packets then fills in a report results window
with the results they feel are appropriate. In the Automated mode, the program runs the testing and evaluating
of the appropriate packets in a BIN file and automatically fills in the report results windows with the correct
results. Currently, only a subset of the possible tests to choose from can be run in the Automated mode.

After each test is run and the report results window is correctly filled in, the program will save all of the
results within the test suite. Also, all infonnation encountered during the running of the test, to include errors
found in a packet, are written to a report log. The report log can be considered a diary of each test that was run
and what happened during the running of the test. At any time, the user can generate either of the two report
fonnats supported by the Scanner. The Status and Summary reports, in different levels of specificity, list each
test that was selected to be run and the results of each.

2 Scanner Menu Options

From the main menu bar the user can access the features of the Scanner Management System. There are
four options available on the main menu bar: File. Edit. Testing. and Report. Each of these features is described
in the sections below.

[elp .

Figure 1 - Scanner Main Menu

2.1 The File Option

The File option allows the user to perform various storage/retrieval functions on Scanner test suites. A
test suite or data base is a structured file that contains all of the information about the System under Test (SUT),
to include, which tests to run and the results of those tests. The test suite can be found in a directory below the
current directory with a .mgt extension. The report log, with a ".log" extension, can also be found in that
directory. The binary logged files should also be logged to this directory.

The File functions are:

New:
This option permits the user to create a new test suite. Information about the Testbed, Company, and
System Under Test (SUT) is entered here.

Upon selecting the New option, the user will be prompted to input a 3-character company abbreviation
and a I-character SUT number.

NOTE: The Scanner will concatenate the company abbreviation and the SUT number to form a unique
name. A subdirectory with that name will be created below the directory where the user is working.
All files created by the Scanner to build a test suite will be stored in that directory. By default, the
Scanner creates both a test suite management file and a report log file using the unique name. Do not
rename any of these files or the subdirectory, otherwise, the Scanner will not work properly!

Also, this directory is where the Scanner will default to looking for all logged binary files when testing
commences. The user should either make sure all BIN files are in the test suite directory or change the
data directory value in the testbed section to the correct default directory.

Figure 2 - New Test Suite Dialog

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

]~~:r--"--~-----'------------'---

T.atbod '", tl ...

~========
hoW 1!<ANln Ke«-ml

T ln Database 1~.ln database

,p AddreIa 11/.32.170.191.140

ca: V_Ion 1)1111' 7.5.12

~ '",onNtlan

Adcl-ees 1

Address 2

EHaIl

sur r"""".u ...

Ilnsutute for 51 .. 1.

13280,.... Drlwi

Ilk-Iondo. Fl. 32821{

II

Date ~ 1
Date Director'll Il'usr/trl d I oIproJ/sc. I

...... ,-I~

~1.Uon jiST ~
Point of Ccnteet I..., Vanzant.-IIodgol I
Phone I (407) 65IHOO({ I

::.._~"':::-I
V ... lon F::==--===-PI~i~
IP~

~ --
Figure 3 - Scanner SUT-Testbed-Company Info

Once the test suite is created, the user will need to enter information on the following:

Testbed Information

Tester:
Date:
Terrain Database:
Data Directory:

IP Address:

Ethernet Address:
CGF Version:

Name of the user running the test.
The date the test suite was created_
The name of the terrain database being used_
The directory where the binary logged files can be found. (The default is the
directory created by the Scanner that holds the test suite management file.
however, there is no requirement to keep the binary data files in this
directory.)
The IP address of the testbed. The proper format for this field is
###.###.###.###. (Very important that this field is properly filled in because
the Scanner uses this field to determine which packets were generated by the
Testbed and which packets were generated by the SUT)
The ethemet address of the company performing the test.
The version of the CGF being used for the test.

Company Information

Name:
Ab breviation:

Address 1:
Address 2:
Point of Contact:

Name of the company who designed the SUT.
3-character abbreviation of company name (inserted automatically from
previously entered information). (NOTE: If the user changes this field or the
SUT number field, the program will try to reference the directory created by
concatenating the company name and SUT number when creating reports.)
Street address of company.
City, State, Zip Code of company.
Person to contact at the company regarding testing information.

3

E-Mail:
Phone:

E-mail address.
Phone number.

SUT Information

Name:
Number:
IP Address:
Ethernet Address:
Version:
Platform:

Name of the simulator being tested.
Number associated with the SUT.
IP address of the SUT.
Ethernet address of the SUT.
Internal company version number of the SUT.
Platform the SUT runs under.

Open:
This option permits the user to open a previously created test suite. To select a test suite left-click on
the suite name and then left-click on the "OK" button. (Note. if the user has a test suite open and
happens to choose this option again. he will notice that the file selection window will not show the open
test suite in the list.)

Figure 4 - Test Suite Selection Dialog

Close:
This option closes the currently open test suite saving any changes made to the test suite.

Save:
This option saves the current test suite.

Delete:

Quit:

This option deletes a test suite and all related data files. The user is presented with a list of all unopened
test suites. After selecting the test suite to delete, this option will physically remove ALL data stored
in the directory where the test suite is saved. It will also remove the directory. Note that the user can
not delete a currently opened test suite.

NOTE: The user may want to back-up all of the data before executing this option. Once a test
suite is deleted, it cannot be recovered!

This option exits the Scanner Management System and returns the user to the operating system. The
system will automatically save any changes before exiting.

4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.2 The Edit Option

The Edit option allows the user to configure the Scanner Management System for specific testing
purposes. Clicking on the Edit option will pull down a menu with several areas to choose from including editing
System Configuration or any of the mUltiple levels of tests.

The System Configuration option allows the user to change the names of the configuration files that
the Scanner uses. The Scanner loads the default configuration files at startup. If the user wants to use different
configuration files or ports, go to this screen and change the desired values and the new values will be
automatically loaded each time the test suite is opened.

Port. Nu!llber

Network Configlratton

PDU Conftglratton

1~t.dV2D3·net.work.cf9

I Ist.dY2D3.pdu,cfg

.Enttty Types Conftglratton 1~t.dY2D3.enttt.y_t.ypeS

EruleraUons Conflg1ratton I ~t.dY2D3.eruMraUon.

Ok

IJ~JJ ,

. II
Figure 5 - System Configuration Window

The following is a list of all of the different levels of tests defined in the Institute for Simulation and
Training's Technical Report, Test Documents for DIS Interoperability. See that document for specific definitions
of what the criteria is for each of these tests. The tests include Network, PDU, Terrain Orientation, Appearance,
Interactivity, System Test, Manned Simulator, Protocol Translator, and Capabilities tests.

To the right of the test name is the name for the BIN file associated with that particular test. The default
name for the test is displayed but the user may change this. The default name is made up of the 3-character
company name and the I-character SUT number as well as the letter t,r,a, or e followed by a 3-character unique
test number. The letters t,r,a, or e reflect Transmission, Reception, Adverse, or Erroneous tests, respectively.

After the BIN file name is a field to enter a specific configuration file for that test. Most tests use the
default configuration values for the acceptable ranges for each field in a packet, however, some tests need to have
more specific values than the defaults. This field allows the user to specify the name of a properly formatted
configuration file to that has values to override the defaults. The format of this file is very similar to PDU or
NETWORK configuration files, in that the user specifies the group name, field name and MINIMAX values for
the field. The following is an example of a Network Test-specific Configuration File:

5

#Group Field MIN MAX

"ETHERNET" "DESTINA TION _ ADDRESS[O]" "255" "255"
"ETHERNET" "DESTINA TION _ ADDRESS[I]" "255" "255"
"ETHERNET" "DESTINATION _ADDRESS[2]" "255" "255"
"ETHERNET" "DESTINATION _ ADDRESS[3]" "255" "255"
"ETHERNET" "DESTINA TION _ ADDRESS[4]" "255" "255"
"ETHERNET" "DESTrNATION _ADDRESS[5]" "255" "255"

"IP" "DESTINATION_ ADDRESS[O]" "164" "164"
"IP" "DESTINA TION _ ADDRESS[I]" "217" "217"
"IP" "DESTINATION _ ADDRESS[2]" "255" "255"
"IP" "DESTINATION_ADDRESS[3]" "255" "255"

"ETHERNET" "ETHER TYPE" "0800" "0800"

"IP" "PROTOCOL" "17" "17"

"UDP" "DESTINATION PORT" "6994" "6994"

NOTE: Each Group, Field combination must be entered in the EXACT format that they exist in the
NETWORK.CFG file. Also, the MINIMAX values must be entered in this file in the same data format
as they are to be read from a packet, i.e., if a field is to be read as if it were in hexadecimal format, then
it must be entered as "0800" not '2048" to be properly parsed.

To the left of the test name is a box (button). ff the button is pushed in, the test is selected. Left-click
on the button to the left of the test name to select that test. Left-clicking on the Select All button will select all
tests in the list, left-clicking on the Clear All button will unselect all tests.

G ... -- - l.IIillJ ~ ~ .':@. - .. I~:J~
~- .. - -. --

r< U . t.1 EnOl" so... , ... I·-·b •• III ~~
,. 2.2.2.2' , ... ID~ ... II
.J1.2.2.J _l .. ~l .. ,.-..... II

,r
I

.J U.2.j CoIllI'" ~I" ,.$1_ II

.J2.2.2.1 SW¥1 ~l .. I·ST_.". " I

.J 2.2.1.1 OIt .. ~l .. '.$1_."- II ; .;-!

.J 202.2.7 1. _''''' 1 .. I.SNr2Ol."" II 1-

.J U .2.1 1. c..o.I , .. I·ST ,. II !I

.. 2.2.2.1 ","Ir ,-I I·S~:III8.'''' II

.. %.2.2.10 ",",. _ , .. l.s~2lO.b'" II

t.--=It.---, Select All 1
~

Figure 6 - Test Selection Window

6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.3 The Testing Option

The Testing option allows the user to perform Automated or Manual tests. After selecting either
Manual or Automated Testing, the user is presented with a window listing all of the tests selected in the Edit
option. If the test has been previously run, the first character on the line will contain the first character of the
result of the test, (P - Passed, F - Failed, or I - Incomplete). Also, if any comments were written about the test,
a portion of them will appear after the name of the test.

Selected Teat..

2.2.1.7 Reso.wly Received Tr lsslon
2.2.1.9 Reso.wlll c.al Tr_lulon
2.2.1.U treat.. entity Tr I .. lon
2.2.1.25 Tr IU ... Tr lllion
2.2.1.26 SI~1 T..-I"lon
2.2.1.27 Receiver Tr I .. lon I
2.2.2.25 Tr Uter Reception I

_2.:..2·1·!i !I~L~!."" ___________________ ~ _______ ~..:.

Cancel

Figure 7 - Test Selection Dialog

After selecting the test to run and clicking the OK button, the 1ST Logger Dialog appears. If there is
a pipe setup between the Scanner and the Logger, all of the buttons in the 1ST Logger Dialog are functional.
Otherwise, only the OK button is active. To begin testing, click on the OK button.

Log File: I IST0201.bin

Figure 8 - 1ST Logger Dialog

If the BIN file exists, the OK button is active. If the BIN file does not exist, the user MUST create the
BIN file. The name of the BIN file to create is displayed in the Log File text window and is the same name as
was listed in the Edit test option. If the user types a new name in the Log File text window, that name will
automatically overwrite the default name in the Edit test option BIN file name field for the current test. (NOTE:
The Scanner looks for all BIN files in the directory specified in the Testbed - Data Directory field) To either
create the BIN file necessary for the test or re-log the BIN file, choose the Record button. To stop recording,
press the Stop button.

For all tests, the Scanner performs an initial validation on the BIN file to be tested checking both the
network and POU information. The validation scans all fields in every packet to see if the values in those fields
fall within specified parameters. If any errors are found, the field, its value, and the acceptable values are written
to the report log. As each test is run, all information about that test (Le., test results, packet validation results,
etc.) is written to the report log file.

7

2.3.1 Automated Testing

After selecting the test to run and clicking the "OK" button, three windows will appear: Packet Count,
Report, and the User Edit List specific for the desired test.

NOTE: Only Level I - Network and Level 2- PDU tests are currently active as Automated tests.

NOTE: In the Automated test mode. the Network and PDU Reception. Adverse. and Erroneous tests used the
following logic to determine failure: If a packet in the BIN file was found to be non-Testbed-generated or contain
non-DIS information. the BIN file failed that specific test.

Packet Count: The Packet Count window displays the number of packet types in the file of the
following types: DIS, SIMNET, EAGLE, 1ST Message, Total, and Unknown. For DIS packets, the count is
broken down further for each specific DIS POU packet type.

l'~_T~ ;:::== __
..- 1 10 .[s ~ ShIET 1

[jQ£ to 1ST ~ TOT 1

~. !'.~.! T;:._===-
£IIl1", S\oto I 29Ii fire 11 Dotanotl"" ..

C<l1I1I1 ,

....... Iv-I
Ropolr ,

2 Sorvt .. IIoq • I

o ere.u £nt,,,, I

o ,,"-II orr

~, r---2 kopII' 12i ~I"'~.
Actl ... Req .. 1"5 Act, I
Sol. IIotI I
............. 1

T IU .. ·I
0tIIr ,

1 IIotI 1

£allll ~ "'.,..tor ..
05, ... 1 .. • .. ·1
o

Figure 9 - Packet Count Window

User Edit List: The User Edit List window can only be found in the Automated test mode. For
Network tests, this window contains all of the different types of network headers recognized by the Scanner and
the fields that make up each header. For POU tests, this window contains a listing of all of the fields of the POU
type being tested.

8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

r -DolIlY _STAlE

i PaJ.J£AII[R

I PIIOTWI._\'ERSIOt II I (IIC) I~ CDm

IXJl:l\£..l. 1:0 CI(C) II15S cI(C)

PIlJ-,"'1'E r-i - - (OCC) Ih (OCC)

PAIIIIIC Ip (I(C) I~ (I(C)

i IlItE..STfH' 190000000 (I£X) Itmmr (I£X)

I I l..OOn4 [i.-.- - (I(C) I~ (OCC)

I PAIIIIIC I» (I(C) I» (I(C)

1
r ""DoTllY_ID I
I Sill: III (I(C) I~ (I(t)

I I
/oJ ~ ._- _. - - --- -

~ IV> DatAllu Save LINd I j
i

Figure 10 - User Edit List Window

When the Scanner performs its initial packet validation it uses default values for the range checking.
The User Edit List allows the user to change the default values to be more specific and then have the Scanner
use the new values to perform the packet validation. For example, the Exercise ID field will allow any value
between 0 and 255 as its default. If the user wants to make sure all packets contain an Exercise ID of 1, he just
needs to change the 0 to 255 range to be 1 to I and then perform the test.

After changing the desired values in the User Edit List window, choose the Run button to start the
Automated test. The program will use the values specified in the User Edit List and compare them against all
packets matching the requirements of the specific test being run. If any errors were found that would cause the
test to fail, they are written to the report log. The report window's test status will automatically be filled in with
the appropriate value of Passed or Failed. If the test failed, the report window's reason field will contain text
stating that "Specific Validation failed" .

Report: The Report window is where the results of the test are entered before they are saved to the test
suite. In Automated testing, the test result field is automatically filled by the program after the test is completed.
If any errors occurred, the reason field is also filled in. If so desired, the user can change any of the filled-in
values or add comments after the test is complete.

Clicking on the Quit button in this window exits the automated testing and removes all related windows.
After closing this window, all test information is written to the report log file. Clicking on the Next button will
close all windows, write the test information to the report log, and return the user to the Automated Test Selection
window.

9

8 _ _____ ..
1m I~t!ty St.et.e 1 1 .. 1011

Result (P/FII) I.-AIL£D TIoo. IU> 1)16

Roasan:

Te.terll<evln Ke...... Dot.e 1j)u08l9S

I Hoxt

~~----------~--------~~
Figure 11 - Report Results Window

To facilitate quickly detennining where specific errors occurred and in which packets, after the test is
run two more windows will appear, Time Line and Packet Display.

Timeline: The Timeline window shows, in a list fonnat, all of the packets that met the requirements
of the specific test being run. The window shows the number of the packet within the BIN file; time the packet
was logged; what type of packet it is; if it is a DIS PDU, what type of DIS PDU the packet is; the source Entity
ID number from the packet; and the delta-time from last packet with the same source Entity ID. If the packet
does not pass the specific packet validation using the User Edit List, the first character in the line will be an '.'.

The Timeline window also displays the number of total packets, the number of the current packet
highlighted, the start and end times of the packets, and the time of the current packet highlighted.

G·--·-----·--·-·--·-·---·--·-·m--·-~-------·----·--·-·--·---·"-·--·-·-IJ~]

.
"" . PllITp [Mltv Id Dolto 11 ..

---------------------------------- --(l I : • or, ~~-I_ • ') ~rt", :.t)t~ :/.1: I

1 00:00:06.15683& lIS Entltv $toto 17.01.101
2 00:00;08.79130!1 liS FI... 17.01.101
I 00:00:08.865071 lIS Entltv Stoto 17.01.32768
4 00:00:08.9C1851 .15 Entltv StU 17.0I.rD68
I 00:00:08.9&1337 lIS Entltv $toto 17.01.32768
I 00;00;08.9Il2009 liS Entltv Stoto 17 .0I.rD68

o
oo:oo:Ol.~
o
00:00:00._
00;00;00.020086
oo;oo;oo.02OOn
00;00:00.020081 7 00;00:09.000190 lIS [Mltv Stoto 17~

----------------~~----------~
br'4 I Clorbr'4 I Flrl\ 1_ Noxt lut

Start TI .. I 00:00:~.764S25 Pocket CM I .63

c..r.... TI .. loo:oo:~.~ c..r.... PocI<I' I
St.p TI .. I 00:~:53.o>:K217

I "
INoIP tIl<\ ~ 1

"--'

Figure 12 - Timeline Window

10

.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The user can select a packet to be displayed in the Packet Display window by clicking the left mouse
button on the desired packet in the Timeline window. Below the Timeline list there are six buttons. Query
allows the user to display a query window, that allows the user to further narrow what items will show up in the
Timeline. Clear Query removes the Query window and resets the Timeline window back to all packets initially
shown in the Time Line window. The First, Next, Last, and Previous buttons will take the user to the first record
in the list, next record in the list, last record in the list and the previous record in the list, respectively.

Note: Use Clear Query to close the Query window as opposed to choosing the Close in the upper left
hand corner of the window to avoid crashing the program.

Packet Display: The Packet Display window displays the contents of the packet highlighted in the
Timeline window. At the top of the window will be a hex dump of the entire contents of the packet. This is
followed by the network header and the specific DIS PDU type. Each field of the network header and the PDU
is displayed on its own line. If the field has an associated enumerated table, the appropriate enumeration is
displayed at the end of the line. For groups, such as Entity \D or Entity Type, the group name is displayed and
then each element of the group is listed afterwards. If any field or group failed specific validation, the beginning
of the line will contain an '.' for quick identification of problem areas within the packet.

Note: A useful trick for quickly viewing items in the packet display window, is to position the
screen where all of the desired information is displayed and then click the left mouse bullon
with the mouse in the bollom right corner of the Packet Display window. Then when the user
moves to the next packet, the window will automatically scroll down and position itself at the
same position that the screen was at when the user clicked the mouse.

-11$ ""-

1JIfJ1'/.IIIIIl.

~-1lIII:11E..1. == ~ _uc

onn ... " 11;1:100
lilt: _ICOT ..
DOnI'l

~--

, '111 .- It, . .-.
.""' III
• 0001 121

1IIII1Y._. u..Dl..1.I.0.0
IIIIII'I~.

CIIoI!"Jr1ef
11' _1M

£Om ---_<rIC
ow

.... '" ,- <ai' , ... It' , ... (J) .- It' , It, _ ... _
,. It>
, 101
• JIIIOOI c.,
, ... (0)
,... 101 .- ., I. (I'

........,." -T ...

.....

___ _ I J~j

'.

Figure 13 - Packet Display Window

II

2.3.2 Manual Testing

After selecting the test to run and clicking the "OK" button, the five manual test screens are displayed.
These screens are: Packet Count, Timeline, Filter, Packet Display, and Report .

Packet Count: The Packet Count window displays the number of packet types in the file of the
following types: DIS, SIMNET, EAGLE, 1ST Message, Total, and Unknown. For DIS packets, the count is
broken down further for each specific DIS PDU packet type.

8 --· ... ··-·-·--·.--·-.. ···-· ... ---.. ·-·-...... ·······-· .. -··-·---·-=--=~.~.~j
__ fllo I

[-:~ l .. ~IIOI~IS:::I-===:-c.=.I:====-' '_T_ 1- ~ DIS I 451 SIIICI •.•... r----o
! DQ! ••••••• ,---0 1ST -. • r----o 1VI1l. ~
'- --- -- - - - - -----

.IS 'Iel .. T_ r··-- ·- ··------- - -- ---- - .
l r.tl,,-. ~ , ······I1 JI
I
i Colllo JI - ~ 1~Of' ,---0
I I~ -,---0 IW c...,---o IIopolr Coopl ,---0
I \IopoIr '---O tn.to W'" JI _r.t\l~ ~
1---... ~ 1topIF JI_I •. J4
;
i 1et1 15 letl 11 lot ~

I SAlol 11 - 11 '- Rtport 11
! -. ·11 fII.oo'", "'111 .. - .. r-w-
I T..-..... ,---0 $1.,.1 •••••• ,---0 _1_ ,---0 I

10000 r-o
lC-

Figure 14 - Packet Count Window

Timeline: The Timeline window shows, in a list fonnat, select infonnation about each packet that meets
the packet filter criteria. The window shows the number of the packet within the BIN file, time the packet was
logged, what type of packet it is, what type of DIS PDU the packet is, the source Entity 10 number from the
packet, and the delta-time from last packet with the same source Entity 10. If the packet does not pass the initial
packet validation, the first character in the line will be an ' • .'

The Timeline window also displays the number of total packets, the number of the current packet
highlighted, the start and end times of the packets, and the time of the current packet highlighted. Initially, the
Timeline will default to showing all DIS-only, non-testbed generated packets.

The user can select a packet to be displayed in the Packet Display window by clicking the left mouse
on the desired packet in the Timeline window. Below the Timeline list there are six buttons. Query allows the
user to display a query window, very similar to the Packet Filter window, that allows the user to further narrow
what items will show up in the Timeline. Clear Query removes the Query window and resets the Timeline
window back to all packets that pass the Packet filter window. The First, Next, Last, and Previous buttons will
take the user to the first record in the list, next record in the list, last record in the list and the previous record
in the list, respectively.

Note: Use Clear Query 10 close Ihe Query window as opposed 10 choosing Ihe Close in Ihe upper left
hand corner of the window 10 avoid crashing Ihe program.

12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.... II .. tntl" I.

1 00:00:0&._ liS tnt"" s.... 17.01.101 0 ~
J 00:00:08._1 JlS tntltV St... 17.01._
4 00:00:01.'41.1 'IS <1.V St... 17.01._ 00:00:00._
! 00:00:01.961937 'IS (nt." s.... 17.0I.1:1M 00:00:00._
, 00:00:01._ JlS r.t.", Stote 17.01.121&11 00:00:00.010072

2 00:00:01._ 'IS FI.... 17.01.101 00
0

:00:01._ II J I

~ __ '_ 00 __ :00_:08_._~ ___ '_IS ______ r.t __ '~_s.. __ "' ____ I7_.OI_.I21&1I _____ OO_~_~_.~ ____ '

!Wy I CI_!Wy If '

St.Irt TI.. I 00:00:0547S4925 Pd.t tnt I 40

CArr II.. I 00:00:0fi.15<SI5 CArr ,_. I
s..., II.. I 00:OC:S3.0S<2t7

Figure 15 - Timeline Window

Packet Filter: The Packet Filter allows the user to define which packets are to be displayed in the
TimeJine window. The user can select/deselect based on Entity Types, Entity IDs, DIS PDU types, start/end time
frames, Exercise number, and Port number. The filter can be set to show DIS only packets, non-DIS only packets
(i.e. unrecognizable packets), all packets, and exclude Testbed generated packets.

-ri-------·--
J-=-1 . . • : :. ~.- . ::. L:J:il

Ir. DIS Only

.J non DIS Onlll Start TI_II
F Exclude TeatJ)ed Pdets Stq> TI .. Ir-I----

Port. II
Vertl.., 1""'1 ---.

Exorcise II
I'S I'1IU TYPN

IT ou..- r:r £IIti til St<!t<!

r. FlnI r:r DotonItI..,

r:r CoIUslon j':Servlce~

F1 Reao4>Ply Of' .. r. Reawly Received

,.. ~lyConceI rr Repair ~I.te

J1ROpolr~ ". c....te £IItity

r:r Reooow £ntltll r:r StrtllloaM

r:r Stq>IF r:r~I ..

rr Action l!equat r.rActlon~

r Dot<! CIuor\j 17 Sot Dote ,

1
rr Dot<! r. E_t I!cport

1
I

I1 t1essago r:r &1 .. 10lIl

i r.r Dealgnaw r: Tr_lttr I
I ". Signal ". Recel_

.1
"WIll W.,lu I

"-="'

Figure 16 - Packet Filter Window

\3

Packet Display: The Packet Display window displays the contents of the packet highlighted in the
Timeline window. At the top of the window will be a hex dump of the entire contents of the packet. This is
followed by the network header and the specific DIS PDU type. Each field of the network header and the PDU
is displayed on its own line. If the field has an associated enumerated table, the appropriate enumeration is
displayed at the end of the line. For groups, such as Entity ID or Entity Type, the group name is displayed and
then each element of the group is listed afterwards. I f any field or group failed specific packet validation, the
beginning of the line will contain an ' *' for quick identification of problem areas within the packet.

Note: A useful trick for quickly viewing items in the packet display window, is to position the
screen where all of the desired information is displayed and then click the left mouse button
with the mOllse in the bottom right corner of the Packet Display window. Then when the IIser
moves to the next packet, the window will automatically scroll down and position itself at the
same position that the screen was at when the IIser clicked the mOllse.

-- 'IS 5,-..I1Il PIlI ._--

DGIIU"I'[,

~-'-'11.." -•• -..stW
IDCIII --

0II1f' .. 11f 11:1: ..
1111
.... ICITICIt 01."
fOII:IJI ---

....... .111 .- U. .- (l0i. <11 , ... en

DII'''~.xJ.I.221.s. o..'~"lt .,
'\1 <11-. '214' 01_ ,..., CII

UlI_ ."" '"~ _lilt ct.
DIM , ... '"

"'.Dlltn.'rW£: J ... ,.,..""
... m 01_
UlI _"It
DIM

DC1I"~WLaC''':
I • Z

__ (01

: IIIDO (01
1l1I000I) (0 •
:_ <0.
I rIJO (0)
,lIDO (0,
rlIOO (0'

Sntd • " • If) • 0,0000000000[.
IO.t(IOOOOO/;II;IQ ...
: '.«*XIOOOGCIltCIt
IO.IOOOOCJOOI:«",

r,tMII,

"., ... , ...
.'WidC • ..-....

.......

.......

Figure 17 - Packet Display Window

Report: The Report window is where the user manually enters whether or not the test passed or failed;
if it failed, the reason(s) for failing; and any comments about the test. Clicking on the "QUit" button in this
window exits the manual testing and removes all related windows. After closing this window, all test information
is written to the report log file. Clicking on the "Next" button will close all windows, write the test information
to the report log, and return the user to the Manual Test Selection window.

14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.4

lett IEntlty StatAl rr I .. lcn

Reault (PIFII' ItAILED
RMoon:

,-----;:======--- ----- ---;-------

Figure 18 - Report Results Window

The Report Option

Selecting the Report option brings up two choices: Results Summary and Status Summary. All reports
are generated as fonnatted text files in the same directory as the report log. The files will be named using the
following scheme: 3-character company name + I-character SUT number + "." + either "status" or "results" +
".rpt". Both reports contain a header that summarizes the Testbed, Company, and SUT infonnation and then lists
each level of testing as a discrete section within the report. The main difference between the two reports is the
amount of infonnation presented in the report.

The Results Summary report is the more verbose of the two reports. It includes the unique number and
name of the test, the test status (Passed/Failed/Incomplete), number of times run, specific type of test
(TransmissionJReceptionJAdverse/Erroneous), name of the BIN file, reason, and comments. The Status Summary
is a simplier report that includes the Test status and test name and number.

15

3 Scanner Configuration

The Scanner was designed to be highly configurable at runtime. To do this, there are several text-based
configuration files that arc loaded when the program starts up. The text-based files allows the user to change the
contents of the files, thereby, quickly changing the configuration both in how the program works and how it
interprets specific data. The configuration files include the Scanner, management, pdu definition, network
definition, entity type, enumerations, and test-specific.

The Scanner defaults to looking for all configuration files in the current directory. If the files cannot be
found in that directory it will search the environment for the variable "SCANPROJDIR" . If that variable is found,
the directory specified after it will be used to search for the files . For example, using the following setting:

SCA NPROJD I R =/usr/trid is/proj/ scanner/con fig

will tell the Scanner to look in the "/usr/tridislproj/scanner/config" directory for the configuration files if they
cannot be found in the current directory.

Each test suite can have specific configuration files associated with it. If after opening a test suite the
program finds that the names of the configuration files saved within the test suite are different than the default
configuration files, the program will automatically free up the memory reserved by the default configuration data
and read the configuration data from the appropriate configuration file.

3.1 Scanner Configuration File

The file contains some of the default infonnation used by the Scanner. The fonnat of the Scanner
Configuration file is as follows. Note: The following file names are the default names used by the Scanner.

"MANAGE_CONFIG" = "manage.cfg"

"PORTS" = "6994,3001,3002,3003"

"PDU_CONFIG" = "stdV2D3.pdu.cfg"

"NETWORK_CONFIG" = "stdV2D3.network.cfg"

"ENTITY _TYPES_CONFIG" == "stdV2D3.entity_types.cfg"

"BINFILE TIMESTAMP SIZE" = "0" - -

MANAGE CONFIG - Contains the name of the management structure (test suite)
configuration file. See section 5.2.3.2 - Manager Configuration File
for fonnat of this file.

PORTS -

Contains the name of the file holding the list of all of the Entity
Types recognized by the Scanner Management System. See section
5.2.3.5 - Entity Types Configuration File for fonnat of this file.

Contains a string of four port addresses. The first port is the address
of the DIS port. The second, third, and fourth ports are the SIMNET,
1ST MESSAGE, and EAGLE addresses, respectively. The Scanner

16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PDU CONFIG -

BIN FILE TIMESTAMP SIZE -- -

uses these numbers internally to determine if a packet is a DIS,
SIMNET, 1ST MESSAGE, or EAGLE packet. For the program to
recognize that a packet is DIS, for example, the packet must be
logged to the port specfied as the first parameter of this string. If the
DIS packet is logged to a different port, change the value of the the
first parameter in the "PORTS" string. NOTE: If you are using an
existing test suite and you need to change the ports, see section 3.6
for more information.

Contains the name of the file that defines each DIS PDU using the
Data Definition Language. See section 5.2.1 - Data Definition
Language for a description of the format of the configuration file .

Contains the name of the file that defines the recognized network
headers using the Data Definition Language. See section 5.2.1 - Data
Definition Language for a description of the format of the
configuration file.

A timestamp may be written once at the top of a binary file indicating
when the binary file was created. This line in the configuration file
contains the length of that timestamp. Whether or not a timestamp is
included at the beginning of the binary file, this field must have a
value that represents the length of the timestamp.

3.2 Management Configuration File

This configuration file is used to fill in the format of a test suite management structure. The structure
has no substance to it by default. As this configuration file is read in and parsed, its information is used to
determine how many groups the management structure contains and what the tests are for each group, as well
as, specific information about each test. This approach allows the user to re-define a test or group of tests at
runtime. Note, however, for automated tests, changes would still need to be made to the executable to actually
perform the test differently than the way the test was originally defined. Even this is made relatively easy, since
all the user has to do is just write the new routine and then recompile. Very little or nothing else need be done
to make the new test functional.

The format of the configuration file is listed and explained below:

#GROUP
"Number",

NAME "SubGroup
"Desc", "Type", "Mode", "Func", "FileID"

The #GROUP moniker is used to distinguish the beginning of a new group of tests. This field is followed by
the name of the group, in quotes. The group name is followed by a sub-group name. I f there is not a sub-group
name, the tag contains "NONE".

Each line that follows lists an individual test for that group. The first field contains the unique test
number as defined in 1ST's document - Technical Report, Test Documents for DIS Interoperability. The next
column is a textual description of the test. The third field indicates what type of test this test is. The codes
translate to "T" for Transmission, "R" for Reception, "A" for Adverse and "E" for Erroneous.

The next column contains either an "A" for Automated tests or a "M" for manual tests. The fifth column
is a unique code that is used to get the address of the specific function to perform this test as an automated test.
The last column is used during the creation of the test suite. This string, along with the 3-character company

I7

name and the SUT number, are combined to come up with a unique logged binary file filename for each test.

The following is a partial sample listing of two groups from the Manager Configuration file :

#GROUP
"1.1.1.1.1",
" I. 1.1 . 1.2",
"1 . 1.2.1.1",
"1 .1.3.1.1 ",

#GROUP
"2.2.1 .1",
"2.2.1.2",

"Network" "NON E"
"Broadcast-Transmission", IIT",
"Broadcast-Reception" , !tRII

,

"Broadcast-Adverse", ItAII
,

"Broadcast-Erroneous", fi E",

"PDU" "Transmission"
"Entity State Transmission", "T",
"Fire Transmission", "T",

3.3 PDU and Network Default Configuration File

3.3.1 Data Definition Language

"A",
flAil ,

HA u ,

"A",

"A",
"A",

"Til ITA ",
"TI I IRA",
"TIIIAA" ,
"Til lEA" ,

"T20ITA",
"T202TA",

"III"
"III"
"III"
"III"

"201"
"202"

Rather than defining specific data structures for each PDU and Network type, and the associated code
to process the data structures, the Data Definition Language (DDL) was created to allow generic processing of
the various data packets.

Certain fields require special processing. These fields are also defined in the default DDL format, but
are identified and processed accordingly during the traversal of the packet definition list. The majority of the
tields within the PDUs do not require special processing.

The DDL also allows variable sections to be defined. Variable sections must be grouped. The variable
group is only defined once. When the data packet is being processed, the variable group fetches its count
parameter from the data packet, and is repeated the appropriate number of times. The data field containing the
count parameter must appear in the data packet before the variable section. This allows the generic definition
and processing to be used for all possible variations of the currently defined PDU types.

Since the data defined using the DDL is kept in ASCII files and read in at runtime, the keywords and
associated data are quoted. This allows spaces to be used in the definitions, and parsing of the configuration line
is simplified to reading and parsing of strings. This does not limit the data types that may be defined. To keep
the parser simple, there is a requirement that a definition must be contained on a single line. Each line must start
with a comment character or a keyword. The parameters for a keyword must be on the same line as the keyword.
Keywords may be preceded by spaces or tabs for readability . The parser will skip blank lines and comment lines.

The DDL uses the following key words:

•

PDU

This character at the start of a line indicates that this is a comment line .

This keyword defines the start of a PDU definition. This keyword requires two parameters, PDU name,
and PDU number. PDU definitions may not be nested. The PDU keyword does require a corresponding
ENDPDU.

Options: PDU Keyword

18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

NAME
NUMBER

ASCII name of the PDU
PDU Number. Must be unique. Used to index the PDU
table

Usage: PDU, NAME, NUMBER

Example: "PDU", "ENTITY_STATE", "I"

ENDPDU
This keyword defines the end of a PDU definition. Each PDU keyword requires a corresponding
ENDPDU keyword.

Options: ENDPDU Keyword

Example: "ENDPDU"

NETWORK
This keyword defines the start of a Network level definition. This keyword requires two parameters,
Network name, and Network number. Network definitions may not be nested. They do require a
corresponding ENDNETWORK.

Options: NETWORK
NAME
NUMBER

Keyword
ASCII name of the Network
Network Number. Must be unique. Used to index the
Network table

Usage: NETWORK, NAME, NUMBER

Example: "NETWORK", "ETHERNET", "I"

Example: "NETWORK", "UDP/IP", "I"

ENDNETWORK
This keyword defines the end of a Network definition. Each NETWORK keyword requires a
corresponding ENDNETWORK keyword.

GROUP

Options: EN ON ETWORK Keyword

Example: "ENDNETWORK"

This keyword defines the start of a group. The group may be a fixed group or a variable group. A fixed
group defines a group of elements that are to be repeated a known number of times. A variable group
is a group that is to be repeated, but the number of times is determined by a data field within the data
packet, and is therefore unknown at this time. If a group name contains the keyword _BITS, the group
elements are treated as a bitfield. Groups may be nested, but each group requires a corresponding
ENDGROUP.

Fixed groups:
Options: GROUP

NAME

FIXED

Keyword
Group Name, must be unique for this PDU or Network
definition.
Keyword

19

COUNT Number of iterations

Usage: GROUP, NAME, FIXED, COUNT

Example: "GROUP", "PDU_HEADER", "FIXED", "I"

Variable groups:
Options: GROUP Keyword

NAME

VARIABLE
CTRL GROUP
CTRL FIELD

Group Name, must be unique for this PDU or Network
definition.
Keyword
Name of group containing the field with the count value.
Name of field containing the count value specifying this
groups number of copies.

Usage: GROUP, NAME, VARIABLE, CTRL GROUP, CTRL FIELD

Example: "GROUP", "ART_PARMS", "VARIABLE", "ENTITY _ST ATE",
"NUMBER_ART]ARMS"

ENDGROUP

ELEM

This keyword defines the end of a group definition.

Options:

Example:

ENDGROUP
GROUP NAME

Keyword
Group Name

"ENDGROUP", "ART PARMS"

This keyword defines an element, whether it is Palt of the PDU or a sub-group. An element defines the
attributes of a data field. Elements are self contained in one line, and do not require an end type
keyword .

Options: ELEM
PARENT GROUP
FIELD NAME
DATA TYPE
DISPLAY TYPE
MINIMUM VALUE

Keyword
The name of this fields immediate parent group.
The name of this data field.
The data type for this data field. See the list below.
Display type for this data field. See list below.
The minimum value for this data field, or the word "MIN"
which will be translated to the minimum value for this fields
data type.

MAXIMUM VALUE The maximum value for this data field, or the word "MAX"
which will be translated to the maximum value for this fields
data type.

ENUMERATION TABLE

GROUP DIVISOR

An associated enumeration table name if there is one,
otherwise "NONE".
The group divisor is used in calculating the iteration count
for variable fields. Not all count fields are a number of
iterations. Some are total number of bits, therefore they must
be divided by this value to obtain a count. The default value
is "I ". Only a few PDUs require a different value. See the
PDU Configuration File section for a more complete

20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

definition.

Usage: ELEM, PARENT GROUP, FIELD NAME, DATA TYPE, DISPLAY TYPE, MIN. VALUE,
MAX. VALUE, ENUMERATION TABLE, GROUP DIVISOR

Example: "ELEM", "PDU_HEADER", "PROTOCOL_VERSION", "U8", "DEC", "I", "4",
"PROTOCOL_VERSION", "I"

A list of possible display types:

DEC Decimal
HEX Hexadecimal
FLOAT Decimal
ASCII ASCII text
DATA Data block

A list of possible element data types:
U8 Unsigned character
S8 Signed character
U 16 Unsigned short
S 16 Signed short
un Unsigned long
S32 Signed long
F32 32-bit Float
U64 Possibly two unsigned longs
F64 64-bit Float
A Ascii string with length (A#)

A 15 means 15 asci i characters.
B Bit fields (bits#mask#shift)

B8#FO#4 means its an 8 bit field, the mask is hex FO and the shift
count used to align the data is 4.

D Data area with count (D#)
D I 5 means 15 data bytes.

21

-

The following is an example of the Network Configuration File .

.. NETWORK II, II ETHERNET II, II 1 11

'IGROUP", II ETHERNET II , nFIXEDII, "111
"ELEM", "ETHERNET", "DESTINATION",
"ELEM", "ETHERNET", "SOURCE",
"ELEM", "ETHERNET", "ETHER TYPE",

"ENDGROUP" , "ETHERNET" -
" ENDNETWORK"

IID6 11 ,

IID6 11
I

"U16 II ,

"HEX",
"HEX'I,
"HEX",

The following is an example of the PDU Configuration File.

"PDU", "ENTITY_STATE_PDU" 1

"GROUP", "ENTITY_STATE", "FIXED", "1"

"GROUP", "PDU HEADER",
"ELEM" , "PDU HEADER",
"ELEM" , "PDU-HEADER",
"ELEM", "PDU-HEADERII I

"ELEM", "PDU-HEADER",
"ELEM", "PDU-HEADER",
"ELEM", "PDU-HEADER",
"ELEM", "PDU-HEADER",

"ENDGROUP", "PDU-HEADER"

"GROUP", "ENTITY ID",
"ELEM", "ENTITY ID",
IIELEM" I II ENTITY-ID II I

"ELEM", "ENTITY-ID",
"ENDGROUP", "ENTITY-ID"

"FIXED" , 11111
"PROTOCOL_VERSION",
"EXERCISE ID",
"PDU TYPE".
"PADDING" •
"TIME STAMP".
"LENGTH" ,
"PADDING" ,

"FIXEDII , "111
"SITEII,
"APPLICATION".
"ENTITY" •

"FORCE IDII ,

"MINI! I "MAXI!, "NONE"
"MINI! I II MAX II , "NONE"
"0" I II MAX II , "NONE"

"U8 11
, IIDEC" , 11111 ,

"U8 11
, "DEC", "MIN" ,

"U8 11
, "DEC", "111 ,

IIU8 11
I "DEC" I "0 II,

"U32 11
, II HEX" , "MIN",

IIU16" I IIDEe", 11144 II I

IIU16 11
, "DEC" I 110" ,

IIU16 11
, "DEC II

, "MINI! ,
"U16 11

I "DEC" , IIMIN",
IIU16 II I IIDEe ll , "MIN" ,

"USII , IIDEC" I "0" I UELEM",
"ELEM" ,

"ENTITY STATE",
"ENTITY=STATE" , "NUMBER ART_PARAMS", "U8 11

, tlDECII , IIMIN",

-

"GROUP" ,
"ELEM",
"ELEMu,
IIELEM",
"ELEMII ,
IIELEM" ,
"ELEM" ,
ItELEM",

"ENDGROUP" ,

II GROUP" ,
IIELEMII,
It ELEM " ,
"ELEM",
"ELEM" ,
"ELEM" ,
II ELEM II ,

"ELEMII,
"ENDGROUP" ,

"GROUP" ,

-

"ENTITY TYPE",
"ENTITY TYPE",
"ENTITY-TYPE",
"ENTITY-TYPE",
"ENTITY-TYPE" ,
"ENTITY-TYPE" ,
"ENTITY-TYPE" ,
"ENTITY-TYPE" ,
"ENTITY-TYPE"

"ALT ENTITY TYPE",
"ALT ENTITY TYPE",
"ALT-ENTITY-TYPE" ,
"ALT-ENTITY-TYPE" ,
"ALT-ENTITY-TYPE" ,
"ALT-ENTITY-TYPE" ,
"ALT-ENTITY-TYPE" ,
"ALT-ENTITY-TYPE" ,
"ALT=ENTITY=TYPE"

"ENTITY_LINEAR_ VELOCITY",

- - -

"FIXED" , "I"
"ENTITY KIND".
"DOMAIN".
"COUNTRY" •
"CATEGORY" •
"SUBCATEGORY" •
"SPECIFIC" •
II EXTRA II ,

"FIXED" • 11111
"ENTITY KIND".
"DOMAIN",
"COUNTRY" ,
"CATEGORY" •
"SUBCATEGORY" ,
"SPECIFIC" •
"EXTRA" ,

"FIXED" , 111'1

22

- - -

IIU8 u , "DEC" , "0 ",
uU8 II, "DEC" , IIMIN" I

"U16 II I II DEC" , II 0 II,
"U8 11

I 'IDEC" , "MIN" ,
"U8 11

, flDEC" , "MIN" ,
'IU8 u

I uDECII , IIMINII ,
IIU81! , 11 DEC" , "MIN" ,

"U8", "DEC", 110" ,
"U8" , "DEC" , tlMIN" ,
"U16" , "DEC" , 110",
"U81! , "DEC" , "MIN" ,
"USI! , "DEC" , "MIN" ,
"US", IIDEC" , "MIN" ,
"U81! , "DEC" , "MINI! ,

- - -

"4 II ,

"MAX",
"1" ,
"0" ,
IlMAX",
"MAX II ,

"A" I

"MAXII,
t'MAXII,
1Ilv1AX" I

"3" ,
"lv1AX It ,

117" ,
"lv1AX II ,
"266" I

"lv1AX II ,
"lv1AX" ,
1Ilv1AX II ,
"lv1AX" ,

"7" ,
11lv1AX II I

11266 11
,

IlMAXII,
IlMAX",
"MAX",
I1MAXI',

-

"PROTOCOL_VERSION". "1 "
IINONE" , Ill"
"PDU TYPE".
"NONE", "I"
"NONE", Ill"

"NONE" , "1"
"NONE II , "1"

"NONE", "I"
"NONE", Ill"
"NONE", "I"

"I"

"FORCE ID", "1"
"NONE"-; Ill"

"ENTITY KIND", "1"
IlNONE", -"I"
"COUNTRY", "l"
"NONEII I "1"
"NONE", 11111

"NONE" , "I "
" NONE II , "l"

"ENTITY KIND" I Ill"
"NONE", -II 111
II COUNTRY II , "1"
"NONE II

, Ill "

"NONE", "III
"NONE" , "1"
"NONE", 11111

- - - - - -

- - - - - - -
IIELEMn,
"ELEMu,
"ELEM",

"ENDGROUP" ,

"GROUP" ,
IIELEM" ,
"ELEM" ,
IIELEMII,

"ENDGROUP" •

"GROUP" •
"ELEM",
uELEM II

I

tlELEMlI,
"ENDGROUP" •

IIELEMII,

"GROUP" ,
"ELEM",
IIELEM",
"ELEM" •
uELEM Il

,

uELEM Ii
I

"ELEM".
"ELEMII,
"ELEMII,

" ENDGROUP" •

"GROUP" ,
"ELEM",
IIELEMu,

" ENDGROUP" •

"ENTITY_LINEAR_ VELOCITY",
"ENTITY LINEAR VELOCITY",
"ENTITY:=LINEAR:=VELOCITY" ,
"ENTITY_LINEAR_VELOCITY"

"ENTITY LOCATION",
"ENTITY LOCATION" .
"ENTITY-LOCATION" ,
"ENTITY-LOCATION" ,
"ENTITY-LOCATION"

"ENTITY ORIENTATION".
"ENTITY ORIENTATION".
"ENTITY-ORIENTATION",
"ENTITY-ORIENTATION" •
"ENTITY-ORIENTATION"

"ENTITY_STATE".

"DEAD RECK PARAMS",
"DEAD RECK PARAMS",
"DEAD-RECK-PARAMS" •
"DEAD-RECK-PARAMS" •
"DEAD-RECK-PARAMS" ,
"DEAD-RECK-PARAMS" ,
"DEAD-RECK-PARAMS" ,
"DEAD-RECK-PARAMS" •
"DEAD-RECK-PARAMS" •
"DEAD :=REC()ARAMS"

"ENTITY MARKING",
"ENTITY MARKING".
"ENTITY-MARKING",
"ENTITY:=MARKING"

"ELEM", "ENTITY_STATE",

"GROUP" ,
IIELEMII,
IIELEM" ,
II ELEM II ,

"ELEM".
"ENDGROUP" •

"ENDGROUP" ,

"ART PARAMS".
"ART PARAMS".
"ART-PARAMS" •
"ART-PARAMS" •
"ART-PARAMS" •
"ART-PARMS"

"ENTITY STATE"

"ENDPDU"

- -
IIX" I

ny",
liZ" ,

"FIXED" • 111"
IIXll,
nyn,
"Zit,

"FIXED" , 11111

uPSI tl
I

"THETA" ,
"PHI II

,

"APPEARANCE" •

"FIXED", Ill"
"DR ALGORITHM".
"OTHER" •
"EN LIN ACC . X".
"EN-LIN-ACC. Y".
"EN-LIN-ACC . Z",
"EN-ANG-VEL.X" •
"EN-ANG-VEL. Y" •
"EN:=ANG:=VEL . Z".

IIFIXED", Ill"
"CHARACTER SET".
"RECORD", -

"CAPABILITIES" •

- - - - - - - - -
UF32" , "FLOAT" , "MIN", IlMAXII, "NONE", 11111

"F32", "FLOAT" • "MINu, "MAX" , "NONE", "III
"F32" I "FLOAT" , "MIN", IIM,AXII I "NONE", Ill"

IIF64 11
, "FLOAT" • "MINH, "MAXII, uNONEIi , Ill"

"F64 II I "FLOAT" , "MIN", II MAX " I IINONE", 111"
11F64", "FLOAT" , "MINI1 , "MAX II , IINONE", "111

IIF32 t1
, IIFLOAT", tlMINII , "MAXII, IINONElI, "III

"F32 11
, IIFLOATII, IIMINII, IlMAX", "NONE", 11111

IIF32 11 , IIFLOAT", IIMINII , "MAX", IINONEII, Ill"

IIU32", "HEX", "MINII, IlMAX", IINONEII, "1 "

"US", "DEC", "0", "9", "DEAD RECKONING ALGORITHM ", "111
11015 11

, "HEX", 110 11
, "0", IINONE'!, "1" -

IIF32 11
, "FLOAT ", "MINII, "MAX", "NONE", 11 111

IIF32", IIFLOATII, "MINII, "MAX", "NONE", Ill"
IIF32 11 , IIFLOAT", "MINII, "MAX " , "NONE", "111
IIF32", "FLOAT", "MINII, IlMAXII, "NONE", "1 "
IIF32 11 , IIFLOATII, IIMIN", "MAX", "NONE", "1"
IIF32", IIFLOATII, IIMINII, IlMAXII, IINONE", Ill "

IIUSII ,
IIAllll ,

"U32" ,

"HEXII, "MIN",
IIASCIIII, IIMIN",

"HEX" , IIMINII,

"MAX",
IlMAX",

!'MAX",

"ENTITY MARKING TABLE".
II NONE II -; II 1" -

II NONE II I Ill"

"1"

"VARIABLE" •
"CHANGEII I

1110" I

"TYPE",
"VALUEII,

"ENTITY STATE", "NUMBER ART PARAMS"
"uI6 11

, IIDEC u , IIMIN", "MAX!!, "NONE", 11111
"U16" , "DEC", "MINII, IlMAXII, "NONE II

, "1"
IIU32 II , IIHEXII , "MIN" , IlMAX", "NONE", "111
"U6411 , "HEX" , IIMINu I "MAXII, II NONE " , "l l!

23

-

3.4 Entity Types Configuration File

This file contains a listing of all Entity Types recognized by the Scanner Management System. Currently,
the Scanner only recognizes a fraction of the entire Entity Type list as defined in 1ST's document - Enumeration
and Bit-encoded Values for use with IEEE 1278.1-1994. Distributed Interactive Simulation -- Application
Protocols. However, the file is easily configurable to include all of the possible Entity Types and the program
will automatically adapt to any number of possible Entity Types.

An example of several lines from the configuration file and the format of the tile is as follows:

{ "1.1.225.1.1.0",
{ "1.1.225 .1.1.1 ",
{ "1.1.225.1.1.2",

Ox2882080c,
Ox2882080c,
Ox2882080c,

"MI *" },
"MIAI" },
"MIA2" },

The first column symbolizes the Entity Type code; the second column is the SIMNET code (not used by the
Scanner, but is used by some other software and was kept for compafibility); and the third column is a text
description of the Entity Type code. Each entry was formatted this way so that if it ever needed to be loaded
into a static structure within the code, it could be read in as is without having to be changed.

3.5 Enumerated Values Configuration File

This file contains a listing of all of the enumeration values recognized by the Scanner. The source of
this file can be found in 1ST's document - Enumeration and Bit-encoded Values for use with IEEE 1278.1-1994.
Distributed Interactive Simulation -- Application Protocols. The file is structure as a series of tables. Each table
starts with a line beginning with the "@" character followed by a textual description of the table. The following
lines indicate the rows of acceptable values within that table. Each row contains a minimum and maximum value
for that row, as well as, the textual description for that range. The minimax range is used for validation checking
of an enumerated field value and for finding the correct enumeration text string to return.

The Scanner reads the contents of the file and stores the contents in memory as a linked list of tables,
each made up of a linked list of rows from the table. The management structure contains a pointer to the one
of the linked list for each field in the management structure that references an enumeration table.

The following is a small subset of the contents of the enuerations configuration file:

@PROTOCOL_VERSION
" I ", " I", "DIS PDU version "1.0 (May "92)",
"2", "2", "IEEE "1278-1993",
"3", "3", "DIS PDU version "2.0 - third draft (May "93)",
"4", "4", "IEEE "1278.1-1994"

@PDU_FAMILY
"0", II, ",

110",
"I",

"Other",
"Entity Information/Interaction",

"2", "2", "Warfare",
"3", "3", "Logistics",
"4", "4", "Radio Communication",
"5", "5", "Simulation Management",
"6", "6", "Distributed Emission Regeneration"

@DEAD_REACKONING_ALGORITHM
UO",

"''',
"2ft,
"3",

"0",
"I",
"2",
"3",

"Other",
"Static (Entity does not move.)",
"DRM(F, P, W)",
"DRM(R, P, W)",

24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

"4 11
, "4", "DRM(R, V, W)",

"5 11
, "5", "DRM(F, V, W)",

"6", "6", "DRM(F, P, B)",
"7", "7", "DRM(R, P, B)",
"811

, "g", "DRM(R, V, B)",
"9", "9 11

, "DRM(F, V, B)"

3.6 PDU and Network Test-specific Configuration File

The PDU and Network Default Configuration files contain the default range values for each field of all
DIS PDUs and network headers, respectively, recognized by the Scanner. However, for some tests, the test
requires very specific values for certain fields, not just a range of acceptable values. To accomplish this need,
the user can specify for each Network test to be run a user can specify a configuration file that contains values
that will override the default values specified in the Network Configuration File.

To facilitate commonality between configuration files, this file is formatted very similarly to either the
PDU or Network Configuration files. See section 3.3 - PDU and Network Default Configuration Files for an
explanation of the Data Definition Language and the format of the file. Since the program already knows the
format, data type, length, etc. about a1l fields, test-specific configuration file only needs to specify the group
name, field name and the new minimax values for that field.

Note that each Group, Field combination must be entered in the EXACT format that they exist in the
pdu.cfg or network.cfg files. Also, the MINIMAX values must be entered in this file in the same data format as
they are to be read from a packet, Le., if a field is to be read as if it were in hexadecimal format, then it must
be entered as "0800" not "2048" to be properly parsed.

The following is an example of a Network Test-specific Con figuration File:

#Group Field MIN MAX

"ETHERNET" "DESTINATION ADDRESS [0] " "255" "255"
"ETHERNET" "DESTINATION-ADDRESS [1] " "255" "255"
"ETHERNET" "DESTINATION-ADDRESS [2] " "255" "255"
"ETHERNET" "DESTINATION-ADDRESS [3] " "255" "255"
"ETHERNET" "DESTINATION-ADDRESS [4] " "255" "255"
"ETHERNET" "DESTINATION=:ADDRESS[5] " "255" "255"

"IP" "DESTINATION ADDRESS [0] " "164" "164"
"IP" "DESTINATION-ADDRESS [1] " "217" "217"
"IP" "DESTINATION-ADDRESS [2] " "255" "255"
"IP" "DESTINATION=:ADDRESS(3] " "255" "255"

"ETHERNET" "ETHER TYPE" "0800" "0800"

"IP" "PROTOCOL" "17" "1711

"UDP" "DESTINATION PORT" "6994" "6994"

3.7 Edit existing test suite configuration

The Edit main menu option allows the user to configure the Scanner Management System for specific
testing purposes. Clicking on the Edit option will pull down a menu with several areas to choose from including
editing System Configuration or any of the multiple levels of tests.

The System Configuration option allows the user to change the names of the configuration files that the
Scanner uses. The Scanner loads the default configuration files at startup. If the user wants to use different

25

configuration files or ports for this test suite, go to this screen and change the desired values and the new values
will be automatically loaded. For example, the default string for port ids is "6994,3001,3002,3003". If the DIS
data your are logging is coming addressed to port 3000, for example, go to this screen and change the port string
to "3000,3001,3002,3003". This will tell the Scanner that for this test suite only, all DIS traffic is logged to port
3000. See section 3.1 for a detailed discussion of how to change default values for all new test suites created .

4 For Your Information

The following is a list of items observed by previous users of the Scanner that should be noted but did
not "fit" into the above text:

•

•

Due to a programming limitation, it is recommended that users iconize unwanted windows rather than
clicking on the upper left hand comer and closing them. Closing certain windows, for example the
Packet Count, Packet Display, Timeline windows while testing, will cause the program to crash upon
exiting the testing mode.

1ST has developed both Motorola and Silicon Graphics versions of the Scanner. The Motorola used for
testing ar.d development was a MVMEI97 single board computer system using System V R4 UNIX.

26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 0000174

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

	Data Analysis Tools Report On The Scanner Management System (SMS)
	Recommended Citation

	tmp.1440170646.pdf.UM4IJ

