S —'-— RS University of Central Florida
f t STARS

Institute for Simulation and Training Digital Collections

1-1-1995

Data Analysis Tools Report On The Scanner Management System
(SMS)

Kevin M. Kearns

Find similar works at: https://stars.library.ucf.edu/istlibrary
University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been
accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation

Kearns, Kevin M., "Data Analysis Tools Report On The Scanner Management System (SMS)" (1995).
Institute for Simulation and Training. 216.

https://stars.library.ucf.edu/istlibrary/216

.. + . ' N + +

g“.ﬁ"" + §‘ *0 * . + *0 *’
Tt L+

Central e, "+ ¥, STARS

Florida . ° ' + . + Showcase of Text, Archives, Research & Scholarship *

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/216?utm_source=stars.library.ucf.edu%2Fistlibrary%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

INSTITUTE FOR SIMULATION AND TRAINING

Contract Number N61339-94-C-0024
CDRL AQCR

STRICOM

May 26, 1995

Data Analysis Tools Report
on the Scanner Management
System (SMS)

fOR s,

<& e,
N S
- =
w @ 0
Institute for Simulaticn and Training 7; <
3280 Progress Drive °S 2
Orlando FL 32826 NiniveY

University of Central Florida
Division of Sponsored Research IST-TR-95-12

INSTITUT E FOR S IMULATION AND TRAINING

Data Analysis Tools Report on the
Scanner Management System (SMS)

IST-TR-95-12
May 26, 1995

Prepared for:

STRICCM
Contract Number #N61339-94-C-0024
CDRL A0OR
epared by:
, in M aarns

7? ///

Institute for Simulation and Training ¢ 3280 Prcgress Crive Orlando, Florida 32826
University of Central Florida ¢ Division of Sponsored Research

TABLE OF CONTENTS

1 Introduction 2
1.1 Purpose 2
1.2 ACTOMYIMES. & ¢ 5 6 5055 5 565 o e m v s o v v s m s 4w 8 o 8o ms oioimnsssennn 2
2 Background 2
2.1 Design Goals 2
2.2 System Design 3
3 Product .« ¢ o« 5 v 560 mu s e vsws e s e B 5 e e e e .y -
4 AppendiCesl 4

1 Introduction
1.1 Purpose
This report is a contract deliverable item, CDRL AOOR, under subtask 3.2.5.3, entitled

"Data Analysis Tools", of the STRICOM contract N61339-94-C-0024, entitled "TRIDIS: A
Testbed For Research in Distributed Interactive Simulation".

1.2 Acronyms

DAT - Digital Audio Tape

DDL - Data Definition Language

DIS - Distributed Interactive Simulation

IST - Institute for Simulation and Training

I/ITSEC - Interservice/Industry Training Systems and Education Conference
MsDOS - Mircosoft Disk Operating System

PDU - Protocol Data Unit

SGI - Silicon Graphics Inc.

SUT - System Under Test

2 Background

The Institute for Simulation and Training (IST) has endeavored to perform DIS
compliance testing of all simulators participating in DIS interoperability simulations at the
Interservice/Industry Training Systems and Education Conferences (I/ITSEC). IST developed
several MsDOS-based tools to help in the compliance testing process, to include a Logger,
Playback, and a Scanner. The Scanner was designed prior to the 1993 I/ITSEC to be an
offline, analysis tool that allowed the user to view packets from a logged binary file. That
program had several deficiencies, specifically, it does not perform tests in an automated
fashion, results of tests cannot be automatically recorded electronically, and it is not easily
reconfigurable. Therefore, in June 1994, an effort was started to build the Scanner
Management System to support testing during the 1994 I/ITSEC.

2.1 Design Goals
The Scanner Management System was designed with several goals in mind:
. Develop a tool to automate the DIS-compliance testing process. Also, automate
the management of the testing information including the entire test process,

company-specific information, tester information, and SUT information. From
this information be able to generate reports summarizing the results of the

testing process.

. Design a system that is highly flexible and reconfigurable in order to
accommodate different versions of the DIS standard, different test specific
configurations, and different test procedures.

. Include both manual and automated test modes. Manual mode will be similar
to the old DOS-based Scanner, but be augmented to include better filtering,
searching and reporting. The Automated mode will allow for on-the-fly
configuration of tests and contain code that is capable of automatically
determining if the logged data meets the requirements of the compliance tests.

. Develop in an environment that ensures portability to other platforms.

. Be able to read different logged formats.

. User friendly and easily understandable.

. Well documented code, a detailed design document, and a useable users’
manual.

22 System Design

The Scanner Management System was designed to be similar to a data base
managemeni system, in that, all information about a SUT was to be saved within the data base
or test suite and could be retrieved later for further analysis. This provides the user with a
clean, organized method of managing the test results for each SUT. The program was also
designed to be highly configurable at runtime. This was achieved by creating ASCII text,
configuration files that defined the PDUs, network protocol layers, entity types, enumerated
values, and entire management structure for a test suite. Users can easily add to or modify the
values in the configuration files and the program will automatically adapt to the new values.
The program also allows the user to specify which configuration files to load at runtime and
which configuration files to use to override the default configuration with more specific
configuration data. '

The system allows the user to filter out unwanted packets and only look at those packets
that meet the criteria for a specific test. To ensure the highest level of portability, the program
was designed around a X Windows Motif user interface and the code was written to the Unix
System V Release 4 standard. The exact, same source code has been compiled and run on both
the Motorola and Silicon Graphics environments.

3 Product

The first version of the Scanner Management System meets all of the design goals. The
system was used extensively prior to the 1994 I/ITSEC to perform DIS-compliance testing on
all of the simulators that were going to participate. Two executable versions of the software
are included in the DAT backups, a Motorola version and an SGI version, as well as, the
commented source code, configuration files, make files, and readme files.

In order to make the Scanner extremely configurable, a Data Definition Language
(DDL) was developed to define the structure of all DIS PDUs, as well as, the different network
protocol layers. This language allows users to define a PDU by specifying the format of each
field or a group of fields that make up the PDU. Its purpose was limited when it was created
for the Scanner, however, it could be the beginning of a more complete, robust language that
could be used as a baseline definition of each PDU by many other DIS-oriented software
programs.

4 Appendices

APPENDIX A

Scanner System Design Document

SYSTEM DESIGN DESCRIPTION

FOR

IST: SCANNER MANAGEMENT SYSTEM

VERSION 1.0

DATE REVISED: May 24, 1995

Prepared By: The Institute for Simulation and Training

IST: SCANNER

TABLE OF CONTENTS

1 INTRODUCTION e e e 1
1.1 PUIPOSE = s s ns s us 655 5B ar a5 feembs §Bmendbimidenbismnsss 1

1.2 SCOPE . . e 1

1.3 ACTONYIMS . . . o it e e e e e e e e e 3

2 REFERENCES e 4
3 DECOMPOSITION DESCRIPTION 5
3.1 Module DecOmPOSIION. . : s w5 s 555 s anssmonedsneemass s65msssa 5

3.1.1 Graphical User Interface 5

3.1.1.1 Configuration Management Window 5

3.1.1.2 Test Suite Edit Windowcconssiiasvassas 6

3. 121 System Configuration Window 6

3.1.1.2.2 Network Automated Test Window 7

3.1.1.2.3 PDU Automated Test Window 7

3.1.1.3 Timeline Window ...c: :vuws ssomassnsnssas 7

3.1.14 Packet Count Window 8

3.1.1.5 Packet Display Window 8

3.1.1.6 Packet Filter Window 8

3.1.1.7 Report Results Window 8

3.1.2 Management e 9

3.1.3 Testing e e 9

3.1.4 Reports . .. oo e 9

3.1.5 Packet Identification 9

3.1.6 Data Definition LANguage . . . o s wowas sasns snsaninssnisss 10

3.1.7 Default Network Configuration Table 10

3.1.8 Default PDU Configuration Table 11

3.1.9 Data Mappingt 11

3.1.10 Packet Validation00t 12

3.1.11 Packet Display 12

3.1.12 Database Routines 13

3.2 Data Decomposition 13

3.2.1 Management Structure 13

322 Indexiable SHUCINES: . » o i s s nsnosricansnmss s aumpis@ssnds 13

4 DEPENDENCY DESCRIPTION iieeien 15
4.1 Test Suite File Management0, 15

SYSTEM DESIGN DESCRIPTION
i

4.1.1

IST: SCANNER

.. 15
4.1.2 0pen ... 15
4.13 Edit ... 16
BJA BOVE i s sos i hintmasdos s bibinheamibsRos EuEidEsssnss 16
4.1.5 Close . .ot 16
4.1.6 Delete e 16
3 -« T T TETYY 17
43 TERlNE winnivnsnsiinmi o) ABRLEHEI K EicH o EEBE S HE I ARG d & 18
4.3.1 Automated Testing, 19
432 Manual Testing i 20
4.4 Report GENEration tiuin i 20
INTERFACE DESCRIPTION 22
5.1 Module Interface 22
S.I.1 PDU_TBL.C e e 22
5.1.1.1 Build Default PDU Configuration Table 22
51.1.2 Build Default Network Configuration Table 23
5.1.1.3 Destroy Default PDU Configuration Table 23
5.1.14 Destroy Default Network Configuration Table 24
512 PDU_UTIL.C e e 25
3.1.2.1 Fetch Size of Mapped List:.s: 050000054 25
5122 Map PDU Configuration List to a Data Packet 25
5.1.2.3 Map default PDU Configuration List to Data
packet. 26
5.12.4 Map default Network Configuration List to Data
PACKEt: < uivmvwmeams smms mms Comd konsimni 27
5125 Destroy Mapped Configuration List 27
5.1.3 PDU_VALID.C e 29
5.1.3.1 Validate the contents of an entire Data Packet 29
5.1.3.2 Validate the contents a Data Field 30
5.1.4 PDU_DISPLAY.C i 31
5.14.1 . Display the contents of a data packet in a X
Window Packet Display Screen. 31
515 INDEXTABC ...:.:i . no-scicmoinoiaans imsinshssiis 32
3.1.5:1 Build the Indextable. 32
5.1:5:2 Complete the building of the Indextable 32
5.1.5.3 Identify the contents of a packet 33
5.1.54 Return the number of packets in the current binary
) R 34
5.6 DB.C ... 35
5.1.6.1 Read the next packet from disk. 35

SYSTEM DESIGN DESCRIPTION
i

5.1.10

5.1.11

5.1.12

IST: SCANNER

5.1.6.2 Read a specific packet from disk. 35
5.1.6.3 Makes sure a packet is on a long boundary. 36
5.1.6.4 Find the first packet in a binary file that meets a

specified criteria 36
5.1.6.5 Find the next packet in a binary file that meets a

specified criteria 37
5.1.6.6 Return the number of the current packet being

processed. 38
FILTER.C i 39
5:1.7:1 Initialize Filter structure. 39
5.1.7.2 Determines if current packet meets filtering

6 ¢ 11 o - R 39
ENTTYPESL scisusiunsiannssnansmusns s uassnmstsis 41
5.1.8.1 Load the Entity Type Enumerated Table. 41
5.1.8.2 Search the Entity Type list with a string loeking

foramatch. 41
5.1.83 Search the Entity Type list with an Entity Type

structure looking foramatch. 42
ENUM_CFG.C e 43
5.1.9.1 Build Enumeration Table from Configuration

BB winnsnsmsismsisnmmensss snsns insms s 43
5.1.9.2 Search a specific Enumerated Table looking for a

value. Lo L e .. 43
MAINWIN.C . . . e e 45
5.1.10.1 Main startup routine. 45
5.1.10.2 Initialize default settings. 45
5.1.10.3 Initialize default settings. 46
MAINMENU.C e e 47
5.1.11.1 Get the current test mode (Automated/Manual). ... 47
e Ll 12 Set the current test mode flag. 47
5.1.11.3 Create the main PEAY. : - o cwss snssianusns x5 48
5.1.11.4 Disable selection of main menu widgets. 48
5.1.11.5 Enables selection of main menu widgets. 49
AUTOTEST.C e e e 50
5.1.12.1 Determines the offset of a specific validation test

in the validation test array. 50
5.1.12.2 Generic procedure called to start Automated

teStiNg. . . .ot e e 50
5.1.12.3 PDU Transmission test procedure. 51
5.1.12.4 Network Transmission test procedure. 52
5.1.12.5 Network Transmission test procedure. 52

SYSTEM DESIGN DESCRIPTION
iii

5.1.13

5.1.14

5.1.15

5.1.16

5.1.17

5.1.18

5.1.19

5.1.20

IST: SCANNER

5.1.12.6 Network and PDU Reception test procedure. 53
AUTONETTEST.C i 54
5.1.13.1 Process the Network tests, specific configuration
B sesissieciznuinmicanl isERiRasiEas: 54
AUTOPDUTEST.C . :: ... osoioniamis swosomasoinms 55
5.1.14.1 Process the PDU tests, specific configuration file. .. 55
CO_DIALOG.C 56
5.1.15.1 Build the Company abbreviation and SUT number
diglog: s cnveivnivaiian i dRmEiamn it bodhs 56
CONFWIN.C . . . e e 57
5.1.16.1 Create/Display the Configuration management
PWIE,. (s snriecrine i feniEauiSEms i8] 57
5.1.16.2 Initialize local management structure window. 57
5.1.16.3 Copy values from managment structure to screen
WIdgetS. e 58
FILEMOGMIL .:.sisnsvntaonrupinnssiaacsnns smses 59
5.1.17.1 Try to open logged binary and test configuration
files. 59
5.1.17.2 Close currently used logged binary and test
configuration files. 59
3.1.17.3 Tells CreatelndexTable() which binary file to
1 60
5.1.17.4 Read test specific configuration file. 60
LOG_DIALOG.C e 62
5.1.18.1 Display the logger window. 62
5.1.18.2 Open the pipe between the Scanner and the
Logger. 62
MANAGE.C e 63
5.1.19.1 Rebuild the path to the test suite directory 63
5.1.19.2 Sets the default values in management structure. ... 63
3 1.19.3 Loads the Management configuration file’s
contents into MEMOIY.ouuuun... 64
5.1.19.4 Fill in the Management structure with any missing
L] 64
MGR.C .. e 66
5.1.20.1 Create a new management structure. 66
5.1.20.2 Open an existing management structure. 66
5.1.20.3 Saves the open management structure to disk. 67
5.1.20.4 Closes the opened management structure. 67
5.1.20.5 Deletes an existing management structure. 68
3.1.20.6 Load test suite-specific configuration files. 68

SYSTEM DESIGN DESCRIPTION

1v

5.1.21

5.1.22

5.1.23

5.1.24

5.1.25

5.1.26

5.1.27

IST: SCANNER

NETCONF.C e 70
5.1.21.1 Destroy Network user edit structure. 70
5.1.21.2 Create and display Network user-edit configuration

window. 70
5.1.21.3 Build the Network user edit list. 71
5.121.4 Extract PDU header from Network header. 71
PDUCONFIG.C ;. ciiviicisnmainiunemmpnicnmasismes 73
5.1.22.1 Destroys the PDU user edit configuration screen

and widgets. 73
5.1.22.2 Creates and displays the PDU user edit window. ... 73
5.1.22.3 Build PDU user edit list: «s:ocvvsvaswacamnssa 74
5.1.22.4 Free PDU edit list. 74
5.1.22.5 Extract PDU data from PDU list. 75
PC DIALOG.C i 76
3.1.23.1 Create/Display Packet Count Window. 76
5.1.23.2 Update packet count values. 76
5.1.233 Destroy the Packet Count Window. 77
PF DIALOG.C e 78
5.1.24.1 Create/Display Packet Filter Window. 78
5.1.24.2 Initialize contents of Packet Filter Window. 78
5.1.243 Fetch the contents of the Packet Filter Window. ... 79
5.1.24.4 Fetch the status of selected items in Packet Filter

Wildaw, <o icossnnsinusissnnsnmns snasns 79
5.1.24.5 Destroy the Packet Filter Window. 80
QRY_DIALOG.C e 81
5.1.25.1 Create/Display Query Window. 81
5.1.25.2 Initialize contents of Query Window. 81
5.1.25.3 Fetch the contents of the Query Window. 82
5.1.25.4 Destroy the Query Window. 82
RP_DIALOG.C i 83
5.1.26.1 Create/Display the Report Results Window. 83
5.1.26.2 Update Report Results Window with information

from management structure. 83
5.1.26.3 Add the results of the test to the Report Results

Window. 84
5.1.26.4 Assign the test status results to the Report Results

Window. 84
5.1.26.5 Copy information from the Report Results Window

to the management structure. 84
5.1.26.6 Destroy the Report Results Window. 85
SCDIALOGIC :::vvioviisninnnscnsresmnasamnmsswuss 86

SYSTEM DESIGN DESCRIPTION

v

5.2

IST: SCANNER

5.1.27.1 Create/Display System Configuration Window. 86
5.1.27.2 Copy information from management structure to
System Configuration Screen. 86
5.1.27.3 Destroy the System Configuration Window. 87
5.1.28 TG_DIALOG.C e 88
5.1.28.1 Create/Display Test Selection Configuration
Window. 88
5.1.28.2 Destroy the Test Selection Configuration
Window. 88
5.1.29 TL_DIALOG.C e 90
5.1.29.1 Create/Display the Timeline Window. 90
5.1.29.2 Freshen the text for the current record highlighted
in the Timeline 90
5.1.29.3 Delete list of time line entries. 91
5.1.29.4 Destroy the Timeline Window 91
5.1.30 TS_AUTO DIALOG.C .. u.iccnsnvsinnnismnmsannnsmnss 92
5.1.30.1 Create the automated test selection dialog. 92
5.1.30.2 Fetch the Network user edit list. 92
5.1.30.3 Fetch the PDU user edit list. 93
5.1.31 TS_MAN_DIALOG.C i 94
5.1.31.1 Create manual test selection dialog. 94
5.1.32 TS DIALOG.C e 95
5.1.32.1 Create/Display test suite selection dialog. 95
5.1.33 RPTLOGGER.C i 96
5.1.33.1 Open the teport 10g. - . . c . c v rs v avsiamnsanis 96
5.1.33.2 Close the report log. 96
5.1.33.3 Write the report log header. 9i
5.1.33.4 Write the test header to the report log. 97
5.1.33.5 Write report results to the report log. 98
5.1.33.6 Write formatted information to the report log. 98
5:1.34 RPTRESULTS.C . ..i ccivosvuniimnassimiahosahinisss 99
5.1.34.1 Create Results report. 99
5.1.35 RPTSTATUS.C e e 100
5.1.35.1 Create Status report. 100
5.1.36 PACKET_ID.C i 101
5.1.36.1 Identify a packet. 101
Data Interface e 102
5.2.1 Data Definition Language 102
5.2.2 Scanner Data Structures, 111
5.2.2.1 PDU Data Entry 111
5222 Default Group List 115

SYSTEM DESIGN DESCRIPTION
vi

IST: SCANNER

5223 Mapped Group List 117

5224 Default Network Configuration Table 117

5225 Default PDU Configuration Table 118

5.2.2.6 Logoer Header ...uscivssinmns vamaswesss 119

5227 Management Structure 120

5228 Default Management Structure 125

5229 Indextable 126

5.2.2.10 PO o o:unicnmcpeninsoinuaasanel inmas 129

32211 Automated Test Structure 131

5.2.3 Scanner Configuration Files 132
5.2.3.1 Scanner Configuration File 132

5232 Manager Configuration File 133

5.2.3.3 Network Default Configuration File 135

5234 PDU Default Configuration File 135

523.5 Entity Types Configuration File 136

523.6 Enumerated Values Configuration File 136

5:2.3.7 Network Test-specific Configuration File 137

5238 PDU Test-specific Configuration File 138

524 Logged Binary File Format 138
DETAILED DESIGN e e 140
6.1 POUIMNEIWOIK & v svsnvmscvnssnssamsnaus smuiaSmpinsnsodna 140
6.1.1 PDU Table Building - PDU TBL 140

6.1.2 PDU Utility Routines - PDU_UTIL 143

6.1.3 PDU Validation Routines - PDU_VALID 147

6.1.4 PDU Display Routines - PDU_DISPLAY 152

6.2 TestSUHe «cinuinvrosnsmssnnisons dnnidinssaussonssdmes 163
6.2.1 Load Management Structure - MANAGE 163

6.2.2 Create a Test Suite - CO_DIALOG and MGR 166

6.2.3 Select a Test Suite - TS DIALOG 168

6.2.4 Display contents of a Test Suite - CONFWIN 171

6.2.5 OpenaTestSuite-MGR 173

626 SaveaTestSuite ~=MGR . .. vs:svvvinvsimsscsvussmmass 175

627 Close a Test Boite - MEGR. . s-v s ivmuisnvssnmnsnnnas 176

6.28 Delete a Test Suite =MGR .o cuviinusssnas: snwnssnass 177

6.3 Configuration .. :sssinninasnnnismsinsnimasssasmisanssmss 178
6.3.1 Scanner Configuration file - MAINWIN 178

6.3.2 Entity Types Configuration file - ENTTYPES 180

6.3.3 Enumeration Tables Configuration file - ENUM_CFG 183

6.3.4 System Configuration window - SC_DIALOG 185

6.3.5 Test Selection window - TG_DIALOG 187

SYSTEM DESIGN DESCRIPTION
vii

IST: SCANNER

6.4 Indextable 189
6.4.1 Indextable - INDEXTAB 189
6.5 Packet Filtering e 192
6.5.1 Packet Filter Routines - FILTER 192
6.6 File Management 194
6.6.1 Logged Binary and Configuration files - FILEMGMT 194
6.7 Automated Testing 196
6.7.1 Automated test selection - TS_AUTO_DIALOG 196
6.7.2 Network User Edit List - NETCONF 200
6.7.3 PDU User Edit List - PDUCONFIG 205
6.7.4 Common Automated test routines - AUTOTEST 208
6.7.5 Network-specific test routines - AUTONETTEST 213
6.7.6 PDU-specific test routines - AUTOPDUTEST 215
6.8 Manual Testing e e e e 219
6.8.1 Manual test selection - TS_MAN_DIALOG 219
6.9 Graphical User Interface Windows 223
6.9.1 Packet Count - PC_DIALOG 223
6.9.2 Packet Display - PKT DISP 226
6.9.3 Timeline - TL DIALOG 228
6.9.4 Packet Filter - PF_DIALOG 232
6.9.5 Report Results - RP_DIALOG 235
6.9.6 Query Filter - QRY DIALOG 238
6.10 LOgEer e e 241
6.10.1 Interfacing with the IST Logger - LOG_DIALOG 241
6.11 Reportso 244
6.11.1 Status = RPTSTATUS ... ::owevviinsnssmoimuassnnsas 244
6.11.2 Results - RPTRESULTS 245
6.11.3 Report Log - RPTLOGGER 246
APPENDIX A ... 247
7.1 Scanner Development Environment , .« v oo musvomssnssvssssws 247
7.2 Scanner Runtime Environment 00 vernenn.. 247
APPENDIX B 248
8.1 Hardware Requirements 248

SYSTEM DESIGN DESCRIPTION
viii

IST: SCANNER

FIGURES
Figure 1: Default Group Listing (Fields only) 115
Figure 2: Default Group Listing (Groups and Fields) 116
Figure 3: Example of Data Mapping 144

SYSTEM DESIGN DESCRIPTION
ix

IST: SCANNER
1 INTRODUCTION

This Software Design Description (SDD) shows how the Scanner software system was
designed to aid in the testing of systems that plan on participating in a Distributed Interactive
Simulation (DIS).

1.1 Purpose

The Scanner is a utility program designed to aid in testing the interoperability
requirements of systems that will be participating in a Distributed Interactive Simulation. The
Scanner creates a test suite (or data base) for each System Under Test (SUT) being tested.
This provides the user a place to electronically store the results of each and every test as
opposed to having to record all test results on paper. The test suite is saved in it’s own, unique
directory where all files associated with the test suite will also be kept.

For each test, the Scanner reads a binary (BIN) file logged using IST’s Logger and
performs an initial range validation on all of the fields within each DIS packet in the file
looking for packets within the BIN file that contain erroneous data. The Scanner has two
different test modes, Manual and Automated. The Manual mode allows the user to look at any
packets in the BIN file based on filter criteria they specify. The user after looking at the
desired packets then fills in a report results window with the results they feel are appropriate.
In the Automated mode, the program runs the testing and evaluating of the appropriate packets
in a BIN file and automatically fills in the report results windows with the correct results.

Currently, only a subset of the possible tests to choose from can be run in the Automated
mode.

After each test is run and the report results window is correctly filled in, the program
will save all of the results within the test suite. Also, all information encountered during the
running of the test, to include errors found in a packet, are written to a report log. The report
log can be considered a diary of each test that was run and what happened during the running
of the test. At any time, the user can generate either of the two report formats supported by

the Scanner. The Status and Summary reports, in different levels of specificity, list each test
that was selected to be run and the results of each.

1.2 Scope

This document is divided into four separate design views to be used as required. These
sections are:

SYSTEM DESIGN DESCRIPTION
1

Section 3:

Section 4:

Section 5:

Section 6:

IST: SCANNER

Decomposition Description partitions the system into design entities and
can be used by designers and maintainers to identify the major design
entities of the system. This allows tracing requirements and functions in
order to design entities.

Dependency Description describes the relationship among entities and
system resources and can be used by maintainers to isolate modules
causing system failures or resource bottlenecks. It also aids in
integration testing.

Interface description lists all interfaces and can be used by application
programmers, designers, and testers to gain information as to how to use
a design entity.

Detail Description describes the internal design details of all modules and
is used by the programmer during implementation and unit testing.

SYSTEM DESIGN DESCRIPTION
2

1.3

IST: SCANNER

Acronyms

DDL - Data Definition Language

DIS - Distributed Interactive Simulation
PDU - Protocol Data Unit

SUT - System Under Test

SYSTEM DESIGN DESCRIPTION
3

IST: SCANNER

2 REFERENCES

L.

Technical Report, Test Documents for DIS Interoperability, Institute for
Simulation and Training.

Standard for Distributed Interactive Simulation -- Application Protocols, Version
2.0, Third Draft.

Enumeration and Bit-encoded Values for use with IEEE 1278.1-1994,
Distributed Interactive Simulation -- Application Protocols.

Motif Reference Manual for OSF/MOtif, Release 1.2, Editions 6A, 6B, O’Rielly
& Associates, Inc.

SYSTEM DESIGN DESCRIPTION
4

HE N BE B EE B S AN BN D R B O TE BN O BE BE B

IST: SCANNER

3 DECOMPOSITION DESCRIPTION

This section decomposes the software into major system entities and describes the
attributes of each entity.

The software is composed of 10 major entities: Graphical User Interface, Management,
Testing, Reports, Packet Identification, Data Mapping, Packet Validation, Packet Display,
Database, and Utility Routines.

3.1 Module Decomposition

3.1.1 Graphical User Interface

The Graphical User Interface allows the user to access test suite information, run tests,
record test results, view binary log files, and view the contents of the data packets.
3.1.1.1 Configuration Management Window

This window allows the user to enter information about the SUT being tested, the
company who designed the SUT, and the Testbed environment being used to perform the tests.

The SUT information includes:

Name: Name of the site being tested.

Number: Number associated with the SUT.

IP Address: IP address of the SUT.

Ethernet Address: Ethernet address of the SUT.

Version: Internal company version number of the SUT (filled in
automatically from previously entered information).

Platform: Platform the SUT runs under.

The Company information includes:
Name: Name of the company performing the test.
Abbreviation: 3-character abbreviation of company name (filled in

automatically from previously entered information).

Address 1: Street address of company.

SYSTEM DESIGN DESCRIPTION
5

IST: SCANNER

Address 2: City, State, Zip Code of company.

Point of Contact: Person to contact at the company regarding testing
information.

E-Mail: E-mail address.

Phone: Phone number.

The Testbed information includes:

Tester: Name of the user running the test.
Date: The date the test is being run.
Terrain Database: =~ The name of the terrain database being used.
Data Directory: The directory where the binary logged files can be found.
IP Address: The IP address of the testbed.
Ethernet Address: The ethernet address of the company performing the test.
CGF Version: The version of the CGF being used for the test.
3.1.1.2 Test Suite Edit Window

From the Test Suite Edit window, the user can configure how the Scanner Management
System runs, what configuration files the system uses, what tests are going to be run, and what
logged binary files are going to be tested. This drop-down menu window contains several
entries, including System Configuration and list of test groups.

The specific tests groups or levels of tests are derived from the Institute for Simulation
and Training’s Technical Report, Test Documents for DIS Interoperability. See that document
for specific definitions of what the criteria is for each of these tests. The tests include
Network, PDU, Terrain Orientation, Appearance, Interactivity, System Test, Manned Simulator,
Protocol Translator, and Capabilities tests. Because of the number of tests, PDU, Appearance,

and Interactivity are broken down into separate menus for Reception, Transmission, Adverse,
and Erroneous.

3.1.1.2.1 System Configuration Window

The System Configuration window allows the user to change the names of the
configuration files that the Scanner uses as well as the default port addresses. The Scanner
loads the default configuration files at startup. If the user wants to use different configuration
files or ports, go to this screen and change the desired values and the new values will be

automatically loaded. The Scanner will also remember to load those same files next time that
test suite is loaded.

SYSTEM DESIGN DESCRIPTION
6

IST: SCANNER

3.1.1.2.2 Network Automated Test Window

The Network Automated Test window allows the user before performing an automated
network test to enter more specific range-checking values than the values specified in the
default network configuration file. This window, when it first appears on the screen, is loaded
with the MIN/MAX values from the default configuration file for each field from all of the
types of network interfaces the Scanner recognizes. The program, when performing the test,
will use the values listed on the screen as the range of acceptable values for each field of a
network header.

3.1.1.2.3 PDU Automated Test Window

The PDU Automated Test window allows the user before performing an automated
PDU test to enter more specific range-checking values than the values specified in the default
PDU configuration file. This window when it first appears on the screen is loaded with the
MIN/MAX values from the default configuration file for each field of the PDU to be tested.
The program, when performing the test, will use the values listed on the screen as the range
of acceptable values for each field of the PDU as it is being tested for the specific PDU test.

3.1.1.3 Timeline Window

The Timeline window shows, in a list format, all of the packets that met the
requirements specified within the Packet Filter. It appears for both Automated and Manual
tests. For Manual tests, the user fills in the Packet filter with the desired criteria. With
Automated tests, the Filter is automatically filled in with the appropriate criteria for each test.
For each packet that meets the Packet Filter’s criteria, it shows the number of the packet within
the logged binary file, time the packet was logged, what type of packet it is, what type of DIS
PDU the packet is, the source Entity ID number from the packet, and the delta-time from last
packet with the same source Entity ID. If the packet does not pass packet validation, the first
character in the line will be an ’*’. At the bottom of the Timeline window, the number of total
packets, the number of the current packet highlighted, the start and end times of the packets,
and the time of the current packet highlighted are shown. The user uses the Timeline window
to select which packet will be displayed in the Packet Display window by clicking the mouse
on the desired packet shown in the Timeline window.

SYSTEM DESIGN DESCRIPTION
7

IST: SCANNER

3.1.14 Packet Count Window

The Packet Count window displays the number of packet types in the file of the
following types: DIS, SIMNET, EAGLE, IST Message, Total, and Unknown. For DIS
packets, the count is broken down further for each specific DIS PDU packet type.

3.1.1.5 Packet Display Window

The Packet Display window displays the contents of the packet highlighted in the
Timeline window. At the top of the window will be a hex dump of the entire contents of the
packet. This is followed by a detailed breakdown of the network header, the transport layer,
and the specific DIS PDU type. Each field of the network header and the PDU is displayed
on its own line. If the field has an associated enumerated table, the appropriate enumeration
is displayed at the end of the line. For groups, such as Entity ID or Entity Type, the group
name is displayed and then each element of the group is listed afterwards. If any field or
group failed packet validation, the beginning of the line will contain an ’*’ for quick
identification of problem areas within the packet.

3.1.1.6 Packet Filter Window

The Packet Filter window allows the user to define which packets are to be displayed
in the Timeline window. The user can select/deselect based on Entity Types, Entity IDs, DIS
PDU types, start/end time frames, Exercise number, and Port number. The filter can be set to

show DIS only packets, non-DIS only packets (i.e. unrecognizable packets), all packets, and
exclude Testbed generated packets.

3.1.1.7 Report Results Window

The Report Results window is where the information is entered concerning whether or
not the test passed or failed; if it failed, the reason(s) for failing; and any comments about the
test. For manual tests, the user must enter these comments, however, for automated tests, the
test status and reason field’s are automatically filled in by the program. This window is also
the control point for continuing or exiting the testing module. Clicking on the "Quit" button
in this window exits the testing mode and removes all related windows. After closing this
window, all test information is written to the report log file. Clicking on the "Next" button

will close all windows, write the test information to the report log, and return the user to the
- Test Selection window.

SYSTEM DESIGN DESCRIPTION
8

T e

IST: SCANNER

3.1.2 Management

The Scanner Management System is designed to maintain a test suite or data base for
each SUT. Inherent in this logic is the concept that the Scanner will have access to all
information regarding the current test being conducted or any previous test, as well as future

tests. The idea of maintaining a test suite will help users focus there thoughts regarding what
and how to test a SUT.

When the user creates a new test suite, a directory is created to hold the test suite,
report log, and any other files created by the Scanner. This way the Scanner knows where to
find all files necessary to test a SUT.

3.1.3 Testing

The Scanner contains incorporates all of the tests listed in the Institute for Simulation
and Training’s Technical Report, Test Documents for DIS Interoperability. The method of
performing those tests have been broken up into two forms, Automated and Manual. All tests
can be performed using the Manual method, but only Level 1 - Network tests and Level 2 -
PDU tests can be performed using the Automated method.

Manual testing allows the user to look at any packet within a logged binary file and
selectively narrow the search criteria to look at specific packets. It is the user’s responsibility
to determine if the contents of the binary file meet the requirements of the test being run. In
Automated testing, the user is shown only those packets that meet the criteria specific to the

test being run. The program will automatically filter out the packets that are not relevant to
the test.

3.1.4 Reports

The Scanner Management System has two similar reports pre-defined within the
program, the Status Summary and the Results Summary. The two reports show basically the
same information, however, the Results Summary is more detailed.

3.1.5 Packet Identification

The Packet Identification routines determine all layers of a packet, including the board
level (Ethernet or 802.3), Lan and Net layers (AP, UDP, TCP, IP), and the application layer
(DIS, SIMNET, IST Eagle, and IST Message). A packet to be analyzed and an

SYSTEM DESIGN DESCRIPTION
9

IST: SCANNER

PACKET_IDENTIFICATION_STRUCT are both passed to the packet identification routines.
As the packet is analyzed, the PACKET IDENTIFICATION _STRUCT is filled in with the all
of the pertinent information about the packet.

3.1.6 Data Definition Language

The Data Definition Language (DDL) is used to define the contents of a data packet.
Each protocol layer of a data packet is defined separately. The current protocol layers are the
network layer, transport layer, and application layer.

The reasoning behind the DDL is to allow a generic method for defining the contents
of a protocol layer, rather than defining fixed data structures. A generic method allows one
set of routines to be used for all the protocol layers. Staticly defined data structures would
require a separate function for each protocol layer, and separate functions to process the
various types of data structures within the protocol layers (i.e. Separate functions would be
needed to process all 27 PDU types). The generic method allows all data types to be handled
through a common set of routines. Fields and groups requiring special processing are
identified during the parsing of a data packet, and have associated routines to handle the special
requirements of these fields or groups.

The DDL allows for defining the attributes of the data field, such as: name, data type,
size, minimum value, maximum value, and an associated enumeration table.

The DDL also allows grouping sets of fields into logical groups. Groups are used for
clarity, defining variable data sections, and to define sets of fields that should be processed
together as a unit (i.e. The entity type structure is a group of fields which have meaning
independently, and as a group). Grouping fields together allows for special processing during
validation and display of a data packets contents. A variable section is a group that repeats
(N) times. Where (N) is defined in another data field within the data packet. Since (N) is
defined within the data packet, it may vary from one data packet to the next.

The configuration files containing the DDL data is read at program startup, and default
configuration tables are created. Each table contains default lists describing the contents of a
protocol layer. These tables are used to build the data mapping lists which are used during
packet validation and display. These lists are also used to generate the automated test screens
for network and PDU testing.

3.1.7 Default Network Configuration Table

SYSTEM DESIGN DESCRIPTION
10

IST: SCANNER

The default network table is a collection of lists that are built at program startup, and
contains the default data field definitions used for the network and transport layers. These
default lists may then be used to validate and display the data contents of the network and
transport layers of a data packet. They are also used to generate the network automated test
screen.

A configuration file contains the definition of the default network table, and is read
during the creation of the default network table. The data within the configuration file is
defined using the Data Definition Language.

3.1.8 Default PDU Configuration Table

The default PDU table is a collection of lists that are built at program startup, and
contains the default data field definitions used to define the various PDUs in the DIS PDU
application layer. These default lists may then be used to validate and display the data contents
of a PDU within the application layer of a data packet. They are also used to generate the PDU
automated test screen.

A configuration file contains the definition of the default PDU table, and is read during
the creation of the default PDU table. The data within the configuration file is defined using
the Data Definition Language.

3.1.9 Data Mappihg

This module is used to map either default or user defined configuration lists describing
data field information to a binary data packet.

Even though the default configuration lists define the data fields within the various
protocol layers of a data packet, they may not directly map to the contents of the data packet.
Fixed data structures will map directly to the data within a data packet, but data structures that
contain variable sections will not. The default lists describe what one occurrence of a variable
section would contain. A field within the data packet defines the number of times the variable
section is repeated. This will affect the position of the fields within the variable sections, and
any groups or fields following variable sections. For this reason, the default lists are mapped
to the data packet before the contents of the data packet is processed for validation or display
purposes.

During the data mapping process, a new list is created that overlays the data packet.
The new list contains information about each data field, such as: the name of the data field,

SYSTEM DESIGN DESCRIPTION
11

IST: SCANNER

offset into the data packet, size and type of the data item, minimum and maximum data values,
and an associated enumeration list.

This module uses generic routines to decipher the configuration lists allowing one set
of routines to support mapping of configuration lists to data packets.

During the mapping phase, groups are updated with the size of their children. After
mapping, the top group of each protocol layer contains the size of the mapped layer. The size
of the protocol layers within the data packet should add up to be the size of the data packet.

3.1.10 Packet Validation

The packet validation module is used to validate the fields within a packet. This
module uses the data mapping routines to obtain access to the fields within the packet.

The packet validation routines allow the caller to validate an entire packets contents, a
protocol layer, or a single field within the packet.

The code in this module is designed to traverse a list that has been mapped to a data
packet, and validate the fields within the data packet. If a data group requiring special
processing is identified, a function designed to handle this group type is called. If a data field
requiring special processing is identified, a function designed to handle this field type is called.
Otherwise, the individual fields are validated against the minimum and maximum values stored
in the mapped configuration list.

- If a field or group fails validation, an error message is written to the report log.

3.1.11 Packet Display

The packet display module is used to display the fields within a packet in the X

Window Packet Display screen. This module uses the data mapping routines to obtain access
to the fields within the packet.

The packet display routines allow the caller to display an entire packet’s contents, or
a protocol layer within the packet. If the caller is displaying a packet’s contents, a hex dump
of the packet is displayed, followed by the network and transport layers, and finally the
application layer. At this time, only DIS PDU application layers have been defined. If a

specified protocol layer is displayed, only the data fields within the configuration list are
displayed.

SYSTEM DESIGN DESCRIPTION
12

IST: SCANNER

The code in this module is designed to traverse a list that has been mapped to a data
packet, and validate the data fields before displaying them. If a data group requiring special
processing is identified, a function designed to handle this group type is called. If a data field
requiring special processing is identified, a function designed to handle this field type is called.
Otherwise, the individual fields are displayed.

If a field fails validation during the display process, the field is flagged with an asterisk. This
allows the user to identify fields that fail validation without having to read the report log.

3.1.12 Database Routines

The database routines in the Scanner are controlled by the data stored within the
Indextable structure. Since the Indextable contains the offset and size of each packet in the
logged binary file, it is straightforward to access any PDU within a binary file.

3.2 Data Decomposition

3.2.1 Management Structure (Test Suite)

The Scanner creates a separate management structure on disk for each SUT. The
management structure contains fields for all of the Configuration Management Window
information. This includes Company, SUT, and Testbed information, as well as, which tests
to run, which binary files to use, if there are specific test configuration files, test results,
reasons for failing tests, and much more. The memory reserved for a management structure
is allocated at startup of the Scanner.- The same structure is used for every management that
will be opened by the Scanner.

The management structure is set up as an array of test groups each made up of an array
of test entries. These arrays have a finite number of elements, however, what information is
stored in each element is driven by the management configuration file, "manage.cfg". That file
contains a list of all of the test groups and the specific tests for those groups recognized by the
program. The user has the ability to change the names of any of the tests in the configuration
file and the program will use the new test name automatically.

3.2.2 Indextable Structure

The Indextable is a array that contains an element for each packet within the logged

SYSTEM DESIGN DESCRIPTION
13

IST: SCANNER

binary file currently being tested. The Indextable is dynamically created each time a new
binary file is read. The Indextable contains pertinent information about each packet within the
binary file, including size of packet, offset of packet within binary file, time packet was logged,
specific DIS information about the packet, and packet identification and validation information.
The Indextable contains enough information so that all searching required to meet a specific
filter criteria can be performed on the Indextable rather than searching the binary file on disk.

SYSTEM DESIGN DESCRIPTION
14

IST: SCANNER

4 DEPENDENCY DESCRIPTION

This section defines the system dependencies and provides the flow control between the
different modules for each functional thread. The functional threads are:

4.1 Test Suite File Management

The Scanner Management System creates a test suite (data base) for each SUT being
tested. The test suite provides the user with an electronic means of recording the results of all
tests conducted on a SUT. A test suite is a fixed size, therefore, it is possible to perform a
block read/write on the data.

4.1.1 Create

From the File drop down menu, choosing New allows the user to create a new test suite.
Upon selecting this option, the user will be prompted to input a 3-character company
abbreviation and a l-character SUT number. The Scanner will concatenate the company
abbreviation and the SUT number to form a unique name. A subdirectory with that name will
be created below the directory where the user is working. In that directory, all Scanner-created
files will be stored. By default, the Scanner will create two files, a test suite management file
and a report log file, both beginning with the unique name formed by the company
abbreviation and the SUT number.

The user can then enter information about the Testbed, Company, and SUT. To select
tests, the user goes to the Edit menu where he will see several levels of tests, each made up
of numerous individual tests. Each test has a uniquely named file associated with it. This is
the default name of the logged binary file for that test. The default name is made up of the
company 3-character name and the l-character SUT number followed by a unique number that
has been associated with that test. The user can change any of the default binary filenames
and the program will automatically use the new name as the name of the file for that test.

4.1.2 Open

Opening an existing test suite can be accomplished by choosing Open from the File
drop down menu. This option permits the user to open a previously created test suite and
continue testing with it. A list of all unopened test suites will appear. To select a test suite,
the user should left-click on the test suite name and then left-click on the "OK" button. For
a test suite to show up in the list, a directory must contain a file with the same name as the

SYSTEM DESIGN DESCRIPTION
15

IST: SCANNER

directory and a ".mgt" file extension.

The contents of the test suite file are read into a pre-allocated block of memory. If the
test suite read in from disk has less tests or test groups than the default listing from the

configuration file, the program will automatically add the extra tests from the default list to the
test suite.

4.1.3 Edit

For a test suite, a user can edit any of the fields describing the Testbed, Company, or
the SUT. The user can also go to the Edit drop down menu and change which tests are to be
run and which logged binary files to use for each test.

4.1.4 Save

A test suite is automatically saved, that is written to disk, whenever a test suite is
closed, a new one is opened, or after each test has been completed. The user can also force

the program to write the management structure to disk by choosing Save on the File drop down
window.

4.1.5 Close

Before creating a new test suite, editing an existing test suite, or quitting the program
the Scanner will automatically close the currently opened test suite. The user can also
manually close a test suite by choosing Close from the File menu. Any changes made to the
test suite since the last save will automatically be written to disk before closing the test suite.

4.1.6 Delete

Because there are several files associated with a test suite, the Scanner contains an
option to delete an entire test suite and any files stored in the directory containing the test suite.
Only closed test suites can be deleted. After selecting the test suite to delete, a warning
message will appear asking the user if he is sure whether or not he wants to delete the test

suite. If the user chooses Yes, the entire test suite directory will be removed from the hard
drive.

SYSTEM DESIGN DESCRIPTION
16

IST: SCANNER

42 Edit

The Edit option allows the user to configure the Scanner Management System for
specific testing purposes. Clicking on the Edit option will pull down a menu with several areas
to choose from including editing the system’s configuration and choosing which tests to run
from the multiple levels of tests.

The System Configuration option allows the user to change the names of the
configuration files that the Scanner uses. The Scanner loads the default configuration files at
startup. If the user wants to use different configuration files or ports, go to this screen and
change the desired values and the new values will be automatically loaded. The Scanner will
save these changes and load them every time the test suite is opened.

The Scanner has several configuration files that are read into the program at startup.
They are:

scanner.cfg - Contains a listing of all of the configuration files the Scanner will
use as the default configuration files, as well as, information
about the port settings and the logged binary file timestamp.

manage.cfg - The file contains all of the data signifying the format of the
management structure, to include the names of the test groups,
names of the individual tests for each of the groups, and all of the
default information about each test.

stdV2D3.pdu.cfg
- Contains the Data Definition Language description of all 27 DIS
PDUs recognized by the Scanner.

stdV2D3.network.cfg
- Contains the Data Definition Language description of the network
and transport protocol layers recognized by the Scanner.

stdV2D3.entity types.cfg :
- Contains a listing of the entity types recognized by the Scanner.

stdV2D3.enumerations.cfg
- Contains a listing of the enumerated values recognized by the
Scanner.

SYSTEM DESIGN DESCRIPTION
17

IST: SCANNER

The following is a list of all of the different levels of tests supported by the Scanner as
defined in the Institute for Simulation and Training’s Technical Report, Test Documents for
DIS Interoperability. See that document for specific definitions of what the criteria is for each
of these tests. The test categories include Network, PDU, Terrain Orientation, Appearance,
Interactivity, System Test, Manned Simulator, Protocol Translator, and Capabilities tests. To
choose a test, left-click on the square to the left of the test name to select that test. Left-
clicking on the Select All button will turn all of the tests on, left-clicking on the Clear All
button turns all of the tests off.

To the right of the test name is the name for the binary file associated with that
particular test. The default binary file name for the test is displayed but the user may change
this. Whatever name is entered in that field is the name that the Scanner will expect the test’s
data to be logged to. To the right of the binary filename field is a field to enter the name of
a configuration file specific to that test. If a filename is entered here, when Automated testing’
begins, the program will read the contents of the configuration file, take the values specified
and replace the default validation values with the new configuration values. This concept
allows the user to overwrite the default values on a test-by-test basis.

43 Testing

The Scanner performs all testing and validating of packets by taking an exact mapping
of the data to be checked, i.e., network layer or DIS PDU, and doing a field-by-field
comparison of the data in the packet against the default values in the mapping. If the packet’s
values do not fall within the range specified, then an error exists in the packet.

The Testing option allows the user to perform Automated or Manual tests. After
selecting either Manual or Automated Testing, the user is presented with a window listing all
of the tests selected in the Edit option. If the test has been previously run, the first character
on the line will contain the first character of the result of the test, (P - Passed, F - Failed, or
I - Incomplete). Also, if any comments were written about the test, a portion of the comments
will appear after the name of the test.

After selecting the test to run and clicking the OK button, the IST Logger dialog box
appears. If there is a pipe setup between the Scanner and the Logger, all of the buttons in the
IST Logger dialog are functional. If the logged binary file exists, the OK button is active. If
the binary file does not exist, the user MUST create the binary file. The name of the binary
file to create is displayed in the Log File text window. Note that the Scanner looks for all
binary files in the directory specified in the Data Directory field of the Testbed information.
To either create the binary file necessary for the test or re-log the binary file, choose the
Record button. To stop recording, press the Stop button. To begin the test, click on the OK

SYSTEM DESIGN DESCRIPTION
18

[ST: SCANNER

button. Also, if the user changes the filename of the binary file to use, the new name will
automatically be changed int he Edit test selection menus.

For all tests, the Scanner performs an initial validation on the logged binary file to be
tested checking both the network and PDU information. The validation scans all fields in
every packet to see if the values in those fields fall within the default specified parameters.
[f any errors are found, the field, its value, and the acceptable values are written to the report
log. As each test is run, all information about that test (i.e., test results, packet validation
results, etc.) is written to a report log file.

4.3.1 Automated Testing

Automated testing provides a way for users to conduct a significant amount of DIS
compliance testing with very little manual effort. After choosing the test to be run, the
program will fetch the default values for the range checking to be performed in the test. If a
test-specific configuration file is specified for this test, the default range values will be
overwritten by the configuration file’s values. A dialog window will appear showing the user
all fields to be tested and the range of acceptable values for that field. At this time, the user
can change the values, if so desired.

After selecting the Run button on that dialog window, each packet that meets the criteria
of the test is passed to the validation routines to verify that those packets have values in all
fields that fall within the specified ranges. If any errors were found in the packet during
testing, the program will automatically write all errors to the report log and fill in the Report
Dialog with a test status of Failed and give the reason for failure in the reason field. If there
were no errors found, the test status field is assigned a value of Passed. Internally, the
Indextable is updated with results of the validation procedure.

When the test has completed running, the Packet Display window and the Timeline
window will appear. These windows allow the user to look at all packets that meet the criteria
of the search. If any of the packets did not pass the test, the first character of the line in the
Timeline for that packet will be marked with an "*" for easy recognition. Highlighting that
packet will display it in the Packet Display window. For each field that had a value out of
range, the first character of the line in the Packet Display window will contain an "*".

After the user verifies that the Scanner assigned the appropriate test result, the user can
enter comments into the Report Results window. When the user chooses Quit or Next to leave
this test, the program will write all test results to the report log, as well as, updating the test
suite structure. |

SYSTEM DESIGN DESCRIPTION
19

IST: SCANNER

Currently, only two levels of automated testing have been defined within the Scanner,
Network header verification and PDU verification. There are spaces listed for multitudinous
other tests, but they are not yet defined. However, the user could run the tests in Manual mode
and still assign them the appropriate test status result and comments.

4.3.2 Manual Testing

Because not all possible tests have been automated and since a user may want to look
at all or any select portion of packets within a binary file, not just the ones appropriate for a
test, the Scanner has a manual testing option. After selecting the test to run, the program
performs packet validation on each packet in the binary file using the default values specified
in the configuration files. Internally, the Indextable is updated with results of the validation
procedure. Then the program will open several windows for the user, including the Packet
Count, Packet Display, Timeline, Packet Filter, and the Report Results windows. By default,
all DIS-only, non-testbed generated packets show up in the Timeline.

By changing the filtering criteria in the Filter screen, the user can narrow or expand the
list of items that will appear in the Timeline window. If any of the packets did not pass the
initial default validation performed by the Scanner, the first character of the line in the
Timeline listing that packet will contain an "*". By highlighting and selecting a packet in the
Timeline window, the user can view the contents of the packet in the Packet Display window.
The Packet Display window shows all of the information in the packet, including the entire
network layer as well as the PDU. If there are text enumerations for specific fields in the
packet, the full enumeration is shown. If the packet being displayed had any fields that did
not pass initial default validation, the first character of the line containing that field will be
marked with an "*".

After the user examines the appropriate packets and determines if the binary file meets
the requirements of the test being conducted, the user fills in the Report Results window.
When the user chooses Quit or Next to leave this test, the program will write all test results
to the report log.

4.4 Report Generation

The Scanner Management System has two pre-defined reports already incorporated
within the program, the Status Summary and the Results Summary. All reports are generated
as formatted text files in the same directory as the test suite data base. Both reports contain
a header that summarizes the Testbed, Company, and SUT information and then lists each level
of testing as a discrete section within the report. The main difference between the two reports

SYSTEM DESIGN DESCRIPTION
20

IST: SCANNER

is the amount of information presented in the report.

The Results Summary report is the more verbose of the two reports. It includes the
unique number and name of the test, the test status (Passed/Failed/Incomplete), number of
times the test was run, specific type of test (Transmission/Reception/Adverse/Erroneous), name
of the binary file tested, reason for failure of test, and comments about test. The Status
Summary is a simpler report that includes only the Test status and test name and number.

The Scanner also generates a report log that lists significant information about all tests
that have been conducted, to include the result of the test, the number of times run, and user
comments. If an error is found in a packet during either initial packet validation or specific
packet validation, the erroneous field, it’s value, and the correct value range are written to the
report log. The report log provides a user with a complete, historical listing of what tests were
run, the results of those tests, and any errors that were found while running the tests.

SYSTEM DESIGN DESCRIPTION
2]

IST: SCANNER
5 INTERFACE DESCRIPTION
This description covers the details of external and internal interfaces.
5.1 Module Interface
This section describes the entry points in each of the scanner’s main modules.
NOTE: All references to widgets and shells releate to the xWindows Motif
language. This manual will not go into a detailed explanation of these
points. Please see Motif Reference Manual for OSF/MOtif, Release 1.2,
Editions 6A, 6B for a description/definition of these topics.
5.1.1 PDU_TBL.C
This module is used to build the default configuration tables for network, transport, and
application layers of a DIS data packet. Currently, the only application layer defined is the
DIS PDU.
5.1.1.1 Build Default PDU Configuration Table
SYNTAX

buildPduConfigTable (filename);

PARAMETERS
char * filename - specifies the name of the configuration file
containing the PDU data definition.
DESCRIPTION

This function is used to create the default configuration lists for the application
layer of the data packet. Specifically, DIS PDUs. This table is used during data
mapping, and generation of the PDU automated test window.

RETURNS

TRUE - The configuration file was read and the PDU table
was built.

SYSTEM DESIGN DESCRIPTION
22

IST: SCANNER

FALSE - Unable to open the configuration file. The PDU
table was not built.

5.1.1.2 Build Default Network Configuration Table
SYNTAX

buildNetConfigTable (filename);

PARAMETERS
char * filename - specifies the name of the configuration file
containing the network data definition.
DESCRIPTION

This function is used to create the default configuration table for the network
layer of the data packet. This table is used during data mapping, and generation
of the network automated test window.

RETURNS
TRUE - The configuration file was read and the network
table was built.
FALSE - Unable to open the configuration file. The
network table was not built.
5:1:1.3 Destroy Default PDU Configuration Table
SYNTAX

destroyPduConfigTable (void);
PARAMETERS
None.

DESCRIPTION

SYSTEM DESIGN DESCRIPTION
23

5.1.1.4

IST: SCANNER

This function is used to destroy the default PDU configuration table.

RETURNS

None.

Destroy Default Network Configuration Table
SYNTAX

destroyNetConfigTable (void);
PARAMETERS

None.

DESCRIPTION

This function is used to destroy the default network configuration table.

RETURNS

None.

SYSTEM DESIGN DESCRIPTION
24

IST: SCANNER
5.1.2 PDU_UTIL.C

This module is used to map the contents of a configuration list over a binary data
packet.

5:1:2:1 Fetch Size of Mapped List

SYNTAX

fetchMappedPduSize (list);

PARAMETERS
LL * list - List is a pointer to the first element in the mapped
list.
DESCRIPTION

This function is used to fetch the size of a mapped list. The first element of a
mapped list is a group structure holding the configuration name, and size in

bytes.
RETURNS
Zero - The parameter specified does not exist, or there is
nothing to map.
Size - The size of the mapped list.
5122 Map PDU Configuration List to a Data Packet
SYNTAX

mapPduListToData (pduList, packet, length);

PARAMETERS

LL * pduList - pduList is a pointer to the first element in the
configuration list to be mapped to a data packet.

SYSTEM DESIGN DESCRIPTION
25

IST: SCANNER

char * packet - The base address of the packet layer within the
data packet to be mapped.

u_short length

Length of the PDU data section within the data
packet.

DESCRIPTION

This function maps a PDU configuration list to the data within a packet. A new
list is created containing the mapped data list.

RETURNS
LL * newList - A pointer to the newly created list is returned.
5.1.2.3 Map default PDU Configuration List to Data packet.
SYNTAX

mapCfgPduToData (pduType, packet, length);

PARAMETERS
int pduType - The pduType field contains the DIS PDU number
to be mapped. It is also the index into the default
PDU configuration table.
char * packet - The base address of the packet layer within the

data packet to be mapped.

u_short length Length of the PDU data section within the data

packet.

DESCRIPTION

This function maps a default PDU configuration list to the data within a packet.
A new list is created containing the mapped data list. The pduType parameter

contains a DIS PDU type, and is used to index the default PDU configuration
table.

SYSTEM DESIGN DESCRIPTION
26

IST: SCANNER
RETURNS
LL * newList - A pointer to the newly created list is returned.
5.1.24 Map default Network Configuration List to Data packet.
SYNTAX

mapCfgNetToData (netType, packet, length);
PARAMETERS

int netType - The netType field contains the index into the
default network configuration table.

char * packet The base address of the packet layer within the

data packet to be mapped.

u_short length Length of the PDU data section within the data

packet.
DESCRIPTION

This function maps a default network configuration list to the data within a
packet. A new list is created containing the mapped data list. The netType
parameter contains an index into the default network configuration table.

RETURNS
LL * newList - A pointer to the newly created list is returned.
5.1.2.5 Destroy Mapped Configuration List
SYNTAX

destroyPduMapping (pduList);

PARAMETERS

SYSTEM DESIGN DESCRIPTION
27

IST: SCANNER

LL * pduList - pduList is a pointer to the first element of a
mapped list.

DESCRIPTION

This function destroys previously created mapped lists.

RETURNS

NULL - The mapped list was destroyed.

SYSTEM DESIGN DESCRIPTION
28

5.1.3 PDU_VALID.C

IST: SCANNER

This module is used to validate fields within a data packet.

5.1.3.1 Validate the contents of an entire Data Packet

SYNTAX

PacketValidation (packet, netHdr, pduList, pis, length, index);

PARAMETERS

char * packet -

Pointer to the start of the data packet.

PDU_DATA_HEADER *netHdr

LL * pduList -

Pointer to the network header table to be used
during network and transport layer validation.
NULL specifies that the default configuration table
should be used during validation.

Pointer to the application list to be used during
validation. = NULL specifies that the default
configuration list should be used during validation
of the application layer.

PACKET IDENTIFICATION_STRUCT * pis

u_short length -

u_long index -

DESCRIPTION

Pointer to the packet identification structure
containing the packet identification information.

The length of the data packet as defined by the
data logger.

The index of the packet within the binary file of
logged data packets.

This function validates all layers of a data packet. The caller may specify the
use of the default configuration lists, or a user defined configuration list. If a
packet fails any part of the validation process, an error message is written to the

SYSTEM DESIGN DESCRIPTION

29

IST: SCANNER

report log describing the reason for the failure. The index parameter indicates
which packet within the binary log file failed validation.

RETURNS

TRUE - The packet passed validation.

FALSE - The packet failed validation at some point during
the validation thread. The report log has a detailed
definition of the failure.

3. 1.3.2 Validate the contents a Data Field
SYNTAX

ValidatePduField (packet, pduField);

PARAMETERS

char * packet - Pointer to the start of the desired layer within the
data packet.

PDU_DATA_ENTRY * pduField

- Pointer to the data fields entry within the mapped
list.

DESCRIPTION

This function is used to validate a single field within the data packet. The field
structure defining the data field must come from a mapped list.

RETURNS
TRUE - The field passed validation.
FALSE - The field failed validation. The report log has a

detailed definition of the failure.

SYSTEM DESIGN DESCRIPTION
30

IST: SCANNER

5.1.4 PDU_DISPLAY.C

5.14.1

Displays the contents of a packet in the X Window Packet Display Screen.

SYNTAX

PARAMETERS

DESCRIPTION

Display the contents of a data packet in a X Window Packet Display Screen.

packetDisplay (packet, netHdr, pduList, pis, length);

char * packet - Pointer to the start of the data packet.

PDU_DATA _HEADER . *netHdr

- Pointer to the network header table used while
displaying the network and transport layer. NULL
specifies that the default configuration table should
be used.

LL * pduList - Pointer to the application list to be used while
displaying the application layer. NULL specifies
that the default configuration list should be used.

PACKET IDENTIFICATION<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>