
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-1991

BUGS: A Test Bed For Catastrophe Based Collective Behavior BUGS: A Test Bed For Catastrophe Based Collective Behavior

Thomas L. Clarke

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Clarke, Thomas L., "BUGS: A Test Bed For Catastrophe Based Collective Behavior" (1991). Institute for
Simulation and Training. 35.
https://stars.library.ucf.edu/istlibrary/35

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/35?utm_source=stars.library.ucf.edu%2Fistlibrary%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

' I
I
I I 02

I

May 1991

BUGS: A Test Bed for
Catastrophe Based
Collective Behavior

Thomas L Clarke

Institute for Simulation and Training
12424 Research Parkway, Suite 300
Orlando FL 23826

Unlversly or Central Florida
Division of Sponsored Research

IST-TR-91-17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

INSTITUT E FOR SIMULATION AND TRAINING

BUGS: A Test Bed for
Catastrophe Based
Collective Behavior

Contract NS1339-89-C-0044
May 1991

IST-TR-91-17

Prepared by

Thomas L CIar1<e

Reviewed by

Margaret Loper

Institute for Simulation and Training' 12424 Research Parkway, Su~e 300 • Of1ando, Florida· 32826

Unlverslty of Central Florida· Institute for Simulation and Training

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Introduction
Discussion .

MakeFile
Bugs.inc .
Bugs.f
Bugs_disp.f
Bugs_subs.f
2D_FFr.f .
Sub-FFr.f ..
bitrev.f .. .
Timer.f.. .

Recommendations

Appendices

Table of Contents

•

I Human Behavioral Modeling Using Catastrophe Theory
2 Source Code.

MakeFile
Bugs.inc .
Bugs.f
Bugs_disp.f .
Bugs_subs ..
2D_FFr.f. .
Sub-FFT.f ..
bitrev.f .
Timer.f . .

•
•

I
. I

I
I
2
3
4
5
5
6
6
6

7
16
17
19
20
25
29
34
36
39
40

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

INTRODUC1l0N

1ST researchers have constructed a model environment to rapidly genernte and test ideas
about force-field driven, catastrophe switched behavior. While the ultimate goal of this project
is to help produce a dismounted infantry semi-automated force (SAFOR) for the simulator
networking (SlMNET) environment, the SIMNET environment is inherently very complex. The
simulated environment facilitates the testing of ideas for behavioral modeling.

The program, Bugs, was used to test the ideas reponed on in the paper "Human
Behavioral Modeling Using Catastrophe Theory" presented at the 2nd 1ST Behavioral
Representation Symposium. (Appendix I contains this paper.)

Bugs was implemented on a NeXT Workstation equipped with a Motorola 68040
processor. The language used was Absoft Objective Fortran. Fortran was chosen because of its
ability to include complex numbers and its good match to numeric processing. The Absoft
version was used because it included objective extensions that allowed easy implementation of
graphics routines. See Appendix I for more detailed information.

The work described in this report was partially funded through DARPAJPM TRADE
contract N61339-89-aJ044, Intelligent Simulated Forces Evaluation and Exploration of
Computational and Hardware Strategies.

DISCUSSION

The following discussion explains the contents of the source code files needed to compile
a working version of the Bugs program for the NeXT workstation. This code works with version
2.0 of the NeXTStep operating system. It is not known whether it will work with version 1.0.
Listings of these mes are included as Appendices.

Makellle

UNIX style me controlling program compilation and linkage. The variable FFILES
contains the names of dependent code files.

Bugs_Inc

Block of code that declares variable in common to all the Bugs programs. All the
variables - except the parameter variables IU', nxm, ncomb - are conunoned in the block
GLOBALS. This use of common forces within objective Fortran makes these variables static.

The variable names are meant to be suggestive of their function, but a brief explanation
will be helpful.

nx (nxm)
meanx,meany
npoten
ngen
nodisp
liveb(livefl

- size of playing grid (minus I, need for array sizing)
- fossils, defined but not used
- controls display of potential function
- number of generations or time steps run
- toggle variable to tum off display
- number of buddy (foe) agents left alive

1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

stopped - toggle variable to pause simlation
ncomb - maximum number of agents (array dimension)
xmax,ymax.xO.yO - maximum and minimum coordinates
dx,dy - grid spacing in screen units
emax - floating point nxm
budr,budi (joer joei) - real and imaginary parts of buddy (foe) potentials
wbudr,wbudi (lifoer;.foei) - real and imaginary parts of buddy (foe) weights

Imaginary pans are used to calculate cross-potentials, e.g. foe to bud
xb,yb (xf,yf) - x and y coordinates of buddy (foe) agents
stateb(Slatef) - state of buddy (foe) agents
budbud(budjoe) - pairwise potential between buddy and buddy (foe)
foebudjoefoe - pairwise potential between foe and foe(buddy)

These are not now used but would be needed in SIMNET.

Bugs.r

Main program - sets up NeXT window objects and main timing loop. This program is a
modification of an example provided with the Absofl compiler and some of the peculiarities of
syntax reflex this genesis.

For those unfamiliar with Objective Fortran syntax, the statements beginning with @ are
objective syntax and follow closely the analogous statement in objective C.

The
@INJERFACEBugs: View

line specifies the messages to which the object Bugs (which is of class View) responds. Bugs
responds to messages@-suspend, @-gofast, @-step, @-density, @-drawSelfas specified by
the subsequent lines of code. The @-mouseDown message was not implemented. It would
have been desirable to allow mouse driven editing of the agents within the Bugs View, but time
precluded implementing this method.

The@IMPLEMENTATIONstatementbeginsasection which specifies how Bugs
responds to each method. The @+ newView section contains intialization code which places the
window on the screen (NKEraseRect) specifies the max range of x and y. calls the initialize
subroutine (see Bugs_subs.f) and calls the dispilJy subroutine (see Bugulisp).

The strange bracketed code indicates a message being sent. For example, (self
newFrame:&rJ means self(this object) is being recursively commanded to respond to a
newFrame message. Similarly, the {Timer newTlmer: .. .] message implements the basis timing
loop of the program by sending the Timer a message (see Timer.f). The commented message .. .
setAip ... is left over from the Absoft prototype. It causes the coordinate system to be flipped
vertically which is undesirable when using some fonts on the screen.

The sections beginning@-step •...• @- drawSelf contain the code that implements the
various methods. Most of these methods just change the state of a switch variable in response to
a mouse click on a menu item. The method drawSelf does the work. The subroutine neighbor is
called to calculate the potential function; then rule is called twice to update the states of the
agents: once for friends and once for foes.

The code beginning with PROGRAM main is standard NeXT code for starting a program.
A new application NXApp is established by messaging Application; setUp code is called; the
application is given a run message and then a/ree message after completion.

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The subroutine setUp sets up a needed reel window data structure and creates a window
view with a message to Window. my Window is modified and enhanced by sending it various
messages. The myPanel window for the menu items is set up by a message to Panel, and is
subsequently modified. The rmal section defines the actions in response to various mouse clicks
by sending myMenu various addItem messages.

Briefly these actions are:
Info
Pause
GoFast
Single Step
Show Density

Print
Hide
Quit

- the usual NeXT program infonnation message
- stop program execution but retain display, second click toggles
- continue simulation but tum off display for speed, toggles
- execute onc time step of the simulation
- display friend-friend potential function as shades of gray, subsequent clicks

cycle through friend-foe, foe-foe, foe-friend and off
- invokes the slandan! NeXT prinlpanel
- miniaturizes the display window, program continues to run
- SlOp program

This file contains two display subroutines. Both display routines make use of calls to
NeXT display Postscript screen commands. These calls are identified by the prefix PS and have
the effects suggest by their names. One peculiarity is the the use of the VALO function which is
needed since the native NeXT C-PS functions use call by value whereas Fortran uses addresses.
The other thing to note is that the basic unit of Postscript drawing is the path, hence the calls to
PSnewpath and PSciosepath.

The first subroutine Box draws a nice box around the playing field of the size specified
by its arguments.

The display subroutine displays the generation number. the number of agents left alive.
and optionally. the positions of agents and the potential functions. Control is basically by nested
if statements.

The non-Fortran programmer will be mystified by the sections thaI flfsl "00
i= I ,IOO;livingli)=O;end 00" then encode according 10 some format and then caUa PS-fucnlion.
Fortran is very bad with strings. What is happening is that the array living is having string data
entered and then the PS-function is being called with that sIring data.

An English version of the program flow is as follows:
A call to Box clears the display.
If display is not off or hasn't been displayed for ten generations then display.
Display consists of:

Two calls to Box to make a nice nested appearance.
If polential display is on, then

loop to find max and min of desired potential
loop 10 display polential scaled 10 [0,11

Note - display is via Postscript line drawing function with line width
set to grid size. dx, so that the Postscript machinery automatically
provides the gray scale display

An encode sequence sets a font. another encode then results in display of

3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

the type of potential function.
After setting liveb and live! counters to zero, two loops display the locations of the
agents using PSarc circle drawing commands. State of agent is indicated by
shade of circle.

An encode sequence sets the font and three more encode sequences display the numbers
of each type of agents remaining and the generation number. Obviously in go-fast mode
the number of agents is updated only every 10th generation, although this could be
modified.

This file includes three subroutines that implement the computations underlying the Bugs
simulation: neighbor, initialize, and rule. The first, neighbor, calculates the pairwise potentials
using an FFf calculation of the convolution. The second, initialize, sets up the simulation, and
the third, rule, updates the states of the agents. The discussion begins with initialize.

The flrst section of initialize deals with setting up the weight arrays used in calculating
the convolution from which the potential is derived. Three Gaussian distributions with standard
deviation sig{ 1 ,2,3) are used. The Gaussian nonnalization factors an{l,2,3} are calculated once
and for all, as are the exponential argument weights as{l,2,3}. The ij loop then loads the arrays.
As noted above, the real pans of the array are used to hold the like weights (bud·bud, foe·foe).
and the imaginary parts the unlike weights (foe-bud, and bud-foe); this saves a whole set of
FFTs. FFT2DREV is used to transfonn the weights to the Fourier domain once and for all.

Finally, a modular pseudo-random function is used to populate the playing grid with
agents (Absoft FORTRAN had no convenient random·number generator), The debris of
commented statements shows some of the history of experimentation. All agents stan in the
timid state (0.5).

The subroutine neighbor calculates potential functions using multiplication in the Fourier
domain. The potential arrays are first zeroed. They are then incremented by the indicator value
1 wherever an agent is located. The transfonn FFT2DREV is then used to pass to the Fourier
domain. The transformed locator function is then multiplied by the conjugate of the transfonned
weights to get the transformed potential function. The potential is brought back to spatial
domain via REVF FT2D.

Subroutine rule begins by setting the parameters, swjacr. and dead for a two dimensional
linear·hysteresis approximation to the cusp catastrophe. As mentioned in the paper, a linear
approximation was used rather than a cubic cusp switch surface. This was based on the intuition
that what matters is the topological pattern of hysteresis not the exact details of the hysteresis.

The like-like (foel}) and like-unlike (budO) potentials are looked up. If
like·unlike> dead· like·like the agent is killed. If not killed, the state of the agent is calculated.

In the linear·hysteresis approximation to the cusp, if sK!lact<budOljoeO<J Iswjact, the state is
unchanged. If in a overwhelmingly unlike region, budO<!oeQ· swjact, the agent becomes timid
(0.5). If in a largely like region,
foeO>budO*swfact, the agent become bold (2.0).

For a true cusp the code would be little changed. In this case swfact becomes a function
of the distance from the origin, so that insening the statements

swn=budO+foeO:diJf=budOJoeO:hYSI=swfact*(budO+foeO)**3,

4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

and modifying the ifs to read

if (di/f.lt.(-hyst» statef(i)=O.5
if (di/f.gt.hyst) state!(i)=2.0

would implement a true cusp; the value of swfact will have to be changed correspondingly. The
validity of these expressions follows from shifting to sum and difference coordinates in the
(bud,foe) plane. This modification has not been tested. but intuitively the behavior should be
similar to the linear version and the amount of eXb'a computation required is minimal.

Finally the motion increments vI and v2 are set according to the agent's state. The
potential gradients are calculated and the agent moves according to vI and v2 and the sign of the
gradients.

2D]FT_f

This file contains two dimension FFf routines. As with one dimensional routines, these
routines are provided in pairs so that overhead of bit reversal and transposition is avoided. The
extra swi tch variable isw is included to control this function.

For two dimensional, Fourier transfonns, one dimensional transforms are fIrSt perfonned
along one axis, then one dimensional transforms are perfonned along the other axis. Since
Fornan (most compilers) store multi-dimensional array data first-index fastest, the address of the
first element of each column can be passed to a one dimensional transfonn to avoid the overhead
of two dimensional index calculation. If the array is then transposed. the same technique
calculates the other transfonn direction without the overhead.

When the transfonns are used for convolution. the arrays do not need to be retransposed.
nor so the final transforms need to be bitreversed. This saves additional overhead. The paired
routines in this file FFr2DREV and FFr2DREV can be used in this fashion. Note that the bit
reversal of the first set of transfonns cannot be avoided when using standard one dimensional
transfonns. since skipping it would lead to a very strange data order on input to the second set of
transforms. -

Sub-FFT.f

This me contains one dimensional FFf routines. The code is rather unremarkable
textbook code except that bit reversal is not perfonned. Two versions are providedFFTREV
gives bit reversed output. whereas REVFFT takes bit reversed input. The argument is
determines the direction of the transfonn is=+} for reverse, is=-} for forward (blame the sine
function for reversal).

These paired routines are useful for convolution. Convolution only requires
multiplication of corresponding values in the frequency domain. so that bit reversal is not needed
provided appropriately paired transfonns are used. This little trick saves the overhead of bit
reversing the time series.

The routines would have been more elegant if Fornan's complex number data type had
been used. Ultimate translation to C would have been more difficult, however.

5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

bltrev.!

This textbook routine reorders time series bit reversed by FFf algorithms. Also in this
file is a little integer /og2 function, ilog2.

Timer.!

Supplied by Absofl 10 implemenl repelitive programs.

RECOMMENDATIONS

The ultimate goal of this project is to apply the ideas reponed on in the attached paper,
"Human Behavioral Modeling Using Catastrophe Theory", to the dismounted infantry SAFOR
applications in the SIMNET environment The following features must be incorporated in any
SIMNET SAFOR code derived from Bugs.

(1) Display - Display of agent motion is current via the routines in Bugs_disp.f. This would be
replaced by calls to appropriate SIMNET routines (C-functions, whatever) that generate the
necessary protocol data units (PDUs) to make agents appear at appropriate locations within the
SIMNET world.

(2) Force Fields - The force fields play two roles in Bugs. They detennine the direction of agent
motion by via a gradient ascent algorithm, and they detennine agent behavior via the
calastrophe-based behavior model. In a SIMNET SAFOR, the force field concepl could be used
as in Bugs with the addition of "infinite" potentials to implement static features like terrain
obstacles (see the paper by Hung Le al the 1ST BR Symposium). The computational
requirements would be relatively high, however, even with FFr techniques, for higher resolution
grids than the 32 by 32 used in Bugs.

Slow updates may not be a problem, since a relatively sluggish force-field response
(seconds) may be acceptable in SIMNET - agent behavior would of course occur at a faster
time scale than the force-field update. Imagine neighbor running slower and asynchronously
from rule. To implement this neighbor would have to be modified to takes its inputs from
appropriate SIMNET routines.

Perhaps a better approach would be to use the spirit rather than the letter of Bugs. The
primary purpose of the force field is to provide a simple test environment for behavioral ideas.
These ideas could be implemented directly into code that obtains environmental infonnation
from SIMNET routines, evaluates the agent's status using catastrophe theoretic ideas, and then
displays the agent's behavior using other SIMNET routines. In this approach. all that remains of
Bugs would be modified versions of initialize and rule. The mOOified rule would detennine the
density of enemies versus friends directly from calls to SIMNET routines and update state
accordingly. Information from SIMNET routines would be used to detennine behavior based on
the state. and the behavior displayed by invoking other SIMNET routines.

6

I
I
I
I Appendix 1

I Human Behavioral Modeling
Using Catastrophe Theory

I
I
I
I
I
I
I
I
I
I
I
I 7

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Human Behavioral Modeling Using Catastrophe Theory

by

Thomas L. Clarke
J . Martin Olle

Institute for Simulation and Training
University of Central Florida

ABSTRACT

A simple model of human behavior applicable

to force simulation and based on catastrophe

theory is developed. The large number of agents

that must be modeled/or a dismounted infantry

Qmomaredjorce mandates that the algorithms

used be as simple as possible. Simple models in

which behavior is determined by local variables

are investigated. Models based on cel/u/ar

automata are/ouM not to be useful. Physically

motivated models based on catastrophe theory Of e

promising. however. This is not surprising since

the seven fundamental catastrophic transitions

have been used successfully 10 model behavior in a

variety of circumstances.

For dismounted infantry, the cusp catastrophe

is used to mode/ the transition from bold behavior

when surrounded by friends. to rimid behavior

when surrounded by enemies. In a simulated

battlefield environment. infantry agents are

modeled as point particles moving under rules

determined by the bold or timid state. The infantry

in this simple battlefield exhibit interesting. nOIl

trivial behavior. It is rhus likely thar catastrophe

based behavior will be useful as the basis for more

complex simulations.

8

INTRODUCTION

Current approaches to modeling battlefield

behavior are often based on conventional symbolic

Artific ial Intelligence (AI). If this symbolic AI

approach were to be used in our research. then a

ru le-driven behavior model would be implemented

for each of the many agenls needed fo r a dis

mounted infantry, semi-automated force. How

ever. this symbolic AI approach requ ires an

unmanageable and impractical amou nt of

computing power. As an alternati ve Ihen. we have

chosen to consider non-symbolic models.

Perhaps the simplest such non-symbolic

models are based on cellular autom:Ha such as

John H. Conway's game of Life (Poundstone,

1985). In a cellu lar automata, space is divided

into discrete squares. each of which is

characterized by a state. For behavioral

applications these stmes would represent the

absence or presence. and the condition of a

simulated agent. In Conway's Life. each cell is

either empty (0) or full (1). Time progresses

forward in discrete steps. and Ihe state of a cell at

Ihe nexl lime step is determined by its present

stale and the state of its eight neighbors.

Conway's rules are simple: (1) if a cell is empty

now and precisely three neighbors are full, then

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

the cell becomes full in the next lime step; (2) if a

cell is full and two or three neighbors are full, then

the cell remains full in the next time step; (3)

otherwise the cell becomes empty. These rules
balance the problems of runaway population
growth with the problems of extinction; indeed,

Poundstone (1985) shows that Conway's Life

automata is sufficiently rich to emulate a universal

Turing machine.

OUf first attempt at designing a behavior

model was based on Conway's Game of Life.
Life - as it is called for brevity - contains
within it the concept of bin.h and death of agents

in a large matrix of cells. The birth aspect can be

thought of as an analogy to the increase in strength

of an agent receiving reinforcements and
becoming more aggressive. The death aspect is
analagous to an agent being overwhelmed by an

enemy and becoming timid and retreating.

Life, however, had some serious shortcomings

in its unmodified condition. For example, there

were only two cell states on the playing board: the

'on' states, which could be considered as an agent;

and the 'off' states, which were simply the

background environment. To introduce enemy

agents. another cell state was added [0 the game.

This cell state is conveniently represented as a

third color or else a shade of gray.

There was still another drawback to

unmodified Life: the rules of the game only

considered the 'on ' and 'off' state of cells that

were directly adjacent to one another. This is a

drawback because on the battlefield, the presence

of all units at various distances from your own

must be considered important. Life doesn't model

this situation. To remedy the problem. a two

dimensional Gaussian distribution of weights was

introduced into the sum of neighbor states used to

determine the next cell state. The neighbor sum

9

"'" -
I -I

. ~

Figure J. Generalization o/Collway's Ute 10 two

types 0/ agents, white and black.

thus includes a contribution from non·adjacent

cells which models the importance of the presence

of units at various di stances and remote positions.

Figure 1 shows a snapshot of the results of

running a generalization of Conway's Life in

which each cell is in one of three possible states:

+1 (friendly, white), 0 (empty, gray), or -I

(enemy, black). Thc state of a cell is determined

by the sum of the states of its neighbors. For

white, the rules are Conway's; for black. the rules

are Conway's with the sign reversed. There are of

course many more possibilities for generalizing the

rules, and several were tried. Unfortunately, the

behaviors of these Iwo·phase automata did not

seem to capture the richness of behavior needed on

the banlefield. As Figure 1 suggests, the results

are generally a useless debris of blinkers (3 cells

in a row that alternate directions from one lime

step to the next), blocks (stable 2 by 2 cell arrays)

and other elements from Conway's bestiary.

Somewhat surpris ingly, the 2 by 2 block is

impregnable to enemy attack. Th:ll is. a 2 by 2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

black block cannot be destroyed by any

combination of while cells coming in contac t with

it. This leads to the interesting but unrealistic

prospect that a picket fence of blocks would fonn

an impenetrable and unassailable barrier.

Additional generalizations, such as

introducing the long-range Gaussian interactions.

were tried but did not result in more realistic

behavior. Finding a good balance between binh,

death. and conflict has been difficult. The long

range interactions resulted in simulations that

either quickly died-out or else quickly and

exponentially overpopulated.

PARTICLE·LlKE MODELS

The failure of cellular automata patterned after

Life led to the consideration of other simple

models for behavior. In particular, an approach

based on physics-lilce panicles, having a few

simple intemal states, seemed promising. ntis

type of model retains the idea of long-range

interactions with locally detennined behavior, but

now the paradigm is panicles moving in a
pOiential field of force.

Figures 2 and 3 show the potential fields used in

the current work. The potential in Figure 2 is used

to model the interaction between agents of like

sign - that is, between friend and friend, and

between foe and foe. An agent subject to such a

potential moves so as to maximize or minimize the

potential- that is. the agent moves up or down

the gradient. Thi s potential, with its central well,

was chosen to provide a repulsive force at short

d istances: we don't want the agents to clump into

smal l-sized units.

Figure 3 shows the potential between unlike

agents (friend and foe) . Because we want agents

to close in for the kill when appropriate, this

potential has been designed without a central dip.

10

o.

Figure 2. Potential between like agenls (e.g.

friend to friend).

Figure 3 . Potential behVeen IInUke agefJIs (e.g.

friend to f oe).

More fo rmally, the fr iendly potential ~ of an agent

at a locati on (x, y) is the sum of the separate

potentials for each friendly agent:

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

<l>(x, y) = 1:.; $ (Xj • x, Yj • y) ; (I)

similarly. the enemy potential'!' is

'I'(x, y) = 1:.;'I'(x'j • x, y'j • y) . (2)

Limiting the motion of agents to a discrete grid:

x=i /U, y=jD.y, i=1, .. . N, j=l" •. M , the sums take

the Conn of convolutions:

¢>ij = Lk,l $i+kj+kfij.

'l'ij = Lk,l 'V i+kJ+k e ij ,

(3)

(4)

Here, r.;ij = ~(;tu:.j6y) • and 'fij = w(illx,jt1y) are

the discrete potentials; the occupancy function fij

(c ij) is also a descrete function if a friendly

(enemy) agent is located at (itlx, j 6.y), or zero.

The convolution suggests an efficient way to

compute Cl> and 'I' via the fast Fourier Transform

(FFT) algorithm. Fourier transfonning ¢I. 'V, e,
and!, the convolutions become multiplications

(Rabiner and Gold. 1975):

¢> = ,I [T($) T(f)]. (5)

'I' = ,I [T('I') T(e)], (6)

where Tand 11 denote the forward and inverse

Fourier lransfonns respectively.

Using the FFT to evaluate T on an NxM grid

reduces the calculation time from order N2 M2, (0

order NM(loglN)(logzM). For N=M=lOZ4, this is

a saving of a facto r of more than 10,000 in time.

Note that this speedup is achieved for an

arbitrary number of agents because the

computation time is independent of the number of

agenls. Of course, if the number of agents is less

than (Iog1N)(loglM), then evaluating the sums in

Even for a relatively large 1024 by 1024 grid, the

advantage is lost if the number of agenls exceeds

the modest level of 100.

CATASTROPHE THEORY

Catastrophe theory is a branch of topology

Ihal is concemed wilh classifying the fonns that

singularities of functions may take. A remarkable

result proved by Rene Thorn (Gilmore, 1981)

shows that these singularities can only take on a

limited number of fonns. More precisely, an
arbitrary singularity can be transformed via change

of variables so that it is closely approximated by

one of several basic models; no mailer how weird

a given catastrophe may seem, it tums out to be

close to one of the basis fonns. For singularities

described by four or fewer parameters , there are
seven basic catastrophe models. TIle canonical

equations of these models are exhibited in Table I.

Fold:

Table I
Singularity Equations lor Basic

Catastrophe Models

l '3 x 3 • ax

Cusp:

l '4x4.ax·J'2 bx2

Swallowtail:

1,Sx S -ax _1 /2 bx 2 _1/3 ex3

Butterfly:

J'6x6-ax-J' 2 bx 2 1'3 cx 3 .1'4dx4

Hyperbolic:

x 3 +y3+ ax +by+cxy

Ell iptic :

x 3 _x y2 +a x +by+c(x 2 +y2)

equations (l) and (2) directly will likely be faster. Parabolic:

11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

In the table. a, b, c, d are the parameters, and X, y

are the variables which exhibit the singularity.

The thing to note is that the equations of these

canonical models are simple polynomials.

Some of simpler ones have been successfully

used to describe human and animal behavior in

various situations (Zeeman, 1976). Of me seven

cataslrophes, one of the simplest to describe and

understand is the cusp catastrophe. It is a

geometrical object in the usual three dimension

Euclidean space and looks like a folded sheet or

blanket. The other catastrophes also have

intuilUvelyappealing geometric interpretations as

their names suggest.

This cusp catastrophe, which we are using to

model a dismounted infantry agent's response to

various battlefield situations. is shown in Figure 4 .

The ve rtical axis. x. represents the agent's

behavior on an agressive to timid scale. The

control parameters, a and b, are the density of

friendly agents and the density of enemy agents

respectively. When the agent is surrounded by

friendly forces, it exhibits bold and aggressive

behavior. alternatively, when the agent is

surrounded by enemy agents, it shows timid and

retreating behavior.

50 far this behavior model may seem fairly

trivial, but where catastrophe theory shines is in

the transition region between the two types of

behavior. The arrows in Figure 4 illustrate two

possible paths of transition between aggression

and timidity. The upper arrow shows how an

agent may pass smoothly between aggression and

timidity provided the stimuli (friendly and enemy

densities) are not too strong. A good commander

probably takes his troops into battle along such a

path so that their responses remain predictable.

12

---: -,- • ~ --

Figure 4. Cusp catastrophe as applied to

modeling agent behavior.

The lower arrows lie in regions where the

stimuli are stronger and as a result c ross the fold

region of the cusp c:H3.strophe. The agent's

behavior now becomes discontinuous. 5taning out

aggressively. surrounded by friends. the agent

keeps up his courage in the face of increasing

enemy opposition until suddenly hi s nerve breaks

and he turns timid. Conversely. a timid agent

retreating from enemy territory rema ins timid until

he suddenly is heartened by the pre!'ocnce of many

friends . The catastrophe model thus introduces a

degree of hysteresis into the transiti on between

aggression and timidity.

Aggressive and timid behavior have been

considered by some researchers to be influenced

by twO conflicting emotions: fear and rage. In the

di smounted infant ry simulation, these emotions are

modeled by the response of the agerlls to various

threat conditions posed by enemy troops in the

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

banlefield. Sometimes the battlefield conditions

promote the two emotions of fear and rage

simultaneously and to approximately the same

degree of intensity. When this happens, the

behavior of a military unit will depend on its

behavior during the immediately previous time

period. If, during this time period, the troops have

been aggressive and the battle turns against them,

they will still tend to be aggressive for a while.

Likewise, if. during this time period. the troops

have been retreating in fear. and they stan to

receive significant reinforcements, some time will
be needed before they become courageous enough

to attack.

The particle agents exhibit two different

potential climbing modes depending on their

bold/timid state. When bold. particles are attracted

to friends. but are more strongly attracted to

enemies; they are on the attack. but try to maintain

contact with their unit. When timid. particles are

attracted to friends. but are repelled by enemies;

they are thus attempting to regroup while avoiding

contact with the enemy. Many other variations of

behavior are possible. but as shown below these

produce interesting results.

RESULTS

A panicle model of agents using a cusp

catastrophe switch between behaviors as outline

above was coded on a NeXT 25 MHz. 68040-based

workstation in Absoft Objective FORTRAN (yes,

FORTRAN; it is still the only language with a

native complex number data type). The grid used

was 32 by 32 (N=M=J2) so that several cycles of

time were calculated per second and

experimentation could go rapidly. The cusp

catastrophe in Figure 4 was actually approximated

13

Figure 5. Forces of 3 while and 3 black agents

are inilially disorganized alld timid.

by two overlapping planes and an add itional third

behavior was added . When an agem found itself

in a thin strip along the enemy axis. it died and

was removed from the simulation . The simulation

run shown in Figures 5-8 involving three black and

three white agents pl ays out an inte resting

scenario. The agents were placed at random on the

grid in a timid state. Timidity is indicated in the

displays by an off-color (off-white or off-black).

Aggression is shown when the agent is fully black

or white. Figure 5 is several time SIC PS into the

simulation and the agents are moving around

trying to make cont.:lct with friends and to

generally get organized. Note that for simplicity

in dealing with boundaries. the simul:lIion grid has

the topology of a tOIllS. It has no boundaries; the

lOP of the grid is connected to the bottom and the

left side is connected to the right side .

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I ~ •• , _-' _ _ , ... ,_>~_, .
-_. -- -+-,-_. - ---

t •

1414

Figllre 6. The agents soon organize into lighr

clusters and become aggressive. The upward chase
is on.

After severnl more lime steps, the agents have

fcnned tight little clusters and begin an upward

trending chase. These clusters persist for two
circuits of the grid.

Perhaps tiring of the chase, one black agent

reverses field and. crossing ihe bottom "border",

attacks the white group from above. The agent has

no such motive. of course; its motion is merely the

result of the randomly chosen initial conditions.

Still, the nice anthropomorphic interpretation that

can be given to its behavior suggests the

possibilities of behavior modeling based on

catastrophe theory.

The aU8cking black agent then succeeds in

luring a white agent away from its group. The

white agent then finds itself in the killing strip of

the enemy/friendly plane where it dies and is

removed from play. Already in Figure 8, thi s

white agent has turned timid. but it is too late! The

14

>l
I
•

.,

Figure 7. Block tries aflanking mal/euver, one

agent ouacking from abm·e.

white agent cannot get back to its grou p before it is

killed.

This simulation ultimately results in a win by

black, albei t black does lose one en li ty . Again .

while the simulation presented here is based on

very simple local dynamics, it succeeds in

capturing the essence of battle.

CONCLUSIONS

The behavior model presemed here shows

much promise as the basis for modeling the large

number of agents th,lt would be required in a

simulated dismounted infantry forcc_ Despite the

simple. local basis of the behavior. it captures

many features of bailie.

The computational resources nceded to

calculate the potential functions used to guide the

particle-like cmitics are fairly large , but the use of

fast Fourier transfonn techniques en,tbles a single

potential computation to se rve for all agents.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

' \

Figure 8. The maneuver is successful. A white

agent is lured away, and becomes timid just before

vanishing.

Further investigation is needed to detennine

how realistic this behaviora1 model really is and

how best to incorporate the model into realistic

environments like SIMNET. The model contains

much scope for generalization, the potentials could

be multi-valued (e.g. vector or tensor values) to

produce more complicated motions and to include

the possibility of modeling the effects of terrain

and other environmental influences.

15

BIBLIOGRAPHY

Gilmore, Roben. Catastrophe Theory for

Scientists and Engineers. New York: John

Wiley and Sons. 1981.

Poundstone. William. The Recursive Universe.

New York: William Morrow and Company,

Inc., 1985.

Rabiner, Lawrence R., and Bernard Gold. Theory

and Application of Digital Signal

Processing. Englewood Cliffs, New Jersey:

Prentice-Hall, Inc., 1975.

Zeeman, E.C. "Catastrophe Theory. " Scientific

American April 1976: 65-83.

I
I
I

Appendix 2

I
Source Code

I
I
I
I
I
I
I
I
I
I
I
I
I

16

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Makefile - Unix makefile

Application makefile.

Name of the application .

NAME = Bugs

Source files for this application.

MFILES =

HFILES.
FFILES • Bugs.!

bilrev.f
CFILES =
NIBFILES =
TIFFFILES =
PSWFILES.
SNDFILES.

Libraries used by this application.

LlBS. -INeXT_s -Isys_s

Flags to pass on to the compiler and linker.

CFLAGS =
FFLAGS = ·object ·K

Timer.f 2D_FFT.f Sub-FFT.f\

LDFLAGS", -segcreate _ICON _header emplyfile -segcreate _ ICON _tiff emptyfile

Rules.

SRCFILES • $(MFILES) $(HFILES) $(CFILES) $(FFILES) $(NIBFILES) $(TIFFFILES) $(PSWFILES)
OBJFILES = $(MFILES:.m=.o) $(CFILES:.c=.o) $(FFILES:.f=.o) $(PSWFILES:.psw=.o)
DERIVED"" $(PSWFILES:.PSWE.C)

GARBAGE .: $(DERIVEDl core errs emptyfile

$(NAM E): $(OBJFILES)
louch emplyfiJe

17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

clean:

help:

$(FC) -0 $@ $(FFLAGS) $(OBJFILES) $(LlBS) $(LOFLAGS)

-rm -1 °.0 $(NAME) $(OERIVEO) $(GARBAGE)

@echo' make $(NAME) . to make the application'
@echo' make clean· to re move all files but the source'

18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Bugs.inc - Variable Declarations

integer nX,nxm,meanx,rneany,npoten,ngen,nodisp,liveb,livef
logical stopped

real xmax,ymax,xO,yO,dx,dy
parameter (nx=32,nxm",nx·1)

parameter (ncomb",200)

real budr(O:nxm,O:nxm),budi(O:nxm,O:nxm)
real foer(O:nxm,O :nxm). foei(O :nx m, 0 :nxm)
reat wbudr(O:nxm,O:nxm),wbudi(O:nxm.O:nxm)

real wfoer(O:nxm,O:nxm),wfoei(O:nxm,O:nxm)
real xb(ncomb),yb(ncomb)

+ ,slateb(ncomb),budbud(ncomb),budfoe(ncomb)
real xf(ncomb),yf(ncomb)

+ ,slatef(ncomb),foebud(ncomb),foefoe(ncomb)
common IGLOBALS/xmax,ymax,xO,yO,dx,dy,meanx,meany.

+ slopped.emax,nbud,nfoe,npolen,ngen,nodisp,liveb,livef,
+ budr ,budi,'oer,foei,wbudr,wbudi,wfoer ,wfoei.
+ xb,yb,stateb,budbud,budfoe,
... xf,yf,stalef,foebud.foefoe

19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

c

c

c

Bugs.f - Main Program

Bipolar Bugs program written in FORTRAN and complied
on NeXT with Object·Oriented FORTRAN from Absof1

The coordinate system of the plol is flipped so that coordinate (0,0)
is in the upper·left corner of the view.

INCLUOE "appkit.inc"
INCLUDE "Timer.inc"

I Kit constants

@INTERFACE 8ugs : View

INCLUDE "Bugs.inc"

@+ newView:REAL °4 r(4)
@-suspend
@-golasl
@- slep
@-densily
@. mouseOown:(NXEvent ·)event

@- d,awSell:REAL·4,eCI(4) :INTEGER dummy
@END

@IMPLEMENTATION 8ugs : View

-
@+newView:REAL04r(4) I Create a new view in window

Slopped-.faise.
npolen:o:O
nodisp_1
CALL NXEraseRect(rect)

CALL PSselg,ay(val(O.O))
xO=10.
yO.lO.
xmax- 720 ;dx=aint((xmax -xO)/nxm)
ymax .. 720;dy=aint((ymax -yO)/nxm)
xmax ... 2+nxmOdx;ymax=2+nxm°dy
idx.(700-xmax)/2;idy.(700-xmax)12

xmax=xmax+idx;ymax=ymax+idy
xO=xO+ldx;yo::yo+idy
prinl·,*dx_ ",dx," dy .. ",dy

20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

xOzxO+ 1 ;yO::yO+ 1
meanx:(nxm)/2;meany::(nxm)12

p(inl·,~ln itializing·

call initialize
print *,-Displaying"

call d isplay

self .. [self newFrame:&r]

(Timer newTimer:

+ target
+ action:

@O.02DO

self
Seleclor("display\O"I]

c]self seIFlip:YES]

c
c·

newView_ '" self
@END

@·step

slopped,," .false.

(self display]

slopped - .true.
step = self
@end

@-suspend
stopped - .nol. stopped

suspend - self
@end

@-gofas!
nodisp .. l-nodisp
gofas! • self

@end

@-density

npolen=npolen+ 1
if (npolen.gI.4) npolen::Q

density - self
@end

@. mouseDown

I Suspend evolution and do a single slep
I Temporarily turn off suspension

I Display new grid

I Suspend evolution
I Return, by convenlion, self

! Suspend evolution of grid

I Toggle suspension slale

! Return, by convention, self

I Suspend display of cells
! Toggle grid display

I Return, by convention, self

I Toggle display of background density

I Return, by convenl ion , self

c· Th is method handles a-mouse down.
c·
c mouseDown .. self

21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

c @end

@' drawSelf:REAL -4 rect(4) :INTEGER count
I Draw window view

I Calculate and draw graph

if(stopped) relurn
c repeal
c10 continue
c print · ,·Summing neighbors·

call neighbor
c print ·,"Applying rules·

call rule(xb,yb,emax,
+ stateb,budfoe ,budbud,foei,budr ,nxm,nbud)

call rule(xf,yf,emax,
+ statel ,foebud,foefoe,budi,foer,nxm,nfoe}

c print -,"Displaying"
call display

c unlil keypressed;
c gOl010

drawSelf_ • self

@END

@end

PROGRAM main
IMPLICIT NONE
INTEGER NXApp
INCLUOE "objecl.inc"

NXApp = [Application new]

CALL selUPO
[NXApp run)
[NXApp free)

END

SUBROUTINE selUp
IMPLICIT NONE

I End of implementation

I Our application object
t Object-Oriented FORTRAN definitions

I Get 10 of new Application object

I Sel up the environment
I Start the event loop for application

I Free program space

I Routine to set up the environment

INTEGER my Window, myPanel, myMenu, panelText, myView
INTEGER content

AEAL·4 recI(4) , viewRect(4)

22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

INCLUDE · object.inc·

include -appobjecl.inc·

I Object-Oriented FORTRAN definitions
I Application kit constant definitions

! Sel up a Window

CALL NXSeIRecl(recl,val (1 OO.O),val(1 00.0), val(800.0),val(800.0»
my Window .. [Window neweonlen!: &rect

+ slyle: NX_TITLEOSTYLE
+ backing: NX_BUFFERED

+

+

bullonMask:

defer:
NX_MINIATURIZEBUTTONMASK
NO)

[my Window setTitle:MBattle BugS\OM]
f{myWindow conlantView} getBounds:&viewRectj
myView ... [Bugs newView:&viewRect]

content = [my Window conlentView]
[[my Window conlenlView] addSubview:myView]

! Sel up an information Panel
CALL NXSeIRecl(reel, val (400.0), val(800.0), val(255.0), val(60. 0»
myPanel = [Panel newContent: &rect

+ slyle: NX_TITLEDSTYLE
+
+
+

backing:
butlonMask:

defer:

NX_BUFFERED
NX_CLOSEBUTTONMASK
YES)

[myPanel selTitle :MAboul Bugs\01
[myPanel removeFromEventMask:(NX_KEYDOWNMASK .or. NX_KEYUPMASK))

CALL NXSeIRecl(recl,val(0.0),val(0.0),val(255.0),val(55.0»
panelText _ [Text newFrame: &rect
+ text: -Baute Bugs is wr~ten in
+FORTRAN using Object·Oriented FORTRAN (TM) from
+Absoft Corporation. T. L. Clarke\O-
+ alignment: NX_CENTERED]
[panelText setSelectable:NO]
[[myPanel contentView] addSubview:paneITexl]

! Set up a Menu
myMenu _ [Menu newTitle:-Bugs\01
((myMenu add Item: -lnfo ... \O-
+ action: SelectorrorderFront:\O-)
+ keyEquivalent : NULL] setTarget:myPanel]
[[myMenu addttem: -Pause\O-
+ action: Selectorrsuspencf\O-)
+ keyEquivatent: ichar('p')] setTarget:myView]
[[myMenu addltem: -GoFast\O-

+ action: Seleclorrgolast\O~)

23

,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

c

+ keyEquivalent: iehar("')] setTargel :myViewj

IImyMenu add Item: ·Single Step\O"
+ action: Seleclor("slep\O")
+ keyEquivalent: ichar('s')) setTargel:myView]

[[myMenu addltem: ·Show Densily\O"
+ action: Selector("density\O")
+ keyEquivalent: ichar('q')J setTarget:myView]
((myMenu add Item; ·Prinl...\O"
+ aclion: Seleclor("smartPrintPSCode:\01
+ keyEquivalent: ichar('O')] setTargetmyWindow]

[myMenu add Item: "Hide\O·
+ action: Selector("hide:\O")
+ key Equivalent: ichar('h')]
(myMenu addltem: "Quit\O·
+ action: Seleclor("terminate:\O")
+ keyEquivalenl : ichar('q')]
{myMenu sizeToFitj

(GetNXAppO seIMainMenu:myMenu]

I Display alllhree windows and PostScript texl in view
[myPanel display]
(myMenu display]

[my Window display] I Calculate and display graph

I Move my Window on-screen

(my Window orderFront:nil]

END

24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

c

c

c

Bugs_disp.f - Display routines

Subroutine Box(xlow,xtop,ylow,ytop,grey)
call PSnewpathO
call PSmoveto(VAL(xtow),VAL(ytow))
call PStineto(VAL(xtop),VAL(ytow))
call PStineto(VAL(xtop),VAL(ytop))
call PStineto(VAL(xtow),VAL(ytop))
call PStineto(VAL(xtow),VAL(ytow))
call PSclosepathO
call PSselgray(val(grey))
call PSfiliO
call PSstrokeO
call PSmoveto(VAL(xtow),VAL(ylow))
call PStineto(VAL(xtop), VAL(ytow))
call PStineto(VAL(xtop),VAL(ytop))
call PStineto(VAL(xtow),VAL(ytop))
call PStineto(VAL(xtow),VAL(ytow))
call PSselgray(val(O.O»
call PSstrokeO
call PScopypageO
return
END

c Battle Bug Subroutines

c

c

subroutine display
INCLUDE "Bugs. inc·
integer i,nil,living(100)
feal xxQ,r
r .. dx12
xxO .. xO+dxl2
ngen:lilngen+1
nilzmaxO(nbud,nfoe)
call Box (O.O,800.,ymax+2"dy+9,800.,O.666667)
if ((nodisp.ne.O) .or. (mod(ngen,10).eq.O)) then

call Box(xO·1 O,xmax+2*dx+8,yO·1 O,ymax+2"dy+S,O.333333)
call Box(xO· 2.xmax +2" dx,yO·2 ,ymax + 2' dy ,0 .5)
print ·,"nbud. nfoe ·,nbud,nfoe

c code displays potential function
if (npoten.ne.O) then

c print',"# potential displayed ·,npoten

25

I
I pmax_O.O;pmin",1.0e6

if (npolen.eq.!) then
do i=O,nxm;do j=O,nxm

I pmax:max(pmax.(budr(i,j)))

pmin=min(pmin,{budr(i,j)))
end do; end do

I end if
if (npoten.eq.2) then

I
do j:O,nxm;do j=O,nxm
pmin",min(pmin,(budi(i,j)))
pmax:max(pmax.(budi(i,j)))

I
end do; end do

end if
if (npoten.eq.3) then

I
do i=O,nxm;do j=O,nxm
pmin:::min(pmin,(foer(i,j)))
pmax.max(pmax.(foer(i.j)))

I
end do; end do

end if
if (npoten.eq.4) then

I
do i=O,nxm;do j:O,nxm
pmin,.min(pmin,(foei(i,j)))

pmax=max(pmax,(foei(i,j)))

I end do; end do
end if

I c print·, -max/min potential· ,pmax,pmin

ascale-l.0/(pmax-pmin)
do j""O,nxm

I xzxxO+dx"(i)
c print · ,·X", ",x," Ya-",Y

do j=O,nxm

I y=yO+dy'O)
call PSsellinewldth(val(dx))
if (npoten.eq.!) dens=budr(i,j)

I if (npolen.eq.2) dens:budi(i,j)
if (npoten.eq.3) dens",foer(i,j)

I
if (npoten.eq.4) dens",foei(i,j)
CALL PSsetgray(val((dens-pmin)·ascale))
call PSnewpathQ

I
CALL PSmoveto(val(x).val(y))

call PSlinelo(val(x) ,val(y+dy))
call PSslroke

I
end do;
end do;
call PSseUinewidlh(val(1.0))

I c

26

I

I
I call PSselgray(val(O.O))

do ;:.1.1 OO;living(i)=O;end do

I
encode(9,301,living)
call PSselectfont(living,VAL(16.0»
call PSnewpalh()

I
call PSmovelo(VAL(xO),VAL(ymaX+dy))

c
do i.1 t l00;Jiving(i) .. O;end do

I
if (npoten.eq.1) encode(13,201 ,living)

201 format(~F riend-F riend"}
if (npolen.eq.2) encode(13,202.living)

I 202 format(MFriend·Foe .)
if (npolen.eq.3) encode(13,203.living)

203 formatrFoe-Foe ")

I if (npoten.eq.4) encode(13.204,living)

20' format(MFoe-Friend .)
call PSshow(living)

I c
call PSselgray(val(O.O))

call PSslroke()

I call PScopypage()

c
end if

I
Jiveb",O

I Jivef=O
do ;=1,nil

I
jf (i.te.nbud) then

if (slaleb(i) .gI.O.O! Ihen
liveb .. liveb+ 1

I
x_dx·(xb(i)+ 1);y.dy·(yb(i)+ 1)

c print ·,·X- ·,X,· yz ·,Y

grey .. O.9

I
if(slaleb(i).gl.l .0) grey-1.0

CALL PSselgray(val(grey))

call PSnewpalh()

I CALL PSmovelo(val(x),vaJ(y))

call PSarc(vaJ(x),val(y),val(r),val(0.),val(360.»

call PSfiliO

I call PSslroke()

end if
end jf

I grey .. O.O
if (Ue.nfce) then

if (sIBle'(i).91.0.0) then

I 27

I

I
I livef""livef+ 1

x. dx" (xI(i)+ I);y=dy"(yf(i)+ I)

I
c print·. ~x"" • ,x,· y: .,y

grey",O.l
if(slaleb(i).g1.I .O) grey=O.O

I
CALL PSselgray(val(grey))

caU PSnewpathO
CALL PSmovelo(val(x) ,val(y))

I
call PSarc(val(x),val(y),val(r),val(0.),val(360.))

call PSfiliO

call PSstroke

I
end if

end if
end do

I c
end if
CALL PSselgray(val(O.O))

I do i=1.1 OO;tiving(i)=O;end do
encode(9,301 ,living)

301 formatr Helvetica-)

I call PSselectfonl(living,VAl(16.0»
call PSmovelo(VAL(xO)"VAL(ymax+3"dy))

do i .. l ,100;living(i)=O;end do

I encode(20, 101 ,living) liveb
101 format (MSurviving white: ·,i3}

call PSshow(living)

I call PSmovelo(VAL(3.0"(xO+xmax)/4.0), VAL(ymax+3"dy))

do i=1.1 OO;living(i)=O;end do

I encode(20.103,living) livef
103 formal("Surviving 6lack: · ,i3)

I
call PSshow(living)
call PSmovelo(VAL(2.0"(xO+xmax)/4.0), VAL(ymax+4 "dy))

do i=l, 1 OO;living(i)=O;end do

I
encode(22,10S,living) ngan

105 formaWElapsed Cycles: -,i6)
call PSshow(living)

I
c

call PSstrokeQ
c call PScopypageO

I c call PSsetlinewidth(val(1 .0))

return

I END

I
28

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Bugs_subs.f - Calculation Routines

subroutine neighbor
INCLUDE ~8ugs.inc~

c wr,wi is transformed weight array
c far,fai is used to for calculations
c
c a is active grid, b gets neighbor count
c

c
Integer i,j,nxmm.nxmp

if (nbud.gt.O) return
nxmp:nxrn+l
nxrnm=nxm-l
do j .. O,nxm;do j=O,nxm

budr(i.j)-O.O;budi(i,j)=O.O
foer(i,j)=O.O;foei(i,j)=O.O

end do;
end do
do i_1 ,nbud

ix=mod(nx+nint(xb(i)),nx)

iy=mod(nx+nint(yb(i)),nx)
budr(ix,iy)=budr(ix,iy)+ 1.0

end do
do j,.1 ,nfoe

iXEmod(nx+ninl(xf(i)),nx)

iy .. mod(nx+ninl(yf(i)),nx)

foer(ix,iy).foer(ix,iy)+ 1.0
end do

call FFT2DREV(budr,budi,nxmp,-l,O)
call FFT2DREV(foer,foei,nxmp,-1.0)

c print ·,"returned form FFT2DREV"
c multiply by complex conjugate

fmax=-1 .Oe20;bmax",·1 .0e20
fminc:-fmax;bmin=-bmax
do i=O,nxm;do j=O,nxm

Ir:budr(i,j)-wbudr(i,j)-budi(i,j)-wbudl(i ,j)
ti;;budi(i,j) -wbudr(i,j)+budr(i,j) -wbudi(i ,j)
budr(i,j);;tr;budi(i ,j)",ti

end do;end do •
do i_O,nxm;do j:zO,nxm

tr:loer(i,j)"wfoer(i,j)-foei(i,j)"wfoei(i,n

29

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ti_foel(i,j) °wfoer(i,j)+foer(i,j)"wfoei(i,j)

foer (1 ,j)_1 r;foei(i ,j)z!i
end do;end do

c print· ,-calling AEVFFT20M

call REVFFT2D(budr,budi,nxmp,+ 1,0)
call REVFFT2D(foer,foei,nxmp,+ 1,0)

c do i=O,nxm;do j=O,nxm
c fmax=maxl (fmax,foer(i,j)
c bmax=maxl (fmax,budr(i,j)
c fminzmin1 (fmin,foer(i,j))
c bmin ... min1{fmin,budr(i,j))
c end do; end do
c prinl . , "budmax. budmin, foe max, foemin ",

c + bmax,bmin.fmax.fmin

relurn
END

subroutine initialize
INCLUDE "Bugs. inc·
integer i,i,nxmp
real weight! ,weight2

ngen=O
nxmp=nxrn.l

c initialize weight array and transform
smax_(nxrn+ 1);xfold=smax12
emax=nxm
5igl =smax/4.0
a51 .. 1/sigl--2I2.0;anl =1 /(6.2832"5ig l)/smax·o2
sig2=aminl (smax/~.O.I .0)

as2 = l Is ig2"2/2 .0;an2= 1/(6.2832" sig2)/smax·· 2
sig3:smax/4.0

as3,., 1/sig3u 2l2.0;an3", 1/(6.2832·sig3)/smax·· 2

print ",· sig1, 5ig2, 5ig3 ·,5ig1,5ig2,5ig3

c an2 .. 3.0

hywt"" 1 J5maxu 2
do i. O,nxm;do j_O,nxm

ddx=i;if (ddx.gl.xfold) ddx=ddx-5max

ddy.j;if (ddy.gl.xfofd) ddy.ddy-smax

arg=ddx·"2.ddy"2
weig hll .. an3" exp(-arg' as3)-an2" exp(-arg' a52)

weighI2:anl "exp(-arg"asl }

c weight=hywtlamaxl (1.0,arg}-an2·exp(-arg' as2)

c weighf.hywV.maxl (1.0,.rg)
c nole use 01 real part for friene (bud) and imaginary part lor loe

wbudr(i,j)=weighll

3D

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

wbudJ(i,j)::weighI2
wfoer(i ,j)::weight 1

wfoei(i,j)""weighI2

end do;end do

c don't count yourself ?
c wbudr(O,O):O.O;wbudi(O,O):O

c wfoer(O,O).O.O;wfoei(O,O):O

call FFT2DREV(wbudr,wbudi,nxmp, l,O)

call FFT20REV{wfoer,wfoei,nxmp,-I,O)

c psuedo random function y:::(991·y mod 1024) + 31

iseed - 59
do i. l,ncomb

iseed=mod(iseed"157,1024).31

xb(i)=smax*iseedl3240.+xfold
iseed",mod(iseed*97,1024)+31

yb(i)",smax"iseedl3240.+xfold

stateb(i)_O.5

end do
nbud",ncombl2
nbud .. 3

do i= 1 ,ncomb
iseedz rnod(iseed"157.1024)+31

xf(i)""smax"iseedl3240.0
iseedz:rnod(iseed"97.1024)+31

yf(i).smax' iseedl3240.0
sl,'el(i)=0.5

end do

nfoe=ncomb/2

of 09=3

c need to call neighbor lo-initialize the (bud,foe)(bud,foe) arrays

c when full behaviour is implemented

return

END

subroutine rule
c code is written from viewpoint of foe

+ (xl, yf ,emax ,slatel ,foebud, foefoe ,bud ,foe ,nxm, nfoe)
real bud(O:nxm,O:nxm),foe(O:nxm,O:nxm)
real xf(nfoe),yf(nfoe)

+ ,5 tatef(nfoe), foebud(nfoe) ,foeloe(nloe)
integer i,nx
nx=nxm+l
ip. l ;im.- l
foeequ=S.O
swfact=3.0

31

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

c dead=20.0

dead=8.1175
do ;=1 ,nfoe

ix=mod(nx+ninl(xf(ij),nxm)
iy",mod(nx+ninl(yf(i)),nxm)

c mode switching hysteresis - catastrophe approx -
c with switching along lines foe",2"bud and bud",2'foe

budO=ab5(bud(ix,iy))

loeO=abs(foe(ix,iy))
c if overwhelmed kill it

if (budO,gl,(doad'foeO)) 5Ialel(i)=O,O

c check if alive
if (5Ialof(i).gI.0.0) Ihen
if (budO.gl.(5wfacl'foeO)) 5Ialel(i)=0.5

il (loeO.gl.(5wfacl·budO)) 5Ialel(i)=2.0

c set motion increments

c

c

if (5Ialef(i),gI.1 .0) Ihen
vl=O.25;v2=1 .0
else

vl ",O.5;v2=..().10

endi'
gradbx:bud(mod(ix +ip. nx). iy) -bud(mod (nx+ ix +im ,nx) ,iy)
gradbyzbud(ix.mod(iy+ip,nx))-bud(ix,mod(nx+iy+im,nx))
gradfx .. foe{mod(ix+ip,nx),iy)-foe(mod(nx+ix+im.nx) ,iy)
gradfy",foe(ix,mod(iy+ip,nx))·foe (ix,mod(nx+iy+im,nx))

if (gradlx.gI.O) then
xf(i)=xf(i)+vl

else
xf(i).xf(i)-v1

end if
il (gradbx.gI.O) then

xf(i);xf(i)+v2

else
xf(i).xf(i)-v2

end if
if (xf(i).gt.emax) xf(i):xf(i)-emax

if (xl(i) .It.O,O) xl(i)=xl(ij+emax

if (gradfy.gI.O) Ihen

yl(i)=yf(i)+v1
else

yf(i).yf(i)-v1

end if
if (gradby.gI.O) Ihen

yl(i).yf(i)-v2

32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

end if
end do

return
END

else
yf(i)=yf(i)+v2

end if
if (yf(i).gt.emax) yf(i)=yf(i)-emax

if (yf(i).lt.O.O) yf(i)=yf(i)+emax

I end of kill check

33

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2D FFT.f - Two Dimensional FFT

c transform square nxn (power or 2) matrix of values
c if isw=O leave result unstransposed and don't perfrom bilreversats
c in order to speed correlation calculations

subroutine FFT2DREV(ar,ai.n.is,isw)
dimension ar(n,n),ai{n,n)

c transform rows
doi:l,n
call FFTREV(ar(1.i),ai(1 ,i),n,is)
if (isw.no.O) call BITREV(ar(1 ,i),ai(1 ,i).n)
end do

c transpose
calilranspose(ar,ai,n)

c transform columns
do i",l,n
can FFTREV(ar(1,i),ai(1 lil,n,is}
if (isw.n •. O) call BITREV(ar(1 ,i),ai(1 ,i),n)
end do

c transpose back if desired

c

if (isw.ne.O) calilranspose(ar,ai,n)
return
ond

c transform square nxn (power or 2) matrix of values
c if isw=O assume input unstransposed and un·bilreversed
c in order to speed correlation calculations

subroutine c(ar,ai,n,is,isw)
dimension ar(n,n):ai(n,n)

c transform rows
do i,.1 ,n

c transpose if needed
if (isw.ne.O) call transpose(ar,ai,n)

c bit reverse if needed
if (isw.no.O) call BITREV(ar(1 ,i),ai(1 ,i),n)
call REVFFT(ar(1 ,i),ai(1 ,i),n,is)
end do

c transpose
call transpose(ar,ai,n)

c transform columns
do i::o:1 ,n

c bit reverse if needed
if (isw.no.O) call BITREV(ar(1 ,i),ai(1 ,i),n)
call REVFFT(ar(1 ,i),ai(1 ,i),n,is)

34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

c

end do
relurn
end

c transpose nxn square matrices
subroutine Iranspose(A,B,N)
real A(N,N),B(N,N)
do i_1,(N_1)

do j:(i+1),N

end do
end do
relurn
end

T -A(i,j);A(i,j).AU,i);AU,i). T
T .B(i,j);B(i,j).BU,i);BU,i). T

35

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Sub-FFT_f - One dimensional FFT

c
c algorithm for FFT with bit reversed output
c
c

c
c

SUBROUTINE FFTREV(XREAL,XIMAG,nn,is)

DIMENSION XREAL(l :nn), XIMAG(l :nn)
INTEGER N,NU,N2,dk,dN,dk2

real dwr,dwi,dthel,Wf,wi
N=nn
NU.ilog2(N)
N2 . NI2

K=O

c loop over log2N sub FFTs
c

DO L-l,NU
c input incremenllo SubFFT

dN=2"" (L-l)
c length of SubFFT-l

c

dk=2"-(NU-L)

dk2=dk"2
dthet=6.283185307"float(dN"is)lfIoal(N)
dwr=cos(dlhet}; dwi:a:sin(dthel)
k_l

print -,"L,dN,dk ',L,dN,dk

C loop over

c

wr .. l.0;wi=O.O
DO l = l,dk

do m=1 ,N,dk2
k",l+m-l

print ",MI,m,k,k+dk-,I,m,k,k+dk
xl r_XREAL(k) ;xl i=XIMAG(k)
x2r=X R EA L(k +dk);x 2i_X IMAG(k +dk)
dr=xl r-x2r;di=xl i-x2i
XAEAL(k)=xl r+x2r;XIMAG (k)=xl i+x2i

XREAL(k+dk)=dr'wr-di"wi
XIMAG(k+dk)=dr'wi+di"wr
end do

if (dk.ne.l) then
tr:w,"dWf-wi"dwi

wi=dwr' wi+dwi'wr

36

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

c
c

c

end do

end if
end do

RETURN
END

wf=lr

c algorithm for FFT with bit reversed input
c
c

SUBROUTINE REVFFT(XREAL,XIMAG,nn,is)
DIMENSION XREAL(l), XIMAG(l)

c
c

INTEGER N,NU,N2,dk,dN,dk2
real dwr,dwi,dthel,wr,wi
N",nn
NU=ilog2(N)
N2 = NI2
K.O

c loop over log2N sub FFTs
c

DO L. NU,l,-l
c input increment to SubFFT

dN=2""(L-l)

dlhet=6. 28318530rftoat(dN' is)/float(N)
dwr=cos(dthel); dwi::sin(dthet)

c length of SubFFT·1

dk=2""(NU-L)
dk2=dk'2
k.l

c print ',"L,dN,dk ·,l.dN,dk
c loop over

wr=1.0;wi=O.O
DO f.l,dk

do m=l,N,dk2
k .. l+m-1

c print· ,"I,m,k,k.dk",I,m,k,k+dk
xl r.XREAL(k) ;x l i=XfMAG(k)
x2r.XREAL(k+dk);x2i.XfMAG(k+dk)
dr=x2rowr-x2iowi;di=x2iowr+x2r'wi
XREAL(k)=x 1 r+dr;X IMAG(k)=xl i+di
XREAL(k+dk)=xl r-dr
XIMAG(k+dk)=xl i-di

37

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

c
c

end do

end do
if (dk.ne.1) then

Ir",w,odwf-wi·dwi
wi=dwr'wi+dwi"wr
wr .. tr

end if
end do

RETURN

END

38

I
I bitrev,r - Reorders Time Series

I C Bit Reversal subrouline for complex data from FFT
c

I
SUBROUTINE BITREV(XREAL,XIMAG,n)
DIMENSION XREAL(O:n), XIMAG(O:n)
integer K,NU,m

I
m.n

NU.ilog2(m)
C

I
D0103K.l ,m

I • IBITR(K ,NU)
IF (I ,LE, K) GO TO 103

I
TREAL _ XREAL(K)

TIMAG • XIMAG(K)
XREAL(K) • XREAL(I)

I XIMAG(K) • XIMAG(I)
XREAL(I) • TREAL
XIMAG(I) • TIMAG

I 103 CONTINUE
C
C

I RETURN
END

c

I FUNCTION IBITR(J,NU)
INTEGER Jl,I ,J2,JBITR
Jl • J

I JBITR. O
C
C

I DO 200 1. 1, NU
J2.Jl /2

I
JBITR • JBITR ' 2 + (Jl ' 2 ' J2)

200 Jl.J2
C

I
C

IBITR.JBITR
RETURN

I
END

c
function itog2(n)

I ilog2.inl(1 ,442695041'109(lloOI(n))+.01)
c print ·,"n.log2n ",n,ilog2

return

I
39

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

end

Timer.f - Supplied by Absort

I Timer class for real ·lime control

I

I Start timer with newTimer:larget:action: method

I Stop limer with Ireelimer: method

INCLUDE MObject.inc· I Objeci class definition
INCLUDE -Timer.inc·

I TimerFunc is the FORTRAN function invoked al each l ime interval

SUBROUTINE TimerFunc(dum1, dum2. dum3)

INTEGEA*4 IheTarget
INTEGER*4 theAcHon
COMMON ITIMER_GLOBALS/ lheTargel, theAction

INCLUDE "object.inc·

[theTarget perform:theAclion)

END

@implementation Timer : Object

I newTimer:largetaction: method starts a timer thai causes the 'action' method

I
to be invoked in the 'target' at each 'interval',

I Returns the 10 of the timer entry.

@+ newTimer:REAL*S intervaltargettarget action:action

EXTERNAL

INCLUDE

the Target", target

theAction :>:: action

TimerFunc
MApplicalionPARAM.inc·

self :c: DPSAddTimedE:ntry(@interval,VAL(LOC(TimerFunc».VAL(self),
.VAL(NX_MODALRESPTHRESHOLD.S))

@end

I !reeTimer : removes the timed entry for the specified timer 10

@-freeTimer:inlegerentry

CALL DPSRemoveTImedEnlry(VAL(enlry))

freeTimer '" self

@end

40

I
I @end

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

41

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

OOO()03b

	BUGS: A Test Bed For Catastrophe Based Collective Behavior
	Recommended Citation

	0000036.pdf

