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INTRODUC1l0N 

1ST researchers have constructed a model environment to rapidly genernte and test ideas 
about force-field driven, catastrophe switched behavior. While the ultimate goal of this project 
is to help produce a dismounted infantry semi-automated force (SAFOR) for the simulator 
networking (SlMNET) environment, the SIMNET environment is inherently very complex. The 
simulated environment facilitates the testing of ideas for behavioral modeling. 

The program, Bugs, was used to test the ideas reponed on in the paper "Human 
Behavioral Modeling Using Catastrophe Theory" presented at the 2nd 1ST Behavioral 
Representation Symposium. (Appendix I contains this paper.) 

Bugs was implemented on a NeXT Workstation equipped with a Motorola 68040 
processor. The language used was Absoft Objective Fortran. Fortran was chosen because of its 
ability to include complex numbers and its good match to numeric processing. The Absoft 
version was used because it included objective extensions that allowed easy implementation of 
graphics routines. See Appendix I for more detailed information. 

The work described in this report was partially funded through DARPAJPM TRADE 
contract N61339-89-aJ044, Intelligent Simulated Forces Evaluation and Exploration of 
Computational and Hardware Strategies. 

DISCUSSION 

The following discussion explains the contents of the source code files needed to compile 
a working version of the Bugs program for the NeXT workstation. This code works with version 
2.0 of the NeXTStep operating system. It is not known whether it will work with version 1.0. 
Listings of these mes are included as Appendices. 

Makellle 

UNIX style me controlling program compilation and linkage. The variable FFILES 
contains the names of dependent code files. 

Bugs_Inc 

Block of code that declares variable in common to all the Bugs programs. All the 
variables - except the parameter variables IU', nxm, ncomb - are conunoned in the block 
GLOBALS. This use of common forces within objective Fortran makes these variables static. 

The variable names are meant to be suggestive of their function, but a brief explanation 
will be helpful. 

nx (nxm) 
meanx,meany 
npoten 
ngen 
nodisp 
liveb(livefl 

- size of playing grid (minus I, need for array sizing) 
- fossils, defined but not used 
- controls display of potential function 
- number of generations or time steps run 
- toggle variable to tum off display 
- number of buddy (foe) agents left alive 
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stopped - toggle variable to pause simlation 
ncomb - maximum number of agents (array dimension) 
xmax,ymax.xO.yO - maximum and minimum coordinates 
dx,dy - grid spacing in screen units 
emax - floating point nxm 
budr,budi (joer joei) - real and imaginary parts of buddy (foe) potentials 
wbudr,wbudi (lifoer;.foei) - real and imaginary parts of buddy (foe) weights 

Imaginary pans are used to calculate cross-potentials, e.g. foe to bud 
xb,yb (xf,yf) - x and y coordinates of buddy (foe) agents 
stateb(Slatef) - state of buddy (foe) agents 
budbud(budjoe) - pairwise potential between buddy and buddy (foe) 
foebudjoefoe - pairwise potential between foe and foe(buddy) 

These are not now used but would be needed in SIMNET. 

Bugs.r 

Main program - sets up NeXT window objects and main timing loop. This program is a 
modification of an example provided with the Absofl compiler and some of the peculiarities of 
syntax reflex this genesis. 

For those unfamiliar with Objective Fortran syntax, the statements beginning with @ are 
objective syntax and follow closely the analogous statement in objective C. 

The 
@INJERFACEBugs: View 

line specifies the messages to which the object Bugs (which is of class View) responds. Bugs 
responds to messages@-suspend, @-gofast, @-step, @-density, @-drawSelfas specified by 
the subsequent lines of code. The @-mouseDown message was not implemented. It would 
have been desirable to allow mouse driven editing of the agents within the Bugs View, but time 
precluded implementing this method. 

The@IMPLEMENTATIONstatementbeginsasection which specifies how Bugs 
responds to each method. The @+ newView section contains intialization code which places the 
window on the screen (NKEraseRect) specifies the max range of x and y. calls the initialize 
subroutine (see Bugs_subs.f) and calls the dispilJy subroutine (see Bugulisp). 

The strange bracketed code indicates a message being sent. For example, (self 
newFrame:&rJ means self(this object) is being recursively commanded to respond to a 
newFrame message. Similarly, the {Timer newTlmer: .. . ] message implements the basis timing 
loop of the program by sending the Timer a message (see Timer.f). The commented message .. . 
setAip ... is left over from the Absoft prototype. It causes the coordinate system to be flipped 
vertically which is undesirable when using some fonts on the screen. 

The sections beginning@-step •...• @- drawSelf contain the code that implements the 
various methods. Most of these methods just change the state of a switch variable in response to 
a mouse click on a menu item. The method drawSelf does the work. The subroutine neighbor is 
called to calculate the potential function; then rule is called twice to update the states of the 
agents: once for friends and once for foes. 

The code beginning with PROGRAM main is standard NeXT code for starting a program. 
A new application NXApp is established by messaging Application; setUp code is called; the 
application is given a run message and then a/ree message after completion. 
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The subroutine setUp sets up a needed reel window data structure and creates a window 
view with a message to Window. my Window is modified and enhanced by sending it various 
messages. The myPanel window for the menu items is set up by a message to Panel, and is 
subsequently modified. The rmal section defines the actions in response to various mouse clicks 
by sending myMenu various addItem messages. 

Briefly these actions are: 
Info 
Pause 
GoFast 
Single Step 
Show Density 

Print 
Hide 
Quit 

- the usual NeXT program infonnation message 
- stop program execution but retain display, second click toggles 
- continue simulation but tum off display for speed, toggles 
- execute onc time step of the simulation 
- display friend-friend potential function as shades of gray, subsequent clicks 

cycle through friend-foe, foe-foe, foe-friend and off 
- invokes the slandan! NeXT prinlpanel 
- miniaturizes the display window, program continues to run 
- SlOp program 

This file contains two display subroutines. Both display routines make use of calls to 
NeXT display Postscript screen commands. These calls are identified by the prefix PS and have 
the effects suggest by their names. One peculiarity is the the use of the VALO function which is 
needed since the native NeXT C-PS functions use call by value whereas Fortran uses addresses. 
The other thing to note is that the basic unit of Postscript drawing is the path, hence the calls to 
PSnewpath and PSciosepath. 

The first subroutine Box draws a nice box around the playing field of the size specified 
by its arguments. 

The display subroutine displays the generation number. the number of agents left alive. 
and optionally. the positions of agents and the potential functions. Control is basically by nested 
if statements. 

The non-Fortran programmer will be mystified by the sections thaI flfsl "00 
i= I ,IOO;livingli)=O;end 00" then encode according 10 some format and then caUa PS-fucnlion. 
Fortran is very bad with strings. What is happening is that the array living is having string data 
entered and then the PS-function is being called with that sIring data. 

An English version of the program flow is as follows: 
A call to Box clears the display. 
If display is not off or hasn't been displayed for ten generations then display. 
Display consists of: 

Two calls to Box to make a nice nested appearance. 
If polential display is on, then 

loop to find max and min of desired potential 
loop 10 display polential scaled 10 [0,11 

Note - display is via Postscript line drawing function with line width 
set to grid size. dx, so that the Postscript machinery automatically 
provides the gray scale display 

An encode sequence sets a font. another encode then results in display of 
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the type of potential function. 
After setting liveb and live! counters to zero, two loops display the locations of the 
agents using PSarc circle drawing commands. State of agent is indicated by 
shade of circle. 

An encode sequence sets the font and three more encode sequences display the numbers 
of each type of agents remaining and the generation number. Obviously in go-fast mode 
the number of agents is updated only every 10th generation, although this could be 
modified. 

This file includes three subroutines that implement the computations underlying the Bugs 
simulation: neighbor, initialize, and rule. The first, neighbor, calculates the pairwise potentials 
using an FFf calculation of the convolution. The second, initialize, sets up the simulation, and 
the third, rule, updates the states of the agents. The discussion begins with initialize. 

The flrst section of initialize deals with setting up the weight arrays used in calculating 
the convolution from which the potential is derived. Three Gaussian distributions with standard 
deviation sig{ 1 ,2,3) are used. The Gaussian nonnalization factors an{l,2,3} are calculated once 
and for all, as are the exponential argument weights as{l,2,3}. The ij loop then loads the arrays. 
As noted above, the real pans of the array are used to hold the like weights (bud·bud, foe·foe). 
and the imaginary parts the unlike weights (foe-bud, and bud-foe); this saves a whole set of 
FFTs. FFT2DREV is used to transfonn the weights to the Fourier domain once and for all. 

Finally, a modular pseudo-random function is used to populate the playing grid with 
agents (Absoft FORTRAN had no convenient random·number generator), The debris of 
commented statements shows some of the history of experimentation. All agents stan in the 
timid state (0.5). 

The subroutine neighbor calculates potential functions using multiplication in the Fourier 
domain. The potential arrays are first zeroed. They are then incremented by the indicator value 
1 wherever an agent is located. The transfonn FFT2DREV is then used to pass to the Fourier 
domain. The transformed locator function is then multiplied by the conjugate of the transfonned 
weights to get the transformed potential function. The potential is brought back to spatial 
domain via REVF FT2D. 

Subroutine rule begins by setting the parameters, swjacr. and dead for a two dimensional 
linear·hysteresis approximation to the cusp catastrophe. As mentioned in the paper, a linear 
approximation was used rather than a cubic cusp switch surface. This was based on the intuition 
that what matters is the topological pattern of hysteresis not the exact details of the hysteresis. 

The like-like (foel}) and like-unlike (budO) potentials are looked up. If 
like·unlike> dead· like·like the agent is killed. If not killed, the state of the agent is calculated. 

In the linear·hysteresis approximation to the cusp, if sK!lact<budOljoeO<J Iswjact, the state is 
unchanged. If in a overwhelmingly unlike region, budO<!oeQ· swjact, the agent becomes timid 
(0.5). If in a largely like region, 
foeO>budO*swfact, the agent become bold (2.0). 

For a true cusp the code would be little changed. In this case swfact becomes a function 
of the distance from the origin, so that insening the statements 

swn=budO+foeO:diJf=budOJoeO:hYSI=swfact*(budO+foeO )**3, 
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and modifying the ifs to read 

if (di/f.lt.( -hyst» statef(i)=O.5 
if (di/f.gt.hyst) state!(i)=2.0 

would implement a true cusp; the value of swfact will have to be changed correspondingly. The 
validity of these expressions follows from shifting to sum and difference coordinates in the 
(bud,foe) plane. This modification has not been tested. but intuitively the behavior should be 
similar to the linear version and the amount of eXb'a computation required is minimal. 

Finally the motion increments vI and v2 are set according to the agent's state. The 
potential gradients are calculated and the agent moves according to vI and v2 and the sign of the 
gradients. 

2D]FT_f 

This file contains two dimension FFf routines. As with one dimensional routines, these 
routines are provided in pairs so that overhead of bit reversal and transposition is avoided. The 
extra swi tch variable isw is included to control this function. 

For two dimensional, Fourier transfonns, one dimensional transforms are fIrSt perfonned 
along one axis, then one dimensional transforms are perfonned along the other axis. Since 
Fornan (most compilers) store multi-dimensional array data first-index fastest, the address of the 
first element of each column can be passed to a one dimensional transfonn to avoid the overhead 
of two dimensional index calculation. If the array is then transposed. the same technique 
calculates the other transfonn direction without the overhead. 

When the transfonns are used for convolution. the arrays do not need to be retransposed. 
nor so the final transforms need to be bitreversed. This saves additional overhead. The paired 
routines in this file FFr2DREV and FFr2DREV can be used in this fashion. Note that the bit 
reversal of the first set of transfonns cannot be avoided when using standard one dimensional 
transfonns. since skipping it would lead to a very strange data order on input to the second set of 
transforms. -

Sub-FFT.f 

This me contains one dimensional FFf routines. The code is rather unremarkable 
textbook code except that bit reversal is not perfonned. Two versions are providedFFTREV 
gives bit reversed output. whereas REVFFT takes bit reversed input. The argument is 
determines the direction of the transfonn is=+} for reverse, is=-} for forward (blame the sine 
function for reversal). 

These paired routines are useful for convolution. Convolution only requires 
multiplication of corresponding values in the frequency domain. so that bit reversal is not needed 
provided appropriately paired transfonns are used. This little trick saves the overhead of bit
reversing the time series. 

The routines would have been more elegant if Fornan's complex number data type had 
been used. Ultimate translation to C would have been more difficult, however. 
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bltrev.! 

This textbook routine reorders time series bit reversed by FFf algorithms. Also in this 
file is a little integer /og2 function, ilog2. 

Timer.! 

Supplied by Absofl 10 implemenl repelitive programs. 

RECOMMENDATIONS 

The ultimate goal of this project is to apply the ideas reponed on in the attached paper, 
"Human Behavioral Modeling Using Catastrophe Theory", to the dismounted infantry SAFOR 
applications in the SIMNET environment The following features must be incorporated in any 
SIMNET SAFOR code derived from Bugs. 

(1) Display - Display of agent motion is current via the routines in Bugs_disp.f. This would be 
replaced by calls to appropriate SIMNET routines (C-functions, whatever) that generate the 
necessary protocol data units (PDUs) to make agents appear at appropriate locations within the 
SIMNET world. 

(2) Force Fields - The force fields play two roles in Bugs. They detennine the direction of agent 
motion by via a gradient ascent algorithm, and they detennine agent behavior via the 
calastrophe-based behavior model. In a SIMNET SAFOR, the force field concepl could be used 
as in Bugs with the addition of "infinite" potentials to implement static features like terrain 
obstacles (see the paper by Hung Le al the 1ST BR Symposium). The computational 
requirements would be relatively high, however, even with FFr techniques, for higher resolution 
grids than the 32 by 32 used in Bugs. 

Slow updates may not be a problem, since a relatively sluggish force-field response 
(seconds) may be acceptable in SIMNET - agent behavior would of course occur at a faster 
time scale than the force-field update. Imagine neighbor running slower and asynchronously 
from rule. To implement this neighbor would have to be modified to takes its inputs from 
appropriate SIMNET routines. 

Perhaps a better approach would be to use the spirit rather than the letter of Bugs. The 
primary purpose of the force field is to provide a simple test environment for behavioral ideas. 
These ideas could be implemented directly into code that obtains environmental infonnation 
from SIMNET routines, evaluates the agent's status using catastrophe theoretic ideas, and then 
displays the agent's behavior using other SIMNET routines. In this approach. all that remains of 
Bugs would be modified versions of initialize and rule. The mOOified rule would detennine the 
density of enemies versus friends directly from calls to SIMNET routines and update state 
accordingly. Information from SIMNET routines would be used to detennine behavior based on 
the state. and the behavior displayed by invoking other SIMNET routines. 
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Human Behavioral Modeling Using Catastrophe Theory 

by 

Thomas L. Clarke 
J . Martin Olle 

Institute for Simulation and Training 
University of Central Florida 

ABSTRACT 

A simple model of human behavior applicable 

to force simulation and based on catastrophe 

theory is developed. The large number of agents 

that must be modeled/or a dismounted infantry 

Qmomaredjorce mandates that the algorithms 

used be as simple as possible. Simple models in 

which behavior is determined by local variables 

are investigated. Models based on cel/u/ar 

automata are/ouM not to be useful. Physically 

motivated models based on catastrophe theory Of e 

promising. however. This is not surprising since 

the seven fundamental catastrophic transitions 

have been used successfully 10 model behavior in a 

variety of circumstances. 

For dismounted infantry, the cusp catastrophe 

is used to mode/ the transition from bold behavior 

when surrounded by friends. to rimid behavior 

when surrounded by enemies. In a simulated 

battlefield environment. infantry agents are 

modeled as point particles moving under rules 

determined by the bold or timid state. The infantry 

in this simple battlefield exhibit interesting. nOIl

trivial behavior. It is rhus likely thar catastrophe

based behavior will be useful as the basis for more 

complex simulations. 
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INTRODUCTION 

Current approaches to modeling battlefield 

behavior are often based on conventional symbolic 

Artific ial Intelligence (AI). If this symbolic AI 

approach were to be used in our research. then a 

ru le-driven behavior model would be implemented 

for each of the many agenls needed fo r a dis

mounted infantry, semi-automated force. How

ever. this symbolic AI approach requ ires an 

unmanageable and impractical amou nt of 

computing power. As an alternati ve Ihen. we have 

chosen to consider non-symbolic models. 

Perhaps the simplest such non-symbolic 

models are based on cellular autom:Ha such as 

John H. Conway's game of Life (Poundstone, 

1985). In a cellu lar automata, space is divided 

into discrete squares. each of which is 

characterized by a state. For behavioral 

applications these stmes would represent the 

absence or presence. and the condition of a 

simulated agent. In Conway's Life. each cell is 

either empty (0) or full (1). Time progresses 

forward in discrete steps. and Ihe state of a cell at 

Ihe nexl lime step is determined by its present 

stale and the state of its eight neighbors. 

Conway's rules are simple: (1 ) if a cell is empty 

now and precisely three neighbors are full, then 
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the cell becomes full in the next lime step; (2) if a 

cell is full and two or three neighbors are full, then 

the cell remains full in the next time step; (3) 

otherwise the cell becomes empty. These rules 
balance the problems of runaway population 
growth with the problems of extinction; indeed, 

Poundstone (1985) shows that Conway's Life 

automata is sufficiently rich to emulate a universal 

Turing machine. 

OUf first attempt at designing a behavior 

model was based on Conway's Game of Life. 
Life - as it is called for brevity - contains 
within it the concept of bin.h and death of agents 

in a large matrix of cells. The birth aspect can be 

thought of as an analogy to the increase in strength 

of an agent receiving reinforcements and 
becoming more aggressive. The death aspect is 
analagous to an agent being overwhelmed by an 

enemy and becoming timid and retreating. 

Life, however, had some serious shortcomings 

in its unmodified condition. For example, there 

were only two cell states on the playing board: the 

'on' states, which could be considered as an agent; 

and the 'off' states, which were simply the 

background environment. To introduce enemy 

agents. another cell state was added [0 the game. 

This cell state is conveniently represented as a 

third color or else a shade of gray. 

There was still another drawback to 

unmodified Life: the rules of the game only 

considered the 'on ' and 'off' state of cells that 

were directly adjacent to one another. This is a 

drawback because on the battlefield, the presence 

of all units at various distances from your own 

must be considered important. Life doesn't model 

this situation. To remedy the problem. a two 

dimensional Gaussian distribution of weights was 

introduced into the sum of neighbor states used to 

determine the next cell state. The neighbor sum 
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Figure J. Generalization o/Collway's Ute 10 two 

types 0/ agents, white and black. 

thus includes a contribution from non·adjacent 

cells which models the importance of the presence 

of units at various di stances and remote positions. 

Figure 1 shows a snapshot of the results of 

running a generalization of Conway's Life in 

which each cell is in one of three possible states: 

+1 (friendly, white), 0 (empty, gray), or -I 

(enemy, black). Thc state of a cell is determined 

by the sum of the states of its neighbors. For 

white, the rules are Conway's; for black. the rules 

are Conway's with the sign reversed. There are of 

course many more possibilities for generalizing the 

rules, and several were tried. Unfortunately, the 

behaviors of these Iwo·phase automata did not 

seem to capture the richness of behavior needed on 

the banlefield. As Figure 1 suggests, the results 

are generally a useless debris of blinkers (3 cells 

in a row that alternate directions from one lime 

step to the next), blocks (stable 2 by 2 cell arrays) 

and other elements from Conway's bestiary. 

Somewhat surpris ingly, the 2 by 2 block is 

impregnable to enemy attack. Th:ll is. a 2 by 2 
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black block cannot be destroyed by any 

combination of while cells coming in contac t with 

it. This leads to the interesting but unrealistic 

prospect that a picket fence of blocks would fonn 

an impenetrable and unassailable barrier. 

Additional generalizations, such as 

introducing the long-range Gaussian interactions. 

were tried but did not result in more realistic 

behavior. Finding a good balance between binh, 

death. and conflict has been difficult. The long 

range interactions resulted in simulations that 

either quickly died-out or else quickly and 

exponentially overpopulated. 

PARTICLE·LlKE MODELS 

The failure of cellular automata patterned after 

Life led to the consideration of other simple 

models for behavior. In particular, an approach 

based on physics-lilce panicles, having a few 

simple intemal states, seemed promising. ntis 

type of model retains the idea of long-range 

interactions with locally detennined behavior, but 

now the paradigm is panicles moving in a 
pOiential field of force. 

Figures 2 and 3 show the potential fields used in 

the current work. The potential in Figure 2 is used 

to model the interaction between agents of like 

sign - that is, between friend and friend, and 

between foe and foe. An agent subject to such a 

potential moves so as to maximize or minimize the 

potential- that is. the agent moves up or down 

the gradient. Thi s potential, with its central well, 

was chosen to provide a repulsive force at short 

d istances: we don't want the agents to clump into 

smal l-sized units. 

Figure 3 shows the potential between unlike 

agents (friend and foe) . Because we want agents 

to close in for the kill when appropriate, this 

potential has been designed without a central dip. 

10 
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Figure 2. Potential between like agenls (e.g. 

friend to friend). 

Figure 3 . Potential behVeen IInUke agefJIs (e.g. 

friend to f oe). 

More fo rmally, the fr iendly potential ~ of an agent 

at a locati on (x, y) is the sum of the separate 

potentials for each friendly agent: 
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<l>(x, y) = 1:.; $ (Xj • x, Yj • y) ; (I) 

similarly. the enemy potential'!' is 

'I'(x, y) = 1:.;'I'(x'j • x, y'j • y) . (2 ) 

Limiting the motion of agents to a discrete grid: 

x=i /U, y=jD.y, i=1, .. . N, j=l" •. M , the sums take 

the Conn of convolutions: 

¢>ij = Lk,l $i+kj+kfij. 

'l'ij = Lk,l 'V i+kJ+k e ij , 

(3) 

(4) 

Here, r.;ij = ~(;tu:.j6y) • and 'fij = w(illx,jt1y) are 

the discrete potentials; the occupancy function fij 

(c ij ) is also a descrete function if a friendly 

(enemy) agent is located at (itlx, j 6.y), or zero. 

The convolution suggests an efficient way to 

compute Cl> and 'I' via the fast Fourier Transform 

(FFT) algorithm. Fourier transfonning ¢I. 'V, e, 
and!, the convolutions become multiplications 

(Rabiner and Gold. 1975): 

¢> = ,I [T($) T(f)]. (5) 

'I' = ,I [T('I') T(e)], (6) 

where Tand 11 denote the forward and inverse 

Fourier lransfonns respectively. 

Using the FFT to evaluate T on an NxM grid 

reduces the calculation time from order N2 M2, (0 

order NM(loglN)(logzM). For N=M=lOZ4, this is 

a saving of a facto r of more than 10,000 in time. 

Note that this speedup is achieved for an 

arbitrary number of agents because the 

computation time is independent of the number of 

agenls. Of course, if the number of agents is less 

than (Iog1N)(loglM ), then evaluating the sums in 

Even for a relatively large 1024 by 1024 grid, the 

advantage is lost if the number of agenls exceeds 

the modest level of 100. 

CATASTROPHE THEORY 

Catastrophe theory is a branch of topology 

Ihal is concemed wilh classifying the fonns that 

singularities of functions may take. A remarkable 

result proved by Rene Thorn (Gilmore, 1981) 

shows that these singularities can only take on a 

limited number of fonns. More precisely, an 
arbitrary singularity can be transformed via change 

of variables so that it is closely approximated by 

one of several basic models; no mailer how weird 

a given catastrophe may seem, it tums out to be 

close to one of the basis fonns. For singularities 

described by four or fewer parameters , there are 
seven basic catastrophe models. TIle canonical 

equations of these models are exhibited in Table I. 

Fold: 

Table I 
Singularity Equations lor Basic 

Catastrophe Models 

l '3 x 3 • ax 

Cusp: 

l '4x4.ax·J'2 bx2 

Swallowtail: 

1,Sx S -ax _1 /2 bx 2 _1/3 ex3 

Butterfly: 

J'6x6-ax-J' 2 bx 2 1'3 cx 3 .1'4dx4 

Hyperbolic: 

x 3 +y3+ ax +by+cxy 

Ell iptic : 

x 3 _x y2 +a x +by+c(x 2 +y2) 

equations (l) and (2) directly will likely be faster. Parabolic: 

11 
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In the table. a, b, c, d are the parameters, and X, y 

are the variables which exhibit the singularity. 

The thing to note is that the equations of these 

canonical models are simple polynomials. 

Some of simpler ones have been successfully 

used to describe human and animal behavior in 

various situations (Zeeman, 1976). Of me seven 

cataslrophes, one of the simplest to describe and 

understand is the cusp catastrophe. It is a 

geometrical object in the usual three dimension 

Euclidean space and looks like a folded sheet or 

blanket. The other catastrophes also have 

intuilUvelyappealing geometric interpretations as 

their names suggest. 

This cusp catastrophe, which we are using to 

model a dismounted infantry agent's response to 

various battlefield situations. is shown in Figure 4 . 

The ve rtical axis. x. represents the agent's 

behavior on an agressive to timid scale. The 

control parameters, a and b, are the density of 

friendly agents and the density of enemy agents 

respectively. When the agent is surrounded by 

friendly forces, it exhibits bold and aggressive 

behavior. alternatively, when the agent is 

surrounded by enemy agents, it shows timid and 

retreating behavior. 

50 far this behavior model may seem fairly 

trivial, but where catastrophe theory shines is in 

the transition region between the two types of 

behavior. The arrows in Figure 4 illustrate two 

possible paths of transition between aggression 

and timidity. The upper arrow shows how an 

agent may pass smoothly between aggression and 

timidity provided the stimuli (friendly and enemy 

densities) are not too strong. A good commander 

probably takes his troops into battle along such a 

path so that their responses remain predictable. 

12 
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Figure 4. Cusp catastrophe as applied to 

modeling agent behavior. 

The lower arrows lie in regions where the 

stimuli are stronger and as a result c ross the fold 

region of the cusp c:H3.strophe. The agent's 

behavior now becomes discontinuous. 5taning out 

aggressively. surrounded by friends. the agent 

keeps up his courage in the face of increasing 

enemy opposition until suddenly hi s nerve breaks 

and he turns timid. Conversely. a timid agent 

retreating from enemy territory rema ins timid until 

he suddenly is heartened by the pre!'ocnce of many 

friends . The catastrophe model thus introduces a 

degree of hysteresis into the transiti on between 

aggression and timidity. 

Aggressive and timid behavior have been 

considered by some researchers to be influenced 

by twO conflicting emotions: fear and rage. In the 

di smounted infant ry simulation, these emotions are 

modeled by the response of the agerlls to various 

threat conditions posed by enemy troops in the 
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banlefield. Sometimes the battlefield conditions 

promote the two emotions of fear and rage 

simultaneously and to approximately the same 

degree of intensity. When this happens, the 

behavior of a military unit will depend on its 

behavior during the immediately previous time 

period. If, during this time period, the troops have 

been aggressive and the battle turns against them, 

they will still tend to be aggressive for a while. 

Likewise, if. during this time period. the troops 

have been retreating in fear. and they stan to 

receive significant reinforcements, some time will 
be needed before they become courageous enough 

to attack. 

The particle agents exhibit two different 

potential climbing modes depending on their 

bold/timid state. When bold. particles are attracted 

to friends. but are more strongly attracted to 

enemies; they are on the attack. but try to maintain 

contact with their unit. When timid. particles are 

attracted to friends. but are repelled by enemies; 

they are thus attempting to regroup while avoiding 

contact with the enemy. Many other variations of 

behavior are possible. but as shown below these 

produce interesting results. 

RESULTS 

A panicle model of agents using a cusp 

catastrophe switch between behaviors as outline 

above was coded on a NeXT 25 MHz. 68040-based 

workstation in Absoft Objective FORTRAN (yes, 

FORTRAN; it is still the only language with a 

native complex number data type). The grid used 

was 32 by 32 (N=M=J2) so that several cycles of 

time were calculated per second and 

experimentation could go rapidly. The cusp 

catastrophe in Figure 4 was actually approximated 
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Figure 5. Forces of 3 while and 3 black agents 

are inilially disorganized alld timid. 

by two overlapping planes and an add itional third 

behavior was added . When an agem found itself 

in a thin strip along the enemy axis. it died and 

was removed from the simulation . The simulation 

run shown in Figures 5-8 involving three black and 

three white agents pl ays out an inte resting 

scenario. The agents were placed at random on the 

grid in a timid state. Timidity is indicated in the 

displays by an off-color (off-white or off-black). 

Aggression is shown when the agent is fully black 

or white. Figure 5 is several time SIC PS into the 

simulation and the agents are moving around 

trying to make cont.:lct with friends and to 

generally get organized. Note that for simplicity 

in dealing with boundaries. the simul:lIion grid has 

the topology of a tOIllS. It has no boundaries; the 

lOP of the grid is connected to the bottom and the 

left side is connected to the right side . 
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Figllre 6. The agents soon organize into lighr 

clusters and become aggressive. The upward chase 
is on. 

After severnl more lime steps, the agents have 

fcnned tight little clusters and begin an upward 

trending chase. These clusters persist for two 
circuits of the grid. 

Perhaps tiring of the chase, one black agent 

reverses field and. crossing ihe bottom "border", 

attacks the white group from above. The agent has 

no such motive. of course; its motion is merely the 

result of the randomly chosen initial conditions. 

Still, the nice anthropomorphic interpretation that 

can be given to its behavior suggests the 

possibilities of behavior modeling based on 

catastrophe theory. 

The aU8cking black agent then succeeds in 

luring a white agent away from its group. The 

white agent then finds itself in the killing strip of 

the enemy/friendly plane where it dies and is 

removed from play. Already in Figure 8, thi s 

white agent has turned timid. but it is too late! The 
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Figure 7. Block tries aflanking mal/euver, one 

agent ouacking from abm·e. 

white agent cannot get back to its grou p before it is 

killed. 

This simulation ultimately results in a win by 

black, albei t black does lose one en li ty . Again . 

while the simulation presented here is based on 

very simple local dynamics, it succeeds in 

capturing the essence of battle. 

CONCLUSIONS 

The behavior model presemed here shows 

much promise as the basis for modeling the large 

number of agents th,lt would be required in a 

simulated dismounted infantry forcc_ Despite the 

simple. local basis of the behavior. it captures 

many features of bailie. 

The computational resources nceded to 

calculate the potential functions used to guide the 

particle-like cmitics are fairly large , but the use of 

fast Fourier transfonn techniques en,tbles a single 

potential computation to se rve for all agents. 
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Figure 8. The maneuver is successful. A white 

agent is lured away, and becomes timid just before 

vanishing. 

Further investigation is needed to detennine 

how realistic this behaviora1 model really is and 

how best to incorporate the model into realistic 

environments like SIMNET. The model contains 

much scope for generalization, the potentials could 

be multi-valued (e.g. vector or tensor values) to 

produce more complicated motions and to include 

the possibility of modeling the effects of terrain 

and other environmental influences. 
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Makefile - Unix makefile 

# 

# Application makefile. 
# 

# 
# Name of the application . 
# 
NAME = Bugs 

# 
# Source files for this application. 
# 
MFILES = 

HFILES. 
FFILES • Bugs.! 

bilrev.f 
CFILES = 
NIBFILES = 
TIFFFILES = 
PSWFILES. 
SNDFILES. 

# 
# Libraries used by this application. 
# 
LlBS. -INeXT_s -Isys_s 

# 
# Flags to pass on to the compiler and linker. 
# 

CFLAGS = 
FFLAGS = ·object ·K 

Timer.f 2D_FFT.f Sub-FFT.f\ 

LDFLAGS", -segcreate _ICON _header emplyfile -segcreate _ ICON _tiff emptyfile 
# 
# Rules. 
# 
SRCFILES • $(MFILES) $(HFILES) $(CFILES) $(FFILES) $(NIBFILES) $(TIFFFILES) $(PSWFILES) 
OBJFILES = $(MFILES:.m=.o) $(CFILES:.c=.o) $(FFILES:.f=.o) $(PSWFILES:.psw=.o) 
DERIVED"" $(PSWFILES:.PSWE.C) 

GARBAGE .: $(DERIVEDl core errs emptyfile 

$(NAM E): $(OBJFILES) 
louch emplyfiJe 
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clean: 

help: 

$(FC) -0 $@ $(FFLAGS) $(OBJFILES) $(LlBS) $(LOFLAGS) 

-rm -1 °.0 $(NAME) $(OERIVEO) $(GARBAGE) 

@echo' make $(NAME) . to make the application' 
@echo' make clean· to re move all files but the source' 
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Bugs.inc - Variable Declarations 

integer nX,nxm,meanx,rneany,npoten,ngen,nodisp,liveb,livef 
logical stopped 

real xmax,ymax,xO,yO,dx,dy 
parameter (nx=32,nxm",nx·1) 

parameter (ncomb",200) 

real budr(O:nxm,O:nxm),budi(O:nxm,O:nxm) 
real foer(O:nxm,O :nxm). foei(O :nx m, 0 :nxm) 
reat wbudr(O:nxm,O:nxm),wbudi(O:nxm.O:nxm) 

real wfoer(O:nxm,O:nxm),wfoei(O:nxm,O:nxm) 
real xb(ncomb),yb(ncomb) 

+ ,slateb(ncomb),budbud(ncomb),budfoe(ncomb) 
real xf(ncomb),yf(ncomb) 

+ ,slatef(ncomb),foebud(ncomb),foefoe(ncomb) 
common IGLOBALS/xmax,ymax,xO,yO,dx,dy,meanx,meany. 

+ slopped.emax,nbud,nfoe,npolen,ngen,nodisp,liveb,livef, 
+ budr ,budi,'oer,foei,wbudr,wbudi,wfoer ,wfoei. 
+ xb,yb,stateb,budbud,budfoe, 
... xf,yf,stalef,foebud.foefoe 
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c 

c 

c 

Bugs.f - Main Program 

Bipolar Bugs program written in FORTRAN and complied 
on NeXT with Object·Oriented FORTRAN from Absof1 

The coordinate system of the plol is flipped so that coordinate (0,0) 
is in the upper·left corner of the view. 

INCLUOE "appkit.inc" 
INCLUDE "Timer.inc" 

I Kit constants 

@INTERFACE 8ugs : View 

INCLUDE "Bugs.inc" 

@+ newView:REAL °4 r(4) 
@-suspend 
@-golasl 
@- slep 
@-densily 
@. mouseOown:(NXEvent ·)event 

@- d,awSell:REAL·4,eCI(4) :INTEGER dummy 
@END 

@IMPLEMENTATION 8ugs : View 

-
@+newView:REAL04r(4) I Create a new view in window 

Slopped-.faise. 
npolen:o:O 
nodisp_1 
CALL NXEraseRect(rect) 

CALL PSselg,ay(val(O.O)) 
xO=10. 
yO.lO. 
xmax- 720 ;dx=aint( (xmax -xO)/nxm) 
ymax .. 720;dy=aint( (ymax -yO)/nxm) 
xmax ... 2+nxmOdx;ymax=2+nxm°dy 
idx.(700-xmax)/2;idy.(700-xmax)12 

xmax=xmax+idx;ymax=ymax+idy 
xO=xO+ldx;yo::yo+idy 
prinl·,*dx_ ",dx," dy .. ",dy 
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xOzxO+ 1 ;yO::yO+ 1 
meanx:(nxm)/2;meany::(nxm)12 

p(inl·,~ln itializing· 

call initialize 
print *,-Displaying" 

call d isplay 

self .. [self newFrame:&r] 

(Timer newTimer: 

+ target 
+ action: 

@O.02DO 

self 
Seleclor("display\O"I] 

c ]self seIFlip:YES] 

c 
c· 

newView_ '" self 
@END 

@·step 

slopped,," .false. 

(self display] 

slopped - .true. 
step = self 
@end 

@-suspend 
stopped - .nol. stopped 

suspend - self 
@end 

@-gofas! 
nodisp .. l-nodisp 
gofas! • self 

@end 

@-density 

npolen=npolen+ 1 
if (npolen.gI.4) npolen::Q 

density - self 
@end 

@. mouseDown 

I Suspend evolution and do a single slep 
I Temporarily turn off suspension 

I Display new grid 

I Suspend evolution 
I Return, by convenlion, self 

! Suspend evolution of grid 

I Toggle suspension slale 

! Return, by convention, self 

I Suspend display of cells 
! Toggle grid display 

I Return, by convention, self 

I Toggle display of background density 

I Return, by convenl ion , self 

c· Th is method handles a-mouse down. 
c· 
c mouseDown .. self 
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c @end 

@' drawSelf:REAL -4 rect(4) :INTEGER count 
I Draw window view 

I Calculate and draw graph 

if(stopped) relurn 
c repeal 
c10 continue 
c print · ,·Summing neighbors· 

call neighbor 
c print ·,"Applying rules· 

call rule(xb,yb,emax, 
+ stateb,budfoe ,budbud,foei,budr ,nxm,nbud) 

call rule(xf,yf,emax, 
+ statel ,foebud,foefoe,budi,foer,nxm,nfoe} 

c print -,"Displaying" 
call display 

c unlil keypressed; 
c gOl010 

drawSelf_ • self 

@END 

@end 

PROGRAM main 
IMPLICIT NONE 
INTEGER NXApp 
INCLUOE "objecl.inc" 

NXApp = [Application new] 

CALL selUPO 
[NXApp run) 
[NXApp free) 

END 

SUBROUTINE selUp 
IMPLICIT NONE 

I End of implementation 

I Our application object 
t Object-Oriented FORTRAN definitions 

I Get 10 of new Application object 

I Sel up the environment 
I Start the event loop for application 

I Free program space 

I Routine to set up the environment 

INTEGER my Window, myPanel, myMenu, panelText, myView 
INTEGER content 

AEAL·4 recI(4) , viewRect(4) 
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INCLUDE · object.inc· 

include -appobjecl.inc· 

I Object-Oriented FORTRAN definitions 
I Application kit constant definitions 

! Sel up a Window 

CALL NXSeIRecl(recl,val (1 OO.O),val(1 00.0), val(800.0),val(800.0» 
my Window .. [Window neweonlen!: &rect 

+ slyle: NX_TITLEOSTYLE 
+ backing: NX_BUFFERED 

+ 

+ 

bullonMask: 

defer: 
NX_MINIATURIZEBUTTONMASK 
NO) 

[my Window setTitle:MBattle BugS\OM] 
f{myWindow conlantView} getBounds:&viewRectj 
myView ... [Bugs newView:&viewRect] 

content = [my Window conlentView] 
[[my Window conlenlView] addSubview:myView] 

! Sel up an information Panel 
CALL NXSeIRecl( reel, val (400.0), val(800.0), val(255.0), val(60. 0» 
myPanel = [Panel newContent: &rect 

+ slyle: NX_TITLEDSTYLE 
+ 
+ 
+ 

backing: 
butlonMask: 

defer: 

NX_BUFFERED 
NX_CLOSEBUTTONMASK 
YES) 

[myPanel selTitle :MAboul Bugs\01 
[myPanel removeFromEventMask:(NX_KEYDOWNMASK .or. NX_KEYUPMASK)) 

CALL NXSeIRecl(recl,val(0.0),val(0.0),val(255.0),val(55.0» 
panelText _ [Text newFrame: &rect 
+ text: -Baute Bugs is wr~ten in 
+FORTRAN using Object·Oriented FORTRAN (TM) from 
+Absoft Corporation. T. L. Clarke\O-
+ alignment: NX_CENTERED] 
[panelText setSelectable:NO] 
[[myPanel contentView] addSubview:paneITexl] 

! Set up a Menu 
myMenu _ [Menu newTitle:-Bugs\01 
((myMenu add Item: -lnfo ... \O-
+ action: SelectorrorderFront:\O-) 
+ keyEquivalent : NULL] setTarget:myPanel] 
[[myMenu addttem: -Pause\O-
+ action: Selectorrsuspencf\O-) 
+ keyEquivatent: ichar('p')] setTarget:myView] 
[[myMenu addltem: -GoFast\O-

+ action: Seleclorrgolast\O~) 
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c 

+ keyEquivalent: iehar("')] setTargel :myViewj 

IImyMenu add Item: ·Single Step\O" 
+ action: Seleclor("slep\O") 
+ keyEquivalent: ichar('s')) setTargel:myView] 

[[myMenu addltem: ·Show Densily\O" 
+ action: Selector("density\O") 
+ keyEquivalent: ichar('q')J setTarget:myView] 
((myMenu add Item; ·Prinl...\O" 
+ aclion: Seleclor("smartPrintPSCode:\01 
+ keyEquivalent: ichar('O')] setTargetmyWindow] 

[myMenu add Item: "Hide\O· 
+ action: Selector("hide:\O") 
+ key Equivalent: ichar('h')] 
(myMenu addltem: "Quit\O· 
+ action: Seleclor("terminate:\O") 
+ keyEquivalenl : ichar('q')] 
{myMenu sizeToFitj 

(GetNXAppO seIMainMenu:myMenu] 

I Display alllhree windows and PostScript texl in view 
[myPanel display] 
(myMenu display] 

[my Window display] I Calculate and display graph 

I Move my Window on-screen 

(my Window orderFront:nil] 

END 
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c 

c 

c 

Bugs_disp.f - Display routines 

Subroutine Box(xlow,xtop,ylow,ytop,grey) 
call PSnewpathO 
call PSmoveto(VAL(xtow),VAL(ytow)) 
call PStineto(VAL(xtop),VAL(ytow)) 
call PStineto(VAL(xtop),VAL(ytop)) 
call PStineto(VAL(xtow),VAL(ytop)) 
call PStineto(VAL(xtow),VAL(ytow)) 
call PSclosepathO 
call PSselgray(val(grey)) 
call PSfiliO 
call PSstrokeO 
call PSmoveto(VAL(xtow),VAL(ylow)) 
call PStineto(VAL(xtop), VAL(ytow)) 
call PStineto(VAL(xtop),VAL(ytop)) 
call PStineto(VAL(xtow),VAL(ytop)) 
call PStineto(VAL(xtow),VAL(ytow)) 
call PSselgray(val(O.O» 
call PSstrokeO 
call PScopypageO 
return 
END 

c Battle Bug Subroutines 

c 

c 

subroutine display 
INCLUDE "Bugs. inc· 
integer i,nil,living(100) 
feal xxQ,r 
r .. dx12 
xxO .. xO+dxl2 
ngen:lilngen+1 
nilzmaxO(nbud,nfoe) 
call Box (O.O,800.,ymax+2"dy+9,800.,O.666667) 
if ((nodisp.ne.O) .or. (mod(ngen,10).eq.O)) then 

call Box(xO·1 O,xmax+2*dx+8,yO·1 O,ymax+2"dy+S,O.333333) 
call Box(xO· 2.xmax +2" dx,yO·2 ,ymax + 2' dy ,0 .5) 
print ·,"nbud. nfoe ·,nbud,nfoe 

c code displays potential function 
if (npoten.ne.O) then 

c print',"# potential displayed ·,npoten 
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I pmax_O.O;pmin",1.0e6 

if (npolen.eq.!) then 
do i=O,nxm;do j=O,nxm 

I pmax:max(pmax.(budr(i,j))) 

pmin=min(pmin,{budr(i,j))) 
end do; end do 

I end if 
if (npoten.eq.2) then 

I 
do j:O,nxm;do j=O,nxm 
pmin",min(pmin,(budi(i,j))) 
pmax:max(pmax.(budi(i,j))) 

I 
end do; end do 

end if 
if (npoten.eq.3) then 

I 
do i=O,nxm;do j=O,nxm 
pmin:::min(pmin,(foer(i,j))) 
pmax.max(pmax.(foer(i.j))) 

I 
end do; end do 

end if 
if (npoten.eq.4) then 

I 
do i=O,nxm;do j:O,nxm 
pmin,.min(pmin,(foei(i,j))) 

pmax=max(pmax,(foei(i,j))) 

I end do; end do 
end if 

I c print·, -max/min potential· ,pmax,pmin 

ascale-l.0/(pmax-pmin) 
do j""O,nxm 

I xzxxO+dx"(i) 
c print · ,·X", ",x," Ya-",Y 

do j=O,nxm 

I y=yO+dy'O) 
call PSsellinewldth(val(dx)) 
if (npoten.eq.!) dens=budr(i,j) 

I if (npolen.eq.2) dens:budi(i,j) 
if (npoten.eq.3) dens",foer(i,j) 

I 
if (npoten.eq.4) dens",foei(i,j) 
CALL PSsetgray(val((dens-pmin)·ascale)) 
call PSnewpathQ 

I 
CALL PSmoveto(val(x).val(y)) 

call PSlinelo(val(x) ,val(y+dy)) 
call PSslroke 

I 
end do; 
end do; 
call PSseUinewidlh(val(1.0)) 

I c 
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I 
I call PSselgray(val(O.O)) 

do ;:.1.1 OO;living(i)=O;end do 

I 
encode(9,301,living) 
call PSselectfont(living,VAL(16.0» 
call PSnewpalh() 

I 
call PSmovelo(VAL(xO),VAL(ymaX+dy)) 

c 
do i.1 t l00;Jiving(i) .. O;end do 

I 
if (npoten.eq.1) encode(13,201 ,living) 

201 format(~F riend-F riend"} 
if (npolen.eq.2) encode(13,202.living) 

I 202 format(MFriend·Foe .) 
if (npolen.eq.3) encode(13,203.living) 

203 formatrFoe-Foe ") 

I if (npoten.eq.4) encode(13.204,living) 

20' format(MFoe-Friend .) 
call PSshow(living) 

I c 
call PSselgray(val(O.O)) 

call PSslroke() 

I call PScopypage() 

c 
end if 

I 
Jiveb",O 

I Jivef=O 
do ;=1,nil 

I 
jf (i.te.nbud) then 

if (slaleb(i) .gI.O.O! Ihen 
liveb .. liveb+ 1 

I 
x_dx·(xb(i)+ 1 );y.dy·(yb(i)+ 1) 

c print ·,·X- ·,X,· yz ·,Y 

grey .. O.9 

I 
if(slaleb(i).gl.l .0) grey-1.0 

CALL PSselgray(val(grey)) 

call PSnewpalh() 

I CALL PSmovelo(val(x),vaJ(y)) 

call PSarc(vaJ(x),val(y),val(r),val(0.),val(360.» 

call PSfiliO 

I call PSslroke() 

end if 
end jf 

I grey .. O.O 
if (Ue.nfce) then 

if (sIBle'(i).91.0.0) then 
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I 
I livef""livef+ 1 

x. dx" (xI(i)+ I );y=dy"(yf(i)+ I) 

I 
c print·. ~x"" • ,x,· y: .,y 

grey",O.l 
if(slaleb(i).g1.I .O) grey=O.O 

I 
CALL PSselgray(val(grey)) 

caU PSnewpathO 
CALL PSmovelo(val(x) ,val(y)) 

I 
call PSarc(val(x),val(y),val(r),val(0.),val(360.)) 

call PSfiliO 

call PSstroke 

I 
end if 

end if 
end do 

I c 
end if 
CALL PSselgray(val(O.O)) 

I do i=1.1 OO;tiving(i)=O;end do 
encode(9,301 ,living) 

301 formatr Helvetica-) 

I call PSselectfonl(living,VAl(16.0» 
call PSmovelo(VAL(xO)"VAL(ymax+3"dy)) 

do i .. l ,100;living(i)=O;end do 

I encode(20, 101 ,living) liveb 
101 format (MSurviving white: ·,i3} 

call PSshow(living) 

I call PSmovelo(VAL(3.0"(xO+xmax)/4.0), VAL(ymax+3"dy)) 

do i=1.1 OO;living(i)=O;end do 

I encode(20.103,living) livef 
103 formal("Surviving 6lack: · ,i3) 

I 
call PSshow(living) 
call PSmovelo(VAL(2.0"(xO+xmax)/4.0), VAL(ymax+4 "dy)) 

do i=l, 1 OO;living(i)=O;end do 

I 
encode(22,10S,living) ngan 

105 formaWElapsed Cycles: -,i6) 
call PSshow(living) 

I 
c 

call PSstrokeQ 
c call PScopypageO 

I c call PSsetlinewidth(val(1 .0)) 

return 

I END 

I 
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Bugs_subs.f - Calculation Routines 

subroutine neighbor 
INCLUDE ~8ugs.inc~ 

c wr,wi is transformed weight array 
c far,fai is used to for calculations 
c 
c a is active grid, b gets neighbor count 
c 

c 
Integer i,j,nxmm.nxmp 

if (nbud.gt.O) return 
nxmp:nxrn+l 
nxrnm=nxm-l 
do j .. O,nxm;do j=O,nxm 

budr(i.j)-O.O;budi(i,j)=O.O 
foer(i,j)=O.O;foei(i,j)=O.O 

end do; 
end do 
do i_1 ,nbud 

ix=mod(nx+nint(xb(i)),nx) 

iy=mod(nx+nint(yb(i)),nx) 
budr(ix,iy)=budr(ix,iy)+ 1.0 

end do 
do j,.1 ,nfoe 

iXEmod(nx+ninl(xf(i)),nx) 

iy .. mod(nx+ninl(yf(i)),nx) 

foer(ix,iy).foer(ix,iy)+ 1.0 
end do 

call FFT2DREV(budr,budi,nxmp,-l,O) 
call FFT2DREV(foer,foei,nxmp,-1.0) 

c print ·,"returned form FFT2DREV" 
c multiply by complex conjugate 

fmax=-1 .Oe20;bmax",·1 .0e20 
fminc:-fmax;bmin=-bmax 
do i=O,nxm;do j=O,nxm 

Ir:budr(i,j)-wbudr(i,j)-budi(i,j)-wbudl(i ,j) 
ti;;budi(i,j) -wbudr(i,j)+budr(i,j) -wbudi(i ,j) 
budr(i,j);;tr;budi(i ,j)",ti 

end do;end do • 
do i_O,nxm;do j:zO,nxm 

tr:loer(i,j)"wfoer(i,j)-foei(i,j)"wfoei(i,n 
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ti_foel(i,j) °wfoer(i,j)+foer(i,j)"wfoei(i,j) 

foer (1 ,j)_1 r;foei(i ,j)z!i 
end do;end do 

c print· ,-calling AEVFFT20M 

call REVFFT2D(budr,budi,nxmp,+ 1,0) 
call REVFFT2D(foer,foei,nxmp,+ 1,0) 

c do i=O,nxm;do j=O,nxm 
c fmax=maxl (fmax,foer(i,j) 
c bmax=maxl (fmax,budr(i,j) 
c fminzmin1 (fmin,foer(i,j)) 
c bmin ... min1{fmin,budr(i,j)) 
c end do; end do 
c prinl . , "budmax. budmin, foe max, foemin ", 

c + bmax,bmin.fmax.fmin 

relurn 
END 

subroutine initialize 
INCLUDE "Bugs. inc· 
integer i,i,nxmp 
real weight! ,weight2 

ngen=O 
nxmp=nxrn.l 

c initialize weight array and transform 
smax_(nxrn+ 1 );xfold=smax12 
emax=nxm 
5igl =smax/4.0 
a51 .. 1/sigl--2I2.0;anl =1 /(6.2832"5ig l )/smax·o2 
sig2=aminl (smax/~.O.I .0) 

as2 = l Is ig2"2/2 .0;an2= 1/(6.2832" sig2)/smax·· 2 
sig3:smax/4.0 

as3,., 1/sig3u 2l2.0;an3", 1/(6.2832·sig3)/smax·· 2 

print ",· sig1, 5ig2, 5ig3 ·,5ig1,5ig2,5ig3 

c an2 .. 3.0 

hywt"" 1 J5maxu 2 
do i. O,nxm;do j_O,nxm 

ddx=i;if (ddx.gl.xfold) ddx=ddx-5max 

ddy.j;if (ddy.gl.xfofd) ddy.ddy-smax 

arg=ddx·"2.ddy"2 
weig hll .. an3" exp( -arg' as3)-an2" exp( -arg' a52) 

weighI2:anl "exp(-arg"asl } 

c weight=hywtlamaxl (1.0,arg}-an2·exp( -arg' as2) 

c weighf.hywV.maxl (1.0,.rg) 
c nole use 01 real part for friene (bud) and imaginary part lor loe 

wbudr(i,j)=weighll 
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wbudJ(i,j)::weighI2 
wfoer(i ,j)::weight 1 

wfoei(i,j)""weighI2 

end do;end do 

c don't count yourself ? 
c wbudr(O,O):O.O;wbudi(O,O):O 

c wfoer(O,O).O.O;wfoei(O,O):O 

call FFT2DREV(wbudr,wbudi,nxmp, l,O) 

call FFT20REV{wfoer,wfoei,nxmp,-I,O) 

c psuedo random function y:::(991·y mod 1024) + 31 

iseed - 59 
do i. l,ncomb 

iseed=mod(iseed"157,1024).31 

xb(i)=smax*iseedl3240.+xfold 
iseed",mod(iseed*97,1024)+31 

yb(i)",smax"iseedl3240.+xfold 

stateb(i)_O.5 

end do 
nbud",ncombl2 
nbud .. 3 

do i= 1 ,ncomb 
iseedz rnod(iseed"157.1024)+31 

xf(i)""smax"iseedl3240.0 
iseedz:rnod(iseed"97.1024)+31 

yf(i).smax' iseedl3240.0 
sl,'el(i)=0.5 

end do 

nfoe=ncomb/2 

of 09=3 

c need to call neighbor lo-initialize the (bud,foe)(bud,foe) arrays 

c when full behaviour is implemented 

return 

END 

subroutine rule 
c code is written from viewpoint of foe 

+ (xl, yf ,emax ,slatel ,foebud, foefoe ,bud ,foe ,nxm, nfoe) 
real bud(O:nxm,O:nxm),foe(O:nxm,O:nxm) 
real xf(nfoe),yf(nfoe) 

+ ,5 tatef( nfoe), foebud( nfoe) ,foeloe( nloe) 
integer i,nx 
nx=nxm+l 
ip. l ;im.- l 
foeequ=S.O 
swfact=3.0 
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c dead=20.0 

dead=8.1175 
do ;=1 ,nfoe 

ix=mod(nx+ninl(xf(ij),nxm) 
iy",mod(nx+ninl(yf(i)),nxm) 

c mode switching hysteresis - catastrophe approx -
c with switching along lines foe",2"bud and bud",2'foe 

budO=ab5(bud(ix,iy)) 

loeO=abs(foe(ix,iy)) 
c if overwhelmed kill it 

if (budO,gl,(doad'foeO)) 5Ialel(i)=O,O 

c check if alive 
if (5Ialof(i).gI.0.0) Ihen 
if (budO.gl.(5wfacl'foeO)) 5Ialel(i)=0.5 

il (loeO.gl.(5wfacl·budO)) 5Ialel(i)=2.0 

c set motion increments 

c 

c 

if (5Ialef(i),gI.1 .0) Ihen 
vl=O.25;v2=1 .0 
else 

vl ",O.5;v2=..().10 

endi' 
gradbx:bud(mod(ix +ip. nx). iy) -bud(mod (nx+ ix +im ,nx) ,iy) 
gradbyzbud(ix.mod(iy+ip,nx))-bud(ix,mod(nx+iy+im,nx)) 
gradfx .. foe{mod(ix+ip,nx),iy)-foe(mod(nx+ix+im.nx) ,iy) 
gradfy",foe(ix,mod(iy+ip,nx))·foe (ix,mod(nx+iy+im,nx)) 

if (gradlx.gI.O) then 
xf(i)=xf(i)+vl 

else 
xf(i).xf(i)-v1 

end if 
il (gradbx.gI.O) then 

xf(i);xf(i)+v2 

else 
xf(i).xf(i)-v2 

end if 
if (xf(i).gt.emax) xf(i):xf(i)-emax 

if (xl(i) .It.O,O) xl(i)=xl(ij+emax 

if (gradfy.gI.O) Ihen 

yl(i)=yf(i)+v1 
else 

yf(i).yf(i)-v1 

end if 
if (gradby.gI.O) Ihen 

yl(i).yf(i)-v2 
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end if 
end do 

return 
END 

else 
yf(i)=yf(i)+v2 

end if 
if (yf(i).gt.emax) yf(i)=yf(i)-emax 

if (yf(i).lt.O.O) yf(i)=yf(i)+emax 

I end of kill check 
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2D FFT.f - Two Dimensional FFT 

c transform square nxn (power or 2) matrix of values 
c if isw=O leave result unstransposed and don't perfrom bilreversats 
c in order to speed correlation calculations 

subroutine FFT2DREV(ar,ai.n.is,isw) 
dimension ar(n,n),ai{n,n) 

c transform rows 
doi:l,n 
call FFTREV(ar(1.i),ai(1 ,i),n,is) 
if (isw.no.O) call BITREV(ar(1 ,i),ai(1 ,i).n) 
end do 

c transpose 
calilranspose(ar,ai,n) 

c transform columns 
do i",l,n 
can FFTREV(ar(1,i),ai(1 lil,n,is} 
if (isw.n •. O) call BITREV(ar(1 ,i),ai(1 ,i),n) 
end do 

c transpose back if desired 

c 

if (isw.ne.O) calilranspose(ar,ai,n) 
return 
ond 

c transform square nxn (power or 2) matrix of values 
c if isw=O assume input unstransposed and un·bilreversed 
c in order to speed correlation calculations 

subroutine c(ar,ai,n,is,isw) 
dimension ar(n,n):ai(n,n) 

c transform rows 
do i,.1 ,n 

c transpose if needed 
if (isw.ne.O) call transpose(ar,ai,n) 

c bit reverse if needed 
if (isw.no.O) call BITREV(ar(1 ,i),ai(1 ,i),n) 
call REVFFT(ar(1 ,i),ai(1 ,i),n,is) 
end do 

c transpose 
call transpose(ar,ai,n) 

c transform columns 
do i::o:1 ,n 

c bit reverse if needed 
if (isw.no.O) call BITREV(ar(1 ,i),ai(1 ,i),n) 
call REVFFT(ar(1 ,i),ai(1 ,i),n,is) 
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c 

end do 
relurn 
end 

c transpose nxn square matrices 
subroutine Iranspose(A,B,N) 
real A(N,N),B(N,N) 
do i_1,(N_1) 

do j:(i+1),N 

end do 
end do 
relurn 
end 

T -A(i,j);A(i,j).AU,i);AU,i). T 
T .B(i,j);B(i,j).BU,i);BU,i). T 
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Sub-FFT_f - One dimensional FFT 

c 
c algorithm for FFT with bit reversed output 
c 
c 

c 
c 

SUBROUTINE FFTREV(XREAL,XIMAG,nn,is) 

DIMENSION XREAL(l :nn), XIMAG(l :nn) 
INTEGER N,NU,N2,dk,dN,dk2 

real dwr,dwi,dthel,Wf,wi 
N=nn 
NU.ilog2(N) 
N2 . NI2 

K=O 

c loop over log2N sub FFTs 
c 

DO L-l,NU 
c input incremenllo SubFFT 

dN=2"" (L-l) 
c length of SubFFT-l 

c 

dk=2"-(NU-L) 

dk2=dk"2 
dthet=6.283185307"float(dN"is)lfIoal(N) 
dwr=cos(dlhet}; dwi:a:sin(dthel) 
k_l 

print -,"L,dN,dk ',L,dN,dk 

C loop over 

c 

wr .. l.0;wi=O.O 
DO l = l,dk 

do m=1 ,N,dk2 
k",l+m-l 

print ",MI,m,k,k+dk-,I,m,k,k+dk 
xl r_XREAL(k) ;xl i=XIMAG(k) 
x2r=X R EA L(k +dk);x 2i_X IMAG(k +dk) 
dr=xl r-x2r;di=xl i-x2i 
XAEAL(k)=xl r+x2r;XIMAG (k)=xl i+x2i 

XREAL(k+dk)=dr'wr-di"wi 
XIMAG(k+dk)=dr'wi+di"wr 
end do 

if (dk.ne.l) then 
tr:w,"dWf-wi"dwi 

wi=dwr' wi+dwi'wr 
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c 
c 

c 

end do 

end if 
end do 

RETURN 
END 

wf=lr 

c algorithm for FFT with bit reversed input 
c 
c 

SUBROUTINE REVFFT(XREAL,XIMAG,nn,is) 
DIMENSION XREAL(l), XIMAG(l) 

c 
c 

INTEGER N,NU,N2,dk,dN,dk2 
real dwr,dwi,dthel,wr,wi 
N",nn 
NU=ilog2(N) 
N2 = NI2 
K.O 

c loop over log2N sub FFTs 
c 

DO L. NU,l,-l 
c input increment to SubFFT 

dN=2""(L-l) 

dlhet=6. 28318530rftoat( dN' is )/float(N) 
dwr=cos(dthel); dwi::sin(dthet) 

c length of SubFFT·1 

dk=2""(NU-L) 
dk2=dk'2 
k.l 

c print ',"L,dN,dk ·,l.dN,dk 
c loop over 

wr=1.0;wi=O.O 
DO f.l,dk 

do m=l,N,dk2 
k .. l+m-1 

c print· ,"I,m,k,k.dk",I,m,k,k+dk 
xl r.XREAL(k) ;x l i=XfMAG(k) 
x2r.XREAL(k+dk);x2i.XfMAG(k+dk) 
dr=x2rowr-x2iowi;di=x2iowr+x2r'wi 
XREAL(k)=x 1 r+dr;X IMAG(k)=xl i+di 
XREAL(k+dk)=xl r-dr 
XIMAG(k+dk)=xl i-di 
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c 
c 

end do 

end do 
if (dk.ne.1) then 

Ir",w,odwf-wi·dwi 
wi=dwr'wi+dwi"wr 
wr .. tr 

end if 
end do 

RETURN 

END 
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I bitrev,r - Reorders Time Series 

I C Bit Reversal subrouline for complex data from FFT 
c 

I 
SUBROUTINE BITREV(XREAL,XIMAG,n) 
DIMENSION XREAL(O:n), XIMAG(O:n) 
integer K,NU,m 

I 
m.n 

NU.ilog2(m) 
C 

I 
D0103K.l ,m 

I • IBITR(K ,NU) 
IF (I ,LE, K) GO TO 103 

I 
TREAL _ XREAL(K) 

TIMAG • XIMAG(K) 
XREAL(K) • XREAL(I) 

I XIMAG(K) • XIMAG(I) 
XREAL(I) • TREAL 
XIMAG(I) • TIMAG 

I 103 CONTINUE 
C 
C 

I RETURN 
END 

c 

I FUNCTION IBITR(J,NU) 
INTEGER Jl,I ,J2,JBITR 
Jl • J 

I JBITR. O 
C 
C 

I DO 200 1. 1, NU 
J2.Jl /2 

I 
JBITR • JBITR ' 2 + (Jl ' 2 ' J2) 

200 Jl.J2 
C 

I 
C 

IBITR.JBITR 
RETURN 

I 
END 

c 
function itog2(n) 

I ilog2.inl(1 ,442695041'109(lloOI(n))+.01) 
c print ·,"n.log2n ",n,ilog2 

return 

I 
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end 

Timer.f - Supplied by Absort 

I Timer class for real ·lime control 

I 

I Start timer with newTimer:larget:action: method 

I Stop limer with Ireelimer: method 

INCLUDE MObject.inc· I Objeci class definition 
INCLUDE -Timer.inc· 

I TimerFunc is the FORTRAN function invoked al each l ime interval 

SUBROUTINE TimerFunc(dum1, dum2. dum3) 

INTEGEA*4 IheTarget 
INTEGER*4 theAcHon 
COMMON ITIMER_GLOBALS/ lheTargel, theAction 

INCLUDE "object.inc· 

[theTarget perform:theAclion) 

END 

@implementation Timer : Object 

I newTimer:largetaction: method starts a timer thai causes the 'action' method 

I 
to be invoked in the 'target' at each 'interval', 

I Returns the 10 of the timer entry. 

@+ newTimer:REAL*S intervaltargettarget action:action 

EXTERNAL 

INCLUDE 

the Target", target 

theAction :>:: action 

TimerFunc 
MApplicalionPARAM.inc· 

self :c: DPSAddTimedE:ntry(@interval,VAL(LOC(TimerFunc».VAL(self), 
.VAL(NX_MODALRESPTHRESHOLD.S)) 

@end 

I !reeTimer : removes the timed entry for the specified timer 10 

@-freeTimer:inlegerentry 

CALL DPSRemoveTImedEnlry(VAL(enlry)) 

freeTimer '" self 

@end 
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