
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-1992

An Introduction To The Implementation Of The User Datagram An Introduction To The Implementation Of The User Datagram

Protocol Protocol

Michael A. Craft

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Craft, Michael A., "An Introduction To The Implementation Of The User Datagram Protocol" (1992).
Institute for Simulation and Training. 14.
https://stars.library.ucf.edu/istlibrary/14

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/14?utm_source=stars.library.ucf.edu%2Fistlibrary%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

INSTITUTE FOR SIMULATION AND TRAINING

B 17 4

AN INTRODUCTION TO THE IMPLEMENTATION
OF THE

USER DATAGRAM PROTOCOL

BY : MICHAEL A. CRAFT

AUGUST 21 , 1992

I
I
I
I
I
I
I
I
I·
I
I
I
I
I
I
I
I
I
I

An Introduction to the Implementation

of the

User Datagram Protocol

presented by

Michael A. Craft

representing

The Institute for Simulation and Training

August 21, 1992

B 17</

-- - ----------- --

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Table of contents

Scope .

Network Basics

Network Classification

Classification of Machines on a Network

Network Address Classifications

Protocol Layer Envelopes

The UDP Header . . .

Octet (byte) Ordering

A General Design for Nth Layer Protocol Transmission

IP Header Format

Building an IP Header

The IP Checksum .

The UDP Checksum

Building a UDP Header

Address Resolution Protocol

The ARP Format

ARP Receipt . .

Internet Protocol Error and Control Messages

Miscellaneous Topics

Suggested References

1

2

5

6

7

8

11

12

14

18

21

22

24

27

28

29

31

32

33

34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Scope

Fundamental network concepts

Implementation techniques for best effort connectionless
protocols

Implementation of UDP/IP on a host.

Much of the IP literature covers IP routers (gateways). The
routers are considerably more complex than the topics covered here.

TCP is not covered here. It is significantly more complex
(offering a connection based reliable network).

= ======== ==================

Some code in this paper is written in a form of pseudo-code.
The majority is given as C/C++ code extracted from a running
implementation. However, the extracted code was modified to remove
system dependencies. Because of the edits done to code after
extraction there are certainly C errors; perhaps it is best to take
the C code as a form of pseudo code. In the C code "uchar" is a
t ypedef for unsigned char, with uint and ulong being similar.

1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Network Basics

International standards refer to octets rather than bytes.

Networks allow processes on separate computers to communicate.
The term network refers to the conglomerate communication
facility (wires, satellites, communications software, etc.).

Modern networks are implemented in layers. There are various
layering schemes, but most, if not all, agree that the bottom
layer is the physical layer, consisting of the physical medium
which carries bits, how bits 1 and 0 are distinguished, and
associated questions. This is the realm of electrical
engineers more than computer scientists.

Perhaps the best known and most important layered model is the
ISO (International Standards Organization) OSI (Open System
Interconnection) Reference model.

Protocol refers to the language (rules and conventions) used
for communication between corresponding layers. If there are
20 layers in a protocol stack, there will be 20 protocols.

By necessity, early network development was at the lower
layers of the protocol stack (physical and link), and network
development has been bottom up (except in that the top level,
the application, has always driven development).

The connections between layers of the protocol stack are
called layer interfaces.

Requests from applications to the protocol
through service access points (SAPs);
protocols "interface" refers to inter-layer

support are done
when discussing
communication.

To illustrate these points, and for simplicity in our UDPjIP
discussions, we will often use a 3 layer stack:

Application

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

In use on two communicating machines the stack architecture looks
like this:

Application Application 1<
Application Protocol >1

L-________ ~ L-________ ~

App/Net Interface

~ ___ N_e_t_w_o __ r_k __ ~I<----N-e-t-w--o-r-k--p-r-o--t-o-C-O-l---->LI ____ N_e_t_w_o __ r_k __ -J

Net/Link Interface

Link Protocol
Link Link

Representations of the OSI Reference model can be found in any
modern network text and, unfortunately, as boiler plate verbiage in
hundreds of documents covering networks in any shape, manner or
form. For the record, the OSI Reference Model Follows:

3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Layer 7 Application APDU

Layer 6 PPDU

Layer 5 SPDU

Layer 4 TPDU

Layer 3 Packet

Layer 2 Frame

Layer 1 Bit

For the UDP/IP discussion at hand, the application, session, and
presentation are collectively labeled "application." Transport and
network are combined as "network." Data link and physical are
collectively called "link."

4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Network Classification

Most networks can be categorized as connection based or
connectionless. Roughly:

Connection based networks:

Parallel telephone service.
Use virtual circuits.
Deliver packets (units of information) in the order sent.
Are expected to be reliable.

Connectionless networks:

Parallel mail delivery.
Packets are sent as independent messages.
Packets may be lost or discarded without notice.
Delivery may be out of order.

5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Classification of Machines on a Network

There are various categories of computers connected to, and
interconnecting, networks. A single machine may play several
roles:

Host: Any end user computer connected to the net.

Repeater: copies bits from one line (physical connection) to
another. Usually used to extend a LAN when cable
length restrictions prevent direct connections of
lines. Repeaters are associated with the physical
layer.

Bridge: Interconnects networks at the data link layer. A
UDP/IP implementation on 802.3 could use an
802.3/Ethernet bridge to connect to an
implementation on top of Ethernet.

The remaining terms, like so many in computer science, are not
used consistently by the networking community.

Router: Connects networks at the network layer. Often used
in a much more general sense. In the IP world its
use is supplanting the use of "gateway." When one
hears "router" in an IP context, one normally
thinks of a computer accepting packets from two or
more IP networks for appropriate redistribution
among those IP networks.

Gateway: Supports connections between arbitrary nets. A
gateway may connect to X.25 and IP networks, and
allow traffic between hosts on these diverse
technologies.

6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Network Address Classifications

Network messages may be addressed (indicate their destination)
in various ways:

Point to point (unicast): supported by most protocols. The
protocol user specifies a unique target for the message. The
type of the target depends on the protocol layer (higher level
protocol targets may be specific applications, lower layer
protocols may have computer hosts (computers connected to
networks) for targets) .

In the IP world, IP addresses specify network/ host connections
(many people think the address is for a host). There is a PC
at UCF with the address 132.170.191.146. Upper bits of this
4 octet value indicate the network (in this case 132.170
represents an IST network) and lower bits indicate the precise
connection (191.146 is associated with a particular PC on the
IST LAN 132.170). Where the network specification ends and
the connector (host) specification begins depends on the class
of the address (which can be determined by the upper bits of
the first octet; the IST address is class B).

Broadcast: messages are directed to "everyone." On a LAN the
meaning of "everyone" is clear.

Multicast: messages are directed to a subset of the
interconnected machines.

Class D IP addresses are multicast addresses. The IP
addresses 255.255.255.255 gives what IP people call "limited
broadcast" -- del i very to everyone on the local net (in
general CS terms this would be a multicast send with the
multicast group being the hosts on the local LAN). An address
beginning with a net specification but end i ng with all l's
(e.g., 132.170.255 .255) can be used as a directed broadcast.

As we shall see, the IP address is enough to reach a host, but
does not distinguish between processes on the host. The UDP "port"
(effectively an address) identifies an application.

7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Protocol Layer Envelopes

Using a 3 layered model, an application's data is encapsulated
as follows:

Application
Internal Data

Internal
Data
Representation

- > LI __ A_P_D_U __ --'

Application
Protocol
Data
unit

Network
Header

APDU

Network
PDU

Link
Header

Network
Header

APDU

Link
Frame

Some protocols h a ve both headers and
have-end-of frame sequences, for example).
way to visualize the data encapsulation is:

trailers (frames may
In any case, another

FRAME

IP
Packet

r - - - ----
UDP
Packet

Application
PDU

- -- - --

8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 0416-2986

Layer K needs to specify a layer K-l address.

Applications track UDP Ports and IP addresses.
IP tracks link addresses.

LayerN
(UDP)

LayerN-l
(IP)

Layer N-2
(Ethernet)

' . .,
• •• •• e.

a. B e. -. -..... .
• •

r------.
e · · • · ~

'.
'.

9

Host 1

~ /
.. ~ / ./ .. ~ -",.".

Host 2

Raw
Application

Data

,
•

Application

-.
~ Application J '" Application ,.

Application

Net
PDUs

i Interface , t (Net Address)

Net
.# -I Net

Net
,

PDUs
Link J ,

Interface , '((Link Address)

Link Link

• ~ ly/i.

NetPDU Sending PDU (1299 Orlando Ave. Link Link Application (Address
Dear John) Winter Park)

• . 291. - - - - - - - - - - -

i

""'-
~

Net Application
PDU PDU

- - - -
Receiving

Application

o
ri

- -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The UDP Header

As the last
enclosed in a UDP
only:

diagram shows, the application information is
envelope. The UDP envelope consists of a header

o

UDP Source Port
[Reply port or 0]

Total Length
[8 + length of user data]

16 31

Destination Port

UDP Checksum
[0 if not computed]

On a machine with 16 bit integers, the UDP header may rendered
in Cas:

struct udpHdr
{

} ;

int sourcePort;
int destPort;
int length;
int checksum;

II Our port number
II Target port number
II Length, includes header and text
II 0 implies none

11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Octet (byte) Ordering

Different machines use different octet (byte) ordering. On a
386 the address of an integer is the address of the octet
containing the least significant bits. Other machines store
integers such that the address of the integer is the address of the
most significant bits. If machines do not agree on octet ordering,
a OXAACC will be interpreted as OXCCAA after a direct data
transfer. To solve this, each protocol (not the protocol stack)
must specify an order for transmission. When the most significant
octet is sent first it is termed "big endian" transmission, "little
endian" transmissions send the least significant octet first. The
TCP/ IP suite of protocols (which includes ARP, RARP, UDP, ICMP,
etc.) specifies "big end i an" communications.

An applications using the IP suite is not required to change
its PDUs to a big endian format. Application protocols, because
they are protocols, can use whatever octet order is thought best.
In particular, if the applications are restricted to a family of
machines using little end ian ordering it is probably best not to
s wap application PDU integers.

The UDP header consists of 4 2-octet integers. On mach i nes
(such as IBM PCs) which store integers in little end ian form, the
header received is not suitable for computation. For this reason,
byte swapping must be done on such machines.

The standard C function "swab" is intended to swap bytes. It
is more general than we need here so a function "swap" is assumed
which will swap two adjacent bytes . For example:

void swap{v oid *ptr)
{

II Swap bytes in place

char *buf = {char *)ptr;
char store;

store = *buf;
*buf = *(buf+1);
*(buf+1)= store;

When writing code to be transportable between big and little
endian machines, the simplest approach is to make this swap routine
a no-op (simply return) on big end ian architectures.

12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Given this, it is easy to write a function capable of
adjusting UDP headers:

void fixUDP(udpHdr *udpp)
(

}

swap(&udpp->sourcePort);
swap (&udpp->destPort) ;
swap (&udpp->length) ;
swap (&udpp->checksum) ;

This routine will change back and forth (toggle) between big
and little endian, as will similar routines introduced later.

An important question when developing on a little endian
machine is whether headers, as they are built or deciphered, should
be kept in a big or little end ian format.

One approach is to keep the headers big end ian but to also
maintain "shadow" values in swapped form. This requires care in
that the shadow (little endian forms) and the headers must be kept
in synchronization. The approach taken here is to keep everything
in the machine's native form. When a procedure is called to
manipulate a data structure, the procedure is to assume any
required swapping must be done within the procedure. With such an
approach swapping is always a localized phenomenon, and human
confusion is minimized. Making software understandable by human
beings is of overriding importance. Eventually, double swaps might
be removed, or c onditionally compiled out.

13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A General Design for Nth Layer Protocol Transmission

When layer N+1 is ready to transmit, it needs to pass its data
to the Nth layer through the layer N+1/N interface. The layer N
support must envelop the incoming data and then pass it to layer
N-1 for further processing. Only the highest layer (the
application, which offers service access points to the non-protocol
application) and the lowest layer (physical, or in our example,
link) do not fully conform to this pattern.

procedure layer_N_send(data,lenData,targetAddr,protoNumber)
begin

npdu = <allocate enough memory for layer-N header + data>

<fill in the header of the npdu, includes protoNumber>
<copy the user data after header in npdu>
newAddr <- <map targetAddr to layer N-1 address>

layer_N-1_send(npdu,lenData+<length of layer N header>,
newAddr,layer_N_ProtoNumber)

<count the packet as sent if gathering statistics>
endproc

As will be shown shortly, data
necessary.

statistics gathering is encouraged.
an interface to determine the statistics
some important information.

14

copying is not actually

Some local counters and
for each layer can yield

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A General Design for Nth Layer Protocol Receipt

To develop the receiver for layer N you must be able to get
the data intended "fo: layer N. For UDP/IP on an Ethernet LAN, this
means getting to the data after the LAN header.

The line interrupt handler simply accepts the
it to the lowest layer of the network support.
network support has the following form:

procNRecv(ourData, ourLen, ourProto)
begin

data and queues
The Nth layer

if proto <> expectedProto OR <header is not valid> then
<discard the packet>
<count the packet as discarded>

else
(We have a valid packet)

if <a .ocal layer-N packet> then
<p~ocess, possibly sending packets out>
<dis~ard the packet>
<count packet as handled locally>

else
theirProtoNumber <- <extract layer N+l proto #>

procNPluslRecv«data without our header>,
ourLen - <length of our header>
theirProtoNumber)

endif
endif

endproc

15

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

In the send/receive
deleted by copying data.
data after its header:

scenarios shown, headers were added and
For example, to send Data layer N copies

Layer N Layer N-1

Header
r-------r--*---->

Data r----> Data
Copy

There are at least two other methods to manipulate headers:

If layer N-I is handled on a separate board from layer N,
the layer-N header and layer-N data may be sent
independently and read contiguously on the board.

Layer N Board Layer N-1

IHeader !
Send I

Header

Data

I Data I
I Send

Over allocate the application PDUs and build the
application PDU far enough down in the allocated block to
allow enough room to build all the lower layer headers.
Each layer assumes there is enough room in front of the
data passed to build its header.

Layer-N Layer-N-1

N+1 Header

N Header N Header N Header

Data Data Data Data

16

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

Although this method may have to be applied at a layer
below the application layer (if there is a pre-existing
application layer) it should be used at the first
opportunity in order to avoid repeated copying.

It is suggested a pattern be built into the top of the
generic header area and that the pattern be checked after
all layers have added their headers. If the suggested
sender design is used, the pattern should be inserted
just before calling layer_N-1_send and validated on
return.

If multiple lower layer protocols are supported, the
allocation should be large enough for the worst case to
minimize layer binding .

To avoid copying on incoming data, use a data pointer
associated with the incoming packet (possibly at the top of the
packet). Each layer can "strip" its header by moving a pointer
without copying data. At the top level the SAPs to the application
will probably lead to the packet being discarded anyway and so the
mechanism is hidden from the application.

Data Ptr 0 Frame Hdr

Data Ptr I--

XXXXXXXXXX

Data Ptr I--

XXXXXXXXXX

Packet Hdr Packet Hdr <- XXXXXXXXXX

App PDU App PDU App PDU <-

17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

IP Header Format

The IP header is much more complex than the UDP header. IP
carries many protocols and must be suitable for transmission across
many networks. The format is:

o 4 8 16 19 31

version Hdr Len Service Type Total Length
[4) [5) [0) [4 * (Hdr Len) + Data Len)

Identification Flags Fragment Offset
[N+1) [0) [0)

Time to Live Protocol Header Checksum
[60) [17 for UDP)

Source IP Address

Destination IP Address

(options, if any)

User Data

options usually need not be of concern as most have to do with
network control and are not processed by hosts .

One possible C representation is made with using 2 structures:

struct ipAddr
(

) ;

uchar doto;
uchar dot1;
uchar dot2;
uchar dot3;

II uchar is unsigned char

18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

struct ipHdr
(

II For the compiler used, bit fields must have low order
I I bits declared first. This will vary among compilers.

} ;

int ihl
int version

4;
4;

char typeService;

int totalLen;

int ident;
int fragOffset;

char timeToLive;
char protocol;
int hdrChecksum;

ipAddr source;
ipAddr dest;

II Header Length in 32 bit words
II Version number

II Precedence?, low delay?, high
II throughput? 0 for us.

I I Length in octets, includes header
II and text

II Packet 10, 1 value for all fragments
II 0 for un fragmented pkts, upper 3
II bits are fragment status indicators

II Seconds or hops before packet death
I I What protocol are we carrying?
II Header checksum

II Source address
II Destination address;

19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Service type: precedence (3 bits), low delay bit, high
throughput bit, high reliability bit, 2 bits unused.
Clear (0) is typical: yields normal precedence and no
special handling.

Data length can be determined from total length by
subtracting four times the header length.

Flags: tied to fragmentation, 0 for non-fragmented
packets. Has a bit to indicate "do not fragment" should
your target be unable to handle fragmented packets. One
bit specifies "more fragments," needed since each
fragment otherwise is complete (no grand total length)
and packets may arrive out of order. without this
mechanism you would never know when the full packet was
complete.

Fragment offset: a multiple of 8 octets.
fragmented packets both the fragment offset
will be clear, resulting in a 16 bit zero.

For non
and flags

Protocol: in a sense, an extension of user data. Since
no format alignments exist across the IP user community,
this is necessary to allow users to recognize their own
data.

Although the IP header allows for 65,535 octets, lower
layers usually are more restrictive (Ethernet limit is
1500). If this is a problem you may have to implement IP
fragmentation, which is not covered sufficiently here.

20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Buildi ng an IP Header

There are four integers in the IP header, so on ali ttle
endian machine a swap routine is needed:

}

v oid fixIP(ipHdr * ipp)
(

swap(&ipp->totalLen);
swap(&ipp->ident);
swap(&ipp->fragOffset);
swap (&ipp- >hdrChecksum) ;

}

#define currentIPVersion
#define serviceType
#define stayAlive

#define protocolUDP
#define protocolTCP
#define protocolICMP

v oid buildIP(ipHdr *ip,
int dataLen,
ipAddr source,
ipAddr dest)

(

4
0

6 0

17
6
1

I I
II
I I
II

I I IP version number
II Type of service we use
II Seconds (or hops) for
II packet life max.

II Protocol selection UDP
I I Protocol selection TCP
II Protocol selection ICMP

The packet being built
How much data is there?
Who are we?
Who is the message's target?

ip->ihl
ip->fragOffset

= sizeof(*ip)/4; II Size in 32 bits
= 0 ; II We don't fragment

ip->totalLen = sizeof(ipHdr) + dataLen;
ip->v ersion = currentIPVersion;
ip->protocol = protocolUDP; II Should
ip->typeService = serviceType;
ip->source = source;
ip->dest = dest;

ip->timeToLiv e
ip->ident

ip->hdrChecksum

= stayAlive;
= nextID () ;

= IPCheckSum(ip);

21

be parameter

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The IP Checksum

The IP checksum is computed by treating the header as a
collection of 16 bit integers and adding them using one's
complement arithmetic, and then taking the one's complement of the
result. The algorithm can be implemented on a two's complement
machine. The following routine will be used in computing both the
IP header checksum and the UDP checksum:

int checkTotal(
void *data,
int len,

II Data over which checksum is computed
II Number of octets of data

}

long initTotal) II Begin total with this, 0 but for UDP

char *block = (char
unsigned long SUIni

sum = initTotal;

while (len
{

sum +=
len
block

}

if (len)
{

>= 2)

* ((uint
-= 2 ;
+= 2 ;

*)data; II
II

II
II

II
II

*)block); II
II
II

Make it a byte pointer
32 bit total built here

Start with the
designated value

As long as there's
at least two bytes ...
Add in 2 octets
2 bytes less to process
Move to the next pair

II The number of bytes was odd, add in the last byte

)

sum

sum

int val = *«uchar *)block);
sum += val;

= (sum » 16) + (sum & OXFFFF);

+= (sum » 16) ;
return -sum;

22

II Add any 16 bit
II overflow ...
II Twice!
II Bit flip

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Using this, the IP Header checksum can be computed:

int IPChecksum(ipHdr *ipp)
(

}

int holdCheck;
int computed;

II Don't want to forget the sum
II Resulting checksum

II Raw packet is big endian, we may maintain little endian
fixIP(ipp); II Big endian, please

holdCheck = ipp->hdrChecksum;
ipp->hdrChecksum = 0;

II Save the current value
II Clear it for computation

computed = checktotal(ipp,4*ipp->ihl,0);

ipp->hdrChecksum = holdCheck;

fixIP(ipp);

swap(&computed);

return(computed);

23

II Restore the value

II Back to local
II representation
II Computation yields
II big endian

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The UDP Checksum

UDP is so closely tied to IP it is doubtful it can
legi timately be called an independent protocol. This is shown
dramatically be the way the UDP checksum is computed. Not only
does the UDP checksum cover all the user data (which the IP
checksum omits), it covers a mock IP header, called the "phantom
header."

The quantity to which the UDP checksum applies is:

o 8 16 31

Source IP Address

Destination IP Address

Zero Proto UDP Length
[0) [From IP Header) [Excludes pseudo-header)

[See note) [17 for UDP) [Includes UDP header)

UDP Header

User Data
, . '. . ,

Note: the consecutive octets "Zero" and "Proto" should be
viewed as a single 16 bit integer. This is important on little
endian machines. The protocol number is kept as a single octet in
the IP header, so it is shown as a single octet here, but it must
be swapped with the zero on little endian machines.

When the checksum is computed, the checksum field in the UDP
header must be zero (paralleling the IP computation). The format
need not be built as a structure; it is simple enough to allow
direct computation.

Here a partial checksum is computed for the pseudo-header,
which is then combined with the checksum for the rest of the data.

24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

long pseudoTotal(ipHdr *ip)
(

}

II Compute a partial UDP checksum, just the total over
II the pseudo-header

long
uint
uint
uint

total;
*block;
dataLen

II 32 bit running total
II Total as 16 bit quantities

= ip->totalLen - sizeof(ipHdr);
protocol;

II Protocol is an octet in the IP header, it's treated
II as a 16 bit int in the pseudo header, so copy and swap
protocol = ip->protocol;
swap(&protocol);
fixIP(ip);
swap (&dataLen) ;

II Big endian for checksum work
II Including the length

total = 0;

block = {uint *)&ip->source;
total += *block++;
total += *block;

block = (uint *)&ip->dest;
total += *block++;
total += *block;

total += protocol;

fixIP(ip) ;

return(total);

II Add in source address

II Add in dest address

II Add in the protocol

II Back to little endian

Using pseudoTotal and checkTotal the computation of the UDP
checksum is a simple matter. Because UDP is based on both the UDP
and IP headers, with one enclosed in the other, a new structure is
used here:

struct udpIpHdr
{

} ;

struct ipHdr;
struct udpHdr;

25

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

int computeUDP(udplpHdr *pkt)
(

II compute the UDP checksum

)

int dataLen;
ulong total;
uint saveCk;
int i;

II udp.length, save before swap
II Running checksum total
II Savelrestore checksum

saveCk = pkt->udp.checksum; II Must zero checksum field
pkt->udp.checksum = 0;

II Get the pseudo-header info total
total = pseudoTotal(&pkt->ip);

dataLen = pkt->udp.length;

fixUDP(&pkt->udp); II Prepare for computation

I I Compute the UDP checksum
total = checkTotal(&pkt->udp,dataLen,total);

fixUDP(&pkt->udp); II Back to internal format

II Restore the structure
pkt->udp.checksum = saveCk;

i = total;
swap(&i) ;
return (i);

II Total was done big endian

26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Building a UDP Header

The
simple.
fields:

UDP checksum is complex, but the header is otherwise
Building the UDP header is just a matter of filling in 4

(

}

void buildUDP (
udplpHdr *pkt,
int dataLen,
int source,
int dest,

II Where's the packet being built?
II How much data is there? .
II Who are we?
II Where's it going?

int check) I I Should we build a checksum?

pkt->udp.sourcePort
pkt->udp.destPort
pkt->udp.length
pkt->udp.checksum

= source;
= dest;
= dataLen + sizeof(*up);
= check? computeUDP(pkt)

27

0;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Address Resolution Protocol

It is often the case that an IP address is known, but the
underlying hardware address is not. For communication with "well
known" machines the lower layer addressing problem may be resolved
by system configuration (human intervention). In a more general
setting, you must be prepared to handle address resolution
dynamically (changing a board in a machine may change its LAN
address but would not change its IP address).

This problem is
target address not
technique is:

not unique to IP. Generally layer N needs the
in terms of layer N, but layer N-1. The

Assume layer N needs to communicate with its peer with address
AddrN. To send the message point to point the layer N-1
address is required (AddrN1). Layer N determines this by
doing a layer N-1 broadcast asking its peer with address AddrN
to supply its layer-N-1 address. When the reply is received,
layer-N notes the address mapping to resolve future point to
point requests.

At first blush it seems absurd to broadcast a message to get
an address in order to avoid broadcast, but the resolution is done
infrequently and so there should be a net saving.

To resolve addresses a new protocol is used, the Address
Resolution Protocol (ARP). For the first IP message to go to a
given IP address, address resolution, ideally, goes as follows:

1) the message is queued locally and an ARP is sent.
2) an ARP reply is received, the queued message is sent and

the IP/ HW mapping is saved in an address cache.

There are several complications:

the message may become obsolete (when long delays are
anticipated for ARP replies, it may be best to discard
the message rather than queue it).

more messages may arrive to be sent to the same address
(queue them with the existing message, the existence of
a pending message indicates an ARP is pending).

no ARP reply is ever received (could use an ARP pending
timer, on expiration retransmit or, in case the target
doesn't exist, purge the pending queue).

If your address table becomes corrupt or goes out of date (a
LAN board may be changed after the ARP is done) the network may
bec ome flooded with retrans missions and error reports.

28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The ARP Format

ARP is NOT a higher level protocol, it does NOT go in an IP
envelope. The ARP format is:

o 8 16 31

Hardware Type code Protocol Type
[1 for Ethernet] [OX0800 for IP]

HW Addr Length Proto Addr Len Operation
[6 for Ethernet] [4 for IP] [1 for request, 2 for response]

H octets for the sender's HW address
P octets for the sender's protocol address
H octets for the target HW address
P bytes for the target protocol address

As you might expect, the target HW address is 0 in an ARP request.

For an IP/ Ethernet configuration on a 16 bit integer machine, a C
structure representing an ARP packet could be written as:

struct arpHdr
(

II The ARP header

) ;

int hardwareType;
int protocol Type;
char hLen;
char pLen;
int operation;
etherAddr etherSender;
ipAddr ipSender;
etherAddr etherTarget;
ipAddr ipTarget;

29

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Some useful associated constants for an ARP implementation include:

#define ARPrequest
#define ARPresponse
#define RARPrequest
#define RARPresponse

#define EtherHardware

ARP headers need swapping too:

void fixArp(arpHdr *ap)
(

}

swap(&ap->hardwareType);
swap(&ap->protocolType);
swap (&ap->operation) ;

1
2
3
4

1

30

II ARP operations

II Reverse ARP operations

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ARP Receipt

The receiver of an ARP request:

1) may build IP/HW entry from the request
2) fills in the missing HW address
3) swaps the sender and target addresses
4) changes operation to reply

ARPs are broadcast, so everyone seeing an ARP request may build a
table entry. Replies are point to point so not everyone sees the
reply.

Even if your system resolves addresses through another means,
ARP replies are so straight forward you may want to implement them
as part of your system.

There exists a "reverse ARP" (RARP) for bootstrap (get an IP
address based on a hardware address). RARP has the same format and
similar procedures. The operations are 3 (RARP request) and 4
(RARP reply) .

31

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Internet Protocol Error and Control Messages

When operating on a legitimate IP net, you should be prepared
to recognize Internet Protocol Error and Control Messages (ICMP).
The ICMP format begins with a 4 byte header:

o 8 16 31

type I code I checksum

Header of Datagram which caused the report

64 Bits of data from Datagram which caused the report

The ICMP messages indicate problems with packets you have
sent. For example, a type field of 3 indicates the router could
not find a way to send your packet to the specified address. The
code field meaning is dependent on the type field.

The ICMP structure can be represented as:

struct icmpHdr
{

} ;

char icmpType;
char icmpCode;
int icmpCheck;

The activ e type values follow (some types are obsolete and so are
not listed):

Type Meaning
o Echo reply

Notes
Seen only if you send an ICMP
echo request

3 Destination unreachable
4
5

8
11
12
13
14
17
18

Source Quench
Redirect

Echo request
Time expired
Parameter problem
Timestamp request
Timestamp reply
Address Mask Request
Address Mask Reply

32

Choose a different route for
the next transmission to this
host.
PING, are you alive?
Your time to live expired
Packet header malformed

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Miscellaneous Topics

If you are working on a little endian machine and are
using Ethernet, don't forget to swap the Ethernet "type."

typedef char etherAddr(6);

struct etherHdr
(

) ;

etherAddr dest;
etherAddr source;
int etherType;

II The ethernet header

void fixEther(etherHdr *ep}
(

swap(&ep->etherType);
}

When you send IP messages on Ethernet, the type field
should be OX0800. ARP messages have Ethernet type
OX0806.

Problems paralleling the byte swapping problem can appear
in other forms. When defining structures (records) which
have bit definitions (fields or packed booleans) your
compiler may not assign bits in the order you need them
to be. See the definition of the ipHdr for an example of
such a problem (the first 2 declarations appear to be out
of order).

On receipt of a PDU all fields should be validated. If
a field ~s not what is expected the PDU should be
silently discarded. A basic tenet of protocol design
requires this, otherwise corrupt packets may become
Chernobylgrams (packets that bring down receivers).

33

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Suggested References

Tanenbaum, Andrew S. [1989], computer Networks, Second
Edition, Prentice-Hall, Englewood Cliffs, New Jersey.

A splendid overview of computer networks. Although the
text is not intended as a guide to implementation of any
specific network, it gives a good overview of many.
Considerable historical information is given. The OSI
Reference Model is examined in depth, and is used as the
basis for the text's presentation.

Comer, Douglas E. [1991], Internetworking with TCPjIP, Second
Edition, Prentice Hall.

A well written text covering the implementation of TCP,
UDP, IP, and the various support protocols CARP, RARP,
ICMP, etc.). contains historical information and
compares the TCPjIP suite to the ISO 7-layer Reference
Model.

34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 0000124

	An Introduction To The Implementation Of The User Datagram Protocol
	Recommended Citation

	tmp.1440010807.pdf.Hf_On

