
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-1993

A Report On Planar Point Location: Some New Techniques A Report On Planar Point Location: Some New Techniques

Sumeet Rajput

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Rajput, Sumeet, "A Report On Planar Point Location: Some New Techniques" (1993). Institute for
Simulation and Training. 5.
https://stars.library.ucf.edu/istlibrary/5

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/5?utm_source=stars.library.ucf.edu%2Fistlibrary%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

I
I
I
I
I
I
I
I
I
I
I
I
I
'I
I
I
I
I
I

INSTITUT E FOR SIMULATION AND TRAINING

COMPUTATIONAL GEOMETRY CDA 6938

A REPORT ON

PLANAR POINT LOCATION

SOME NEW TECHNI QUES

BY

SUMEET RAJPUT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Computational Geometry CDA 6938

A Report on

Planar Point Location

Some New Techniques

By

Sumeet Rajput

I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Introduction

Point location, often known in graphics as "hit detection", is one
of the fundamental problems of Computational Geometry. In a point
location query we want to identify which of a given collection of
geometric objects ie. polygons, edges or points contains a
particular point. The ' point location query is normally carried out
on a Planar straight ~ine Graph (PSLG). This is often referred to
as a subdivision. We judge the performance of a particular point
location method by measuring three key factors:

1. The preprocessing time, P: This is the time it takes for
the PSLG to be processed and arranged in a suitable data
structure which can then be searched. This is expressed
as a function of the input size (the number of points in the
subdivision).

2. The space complexity, S: This determines the amount of
storage that the data structure requires and is again
expressed as a function of the data size.

3. The query time, Q: This is the time required to search the
data structure for the query point. Again, it is expressed
as a function of the input data size.

Here is a brief summary of some of the algorithms already known to
us:

Slab Method

This method consists of splitting up the plane into vertical slabs.
The line segments of the subdivision intersecting a slab are
totally ordered, from the bottom to the top of the slab. Associate
with each line segment the polygon just above it. Now it is
possible to locate a query point with two binary searches: the
first on the x-coordinate, locates the slab containing the point;
the second, on the line segments intersecting the slab, locates the
nearest line segment below the point, and hence the polygon
containing the point. It has complexity bounds Q = O(log n), S =
0(n2) , and P = 0(n2) .

Chain Method

In this method the plane is subdivided by a number of monotone
"chains". The chains c:an be ordered and easily arranged in a data
structure used for searching. Essentially, the search procedure
involves discriminatimg the point against a particular chain.
Another binary search within two chains allows the point to be
discriminated to within an edge of the chain. The region
containin~ the point can then be ascertained. Therefore, we have
Q = O(log n), S = O(n) and P = O(nlog n).

I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Kirkpatrick's Triangulation Refinement Method

Here we assume the P·'3LG to be triangulated (if not it can be
transformed into one in O(n log n) time. A search tree is then
created whose nodes represent triangles. Each enclosing triangle
can be split up into regions which are themselves triangles. Point
location proceeds by testing the inclusion of a point within a
triangle and its children recursively until we come to the point
where the triangle enclosing the point is a leaf node of the tree
(ie. an actual triangle of the subdivision). Thus, Q = O(log n),
S = O(n) and P = O(n log n).

Some New Techniques

In addition to the techniques already discussed above some new
techniques are presented below:

1. Planar point location using persistent search trees

Introduction

This technique uses th~ concept of persistent data structures. A
persistent data structure differs from an ordinary one in the sense
that the current version of the structure can be modified and all
versions of the struct.ure, past and present, can be accessed.
This technique developed from Cole's observation. Cole observed
that the point location problem reduces to the problem of storing
a sorted set subject to insertions and deletions so that all past
versions of the set, as well as the current version, can be
accessed efficiently.

We start by dividing the PSLG into vertical slabs which are created
by drawing a vertical line through each vertex. The line segments
of the subdivision intersecting a slab are totally oredered, from
the bottom to the top of the slab. We notice, as Cole did, that
the sets of line segments intersecting contiguous slabs are
similar. Considering t:he x-coordinate as time we can see how these
sets change as time increases from -infinity to +infinity. As the
boundary from one slab to the next is crossed, certain segment are
deleted from the set and other segments are inserted.

A data structure is then created which is capable of storing the
different sets of line segments ocurring in different slabs but
which allows access to any set in logarithmic time. Such a data
structure is a persistent form of a balanced binary tree.

.... '--------------------.. ..

I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Persistent sorted sets and search trees

The problem is to maintain a set of items that changes over time.

Three operations on the set are allowed:

1. Access(x, s, t): Find and return the item in set s at time
t with greatest key less than or equal to x. If there is no
such item, return a special null item.

2. Insert(i, s, t): At time t, insert item i into set s.

3. Delete(i, s, t): At time t, delete item i from set s.

We start with an emp-f:y set, and we wish to perform on-line a
sequence of operations, including m updates (insertions and
deletions) with one stipulation that any update occurs at a time no
earlier than any previous operation in the sequence.

An approach is to star1: with an ephemeral data structure (one that
is not persistent) for sorted sets or lists and make it persistent.
This was a technique pursued by many other authors and is called
path copyinq.

Review of binary search trees and how they can be made persistent
using path copying

A binary search tree is a binary tree containing the items of the
set in its nodes, one item per node, with the items arranged in
symmetric order: if ~ is any node, the key of the item in x is
greater than the keys of all items in its left subtree and less
than the keys of all items in its right subtree. A binary search
tree can be balanced by storing certain balance information in each
node. Some types of balanced binary trees are AVL trees, weiqht
balanced trees, and red-black trees. The authors use the red-black
tree for storing data because updating them is specially efficient.

In red-black trees each node has a color, either red or black,
subject to the following constraints:

(i)
(ii)

(iii)

all missing (external) nodes are regarded as black.
all paths from the root to a missing node contain the same
number of black node.
any red node, if it has a parent, has a black parent.

To make a tree balanced after an insertion or deletion rotations
are performed. Rebalancing red-black trees require 0(1) rotations
and O(log n) color changes. Please see figure 1 for insertion in
a red-black tree.

Making red-black treee persistent (Path copying)

I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

Please refer figure 2(a).

Let us now consider how to make red-black trees persistent. We
need a way to retain the old version of the tree when a new version
is created by an upda'te. We can of course copy the entire tree
each time an update occurs, but this takes O(n) time and space per
update. Another idea is to copy only the nodes in which changes
are made. Any node that contains a pointer to a node that is
copied must itself be copied. Assuming that every node contains
pointers only to its children, this means that copying one node
requires copying the entire path to the node from the root of the
tree. Thus this method is called path copying.

/

The effect of this method is to create a set of search trees, one
per update, having different roots but sharing common subtrees.
The time and space per update in a red-black tree is O(log n) since
such an operation changes only nodes along a single path in the
tree. If the update 'times are the integers 1 through m, we can
create an array of pointers to the roots ordered by the time of
creation. Thus we can have direct access into the root array to
provide O(l)-time access to the appropriate root, and the total
time for an access operation is only O(log n).

Making red-black trees persistent (No node copying

Please refer figure 2(b).

A major drawback of the path copying method is its non linear space
usage bacause we always copy the entire access path each time an
update occurs. Here red-black trees are implemented by allowing
nodes to become arbitrarily "fat": each time we want to change a
pointer, we store the new pointer in the node, along with a time
stamp indicating when the change occurred.

wi th this approach an update takes only 0 (1) space, since an
insertion creates only one new node and either kind of update
causes only 0 (1) pointer changes. However, there is a time
penalty: since a node can contain an arbitrary number of left or
right pointers, deciding which one to follow during a search is not
a constant time operation. If we use binary search by time stamp
to decide which pointer to follow, choosing the correct pointer
takes O(log m) time (m is the number of updates), and the time for
an access, insertion or deletion is O«log n) (log m».

Making red-black trees persistent (Limited node copying)

Please refer figure 2(c).

This method removes the time penalty of the previous method. We
allow each node to hold k pointers in addition to its original two.
We choose k to be a small positive constant say k = 1. When
attempting to add a pointer to a node, if there is no empty slot

I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

for a new pointer, we copy the node, setting the initial left and
right pointers of the 1copy to their latest values. (Thus the new
node has k empty slots). We must also store a pointer to the copy
in the latest parent of the copied node. If the parent has no free
slot, it, too, is copied. Thus copying proliferates through
successive ancestors until the root is copied or a node with a free
slot is reached.

searching the resulting data structure is quite easy: when arriving
at a node, we determine which pointer to follow by examining the
key to decide whether to branch left or right and examining the
time stamps of the extra pointers to select among multiple left or
multiple right pointers. (We follow the pointer with latest time
stamp no greater than the search time if there is one, or else the
initial pointer). As , with path copying, a single update operation
can result in O(log n) nodes. However, on the average there are
only 0(1) nodes copied per update, implying an O(n) space bound for
the data structure. An update (insertion or deletion) requires
O(log n) time. Similarly, an access requires O(log n) time if a
root array is maintained which provides 0 (1) -time access to the
roots.

Applications and extensions

The authors have proposed a new data structure for representing
persistent sorted sets. The structure has O(log m) access time
(where m is the total number of update), O(log n) update time, and
needs 0(1) amortized space per update starting from an empty set.
The preprocessing time necessary to build the data structure is O(n
log n) and the query time is O(log n).

The structure supports a generalization of the planar point
location problem in which the queries are of the following form:
given a vertical line segment, report all polygons the segment
intersects. Such a query is equi valent to an access range
operation on the corressponding persistent sorted set and thus
takes O(log n + k) time where k is the number of reported polygons.

2. Optimal point locatioll1 in a monotone subdivision

Introduction

This technique shows an elegant modification to the separating
chain method of Lee and Preparata. The algorithm is based on a new
data structure called the layered dag. In this new data structure
the separating chains built into a binary tree by Lee and Preparata
are refined so that (i) Once a point has been discriminated against
a chain, it can be discriminated against a child of that chain with
constant extra effort and (ii) Overall storage only doubles. The

I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

layered dag simultaneously attains S = O(n) and Q = O(log n). An
additional insight allows the dag to built in O(n) time.

Monotone polygons, subdivisions and vertical ordering
!

A subset of the plane . is said to be monotone if its intersection
with any line parallel to the y axis is a single interval (possibly
empty). A subdivision is said to be monotone if all its regions
(polygons) are monotone and it has no vertical edges.

A subdivision that is ~ot monotone can be converted into one by the
process of regulariza~ion. This esentially consists of sweeping
the plane and inserti~g edges between two vertices - one that did
not have any right going edges and the other that did not have any
left going edges or vice versa. The regularization proces takes
o (n log n) time. For more information on the process of
regularization please refer to the original paper.

A region A is said to be above B if for every pair of vertically
aligned points (x, Y.) of A and (x, Yb) of B we have y. >= Yb' with
strict equality holding at least once. It is written as A » B.

Separators

A separator for a subdivision is a polygonal line s, consisting of
vertices and edges of , the plane, with the property that it meets
every vertical line at exactly one point. since s extends from x=
infinity to x=+infinity, any element of the subdivision that is not
part of s is either above or below it. The elements of shave
pairwise disjoint projections on the x-axis, and so can be ordered
from left to right; the first and last elements are infinite edges.

A complete family of separators for a monotone subdivision with n
regions is a sequence of n-1 separators S1 « S2 « ..• «sn-1. If
the plane admits a complete family of separators, its regions can
be enumerated as Ro, RlI ••• , ~-1 in such a way that ~ « Sj if and
only if i < j; for example:

Ro « SI « Rl « S2 « ..• « sn_l « ~-1·
Given a complete family of separators and an enumeration of the
regions we denote by index (R) the index of a region R in the
enumeration. Then sindex(R) « R « sindex(R)+I.

We can now prove that every monotone subdivision admits a complete
family of separators.

Proof: Let Ro, Ru ••• , ~-1 be a linear ordering of the
regions of the plane that is compatible with the «
relation, ie. ~ « ~ only if i < j. For i = 1, 2,
• .• , n-1, let Si be the collection of all edges and
vertices that are on the frontier between regions with
indices < i and regions with indices >=i

I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~ .

Now if a verticle line, 1, is drawn, it is easily seen
that there is exactly one point on 1 that is on the
frontier between a region with index < i and a region
with index >= i, that is, on Si.

Clearly, the elements of ~ have disjoint x
projections, and therefor can be ordered form left to
right; they must be alternately edges and verticesss,
the first 'and last being infinite edgesss. To prove
that Si is a separator, it remains only to show that
Si is connected; if it were not the case, we would have
some vertex v of Si that is distinct from, but has the
same x-coordinate as, one endpoint of an adjacent edge
e of Si. But then we would have e « R « v (where R
is the region between the edge e and v), which
contradicts the construction of ~. Therefore, each ~
is a separator, and SI' s2f ... , sn_l is a complete
family of them.

Gaps and chains

Suppose an edge is common to a number of separators Si+l to Sj.
While creating a binary search tree containing the separators as
its nodes, it suffices to store the edge as part of separator Sk
where k is the least common ancestor of i and j. This is the
highest node in the tree whose separator contains the edge e.
Only edges assigned to Sk are actually stored in such a structure.
In general these will form a proper subset of all the original
edges of Sk so between successive stored edges of Sk there may be
gaps. Actually, it may happen that all the edges of Sk are stored
higher up in the tree, so that Sk is reduced to a single gap,
extending from x=-infinity to x=+infinity. The ordered list of
stored edges and gaps corresponding to separator sk will be termed
the chain c k•

A faster point location method

We refine the chains so that we produce for each chain ck a list ~
of x-values, defining a partitioning of the x-axis into x
intervals. Each such interval of ~ overlaps the x-projection of
exactly one edge or gap of c k and at most two x-intervals of the
lists L1(k) and Lr(k).

The lists ~ and their interconnections can be conveniently
represented by a linked data structure that is called the layered
dag. This is a directed acyclic graph whose nodes correspond to
tests of three kinds: x-tests, edge tests, and gap tests.

An x-test node t contains the corresponding x-value of ~, denoted
by Xya1(t)' and two pointers left (t) and right (t) to the adjacent edge

'L

I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

or gap nodes of~. An edge or gap test node t contains two links
down(t) and up(t) to appropriate nodes of ~(k) and Lr(k). In addition,
an edge test contains a reference edge(t) to the edge of c k whose
proj ection covers the x- interval represented by t. A gap test node
contains instead the chain number chain(t) = k. (Please see figure
3(a) and 3(b) for a ~isual description of the different kinds of
nodes).

The properties of the refined lists ensure that the x-interval of
~ corresponding to an edge or gap test t covers either one x
interval I of ~(k)' or two such intervals 11, 12 separated by some
element xk of L1(k). In !the first case, down(t) points to the edge
or gap test of ~oo corresponding to the interval Ii in the second
case, down(t) points to the x-test corresponding to the separating
abscissa xk • Similarly, the link up (t) points to a node of Lr(k)

defined in an analogous manner. Again please refer figure 3 (a) and
3 (b) •

The layered dag contains a distinguished node, root, where the
point location search begins. This node is the root of a balanced
tree of x-tests whose leaves are the edge tests corresponding to
the list for the root node of T (T being the binary search tree of
separators).

The point location algorithm is as follows:

Algorithm FAST POINT LOCATION IN A MONOTONE SUBDIVISION

This algorithm takes as input the root node of the layered dag
and the number n of regions. Its output is placed in the
variable loco

1. Set i = 0, j = n-1, t = root.
2. While i < j do:

{At this point we know p is above the separator Sj and below
one of t;h-~ ~~,tHq-A.~ sQPq.r~c(Iar axn.R>)n.e e:ehJH: ai:s, p isre.i::rtex
between two of these regions). The variable t points to a test
node in the layered dag, which together with its descendants
will allow us to locate the point p among those regions.}

3. If t is an edge test then let e = edge(t) and do:
{At this point we know the projection of point p on the
x-axis(denoted as px) lies within the projection of the
edge e on the x-axis.}

4. If P is on e, set loc = e and terminate the algorithm.
5. If P is above e, set t = up(t) and i = index(above(e».

Else set t = down(t) and j = index(below(e».
6. Else if t is an x-test then do:

{The following x-test routes us to the appropriate edge
of the next chain we need to test against.}

7. If px <= xval(t) then t = left(t) else t = right(t).
8. Else t is a gap test; do

I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

{We have already compared p against the appropriate edge
of the chain of the gap test. We just need to
reconstruct how that comparison went.}

9. If j < chain(t) then t = down(t) else t = up(t).
10. Set loc = ~ and terminate the search.

Analysis

At each iteration, beginning at step 2, we descend one level down
the tree, so we have 9(log n) iterations. Once a point has been
discriminated against a chain it takes only 0(1) time to
discriminate the point against an edge of that chain. Therefore,
total time is O(log n}.

Conclusions and applications

This technique introduces a new data structure, the layered dag,
which solves the point location problem for a monotone subdivision
in the plane in optimal time and space. The layered dag can be
built from standard representations in linear time. The advantage
of the layered dag is that:

* it admits a simple, practical implementation, and

* it can be extended to subdivisions with curved edges.

3. A new approach to planar point location

Introduction

This paper presents it practical point location algorithm. The
query time = O(log n), preprocessing = O(n log n) and the storage
complexity = O(n log n). This technique could be viewed as an
evolution of the slab method of Dobkin and Lipton. However, the
method rests crucially on the observation that each edge of the
graph can be decomposed uniquely into 0 (log n) fragments (as
opposed to partitioning an edge into O(n) fragments in the slab
method approach.

Preliminaries

This section deals with one
comutational geometry namely,
(DCEL). We are quite familiar
will not explain it f~rther.

,!

of the basic data structures of
the doubly connected edge list

with this data structure and so we

The next and primary objective is to obtain from G a partial
ordering relation, <, on the set of edges, E, as follows: for el'
e2 that belong to E, e : < e2 means that there is a horizontal line
1 intersecting both e l, and e2 such that the intersection of 1 with

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

e t is to the left of that with e 2 • The relation < can be obtained
by a procedure analogbus to "regularization" used for creating a
monotone subdivision (For more information please refer to the text
book for regularizing a monotone subdivision). This takes O(n log
n) time.

A topological sorting "J P, of < will be called a consistent ordering
of the edges of set E. (For any horizontal line 1, the left-to
right sequence of the edges intersected by 1 is a subsequence of
P). This can be obtained by using a standard topological sorting
techniques as described by Knuth (The Art of Computer Programming,
p. 262). This requires O(n) time. Please refer figure 4(a) and
4 (b) •

Definition and construction of the search structure

The search data structure is a tree, K, which can be produced for
a graph G. In the construction of K use is made of the list P
previously obtained, ,and of an auxiliary structure, a "segment
tree", T(l, n). Again, we are quite familiar with the construction
of a search tree and.therefore no further detail will be given
regarding this.

For any node v of T(l~ n), we let M[v] = floor((B[v]+E[v])/2),
where B[v] is the beginning and E[v] is the end of the interval
associated with a node' v of the segment tree, and call slab(v) the
plane strip comprised between y = B[v] and y = E[v]; a segment e,
with extreme ordinate rand s (r < s), is said to span slab(v) if
r = B[v] and s = E[v]; slab(v1) and slab(v2) are said to be
companion if ~ and ~ are siblings in T(l, n).

In K we have two types of nodes, with different graphical
representations: v, a V-node or "horizontal node", is associated
with a horizontal line and has an ordinate Y[.] as discriminator;
0, an O-node or "segment node", is associated with a straight line
segment e and has as a discriminator a linear function fEe] of x
and y such that fEe] = , 0 is the equation of the line containing e.

Each call of the following algorithm which constructs the tree K
processes one slab. Specifically, for some node v in T(l, n), it
accepts the left-to-right sequences S of the segments which either
span or are contained in slab(v) and organizes them in a search
tree. Thus K is built by TREE(P, root (T(l, n)) where P is the
previously defined consistent ordering of the edges of G,
structured as a queue, and TREE(S, v) is the following recursive
procedure (where S, Sl, S2 and U are queues).

procedure TREE(S, v)
begin

if (S = {}) then U <- {}
else Sl <- S2 <- U <- {}

I.
1
1
1
1
I
1
I
I
I
I
I
I
I
I
I
I
I
I

while S <> {} do

end

begin
e <= S 1* remove from set S and assign to e *1
if « B [v] < B [e]) or (E [e] < E [v]))
then

1* e does not span slab(v) *1
begin

if B[e] < M[v]
then

Sl <= e
if M[v] < E[e]
then

S2 <= e

1* Add to set Sl the edge e *1

1* Add to set S2 the edge e *1
end 1* queues Sl and S2 are being built *1

if (B[e] <= B[v]) and (E[v] <= E[e]) or (S = {})
then

1* e either spans slab(v) or is last term in S *1
begin

if (Sl U S2 <> {})
then

1* the tr~peze is nonempty *1
begin

w <- new horizontal node of K
YEw] <- M[v]
LTREE[w] <- TREE(Sl, LSON[v])
RTREE[w] <- TREE(S2, RSON[v])
1*

*1

The segments in a trapeze are organized by joining
together th structures corresponding to companion
slab

U <= w 1* Add to set U horizontal node w *1
end

end 1* end of while *1
u* <- BALANCE(U)
return

The procedure BALANCE t akes a sequence of terms, which are either
trees or segments, and arranges them in a conviniently balanced
tree.

Analysis of procedure TREE:

It is convenient to ch.arge the work to the individual edges of G.
Since there are 0 (n) edges in G (By Euler's theorem on planar
graphs) and each edge is charged O(log n) work. the generation of
all "segment nodes" of T(l , n) uses work O(n log n) globally.

11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Each V-node is producetl and processed in steps 9 and 13. It can be
shown that the number of V-nodes is O(n log n). Hence the total
work used by procedure TREE to produce tree K, except for the work
attributable to subroutine BALANCE, is O(n log n). An analysis
yields the running time for procedure BALANCE to be O(n log n).
Thus the total time for the procedure TREE is O(n log n).

point Location

To locate a point Po = (Xo, Yo) in the planar subdivision induced by
G, we use K as a binary search tree. with each O-node of K which
has one or no descendant we append one or two leaves, refer figure
5, respectively, and w,ith each such leaf we associate the identifer
of a plane region (bordering with the edge associated with the
parent O-node). The point location proceeds as follows: at each
node V of K, we choose a branch; if V is a V-node, by comparing Yo
with Y[V]; if V is an O-node, by testing the sign of f(Xo, Yo),
where f(x, y) is the discriminant function of V. Thus we trace a
unique path from the I root to a leaf, at which stage the point
location is completed ~ By the preceding discussion this process
uses a number of comparisons bounded by the depth of K, ie., O(log
n) •

comments and applications

Thus we see that the point location is simply done in time O(log n)
using a search structure which can be stored in O(n log n) space.
It is conceivable that the simple approach presented in this paper
could be further refined to achieve O(n) storage while maintaining
O(log n) search time.

We now mention two applications of the given method:

1.

2.

4.

Fixed-radius near neighbor searching which involves finding
all points of a set F in the plane which are within some fixed
radius r of "query point" .

Maxima testing ' ill three dimensions which involves deciding
whether a target point p in the set dominates all the other
points in that set.

Fully Dynamic Technique for Point Location and Transitive
Closure in Planar Structures.

Introduction

This technique differs from the previous three techniques in that
the planar subdivision can be modified by insertions and deletions
of points and segments. In this paper monotone subdivisions are

I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

considered. The topological underpinning of a monotone subdivision
is a planar st-graph.

A planar st-graph adm~ts two total orders (referred to as leftist
and rightist) on the set VUE U F, where V, E, F are respectively
the sets of vertices, edges and faces. It is shown that by
dynamically maintaining these two orders on the planar st-graph we
are able to dynamically maintain the monotone subdivision whose
underlying topology is represented by this graph.

Planar st-graphs

A planar st-graph is a planar acyclic graph digraph G with exactly
one source (vertex without incoming arcs), s, and exaclty one sink
(vertex without outgoing arcs), t, which is embedded in the plane
so that sand t are on the boundary of the external face.

Some important properties of planar st-graphs are expressed by the
following lemmas:

Lemma 1. [2] For every vertex v of G, the incoming (outgoing)
edges appear consecutively around v.

Lemma 2. [2] For every face f of G, the boundary of f consists of
two directed paths with common origin and destination.

Lemma 3. Let G be a planar st-graph with n vertices. There exists
two total orders on the vertices of G, denoted <L and <R' such that
there is a directed path from u to v if and only if u <L v and u <R
v. Furthermore, orders <L and <R can be computed in O(n) time.

Please refer figure 6 (a) and 6 (b) for some basic definitions
regarding planar st-graph.

The authors then define some primitive operations on the elements
of the planar st-graph (The elements being the vertices, edges and
faces of the graph). These primitives are HIGH (x) , LOW (x) , LEFT(x)
and RIGHT(x). These primitives define the respective orientations
of the elements with respect to each other. In particular we say
that x is below y, denoted x: y, if there is a path in G from
HIGH (x) to LOW (y) . Also, we say that x is to the left of y,
denoted x->y, if there is a path in the dual of G (refer figure
6 (c» from RIGHT (x) to LEFT(y). We define the left-sequence
(right-sequence) of G as the sequence of elements of G sorted
according to <L «R) order. For example, the left-sequence of the
graph of figure 6 (a) can be represented by fovoelAv3e6vse9f2B, where
A=f1e2v1eS and B= e7f3e4f,;e3v2egv4elOv6fs.

On-line Maintainance of a Planar st-graph

The update operations on a planar st-graph are INSERT, DELETE,

I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

EXPAND, and CONTRACT. An example of the transformation of the
leftist order <L as a ~onsequence of an INSERT operation is defined
as: v <L f <L U : A v B feu D -> A fl Cue v B f2 D and is shown
in figure 7.

Dynamic Planar Point Location
\

The planar st-graph ,!framework is specialized to the classical
problem of planar point location in a monotone subdivision. A
monotone subdivision R is a partition of the entire plane into
monotone polygons, called the regions of R. Also, we know from an
earlier technique that a monotone subdivision admits a complete
family of separators. The following primi ti ve operations are
defined for the update of a monotone subdivision: INSERTPOINT,
REMOVEPOINT, INSERTCHAIN, REMOVECHAIN and MOVEPOINT.

Two regions r l and r 2 with r l <~ r 2 are vertically consecutive if r l : r 2
and there is no region r such that r l <L r <L r2. Lemma: If r l and
r2 are two vertically consecutive regions of a monotone subdivision
R, then the monotone chain from HIGH(rd to LOW(r2 } is unique and is
called a channeI. We can merge in this fashion any sequence of
vertically consecutive pairs and we have:

CIusters are recursively defined as follows: (l) An individual
region r is a cluster; (2) Given two vertically consecutive
clusters Xl and X2; w~th Xl: Xu there union is a cluster X. A
maximal cluster X is !'one which is not properly contained in any
other cluster. The unique subdivision resulting by forming all
maximal clusters of R is denoted R' and this is found to be
regular.

Data structures

The search data structures is very complicated and we present below
just a brief overview of it:

It consists of a main component, called the augmented separator
tree T, and an auxiliary component. The augmented separator-tree
has a primary and a secondary structure. The primary structure is
a separator tree for R', ie., each of its leaves is associated with
a region of R' (a maximal cluster of R, ie. X), and each of its
internal nodes is associated with a separator of R'. The secondary
structure is a collection of lists, each realized as a search tree.
The auxiliary component consists of balanced search trees TL and TR
respecti vely associated with the orders <L and <R on VUE U F, and
of a dictionary, which contains the lists of the vertices, edges,
and regions of R, each sorted according to the lexicographic order
of their names.

Query

I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The point location search for a query point q consists of tracing
a path from the root to a leaf X of T. At each internal node we
discriminate q against a separator, and proceed to the left or
right child depending 'upon whether q lies to the left or right of
that separator. We then discriminate the point to within an edge
of the separator. Thus we see that the alqorithm that we use is
the conventional old technique of Lee and Preparata. The time
complexi ty of the query operation is 0 (log2 n) .

Update

The analysis requires consideration of the subsequence of the left
sequence of G formed by the regions of R, referred to as the
region-sequence.

We show below how a chain can be inserted into the subdivision.
The region sequence before the update is given by the string:

where - represents a channel.

If we now apply the transformation as described above, we have the
obvious correspondence:

Please refer figure 8.

Conclusions:

This technique presents a fully dynamic data structure for point
location queries in a monotone subdivision. This technique could
be specially useful :Eor solving such queries in a dynamically
changing terrain. I

I.
I
I
I
I
I
I
I
I Figures

I
I
I
I
I
I
I
I
I
I

I ,
I (c.)

I ~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(b)

(c)

OR

I

Flgur'e. I. The Reb:d Qf1C/()'3 T("Q f)sfoy rn<:d-i 0 I") 5 III Re..cl.- 61 Q. c. R.. Tyee

Insev-h'oTl, <;'j Y"tl'('(',e.+YIC cQ.ses ~ye omitted. Sollq

"nodes aye bIQc.Q;' ,",ollow '1\00112.3 Qye "(e.eL All UrlShClWn

c.~\\che.l\ of ye.d nodes ClY~ blQ.ck .

I ..
I
I
I
I

I
I
I
I
I
I

I
I
I

o 3

y

FI~VY e. 2 (0.) A pe"'(s IsteY"\t Red.
Blo.c. k tyee w\i-h PQ+h Copy ing . The..

l'hihal -hee.; ex ,stT"3 q+ iTme.. 0)

Co n +ql!"'S A 6 D F G- H) I) J) K.
) .J)))

l ~eTY\ E IS Ins€ytea 4+ time t,
M ~ TIme 2) 0. nd

3. ~e 'hod6 o.-ye

C 0.+ trmE.
10. be. led Dj

+helY c.oIOY$ Y toy yed) b fay
)

b \a.c.~ . The. --nodes 0. ye 0.1'30
• ...£.

a.be le.q b'j + hQI'f lI'('7)e 0 \

LYea,tion. A ll e.ct g e~ e,)(l+ ~he.

6ot+-o m of Y\odeS' onol e n+ey

+ 'ne +epS.

F'J UYe. 2 (b)

~ \Q <:'R. nee
A pe'YS Isi-€nt. ge. d.

w I+h No Noot e

CoP':;1 ln3' The. 1·r) lt ,·a. 1 +,e e crnq

\r,sey.lcn.$ o"Ye. o.s. n .f. 1'l .? (::) ' •

Eells e ICl.De e.d bj ~ y,.. e of
C"r'eo.-:i on))lo de S W I +1-) +-he. I Y

eo\oys . Co r. 'I\ectio ns +c
}'o'(' 30 TYT-oJ l' ()es deY'\ate n u l l

pointevs .

I.
I
I
I
I
I
I
I
I
I
I L~

I
I
I
I
I
I (k

I (Y(Il.)

I

G --- -
K I

I

I

~
)(

?(IQ \: 1-
lef" Y'~~

I

--;;rl

'----------

I \

,
12 '1(3 ?(~ ~5

"t,
\

h9 uye 2 (c.). A PeY~ l st€nt

Re~ 5Iqd<. +H~.e u.l\+~

Unil+e& No&e. COP'3 I T'l9
a. <s sumI1l3 e.o.c.h "r'\ode. C'~n

~I d. one E-xt'fa. pOI n+e y.

'" ,
: up \
:...---J
l 'h:1 I " ~ K..1

...--:---<
... dou)ol
- ~ ,

'Z~ J.
, \

, 1<>
(

FI~ 3 b). Noel ~
of +he Dq~ .

I ..
I 12 r

II ~

I 10 L

I q.

~ C _

I 7

I G

5 .

I 4 .

I 3·

I
2

I hjUYe. 4 (0..)

O,ye ShCLOT)

1 1"(')! '2) ·

I
I
I
I
I
I
I
I

F''juye 5. The. Se~'Yc.~ d cd-a. styuc.+UYe.
f'<jIJ 'Y e. 4 ~bcve. .

v =

o =
V - Yloc! e

O-node

I.
I
I

I
I
I
I
I
I
I
I
I CAe. ",,(O$.$

I
I
I
I
I
I

L,

F'g uye

1e. 3'C l'\

o.-ft-€ y

h :.{

Exarrp ;e of Q.. p : ~)'"Ia '(

~ 6-;~) G o l'\d, k

befo y@

La.)

g'La) C a. YlD"'n I c. cd po. '(titiD Yl

Y Cl n d. ve. y ices V I Q.

-the. inse ytj Of) 0+ c hCl

6 ,
,--

"..

;

(11
"-

(

I

slf.C(I

I , ,
" -- -~~

\ , ,
.... -

0 0

Lb) (Cr
5-- ya. P" G. fj;) Oy de '{s .(L a n d. < R..

~'fC{p h G~

0 1'\ +he.
d u.a, \

e.d e e.

of Su bdivis Ion « I with yete ye nee +0
Y 'L) and. (b) + he. ye$ t- y uc:fu ve. d Sll bd I VI S 10 '1'\

'0 be-tween VI 2- V2..

"' \

\
-V

--.KY ,
-11 "C

/

I
/
• *

PHYSICAL MODELING *
* I:

• This file contains an implementation of a physical modeling problem, the •
• "Springs and Sticks problem" in which the behavior of a series of sticks,*

1*
: having masses attached to their ends, is shown. The Penalty Method is *

used for calculating physical forces on the sticks which shape their *
behavior. •

• •

I:
•
•

The system consists of four modules which vary the state variables •
associated with each stick, namely, its position, the forces acting on *
its ends, its linear and angular accelerations. Euler integration (using*
the time step which has been set up for the simulation, called dt here) *
is used to calculate new velocities, positions and orientation in space •
of the sticks. The new positions are then used to calculate new •
forces which have thus developed in the system and the cycle repeats. *

*
* This implementation shows the critically ~>d version of the model.
• Other versions (underdamped, overdamped and undamped) can be easily II: generated by varying the damping constant (k2) .

• ~ritten by : Sumeet Rajput

*
* •
•
•
• • Date : 4/10/93

I· * *** •• *****************************'

/ ••• INCLUDES ••• /
#include <stdio.h>

I #include <stdlib.h>
#include <conio.h>
#include <graphics.h>
#include <math.h>

I
#include <dos.h>

/ ••• CONSTANTS ••• /
#def i ne MAX Y
#define RADIUS l#def i ne MASS

#define NUM_OF_STICKS

I
~efine dt

#define k1

479.0
20.0

100.0

7

1.0
10.0

l#define k2 (2·sqrt(k1·MASS»

l #define g
#define HALF_PI

/ ••• TYPES ••• /

I
~ypedef struct

float x;
float y;

}POINT;

IItypedef struct
{

0.4
1.571

/* Max. Y-coordinate on the screen */
/* Half-length of stick (i ts radius) */
/* mass of masses attached at the ends ./

/* Number of sticks in the simuLation. */
/. Note that the first and last sticks ./
/. are "dl.lTlllY" sticks whose ends are ./
/. used onLy ~: or force caLculations on ./
/. the rest of the "reaL" sticks. So, ./
/* n-2 sticks are actuaLLy invoLved in ./
/. the simuLation. ./

/. DeLta time between simuLation Loops ./
/. Spring constant ./

/* Damping constant (CriticaLLy damped) *1
/* k2 < 2*sqrt(k1·MASS => Underdamped */
I· k2 > 2*sqrt(k1·MASS => Overdamped *1
/* k2 = 0 => Undamped */

I· constant for displaying gravity
/* Approx. val.ue of PI/2.0

/* Definition of a point */

1* Its x coordinate ./
/* Its y coordinate ·1

1* Stick information ·1

./

./

/. Positional and force information */

I
POINT a;

POINT b· ,
POINT c·

II

,
POINT ra;
POINT rb;
POINT fa;
POINT fbi

I
float theta;

I· Current "a" of stick. A stick has
I· endpoints ~. and b.

·1
·1

1* Current "b" Gf stick ·1
1* Center poin ~ of the stick ·1
I· Radius vector towards "a" ·1
/. Radius vector towards "b" ·1
1* Force on "e" *1
/* Force on "b" *1
I· Angle the stick makes with the ·1

«pg: 0, spring.cpp - (05 -06-93, 08:05»>

I
I
I

/* Velocity information */
POINT adot;
POINT bdot;
POINT cdot;
float thetadot;

/* AcceLeration information */
POINT cdotdot;

1* positive x-axis

/* Linear veLocity of end "a"
1* Linear veLocity of end "b"
1* Linear velocity of center "c"
/* AnguLar veLocity of the center

*1

*1
*/
*1
*/

fLoat thetadotdot;
I}STICK;

/*** STATIC DATA ***/

1* Linear acc~Leration of the center
1* AnguLar acceLeration of the center

*1
*1

STICK stick[NUM_OF_STICKS];

1/*** LOCAL PROTOTYPES ***1

1*** FUNCTIONS ***1

1/**
* *
* This function initiaLizes the graphics system. *
* *

I
***********·***********·*·**·****·***·*··**··**~**** ••• *********************/
void InitiaLizeGraphics(void)
(

I
I
I

1* request auto detection *1
int gdriver = DETECT, gmode, errorcode;

/* initiaLize graphics mode *1
initgraph(&gdriver, &gmode, "\\borLandc\\bgi");

1* read resuLt of initiaLization *1
errorcode = graphresuLt();

if (errorcode 1= grOk) 1* an error occurred *1
(

}

pri ntf("Graph i cs error: Xs\n", grapherrorn'Sg(errorcode»;
printf("Press any key to haLt:");
getchO;
exit(1); 1* return with error code *1

/*******.********* ••• **

* *

I Set up initiaL conditions for the simuLation. Here the initiaL positions*
of the sticks are set to be at the bottom center of the screen. ALL *
other state variabLes are aLso initiaLized. *

* *

1
******************·***/
void InitiaLizeSimuLation(void)
(

I
I
I
1
I
I

stick[O].b.x 0.0;
stick[O] .b.y = 240.0;

stick[NUM OF STICKS-1] .a.x
stick[NUM=OF=STICKS-1].a.y

639.0;
240.0;

for(int i=1; i<NUM_OF_STICKS-1; i++)
{

stick[i] .c.x
stick[i] .c.y
stick[i]. theta

stick[i] .a.x
stick[i] .a.y

stick[i] .b.x
stick[i] .b.y

stick[i] .ra.x
stick[i] .ra.y

sti ck [i] . rb.x
stick[i] .rb.y

stick[i] .adot.x

320.0;
0.0;
0.0;

300.0;
0.0;

340.0;
0.0;

-20.0;
0.0;

= 20.0;
0.0;

0.0;

1* Set "b" for the first stick
I

*1

1* Set "a" for the Last stick *1

1* InitiaLize the "reaL" sticks *1

1* Sticks start up Lying fLat on *1
1* top of each other at the *1
1* bottom of center of the screen */

«pg: 1, spring.cpp - (05-06-93, 08:05»>

J
I
I
I
I
1

stick[i] .adot.y 0.0:

stick[i] .bdot.x 0.0:
stick[i] .bdot.y 0.0:

stick[i] .cdot.x 0.0:
stick[i] .cdot.y 0.0:

stick[i] .thetadot 0.0:

stick[i].cdotdot.x 0.0:
stick[i].cdotdot.y 0.0:

stick[i].thetadotdot 0.0:
)

/* Initialize the forces on all sticks */
for(i=1: i<NUM_OF_STICKS-1: i++)
(

)

stick[i].fb.x
stick[i] .fb.y

stick[i] .h.x
stick[i] .h.y

k1*(stick[i+1].a.x-stickfi].b.x) - k2*stick[i].bdot.x:
k1*(stick[i+1].a.y-stickf.i].b.y) - k2*stick[i].bdot.y:

= k1*(stick[i] .b.x-stick[i·~1J .a.x) - k2*stick[i] .adot.x:
k1*(stick[i].b.y-stick[i+1].a.y) - k2*stick[i].adot.y:

/**

* *

1* Draw the springs and sticks. *
* *
**/
void DrawSticks(void)

I
{

1
I
1

/* Clear the display */
c l eardevi ceO:

setcolor(LIGHTMAGENTA):
setlinestyle(SOLID_LINE, 0, THICK_WIDTH):

/* Draw the sticks */
for(int i=1; i < NUM_OF_STICKS-1; i++)

line(stick[i].a.x, MAX_Y-stick[i].a.y,
stick[i].b.x, MAX_Y-stick[i].b.y);

setcolor(CYAN);
setlinestyle(SOLID_LINE, 0, NORM_WIDTH);

/* Now draw the springs */
for(i=O; i < NUM OF STICKS-1; i++)

l ine(stick[il.b:-x, MAX_Y-stick[i] .b.y"
stick[i+1].a.x, MAX_Y-stick[i+1].a.y);

/** ••

* * I:
*

Module 1 for the simulation. *
*

This function calculates the end points of the sticks from their center *
* position and their orientation w.r.t. the x-axis. It also computes *

1
:* radius vectors for use in determining forces in another module. Before *

calculating the new endpoints of the stick, the old ones are saved in *
temporary variables. The new end points are then computed and the *

* difference in the new and old end points is a measure of velocity of the *
* end points of the stick. The velocities are required for damping *
I~~ :

********************************* •• ***/
void Module1(void)

I
{

I
I

POINT old_a, old_b:

/* Do for all real sticks */
for(int i=1; i < NUM_OF_STICKS-1; i++)
{

/* First copy a's and b's into old_a's and old_b's */
old a.x = stick[i] .a.x;
old-a.y stick[i].a.y;
old=b.x = stick[i] .b.x;

«pg: 2, spring.cpp . (05·06-93, 08:05»>

I
I
1
I
I
1

}
}

old_b.y = stick[i].b.y;

/* Determine new position */
stick[i].a.x = stick[i].c.x . RADIUS * cos(stick[i].theta);
stick[i].a.y = stick[i].c.y . RADIUS * Gin(stick[i].theta);
stick[i].b.x = stick[i].c.x + RADIUS * cos(stick[i].theta);
stick[i].b.y = stick[i].c.y + RADIUS * ~in(stick[i].theta);

/* Calculate the velocities of the endpoints */
stick[i].adot.x = (stick[i].a.x . old a.x) / dt;
stick[i].adot.y = (stick[i].a.y . old:a.y) I dt;
stick[i].bdot.x = (stick[i].b.x . old b. x) / dt;
stick[i].bdot.y = (stick[i].b.y . old:b.y) / dt;

/* Calculate radius vector and center */
stick[i] .ra.x = stick[i] .a.x . stick[il .rc.x;
stick[i] .ra.y = stick[i] .a.y . stick[il.F.y;
stick[i] .rb.x = stick[i] .c.x . stick[i] .a.x;
stick[i].rb.y = stick[i].c.y . stick[i].a.y;

stick[i].c.x =
stick[i].c.y =

stick[i].a.x + stick[i].b.x) / 2.0;
stick[i].a.y + stick[i].b.y) / 2.0;

1/***************** •• ** ••• ** ••
* *
* Module 2 for the simulation. *
* I:
*
*

*
This function determines linear acceleration of the center of each stick.*
The acceleration is obtained from the classic force equation: *

F = M * A where F is the force acting on ~ body
M is its mass and
A is its acceleration

*
*
*
*
*

* For each stick F equals the sum of the forces on both its end *
* M is the sum of the masses attached to its ends and * 11* A is the required linear acceleration of the center *

:***;
void Module2(void) I{ /* Do for all real sticks */

for(int i=1; i<NUM_OF_STICKS·1; i++)
{

stick[i].cdotdot.x = (stick[i].fa.x + stick[i].fb.x) / (2.0 * MASS);
stick[i].cdotdot.y = (stick[i].fa.y + stick[i].fb.y) / (2.0 * MASS);

1
/**
* *
* Module 3 for the simulation. *
* *
* This function determines the angular acceleration of the center of each * II: stick. This is determined as follows: *

*
* Let R be defined as the radius vector corresponding to an end of a stick *
* ie. the vector obtained by going from the center of a stick to its *

1:* endpoint .

Let F be the force acting on that endpoint

*
*
*

* *
* Then Torque T is defined as being the cross pl"oduct of R and Fie.

1:* T=RXF.
The angular acceleration, A, for the stick is ' then given by:

*
*
*
*
*
*
*
*
*
*

*

I
*
*

I
*

I

A = (Torque on end point a + Torque on end point b) / r*r*M
where r is the radius of the stick and

M is the sum of the masses attached to the end points.

In the present case we have:

A = thetadotdot *
Torque on point a
Torque on point b

ra X fa *
rb X fb (ra, rb are radius vectors and fa,fb are *

force vectors) *
r = RADIUS = 20.0 and *

«pg: 3, spring.cpp . (05·06·93, 08:05»>

J'
* m = MASS = 10.0 *
* *

1***********************************··***************************************/
void Module3(void)
(

I
I

float cross1, cross2; /* Temp variables for storing cross products */
I

/* Do for all real sticks */
for(int i=1; i<NUM_OF_STICKS-1; i++)
{

/* compute cross products */
cross1 (stick[i].ra.x * stick[i].fa.y) - (stick[i].fa.x * stick[i].ra.y);
cross2 = (stick[i].rb.x * stick[i].fb.y) - (stick[i] . fb.x * stick[i].rb.y);

/* compute angular acceleration */
stick[i].thetadotdot = (cross1 + cross2) / (2.0*RADIUS*RADIUS*MASS);

II
~***:

* Module 4 for the simulation. *
* *
*

I
*

This function determines penalty forces that are applied to the ends of
the sticks. The end points are damped by using the velocity at that
point. The appearance of gravity is provided by deliberately reducing
the y c<lq:)Onent of the force on each end point by a fraction of the
height of the center of the stick.

*
*
*
*
*

* *
1Ir***/
~oid Module4(void)

(

I
I
t

/* Do for all real sticks */
for(int i=1; i<NUM OF STICKS-1; i++)
(- -

}

stick[i] .fb.x =
stick[i] .fb.y

stick[i] .fB.x
stick[il.h.y

k1*(stick[i+1] .a.x-stick[i] .b.x) - k2*stick[i] .bdot.x;
k1*(stick[i+1].a.y-stick[i].b.y) - k2*stick[i].bdot.y

- g*stick[i] .c.y;

k1*(stick[i - 1].b.x-stick[i].a.x) - k2*stick[i].adot.x;
k1*(stick[i-1].b.y-stick[i].a.y) - k2*stick[i].adot.y

- g*stick[i] .c.y;

/****************************** ••• ***

* *

I
*

*

Euler integrator for linear c<lq:)Onents. *
*

This function implements euler integration on. the linear acceleration to *
get the change in linear velocity. This is t~l en added to the old linear *
velocity to get the current linear velocity. Another euler integration *
on the velocity gets us the change in position. This is then added to *
the old position to get the current position. *

*
**/

lI~oid Linearlntegrator(void)

/* Do for all real sticks */

II
II

for(int i=1; i<NUM_OF_STICKS-1; i++)
{

}

/* Get new linear velocity */
stick[i].cdot.x stick[i].cdot.x + stick[i].cdotdot.x * dt;
stick[i].cdot.y = stick[i].cdot.y + stick[i].cdotdot.y * dt;

/* Get new position */
stick[i].c.x = stick[i].c.x + stick[i].cdot.x * dt;
stick[i].c.y = stick[i].c.y + stick[i].cdot.y * dt;

1Ir**
* *
*

I
*

I

Euler integrator for angular components.

This function implements euler integration on the angular acceleration
get the change in angular velocity. This is then added to the old
angular velocity to get the current angular velocity. Another euler
integration on the angular velocity gets us the change in orientation.

*
*

to*
*
*
*

«pg: 4, spring.cpp - (05 -06-93, 08:05»>

* This is then added to the old orientation to get the current orientation.*
* *

1**/
void Angularlntegrator(void)
(

I
I

}

/* Do for all real sticks */
for(int i=1; i<NUM_OF_STICKS-1; i++)
{

/* Get new angular velocity */
stick[i].thetadot = stick[i].thetadot + stick[i].thetadotdot * dt;

/* Get new orientation */
stick[i].theta = fmod(stick[i].theta + stick[i].thetadot*dt, HALF_PI);

}

1/.***.*******************************
* *
* The main program. *
* *

1* Initializes the graphics and the simulation state variables. *
* Repeatedly calls the modules defined above redrawing the status of the *
* sticks in each cycle. The simulation stops when the user presses a key. *
* Finally it shuts up the graphics system and exits. *

1:***;
void main(void)
(

I
I
I
1
I
I}

/* Set up for graphics */
InitializeGraphics();

/* Set up the initial conditions */
InitializeSimulation();

/* Start up new */
cleardevi ceO;

/* Begin the simulation.
/* a key.
while(IkbhitO
(

}

Module10;
DrawSticksO;
Module40;
Module20;
Module30;
linearlntegrator();
Angularlntegrator();

Repeat the procedure until the user presses */
*/

/* closes down the graphics system */
closegraphO;

/*** END OF FilE ***/

I
I
1
1
1
I

«pg: 5, spring . cpp - (05 -06-93, 08:05»>

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 0000067

	A Report On Planar Point Location: Some New Techniques
	Recommended Citation

	tmp.1440010807.pdf.WSxMR

