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Introduction 

Point location, often known in graphics as "hit detection", is one 
of the fundamental problems of Computational Geometry. In a point 
location query we want to identify which of a given collection of 
geometric objects ie. polygons, edges or points contains a 
particular point. The ' point location query is normally carried out 
on a Planar straight ~ine Graph (PSLG). This is often referred to 
as a subdivision. We judge the performance of a particular point 
location method by measuring three key factors: 

1. The preprocessing time, P: This is the time it takes for 
the PSLG to be processed and arranged in a suitable data 
structure which can then be searched. This is expressed 
as a function of the input size (the number of points in the 
subdivision). 

2. The space complexity, S: This determines the amount of 
storage that the data structure requires and is again 
expressed as a function of the data size. 

3. The query time, Q: This is the time required to search the 
data structure for the query point. Again, it is expressed 
as a function of the input data size. 

Here is a brief summary of some of the algorithms already known to 
us: 

Slab Method 

This method consists of splitting up the plane into vertical slabs. 
The line segments of the subdivision intersecting a slab are 
totally ordered, from the bottom to the top of the slab. Associate 
with each line segment the polygon just above it. Now it is 
possible to locate a query point with two binary searches: the 
first on the x-coordinate, locates the slab containing the point; 
the second, on the line segments intersecting the slab, locates the 
nearest line segment below the point, and hence the polygon 
containing the point. It has complexity bounds Q = O(log n), S = 
0(n2) , and P = 0(n2) . 

Chain Method 

In this method the plane is subdivided by a number of monotone 
"chains". The chains c:an be ordered and easily arranged in a data 
structure used for searching. Essentially, the search procedure 
involves discriminatimg the point against a particular chain. 
Another binary search within two chains allows the point to be 
discriminated to within an edge of the chain. The region 
containin~ the point can then be ascertained. Therefore, we have 
Q = O(log n), S = O(n) and P = O(nlog n). 



I. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Kirkpatrick's Triangulation Refinement Method 

Here we assume the P·'3LG to be triangulated (if not it can be 
transformed into one in O(n log n) time. A search tree is then 
created whose nodes represent triangles. Each enclosing triangle 
can be split up into regions which are themselves triangles. Point 
location proceeds by testing the inclusion of a point within a 
triangle and its children recursively until we come to the point 
where the triangle enclosing the point is a leaf node of the tree 
(ie. an actual triangle of the subdivision). Thus, Q = O(log n), 
S = O(n) and P = O(n log n). 

Some New Techniques 

In addition to the techniques already discussed above some new 
techniques are presented below: 

1. Planar point location using persistent search trees 

Introduction 

This technique uses th~ concept of persistent data structures. A 
persistent data structure differs from an ordinary one in the sense 
that the current version of the structure can be modified and all 
versions of the struct.ure, past and present, can be accessed. 
This technique developed from Cole's observation. Cole observed 
that the point location problem reduces to the problem of storing 
a sorted set subject to insertions and deletions so that all past 
versions of the set, as well as the current version, can be 
accessed efficiently. 

We start by dividing the PSLG into vertical slabs which are created 
by drawing a vertical line through each vertex. The line segments 
of the subdivision intersecting a slab are totally oredered, from 
the bottom to the top of the slab. We notice, as Cole did, that 
the sets of line segments intersecting contiguous slabs are 
similar. Considering t:he x-coordinate as time we can see how these 
sets change as time increases from -infinity to +infinity. As the 
boundary from one slab to the next is crossed, certain segment are 
deleted from the set and other segments are inserted. 

A data structure is then created which is capable of storing the 
different sets of line segments ocurring in different slabs but 
which allows access to any set in logarithmic time. Such a data 
structure is a persistent form of a balanced binary tree. 
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Persistent sorted sets and search trees 

The problem is to maintain a set of items that changes over time. 

Three operations on the set are allowed: 

1. Access(x, s, t): Find and return the item in set s at time 
t with greatest key less than or equal to x. If there is no 
such item, return a special null item. 

2. Insert(i, s, t): At time t, insert item i into set s. 

3. Delete(i, s, t): At time t, delete item i from set s. 

We start with an emp-f:y set, and we wish to perform on-line a 
sequence of operations, including m updates (insertions and 
deletions) with one stipulation that any update occurs at a time no 
earlier than any previous operation in the sequence. 

An approach is to star1: with an ephemeral data structure (one that 
is not persistent) for sorted sets or lists and make it persistent. 
This was a technique pursued by many other authors and is called 
path copyinq. 

Review of binary search trees and how they can be made persistent 
using path copying 

A binary search tree is a binary tree containing the items of the 
set in its nodes, one item per node, with the items arranged in 
symmetric order: if ~ is any node, the key of the item in x is 
greater than the keys of all items in its left subtree and less 
than the keys of all items in its right subtree. A binary search 
tree can be balanced by storing certain balance information in each 
node. Some types of balanced binary trees are AVL trees, weiqht 
balanced trees, and red-black trees. The authors use the red-black 
tree for storing data because updating them is specially efficient. 

In red-black trees each node has a color, either red or black, 
subject to the following constraints: 

(i) 
(ii) 

(iii) 

all missing (external) nodes are regarded as black. 
all paths from the root to a missing node contain the same 
number of black node. 
any red node, if it has a parent, has a black parent. 

To make a tree balanced after an insertion or deletion rotations 
are performed. Rebalancing red-black trees require 0(1) rotations 
and O(log n) color changes. Please see figure 1 for insertion in 
a red-black tree. 

Making red-black treee persistent ( Path copying) 
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Please refer figure 2(a). 

Let us now consider how to make red-black trees persistent. We 
need a way to retain the old version of the tree when a new version 
is created by an upda'te. We can of course copy the entire tree 
each time an update occurs, but this takes O(n) time and space per 
update. Another idea is to copy only the nodes in which changes 
are made. Any node that contains a pointer to a node that is 
copied must itself be copied. Assuming that every node contains 
pointers only to its children, this means that copying one node 
requires copying the entire path to the node from the root of the 
tree. Thus this method is called path copying. 

/ 

The effect of this method is to create a set of search trees, one 
per update, having different roots but sharing common subtrees. 
The time and space per update in a red-black tree is O(log n) since 
such an operation changes only nodes along a single path in the 
tree. If the update 'times are the integers 1 through m, we can 
create an array of pointers to the roots ordered by the time of 
creation. Thus we can have direct access into the root array to 
provide O(l)-time access to the appropriate root, and the total 
time for an access operation is only O(log n). 

Making red-black trees persistent ( No node copying 

Please refer figure 2(b). 

A major drawback of the path copying method is its non linear space 
usage bacause we always copy the entire access path each time an 
update occurs. Here red-black trees are implemented by allowing 
nodes to become arbitrarily "fat": each time we want to change a 
pointer, we store the new pointer in the node, along with a time 
stamp indicating when the change occurred. 

wi th this approach an update takes only 0 (1) space, since an 
insertion creates only one new node and either kind of update 
causes only 0 ( 1) pointer changes. However, there is a time 
penalty: since a node can contain an arbitrary number of left or 
right pointers, deciding which one to follow during a search is not 
a constant time operation. If we use binary search by time stamp 
to decide which pointer to follow, choosing the correct pointer 
takes O(log m) time (m is the number of updates), and the time for 
an access, insertion or deletion is O«log n) (log m». 

Making red-black trees persistent ( Limited node copying) 

Please refer figure 2(c). 

This method removes the time penalty of the previous method. We 
allow each node to hold k pointers in addition to its original two. 
We choose k to be a small positive constant say k = 1. When 
attempting to add a pointer to a node, if there is no empty slot 
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for a new pointer, we copy the node, setting the initial left and 
right pointers of the 1copy to their latest values. ( Thus the new 
node has k empty slots). We must also store a pointer to the copy 
in the latest parent of the copied node. If the parent has no free 
slot, it, too, is copied. Thus copying proliferates through 
successive ancestors until the root is copied or a node with a free 
slot is reached. 

searching the resulting data structure is quite easy: when arriving 
at a node, we determine which pointer to follow by examining the 
key to decide whether to branch left or right and examining the 
time stamps of the extra pointers to select among multiple left or 
multiple right pointers. (We follow the pointer with latest time 
stamp no greater than the search time if there is one, or else the 
initial pointer). As , with path copying, a single update operation 
can result in O(log n) nodes. However, on the average there are 
only 0(1) nodes copied per update, implying an O(n) space bound for 
the data structure. An update ( insertion or deletion ) requires 
O(log n) time. Similarly, an access requires O(log n) time if a 
root array is maintained which provides 0 (1) -time access to the 
roots. 

Applications and extensions 

The authors have proposed a new data structure for representing 
persistent sorted sets. The structure has O(log m) access time 
(where m is the total number of update), O(log n) update time, and 
needs 0(1) amortized space per update starting from an empty set. 
The preprocessing time necessary to build the data structure is O(n 
log n) and the query time is O(log n). 

The structure supports a generalization of the planar point 
location problem in which the queries are of the following form: 
given a vertical line segment, report all polygons the segment 
intersects. Such a query is equi valent to an access range 
operation on the corressponding persistent sorted set and thus 
takes O(log n + k) time where k is the number of reported polygons. 

2. Optimal point locatioll1 in a monotone subdivision 

Introduction 

This technique shows an elegant modification to the separating 
chain method of Lee and Preparata. The algorithm is based on a new 
data structure called the layered dag. In this new data structure 
the separating chains built into a binary tree by Lee and Preparata 
are refined so that (i) Once a point has been discriminated against 
a chain, it can be discriminated against a child of that chain with 
constant extra effort and (ii) Overall storage only doubles. The 
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layered dag simultaneously attains S = O(n) and Q = O(log n). An 
additional insight allows the dag to built in O(n) time. 

Monotone polygons, subdivisions and vertical ordering 
! 

A subset of the plane . is said to be monotone if its intersection 
with any line parallel to the y axis is a single interval (possibly 
empty). A subdivision is said to be monotone if all its regions 
(polygons) are monotone and it has no vertical edges. 

A subdivision that is ~ot monotone can be converted into one by the 
process of regulariza~ion. This esentially consists of sweeping 
the plane and inserti~g edges between two vertices - one that did 
not have any right going edges and the other that did not have any 
left going edges or vice versa. The regularization proces takes 
o (n log n) time. For more information on the process of 
regularization please refer to the original paper. 

A region A is said to be above B if for every pair of vertically 
aligned points (x, Y.) of A and (x, Yb) of B we have y. >= Yb' with 
strict equality holding at least once. It is written as A » B. 

Separators 

A separator for a subdivision is a polygonal line s, consisting of 
vertices and edges of , the plane, with the property that it meets 
every vertical line at exactly one point. since s extends from x=
infinity to x=+infinity, any element of the subdivision that is not 
part of s is either above or below it. The elements of shave 
pairwise disjoint projections on the x-axis, and so can be ordered 
from left to right; the first and last elements are infinite edges. 

A complete family of separators for a monotone subdivision with n 
regions is a sequence of n-1 separators S1 « S2 « ..• «sn-1. If 
the plane admits a complete family of separators, its regions can 
be enumerated as Ro, RlI ••• , ~-1 in such a way that ~ « Sj if and 
only if i < j; for example: 

Ro « SI « Rl « S2 « ..• « sn_l « ~-1· 
Given a complete family of separators and an enumeration of the 
regions we denote by index (R) the index of a region R in the 
enumeration. Then sindex(R) « R « sindex(R)+I. 

We can now prove that every monotone subdivision admits a complete 
family of separators. 

Proof: Let Ro, Ru ••• , ~-1 be a linear ordering of the 
regions of the plane that is compatible with the « 
relation, ie. ~ « ~ only if i < j. For i = 1, 2, 
• .• , n-1, let Si be the collection of all edges and 
vertices that are on the frontier between regions with 
indices < i and regions with indices >=i 
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Now if a verticle line, 1, is drawn, it is easily seen 
that there is exactly one point on 1 that is on the 
frontier between a region with index < i and a region 
with index >= i, that is, on Si. 

Clearly, the elements of ~ have disjoint x
projections, and therefor can be ordered form left to 
right; they must be alternately edges and verticesss, 
the first 'and last being infinite edgesss. To prove 
that Si is a separator, it remains only to show that 
Si is connected; if it were not the case, we would have 
some vertex v of Si that is distinct from, but has the 
same x-coordinate as, one endpoint of an adjacent edge 
e of Si. But then we would have e « R « v (where R 
is the region between the edge e and v ), which 
contradicts the construction of ~. Therefore, each ~ 
is a separator, and SI' s2f ... , sn_l is a complete 
family of them. 

Gaps and chains 

Suppose an edge is common to a number of separators Si+l to Sj. 
While creating a binary search tree containing the separators as 
its nodes, it suffices to store the edge as part of separator Sk 
where k is the least common ancestor of i and j. This is the 
highest node in the tree whose separator contains the edge e. 
Only edges assigned to Sk are actually stored in such a structure. 
In general these will form a proper subset of all the original 
edges of Sk so between successive stored edges of Sk there may be 
gaps. Actually, it may happen that all the edges of Sk are stored 
higher up in the tree, so that Sk is reduced to a single gap, 
extending from x=-infinity to x=+infinity. The ordered list of 
stored edges and gaps corresponding to separator sk will be termed 
the chain c k• 

A faster point location method 

We refine the chains so that we produce for each chain ck a list ~ 
of x-values, defining a partitioning of the x-axis into x
intervals. Each such interval of ~ overlaps the x-projection of 
exactly one edge or gap of c k and at most two x-intervals of the 
lists L1(k) and Lr(k). 

The lists ~ and their interconnections can be conveniently 
represented by a linked data structure that is called the layered 
dag. This is a directed acyclic graph whose nodes correspond to 
tests of three kinds: x-tests, edge tests, and gap tests. 

An x-test node t contains the corresponding x-value of ~, denoted 
by Xya1(t)' and two pointers left (t) and right (t) to the adjacent edge 

'L 



I. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

or gap nodes of~. An edge or gap test node t contains two links 
down(t) and up(t) to appropriate nodes of ~(k) and Lr(k). In addition, 
an edge test contains a reference edge(t) to the edge of c k whose 
proj ection covers the x- interval represented by t. A gap test node 
contains instead the chain number chain(t) = k. ( Please see figure 
3(a) and 3(b) for a ~isual description of the different kinds of 
nodes ). 

The properties of the refined lists ensure that the x-interval of 
~ corresponding to an edge or gap test t covers either one x
interval I of ~(k)' or two such intervals 11, 12 separated by some 
element xk of L1(k). In !the first case, down(t) points to the edge 
or gap test of ~oo corresponding to the interval Ii in the second 
case, down(t) points to the x-test corresponding to the separating 
abscissa xk • Similarly, the link up (t) points to a node of Lr(k) 

defined in an analogous manner. Again please refer figure 3 (a) and 
3 (b) • 

The layered dag contains a distinguished node, root, where the 
point location search begins. This node is the root of a balanced 
tree of x-tests whose leaves are the edge tests corresponding to 
the list for the root node of T ( T being the binary search tree of 
separators ). 

The point location algorithm is as follows: 

Algorithm FAST POINT LOCATION IN A MONOTONE SUBDIVISION 

This algorithm takes as input the root node of the layered dag 
and the number n of regions. Its output is placed in the 
variable loco 

1. Set i = 0, j = n-1, t = root. 
2. While i < j do: 

{At this point we know p is above the separator Sj and below 
one of t;h-~ ~~,tHq-A.~ sQPq.r~c(Iar axn.R>)n.e e:ehJH: ai:s, p isre.i::rtex 
between two of these regions). The variable t points to a test 
node in the layered dag, which together with its descendants 
will allow us to locate the point p among those regions.} 

3. If t is an edge test then let e = edge(t) and do: 
{At this point we know the projection of point p on the 
x-axis(denoted as px) lies within the projection of the 
edge e on the x-axis.} 

4. If P is on e, set loc = e and terminate the algorithm. 
5. If P is above e, set t = up(t) and i = index(above(e». 

Else set t = down(t) and j = index(below(e». 
6. Else if t is an x-test then do: 

{The following x-test routes us to the appropriate edge 
of the next chain we need to test against.} 

7. If px <= xval(t) then t = left(t) else t = right(t). 
8. Else t is a gap test; do 
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{We have already compared p against the appropriate edge 
of the chain of the gap test. We just need to 
reconstruct how that comparison went.} 

9. If j < chain(t) then t = down(t) else t = up(t). 
10. Set loc = ~ and terminate the search. 

Analysis 

At each iteration, beginning at step 2, we descend one level down 
the tree, so we have 9(log n) iterations. Once a point has been 
discriminated against a chain it takes only 0(1) time to 
discriminate the point against an edge of that chain. Therefore, 
total time is O(log n}. 

Conclusions and applications 

This technique introduces a new data structure, the layered dag, 
which solves the point location problem for a monotone subdivision 
in the plane in optimal time and space. The layered dag can be 
built from standard representations in linear time. The advantage 
of the layered dag is that: 

* it admits a simple, practical implementation, and 

* it can be extended to subdivisions with curved edges. 

3. A new approach to planar point location 

Introduction 

This paper presents it practical point location algorithm. The 
query time = O(log n), preprocessing = O(n log n) and the storage 
complexity = O(n log n). This technique could be viewed as an 
evolution of the slab method of Dobkin and Lipton. However, the 
method rests crucially on the observation that each edge of the 
graph can be decomposed uniquely into 0 (log n) fragments (as 
opposed to partitioning an edge into O(n) fragments in the slab 
method approach. 

Preliminaries 

This section deals with one 
comutational geometry namely, 
(DCEL). We are quite familiar 
will not explain it f~rther. 

,! 

of the basic data structures of 
the doubly connected edge list 

with this data structure and so we 

The next and primary objective is to obtain from G a partial 
ordering relation, <, on the set of edges, E, as follows: for el' 
e2 that belong to E, e : < e2 means that there is a horizontal line 
1 intersecting both e l, and e2 such that the intersection of 1 with 
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e t is to the left of that with e 2 • The relation < can be obtained 
by a procedure analogbus to "regularization" used for creating a 
monotone subdivision (For more information please refer to the text 
book for regularizing a monotone subdivision). This takes O(n log 
n) time. 

A topological sorting "J P, of < will be called a consistent ordering 
of the edges of set E. (For any horizontal line 1, the left-to
right sequence of the edges intersected by 1 is a subsequence of 
P). This can be obtained by using a standard topological sorting 
techniques as described by Knuth (The Art of Computer Programming, 
p. 262). This requires O(n) time. Please refer figure 4(a) and 
4 (b) • 

Definition and construction of the search structure 

The search data structure is a tree, K, which can be produced for 
a graph G. In the construction of K use is made of the list P 
previously obtained, ,and of an auxiliary structure, a "segment 
tree", T(l, n). Again, we are quite familiar with the construction 
of a search tree and.therefore no further detail will be given 
regarding this. 

For any node v of T(l~ n), we let M[v] = floor( (B[v]+E[v])/2 ), 
where B[v] is the beginning and E[v] is the end of the interval 
associated with a node' v of the segment tree, and call slab(v) the 
plane strip comprised between y = B[v] and y = E[v]; a segment e, 
with extreme ordinate rand s (r < s), is said to span slab(v) if 
r = B[v] and s = E[v]; slab(v1 ) and slab(v2 ) are said to be 
companion if ~ and ~ are siblings in T(l, n). 

In K we have two types of nodes, with different graphical 
representations: v, a V-node or "horizontal node", is associated 
with a horizontal line and has an ordinate Y[.] as discriminator; 
0, an O-node or "segment node", is associated with a straight line 
segment e and has as a discriminator a linear function fEe] of x 
and y such that fEe] = , 0 is the equation of the line containing e. 

Each call of the following algorithm which constructs the tree K 
processes one slab. Specifically, for some node v in T(l, n), it 
accepts the left-to-right sequences S of the segments which either 
span or are contained in slab(v) and organizes them in a search 
tree. Thus K is built by TREE(P, root ( T(l, n) ) where P is the 
previously defined consistent ordering of the edges of G, 
structured as a queue, and TREE(S, v) is the following recursive 
procedure (where S, Sl, S2 and U are queues). 

procedure TREE(S, v) 
begin 

if (S = {}) then U <- {} 
else Sl <- S2 <- U <- {} 
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while S <> {} do 

end 

begin 
e <= S 1* remove from set S and assign to e *1 
if « B [v] < B [ e]) or (E [ e ] < E [v] ) ) 
then 

1* e does not span slab(v) *1 
begin 

if B[e] < M[v] 
then 

Sl <= e 
if M[v] < E[e] 
then 

S2 <= e 

1* Add to set Sl the edge e *1 

1* Add to set S2 the edge e *1 
end 1* queues Sl and S2 are being built *1 

if (B[e] <= B[v]) and (E[v] <= E[e]) or (S = {}) 
then 

1* e either spans slab(v) or is last term in S *1 
begin 

if (Sl U S2 <> {}) 
then 

1* the tr~peze is nonempty *1 
begin 

w <- new horizontal node of K 
YEw] <- M[v] 
LTREE[w] <- TREE(Sl, LSON[v]) 
RTREE[w] <- TREE(S2, RSON[v]) 
1* 

*1 

The segments in a trapeze are organized by joining 
together th structures corresponding to companion 
slab 

U <= w 1* Add to set U horizontal node w *1 
end 

end 1* end of while *1 
u* <- BALANCE(U) 
return 

The procedure BALANCE t akes a sequence of terms, which are either 
trees or segments, and arranges them in a conviniently balanced 
tree. 

Analysis of procedure TREE: 

It is convenient to ch.arge the work to the individual edges of G. 
Since there are 0 (n) edges in G (By Euler's theorem on planar 
graphs) and each edge is charged O(log n) work. the generation of 
all "segment nodes" of T(l , n) uses work O(n log n) globally. 

11 
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Each V-node is producetl and processed in steps 9 and 13. It can be 
shown that the number of V-nodes is O(n log n). Hence the total 
work used by procedure TREE to produce tree K, except for the work 
attributable to subroutine BALANCE, is O(n log n). An analysis 
yields the running time for procedure BALANCE to be O(n log n). 
Thus the total time for the procedure TREE is O(n log n). 

point Location 

To locate a point Po = (Xo, Yo) in the planar subdivision induced by 
G, we use K as a binary search tree. with each O-node of K which 
has one or no descendant we append one or two leaves, refer figure 
5, respectively, and w,ith each such leaf we associate the identifer 
of a plane region (bordering with the edge associated with the 
parent O-node). The point location proceeds as follows: at each 
node V of K, we choose a branch; if V is a V-node, by comparing Yo 
with Y[V]; if V is an O-node, by testing the sign of f(Xo, Yo), 
where f(x, y) is the discriminant function of V. Thus we trace a 
unique path from the I root to a leaf, at which stage the point 
location is completed ~ By the preceding discussion this process 
uses a number of comparisons bounded by the depth of K, ie., O(log 
n) • 

comments and applications 

Thus we see that the point location is simply done in time O(log n) 
using a search structure which can be stored in O(n log n) space. 
It is conceivable that the simple approach presented in this paper 
could be further refined to achieve O(n) storage while maintaining 
O(log n) search time. 

We now mention two applications of the given method: 

1. 

2. 

4. 

Fixed-radius near neighbor searching which involves finding 
all points of a set F in the plane which are within some fixed 
radius r of "query point" . 

Maxima testing ' ill three dimensions which involves deciding 
whether a target point p in the set dominates all the other 
points in that set. 

Fully Dynamic Technique for Point Location and Transitive 
Closure in Planar Structures. 

Introduction 

This technique differs from the previous three techniques in that 
the planar subdivision can be modified by insertions and deletions 
of points and segments. In this paper monotone subdivisions are 
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considered. The topological underpinning of a monotone subdivision 
is a planar st-graph. 

A planar st-graph adm~ts two total orders ( referred to as leftist 
and rightist) on the set VUE U F, where V, E, F are respectively 
the sets of vertices, edges and faces. It is shown that by 
dynamically maintaining these two orders on the planar st-graph we 
are able to dynamically maintain the monotone subdivision whose 
underlying topology is represented by this graph. 

Planar st-graphs 

A planar st-graph is a planar acyclic graph digraph G with exactly 
one source (vertex without incoming arcs), s, and exaclty one sink 
(vertex without outgoing arcs), t, which is embedded in the plane 
so that sand t are on the boundary of the external face. 

Some important properties of planar st-graphs are expressed by the 
following lemmas: 

Lemma 1. [2] For every vertex v of G, the incoming (outgoing) 
edges appear consecutively around v. 

Lemma 2. [2] For every face f of G, the boundary of f consists of 
two directed paths with common origin and destination. 

Lemma 3. Let G be a planar st-graph with n vertices. There exists 
two total orders on the vertices of G, denoted <L and <R' such that 
there is a directed path from u to v if and only if u <L v and u <R 
v. Furthermore, orders <L and <R can be computed in O(n) time. 

Please refer figure 6 (a) and 6 (b) for some basic definitions 
regarding planar st-graph. 

The authors then define some primitive operations on the elements 
of the planar st-graph (The elements being the vertices, edges and 
faces of the graph). These primitives are HIGH (x) , LOW (x) , LEFT(x) 
and RIGHT(x). These primitives define the respective orientations 
of the elements with respect to each other. In particular we say 
that x is below y, denoted x: y, if there is a path in G from 
HIGH (x) to LOW (y) . Also, we say that x is to the left of y, 
denoted x->y, if there is a path in the dual of G (refer figure 
6 (c» from RIGHT (x) to LEFT(y). We define the left-sequence 
(right-sequence) of G as the sequence of elements of G sorted 
according to <L «R) order. For example, the left-sequence of the 
graph of figure 6 (a) can be represented by fovoelAv3e6vse9f2B, where 
A=f1e2v1eS and B= e7f3e4f,;e3v2egv4elOv6fs. 

On-line Maintainance of a Planar st-graph 

The update operations on a planar st-graph are INSERT, DELETE, 
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EXPAND, and CONTRACT. An example of the transformation of the 
leftist order <L as a ~onsequence of an INSERT operation is defined 
as: v <L f <L U : A v B feu D -> A fl Cue v B f2 D and is shown 
in figure 7. 

Dynamic Planar Point Location 
\ 

The planar st-graph ,!framework is specialized to the classical 
problem of planar point location in a monotone subdivision. A 
monotone subdivision R is a partition of the entire plane into 
monotone polygons, called the regions of R. Also, we know from an 
earlier technique that a monotone subdivision admits a complete 
family of separators. The following primi ti ve operations are 
defined for the update of a monotone subdivision: INSERTPOINT, 
REMOVEPOINT, INSERTCHAIN, REMOVECHAIN and MOVEPOINT. 

Two regions r l and r 2 with r l <~ r 2 are vertically consecutive if r l : r 2 
and there is no region r such that r l <L r <L r2. Lemma: If r l and 
r2 are two vertically consecutive regions of a monotone subdivision 
R, then the monotone chain from HIGH(rd to LOW(r2 } is unique and is 
called a channeI. We can merge in this fashion any sequence of 
vertically consecutive pairs and we have: 

CIusters are recursively defined as follows: (l) An individual 
region r is a cluster; (2) Given two vertically consecutive 
clusters Xl and X2; w~th Xl: Xu there union is a cluster X. A 
maximal cluster X is !'one which is not properly contained in any 
other cluster. The unique subdivision resulting by forming all 
maximal clusters of R is denoted R' and this is found to be 
regular. 

Data structures 

The search data structures is very complicated and we present below 
just a brief overview of it: 

It consists of a main component, called the augmented separator
tree T, and an auxiliary component. The augmented separator-tree 
has a primary and a secondary structure. The primary structure is 
a separator tree for R', ie., each of its leaves is associated with 
a region of R' (a maximal cluster of R, ie. X), and each of its 
internal nodes is associated with a separator of R'. The secondary 
structure is a collection of lists, each realized as a search tree. 
The auxiliary component consists of balanced search trees TL and TR 
respecti vely associated with the orders <L and <R on VUE U F, and 
of a dictionary, which contains the lists of the vertices, edges, 
and regions of R, each sorted according to the lexicographic order 
of their names. 

Query 
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The point location search for a query point q consists of tracing 
a path from the root to a leaf X of T. At each internal node we 
discriminate q against a separator, and proceed to the left or 
right child depending 'upon whether q lies to the left or right of 
that separator. We then discriminate the point to within an edge 
of the separator. Thus we see that the alqorithm that we use is 
the conventional old technique of Lee and Preparata. The time 
complexi ty of the query operation is 0 (log2 n) . 

Update 

The analysis requires consideration of the subsequence of the left
sequence of G formed by the regions of R, referred to as the 
region-sequence. 

We show below how a chain can be inserted into the subdivision. 
The region sequence before the update is given by the string: 

where - represents a channel. 

If we now apply the transformation as described above, we have the 
obvious correspondence: 

Please refer figure 8. 

Conclusions: 

This technique presents a fully dynamic data structure for point 
location queries in a monotone subdivision. This technique could 
be specially useful :Eor solving such queries in a dynamically 
changing terrain. I 
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/ ........................................................................... . 
• * 

PHYSICAL MODELING * 
* I: 

• This file contains an implementation of a physical modeling problem, the • 
• "Springs and Sticks problem" in which the behavior of a series of sticks,* 

1*
: having masses attached to their ends, is shown. The Penalty Method is * 

used for calculating physical forces on the sticks which shape their * 
behavior. • 

• • 

I: 
• 
• 

The system consists of four modules which vary the state variables • 
associated with each stick, namely, its position, the forces acting on * 
its ends, its linear and angular accelerations. Euler integration (using* 
the time step which has been set up for the simulation, called dt here) * 
is used to calculate new velocities, positions and orientation in space • 
of the sticks. The new positions are then used to calculate new • 
forces which have thus developed in the system and the cycle repeats. * 

* 
* This implementation shows the critically ~>d version of the model. 
• Other versions (underdamped, overdamped and undamped) can be easily II: generated by varying the damping constant (k2 ) . 

• ~ritten by : Sumeet Rajput 

* 
* • 
• 
• 
• • Date : 4/10/93 

I· * ********************************************* •• *****************************' 

/ ••• INCLUDES ••• / 
#include <stdio.h> 

I #include <stdlib.h> 
#include <conio.h> 
#include <graphics.h> 
#include <math.h> 

I
#include <dos.h> 

/ ••• CONSTANTS ••• / 
#def i ne MAX Y 
#define RADIUS l#def i ne MASS 

#define NUM_OF_STICKS 

I 
~efine dt 

#define k1 

479.0 
20.0 

100.0 

7 

1.0 
10.0 

l#define k2 (2·sqrt(k1·MASS» 

l #define g 
#define HALF_PI 

/ ••• TYPES ••• / 

I
~ypedef struct 

float x; 
float y; 

}POINT; 

IItypedef struct 
{ 

0.4 
1.571 

/* Max. Y-coordinate on the screen */ 
/* Half-length of stick ( i ts radius) */ 
/* mass of masses attached at the ends ./ 

/* Number of sticks in the simuLation. */ 
/. Note that the first and last sticks ./ 
/. are "dl.lTlllY" sticks whose ends are ./ 
/. used onLy ~: or force caLculations on ./ 
/. the rest of the "reaL" sticks. So, ./ 
/* n-2 sticks are actuaLLy invoLved in ./ 
/. the simuLation. ./ 

/. DeLta time between simuLation Loops ./ 
/. Spring constant ./ 

/* Damping constant (CriticaLLy damped) *1 
/* k2 < 2*sqrt(k1·MASS => Underdamped */ 
I· k2 > 2*sqrt(k1·MASS => Overdamped *1 
/* k2 = 0 => Undamped */ 

I· constant for displaying gravity 
/* Approx. val.ue of PI/2.0 

/* Definition of a point */ 

1* Its x coordinate ./ 
/* Its y coordinate ·1 

1* Stick information ·1 

./ 

./ 

/. Positional and force information */ 

I 
POINT a; 

POINT b· , 
POINT c· 

II 

, 
POINT ra; 
POINT rb; 
POINT fa; 
POINT fbi 

I 
float theta; 

I· Current "a" of stick. A stick has 
I· endpoints ~. and b. 

·1 
·1 

1* Current "b" Gf stick ·1 
1* Center poin ~ of the stick ·1 
I· Radius vector towards "a" ·1 
/. Radius vector towards "b" ·1 
1* Force on "e" *1 
/* Force on "b" *1 
I· Angle the stick makes with the ·1 

«pg: 0, spring.cpp - (05 -06-93, 08:05»> 



I 
I 
I 

/* Velocity information */ 
POINT adot; 
POINT bdot; 
POINT cdot; 
float thetadot; 

/* AcceLeration information */ 
POINT cdotdot; 

1* positive x-axis 

/* Linear veLocity of end "a" 
1* Linear veLocity of end "b" 
1* Linear velocity of center "c" 
/* AnguLar veLocity of the center 

*1 

*1 
*/ 
*1 
*/ 

fLoat thetadotdot; 
I}STICK; 

/*** STATIC DATA ***/ 

1* Linear acc~Leration of the center 
1* AnguLar acceLeration of the center 

*1 
*1 

STICK stick[NUM_OF_STICKS]; 

1/*** LOCAL PROTOTYPES ***1 

1*** FUNCTIONS ***1 

1/**************************************************************************** 
* * 
* This function initiaLizes the graphics system. * 
* * 

I
***********·***********·*·**·****·***·*··**··**~**** ••• *********************/ 
void InitiaLizeGraphics(void ) 
( 

I 
I 
I 

1* request auto detection *1 
int gdriver = DETECT, gmode, errorcode; 

/* initiaLize graphics mode *1 
initgraph(&gdriver, &gmode, "\\borLandc\\bgi"); 

1* read resuLt of initiaLization *1 
errorcode = graphresuLt(); 

if (errorcode 1= grOk) 1* an error occurred *1 
( 

} 

pri ntf( "Graph i cs error: Xs\n", grapherrorn'Sg(errorcode»; 
printf("Press any key to haLt:"); 
getchO; 
exit(1); 1* return with error code *1 

/*******.********* ••• ******************************************************** 

* * 

I Set up initiaL conditions for the simuLation. Here the initiaL positions* 
of the sticks are set to be at the bottom center of the screen. ALL * 
other state variabLes are aLso initiaLized. * 

* * 

1
******************·*********************************************************/ 
void InitiaLizeSimuLation( void) 
( 

I 
I 
I 
1 
I 
I 

stick[O].b.x 0.0; 
stick[O] .b.y = 240.0; 

stick[NUM OF STICKS-1] .a.x 
stick[NUM=OF=STICKS-1].a.y 

639.0; 
240.0; 

for(int i=1; i<NUM_OF_STICKS-1; i++) 
{ 

stick[i] .c.x 
stick[i] .c.y 
stick[i]. theta 

stick[i] .a.x 
stick[i] .a.y 

stick[i] .b.x 
stick[i] .b.y 

stick[i] .ra.x 
stick[i] .ra.y 

sti ck [i] . rb.x 
stick[i] .rb.y 

stick[i] .adot.x 

320.0; 
0.0; 
0.0; 

300.0; 
0.0; 

340.0; 
0.0; 

-20.0; 
0.0; 

= 20.0; 
0.0; 

0.0; 

1* Set "b" for the first stick 
I 

*1 

1* Set "a" for the Last stick *1 

1* InitiaLize the "reaL" sticks *1 

1* Sticks start up Lying fLat on *1 
1* top of each other at the *1 
1* bottom of center of the screen */ 

«pg: 1, spring.cpp - (05-06-93, 08:05»> 
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I 
I 
I 
I 
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stick[i] .adot.y 0.0: 

stick[i] .bdot.x 0.0: 
stick[i] .bdot.y 0.0: 

stick[i] .cdot.x 0.0: 
stick[i] .cdot.y 0.0: 

stick[i] .thetadot 0.0: 

stick[i].cdotdot.x 0.0: 
stick[i].cdotdot.y 0.0: 

stick[i].thetadotdot 0.0: 
) 

/* Initialize the forces on all sticks */ 
for(i=1: i<NUM_OF_STICKS-1: i++) 
( 

) 

stick[i].fb.x 
stick[i] .fb.y 

stick[i] .h.x 
stick[i] .h.y 

k1*(stick[i+1].a.x-stickfi].b.x) - k2*stick[i].bdot.x: 
k1*(stick[i+1].a.y-stickf.i].b.y) - k2*stick[i].bdot.y: 

= k1*(stick[i] .b.x-stick[i·~1J .a.x) - k2*stick[i] .adot.x: 
k1*(stick[i].b.y-stick[i+1].a.y) - k2*stick[i].adot.y: 

/**************************************************************************** 

* * 

1* Draw the springs and sticks. * 
* * 
****************************************************************************/ 
void DrawSticks( void) 

I
{ 

1 
I 
1 

/* Clear the display */ 
c l eardevi ceO: 

setcolor(LIGHTMAGENTA): 
setlinestyle(SOLID_LINE, 0, THICK_WIDTH): 

/* Draw the sticks */ 
for(int i=1; i < NUM_OF_STICKS-1; i++) 

line(stick[i].a.x, MAX_Y-stick[i].a.y, 
stick[i].b.x, MAX_Y-stick[i].b.y); 

setcolor(CYAN); 
setlinestyle(SOLID_LINE, 0, NORM_WIDTH); 

/* Now draw the springs */ 
for(i=O; i < NUM OF STICKS-1; i++) 

l ine(stick[il.b:-x, MAX_Y-stick[i] .b.y" 
stick[i+1].a.x, MAX_Y-stick[i+1].a.y); 

/************************************************************************** •• 

* * I: 
* 

Module 1 for the simulation. * 
* 

This function calculates the end points of the sticks from their center * 
* position and their orientation w.r.t. the x-axis. It also computes * 

1
:* radius vectors for use in determining forces in another module. Before * 

calculating the new endpoints of the stick, the old ones are saved in * 
temporary variables. The new end points are then computed and the * 

* difference in the new and old end points is a measure of velocity of the * 
* end points of the stick. The velocities are required for damping * 
I~~ : 

********************************* •• *****************************************/ 
void Module1( void) 

I
{ 

I 
I 

POINT old_a, old_b: 

/* Do for all real sticks */ 
for(int i=1; i < NUM_OF_STICKS-1; i++) 
{ 

/* First copy a's and b's into old_a's and old_b's */ 
old a.x = stick[i] .a.x; 
old-a.y stick[i].a.y; 
old=b.x = stick[i] .b.x; 

«pg: 2, spring.cpp . (05·06-93, 08:05»> 



I 
I 
1 
I 
I 
1 

} 
} 

old_b.y = stick[i].b.y; 

/* Determine new position */ 
stick[i].a.x = stick[i].c.x . RADIUS * cos( stick[i].theta ); 
stick[i].a.y = stick[i].c.y . RADIUS * Gin( stick[i].theta ); 
stick[i].b.x = stick[i].c.x + RADIUS * cos( stick[i].theta ); 
stick[i].b.y = stick[i].c.y + RADIUS * ~in( stick[i].theta ); 

/* Calculate the velocities of the endpoints */ 
stick[i].adot.x = ( stick[i].a.x . old a.x ) / dt; 
stick[i].adot.y = ( stick[i].a.y . old:a.y ) I dt; 
stick[i].bdot.x = ( stick[i].b.x . old b. x ) / dt; 
stick[i].bdot.y = ( stick[i].b.y . old:b.y ) / dt; 

/* Calculate radius vector and center */ 
stick[i] .ra.x = stick[i] .a.x . stick[il .rc.x; 
stick[i] .ra.y = stick[i] .a.y . stick[il.F.y; 
stick[i] .rb.x = stick[i] .c.x . stick[i] .a.x; 
stick[i].rb.y = stick[i].c.y . stick[i].a.y; 

stick[i].c.x = 
stick[i].c.y = 

stick[i].a.x + stick[i].b.x ) / 2.0; 
stick[i].a.y + stick[i].b.y ) / 2.0; 

1/***************** •• ************************************************** ••• ** •• 
* * 
* Module 2 for the simulation. * 
* I: 
* 
* 

* 
This function determines linear acceleration of the center of each stick.* 
The acceleration is obtained from the classic force equation: * 

F = M * A where F is the force acting on ~ body 
M is its mass and 
A is its acceleration 

* 
* 
* 
* 
* 

* For each stick F equals the sum of the forces on both its end * 
* M is the sum of the masses attached to its ends and * 11* A is the required linear acceleration of the center * 

:***************************************************************************; 
void Module2( void ) I{ /* Do for all real sticks */ 

for(int i=1; i<NUM_OF_STICKS·1; i++) 
{ 

stick[i].cdotdot.x = (stick[i].fa.x + stick[i].fb.x) / (2.0 * MASS); 
stick[i].cdotdot.y = (stick[i].fa.y + stick[i].fb.y) / (2.0 * MASS); 

1
/**************************************************************************** 
* * 
* Module 3 for the simulation. * 
* * 
* This function determines the angular acceleration of the center of each * II: stick. This is determined as follows: * 

* 
* Let R be defined as the radius vector corresponding to an end of a stick * 
* ie. the vector obtained by going from the center of a stick to its * 

1:* endpoint . 

Let F be the force acting on that endpoint 

* 
* 
* 

* * 
* Then Torque T is defined as being the cross pl"oduct of R and Fie. 

1:* T=RXF. 
The angular acceleration, A, for the stick is ' then given by: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 

I 
* 
* 

I 
* 

I 

A = (Torque on end point a + Torque on end point b) / r*r*M 
where r is the radius of the stick and 

M is the sum of the masses attached to the end points. 

In the present case we have: 

A = thetadotdot * 
Torque on point a 
Torque on point b 

ra X fa * 
rb X fb (ra, rb are radius vectors and fa,fb are * 

force vectors) * 
r = RADIUS = 20.0 and * 
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J' 
* m = MASS = 10.0 * 
* * 

1***********************************··***************************************/ 
void Module3( void ) 
( 

I 
I 

float cross1, cross2; /* Temp variables for storing cross products */ 
I 

/* Do for all real sticks */ 
for(int i=1; i<NUM_OF_STICKS-1; i++) 
{ 

/* compute cross products */ 
cross1 (stick[i].ra.x * stick[i].fa.y) - (stick[i].fa.x * stick[i].ra.y); 
cross2 = (stick[i].rb.x * stick[i].fb.y) - (stick[i] . fb.x * stick[i].rb.y); 

/* compute angular acceleration */ 
stick[i].thetadotdot = ( cross1 + cross2 ) / (2.0*RADIUS*RADIUS*MASS); 

II
~***************************************************************************: 

* Module 4 for the simulation. * 
* * 
* 

I 
* 

This function determines penalty forces that are applied to the ends of 
the sticks. The end points are damped by using the velocity at that 
point. The appearance of gravity is provided by deliberately reducing 
the y c<lq:)Onent of the force on each end point by a fraction of the 
height of the center of the stick. 

* 
* 
* 
* 
* 

* * 
1Ir***************************************************************************/ 
~oid Module4( void ) 

( 

I 
I 
t 

/* Do for all real sticks */ 
for(int i=1; i<NUM OF STICKS-1; i++) 
( - -

} 

stick[i] .fb.x = 
stick[i] .fb.y 

stick[i] .fB.x 
stick[il.h.y 

k1*(stick[i+1] .a.x-stick[i] .b.x) - k2*stick[i] .bdot.x; 
k1*(stick[i+1].a.y-stick[i].b.y) - k2*stick[i].bdot.y 

- g*stick[i] .c.y; 

k1*(stick[i - 1].b.x-stick[i].a.x) - k2*stick[i].adot.x; 
k1*(stick[i-1].b.y-stick[i].a.y) - k2*stick[i].adot.y 

- g*stick[i] .c.y; 

/****************************** ••• ******************************************* 

* * 

I 
* 

* 

Euler integrator for linear c<lq:)Onents. * 
* 

This function implements euler integration on. the linear acceleration to * 
get the change in linear velocity. This is t~l en added to the old linear * 
velocity to get the current linear velocity. Another euler integration * 
on the velocity gets us the change in position. This is then added to * 
the old position to get the current position. * 

* 
****************************************************************************/ 

lI~oid Linearlntegrator( void) 

/* Do for all real sticks */ 

II 
II 

for(int i=1; i<NUM_OF_STICKS-1; i++) 
{ 

} 

/* Get new linear velocity */ 
stick[i].cdot.x stick[i].cdot.x + stick[i].cdotdot.x * dt; 
stick[i].cdot.y = stick[i].cdot.y + stick[i].cdotdot.y * dt; 

/* Get new position */ 
stick[i].c.x = stick[i].c.x + stick[i].cdot.x * dt; 
stick[i].c.y = stick[i].c.y + stick[i].cdot.y * dt; 

1Ir**************************************************************************** 
* * 
* 

I 
* 

I 

Euler integrator for angular components. 

This function implements euler integration on the angular acceleration 
get the change in angular velocity. This is then added to the old 
angular velocity to get the current angular velocity. Another euler 
integration on the angular velocity gets us the change in orientation. 

* 
* 

to* 
* 
* 
* 
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* This is then added to the old orientation to get the current orientation.* 
* * 

1****************************************************************************/ 
void Angularlntegrator( void ) 
( 

I 
I 

} 

/* Do for all real sticks */ 
for(int i=1; i<NUM_OF_STICKS-1; i++) 
{ 

/* Get new angular velocity */ 
stick[i].thetadot = stick[i].thetadot + stick[i].thetadotdot * dt; 

/* Get new orientation */ 
stick[i].theta = fmod(stick[i].theta + stick[i].thetadot*dt, HALF_PI); 

} 

1/.*******************************************.******************************* 
* * 
* The main program. * 
* * 

1* Initializes the graphics and the simulation state variables. * 
* Repeatedly calls the modules defined above redrawing the status of the * 
* sticks in each cycle. The simulation stops when the user presses a key. * 
* Finally it shuts up the graphics system and exits. * 

1:***************************************************************************; 
void main( void ) 
( 

I 
I 
I 
1 
I 
I} 

/* Set up for graphics */ 
InitializeGraphics(); 

/* Set up the initial conditions */ 
InitializeSimulation(); 

/* Start up new */ 
cleardevi ceO; 

/* Begin the simulation. 
/* a key. 
while( IkbhitO 
( 

} 

Module10; 
DrawSticksO; 
Module40; 
Module20; 
Module30; 
linearlntegrator(); 
Angularlntegrator(); 

Repeat the procedure until the user presses */ 
*/ 

/* closes down the graphics system */ 
closegraphO; 

/*** END OF FilE ***/ 

I 
I 
1 
1 
1 
I 
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