S —'-— RS University of Central Florida
f t STARS

Institute for Simulation and Training Digital Collections

1-1-1991

OSl-based Communications Architecture For The Distributed
Interactive Simulation Application Utilizing The ISODE: An
Evaluation Of A Prototype

Margaret L. Loper

Find similar works at: https://stars.library.ucf.edu/istlibrary
University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been
accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation

Loper, Margaret L., "OSl-based Communications Architecture For The Distributed Interactive Simulation
Application Utilizing The ISODE: An Evaluation Of A Prototype" (1991). Institute for Simulation and
Training. 152.

https://stars.library.ucf.edu/istlibrary/152

.. + . * N + +

®.¢4+_".’ + N *’ *) + *0 »‘
.+

Central e, AR ! STARS

Florida . ° + . + Showcase of Text, Archives, Research & Scholarship *

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/152?utm_source=stars.library.ucf.edu%2Fistlibrary%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

T et e,

| STITUT E FOR SIMULATION

(T e ae e e aE S e e O O B O e e e o e e

May 1991

An Evaluation of a

Prototype OSI-Based
Communications Architecture for the
Distributed Interactive Simulation
Application Utilizing the ISODE

M.loper « D. Shen + J. Thompson +« Dr. Henry Williams

ﬁl

Institute for Simulation and Training
12424 Resaarch Parkway, Suite 300
Jrlando FL 32826

ti=t-~==~ity of Central Fiorida
B 218 e e

[ST-TR-91-16

INSTITUTE FOR S IMULATION AND TRAINING

An Evaluation of a Prototype

OSl-Based Communications
Architecture for the Distributed
Interactive Simulation Application
Utilizing the ISODE

Margaret Loper + David Shen « Jack Thompson « Dr. Henry Williams

May 1991

IST-TR-91-16

Institute for Simulation and Training
12424 Research Parkway, Suite 300
Orlando FL 32826

University of Central Florida
Division of Sponsored Research

AN EVALUATION OF A PROTOTYPE OSI-BASED
COMMUNICATIONS ARCHITECTURE FOR THE
DISTRIBUTED INTERACTIVE SIMULATION APPLICATION
UTILIZING THE ISODE

Technical Report

Margaret Loper
David Shen
Jack Thompson
Dr. Henry Williams

May 1991

Institute for Simulation and Training
University of Central Florida

TABLE OF CONTENTS

EISTOF TABLES' o vion s v uy ¢ b dwneia s w b ¢ agalainsa o § & wiaiaie o o & o
LIST OF FIGURES 5w o s 5 5 &« olaeia o 8 s 0eSs & 4 6 5 @605 9 5% & § 25

CHAPTER' I INTRODUCTION 5 ;. s 5905 ¢ 6 4 455 5568 s-@iaas o6
Staterient of Probletll. % oo s s sleibisie ¢ ¢ o wararine 5o e s @B & 5 e s
Distributed Interactive Simulation (DIS)
Open Systems Interconnection (OSI)o cvivvvrveceonneess

EATOTOCHION < 4 o bhe auie sirsiaior » = & ® oioiniv 3 v ey smpaluce ghors s

OSI Laver DeSCEIDHONE s « « «isiae o 6 s v oisiieie & 5 @ s seatatol s & # &
Layer-1I: [PRYBCERILEYEr' ic c 5 o o viaisio/n o o » i einn ol s

Layer 2: Data LINK LAYEr .« v o s sjscoc i 55 5 s 7 0ims & s

Laver 3: INMWOIKE LAYEr i o5 sasw s s o daman e v b

Layer4: Transport LAYEr coiooe o s o o mpoioes s

Laver:3: ISESON LRYEY - v s 5 5 wainviv b 5 s omus s e

Layer 6: Presentation Iayer ccceouvecnvos s

Layer 7: Applcation Layersasosse s oo sss

Application Layer Infrastructure

ISO Development Environment ISODE)
Computer Network PerfOIMANCE & « «/ss s o 5 s o sisssis s s s siaioinos s

CHAPTER H APPROACH <5 ssavcsison wawwas sis wimas sy
MEthOdOIOBY '« iwsrs w4 s o ¢ ¢ srermih & 5 o s @iwneie o 6 o @« @i ale s s o 05
Hardware ENVironment . . « o « o ¢ s s o 0 000 s s n s nvasassss

Software EnvIrOnMent: i wueies o ¢ % aelaiv & o @ o eiavee & ¥ e 4

TESUPIAMN e vl a0 L Il ol € s %) lensoetin & v She Perpovabioirat9e) et) o

Research Of PIobIem sl s s s vaa G d 6 5 34 4600s & 5 5 & 9 e g5 s 4%
Summary of Relevant Researcho eevecrocnas

CHAPTER III IMPLEMENTATION . . s cccscesecoossosacncossnaes
Encoding Protocol Data Unitsin ASN.1
Bocoding DIS PPUS 556 v iao-5 5 s » 3 sisnsnsia @ & + & @iatoiere ss «
Experimental Constraints cssavavsosssmosnasss

Building the Distributed Interactive Simulation Prototype Application in
ISODE (vecoiaio o 516 & Simarsin & 8 3 okl & & &8 4 DSBS ¥ 88 5
Naming and Addressing Information
Remote Operations Moduleconnveoeccosvceses

Abstract Syntax Modulec0 i 47

Initiator and Responder Programs nn 48

Prototype DIS Communication Architecture Execution 50

SEND Program: Detail Descriptionoouvevee 51

Experimental Performance Analysiso v v vvvone e e 54

Performance StatiStiCs . » « « v « « v v v v v v v s v s a oo a e 55

Results and Analysisccooescenonnnoncnnn 58

CHAPTER IV CONCLUSIONS . . .« c vt v veoonasossssnsssasosss 65

APPENDICES o0 0o s 5§ & 8|9906@ 6 5 5 & waieiate o & a s wiwe o ol 5 e g Sags o 3 69
A. Distributed Interactive Simulation Protocol Data Unit

CHTCIIIEE =5 < & o @ afeiemns o @ alaveim o & » @ 8aw:d 65 s@ehe oo o 70

B. SEND Programs and Databaseseoovovnrenenenneen 87

C. Abstract Syntax Notation One (ASN.1) Modulescovven 147

BIBIIOGRAPHY ..« covidevsinsoomesvss samneesssesies omivie 157

iv

LIST OF TABLES
. Commonly Used OSI and Non-OSI Protocols 13
. DISENty SIS PDU oain v o4 i owiesia o v s & @mie e & o6 s e/wiie s 5 & 5% 34
» LEngth ol IBS PDUS. e s s s an winsha s 5 8 & ks i 5 5 5 aends s &8 it 40
. Performance Data for Experiment 1 ¢ nnn.. 56
« Performance Data for Experiment 2 . < c v ovv s s scaioomons awwimesss 57
\

9,

10.
11.
12.

13.

14.

£5L

LIST OF FIGURES

Open Systems Interconnection Reference Model 5
Application Layer Protocols . ..o vuove v vnneenenn e 15
ISODE Model of OSIProtocols . . o ¢ e o v v v s s s v v v o noo s s oo 19
Experimental Network Hardware Configuration 24
PDUROIMATHPPath . .. cvconsnnovensssspossssssaseenin 26
ASN.L MBDDADES: < s « & sowions v & so moiooan o awadpsss@eznsysss 29
ASN.1 Module COMPONENtS . .« ¢ s s v s v v v s s s sovossoonsneesns 33
Dynamic and Static Facilities of Distributed

ADPDHCRHORS . o « < o500 5 0 0 aip b0 8 § 4 80708 0 wa 0 ijnla s s mniwe 41
ISODE Static FacilitieS+ co v e oosacassoosoossesssns 48
Flow Diagram of the SEND Programovuveeoeneeen 52
Experimental Network oovuevnnnannnvvnnneeceeens 58
Experiment 1: Message Size vs. Average Round Trip Time 61
Experiment 1: Message Size vs. Average Round Trip Time
(Sample Size = 500) . . . e ccctceiie ottt 62
Experiment 2: Message Size vs. Average Round Trip Time 63
Experiment 2: Message Size vs. Average Round Trip Time
(Sample Size = 500) . ¢ o sv o s s s sno s s o e wss et s oo 64

ABSTRACT

The advent of computer networking has spawned a wide variety of applications
and technologies. Among the most exiciting and promising of these is Distributed
Interactive Simulation (DIS). This technology involves the interconnecting of simulated
(virtual) environments which allow participants in one simulation to interact, in real time,
with those in another simulation, and observe their interactions by means of out-the-
window views of the individual simulators.

The key to the evolution and worldwide acceptance of this DIS technology will
be the adoption and integration of standard computer networking methodologies (i.e.,
Open Systems Interconnection (OSI)) into the overall DIS system communications
architecture design.

This paper presents results obtained from research into the building of a prototype
communications architecture for the DIS application utilizing the ISO Development
Environment (ISODE). The ISODE is a software implementation of the upper three
layers of the OSI protocol suite, which runs on UNIX-based workstations. ISODE uses
the Transmission Control Protocol/Internet Protocol (TCP/IP) lower layer
communications protocols supplied by most UNIX systems to perform the actual inter-
computer communications over Ethernet. The purpose of ISODE is to provide a working

environment in which to experiment with the upper OSI stack layers. ISODE is a public

domain software package and source code is provided to allow for modification of the
software.

This research thesis presents the following: 1) a description of the DIS application
and its requirements; 2) a discussion of OSI concepts and their applicability to the DIS
application; 3) a brief overview of the ISO Development Environment and its services
and facilities; 4) a description of the prototype DIS architecture developed using ISODE;
5) a discussion of the experiment and test plan for evaluating the prototype DIS
architecture; 6) data obtained and analysis thereof; and, 7) conclusions drawn from this

research.

CHAPTER 1

INTRODUCTION

temen

The advent of direct computer-to-computer communications (computer
networking) has opened the possibility of interconnecting many different types of
computer-based systems. Until recently, most devices used in Simulation and Training
(S&T), which usually contained an embedded computational resource, operated in a stand
alone mode. Today there is a major emphasis being placed on the development of
distributed S&T systems which are networkable. In this context, the term "networkable"
includes the requirement that the S&T systems are capable of communicating
(transmitting and receiving) information which can be interpreted by other devices
attached to the network, thereby allowing for real-time open interaction between such
devices.

To achieve simulator interoperability, a standard communications protocol is being
developed. The Distributed Interactive Simulation (DIS) draft standard establishes the
requirements and provides the rationale for the Protocol Data Units (PDUs) exchanged
between DIS entities. Since this emerging standard is primarily concerned with
Department of Defense (DoD) simulator interoperability, the concept of Open Systems

and specifically the Government Open Systems Interconnection Profile (GOSIP) has

become’an important issue. As of August 1990, compliance with GOSIP is mandatory
and binding for U.S. government procurement of new network products (computers) and
services. GOSIP defines a common set of data communications protocols which enable
systems developed by different vendors to interoperate and enable the users of different
applications on these systems to exchange information. GOSIP is compliant with the
International Organization for Standardization (ISO) standards.

The major goal of the DIS standardization efforts is to provide an open
communications (network protocols) environment in which DIS vendors can develop
standard DIS compliant products. The goal of the Open Systems Interconnection (OSI)
approach is to provide international open standards for inter-computer communication.
Therefore, it is important to study the relationship between DIS and standardized
communication suites, such as, the OSI protocol suite. This research effort develops and
evaluates a prototype OSI-based communications architecture for real-time Distributed
Interactive Simulation applications. In particular, the universal data structures present
in OSI communications are thoroughly investigated in terms of DIS applications. Tools
and services available in the ISO Development Environment (ISODE) are used to design

and and conduct the experiments performed in this research.

Distri In ive Simulation (DI
The Institute for Simulation and Training (IST), based at the University of Central
Florida (UCF) in Orlando, has the DoD mission to standardize the information passed

between simulators participating in a networked training exercise. This is being

accomplished in a government-industry-academia workshop forum by synthesizing
material from successful networked simulations and by detailed analyses of competing
technologies. In August 1990, IST submitted a draft standard of DIS for government and
industry approval. In January 1991, IST delivered the draft military DIS PDU standard
[MCDO91].

The issuance of the draft standard is only a small step in the development of a
usable public domain network protocol standard which will provide truly open
interoperability between simulations. In fact, the DIS PDU Standard defines only the
PDU data structure used by the Application Layer (layer 7) of the seven layer OSI
network protocol stack. There is a great deal of work which needs to be done to specify,
precisely, the network services required by the DIS application, and then to translate
these requirements into an OSI solution.

Distributed Interactive Simulation also refers to the physical placement of the
interactive simulators or simulations participating in a military training exercise.
Networked simulator exercises can be executed in both Local Area Networks (LANs) and
Wide Area Networks (WANSs). A number of simulators may participate in an exercise
at one time and these simulators must share information about the simulated world in
which they are interacting. This information includes: Entity State, which contains
information about the entity being simulated; Weapons Fire, which describes the type of
munition fired, location of the weapon, and the velocity of the munition; Weapons
Detonation, which is issued when the trajectory of the fired munition is terminated;

Collisions, which is issued by a simulator when it determines that a collision has

occurred between the issuing entity and another entity; Radar, which designates a radar
is being used by the entity; and Repair and Resupply, which requests and acknowledges
these services. Each of the twelve DIS PDUs has a header which specifies the
identification number associated with the DIS exercise, the protocol version, and the type
of PDU that follows. For the purpose of this paper, a generic PDU will be used in
transmissions across the prototype OSI communications architecture stack. The DIS

PDU data structures are included in Appendix A.

n reonn
Introduction

The Open Systems Interconnection (OSI) Reference Model was developed in 1977
by the International Organization for Standardization (ISO) in response to the need to
interconnect heterogeneous (developed by different vendors) computers. OSI defines a
framework for the interaction of users and applications in a distributed data processing
environment [ISO84]. This environment may include a variety of computer and terminal
equipment, as well as many different kinds of communications technologies. The
standards for connecting “"open" systems for distributed applications are based on a
structuring technique called layering, in which the communication functions of the
network are divided into a hierarchical set of layers. Each layer performs an integral
subset of special functions required to communicate with another layer of similar type.
Two layers which correspond in this manner are called peer layers. The peer layers

communicate by means of a set of rules or conventions known as protocols. Each layer

in the OSI reference model relies on the operation and services of the adjacent lower
layer to perform more primitive communication functions. The interface between these
layers is known as the Service Access Points (SAPs). The seven layer OSI reference

model is shown in Figure 1.

Layer 7: Application

(Presentation SAP)

Layer 6: Presentation

(Session SAP)

Layer 5: Session
(Transport SAP)

Layer 4: Transport

(Network SAP)

Layer 3: Network
(Data Link SAP)

Layer 2: Data Link
(Physical SAP)

Layer 1: Physical

Figure 1. Open Systems Interconnection Reference Model

A brief definition of each layer of the OSI model, according to [STAL87],

follows:

Layer 1: The Physical Layer is concerned with transmission of unstructured bit stream
over the physical link. This includes the mechanical, electrical, and procedural
characteristics to establish, maintain, and deactivate the physical link.

Layer 2: The Data Link Layer provides for the reliable transfer of data across the
physical link.

Layer 3: The Network Layer is responsible for establishing, maintaining, and
terminating connections.

Layer 4: The Transport Layer provides reliable, transparent transfer of data between
end points.

Layer 5: The Session Layer provides the control structure for communication between
applications. It establishes, manages, and terminates connections between cooperating
applications.

Layer 6: The Presentation Layer performs transformations on data to provide a
standardized application interface and to provide common communications services.

Layer 7: The Application Layer provides services to the users of the OSI environment.

In each of the seven layers, a layer service is defined to identify the set of
functions provided by the layer. A service user of a layer is an entity in the adjacent
higher layer. Layer services in OSI are of two general types: connection-oriented (CO),
which allow the service users to establish and use logical connections; and connectionless
(CL), which allow the service users to exchange information without having to establish
a connection. A CO service is provided in three distinct phases:

Phase 1: Connection Establishment - The service user and service provider negotiate
the way the service will be used. This is also referred to as a "binding".

Phase 2: Data Transfer - The service users exchange data.

Phase 3: Connection Release - The binding between users is discarded.

A CL service has only one phase, namely, Data Transfer. In a CL service,
there is no ongoing relationship established between service users. Thus, there is no
connection establishment or connection release phase in a CL service. The OSI
application layer services are CO in nature. However, the lower layer services offer CO

service with optional interfaces to CL protocols.

OSI Layer Descriptions
The following sections supply more information on each layer of the OSI
reference model, such as the services provided within each layer and the most commonly

used protocols. These descriptions are based on [TANESS].

r 1: Physical Layer. The Physical layer is concerned with transmitting raw data,
i.e., unstructured bit streams, over a communication channel. The design of this layer
involves such issues as signal voltage swing and bit duration. Mechanical, electrical, and
procedural interfaces, as well as the physical transmission medium are also considered
in the design of this layer.

One of the most common physical layer standards in use today is RS-232-C,
which specifies a 25-pin connector between two devices. Also included in this layer are
the IEEE 802 protocols, adopted by ISO (IEEE 802.3, 802.4, 802.5). These standards
define the Carrier Sense Multiple Access With Collision Detection (CSMA/CD) (ISO
8802/3), Token Passing Bus (ISO 8802/4), and Token Ring (ISO 8802/5) protocols,

respectively. The IEEE 802 protocols are used mainly in local area networks. The

newest addition to the physical layer protocols is the Fiber Distributed Data Interface
(FDDI), which specifies the use of optical fiber as the transmission medium. FDDI has
been adopted by ISO and is specified by ISO 9314. The last commonly used Physical
layer protocol is the CCITT Integrated Service Digital Network (ISDN). ISDN standards
allow the integration of data, voice and video over the same digital links. ISDN spans
the Physical, Data Link, and Network layers (Layers 1, 2, and 3) of the OSI model. In
the Physical layer, ISDN is defined by the International Telegraph and Telephone

Consultative Committee (CCITT) 1.430 and 1.431.

Layer 2: Data Link Layer. The Data Link Layer has the task of reliably transfering
data across the physical link. This is accomplished by having the sender break the input
data into data frames with the necessary synchronization, error control, and flow control
information. Since the physical layer only accepts and transmits a stream of bits without
regard to structure, it is the task of the data link layer to create and recognize these
boundaries. This is accomplished by attaching special bit patterns to the beginning and
end of a frame.

Some of the protocols which fall into this layer include the High-Level Data Link
Control (HDLC), which is a synchronous bit-oriented protocol (ISO 7776) and the IEEE
Logical Link Control (LLC) (ISO 8802/2). The LLC protocol is an IEEE protocol which
has been adopted by ISO. In the IEEE standards, the LLC is used in conjunction with
the Medium Access Control (MAC) protocol. The MAC manages the communication

over the link, while the LLC manages the frame transmitted over the link. The MAC

operates over both the OSI Physical and Data Link Layers. MAC is not an ISO adopted
protocol. ISDN is also a common protocol for the Data Link layer and is defined by

CCITT Q.921.

Layer 3: Network Layer. The Network Layer provides the upper layers with

independence from the data transmission and switching technologies used to connect
systems. A key design issue for network layer protocols is determining how packets are
routed from source to destination.

The Network layer is a point of divergence between the ISO and non-ISO
communities. Within the CCITT protocol suite, the X.25 (Layer 3) protocol is the
standard for public packet switched networking for Wide Area Networks (WANs). X.25
has been adopted by ISO as a Layer 3 network standard (ISO 8208). The Department
of Defense also has a protocol which falls into Layer 3 of the OSI model. This protocol
is called the Internet Protocol (IP) and is responsible for internetwork routing and
delivery. IP (defined in Request For Comment (RFC) 791) is not an ISO standard. The
CCITT ISDN is defined in this layer by Q.931. There are two additional OSI Network
layer protocols, Connectionless Network Protocol (CLNP) and Connection Oriented
Network Service (CONS). CLNP (defined by ISO 8473) accomplishes the routing of
messages by adding addressing information to each message, thus operating in a
connectionless manner. CONS (defined by ISO 8348) allows the Transport service to

bypass CLNP when operating over a single X.25 subnetwork.

10

Layer 4: Transport Layer. The goal of the Transport Layer is to accept data from the

Session layer, divide the data into smaller units if necessary, pass this data to the network
layer, and ensure that all pieces arrive correctly at the destination. These functions will
be performed in reverse order at the destination. This transparent delivery of data
between end points provides end-to-end error recovery and flow control. The transport
layer also determines what type of service to provide to the session layer; connection
oriented (CO) service with messages delivered in order or connectionless (CL) service
with no guarantee about the order of delivery. The transport layer is the end-to-end or
source-to-destination layer.

For this layer, ISO specifies the Transport Protocols (TP) which consists of 5
classes (TPO-TP4). These classes are defined in ISO 8073. The TPO-TP3 protocol
classes work with a CO-mode network service, while TP4 works with both CO- and CL-
mode network services. The OSI model also defines the Connectionless Transport (CLT)
defined by ISO 8602. CLT provides a connectionless datagram service. However, the
most widely accepted and used transport protocol is the DoD Transmission Control

Protocol (TCP), defined in RFC 793. TCP, like IP, is not an ISO standard.

Layer 5: Session Layer. The Session Layer allows users on different computers to
establish and use a connection, called a session. The Session layer provides the structure
for controlling the dialogue or communication between applications. This dialogue may
be two-way simultaneous, two-way alternate, or one-way. The Session layer can also

provide a checkpointing mechanism so that if a failure occurs, the session entity can

11

retransmit all data since the last checkpoint. The Session service is defined by ISO 8327.
Examples of a Session service might be to invoke a remote log-in or to transfer files

between two computers.

Layer 6: Presentation Layer. The Presentation Layer is concerned with the syntax and
semantics of the data being transmitted between machines. Typically, computers have
different methods for representing data (ASCII (American Standard Code for Information
Interchange), EBCDIC (Extended Binary Coded Decimal Interchange Code), one’s
complement, two’s complement, etc.) The job of the Presentation layer is to manage the
abstract data structures which define the different representations and convert these
representations between internal and external devices. Examples of Presentation protocol
functions include text compression and encryption. The Presentation layer is defined by
ISO 8823.

An integral part of the Presentation and Application layers is the concept of an
Abstract Syntax Notation (ASN). An ASN defines data structures in a machine-
independent fashion. Currently, there is only one ASN in OSI, Abstract Syntax Notation
One (ASN.1). ASN.I provides a formal notation for specifying the data that cross the

interface between the application and presentation layer and is defined by ISO 8824.

Layer 7: Application Layer. The Application Layer supports the communication

requirements of applications (i.e., information processing tasks) requiring co-ordinated

processing activities in two or more open systems. The Application Layer is supported

12

by the Presentation Layer, which contains facilities for representing information
exchanged between application-entities (AEs) and the Session Layer, which contains the
mechanisms that may be used for controlling interactions between AEs [ISO9545]. An
AE is an aspect of an Application Process (AP). An AP is an element within an OSI-
compliant system which performs the information processing for a particular application
[ISO7498]. As the highest layer in the OSI reference model, the Application layer
provides a means for the APs to access the OSI environment. Hence the Application
layer does not interface with a higher layer. The purpose of the Application layer is to
serve as the window between corresponding APs which are using the OSI to exchange
meaningful information. APs exchange information in the Application Layer by means
of AEs, application protocols, and presentation services [ISO 7498].

The current generation of OSI Application Layer protocols are based on a
connection-oriented transport service with either a connection-oriented or a connectionless
network service. The DIS protocol, which is currently being investigated, would
logically fit into the Application layer. Some ISO Application services which are
currently available include the following:

Directory Services (DS) is responsible for the management of names and associated
attributes, such as addresses. A name is an explicit description of an entity within the
application. Each application uses the DS to determine the presentation address of its
peer. DS is both an ISO standard (9594) and a CCITT standard (X.500).

File Transfer, Access and Management (FTAM) allows network users to transfer files

between heterogeneous systems and to access remote files and records on other systems.
FTAM is defined by ISO 8571.

13

Message Handling System (MHS) is the standard for electronic mail and messaging
between heterogeneous systems. MHS provides the capability of handling, transferring,
and forwarding messages. MHS is defined in CCITT by X.400.

Virtual Terminal (VT) allows terminals on a heterogeneous network to interact with
hosts regardless of terminal type. A user at one terminal could gain access to any host
on the network. VT is defined by ISO 9041.

The most commonly used OSI and non-OSI networking protocols are summarized

in Table 1.
TABLE 1
COMMONLY USED OSI AND NON-OSI PROTOCOLS
AI OSsI CCITT IEEE DoD
Application FTAM (8571) MHS (X.400)
VT (9041) DS (X.500)
DS (9594)
Presentation (8823)
Session (8327)
Transport TPO-TP4 TCP (RFC793)
(8073)
CLT (8602)
Network CLNP (8473) (X.25) 1
CONS (8348) ISDN (Q.931) (RFC791)
X.25 (8208)
Data Link LLC (8802/2) ISDN (Q.921) LLC (802.2)
HDLC (7776) MAC
Physical 802.3 (8802/3) ISDN MAC
802.4 (8802/4) (1.430,1.431) (802.3)
802.5 (8802/5) (802.4
FDDI (9314) (802.5)
RS-232

14

Application Layer Infrastructure

Within the Application layer, there exist Application Processes (APs) which
perform information processing for a particular application. The communication aspects
of theses processes are rpresented by Application Entities (AEs). The AEs are composed
of one or more Application Service Elements (ASEs), which is the part of the AE which
provides an OSI environment capability, using appropriate underlying services.
[ISO7498] The way in which the ASEs interact with each other and with the underlying
services defines the application protocol used by the application entity [ROSE90a]. An
Application protocol is a service, such as file transfer. When invoked, an application
protocol forms an application context with its peer system and is assigned an Application
Context Name (ACN). Subsequently, the ACN is assigned an Object IDentifier (OID).
An example of an application context name in the ISODE is ISO FTAM or ISO VT. In
this experiment, the DIS will have an ACN of ISODE DIS, since it is an ISODE
application, not an ISO application. The relationship between APs and ASEs is shown
in Figure 2.

When a specific instance of an AP wishes to communicate with an instance of an
AP in some other open system (i.e., AP1 in System 1 wishes to communicate with AP1
in System 2), it must invoke an instance of an AE in the Application layer of its own
open system. It then becomes the responsibility of this instance of the AE to establish
an association with an instance of an appropriate AE in the destination open system.
This process occurs by invoking instances of entities in the lower layers. When the

association between the two AEs has been established, the AP can communicate

15

[ISO7498]. It is important to note that each peer AP is composed of the same ASEs.
Also, each ASE communicates only with its peer ASE in a remote system. This is
accomplished by assigning unique presentation context information (PCI) to each ASE

so that the application protocol data units (APDUs) can be delivered to the correct ASE.

SYSTEM 1 SYSTEM 2
AP1 AP2 AP1 AP2
ASE ASE
ASE ASE
ASE ASE
ASE ASE
ASE ASE
ACN=ISO ABC ACN=ISO XYZ ACN=1S0 ABC ACN=1S0 XYZ
APPLICATION LAYER APPLICATION LAYER
PCll=abe PCl2=xyz PCIl=abe PCI2=xyz
PRESENTATION LAYER PRESENTATION LAYER

Figure 2. Application Layer Infrastructure

16

There are two categories of ASEs: common-ASEs, which provide capabilities that
are generally useful to a variety of applications and specific-ASEs, which provide
capabilities required to satisfy the particular needs of specific applications [ISO84].
Three common-ASE’s currently exist in the OSI reference model for building application

processes. They are described as follows [ROSE90a]:

Association Control Service Element (ACSE) establishes and releases the association
to the remote or peer system. An association is a binding between two entities that is
supported by an underlying presentation connection. The ACSE manages the Application
associations. As a consequence, all OSI applications contain an ACSE. The ACSE has
two phases: association establishment and association release. The ACSE is defined by

ISO 8650.

Reliable Transfer Service Element (RTSE) is responsible for bulk mode data transfers
between systems. The term "bulk mode" refers to the size of the data being transmitted.
RTSE provides the service of reliably transfering arbitrarily large amounts of data from
one application entity to another. The RTSE service has three phases: association
establishment, data transfer, and association release. Data transfer may take more than
one transfer, depending on size. When the transfer is completed and confirmed, the
requesting entity is given an acknowledgement that the transmitted object has been

secured by the RTSE on the accepting side. If the transfer fails, the requesting

17

application entity is notified and appropriate corrective actions are taken by the protocol.

The RTSE is defined by ISO 9066.

Remote Operations Service Element (ROSE) is a superset of many conventional
Remote Procedure Call (RPC) facilities. ROSE is used to manage the request/reply
interactions for an application entity. When an application entity requests an operation,
it is said to be "invoking" or "initiating" the operation. Similarly, an application entity
that receives the request is called the "performer” or "responder”. The ROSE has two
phases: binding an association and invoking operations. The ROSE is defined by ISO

9072.

Application services, such as the Message Handling Service (MHS), utilize the
ACSE to open and close the association with the remote peer entity; utilize the ROSE to
manage the remote request/reply to transfer the file; and utilize the RTSE to provide the
reliable transfer of information. The prototype architecture for DIS developed in this
thesis will utilize only the ACSE and the ROSE. This is due to the nature of simulator
PDU traffic. That is, the transmission of DIS PDUs does not necessarily require
reliability. In this experiment, a connection will be established with the remote system
using the ACSE and the PDU data transmitted using the ROSE. However, the actual
DIS implementation might utilize the RTSE for bringing new members on-line to an
exercise by reliably transferring the battle history data required to update a simulation

to the current state of the exercise.

18

Developmen vi ISOD

The feasibility of using OSI network protocols to provide network communication
services for the DIS application is currently under investigation as part of the
development of the DIS standard. One problem which surrounds this effort is the lack
of a full seven layer OSI protocol stack implementation with which to experiment. A
partial implementation of an OSI stack has been developed and is currently being used
internationally to study the upper four layers of the OSI stack. This "quasi-OSI"
software application is called the ISO Development Environment (ISODE).

ISODE is a non-proprietary software implementation of the upper layers
(Application, Presentation, and Session) defined by ISO [ROSES0b]. This software runs
on UNIX-based workstations and utilizes the DoD TCP/IP protocol suite (layers 4 and
3 protocols, respectively) to provide inter-workstation communication over Ethernet.
The TCP/IP protocol suite is mature and well tested. It is used by a large number of
U.S. computer manufacturers. Consequently, application developers are using the
TCP/IP protocol suite to study OSI-based protocols in the upper layers while avoiding
the development of the less defined OSI lower layer infrastructure. The tools and
services of the ISODE are implemented through a set of software routines, libraries, and
databases written in the C programming language. The services and protocols

represented in the ISODE are shown in Figure 3.

Figure 3. ISODE Model of OSI Protocols

FTAM VT DS MHS
ASN.1
APPLICATION LAYER TOOLS
ACSE ROSE RTSE
PRESENTATION LAYER
SESSION LAYER
TEAP
TPO OVER TP4 OVER
TCP AND X.25 SunLink 0SI

19

As mentioned earlier, the ISODE uses the TCP/IP protocol suite for Network and

Transport services. ISODE supports a Transport service class 0 (TPO) interface for the

TCP and X.25, and a TP4 interface for SunLink OSI. SunLink OSI is a proprietary

product developed by the SUN Computer Corporation.

ISODE implements the elements of the OSI upper layer infrastructure in the

following way [ROSES0b]. First, the raw facilities available to applications are modeled.

These include the ACSE, ROSE, RTSE, and the abstract syntax and transfer mechanisms

from ASN.1. The services upon which the application facilities are built are also

described. These include the Presentation service (including the PSAP), the Session

20

service (including the SSAP), and the Transport Service Access Point (TSAP). Also
modeled in the ISODE Application Layer are the Application Layer protocols defined by
ISO. ISODE currently includes FTAM, FTAM/File Transfer Protocol (FTP) gateway,
DS, and VT (basic class, TELNET profile). Modules planned for future ISODE release
include: OSI MHS and MHS/Simple Mail Transfer Protocol (SMTP) gateway. ISODE
is also aligned with the U.S. GOSIP in its mapping strategy for service definitions.
Mapping is a process handled by the Directory Services (DS). This process associates
the distinguished name of the application entity with its presentation address. When the
presentation address is given to the service element in the application layer, a connection

can be established [ROSE90a].

Computer work Perf ne

The performance of a computer communications network is a crucial factor in
determining the feasibility of executing specific applications using its communication
services. Different applications require different levels of network performance.
Applications such as file transfer and electronic mail require reliability and
interoperability. While other applications, such as DIS, require not only reliability and
interoperability, but also high-speed, real-time communication services in order to
simulate a real world environment. Therefore, the performance metrics used to evaluate
an application should be tailored to satisfy the applications requirements.

Network performance consists of two elements: 1) the network hardware

performance and 2) the communication protocol architecture (software) performance.

21

Network hardware performance is a function of each computing device connected to the
network. Once the network hardware is configured, it is a fixed factor which influences
the final performance results. Although the hardware performance is fixed, it can be
modified to increase efficiency by replacing lower performance devices with higher ones
(i.e., a 10Mbps medium can be replaced by a 50Mbps medium). Communication
protocol architecture is the second major component which determines overall network
performance. The communication protocol architecture establishes the dialogue
procedures between two or more machines. It provides the functionalities such as error
recovery, flow control, packet routing, synchronization, and serialization.

It is difficult to measure the communication protocol performance apart from the
network hardware influence since the performance of the communication protocols are
dependent on the speed, implementation, and reliability of the hardware platform.
Therefore, it is necessary to identify the performance associated with the hardware
platforms and establish a common environment for all measurements. If this
environment can be established, measuring network performance can be viewed as
measuring the performance of the communication protocol architecture.

Network performance can be expressed in the following terms: reliability, which
includes error checking, data loss, security, and recovery; and speed, which includes
throughput, latency, and idle time. An analysis of the reliability of the ISODE
communication architecture is beyond the scope of this experiment. However, this

research focuses on evaluating the ISODE architecture performance in terms of speed and

22

effective transmission capability. In this context, performance will measure how
efficiently the ISODE protocols handle the PDU traffic and the possible errors that may

occur during the communication process.

CHAPTER II

APPROACH

Methodology

The objective of this thesis is to gain insight into the details of implementing an
OSI-based network for the DIS application. ISODE tools and facilities were used in to
develop the prototype DIS architecture. Experiments were conducted and performance
data were gathered and analyzed using both ISODE and UNIX facilities. This
experiment consisted of four major steps:

1) Encoding PDUs in the ASN.1 language;

2) Building the Distributed (DIS) Prototype Application using ISODE;

3) Sending the DIS PDUs between workstations via the ISODE stack; and,

4) Collecting and analyzing time domain data relating to the application-to-

application transfer characteristics of the prototype DIS implementation.

Hardware Environment
The hardware setup for the experiments consisted of two Sun-4 SPARC (Scalable
Processor ARChitecture) workstations and two Motorola VME 1147 workstations, all
interconnected via ETHERNET. The Sun workstation is a high-performance, bit-

mapped workstation, utilizing a Reduced Instruction Set Computer (RISC) architecture

23

24

CPU. The Motorola is a single board UNIX system designed specifically for real-time,

multi-processing configurations. This network is represented in Figure 4.

Motorola VME Workstations

ISODE 6.0 ISODE 6.0
AT&T UNIX AT&T UNIX
SOR3 SSR3
ETHERNET
ISODE 6.0 ISODE 6.0
BSD UNIX BSD UNIX
V4.3 V4.3

SUN Sparc Workstations

Figure 4. Experimental Network Hardware Configuration

Software Environment
All workstations in the experiment used the UNIX operating system. The Sun
SPARC stations used the SunOS operating system which is an enhanced version of the
4.2 BSD and 4.3 BSD UNIX system derived from the University of California at

Berkeley. The Motorola workstations used AT&T, System V.3 UNIX. UNIX

25

commands and scripts were used in the experiments for program execution and data
logging. Scripts are a collection of UNIX commands which perform a specific function.

All software for this project was written in the C programming language. The
programs involving transfer of PDUs from Application Layer to Application Layer
across the network utilized the ISODE libraries and databases. These libraries are
collections of C source programs which can be modified by the user for specific
applications. Software listings for the programs created in this experiment are included

in Appendix B.

Test Plan

A set of sending and receiving (initiator/responder) programs called SEND was
designed using the ISODE remote operations utilities. These programs provided the
capability to establish an initial connection with a remote application; transmitted generic
PDUs across the network from initiating process to responder process; received the same
PDU reflected back from the responder process; and released the connection. The
SEND programs also had a built-in clock that counted the time starting the moment after
connection establishment and ending immediately before the connection was released.
Therefore, the clock registered the time elapsed to send and receive the echo of the
generic PDU, giving an indication of the speed of the protocol stack running on each
workstation. With this measurement scheme, the connection establishment and release

times were not included. What remained was the Round Trip Time (RTT) of the PDU.

26

The RTT was the elapsed time for a single PDU to perform a round trip between
two computers. The round trip path is shown in Figure 5. It included sending the PDU
down the ISODE stack, across the TCP/IP, onto the Ethernet where it was transmitted
to the target host (or responder). Once the PDU arrived at the responder, it passed
through the TCP/IP, through the ISODE, finally reaching the target remote operations
application. To complete the round trip, the PDU passed through the ISODE, through
the TCP/IP, across the ETHERNET, up the initiator’s TCP/IP and ISODE, where it

arrived at the host remote operations application.

INITIATOR RESPONDER
Stant End
& O
ISODE ISODE
TCP/IP TCP/IP
PHYSICAL PHYSICAL
<rrrrrrrrrrrrn

N Data Flow

Figure 5. PDU Round Trip Path

27

Research of Problem

Summary of Relevant Research

An extensive literature search was conducted on the following topics: real-time
simulation and simulation architectures; OSI protocols; and communication network
protocol performance. As a result of this survey, one project was identified as being
relevant to this research thesis. The paper, SAFENET - A Navy Approach to
Computer Programming [PAIG90], describes the development of a military real-time
computer architecture using OSI standards. A description of the SAFENET project
follows.

The Survivable Adaptable Fiber Optic Embedded Network (SAFENET)
program is an effort by the U.S. Navy to develop standard computer network profiles
which meet the requirements of Navy shipboard mission critical computer systems.
There are two SAFENET standards: SAFENET I and SAFENET II. SAFENET I is
based on the IEEE 802.5 LAN standard (Token Ring), while SAFENET II is based on
FDDI (Fiber Distributed Data Interface, ISO 9314). Each standard describes a network
profile which covers the full seven layer ISO model. Each SAFENET standard can be
implemented as any of three protocol suites: OSI, lightweight, or the combination of the
two. The OSI suite is intended to provide fully ISO compliant networking, while the
lightweight suite is intended to support systems with real-time communication
requirements. The SAFENET physical topology is based on a dual counter-rotating ring

architecture which provides many survivablity features [PAIG90].

CHAPTER III

IMPLEMENTATION

Encodin 1 D, ni

An abstract data type is a concept for describing a data structure in a machine-
independent manner. Although a data structure may have a concrete representation on
a given system (i.e., a "struct" in the C language), its corresponding abstract data type
is defined in a implementation-independent manner called the abstract syntax. There
is also a well defined set of rules associated with a data structure. These rules are
termed the abstract transfer notation. The abstract transfer notation serializes (i.e.,
converts to a bit stream) the abstract syntax and generates a data stream corresponding
to the abstract data type for transmission on the network [ROSE88]. This process is
termed encoding of data structures. When the data are received at the destination, the
process is executed in reverse order. This process is termed decoding. This mapping

process is shown in Figure 6.

28

29

data structure data structure

Concrete Representation
is mapped to its
abstract data type

abstract syntax abstract syntax

Abstract Transfer Notation
is used to generate the
Concrete Syntax: serialized
stream of octets

SysA SysB

Figure 6. ASN.1 Mappings

ASN.1 descriptions consist of several tokens or expressions. These expressions
can take the form of one of the following: words, which consist of upper- and lower-case
letters, digits, and hyphens; numbers, which consist of digits; strings, which are either
character, hexadecimal, or binary; and punctuation. A collection of ASN.1 descriptions

is termed a module [ISO882]. The high-level syntax of a module is as follows:

30

<module> DEFINITIONS ::=
BEGIN

<linkage >
< declarations >

END

The <module> term names the module. For our purposes, the module name
will be the name of the DIS PDU. For example the DIS Entity State PDU will have a
name of EntityState; similarly, the DIS Update Threshhold Request PDU would have a
name such as UpdateThreshRequest.

The <linkage> term links this module with other modules. Within this section
of the module, any other modules which should be imported or exported will be
identified. For the DIS application, the DIS PDU header or descriptor file, which is
common to all DIS PDUs, can be defined once, and then imported into all DIS PDU
modules.

The <declarations> term contains the actual ASN.1 definitions. Three kinds
of objects are defined using ASN.1: types, values, and macros. Each object is named
using an ASN.1 word, for which alphabetic case convention is important. For a type,
the word starts with an uppercase letter; a value word starts with a lowercase letter; and
a macro consists of entirely uppercase letters.

An ASN.1 type is defined in the following manner:

NameOfType ::=

TYPE

31

NameOfType would represent a data field within a DIS PDU and TYPE would
describe its declaration, such as INTEGER. The ASN.1 notation defines a collection of
types to be used in the module declaration. The following types are available: simple,
object, constructor, tagged, and meta. DIS PDUs will primarily use the simple and
constructor types. A brief description of each type follows.

Simple types are viewed as the primitive data elements. ASN.1 defines the
following simple types:

BOOLEAN - data type taking one of two distinguished values True or
False
INTEGER - data type taking a cardinal number as its value

ENUMERATED - represents the complete set of values that a data type
is allowed to assume

REAL - data type taking a real number as its value
BIT STRING - data type taking zero or more bits as its value
OCTET STRING - data type taking one or more octets as its value

NULL - data type that is a place-holder

Two of the simple types turned out to have complicated semantics. Consequently,
a separate type called object types was created to handle them. These object types are
as follows:
OBJECT IDENTIFIER - data type denoting an authoritatively named

object; provide a means of describing an object regardless of the semantics
associated with it

32

OBJECT DESCRIPTOR - denotes a textual string that also references an
object

Simple types can be combined to build complex data types within the
<declaration > of a module. These types are called constructor types.
SEQUENCE - data type denoting an ordered list of zero or more elements

SEQUENCE OF - data type denoting an ordered list of zero or more
elements of the same ASN.1 type

SET - data type denoting an unordered list of zero or more members

SET OF - data type denoting an unordered list of zero or more members,
each member having the same ASN.1 type

Tagged types provide a method for distinguishing unique occurrences of the same
ASN.1 data types. There are four different classes of tags:
UNIVERSAL - provides a global identification of the well-known data
types discussed thus far

APPLICATION-WIDE - provides identification within a given ASN.]
module

CONTEXT-SPECIFIC - provides identification unique to a constructor
type

PRIVATE-USE - provides a unique identification within a given project-
specific agreement

The last type, meta, transcends both simple and constructor types.

CHOICE - data type that is defined as the union of one or more data
types

ANY - data type that is the union of all possible data types

33
EXTERNAL - data type that is defined by some document outside the
current module

SUBTYPES - a refinement of some "parent" ASN.1 type

ASN.1 also specifies syntax for describing value objects. Value notation
produces human-readable descriptions of the ASN.1 transfer syntax. The last object
defined by ASN.1 are macros. The macro facilities are used to capture additional
semantic information. This is accomplished by ASN.1 macro notation, which literally
rewrites the grammar rules of ASN.1.

The components of an ASN.1 module are diagramed in Figure 7.

ASN.1 Module
| |

<linkage> <declarations>

1 |
| 1 I I 1

imports exports types values macros

value notation

| | | I 1
simple object constructor tagged meta

Figure 7. ASN.1 Module Components

Encoding DIS PDUs
To explore the application of ASN.1 to DIS PDUs, the DIS Entity State PDU will

be examined. The bit layout for this PDU [MCDO91] is shown in Table 2 In the DIS

TABLE 2

DIS ENTITY STATE PDU

FIELD | ENTITY STATE PDU FIELDS FIELD TYPE
SIZE
(octets)
6 Entity ID # Site ID 16 bit Integer
Host ID 16 bit Integer
Entity ID 16 bit Integer
2 PADDING Unused 16 bit
8 Entity Type Entity Kind 8 bit enumeration
Domain 8 bit enumeration
Country 16 bit enumeration
Category 8 bit enumeration
Subcategory 8 bit enumeration
Specific 8 bit enumeration
Extra 8 bit enumeration
BS Timestamp 32 bit Integer
24 Entity Location X - component 64 bit Floating Point
Y - component 64 bit Floating Point
Z - component 64 bit Floating Point
12 Linear Velocity X - component 32 bit Floating Point
Y - component 32 bit Floating Point
Z - component 32 bit Floating Point
12 Lincar X - component 32 bit Floating Point
Acceleration Y - component 32 bit Floating Point
Z - component 32 bit Floating Point
12 Entity Orientation Psi Euler 32 bit Angle
Theta Angles 32 bit Angle
Phi 32 bit Angle
12 Angular Velocity X - component 32 bit Integer
Y - component 32 bit Integer
Z - component 32 bit Integer
8 Dead Reckoning TBD 64 bits
Parameters
- Entity 21 bit Integer
Appearance
12 Entity Marking 11 bit Character Set
4 Capabilities 32 bit Boolean
3 PADDING Unused
1 # of Articulated 8 bit Intcger
Parts
Varies Articulated Parts

34

35

Entity State PDU ASN.1 module, all fields represented in the PDU must be defined.

The following is an example ASN.1 encoding definition:

EntityStatePDU ::=
SEQUENCE({

EntityId,

Paddingl,

EntityType,

TimeStamp,
EntityLocation,
EntityLinearVelocity,
EntityLinearAcceleration,
EntityOrientation,
EntityAngularVelocity,
DeadReckoningParameters,
EntityAppearance,
EntityMarking,
Capabilities,

Padding2,
NoArticulatedParts,
ArticulatedParts

The first field in the Entity State PDU is the Entity ID #. This field is composed

of three subfields, Site ID, Host ID, and Entity ID. Each subfield is represented by a

16 bit integer. In an ASN.1 module, the Entity ID # field would be coded as follows:

Entityld ::=
SEQUENCE{
Siteld
INTEGER,
Hostld
INTEGER,
Entityld
INTEGER
}

36

Where the subfields are represented in a SEQUENCE (ASN. 1 constructor type)
and identified as the ASN.1 simple type INTEGER.
The next field in the Entity State PDU is the PADDING field. Since this field

is unused, it can be represented by the simple type NULL.

Padding :: =
NULL

The Entity Type field is comprised of seven subfields: Entity Kind, Domain,
Country, Category, Subcategory, Specific, and Extra. Each subfield is represented by
an 8 bit or 16 bit enumeration. This field would be coded in an ASN.1 module as
follows:

EntityType ::=
SEQUENCE{

EntityKind
ENUMERATED,

Domain
ENUMERATED,

Country
ENUMERATED,

Category
ENUMERATED,

Subcategory
ENUMERATED,

Specific
ENUMERATED,

Extra
ENUMERATED

37

EntityKind ::=

ENUMERATED{
Other (0),
Platform (1),
Munition (2),
LifeForm (3),
Environmental (4),
CulturalFeature (5)

Domain ::= -- for Platform, Life Form, Environmental,
ENUMERATED{ -- and Cultural Features
Other (0),
Land (1),
Air (2),
Surface (3),
Subsurface (4),
Space (5)

Domain ::= -- for Munition

ENUMERATED{
Other (0),
AntiAir (1),
AntiArmor (2),
AntiGuidedMunition (3),
AntiRadar (4),
AntiSatellite (5),
AntiShip (6),
AntiSubmarine (7),
BattlefieldSupport (8),
Strategic (9),
Miscellaneous (10)

38

Country ::=
ENUMERATED({
Other (0),
Afghanistan (1),
Albania (2),
Zambia (179),
Zimbabwe (180),

PalestineLiberationOrganization (181),
Neutral (200)

The Country subfield has not been fully described here due to the size of the
enumeration (i.e., approximately 200 countries). Similarly, the Category, Subcategory,
Specific, and Extra subfields vary depending on the Entity Type specified in the Entity
Kind subfield. Therefore, these fields are also not elaborated but would follow the same
format which has been identified.

As seen in the above example for the Entity Type field, once a subfield is initially
identified (as with the SEQUENCE type), the enumeration can be further detailed by
defining the subfield as a separate entity (i.e., EntityKind :: = ENUMERATED{ }).

Other fields in the Entity State PDU, such as Entity Location, Linear Velocity,
and Linear Acceleration would be defined in an ASN.1 module as a SEQUENCE of
REAL types. These REAL subfields would then be further defined by identifing the
mantissa, base, and exponent for each. Additionally, the Entity Marking field would be
identified as a simple OCTET STRING and the capabilities field would be defined as

a simple BOOLEAN type.

39

Experimental Constraints

Since the DIS PDU standard has only recently been released, there are very few,
if any, simulators which generate and use the DIS PDUs. At IST, one project is
underway to generate and test these PDUs [CENG91]. However, the programs being
generated have not fully implemented all of the DIS PDUs. Therefore, actual DIS PDU
information is not available for testing.

As stated earlier, the testing performed in this thesis measures the round trip time
from connection establishment to connection release. Conceptually, the bytes transmitted
across the ISODE stack can be generated by any means, e.g., a string input from the
keyboard represents the same information, with respect to measuring round trip time, as
an actual DIS PDU. Therefore, a significant factor in the experiment is the length of the
information being transmitted across the network through the ISODE stack. The lengths
of the DIS PDUs are stated in Table 3.

A typical entity represented by the Entity State PDU would be an M1 Al main
battle tank. A tank might typically portray two articulated parts (i.e., the main gun and
the turret) each of which might have one articulated parameter (i.e., pitch angle for the
gun and yaw angle for the turret). Depending on the vehicle modeled, the Entity State
PDU could conceivably be very large (i.e., a ship may have upwards of ten articulated
parts), possibly in the 200 to 250 byte range. Therefore, the lower boundary established
for DIS PDU size is 16 bytes (Resupply Cancel PDU plus Header file). Similarly, the

upper bound for a DIS PDU is 250 bytes (Entity State PDU plus Header file).

TABLE 3

LENGTH OF DIS PDUS

DIS PDU Length in Bytes
Header File 4
Entity State 124 + n (12m; + 4)
Weapons Fire 84
Weapons Detonation 108
Update Threshold Request 40
Update Threshold Response 16
Service Request 16 + 12n
Resupply Offer 16 + 12n
Resupply Received 16 + 12n
Resupply Cancel 12
Repair Response 16
Collision 16
Radar 20 + r (125, + 44)

40

n = number of articulated parts

m; = number of articulated parameters

r = number of radar systems

s; = number of entities illuminated

The generic DIS Entity State PDUs used in this experiment were input from a
user-generated file EXEC. This file sends varying length strings (1 byte to 440 bytes)
which are described in the ASN.1 module by a SEQUENCE of IMPLICIT
GraphicString, which is a Universal Tagged type of 25 (See [ISO8824].). By using
IMPLICIT, only the tag associated with GraphicString will be transmitted on the

network. The ASN.1 module developed for the generic DIS PDU prototype architecture

(PDU-ASN.PY) is located in Appendix C.

In OSI, remote operations are viewed as an integral part of the methodology for
building distributed applications. A Remote Operation (RO) is a request/reply operation
between two Application Processes (AP), located either in a local or distributed
environment. In a RO, an operation is invoked by an AP. In response, its peer returns
an outcome of the operation. The most basic application consists of an initiator, which
requests the service or desired operation, and a responder, which provides the service
or operation. The concept of the initiator/responder distributed application is shown in
Figure 8.

SYSTEM 1: INITIATOR SYSTEM Z2: RESPONDER

USER USER
ELEMENT ELEMENT
STATIC STATIC
INITIATOR FACILITIES INITIATOR FACILITIES
DISCIPLINE DISCIPLINE
RUN-TIME RUN-TIME
ENVIRON. ENVIRON.

Figure 8. Dynamic and Static Facilities of Distributed Applications

42

The initiator and responder both have static and dynamic facilities [ROSE90a].
The RO-specification, which is the formal definition of the remote operation, is the static
facility. This includes the ASN.1 data structures which enumerate the complete set of
operations, errors, and abstract data types which are used by the system. The dynamic
facilities include the following: the initiator and responder disciplines, which initiate or
respond to the service or desired operation; the ACSE, which establishes and terminates
the associations used by the entity; the ROSE, which manages the request/reply
interactions; the DSE, which maps the service required by the system onto the entities
available on the network; and finally, the run-time environment, which maps the C
structures, using ASN.1 compilers, into the corresponding abstract syntax which is then
presented this to the RO service for delivery.

The Remote Operation (RO) facilities within OSI are designed to provide the
mechanisms for building diverse applications such as message handling, directory
services, and remote database access. Using RO, the generic PDUs can be transmitted
between remote simulators, or as is the case for this experiment, between remote
workstations.

There are four distinct steps to building a distributed application in ISODE:
defining the naming and addressing information in the ISODE databases; building and
compiling the remote operations module; compiling the abstract syntax module; and
building the initiator and responder programs. The following sections describe how these

steps were accomplished for the DIS prototype.

43

Naming and Addressing Information

In the OSI reference model, naming and addressing information is the function
of the Directory Services Element (DSE) of the DS protocol. At a minimum, the DSE
determines the presentation address of each application participating in a binding. A
binding provides the mechanisms for establishing an association between two application
entities or processes. This binding process is accomplished in the following way. The
identity of an application entity is its distinguished name in the OSI Directory, which is
an authoritative description of the AE. The application contacts the OSI Directory,
presents the distinguished name of the AE with which it is interested in communicating,
and asks for the presentation address attribute associated with that name. A presentation
address consists of a presentation selector, a session selector, and a transport address.
A transport address consists of a transport selector and one or more network addresses.
The presentation address is given to the service element in the Application Layer to
establish a connection. This address is passed to the presentation service, which uses the
presentation selector. The remainder is given to the session service, which uses the
session selector. The ultimate remainder is given to the transport service. The transport
service looks at each network address and decides which mode of network service
(connection-oriented or connectionless) will be used for the address. Based on the
derived network service, the communications quality of service desired by the
application, the transport service selects a transport protocol. The network addresses are
then ordered by preference, and for each network address, the transport service starts the

appropriate transport protocol and the underlying network service is invoked. [ROSE90a]

44

In ISODE, the naming and addressing information is managed through the use of
databases. There are three databases used for this function [ROSE90b]:

isobjects: which maintains the mappings between object descriptors (OD) and

object identifiers (OID) (ODs and OIDs were described in the ASN. 1 object types

section);

isoentities: which manipulates the mappings between application-entity
information and presentation addresses; and,

isoservices: which maintains the mappings between textual descriptions of
services, service selectors, and local programs.

The application services which need to be defined in the isobjects, isoentities, and
isoservices databases are the following:

abstract syntax: This describes the data structures being exchanged by the
service.

application context name: This describes the protocol being used by the service.
application-entity information: This uniquely names an entity in the network.
presentation address: This locates an entity in the network.

local program: this identifies the program on the local system which implements
the service.

First, the abstract syntax presentation context information (PCI) of the service,
along with the application context need to be identified. This is performed in the
isobjects database through the use of object identifiers (OID). The object identifier tree
1.17.1 was used for defining local services in ISODE. Therefore, the new service will
be assigned the number 1.17.1.n, where n is the lowest unassigned number in the tree.

The isobjects database will contain the abstract syntax PCI as the first notation in the

45

1.17.1.n subtree, and the application context as the second. The entry appears as
follows:
"isode send string demo pci” 1.17.1:13:1

"isode send string demo" 1.17.1.13.2

Next, the template for the application-entity information and presentation
address should be defined. These are outgoing connections and are defined in the
isoentities database. The application-entity information is currently an object identifier,
from the 1.17.4.1 subtree in ISODE. The presentation address is composed of a
presentation selector, a session selector, a transport selector, and a set of network
addresses. Within ISODE, this is implemented by using an empty (i.e., no information)
presentation and session selector, a unique transport selector, and a simple default
template for the network address (This is filled in during connection establishment.).
The "empty presentation and session selector” is an implementation decision made by the

ISODE authors. The isoentities database will be edited to appear as follows:

default sendstring 1.17.4.1.8 #1041/

Finally, the program on the local system which implements the desired service
should be defined. This definition is used for incoming connections and is performed in
the isoservices database. The local program in this experiment that transmits DIS Entity

State PDUs across the network is the SEND program. Therefore, SEND will need to

46

be defined in isoservices. The strategy used for allocating the presentation addresses
above necessitates a mapping only between the transport selector and the SEND program.

Therefore, the entry in the isoservices database appears as:

"tsap/isode sendstring" #1041 ros.send

The isobjects, isoentities, and isoservices databases developed for this experiment

are included in Appendix B.

Remote Operations Module

The RO module defines the operations, errors, and abstract syntax of the data
structures to be exchanged by the service. The operation performed in this experiment
consisted of sending the generic PDU to the remote host (or workstation) and reflecting
back the PDU to the initiating process (or workstation). The error defined in the RO
module alerted the user if congestion occured during the transmission, preventing the
sending of the PDUs. The last definition included in the RO module was the abstract
syntax of the generic PDU. This was defined in a previous section and can be found in
Appendix C. The RO module, SEND.RY, can also be found in Appendix C.

The ISODE program ROSY (Remote Operations Stub-generator (YACC-based))
reads the ASN.1 module that uses the RO-notation and generates the following: a set of
remote operation definitions with associated data types (PDU-OPS.C); a set of error

definitions with associated data types (PDU-OPS.C); and, a set of C stubs and definitions

-

47

that are either invoked or called to request an operation by the performer (PDU-
STUB.C)[ROSE90]. (YACC is a UNIX operating system facility which generates code
that interprets the syntax rules of the language, e.g., a compiler-compiler). The software

routines produced by the ROSY compiler are included in Appendix C.

Abstract Syntax Module

An abstract syntax module defines the data structures being exchanged by the
service, as defined earlier in this chapter. ISODE provides two compilers for encoding
this module. The POSY (PEPY Optional Structure-generator (YACC-based)) program
reads an ASN.1 module and produces the following: the corresponding C structures
definitions and an augmented ASN.1 module. This augmented ASN.1 module relates the
C structures (PDU-TYPE.C) to their ASN.1 counterparts (PDU-TYPE.PH). The
augmented module is also read by the PEPY (Presentation Element Parser (YACC-
based)) compiler. The PEPY compiler generates and interprets ASN.1 encodings
(SEND.C). Using the augmented ASN.1 module, PEPY can produce C code fragments
that map between the C structures and the augmented ASN.1 [ROSES90a]. The C
structures produced by the POSY program are mapped by the ISODE run-time
environment to the abstract syntax and then used for mapping the abstract syntax to the
machine specific concrete syntax. The encoding process described above enables the
invoker and performer to deal only with the native machine C structures. This creates

an open systems interface which is entirely automatic [ROSE90a]. The software

48

structures produced by the POSY and PEPY compilers are included in Appendix C. This

entire compilation process is depicted in Figure 9.

= RO and Error = C structare = Conversion
definitions definitions for routines for
= Prooedure data types data types
names for = Augmented
invoking oper. ASN.1 module (mapping info.)
RO ROSY POSY PEPY
Specification Compiler Compiler Compiler
SEND.RY PDU-OPS.C PDU-TYPE.C SEND.C
PDU-STUB.C PDU-TYPE.PH
PDU-ASN.PY

Figure 9. ISODE Static Facilities

Initiator and Responder Programs
The initiator and responder disciplines for the SEND program were developed for
this experiment from the existing ISODE libraries and programs. By adding C code to
the ISODE utilities, the user is able to design the operation of the desired application.
A sample of the available utilities include: event handlers, routines to set underlying
services, and routines to poll network activity. For more detail on ISODE routines and

libraries, consult [ROSE90b] or [LOPE91].

49

An initiator is responsible for four operations: association establishment, operation
invocation, association release, and error handling. There are two forms of initiators
[ROSES0b]:
interactive: The user runs a program and interactively directs the invocation of
operations; and,
embedded: As part of its running, the program automatically forms an association and
invokes operations as required.

For the purposes of this experiment, the interactive initiator was implemented.
This allowed the user to direct the transmission of PDUs and therefore to control the
operation of data transmission.

The responder is responsible for three functions: association management,
operation response, and error handling. A responder may also take on one of two forms
[ROSESOb]:
single association: Each time the service is requested, a new instantiation of the
program implementing the service is executed (a dynamic approach); and,
multiple association: Each time the service is requested, the request is given to a single,
already excuting, instantiation of the program which implements the service (a static
approach).

For the purpose of this experiment, the multiple association responder was
implemented. This allowed the user to examine the performance in a static environment.

The SEND initiator and responder programs are included in Appendix B.

50

I DIS Communication Architecture Execution

This experiment was conducted on three of the four computers connected to the
ETHERNET network. The fourth workstation was not used due to software problems.
The workstations used in the experiment included the two SUN Sparc stations (Falcon
and Ibis) and one Motorola VME workstation (Heron). The experiment took the
following factors into account: network load, processing capability of each workstation,
and the size of the message to be transmitted.

The experiment was conducted in two parts. The first part of the experiment
allowed the SUN workstation Ibis to communicate with the Motorola workstation Heron
using the ISODE communication architecture and the SEND programs. The second
experiment consisted of both SUN workstation, Falcon and Ibis, transmitting generic
PDUs. In both experiments, the computer’s CPUs were dedicated to performing this
communication task, which excluded time for tasks outside this experiment. During the
experiments, activity on the network was limited to the generic PDUs being transmitted.
The network was used essentially as a point-to-point link [SHENO91].

The SEND program used in this experiment could be invoked in one of two ways.
First, by entering the SEND command from the keyboard, an interactive loop would be
entered which would allow the sending of more than one generic DIS PDUs. The second
method, file driven, was chosen for this experiment. The SEND program was invoked
from the program LOOP, which subsequently invoked the SEND program several times,
each time transmitting a different length PDU (i.e., 1, 10, 100, 200, and 440 bytes). By

transmitting varying length PDUs, the varying lengths of the DIS PDUs could be

51

modeled. For each length PDU, the SEND process was repeated sending a varying
number of the PDUs (i.e., 1, 10, 100, 500, and 1000). This was to ensure that the data
collected would be unbiased and robust for statistical analysis. For each interation of the

SEND process, statistical data were gathered on the round trip time (RTT).

SEND Program: Detail Description

The SEND program made use of the remote operations services implemented in
ISODE. This program sent a generic PDU from the initiating process across the
ETHERNET to the responding process. Once at the responder, the PDU was reflected
back to the initiating host. If the connection was not established, an error message was
returned and displayed. A diagram depicting the SEND process is shown in Figure 10.

The SEND process was accomplished through an interactive initiator, which
managed the association and invoked the operation, and a static responder, which
performed the operation. The initiator performed four operations: association
establishment, operation invocation, association release, and error handling. During
association establishment, the application-entity information and presentation address for
the desired service were computed, along with the application context (ACN) and default
presentation context information (PCI) for the service. Also, a session reference
identifier was chosen. This was done in the ryinitiator routine using the ISODE
AcAssocRequest routine. At this time, the tsap deamon was contacted to invoke the
responder. The tsap deamon is a process that runs in the background of the UNIX

operating system which handles all incoming connections for ISODE. The tsap process

MESPFONDER

52

INIETIATON

imitializatien

al“ 4uu;|‘w-r
T
ireranpender?

A

‘:”:—EF"': “:is.'::'cn‘
poturn resuls of event H LT “:.l'ﬁllh‘:"
snilar sshe of PRU [S e
neted
netak

e

S [-esises] etz it |-

wighes
Lo werminale
anses = Adind

Figure 10. Flow Diagram of the SEND Program

53

provides the communication for the remote systems using the ISODE connection services.
If an association was established with the responder, the underlying service to be used
for the remote operation (the presentation service) was set using routine RoSetService.

At this time, the interactive loop was entered. A line was read from the input and
a search was performed to determine which computers the SEND process would execute
on. The invocation was performed through a synchronous interface implemented in
routine RyStub. The invoked operation returned one of three results: error, done, or the
echo of the SEND operation. The result of the operation, the echoed DIS PDU, was
displayed on the screen, and the association was released. Since the user was in an
interactive loop, another PDU was then transmitted. The association was released when
the quit operation was invoked.

Any time an error was encountered, an adios or advise routine reported the error
and terminated the association if appropriate.

The responder was responsible for three functions: association management,
operation response, and error handling. Association management was implemented in
routine ryresponder. After initializing the invoked program, the SEND operation was
registered with the ISODE RyDispatch routine. The routine isodeserver was then called
to set the addresses of event-handlers and to manage any associations. If the call to
isodeserver was successful, then the program terminated immediately.

When an event associated with a new connection occured, the event-handler
ros_init was invoked. This routine first called Aclnit to re-capture the Association

Control Service Element (ACSE)-state. If the initialization was successful, the routine

54

AcAssocResponse was called to deal with the incoming association from the initiator.
If the association was accepted, the underlying service for remote operations was set
using the RoSetService routine.

If any activity associated with an association occurs, the event-handler ros_work
was invoked. This routine set a global return vector using setjmp(3) and then called
ISODE routine RyWait to poll for the next operation-related event. This usually resulted
in the registered operation being performed. Next, the operation, sending the PDU, was
attempted. If it was successful, the result (an echo of the DIS PDU) was returned to the
initiator by the RyDsResult routine. Otherwise, the error was returned by the
RyDsError routine. The RyWait then indicated that no more network activity was
pending. If extraordinary conditions existed for the association, routine ros_indication
was called. This routine processed any errors that occurred, caused control to return to
the setjmp call, and terminated the association.

The isodeserver routine used the TNetAccept routine to wait for the next event
on existing associations and new connections. If failure occured during this operation
(i.e., network listening failed), the ros_lose routine was advised. This routine logs the

error condition and terminates the operation with one of the adios or advise routines.

Experimental Performance Analysis

As stated earlier, the network performance in this experiment is evaluated in

terms of speed. In this context, speed is measured in terms of the Round Trip Time

55

(RTT) for a generic DIS PDU to transmit from one workstation to another, and then be
transmitted back to the originating host. The latency associated with the transmission
will give an indication of the network performance. Latency is the time delay between
the transmission of data and the reception by the peer entity. It is related to transit delay
across the network, but also includes the associated processing delays (i.e., processing

encountered at each level within the ISODE architecture stack).

Performance Statistics
In order to obtain consistent and meaningful performance assessment data, the
SEND program was executed multiple times while keeping all external factors constant,
and storing all round trip time (RTT) measurements in a data file. UNIX shell programs

were designed [SHEN91] to compute the statistics [HOGG87] as follows:

Minimum - the minimum round trip time
Maximum - the maximum round trip time

Median - the middle observation when the observations were arranged in
increasing order of magnitude

Mean - the average value of the observations
Variance - a measurement of dispersion of the observations

Standard Deviation - the square root of the variance

Tables 4 and 5 present the data that was gathered [SHEN91] during the

experiments.

56
TABLE 4
PERFORMANCE DATA FOR EXPERIMENT 1
Sample PDU Minimum | Maximum | Mean Median | Variance Standard
Size Bytes Time Time (ms) | Time Time (ms) Deviation
(ms) (ms) (ms) (ms)
1 40 40 40 40 0 0
10 30 30 30 30 0 0
1 100 40 40 40 40 0 0
200 50 50 50 50 0 0
440 40 40 40 40 0 0
1 30 40 38.9 40 8.9 2.983
10 40 40 40 40 0 0
10 100 40 40 40 40 0 0
200 40 70 47.9 50 75.7 8.701
440 40 50 47 50 21 4.583
1 30 90 ?:;58 40 49.85 7.06
10 30 50 39.19 40 15.36 3.919
100 100 30 80 41,18 40 40.43 6.358
200 40 90 45.54 49 46.37 6.81
440 40 60 47.09 50 24.55 4.955
1 I 30 130 39.688 40 44.436 6.666
10 30 90 39.424 40 32.046 5.661
500 100 30 120 40.34 40 29.93 5.471
200 40 110 45.648 50 41.274 6.424
440 39 120 48.26 50 52.634 7.255
1 30 120 39.6 40 38.406 6.197
10 30 110 39.457 40 29.501 5.431
1000 100 30 130 40.728 40 34.003 5.831
200 36 120 46.159 50 54.16 7.359
440 40 120 48.127 50 4336.982 65.856

37
TABLE 5
PERFORMANCE DATA FOR EXPERIMENT 2
Sample PDU Minimum | Maximum | Mean Median | Variance Standard
Size Bytes Time Time Time Time Deviation
1 36 36 36 36 0 0
10 39 39 39 39 0 0
1 100 37 37 37 37 0 0
200 39 39 39 39 0 0
440 40 40 40 40 0 0
1 29 37 30 29 5.6 2.366
10 29 36 30.1 29 4.3 2.074
10 100 29 38 31.1 30 6.3 2.51
200 32 39 33.1 32 53 2.302
440 33 40 34.2 34 4.2 2.049
1 28 37 29.55 29 1.15 1.072
10 29 36 29.65 29 1.29 1.136
100 100 29 40 30.47 30 1.85 1.36
200 31 40 32.46 32 1.99 1.411
440 33 40 33.56 33 1.03 1.015
1 22 38 29.606 29 1.52 1.233
10 29 99 29.924 29 10.912 3.303
500 100 29 114 30.784 30 22.134 4.705
200 29 107 32.446 32 12.3 3.507
440 33 85 33.654 33 6.332 2.516
1 24 36 29.574 29 1.081 1.04
10 26 37 29.824 30 1.332 1.154
1000 100 23 96 30.515 30 5.586 2.363
200 25 39 32.46 32 1.373 1.172
440 30 108 33.793 33 12.649 3.557

58

Results and Analysis
As mentioned earlier, this experiment was conducted on three of the four
computers connected to the ETHERNET network. The workstations used in the
experiment included the two SUN Sparc stations (Falcon and Ibis) and one Motorola

VME workstation (Heron), as shown in Figure 11.

Heron
ISODE 6.0
AT&T UNIX
SSR3
ETHERNET
ISODE 6.0 ISODE 6.0
BSD UNIX BSD UNIX
V4.3 V4.3
Falcon Ibis

Figure 11. Experimental Network

59

The experiment was conducted in two parts. The first part of the experiment
allowed the SUN workstation Ibis to communicate with the Motorola workstation Heron
using the ISODE communication architecture and the SEND programs. The second
experiment consisted of both SUN workstation, Falcon and Ibis, transmitting generic
PDUs. In both experiments, the computer’s CPUs were dedicated to performing this
communication task. During the experiments, activity on the network was limited to the
generic PDUs being transmitted. The network was used essentially as a point-to-point
link [SHENO1].

The results of the first part of the experiment are shown in Figure 12. The graph
indicates that as the size of the observations (samples) increase, the mean value of the
round trip time tends to converge. The graph also shows correlation between the time
elapsed for the message to perform a round trip between two computers and the size of
the message transmitted. This graph indicates that as the DIS PDU increases in size,
more time will be required to transmit these PDUs across the network. Therefore, the
DIS PDU which will potentially exhibit the largest latency problems will be the Entity
State PDU. This latency will vary depending on the degree of complexity modeled in
an entity. For example, a tank is less detailed than a ship.

Figure 13 plots the message size versus the round trip time for 500 iterations of
the test. This graph indicates that the variance remains approximately unchanged through
out the experiment. This confirms that the experiments were conducted in an adequately

controlled environment.

60

The results of the second part of the experiment are shown in Figure 14. The
profiles of this graph are similar to those in Figure 12. However, the RTT is
significantly lower. This demonstrates that the faster RISC microprocessors on the SUN
workstations accounted for a significant portion of the communication performance in this
experiment. Again, as the size of the PDU transmitted increases, the RTT also
increases.

Figure 15 presents the variance behavior in the second experiment for a sample
size of 500. This graph indicates that the environment was adequately controlled for this
experiment. Also, when comparing Figure 13 with Figure 15, the difference in
workstation processors becomes more obvious. The median RTT in Figure 13 is

approximately 50ms, while the median RTT in Figure 15 is approximately 32ms.

60
50
40
30
20

10

61
(From Ibis to Heron)
Time (ms)
_ﬁ
1 1 1 1
0 100 200 300 400 500
Size of Message (Byte)
Sample Size

—— 1 time —— 10 times —%— 100 times
—©— 500 times —*— 1000 times

Figure 12. Experiment 1: Message Size vs. Average Round Trip Time

62
(From Ibis to Heron)
3
T = FUOUR
20
10
O 1 | 1 I
0 100 200 300 400 500

Size of Message (Byte)

Sample Size

Mean —+— Median —*%— Mean+Stddev —6— Mean—Stddev

Figure 13. Experiment 1: Message Size vs. Average Round Trip Time

(Sample Size = 500)

63
(From Falcon to Ibis)

Time (ms)

40 —/__________'_____
S— —
30 s ————
20
10 bt sssssnsnananans R T O S B
0 = 1 1 1
0 100 200 300 400 500
Size of Message (Byte)
Sample Size
—— 1 time —+— 10 times —*%— 100 times
—6— 500 times —>— 1000 times

Figure 14. Experiment 2: Message Size vs. Average Round Trip Time

64
(From Falcon to Ibis)
Time (ms)
b 4 >
f”/ﬂ —
20
10
0 1 | 1 1
0 100 200 300 400 500

Size of Message (Byte)

Sample Size

Figure 15. Experiment 2: Message Size vs. Average Round Trip Time

Mean —+— Median —#— Mean+Stddev

(Sample Size = 500)

—©— Mean-—Stddev

CHAPTER 1V

CONCLUSIONS

The objectives of this research were the following: describe the Distributed
Interactive Simulation (DIS) application and its requirements; introduce the Open System
Interconnection (OSI) Reference Model and its applicability to the DIS application;
present an overview of the ISO Development Environment (ISODE), its services and
facilities; describe a prototype architecture for the DIS application developed using the
ISODE; present an experiment and test plan for evaluating the prototype DIS
architecture; and discuss the data obtained and analysis thereof.

The DIS application is still an evolving standard which has the potential to bridge
the communication barrier for all military simulators and training devices. The Protocol
Data Units (PDUs) for describing entity appearance and entity interactions are emerging.
However, the communication architecture through which DIS will transmit this
information is still being studied and specified. Since the objective of the DIS initiative
is to provide an open communications environment in which DIS vendors can develop
standard DIS compliant products, the OSI protocol suite and the GOSIP mandate will
have a tremendous effect on the communication architecture selected and the protocols

developed.

65

66

The primary rationale for utilizing the ISODE to implement a prototype DIS
architecture was to gain insight into the details of working with an OSI compliant
communications protocol stack. Clearly, an actual DIS implementation within a
simulator systems using ISODE would be ludicrous. However, the nature of this work
was research and from that point of view, the project produced surprising results.

All of the experiments were conducted on workstations running standard (AT&T
or Berkley) UNIX operating systems. Due to the real-time nature of the DIS application,
standard UNIX would most probably have to be replaced by a more real-time UNIX type
of operating system. And even in the experiments conducted as part of this thesis, it is
almost impossible to ascertain the impact of UNIX related delays on the statistical data
gathered. Perhaps some performance differences between the Motorola and SUN
workstations can be attributed to the different implementations of the UNIX operating
system. The majority of the performance differences in the SUN SPARC workstation
and the Motorola workstations is a consequence of the microprocessors used in each.
The SUN workstations use Reduced Instruction Set Computing (RISC) technology which
has demonstrated a compilation speed of nearly four times faster than the Motorola
workstation [LOPE91].

From a long term perspective, the applicability of OSI to DIS will be
demonstrated by means of an evolving and iterative process. Until actual
implementations of the DIS protocol are developed, one can only theorize on how far
DIS will be able to comply with the OSI guidelines. Moreover, if the DIS does, in fact,

become embraced globally in the simulation marketplace as the standard for simulation

67

become embraced globally in the simulation marketplace as the standard for simulation
networking, it may very well drive the direction of OSI to some extent. The major
problem here is that the market for DIS products is very limited today (e.g.,
U.S.Government procurements for military training devices) and the incentive for
industry to migrate to the DIS voluntarily is minimal. If however, the DIS does continue
its evolution along the OSI guidelines, the task of integrating actual OSI-compliant
communications systems with DIS systems will be much easier.

Some comments concerning the prototype architecture presented herein are
warranted. Due to the nature of the ISODE implementation, all experimental interactions
between systems in which data were transmitted over the prototype DIS network stack
were done so under connection-oriented constraints. In an actual DIS implementation,
connection-less services would be utilized, due to the multicast (sending PDUs from one-
to-many instead of one-to-one) nature of the protocol. While time measurements taken
as a part of the experimental analysis attempted to isolate the effects of connection
establishment and release, it is extremely difficult to guarantee that these effects were
totally negated.

There are also several points which should be highlighted concerning the ASN. 1
implementation. Under all experiments conducted herein, the DIS Entity State PDUs
were "pre-coded" in ASN.1 before they were actually transmitted over the prototype DIS
protocol stack. In actual OSI applications, ASN encoding and decoding is performed
"on-the-fly", or during the run time of the application. The current viewpoint of the DIS

Communications Architecture working group is that the overhead associated with the

68

run-time ASN encoding and decoding of DIS PDUs will be too great for the real-time
constraints. Inasmuch as the experiments carried out as part of this thesis adopt the DIS
Communications Architecture viewpoint, there are still many experiments which must be
carried out to determine whether or not the departure from conventional OSI
implementations is warranted.

The performance data presented herein represents a first attempt at utilizing the
ISODE system and associated tools to build a prototype and pass data over a
communications protocol stack with the networking requirements of DIS (e.g., real-time
performance) being held as paramount. The ISODE is a massive software system, in its
own right. And the process of obtaining, installing, and utilizing ISODE has taken over
two man years worth of engineering effort. The performance measurements give some
insight into the delay times associated with the ISODE stack processing of the DIS
prototype implementation. However, and more importantly, the fact that any
performance statistics were gathered at all demonstrates an in-depth understanding of not
only the ISODE system, but the UNIX system as well. And while the ISODE is a good
jumping-off point for a research environment, its lack of documentation makes it

probably unsuitable for use in an industrial, developmental environment.

APPENDICES

APPENDIX A
DISTRIBUTED INTERACTIVE SIMULATION

PROTOCOL DATA UNIT FORMATS

DIS PDU Header

FIELD SIZE PROTOCOL DATA UNIT
(bits) HEADER FIELDS
8 PEmL 8 - bit unsigned integer
g L\E'é*é\i}?%!l 8 - bit unsigned intweger
8 %%TE 8 - bit enumeration
8 PADDING 8 bits unused

71

Entity State PDU

FIELD SIZE

toits) ENTITY STATE PDU FIELDS
SITE - 16 - bit unsigned integer
48 ENTITYD HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
16 PADDING 16 biss unused
ENTITY KIND - 8 - bit enumeraton
DOMAIN - 8 - bit enumeration
TYPE CATEGORY - 8 - bit enumeration
SUBCATEGORY - 8 - bu enumeration
SPECTFIC - 8 - bit enumeration
EXTRA - 8 - bit enumeration
32 TIME STAMP 32 - bit unsigned integer
X - Component - 64 - bu floaung pownt
- ENTITY
192 LOCATION Y - Component - 64 - bit floating pownt
Z - Component - 64 - bit floating pownt
ENTITY X - Component - 32 - bit floatng point
96 LINEAR Y - Component - 32 - bt floaung pownt
VELOCITY
Z - Componeni- 32 - bit floaung point
X - Component - 32 - bit floaung point
ENTITY e
96 LINEAR Y - Component - 32 - but floaung pownt
ACCELERATION

Z - Component - 32 - bit floaang point

72

Entity State PDU (Cont.)

P DA ENTITY STATE PDU FIELDS (CONTD)
Pa 32 - bit BAM
96 ENTITY 2 - bit BAM
o TATION The 32-bu B
Phi 32 - bt BAM
B X - Component - 32 - bit signed integer
96 ANGULAR Y - Component - 32 - bit ngned wicger
VELOGTY Z - Component - 32 - bit sgned inleger
DEAD
64 RECKONING 64 bits - undefined
PARAMETERS
ENTITY
32 APPEARANCE 32 - bit unsigned integer
96 ENTITY CHARACTER SET - 8 - bit enumeration
MARKING 3
11 element character string
32 CAPABILITIES 32 bits of Boolean fields
24 PADDING 24 bits unused
of artculated g
8 pants 8 - bit unsigned inleger
nx ARTICULATED Sez Figure G-1, Appendix G
(96m +32) PARTS

n = # of articulated parts
m = # of articulation parameters for each part
(i=lton)

Fire PDU

FELDSEE
FIRE PDU FIELDS
(bits)
q SITE - 16 - bit unsigned integer
48 ENTITY D HOST - 16 - bit unsigned nleger
ENTTITY - 16 - bit unsigned integes
SITE - 16 - bit unsigned integer
TARGET - :
48 BT O HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
AL SITE - 16 - bit unsigned integer
48 o ;g’o' HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
SITE - 16 - bit unsigned integer
48 EVENT-D HOST - 16 - bit unsigned integer
EVENT - 16 - bit unsigned integer
32 TDME STAMP 32 - bit unsigned integer
X-<oordinate- 64 - bit floaung pt
192 LOCATION Y <oordinate- 64 - bit floating pt
IN WORLD
Z-coordinate- 64 - bit floating pt
MUNITION - See Enuty Type Record
128 BLRST WARHEAD - 16 - bit enumerauon
= DESCRIFTOR FUZE - 16 - bit enumeration
QUANTTTY - 16 - bit unsigned integer
RATE -16 - bit unsigned integer
X-component
32 - bit Noating pt
VELOCTTY Y -component
96 32 - bit Mloaung pt
Z-component
32 - bt Noating pt
32 RANGE 32 - bit floating pt

74

Detonation PDU

FIE:?!S)[ZE DETONATION PDU FIELDS
its
SITE - 16 - bit unsigned integer
FIRING
48 ENTITY D HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
SITE - 16 - bit unsigned integer
TARGET
48 ENTITY ID HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
SITE - 16 - bit unsigned integer
48 MUNITION ID HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
SITE - 16 - bit unsigned integer
48 EVENTID HOST - 16 - bit unsigned integer
EVENT - 16 - bit unsigned integer
32 TIME STAMP 32 - bit unsigned integer
X<oordinate - 64 - bit floating pt
192 LOCATION]] ;
IN WORLD Y-coordinate - 64 - bit floating pt
Z-coordinate - 64 - bit floating pt
MUNITION - See Entity Type Record
5% BURST WARHEAD - 16 - bit enumeraton
A DESCRIPTOR FUZE - 16 - bit enumeration

QUANTITY - 16 - bit unsigned integer

RATE - 16 - bit unsigned integer

75

Detonation PDU (Cont.)

‘“ﬁf{f?ﬁ DETONATION PDU FIELDS (CONTD)
X - component - 32 - bit floating pt.
96 Y - component - 32 - bit floating pt.
Z - component - 32 - bit floating pt.
X - coordinate - 32 - bit floating pt.
96 LOCATION IN
ENTITY Y - coordinate - 32 - bit floatng pt.
COORDINATES
Z - coordinate - 32 - bit floating pt.
8 DETONATION 8 - bit enumeration
RESULT
24 PADDING 24 bits unused
32 ENERGY 32 - bit floating pt
DIRECTION-
32 ALITY 32 - bit floating pt
32 MOMENTUM 32 - bit floating pt

76

Update Threshold Request PDU

FIELD SIZE UPDATE THRESHOLD
(bits) REQUEST PDU FIELDS
{SSUANG SITE - 16 - bit unsigned integer
48 v 3 e i i =
ENTITY D HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
RESPONDING SITE - 16 - bit unsigned integer
48 ENTITY I HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
x - 32 - bit floating pt
96 THRESHOLD y - 32 - bit floating pt
z - 32 - bit floazing pt
Psi - 32 - bit BAM
ROTATIONAL i
96 THRESHOLD Theta - 32 - bit BAM
Phi - 32 - bit BAM
32 DURATION OF _) :
CHANGE 32 - bit unsigned integer

77

Update Threshold Response PDU

FIELD SIZE UPDATE THRESHOLD
(bits) RESPONSE PDU FIELDS

SITE - 16 - bit unsigned intezer

RESPONDING

48 ENTITYID HOST - 16 - bit unsigned integer

ENTITY - 16 - bit unsigned integer

SITE - 16 - bit unsigned integer

48 REQUESTING
ENTITYID HOST - 16 - bit unsigned integer

ENTITY - 16 - bit unsigned integer

8 RESULT 8 - bit enumeration

8 REMAINING 8 - bit unsigned integer
TIME

16 PADDING 16 bits unused

78

Service Request PDU

FIELD SIZE

(bits) SERVICE REQUEST PDU FIELDS
SITE - 16 - bit unsigned integer
48 REQLBTgG HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
SERVICING SITE - 16 - bit unsigned integer
48 ENTITYID HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
SERVICE TYPE 8 - bit enumeration
Number of (n) e : 3 ;
Sriife rnes 8 - bit unsigned integer
16 PADDING 16 bits unused
nx 96 SUPPLY Entiry Kind - 8 - bit enumeration
QUANTITY Domain - 8 - bit enumeration

Country - 16 - bit enumeration

Category - 8 - bit enumeration

Subcategory - 8 - bit enumeration

Specific - 8 - bit enumeration

Extra - 8 - bit enumeration

Quantity - 32 - bit floating pt

Resupply Offer PDU

FIELD SIZE

(bits) RESUPPLY OFFER PDU FIELDS
SITE - 16 - bit unsigned integer
48 REQUESTING | HOST - 16 - bit unsigned integer
N D ENTITY - 16 - bit unsigned integer
SUPPLYING SITE - 16 - bit unsigned integer
48 ENTITYID HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
8 Number of (n) 8 - bit unsigned integer
Supply types
24 PADDING 24 bits unused
Entity Kind - 8 - bit enumeration
Domain - 8 - bit enumeration
Country - 16 - bit enumeration
1% 06 SUPPLY Category - 8 - bit enumeration
QUANTITY Subcategory - 8 - bit enumeration

Specific - 8 - bit enumeration

Extra - 8 - bit enumeration

Quantity - 32 - bit floating pt

Resupply Received PDU

FIELD SIZE
(bits) RESUPPLY RECEIVED PDU FIELDS
SITE - 16 - bit unsigned integer
48 RECEWH*I;? HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
S SITE - 16 - bit unsigned integer
48 ENTITY D HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
Number of (n) 8 - bit Simad |
8 Sy s it unsigned integer
24 PADDING 24 bits unused
0 x 96 SUPPLY Entity Kind - 8 - bit enumeration
QUANTITY Domain - 8 - bit enumeration

Country - 16 - bit enumeration

Category - 8 - bit enumeration

Subcategory - 8 - bit enumeration

Specific - 8 - bit enumeration

Extra - 8 - bit enumeration

Quantity - 32 - bit floating pt

81

Resupply Cancel PDU

”E(Lé‘?tsff RESUPPLY CANCEL PDU FIELDS
115
SITE - 16 - bit unsigned integer
48 Rm HOST - 16 - bit unsigned mieger
ENTITY - 16 - bit unsigned integer
SITE - 16 - bit unsigned i
" SUPPLYING E-16 1‘t uns:.gned LIm.eger
ENTITYID HOST - 16 - bit unsigned integer

ENTITY - 16 - bit unsigned integer

82

Repair Complete PDU

F‘Eﬁ,‘? S)EE REPAIR COMPLETE PDU FIELDS
its
SITE - 16 - bit unsigned integer
REQUESTING ———
48 ENTITY D HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
SITE - 16 - bit unsigned integer
48 REPAIRING i ——
ENTITY D HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
16 REPAIR |REPAIR TYPE-16 - bit enumeration
16 PADDING 16 bits unused

Repair Response PDU

i REPAIR RESPONSE PDU
SITE - 16 - bit unsigned integer
48 |REQUESTING ™ HOST - 16 - bit unsigned mteger
ENTITYID
ENTITY - 16 - bit unsigned integer
REP G SITE - 16 - bl.l unsi_g'ngd iﬁtcger
48 ENTITYID HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
REPAIR
8 RESULT 8 - bit enumeration
24 PADDING 24 bits unused

84

Collision PDU

FRELeE AL COLLISION PDU FIELDS
(bits)
SITE - 16 - bit unsigned integer
48 ELI’E'?'TUIL;’«I:}E) HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
SITE - 16 - bit unsigned integer
COLLIDING : . .
48 ENTITY D HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer|
32 TIME STAMP 32 - bit unsigned integer
EVENT SITE - 16 - bit unsigned integer
48 D HOST - 16 - bit unsigned integer
EVENT - 16 - bit unsigned integer
16 PADDING 16 bits unused
x - 32 - bit floating pt
96 VELOATY y - 32 - bit floating pt
z - 32 - bit floating, pt
64 MASS 64 - bit floating pt
x - 32 - bit floating pt
LOCATION : .
926 (with respect 1o y - 32 - bit floating pt
Entity) z - 32 - bit floating pt

85

Radar PDU
(bHsSEZI RADAR PDU FIELDS
SITE - 16 - bit unsigned integer
EMITTING :
48 ENTITY D HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
16 PADDING 16 bits unused
32 TIME STAMP 32 - bit unsigned integer
EVENT SITE - 16 - bit unsigned integer
48 D HOST - 16 - bit unsigned integer
EVENT - 16 - bit unsigned integer
8 PADDING 8 bits unused
Number of : : ;
8 - bit gned inte
8 Radar Svstems (n) i e
x - 32 - bit floating pt
LOCATION (w/ y - 32 - bit floating pt
respect 1o
entity) z - 32 - bit floatng pt
RADAR SYSTEM 32 - bit unsigned integer
POWER 16 - bit integer
RADAR MODE 8 - bit enumeration
#ILLUMINED 8 - bit unsigned integer
nx (my)
(96m; + 352) SPECIFIC 64 - bit integer
DATA
Azimuth center - 32 - bit BAM
SWEEP Azimuth sweep - 32 - bit BAM
Elevation center - 32 - bit BAM
Elevation sweep - 32 - bit BAM
SITE - 16 - bit unsigned integer
TARISH HOST - 16 - bit unsigned integer
ENTITY - 16 - bit unsigned integer
PADDING 16 bits unused
RADAR DATA 32 - bit unsigned integer

352 bits

96 x m; bits
(i=lton)

86

APPENDIX B

SEND PROGRAMS AND DATABASES

88

FEFFRRFRRFRRFFRFFFRAARRFRERRFFRRR AR ERFER PR AR AR RARRRR AR
ddddaddsddd iy

isobjects - ISODE Objects Database

Mappings between object descriptors and object
identifiers

SHeader: /f/osi/config/RCS/objects.local,v 7.0 89/11/23
21:26:10 mrose Rel $

$Log: objects.local,v $
Revision 7.0 89/11/23 21:26:10 mrose
Release 6.0

dd sy adddddddadadd i
EEEFFRRRRREFFFFFFFF

TR RS

FRAFFFRFRFRFFRFRFFRRFRFHARBABRERRB R R R PR RE PR FR AR RARF
dddddaddad st

#

Syntax:

<object descriptor> <object id>

#
#
;
Each token is separated by LWSP, though double-quotes may
be used to prevent separation

#

da gy dddd i ddddd

FEFFFRERAAFAFFFFFFF

FHERBRRF A FFHFFRFFRRRRRHF AR AFRBAAAFFRHRRAAAA IR FRF
FRAFRERFRFAFRFAFFFF

locally defined objects

(this section is usually empty...)
############f##########f#f###f########f#i###################
iddddddddsdsdsdsddss

PREFEFARRARARHFERRFRRRFHRERRARRRRRRRRRARRRRRAARRFRRRARARATFFF
FREARFFRRFFRRRFFF S

$Header: /f/osi/support/RCS/objects.db,v 7.1 90/01/11
18:38:03 mrose Exp $

$Log: objects.db,v $
Revision 7.1 90/01/11 18:38:03 mrose
real-sync

TS O R R R W%

89

#

Revision 7.0 89/11/23 22:27:43 mrose

Release 6.0

“

dddadddadddd s sssadadaddd g daddsadadds s aaisdads
FHARRARRARFAREFAFFS

REFFRRRFFFFFRAAFFAFFFRRRRFFERRRRARFEFRRRRRAFFRRAAFFRRAAFFRAS
ddidddddddddddddddd

ISO ASN.1

FHEF R FRRAAFAAARRRRERAAB BB FEF BB AR RAA A FRAAAAAAAA
FEFRRRREAFFFERAAFHH

iso standard 8824
"iso asn.1l abstract syntax" 1.0.8824

iso standard 8825
"ijso asn.l abstract transfer" 1.0.8825

joint-iso-ccitt asnl(1l) basic-encoding(1)
"basic encoding of a single asn.l1l type" 2.1.1
temporary (for backwards compatibility)
"asn.l basic encoding” 2.1.1

bt adadiddaddidisdddsddddds

FHRERRRERRFFFFFFFARF
ISO ASSOCIATION CONTROL

HHEFRRREAFFFREARFAFFFRRRAREERRRRRAFFFRRAAREAFFHRAAFFRRAFFFARH
#EFRRRRAFFFRERAFFFF

Jjoint-iso-ccitt associationControl(2) abstractSyntax(1)
apdus (0) versionl(1)
"acse pci version 1" 2+2.1,0.1

idaddaaad s daadadadddd i didaddddi
dddddgadadddddssdds

ISO/CCITT RELIABLE TRANSFER
FREFFFFFFFFFFERFFEFFRARFERERRRRF BRI RI R
FHFERAFRRFRAFRFFAFF

joint-iso-ccitt reliable-transfer (3) apdus (0)
"rtse pci version 1" 2.3.0

joint-iso-ccitt reliable-transfer (3) aseID (1)
"rtse ase identifier" 2+3.1

joint-iso-ccitt reliable-transfer (3) abstract-syntax (2)
"rtse abstract syntax" 2.3.2

90

FRERFFAFFFFFFFFFFRRRRREFFFFRFRBFRFFFFHBARRRRABAARA AR HFFH
i ddddssdy

ISO/CCITT REMOTE OPERATIONS
FRFFFFFFFFFFFFFFFFFFAFARRRRRRRRRRRFR RS HA AR HHA
FEFFRRFFFFFRRRRRREH

joint-iso-ccitt remote-operations (4) notation (0)
"rose notation" 2.4.0

joint-iso-ccitt remote-operations (4) apdus (1)
"rose pci version 1" 2.4.1

joint-iso-ccitt remote-operations (4) notation-extension (2)
"rose notation-extension" 2.4.2

joint-iso-ccitt remote-operations (4) aseID (3)
"rose ase identifier" 2.4.3

joint-iso-ccitt remote-operations (4) aseID-ACSE (4)
"rose ase identifier ACSE" 2.4.4

FHAERRRRFFFFFRRAFEFFRHRRRAARARRRRFFAAARRR BRI AR
FREFRFREFFFEERREAH

ISO/CCITT DIRECTORY SERVICES
REFFFREFFFFFRIRFRRAFRRFREFREFARR R FRRRRRAAAAFRRAAF AR H
dadd s

joint-iso-ccitt ds(5) applicationContext(3)
directoryAccessAC(1)
"directory directoryAccessAC" 2.5.3.1

joint-iso-ccitt ds(5) applicationContext(3)
directorySystemAC(2)
"directory directorySystemAC" 2.5.3.2

joint-iso-ccitt ds(5) abstractService(9)
directoryAccessAS(1)
"directory directoryAccessAS" 2.5.9.1

joint-iso-ccitt ds(5) abstractService(9)
directorySystemAS(2)
"directory directorySystemAS" 2.5.9.2

dddddd gt dddddd g d i dadddsds
FHERRRFFFFFRRRAFRFH

ISO FTAM
FEFERAFFAFFRRAARRAAFFERRAFFRRARRRRAFRRRRRRRFEFFRRRFFRRRRAFFH
FEFFRRFFFFRRRRRAHF

iso standard 8571 abstract-syntax (2) ftam=-pci (1)
"ftam pci" 1.0.8571.2.1

91

iso standard 8571 application-context (1) iso-ftam (1)

"iso ftam" 1.0.8571.1.1
nbs-ad-hoc ftam-nil-ap-title (7)

"nil AP title" 1.3.9999.1.7
"null AP title" 1.3.9999.5.1

BEGIN DIS FTAM

iso standard 8571 transfer-syntax (3) ftam=-pci (1)
"ftam pci transfer syntax" 1.0.8571.3.1

END DIS FTAM

FRFFFFFFRFAFRRRRRRFEFARRRRFFAARARRR AR ER AR R R AR
dddsd s ddddddsdd
ISO VT

FHFFFRRFFFFFERAFFFFRRRERRRAAFFFFFRRRRRAAEAARARAA B R RV F
ddddddadadddadaddsd

TEMPORARY

"iso vt pci" 1:.17:1.10.1
"iso vt" 1aX T2 T002
"telnet" 1.3.9999.1.8.0
"forms" 1.3.9999.1.8.1
"default" 1.3.9999.1.8.2

FEFFFFFFFFFRERRARRRFFFRERRFAFAARERREA AR BRRRFAAAAAAAS
i dddaadsdddddsssd

ISO CMIP
FEFFFAFFRFFFRAFRRFFFRRIRERRRAEFRRRAFHR AR RREA A H R AR RR
FEFFFFERRFEFFFFAREH

iso standard 9596 abstractSyntax(0) cmip-pci(0)
"emip pci” 1.0.9596.0.0

iso standard 9596 cmip(2) version(l) acse(0)
functional=-units(0)
"cmip initialize pci" 1.0.9596.2.1.0.0

iso standard 9596 cmip(2) version(l) acse(0)
m-abort-source(1l)
"cmip abort pci® 1.0.9596.2.1.0.1

TEMPORARY application-context until 9596-2 gets its act
together
"iso cmip" 1.17:1.11.2

92

FREFFFRFFFFAFFFFRRRFERRFFFAAABRRRRIRARRRIRR R R H
FREFFERRFFRRRRERFFH

ISODE Object Identifiers

The PCI is an object identifier
without asking ISO's permission, we usurp the tree of
object identifiers that start with sub-elements
"1.17"

REFFFFFRAFFFERRRRAFFFRERRFFAFFRFRRRREEFFRRRAFRRRRAA AR HH
REFHRERAFAARRAFFRRAF

FE TR R

reserved for ISODE debug aids: 1.17.0
= 1.17,0.n:1 pci for debug
1175002 application context for debug

= 1.17.0.1 isode echo
"isode echo pci" 1.17.0.1.1

1.17.0.2 isode sink
"jsode sink pci" 1.17:.0.2:1

reserved for ISODE demo programs: 1.17.1
1:17:.3.0:1 pci for demo
1:17:.3.0:2 application context for demo

ks 1.17.1.1 isode miscellany
"isode miscellany pci" 1O Ly N0 WO, B
"isode miscellany" 1.37:2:2142

1.17.1.2 isode image (obsolete)

1.17.1.3 isode callback demo

B reserved (not actually used yet)
"isode callback demo pci" « iy & J5% G0 T |
"isode callback demo" 1.17.1.3.2

1.17.1.4 isode listen demo

reserved (not actually used yet)
"isode listen demo pci" : 1SR, (5 Cp: . A |

"isode listen demo" 1.17.1.4.2

“ 1.17.1.5 isode passwd lookup demo
"isode passwd lookup demo pci" 1.37:1.5.1
"isode passwd lookup demo" 1e27:1.5.2

1.17.1.6 isode dbm demo
"isode dbm demo pci 1787:1:6:1
"jsode dbm demo" 151751 :6::2

1.17.1.7 obsolete

93
1.17.1.8 isode shell
"isode shell" 1.17.1.8.1
"isode shell pci" 2:17:1:8:2
1.17.1.9 isode idist
"isode idist" 1:175359:3
"isode idist pci" 1337392
1.17.1.10 VT (temporary)
1.17.1.11 CMIP (temporary)
1.17.1.12 Z39.50 (temporary)
“"IRP Z39.50" 1.17.1.12.2
1.17.1.5 isode passwd lookup demo
"isode send string demo pci" 1.17.1.13.1
"isode send string demo" 117 .1 .23.2
reserved for local ISODE programs: 1.17.2
1.17.2:01 pci for local program
1.17.2+0:2 application context for local program
additions for local ISODE programs are made to the site's
objects.local file
reserved for ISODE FTAM document types: 1.17.3
see the isodocuments(5) file
reserved for application entity titles: 1.17.4
1.17.4.0 templates for services
1.17.4.1 templates for local services
1.17.4.2 examples of specific services
1.17.4.3 specific services under different
administrations

reserved for use with Directory attributes: 1.17.5

1.17.5.0 reserved

1.17.5.1 attributes under different administrations
(numbers parallel to 1.17.4.3 tree)

94

FREFRFFFRFRRRFFFFFFFARRRRRRARAARARRR IR RA AR A B
iddddaadddddaddddds

isoentities - ISODE Application Entity Title Database
Application Entity Titles as per ACSE
This file takes the place of "real" directory services;

OIDs are used for AETs, rather than Distinguished Names.

S$Header: /f/osi/support/RCS/entities.prefix,v 7.0 89/11/23
22:27:11 mrose Rel $

$Log: entities.prefix,v $
Revision 7.0 89/11/23 22:27:11 mrose
Release 6.0

FREFFFFRFFFFFRAARRRRRRRIFARRRRREBBFARRRRRRRRA BRI AR AAAA
RERFFRFRAFFFRRRRFH

RS

FRFFFFFFRRRRFRRREREAARRRRRRERAARRARARRRRARAAAARARFFEARAARAAA
FEFFFREFFRRRAAFFHAA

#

Syntax:

#

<host> <service> <aet> <paddr>

#

Each token is separated by LWSP, though double-quotes may
be used to prevent separation

#

dldadddadddddasdaddddasdddddddaddddddddadidddaadaddadaddddds
tEdddda s dddds

FEFFEREFFRRRRFFFFREAFFFFEFRRRRFFRRRRRRRFFFRERFAFFFRRAFFHRRARH
lddddadddddddddddds

#
Application entity titles: 1.17.4

1.17.4.0 templates for services

1.17.4.1 templates for local services
1.17.4.2 examples of specific services
1.17.4.3 specific services under different
administrations

H R

ddddddaad st dd
ddddadiadddddadddy

templates for services: 1.17.4.0

95
default default 1.17.4.0.0
this is where ISODE 3.0 FTAM (DIS over DIS) lived
#default filestore 1.17.4.0.1 #256/
default "isode/echo" 1.17.4.0.2 #512/
default "isode/rtse echo" 1.17.4.0.3 #513/
default "isode/ros_echo" 1.17.4.0.4 #514/
default "isode/sink" 1.17.4.0.5 #515/
default "isode/rtse sink" 1.17.4.0.6 #516/
default "isode/ros_sink" 1.17.4.0.7 #517/
default "isode miscellany" 1.17.4.0.8 #518/
default imagestore 1.17.4.0.9 #519/
default "isode callback demo" 1.17.4.0.10 #520/
default "isode listen demo" 1.17.4.0.11
default passwdstore 1.17.4.0.12 #521/
default dbmstore 1.17.4.0.13 #522/

temporary until the FTAM/FTP gateway is co-resident with the
FTAM responder

default ftpstore 1.17.4.0.13 #523/

default directory 1.17.4.0.14 #257/

this is where ISODE 4.0 FTAM (DIS over IS) lived

#default disfilestore 1:.17.4.0.15 #258/

this is where ISODE 5.0 (and later) FTAM (IS over IS) lives
default filestore 1.17.4.0.16 #259/

default shell 1.17.4.0.17 #524/

default terminal 1.17.4.0.18 #260/

default "isode idist" 1.17.4.0.19 #525/

default mib 1:17:4,0.20 #261/

dddaddad s dddsadaadddididddad iy
FHRFFARRFRRFREFRFFR
#

96

SHeader: /f/osi/config/RCS/entities.local,v 7.0 89/11/23
21:26:03 mrose Rel $

S

=

SLog: entities.local,v $

Revision 7.0 89/11/23 21:26:03 mrose

Release 6.0

#
idddddddadddasdddddaddddddddaddddddddaddsddsddsaadasa s
FAFFRERRF AR

templates for local services: 1.17.4.1

B3 local additions go here...

default passwdstore 1.17.4.1.7 #1040/
default send 1.17.4.1.8 #1041/
local additions end here (do not remove this line)

examples of specific services: 1.17.4.2
this section is empty

FAFFRIRAAFFERFFFRARRRFFFFRARRRRRAFFFRRRAAAAFFRAFFRRAAAAFFAFHF
iiddddgsddddssdddddd

S$Header: /f/osi/support/RCS/entities.db,v 7.2 90/01/11
18:37:58 mrose Exp $

$Log: entities.db,v $
Revision 7.2 90/01/11 18:37:58 mrose
real-sync

Revision 7.1 89/12/06 17:29:38 mrose
update

Revision 7.0 89/11/23 22:27:10 mrose
Release 6.0

e He Sk e Tk e Tk e e e W R R W%

FHFRRREAAFFRAAF AR ERRRRREARAAAFFRRAAAFAFFRFFRRRRAAFERAHF
dddddasdddaadddddy

HEFFFRHARAFAFABARFFRARARERAFRA PR FA BB FAERFA AR FAFAAF
Fddddddg g s

#

specific services under different administrations: 1.17.4.3
#
& 137 .4.3.0 local administration

1.17.4.3.2 Northrop Research and Technology Center

F Fe Hh e T e e T Tk Th T Th SR IR Th T T T TR Th Th e e T T TR Tk Sk 3k 9h 9h 3R 3k 9 T T T Tk T T T TR R R S e SR 3%

FRRPRPRERRERERRRR
« & @& =& & & = ® & = »
FRPRRPEERERRRR
NNNNNNNNNaYN
« & & & & ¥ ® ® w» = =»
F NI N N N N N N N S
WWWWWWWWWWW
« & & & = & & = = * »
HHERRPOONOWU S WN
(N

1.17.4.3.13
1.17.4.3.14
1.17.4.3.15
1.17.4.3.16

1.17.4.3.17
1.17.4.3.18
1.17.4.3.19
1.17.4.3.20
1.17.4.3.21
1.17.4.3.22

1.17.4.3.23
1.17.4.3.24
1.17.4.3.25
1.17.4.3.26
1.17.4.3.27
1.17.4.3.28
1.17.4.3.29
1.17.4.3.30
1.17.4.3.31
1.17.4.3.32
1.17.4.3.33

1.17.4.3.34

site default

97

University College London
Nottingham University

National Physical Laboratory
National Computing Centre

INRIA

Swedish Institute of Computer Science
Televerket (Swedish Telecom)

Ccos

University of Sussex

CNET

University of Cambridge Computer
Laboratory

The Wollongong Group

CHORUS

RARE

Swiss Federal Institute of Technology
Zurich

Tampere University of Technology
Diab Data AB

AU-system

Swedish Defense Material Administration
NCR Sweden

Swedish Agency for Administration
Development

TeleDelta

TeleLOGIC

Upsala University Computing Center
Royal Institute of Technology
Swedish State Power Board

CSIRO

Brunel University

Heriot-Watt University

Oce Research and Development
NYSERnet Inc.

Finnish University and Research Network
Project

German National Research Center for
Computer Science

Erlangen-Nuernberg University
University of Surrey

Rutgers University

most sites contain a single entry:

1:3YX7v4+:3:NN.1:0 " " LA
network addresses

HERAFHERARAFRAFRAFRARRFRRFRRFRFRAFRRAFRHRRFRRFRRFRAFRARRFRAH

HERRFRFRAFRFRAFRAFH

Northrop Research and Technology Center: 1.17.4.3.1

98

1.17.4.3.1.1 gremlin

gremlin default 1:.17:453:1:.1.0 \
Internet=gremlin.nrtc.northrop.com

University College London: 1.17.4.3.2

ucl default 1.17.4.3.2.1.0 \

Int-X25(80)=23421920030013|Janet=00000511160013|Internet=128
+16.5.1

hubris default 1.17.4.3.2.5.0 \

Int-X25(80)=23421920030047Janet=00000511160047 | Internet=128
.16.8.3

dir default 1.17:4.3.2:7:0 °\
Janet=00000511320041

Nottingham University: 1.17.4.3.3

nott default 1.17:.4.3.3:1,0 \

Int-X25(80)=23426020017299|Janet=000021000018+PID+03010100

National Physical Laboratory: 3:17.4:3.4

snow default 1:17:4:3:4.1:0 X
Int-X25(80)=23421390110298

National Computing Centre: 1.17.4.3.5

sol default 1.17.4.3.4.1.0 \
Int-X25(80)=23426160013967

zeb default 1.17.4.3.4.2.0 \
Int-X25(80)=23426160013957

INRIA: 1.17.4.3.6

inria default 150754536810\
Int-X25(80)=20807802017036

Swedish Institute of Computer Science: 1.17.4.3.7

tvtf default 1.17.4.3.7.1.0 \

99
Int-X25(80)=2402001328

Televerket (Swedish Telecom): 1.17.4.3.8

sics default 1.17.4.3.8.1.0 \
Int-X25(80)=2402001203+PID+03010100

COS: 1.17.4.3.9

echo default 1.17.4.3.9.1.0 \
Int-X25(80)=31342023004600}Internet=echo

reserved for University of Sussex: 1.17.4.3.10

CNET: 1.17.4.3.11

cnet default 1.17.4.3.11.1.0 \
Int-X25(80)=20809202045601+PID+03010100

University of Cambridge Computer Laboratory: 1.17.4.3.12

bescot default 1:17.4.3.32.1.0 '\
Int-X25(80)=23422233939909|Janet=00000801317701

Acting as an NRS distribution center

nrs filestore 1.17.4.3.12.1.1 \
#256/Int-X25(80)=23422233939909|Janet=00000801317701

The Wollongong Group: 1.17.4.3.13
1.17.4.3.13.1 gonzo

El 1.17.4.3.13.2 boomer

E 1.17.4.3.13.3 dart

1.17+4+.3.13.4. philj

gonzo default 1437.84+3.33.3.0 '\

Internet=gonzo.twg.com|Int-X25(80)=31344152401010+PID+030101
00 |NS+4700040008000141524010100000|NS+490059080020004053fe00

gonzo tgbridge 1.317.4:3:13.1.1 \

Internet=gonzo.twg.com+17004 | Int-X25(80)=31344152401010+PID+
03018000

gonzo "isode listen demo" 1.17.4.3.13.1.2 \
#521/Internet=gonzo.twg.com+17001

100

boomer default 1.17.4.3.13.2.0 '\
Internet=boomer

dart default 1.17.4.3,13.3.0 \
#1/NS+49005902608c425403fe04 | Internet=dart

philj default 1.17:4.3,13.4.0 \
#1/NS+49005902608c884255fe04 | Internet=philj

Chorus Systems: 1.17.4.3.14

chorus default 1.17.4.3.14.1.0 \
Int-X25(80)=208078091969

reserved for RARE: 1.17.4.3.15

Swiss Federal Institute of Technology Zurich: 1.17.4.3.16

multimeth default 1.17.4.3.16.1.0 \
Int-X25(80)=22849911084131

reserved for Tampere University of Technology: 1.17.4.3.17

Diab Data AB: 1.17.4.3.18

diab default 1¢37:4:3:18:,1.0 \
Int-X25(80)=2402000166+PID+03010100

reserved for AU-system: 1.17.4.3.19

reserved for Swedish Defense Material Administration:
Lesddsls320

reserved for NCR Sweden: 1.17.4.3.21

reserved for Swedish Agency for Administration Development:
1.17.4.3.22

reserved for TeleDelta: 1.17.4.3.23

reserved for TeleLOGIC: 1.17.4.3.24

101

reserved for Upsala University Computing Center: 1.17.4.3.25

reserved for Royal Institute of Technology: 1.17.4.3.26

reserved for Swedish State Power Board: 1.17.4.3.27

CSIRO: 1.17.4.3.28

ditmela default 1.17.4.3.28.1.0 \
Int-X25(80)=5052334300013+PID+03010100

guppy default 1.17.4.3.28.2.0 \
Int-X25(80)=5052334300017+PID+03010100
Brunel University: 1.17.4.3.29

brunel default 1.17.4.3.29.1.0 \
Janet=00004114000001+PID+03010100

bru-me default 1.17.4.3.29.1.0 \
Janet=00004113150001+PID+03010100

bru-cc default 1.17+4.3.29.1.0 \
Janet=00004113150002+PID+03010100
Heriot-Watt University: 1.17.4.3.30

ra default 1e17:4:3:.30.2:0 '\
Janet=00007024661010

helios default 1:17:4.3:30:2.0 X\
Janet=00007024661011

solaris default 1.37.4.3.30.3.0 \
Janet=00007024661013
reserved for Oce Research and Development: 1.17.4.3.31

NYSERNet Inc.: 1.17.4.3.32

1:17:4:3:.32.1 osi.nyser.net

1417:44¢3:32.2 uu.psi.com

1.17.4.3.32.4 oclc

osi.nyser.net default 1.17.4.3.32.1.0 \

Internet=osi.nyser.net|Int-X25(80)=31106070013600+PID+03010100

102

osi.nyser.net 239.50 1.137.4:3:32.2:1)\
#1025/Internet=o0si.nyser.net

uu.psi.com default 1:17¢4:3:32:.2.0 \
Internet=uu.psi.com

oclc 239.50 1.17.4.3.32.4.1 \
#1025/Int-X25(80)=31106140003659+PID+03010100

reserved for Finnish University and Research Network
Project: 1.17.4.3.33

reserved for German National Research Center for Computer
Science: 1.17.4.3.34

ORI R

Erlangen-Nuernberg University: 1.17.4.3.35

faui4s default 1.17.4.3.35.1.0 '\
Int-X25(80)=26245913144345+PID+03010100

University of Surrey: 1.17.4.3.36

sur-ee default 1.17.4.3.36.1.0 \
Janet=00004800200101+PID+03010100

=

do not, under any circumstances, remove anything beneath
this line

#

end of isocentities database

103

FRRRFFHRFFFFFFFFFFFFRFFERFRFRIRRRRERRRRRAAAFFHRRABHFARARAAAAH
ddddddddddddasddsdd

#
isoservices - ISODE Services Database

Mappings between services, selectors, and programs

SHeader: /f/osi/config/RCS/services.local,v 7.0 89/11/23
21:26:17 mrose Rel $

S$Log: services.local,v $
Revision 7.0 89/11/23 21:26:17 mrose
Release 6.0

FEFFFRRAFERRRAFFFRERAAAARF AR PR R FHRRAAF AR AR AR
FEFFFRREAFRRRRAFFFF

e e e R e H e 9 e e He

i d s adddddddidadidd s aaddds
FHRRAFFFFFRRRAARFRF

#

Syntax:

-

<provider>/<entity> <selector> <arg0> <argl> ... <argn>
#

Each token is separated by LWSP, though double-quotes may
be used to prevent separation

#
FAERFRRARFFRRFFFAEAARRFFFFRARRRRRERF R RRRR RS
FRERRFRRBRFRR R AH

e adadddddaadadadaadadadddadddaradadadadddddadadaddaddd
FHARERIRAREAR R E R

locally defined services

(this section is usually empty...)

ddadaddadadaad gt dd sl ddaddaaaaadaddadd
FREFHEFRERFRAF AR F#

local additions end here (do not remove this line)

FHFFFREFRRARAFFFREARFFAFRRRRRFF R RRERAFRRRRARAF R RF
FHAFRRAFFRRREFF RS

=

S$Header: /f/osi/support/RCS/services.db,v 7.1 90/01/11
18:38:07 mrose Exp $

#
#
#

$Log: services.db,v $

104

Revision 7.1 90/01/11 18:38:07 mrose

real-sync

#

Revision 7.0 89/11/23 22:27:44 mrose

Release 6.0

#
FHFAFFRAAFRAAFRAAFFREAFF AR ARARAAFRRAFF A B AR AV FAAHFFHAF
FRFRFRARAFAFAFAHFFF

i g adadasd st saddadddadasdsaddadddasddsd st s s
igdsgddsgaddaaddaddd

#

Entities living above the lightweight presentation service
#

Selector is unimportant

#
HERFRFAFAFRFRARARRBAFRA R BB FRF R FAFRFRF AR BB FAFAAAF A
iddddadds s Ea

"lpp/isode miscellany" "y lpp.imisc
lpp/mib LU lpp.cmot

ddadadasdadadadddddddsddadadddddadddds e ddsddddad
HEFFRRARRFRFRARFRAH

#

Entities living above the transport layer, expressed as TSAP

2048-32767 unassigned
32768-65535 process-specific

IDs

#

0 reserved

1-127 reserved for GOSIP

128-255 GOSIP-style TSAP IDs for ISODE

256-511 TSAP selectors for ISO applications
212~1023 TSAP selectors for ISODE

1024-2047 TSAP selectors reserved for local programs
#

#

#

FERFRAFAAFAAFAARARRRTRRARARRRFRRARAFRAFRAFRAFRARAFRARAF AR
s d s dddaddsddd

internal server to support asynchronous event INDICATIONs

tsap/isore #0 isore

GOSIP-style addressing

tsap/session #1 tsapd-bootstrap
debug aids

tsap/echo #128 isod.tsap
tsap/sink #129 isod.tsap

ISO applications

105
this is where ISODE 5.0 FTAM (IS over IS) lives
"tsap/filestore" #259 iso.ftam
this is where ISODE 4.0 FTAM (DIS over IS) lives
"tsap/filestore" #258 iso.ftam-4.0
this is where ISODE 3.0 FTAM (DIS over DIS) lived
"tsap/filestore" #256 iso.ftam-3.0
QUIPU is a static server
#"tsap/directory" #257 iso.quipu
"tsap/terminal" #260 iso.vt
"tsap/mib" #261 ros.cmip
"tsap/Z239.50" #262 is0.239-50
ISODE applications
"tsap/isode echo" #512 isod.acsap
"tsap/isode rtse echo" #513 isod.rtsap -rtse
"tsap/isode ros_echo" #514 isod.rtsap -rtse -rose
"tsap/isode sink" #515 isod.acsap
"tsap/isode rtse sink" #516 isod.rtsap -rtse
"tsap/isode ros_sink" #517 isod.rtsap -rtse -rose
"tsap/isode miscellany" #518 ros.imisc
imagestore is obsolete
#"tsap/imagestore" #519 ros.image
"tsap/isode callback demo" #520 iso.callback
"tsap/passwdstore" #521 ros.lookup
"tsap/dbmstore" #522 ros.dbm

temporary until the FTAM/FTP gateway is co-resident with the
FTAM responder

"tsap/ftpstore" #523 iso.ftam-ftp
"tsap/shell" #524 ros.osh
"tsap/isode idist" #525 ros.idist
"tsap/isode passwd" #1040 ros.lookup
"tsap/isode send #1041 ros.send

FHEFRRHFARRFFHFFFFRRFHEARFRFARRERHBRERERAERRRRRIFAARFRFFFAH
dddddddd s ddddddd

2048-32767 unassigned
32768-65535 process-specific

I3

Entities living above the session layer, expressed as SSAP
IDs

#

0 reserved

1-127 reserved for GOSIP

“ 128-255 GOSIP-style SSAP IDs for ISODE

B 256-1023 unassigned

1024-2047 SSAP selectors reserved for local programs
#

#

#

106

FHEFFFRFFFFRFFFFAFRFFAREFAARRRARRRRHRARRARFRFFHAA RS H
FRERREF AR AR AR A

GOSIP-style addressing

ssap/presentation #1 tsapd-bootstrap
ssap/rts #2 tsapd-bootstrap
ssap/ros #3 tsapd-bootstrap
debug aids

ssap/echo #128 isod.ssap
ssap/sink #129 isod.ssap

HAFRRARFRRAFRERAFERRAFERAFERAFFFE AR FEFFHRAFF BB HF BB HHF
ﬁ##################
Entities living above the presentation layer, expressed as
PSAP IDs

#
#
#
0 reserved

1-127 reserved for GOSIP

128-255 GOSIP-style PSAP IDs for ISODE

256-1023 wunassigned

E 1024-2047 PSAP selectors reserved for local programs

2048-32767 unassigned

32768-65535 process-specific

#
FREFRFFFFFFEREAFRREFARERR BB R RRRFFHFFAAAFFFFARFFFRFFH
g dddaddda s

GOSIP-style addressing

psap/ftam #1 iso.ftam
debug aids

psap/echo #128 isod.psap
psap/sink #129 isod.psap

FREFFFFFFFFFFEFFFFFFFFRRRFAARRFAARRRBFFARRFA R RAFARAAHHHAH
HEFRRERA R FHFRRAAAA

#
Old-style RTS addressing

#

0 reserved

1-127 reserved for GOSIP

128-255 GOSIP-style for ISODE
#

FREFREFFFFFAAAAARRFFAAAAARRERFARARRAAAR A FF A RARARARAFFFHAH
FEFFRRERAAFFFRAA A

mhs
rtsap/pl
rtsap/p3

w =

107

debug aids

rtsap/echo #128 isod.rtsap
rtsap/sink #129 isod.rtsap
rtsap/ros_echo #130 isod.rtsap
rtsap/ros_sink #131 isod.rtsap
"rtsap/file transfer" #132 iso.rtf

FHREFFFFFFEFRRRRRRRRFRRRRRRRRARARRAARRRRFRRRARRRR AR AR HH
FEFERAEREF AR AFE

#

Old-style ROS addressing

#

0 reserved

1-127 reserved for GOSIP

128-255 GOSIP-style for ISODE
=

dddddaadddadadddddd i dadaddaddddaddadidsdasdddd
FHREFERFFFRFFRFFFHF

debug aids
rosap/echo #128 isod.rosap
rosap/sink #129 isod.rosap

108

/* BEND.C
/* Program initiator modified from Lookup to perform

*J

/* the essential communication set-up and funtion definition
*]

#include <stdio.h>

#include <strings.h>

#include <math.h>

#include <sys/time.h>

#include "timer.h"

#include "ryinitiator.h" /* for generic interctive
initiators */

#include "PDU-ops.h" /* operation definitions
w/

#include "PDU-types.h" /* type definitions
%

/*

109

DATA */

/* the following three statements define the name for the
process */

/* and they are related with the ISODE object, entity and
service files */

static char *myservice "sendstring";
static char *mycontext "isode send string demo";
static char *mypci = "isode send string demo pci";

/* ARGUMENTS */
int do_send (), do_quit ();

/* RESULTS */
int send_result ();

/* ERRORS */
int send_error ();

/* This is the declaration of the available processes in this

*
/* intiator program with the standard structure dispatch

*/

static struct dispatch dispatches[] = {
"send", operation_PDU_send,
do_send, free_PDU_Pdu,
send_result, send error,
"send a pdu",

llquitll’ 0’

do_quit, NULLIFP,

NULLIFP, NULLIFP,

"terminate the association and exit",

NULL

/*

110

MAIN */
/* ARGSUSED */

/* Here is the top level call for the send program. The
ryinitloop */
/* routine resides in the ryinitiator.c program

G

main (argc, argv, envp)
int argc;
char **argv,

**env‘p;
{

(void) ryinitloop (argc, argv, myservice, mycontext,
mypci,
table_PDU_Operations, dispatches, do_quit);

exit (0); /* NOTREACHED */

/*

111

ARGUMENTS */
/* ARGSUSED */

/* do_send routine checks for the commmand line entered by the
user */
/* and buffers it

"y

static int do_send (sd, ds, args, arg)
int sd;

struct dispatch *ds;

char **args;

register struct type PDU Pdu **arg;

{

char *cp;

if ((cp = *args++) == NULL) {
advise (NULLCP, "usage: send pdu");
return NOTOK;

}

timer(0);
if ((*arg = str2gb (cp, strlen (cp), 1)) == NULL)
adios (NULLCP, "out of memory");

return OK;

/*

112

%/
/* ARGSUSED */

/* The do_quit routine handles the case when the user request
a *x/

/* graceful disconnect. Basically it calls the AcRelRequest to
=]

/* perform the disconnection

T

static int do_quit (sd, ds, args, dumnmy)

int sd;

struct dispatch *ds;

char **args;

caddr_t *dummy;

{
struct AcSAPrelease acrs;
register struct AcSAPrelease *acr = &acrs;
struct AcSAPindication acis;
register struct AcSAPindication *aci = &acis;
register struct AcSAPabort *aca = &aci -> aci_abort;

if (AcRelRequest (sd, ACF_NORMAL, NULLPEP, 0, NOTOK, acr,
aci) == NOTOK)
acs_adios (aca, "A-RELEASE.REQUEST");

if (lacr -> acr_affirmative) {
(void) AcUAbortRequest (sd, NULLPEP, 0, aci);
adios (NULLCP, "release rejected by peer: %d", acr =->
acr_reason) ;

}
ACRFREE (acr);

exit (0);

113

RESULTS */
/* ARGSUSED */

/* This is the function that handles the response that comes
back */

/* from the responder's program. Basically it displays the
message */

/* string on the terminal

w/

static int send_result (sd, id, dummy, result, roi)
int sd,
id,
dummy ;
register struct type PDU_Pdu *result;
struct RoSAPindication *roi;
{
char *tmp;
tmp=gb2str (result)
timer (strlen(tmp))
printf ("\n");
putchar('(');
printf (tmp) ;
printf (") <- echoed back by the responder\n");
return OK;

3
;

/*

114

ERRORS */
/* ARGSUSED */
/* send_error routine checks for the error during the message

o 4

/* sending

A
static int send error (sd, id, error, parameter, roi)
int sd,

id,

error;

caddr_t parameter;
struct RoSAPindication *roi;

{
register struct RyError *rye;
if (error == RY_REJECT) ({
advise (NULLCP, "%s", RoErrString ((int) parameter));
return OK;
}
if (rye = finderrbyerr (table PDU_Errors, error))
advise (NULLCP, "%s", rye =-> rye name);
else
advise (NULLCP, "Error %d", error);
return OK;
}

115

/* ryinitiator.c - generic interactive initiator */

#ifndef lint

gtaric char *rrcaeid = " SHeader:
/f/osi/others/lookup/RCS/ryinitiator.c,v7.089/11/2322:56:41
mrose Rel $";

#endif

#include <stdio.h>
#include <math.h>
#include <varargs.h>
#include "ryinitiator.h"
#include "wait.h"

/*

116

DATA */

static char *myname = "ryinitiator";

extern char *isodeversion;

l*

INITIATOR */

ryinitloop (argc, argv, myservice, mycontext, mypci,
dispatches, quit)
int argc;
char **argv,
*myservice,
*mycontext,
*mypci;
struct RyOperation ops([];
struct dispatch *dispatches;

IFP quit;
{
int n:1;3;
int iloop,
sd[10];

char buffer[BUFSIZ],
*vec[NVEC + 1];
register struct dispatch *ds;
struct SSAPref sfs;
register struct SSAPref *sf;
register struct PSAPaddr *pa[10];
struct AcSAPconnect accs;
register struct AcSAPconnect *acc = &accs;
struct AcSAPindication acis;
register struct AcSAPindication *aci = &acis;
register struct AcSAPabort *aca = &aci =-> aci_abort;
AEI aei[10];
OID ctx,
pci;
struct PSAPctxlist pcs;
register struct PSAPctxlist *pc = &pcs;
struct RoSAPindication rois;
register struct RoSAPindication *roi = &rois;

i if)

ops,

register struct RoSAPpreject *rop = &roi -> roi preject;

int cnt;

double tm;

printf ("argc=%d\n",argc) ;

if (tm = atof(argv[argc-1]))
argc--;

else
tm=0;

printf ("argc=%d tm=%f\n",argc,tm);

if (cnt = atoi(argv[argc-1]))

argc--;
else

cnt=1;
printf ("argc=%d cnt=%d\n",argc,cnt);
if (myname = rindex (argv([0], '/'))
myname++;
if (myname == NULL || *myname == NULL)

118

myname = argv([O0];
/* checking the command syntax */

if (argc < 2)

adios (NULLCP, "usage: %s host [operation [arguments ...
J1", myname);

/* detecting the number of nodes the connect */

n=1;
do {
n++;
} while ((n<argc) && (strcmp(argv[n],"send")));
n_- -
A
if ((sf = addr2ref (PLocalHostName ())) == NULL) {
sf = &sfs;
(void) bzero ((char *) sf, sizeof *sf);
}

/* this section checks if interactive mode or not and set the
wy
/* value of iloop

=

if (argc < n+2) {
printf ("%s", myname);
if (sf -> sr_ulen > 2)
printf (" running on host %s", sf -> sr_udata + 2);
if (sf -> sr_clen > 2)
printf (" at $s™, sf =-> sr cdata + 2);
printf (" [%s, ",mycontext);
printf ("%s]\n", mypci);
printf ("using %s\n", isodeversion);

(void) fflush (stdout);

iloop = 1;
}
else {
for (ds = dispatches; ds =-> ds_name; ds++)
if (strcmp (ds -> ds_name, argv[n+l]) == 0)
break;
if (ds -> ds_name == NULL)
adios (NULLCP, "unknown operation XN=Rg\mu
argv[n+1]);
iloop = 0;
}

/* This block sets some initial parameters and use tham to
*7
/* establish a connect and stores the connection

identification */

119

/* number in the variable sd

*/

for (i=l1l;i<=n;i++)

{ if ((aei[i]) = str2aei (argv([i]), myservice)) == NULLAEI)
adios (NULLCP, "$s-%s: unknown application-entity",
argv[i], myservice);
if ((pa[i] = aei2addr (aei[i])) == NULLPA)
adios (NULLCP, "address translation failed");

if ((ctx = ode2o0id

(mycontext)) == NULLOID)

adios (NULLCP, "$¥s: unknown object descriptor",

mycontext) ;
if ((ctx = oid cpy
adios (NULLCP, "out
if ((pci = ode2oid
adios (NULLCP, "%s:
if ((pci = oid_cpy
adios (NULLCP, "out

(ctx)) == NULLOID)

of memory");

(mypci)) == NULLOID)

unknown object descriptor", mypci);
(pci)) == NULLOID)

of memory");

pc => pc_nctx = 1;

pc => pc_ctx[0].pc_id = 1;

pc => pc_ctx[0].pc_asn = pci;

pc => pc_ctx[0].pc_atn = NULLOID;

if (iloop) {

printf ("%s... ", argv([i]);
(void) fflush (stdout);
}

if (AcAssocRequest (ctx, NULLAEI, aei[i], NULLPA, pa[i],
pc, NULLOID,
0, ROS_MYREQUIRE, SERIAL NONE , 0, sf, NULLPEP, O,
NULLQOS,
acc, aci)
== NOTOK)
acs_adios (aca, "A-ASSOCIATE.REQUEST");

if (acc =-> acc_result != ACS_ACCEPT) {
if (iloop)
printf ("failed\n");

adios (NULLCP, "association rejected: [%s]",
AcErrsString (acc => acc_result));
}

if (iloop) {
printf ("connected\n");
(void) fflush (stdout);
}

sd[(i] = acc -> acc_sd;

120

ACCFREE (acc);

/* This function call defines the types of lower layer
services */

/* required by the initiator process (this call can be found
in */

/* the responder side as well in ryresponder.c

.

if (RoSetService (sd[i], RoPService, roi) == NOTOK)
ros_adios (rop, "set RO/PS fails");

}

/* this block in a infinite loop when interactrive mode is

chosen */

/* and finishes when the user enters the quit command.

Basically */

/* the program calls the disconnect service to have a graceful
»)

/* disconnection

"/
if (iloop) {
for (;;) {
if (getline (buffer) == NOTOK)
break;
if (str2vec (buffer, vec) < 1)
continue;
for (ds = dispatches; ds -> ds_name; ds++)
if (strcmp (ds -> ds_name, vec[0]) == 0)
break;
if (ds =-> ds_name == NULL) {
advise (NULLCP, "unknown operation \"%s\"", vec[0]);
continue;
}
for (i=1;i<=n;i++)
for (j=1;j<=cnt;j++) {
invoke (sd(i], ops, ds, vec + 1);
wait(tm);
}
}
}
else

for (i=1l;i<=n;i++)
for (Jj=1;j<=cnt;j++) {
invoke (sd(i], ops, ds, argv + n + 2);
wait(tm);
}

121

for (i=1;i<=n;i++)
(*quit) (sd[i], (struct dispatch *) NULL, (char #*x)
NULL, (caddr_t *) NULL);
}

/*

122

wp

/* this routine calls the Rystub to send the name of the
process to */
/* be performed by the responder and the parameter of that
process */

static invoke (sd, ops, ds, args)
int sd;
struct RyOperation ops[];
register struct dispatch *ds;
char **args;
{
int result;
caddr_t in;
struct RoSAPindication rois;
register struct RoSAPindication *roi = &rois;
register struct RoSAPpreject *rop = &roi -> roi_preject;

in = NULL;

if (ds -> ds_argument && (*ds -> ds_argument) (sd, ds,
args, &in) == NOTOK)

return;

switch (result = RyStub (sd, ops, ds -> ds_operation,
RyGenID (sd), NULLIP,
in, ds -> ds_result, ds -> ds_error,
ROS_SYNC,
roi)) {
case NOTOK: /* failure */
if (ROS_FATAL (rop —-> rop_reason))
ros_adios (rop, "STUB");
ros_advise (rop, "STUB");

break;

case OK: /* got a result/error response */
break;

case DONE: /* got RO-END? */

adios (NULLCP, "got RO-END.INDICATION") ;
/* NOTREACHED */

default:
adios (NULLCP, "unknown return from RyStub=%d4d",
result) ;
/* NOTREACHED */

}

if (ds -> ds_free && in)
(void) (*ds -> ds_free) (in);

*/

123

/* routine that get the line entered by the user and buffers

it */

static int getline (buffer)
char *buffer;

{
register int i
register char *cp,
*ep;
static int sticky = 0;
if (sticky) {
sticky = 0;
return NOTOK;
}
printf ("%s> ", myname) ;
(void) fflush (stdout);
for (ep = (cp = buffer) + BUFSIZ - 1; (i = getchar ())
'\n';) {
if (i == EOF) {
printf ("\n");
clearerr (stdin);
if (cp != buffer) ({
sticky++;
break;
}
return NOTOK;
}
if (cp < ep)
*Ccp++ = 1i;
}
*cp = NULL;
return OK;
}
/ *

-

124

*/

void ros_adios (rop, event)
register struct RoSAPpreject *rop;
char *event;

{

ros_advise (rop, event);

_exit (1);

void ros_advise (rop, event)
register struct RoSAPpreject *rop;
char *event;

{
char buffer[BUFSIZ];

if (rop -> rop cc > 0)
(void) sprintf (buffer, "[%s] %*.*s", RoErrString (rop ->
rop_reason),
rop => rop_cc, rop -> rop_cc, rop -> rop_data);
else
(void) sprintf (buffer, "[%s]", RoErrString (rop =->
rop_reason));

advise (NULLCP, "%s: %s", event, buffer);

/*

"y

void acs_adios (aca, event)
register struct AcSAPabort *aca;
char *event;

{

acs_advise (aca, event);

_exit (1);

void acs_advise (aca, event)
register struct AcSAPabort *aca;
char *event;

{
char buffer [BUFSIZ];

if (aca =-> aca_cc > 0)

(void) sprintf (buffer, "[%$s] %*.*s",
AcErrString (aca -> aca_reason),
aca -> aca_cc, aca -> aca_cc, aca -> aca_data);

else

(void) sprintf (buffer, "[%s]",

aca_reason));

advise (NULLCP, "%s: %s (source %d)", event, buffer,

aca -> aca_source);

AcErrstring

125

-

4

#ifndef lint
void _advise ();

void adios (va_alist)
va_dcl

{
va_list ap;

va_start (ap);
_advise (ap);
va_end (ap);

_exit (1);
}
#else
/* VARARGS */

void adios (what, fmt)
char *what,

*fmt;
{

}
#endif

adios (what, fmt);

#ifndef lint
void advise (va_alist)
va_dcl

{
va_list ap;
va_start (ap);

_advise (ap);

va_end (ap);

static void _advise (ap)
va_list ap;
{

char buffer [BUFSIZ];

asprintf (buffer, ap);

(void) fflush (stdout);

126

fprintf (stderr, "%s: "

r

myname) ;

(void) fputs (buffer, stderr);
(void) fputc ('\n', stderr);

(void) fflush (stderr);
}

#else
/* VARARGS */

void advise (what, fmt)
char *what,

*fmt;
{
advise (what, fmt);
}
#endif

#ifndef lint
void ryr_ advise (va_alist)
va_dcl

{

va_list ap;
va_start (ap);
_advise (ap);
va_end (ap);

}

#else
/* VARARGS */

void ryr advise (what, fmt)
char *what,

*fmt;
{ .
ryr advise (what, fmt);
}
#endif

127

128

/* ryinitiator.h - include file for the generic interactive
initiator */

/%
* SHeader: /f/osi/others/lookup/RCS/ryinitiator.h,v 7.0

89/11/23 22:56:43 mrose Rel S
*

$Log: ryinitiator.h,v $
Revision 7.0 89/11/23 22:56:43 mrose
Release 6.0

/

* ¥ % * ¥ ¥

/*
%*
*
* Acquisition, use, and distribution of this module and

related
* materials are subject to the restrictions of a license

agreement.
* Consult the Preface in the User's Manual for the full
terms of

* this agreement.
*

*/

NOTICE

#include "rosy.h"

static struct dispatch {
char *ds name;

int ds_operation;
IFP ds_arqgument;
IFP ds_free;

IFP ds result;
IFP ds_error;

char *ds_help;

void adios (), advise ();
void acs_adios (), acs_advise
void ros_adios (), ros_advise

—
e
- W

int ryinitiator ();

129

/* ryresponder.c - generic idempotent responder */

#ifndef lint
statie char *rcsid = " SHeader:

/f/osi/others/lookup/RCS/ryresponder.c,v7.089/11/2322:56:44
mrose Rel $";

#endif
/ *

* SHeader: /f/osi/others/lookup/RCS/ryresponder.c,v 7.0

89/11/23 22:56:44 mrose Rel $
*

$Log: ryresponder.c,v $
Revision 7.0 89/11/23 22:56:44 mrose
Release 6.0

* ¥ * ¥ ¥

*/
/*

*

*

* Acquisition, use, and distribution of this module and
related

* materials are subject to the restrictions of a license
agreement.

* Consult the Preface in the User's Manual for the full
terms of

* this agreement.
*

7

NOTICE

#include <stdio.h>

#include <setjmp.h>

#include <varargs.h>

#include "ryresponder.h"

#include "tsap.h" /* for listening */

/*

DATA */
int debug = 0;

static LLog _pgm log = {
"responder.log", NULLCP, NULLCP,
LLOG_FATAL | LLOG_EXCEPTIONS | LLOG_NOTICE,
—lf
LLOGCLS | LLOGCRT { LLOGZER, NOTOK
}i
LLog *pgm_log = & pgm log;

static char *myname = "ryresponder";

static jmp_buf toplevel;

static IFP startfnx;
static IFP stopfnx;

130

LLOG_FATAL,

int ros_init (), ros_work (), ros_indication (), ros_lose ();

extern int errno;

/*

131

RESPONDER */
/* this top level routine acts as a responder to the incoming
message */
/* string. Basically it responds toto connection request and
sets the */
/* lower layer services

*/

int ryresponder (argc, argv, host, myservice, dispatches,
ops, start, stop)
int argc;
char **argv,
*host,
*myservice;
struct dispatch *dispatches;
struct RyOperation *ops;
IFP start,
stop;
{
register struct dispatch *ds;
AEI aei;
struct TSAPdisconnect tds;
struct TSAPdisconnect *td = &tds;
struct RoSAPindication rois;
register struct RoSAPindication *roi = &rois;
register struct RoSAPpreject *rop = &roi -> roi_preject;

if (myname = rindex (argv[0], '/'))
myname++;
if (myname == NULL }} *myname == NULL)

myname = argv([0];

isodetailor (myname, 0);
if (debug = isatty (fileno (stderr)))
11 dbinit (pgm log, myname);
else {
static char myfile[BUFSIZ];

(void) sprintf (myfile, "%s.log",
(strncmp (myname, "ros.", 4)
&& strncmp (myname, "lpp.", 4))
{1 myname[4] == NULL
? myname : myname + 4);
pgm_log => 11 file = myfile;
11 _hdinit (pgm_log, myname);
}

advise (LLOG_NOTICE, NULLCP, "starting");

if ((aei = str2aei (host, myservice)) == NULLAEI)
adios (NULLCP, "%s-%s: unknown application-entity", host,
myservice) ;

132

for (ds = dispatches; ds -> ds_name; ds++)
if (RyDispatch (NOTOK, ops, ds =-> ds_operation, ds ->
ds_vector, roi)
== NOTOK)
ros_adios (rop, ds -> ds name);

startfnx = start;
stopfnx = stop;

/* this routine handles the initial connection establishment,

the */

/* message transmissions and the connection release calling
w/

/* ros_init, ros work and ros_lose respectively

wf

if (isodeserver (argc, argv, aei, ros_init, ros work,
ros_lose, td)
== NOTOK) ({
if (td -> td_cc > 0)
adios (NULLCP, "isodeserver: [%s] %*.*s",
TErrString (td -> td_reason),
td -> td_cc, td -> td _cc, td —> td_data);
else
adios (NULLCP, "isodeserver: [%s]",
TErrString (td -> td reason));
}

return 0;

133

wy

/* this routine respondes to the connection establishment
request */

static int ros_init (vecp, vec)
int vecp;
char **vec;
{
int reply,
result,
sd;
struct AcSAPstart acss;
register struct AcSAPstart *acs = &acss;
struct AcSAPindication acis;
register struct AcSAPindication *aci = &acis;
register struct AcSAPabort *aca = &aci -> aci_abort;
register struct PSAPstart *ps = &acs -> acs_start;
struct RoSAPindication rois;
register struct RoSAPindication *roi = &rois;
register struct RoSAPpreject *rop = &roi -> roi preject;

if (AcInit (vecp, vec, acs, aci) == NOTOK) ({
acs_advise (aca, "initialization fails");
return NOTOK;

advise (LLOG_NOTICE, NULLCP,
"A-ASSOCIATE.INDICATION: <%d, %s, %s, %s, %d>",
acs -> acs_sd, oid2ode (acs -> acs_context),
sprintaei (&acs -> acs _callingtitle),
sprintaei (&acs =-> acs_calledtitle), acs =->
acs_ninfo) ;

sd = acs -> acs_sd;
for (vec++; *vec; vec++)
advise (LLOG_EXCEPTIONS, NULLCP, "unknown argument
\“%S\""’ *vec) ;
reply = startfnx ? (*startfnx) (sd, acs) : ACS_ACCEPT;

result = AcAssocResponse (sd, reply,

reply != ACS_ACCEPT ? ACS_USER NOREASON :
ACS_USER_NULL,
NULLOID, NULLAEI, NULLPA, NULLPC, ps ~->

ps_defctxresult,

ps =-> ps_prequirements, ps -> ps srequirements,
SERIAL_NONE,

ps -> ps_settings, &ps -> ps_connect, NULLPEP, O,
aci);
ACSFREE (acs);

if (result == NOTOK) ({

134

acs_advise (aca, "A-ASSOCIATE.RESPONSE");
return NOTOK;

}
if (reply != ACS_ACCEPT)
return NOTOK;

if (RoSetService (sd, RoPService, roi) == NOTOK)
ros_adios (rop, "set RO/PS fails");

return sd;

/*

135

*]
/* This routine handles the incoming message strings sent by
the */

/* initiator. It waits for the process request sent from the

*/
/* initiator
*/
static int ros work (fd)
intk fa:;
{
int result;

caddr_t out;

struct AcSAPindication acis;

struct RoSAPindication rois;

register struct RoSAPindication *roi = &rois;

register struct RoSAPpreject *rop = &roi -> roi_ preject;

switch (setjmp (toplevel)) {
case OK:
break;

default:

if (stopfnx)

(*stopfnx) (fd, (struct AcSAPfinish *) 0);

case DONE:

(void) AcUAbortRequest (fd, NULLPEP, O, &acis) ;

(void) RyLose (fd, roi);

return NOTOK;
}

switch (result = RyWait (fd, NULLIP, &out, OK, roi)) {
case NOTOK:

if (rop -> rop reason == ROS_TIMER)

break;
case OK:
case DONE:

ros_indication (fd, roi);

break;

default:

adios (NULLCP, "unknown return from
RoWaitRequest=%d", result);

}

return OK;

/*

136

*f
/* This routine handles the possible errors that might happen
during */
/* the message transmission

*/
static int ros_indication (sd, roi)
int sd;

register struct RoSAPindication *roi;
{
int reply,
result;

switch (roi -> roi_type) {
case ROI_INVOKE:
case ROI_RESULT:
case ROI_ERROR:
adios (NULLCP, "unexpected indication type=%d", roi
-> roi_type);
break;

case ROI_UREJECT:
{

register struct RoSAPureject *rou = &roi ->
roi_ureject;

if (rou -> rou noid)
advise (LLOG_EXCEPTIONS, NULLCP,
"RO-REJECT-U.INDICATION/%d: %s",
sd, RoErrString (rou -> rou reason));
else
advise (LLOG_EXCEPTIONS, NULLCP,
"RO-REJECT-U.INDICATION/%d: %s (id=%d)",
sd, RoErrstring (rou -> rou_reason),
rou => rou_id);
}
break;

case ROI_PREJECT:

{

register struct RoSAPpreject *rop = &roi ->
roi_preject;

if (ROS_FATAL (rop -> rop _reason))
rosTadios (rop, "RO-REJECT-P.INDICATION") ;
ros_advise (rop, "RO-REJECT-P.INDICATION") ;

}
break;

case ROI_FINISH:
{

register struct AcSAPfinish *acf = &roi =->
roi_finish;

137
struct AcSAPindication acis;
register struct AcSAPabort *aca = &acis.aci_abort;
advise (LLOG_NOTICE, NULLCP,
"A-RELEASE.INDICATION/%d: %d4d",

sd, acf -> acf reason);

reply = stopfnx ? (*stopfnx) (sd, acf) : ACS_ACCEPT;

result = AcRelResponse (sd, reply, ACR_NORMAL,
NULLPEP, O,

&acis) ;

ACFFREE (acf);

if (result == NOTOK)

acs_advise (aca, "A-RELEASE.RESPONSE");
else

if (reply != ACS_ACCEPT)

break;

longjmp (toplevel, DONE);
}
/* NOTREACHED */
default:
adios (NULLCP, "unknown indication type=%d", roi ->
roi_ type);
}
}

/*

138

*f

static int ros_lose (td)
struct TSAPdisconnect *td;

{
if (td -> td_cc > 0)
adios (NULLCP, "TNetAccept: [%s] %*.*s",
TErrString (td -> td reason), td -> td cc, tada ->
td_cc,

td -> td_data);
else

adios (NULLCP, "TNetAccept: [%s]", TErrString (td ->
td reason));

}
/%

ERRORS */

void ros_adios (rop, event)
register struct RoSAPpreject *rop;
char *event;

{

ros_advise (rop, event);

longjmp (toplevel, NOTOK) ;

void ros_advise (rop, event)
register struct RoSAPpreject *rop;
char *event;

{
char buffer [BUFSIZ];

if (rop -> rop_cc > 0)

(void) sprintf (buffer, "[%s] %F*.*s",

rop_reason),

rop -> rop_cc, rop -> rop_cc,

else

(void) sprintf (buffer, "[%s]",

rop_reason)) ;

advise (LLOG_EXCEPTIONS, NULLCP,

rop -> rop_data);

RoErrsString

139

RoErrString (rop ->

->

"¥s: %s", event, buffer);

140

*/

void acs_advise (aca, event)
register struct AcSAPabort *aca;
char *event;
{

char buffer [BUFSIZ];

if (aca -> aca_cc > 0)
(void) sprintf (buffer, "[%s] %*.*s",
AcErrString (aca -> aca_reason),
aca -> aca_cc, aca -> aca_cc, aca =-> aca_data);
else
(void) sprintf (buffer, "[%s]", AcErrString (aca ->
aca_reason)) ;

advise (LLOG_EXCEPTIONS, NULLCP, "%s: %s (source zd)v,
event, buffer,

aca -> aca_source);

}
/ *

*f

#ifndef lint
void adios (va_alist)
va_dcl

{
va_list ap;

va_start (ap);

_11_log (pgm_log, LLOG FATAL, ap);

va_end (ap);

_exit (1);
}
felse
/* VARARGS2 */

void adios (what, fmt)
char *what,

*fmt;
{

}
#endif

adios (what, fmt);

#ifndef lint
void advise (va_alist)
va_dcl

{
int code;
va_list ap;

va_start (ap);
code = va_arg (ap, int);
_11 log (pgm log, code, ap);

va_end (ap);
}
#else
/* VARARGS3 */

void advise (code, what, fmt)
char *what,

*fmt;
int code;

{
}

advise (code, what, fmt);

141

#endif

#ifndef lint
void ryr_advise (va_alist)
va_dcl

¢ va_list ap;
va_start (ap);
_11_log (pgm_log, LLOG NOTICE, ap);
va_end (ap);

;else

/* VARARGS2 */

void ryr advise (what, fmt)
char *what,

*fmt;
{

}
#endif

ryr_advise (what, fmt);

142

143

/* ryresponder.h - include file for the generic idempotent
responder */

/*
* SHeader: /£/osi/others/lookup/RCS/ryresponder.h,v 7.0
89/11/23 22:56:46 mrose Rel $

-

*

* SLog: ryresponder.h,v $

* Revision 7.0 89/11/23 22:56:46 mrose

* Release 6.0

*

*/

/*

* NOTICE

*

* Acquisition, use, and distribution of this module and
related

* materials are subject to the restrictions of a license
agreement.

* Consult the Preface in the User's Manual for the full
terms of

* this agreement.

*

*/

#include "rosy.h"
#include "logger.h"

static struct dispatch {
char *ds_name;
int ds_operation;

IFP ds_vector;

extern int debug;

void adios (), advise ();

void acs_advise ();

void ros_adios (), ros_advise ();
void ryr advise ();

int ryresponder ();

144

/* timer.h - timer utility =-- common subroutines */

#ifndef lint
#endif

/ *

* SHeader: /f/osi/others/lookup/timer.c,v 7.0 89/11/23
22:10:50 mrose Rel §

*

*

* Revision 7.0 89/11/23 22:10:50 mrose

* Release 6.0

*

*/

/ *

* NOTICE

*

* Acquisition, use, and distribution of this module and
related

* materials are subject to the restrictions of a license
agreement.

* Consult the Preface in the User's Manual for the full
terms of

* this agreement.

*

*/

#include <varargs.h>

#1if defined(SYS5) && !defined (HPUX)
#include <sys/times.h>

#define TMS

#endif

/*

145

*/

#ifndef NBBY
#define NBBY 8
#endif

#ifndef TMS
timer (cc)

int ce;
{
long ms;
float bs;
struct timeval stop,
td;
static struct timeval start;
if (cc == 0) {
(void) gettimeofday (&start, (struct timezone *) 0);
return;
}
else

(void) gettimeofday (&stop, (struct timezone *) 0);

tvsub (&td, &stop, &start);

ms = (td.tv_sec * 1000) + (td.tv_usec / 1000);
bs = (((float) cc * NBBY * 1000) / (float) (ms ? ms : 1))
/ NBBY;

printf ("round ¢trip of: %d bytes in %d ms (%.2f
Kbytes/s) \n (%.2f bits/s)\n
(%.2f ms/bit)",
cc, td.tv_usec / 1000, bs / 1024,
bs / 0.128, 128 / bs);

static tvsub (tdiff, t1, t0)
register struct timeval *tdiff,
*t1,
*t0;

tdiff -> tv_sec = t1 -> tv_sec - t0 -> tv_sec;

tdiff -> tv_usec = t1l -> tv_usec - t0 -> tv_usec;

if (tdiff -> tv_usec < 0)

tdiff -> tv_sec--, tdiff -> tv_usec += 1000000;
}

#else
long times ();

146

static timer (cc)
int cc;
{
long ms;
float bs;
long stop,
td,
secs,
msecs;
struct tms tm;
static long start;

if (cc == 0) {

start = times (&tm);
return;

}

else

stop = times (&tm);

td = stop - start;

secs = td / 60, msecs = (td % 60) * 1000 / 60;

ms = (secs * 1000) + msecs;

bs = (((float) cc * NBBY * 1000) / (float) (ms ? ms : 1))
/ NBBY;

printf ("1-round trip of: %d bytes in %d.%02d seconds (%.2f
Kbytes/s)",
cc, secs, msecs / 10, bs / 1024);

}
#endif

APPENDIX C

ABSTRACT SYNTAX NOTATION ONE (ASN.1) MODULES

148

-=- SEND.RY - the IST message transmission data specification

PDU DEFINITIONS ::=
BEGIN
-- operations
-=- send pdu

send OPERATION
ARGUMENT Pdu

RESULT Pdu
ERRORS { noSuchUser, congested }
$igem 0

-=- errors

-- no matching user in the database
noSuchUser ERROR

-1 0

-- congestion at responder
congested ERROR
1= 1

-- types

-- pdu
Pdu ::=
[APPLICATION 1]
IMPLICIT SEQUENCE ({
echo([0]
IMPLICIT GraphicString

END

-- PDU-OPS.C -~

/* automatically generated by rosy 6.0 #3 (falcon),

edit! */

#include <stdio.h>
#include "PDU-ops.h"

#include "PDU-types.h"
/* OPERATIONS */

/* OPERATION send */
int encode_PDU_Pdu (),
decode PDU Pdu (),
free PDU_Pdu {);
int encode_PDU Pdu (),
decode PDU Pdu (),

free_ PDU Pdu ();

static struct RyError *errors_PDU_send[] = {
&table PDU Errors[0],
&table PDU_Errors([1]

struct RyOperation table PDU Operations[] = {
~/* OPERATION send */
"send", operation_PDU_send,
encode PDU_send argument,
decode PDU send_argument,
free_ PDU send _argument,
1, encode PDU_send_result,
decode PDU send result,
free PDU send result
errors_PDU_send,

NULL

/* ERRORS */

struct RyError table PDU_Errors[] = {
/* ERROR noSuchUser */
"noSuchUser", error_ PDU noSuchUser,
encode_PDU noSuchUser_parameter,
decode_PDU_noSuchUser parameter,

free_PDU_noSuchUser_ parameter,
/* ERROR congested */
"congested", error_ PDU_congested,
encode_PDU congested parameter,

149

do not

150

decode_PDU_congested_parameter,

free PDU_congested parameter,

NULL

151

-- PDU-STUB.C --
/* automatically generated by rosy 6.0 #3 (falcon), do not
edit! */

#include <stdio.h>
#include "PDU-ops.h"
#include "PDU-types.h"
#ifdef lint

int stub PDU send (sd, id, in, rfx, efx, class, roi)
int =d,

id,
class;
struct type_ PDU_Pdu* in;
IFP rfx,
efx;
struct RoSAPindication *roi;
{
return RyStub (sd, table PDU Operations,

operation PDU send, id, NULLIP,
(caddr_t) in, rfx, efx, class, roi);

}
int op_PDU_send (sd, in, out, rsp, roi)
int sd;

struct type_ PDU_Pdu* in;
caddr_t *out;

int *rsp;

struct RoSAPindication *roi;

{
return RyOperation (sd, table_PDU_Operations,
operation_ PDU_send,
(caddr_t) in, out, rsp, roi);
}
#endif

152

-- PDU-ASN.PY --
-- automatically generated by rosy 6.0 #3 (falcon), do not
edit!

PDU DEFINITIONS ::=

BEGIN

[APPLICATION 1]
IMPLICIT SEQUENCE {
echo[0]
IMPLICIT GraphicString

Pdu

END

153

-- PDU-TYPE.C --
/* automatically generated by posy 6.0 #4 (falcon), do not
edit! */

#ifndef _module_ PDU_defined_
#define _module PDU defined_

#include "psap.h"

#ifndef PEPYPATH

#define PEPYPATH

#endif

#include "../pepy/UNIV-types.h"

#define type PDU_Pdu type_UNIV_GraphicString
#define free PDU_Pdu free_ UNIV_GraphicString
#endif

-- PDU-TYPE.PH --

-- automatically generated by posy 6.0 #4 (falcon),

edit!

PDU DEFINITIONS ::

I

%{

#include <stdio.h>
#include "PDU-types.h"
%}

PREFIXES encode decode print

BEGIN

ENCODER encode

Pdu [[P struct type PDU Pdu *]] ::=
[APPLICATION 1]
IMPLICIT SEQUENCE

3
%}
{
echo[0]
IMPLICIT GraphicString
[[(p parm]]

}
DECODER decode

Pdu [[P struct type PDU Pdu **]] ::=
(APPLICATION 1]
IMPLICIT SEQUENCE
%{
%}

echo[0]
IMPLICIT GraphicString
([P &((*parm))]]
END
3
%}

154

do not

155

-- SEND.C --
/* automatically generated by pepy 6.0 #4 (falcon), do not
edit! */

#include "psap.h"

#define advise ryr_ advise
void advise ();

/* Generated from module PDU */

#include <stdio.h>
#include "PDU-types.h"

#ifndef PEPYPARM

#define PEPYPARM char *
#endif /* PEPYPARM */
extern PEPYPARM NullParm;

/* ARGSUSED */

int encode PDU_Pdu (pe, explicit, len, buffer, parm)
register PE *pe;
int explicit;
integer len;
char *buffer;
struct type PDU Pdu * parm;
{
PE p0_z = NULLPE;
register PE *p0 = &p0_z;

if (((*pe) = pe_alloc (PE_CLASS_APPL, PE_FORM_CONS, 1)) ==
NULLPE) ({
advise (NULLCP, "Pdu: $%s", PEPY_ERR_NOMEM) ;
return NOTOK;

}

{
line 20 "PDU-types.py"

(*p0) = NULLPE;

{ /* echo */
if (encode_UNIV_GraphicString (p0O, 0, NULLINT, NULLCP,
parm) == NOTOK)
return NOTOK;
(*p0) =-> pe_class = PE_CLASS_CONT;
(*p0) -> pe_id = 0;

#ifdef DEBUG
(void) testdebug ((*p0), "echo");

156

#endif

}

if ((*p0) != NULLPE)
if (seqTadd ((*pe), (*p0), -1) == NOTOK) {
advise (NULLCP, "Pdu %s%s", PEPY_ERR _BAD_ SEQ,
pe_error ((*pe) -> pe_errno));
return NOTOK;
}

#ifdef DEBUG

(void) testdebug ((*pe), "PDU.Pdu");
#endif

return OK;

[CCITTS8a]

[CCITT88b]

[CCITT88c]

[CCITTS8d]

[CCITT88e]

[CENG91]

[FIPS87]

[GAUDS9]

[ISI81a]

BIBLIOGRAPHY

Integrated Services Digital Network (ISDN). International Telegraph and
Telephone Consultative Committee, November, 1988. Recommendations
1.430 and 1.431.

Integrated Services Digital Network (ISDN). International Telegraph and
Telephone Consultative Committee, November, 1988. Recommendation
Q.921.

Integrated Services Digital Network (ISDN). International Telegraph and
Telephone Consultative Committee, November, 1988. Recommendation
Q.931.

Message Handling: System and Service Overview. International Telegraph
and Telephone Consultative Committee, November, 1988.
Recommendation X.400.

The Directory - Overview of Concepts, Models, and Services.
International Telegraph and Telephone Consultative Committee,
November, 1988. Recommendation X.500.

Cengeloglu, Y.; Ng, H.K.; and Pourparviz, G., "Investigating the Use fo
the Distributed Interactive Simulation Protocol Standards for Real Time
Simulation Networking", Institute for Simulation and Training, Publication
Number IST-TR-91-4, February 15, 1991.

Federal Information Processing Standards, "GOSIP Draft", National
Bureau of Standards Federal Information Processing Standards Publication
(FIPS PUB), National Technical Information Service, U.S. Department
of Commerce, Springfield, VA 22161, 1987.

Gaudette, P., "A Tutorial on ASN.1", U.S. Department of Commerce,
National Institute of Standards and Technology, Technical Report
NCSL/SNA-89/12, May 1989.

Information Sciences Institute, University of Southern California, Internet

Protocol. Request for Comment 791, DDN Network Information Center,
SRI International, September 1981.

157

[1SI81b]

[ISO84]

[ISO86]

[ISO87a]

[ISO87b]

[ISO87c]

[ISO87d]

[ISO88a]

[ISO88b]

158

Information Sciences Institute, University of Southern California,
Transmission Control Protocol. Request for Comment 793, DDN
Network Information Center, SRI International, September 1981.

Information Processing Systems - Open Systems Interconnection -

Basic Reference Model. International Organization for Standardization and
International Electrotechnical Committee, 1984. International Standard
7498.

Information Processing Systems - Data Communications - High-Level Data
Link Control Procedures - Description of the X.25 LAPB-Compatible DTE
Data Link Procedures. International Organization for Standardization and
International Electrotechnical Committee, 1986. International Standard
7776.

Information Processing Systems - Local Area Networks - Logical Link
Control. International Organization for Standardization and International
Electrotechnical Committee, 1987. Draft International Standard 8802-2.

Information Processing Systems - Data Communications - Network Service
Definition. International Organization for Standardization and International
Electrotechnical Committee, 1987. International Standard 8343.

Information Processing Systems - Open Systems Interconnection - Protocol
for Providing the Connectionless-Mode Transport Service. International
Organization for Standardization and International Electrotechnical
Committee, 1987. International Standard 8602.

Information Processing Systems - Open Systems Interconnection - Basic
Connection Oriented Session Protocol Specification. International
Organization for Standardization and International Electrotechnical
Committee, 1987. International Standard 8327.

Information Processing Systems - Data Communications - Protocol for
Providing the Connectionless-Mode Network Service. International
Organization for Standardization and International Electrotechnical
Committee, 1988. International Standard 8473.

Information Processing Systems - Open Systems Interconnection -
Connection Oriented Transport Protocol Specification. International
Organization for Standardization and International Electrotechnical
Committee, 1988. International Standard 8073.

[ISO88c]

[ISO88d]

[ISO88e]

[ISO89a]

[ISO89b]

[ISO89¢]

[ISO89d]

[ISO89¢]

[ISO89f]

159

Information Processing Systems - Open Systems Interconnection -
Connection Oriented Presentation Protocol Specification. International
Organization for Standardization and International Electrotechnical
Committee, 1988. International Standard 8823.

Information Processing Systems - Open Systems Interconnection - The
Directory. International Organization for Standardization and International
Electrotechnical Committee, 1988. Draft International Standard 9594.

Information Processing Systems - Open Systems Interconnection - File
Transfer, Access and Management. International Organization for
Standardization and International Electrotechnical Committee, 1988.
International Standard 8571.

Information Processing Systems - Open Systems Interconnection -
Specification of Abstract Syntax Notation One (ASN.1). International
Organization for Standardization and International Electrotechnical
Committee, 1989. International Standard 8824 with Draft Addendum 1.

Information Processing Systems - Open Systems Interconnection -
Application Layer Structure. International Organization for Standardization
and International Electrotechnical Committee, 1989. International Standard
9545.

Information Processing Systems - Local Area Networks - Part 3: Carrier
Sense Multiple Access with Collision Detection (CSMA/CD) Access
Method and Physical Layer Specifications. International Organization for
Standardization and International Electrotechnical Committee, 1989.
International Standard 8802-3.

Information Processing Systems - Local Area Networks - Part 4: Token-
Passing Bus Access Method and Physical Layer Specifications.
International Organization for Standardization and International
Electrotechnical Committee, 1989. Draft International Standard 8802-4.

Information Processing Systems - Local Area Networks - Part 5: Token
Ring Access Method and Physical Layer Specifications. International
Organization for Standardization and International Electrotechnical
Committee, 1989, Draft International Standard 8802-5.

Information Processing Systems - Fibre Distributed Data Interface (FDDI).
International Organization for Standardization and International
Electrotechnical Committee, 1989. International Standard 9314.

|

[1S089g]

[1SO89h]

[LOPESI1]

[MCDO90]

[PAIGO0]

[PISC86]

[ROSES87]

[ROSES88]

[ROSE90a]

[ROSE90b]

[SHENSI]

160

Information Processing Systems - Data Communications - X.25 Packet
Level Protocol for Data Terminal Equipment. International Organization
for Standardization and International Electrotechnical Committee, 1989.
Draft International Standard 8208.

Information Processing Systems - Open Systems Interconnection - Virtual
Terminal Protocol. International Organization for Standardization and
International Electrotechnical Committee, 1989. Draft International
Standard 9041.

Loper, M.L.; Shen, D.; Thompson, J.; and Williams, H., "ISODE
System Installation Manual”, Institute for Simulation and Training,
Internal Report, January, 1991.

McDonald, B.L.; Pinon, C.; Glasgow, R.; and Danisas, K., "Rationale
Document Protocol Data Units for Distributed Interactive Simulation"”,
Institute for Simulation and Training, Publication Number IST-PD-90-1,
June 15, 1990.

Paige, LT. J.L., "SAFENET - A Navy Approach to Computer
Programming"”, IEEE 15th Conference on Local Computer Networks,
Minneapolis, Minn., October 1-3, 1990.

Piscitello, D.M.; Weissberger, A.J.; Stein, S.A.; and Chapin, A.L.,
"Internetworking in an OSI Environment", Data Communications, May
1986, pp. 118-136.

Rose, M.T., "ISODE: Horizontal Integration in Networking",
ConneXions, The Interoperability Report, vol. 1, no. 1, May 1987.

Rose, M.T., "Building Distributed Applications in an OSI Framework",
ConneXions, The Interoperability Report, vol. 2, no. 3, March 1988.

Rose, M.T., "The Open Book: A Practical Prespective on OSI", Prentice
Hall, Englewood Cliffs, N.J., 1990.

Rose, M.T., "The ISO Development Environment: User’s Manual,
Volumes 1-5", Performance Systems International, Inc., January 14,
1990.

Shen, D., "ISODE Network Performance Experimental Analysis",
Institute for Simulation and Training, Internal Report, February 15, 1991.

h

[STAL87]

[TANES8]

161

Stallings, W., Local Networks, Second Edition, Macmillan Publishing
Company, N.Y., 1987.

Tanenbaum, A.S., Computer Networks, Second Edition, Prentice Hall,
Englewood Cliffs, N.J., 1988.

Dooooo 7

	OSI-based Communications Architecture For The Distributed Interactive Simulation Application Utilizing The ISODE: An Evaluation Of A Prototype
	Recommended Citation

	0000007.pdf

