
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-1991

OSI-based Communications Architecture For The Distributed OSI-based Communications Architecture For The Distributed

Interactive Simulation Application Utilizing The ISODE: An Interactive Simulation Application Utilizing The ISODE: An

Evaluation Of A Prototype Evaluation Of A Prototype

Margaret L. Loper

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Loper, Margaret L., "OSI-based Communications Architecture For The Distributed Interactive Simulation
Application Utilizing The ISODE: An Evaluation Of A Prototype" (1991). Institute for Simulation and
Training. 152.
https://stars.library.ucf.edu/istlibrary/152

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/152?utm_source=stars.library.ucf.edu%2Fistlibrary%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

I
I
I
I
I
I
I May 1991

I
I
I
I
I
I
I
I
I
I
I

~

An Evaluation of a

Prototype OSI-8ased
Communications Architecture for the
Distributed Interactive Simulation
Application Utilizing the ISO DE

M.toper • D. Shen • J. Thomoson • Dr. Henry Williams

IOSlilUl0 lor $imulallon ana Training
\ 2424 Research Par1\way, Sulle 300
vrlando FL 32826

, ·_ .. ···-tty of Central Flor!da
I of Sponsored Researc::b

8 21 8

IST·TR·91 ·16

I
I
I
I
I
I.
I
I
I
I
I
I
I
I
I
I
I
I
I

INSTITUT E FOR SIMULAT I O N AND TRAINING

An Evaluation of a Prototype

OSI-8ased Communications
Architecture for the Distributed

Interactive Simulation Application
Utilizing the ISODE

-

Margaret Loper' David Shen • Jack Thompson • Dr. Henry Williams

May 1991

lST·TR·91- 16

Institute for Simulation and Training
12424 ReS8ard'l Parkway, Suite 300

Orlando FL 32826

University of Central FlorJda
Division of Sponsored Research

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

AN EVALUATION OF A PROTOTYPE OSI-BASED
COMMUNICATIONS ARCHI1'ECI1JRE FOR THE

DISTRIBUTED INTERACTIVE SIMULATION APPLICATION
UTILIZING THE ISODE

Technical Report

Margaret Loper
David Shen

lack Thompson
Dr. Henry Williams

May 1991

Institute Jor Simulation and Training
University oj Central Florida

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TABLE OF CONTENTS

LIST OF TABLES •. . . . •.. . • . . .• . . • • • ..• v

LIST OF FIGURES • . . • • . . . • • .. VI

CHAPTER I INTRODUCTION • . . . • . . . • . . . • 1
Statement of Problem 1
Distributed Interactive Simulation (DIS) • . . . • • . . • . . 2
Open Systems Interconnection (OSI)•... .• .. .•. .. • .. 4

. Introduction • 4
OSl Layer Descriptions • . . . • • . . . • . . . • . . . 7

Layer 1: Physical Layer • . .. •. . .•. . 7
Layer 2: Data Link Layer • . . .• • . . • . . . • . . 8
Layer 3: Network Layer • . . . • • 9
Layer 4: Transport Layer 10
Layer 5: Session Layer • • . . . • . . . • .. 10
Layer 6: Presentation Layer • . . . • 11
Layer 7: Application Layer • •.. •• ..• .. II

Application Layer Infrastructure 14
ISO Development Environment (ISODE) • • . . • •. 18
Computer Network Performance • 20

CHAPTER II APPROACH • . . . • . . . • . . . • 23
Methodology • . . • • . . . • 23

Hardware Environment . 23
Software Environment •• . . .•• 24
Test Plan 25

Research of Problem • 27
Summary of Relevant Research • . . . • • 27

CHAPTER III IMPLEMENTATION • • • . . . 28
Encoding Protocol Data Units in ASN. l • . . . • • 28

Encoding DIS PDUs 33
Experimental Constraints . 39

Building the Distributed Interactive Simulation Prototype Application in
ISODE 41
Naming and Addressing Information 43
Remote Operations Module • •... • ... • . .. 46

111

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Abstract Syntax Module 47
Initiator and Responder Programs • 48

Prototype DIS Communication Architecture Execution 50
SEND Program: Detail Description •. 51

ExperimentaJ Performance Analysis .. 54
Performance Statistics • . . . • . . . • . . • . .. 55
Results and Analysis••..•.. 58

CHAPTER IV CONCLUSIONS • • . . . • . . . • 65

APPENDICES . • . . . • • 69

A. Distributed Interactive Simulation Protocol Data Unit
Structures 70

B. SEND Programs and Databases•...•...•.. 87

C. Abstract Syntax Notation One (ASN. I) Modules • . . . • . . . • 147

BIBLIOGRAPHY . • . . . • . . . • . . • .. 157

iv

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

LIST OF TABLES

1. Commonly Used OS! and Non-OS! Protocols. . . • . • • • 13

2. DIS Entity State PDU• .. • • .. .• 34

3. Length of DIS PDUS • . . . • . . . • . . . • 40

4. Performance Data for Experiment 1 . 56

5. Performance Data for Experiment 2 • . . . • . .. 57

v

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

LIST OF FIGURES

1. Open Systems Interconnection Reference Model •..•. 5

2. Application Layer Protocols• • 15

3. ISODE Model of OSI Protocols •. . • . . .•.. .• 19

4. Experimental Network Hardware Configuration 24

5. PDU Round Trip Path • • . . . • . . . 26

6. ASN.l Mappings•...• • . . . • . . • 29

7. ASN.l Module Components•.......• 33

8. Dynamic and Static Facilities of Distributed

Applications . • . . . • • . .. 41

9. ISODE Static Facilities•...•..•........ 48

10. Flow Diagram of the SEND Program . . . • . . • • 52

11. Experimental Network 58

12. Experiment 1: Message Size vs. Average Round Trip Time 61

13. Experiment 1: Message Size vs. Average Round Trip Time

(Sample Size = 500) . • . . . 62

14 . Experiment 2: Message Size vs. Average Round Trip Time ... • 63

15. Experiment 2: Message Size vs. Average Round Trip Time

(Sample Size = 500) . 64

vi

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ABSTRACT

The advent of computer networking has spawned a wide variety of applications

and technologies. Among the most exiciting and promising of these is Distributed

Interactive Simulation (DIS) . This technology involves the interconnecting of simulated

(virtual) environments which allow participants in one simulation to interact, in real time,

with those in another simulation, and observe their interactions by means of out-the

window views of the individual simulators.

The key to the evolution and worldwide acceptance of this DIS technology will

be the adoption and integration of standard computer networking methodologies (i.e . ,

Open Systems Interconnection (OSI» into the overall DIS system communications

architecture design.

This paper presents results obtained from research into the building of a prototype

communications architecture for the DIS application utilizing the ISO Development

Environment (lSODE). The ISODE is a software implementation of the upper three

layers of the OSI protocol suite, which runs on UNIX-based workstations. ISODE uses

the Transmission Control Protocol/Internet Protocol (TCPIIP) lower layer

communications protocols supplied by most UNIX systems to perform the actual inter

computer communications over Ethernet. The purpose of ISODE is to provide a working

envi ronment in which to experiment with the upper OSI stack layers. ISODE is a public

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

domain software package and source code is provided to allow for modification of the

software.

This research thesis presents the following: 1) a description of the DIS application

and its requirements; 2) a discussion of OSI concepts and their applicability to the DIS

application; 3) a brief overview of the ISO Development Environment and its services

and facilities; 4) a description of the prototype DIS architecture developed using ISODE;

5) a discussion of the experiment and test plan for evaluating the prototype DIS

architecture; 6) data obtained and analysis thereof; and, 7) conclusions drawn from this

research.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER I

INTRODUCTION

Statement or Problem

The advent of direct computer-la-computer communications (computer

networking) has opened the possibility of interconnecting many different types of

computer-based systems. Until recently I most devices used in Simulation and Training

(5&T), which usually contained an embedded computational resource, operated in a stand

alone mode. Today there is a major emphasis being placed on the development of

distributed S&T systems which are networkable. In this context, the term "networkable"

includes the requirement that the S&T systems are capable of communicating

(transmitting and receiving) information which can be interpreted by .other devices

attached to the network, thereby allowing for real-time open interaction between such

devices.

To achieve simulator interoperability. a standard communications protocol is being

developed. The Distributed Interactive Simulation (DIS) draft standard establishes the

requirements and provides the rationale for the Protocol Data Units (PDUs) exchanged

between DIS entities. Since this emerging standard is primarily concerned with

Department of Defense (DoD) simulator interoperability I the concept of Open Systems

and specifically the Government Open Systems Interconnection Profile (GOS IP) has

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2

become an important issue. As of August 1990, compliance with GOS[P is mandatory

and binding for U.S. government procurement of new network products (computers) and

services. GOSlP defines a common set of data communications protocols which enable

systems developed by different vendors to interoperate and enable the users of different

applications on these systems to exchange information. GOS!P is compliant with the

International Organization for Standardization (1S0) standards.

The major goal of the DIS standardization efforts is to provide an open

communications (network protocols) environment in which DIS vendors can develop

standard DIS compliant products. The goal of the Open Systems Interconnection (OSI)

approach is to provide international open standards for inter·computer communication.

Therefore, it is important to study the relationship between DIS and standardized

communication suites, such as, the OSI protocol suite. This research effort develops and

evaluates a prototype OSI-based communications architecture for real-time Distributed

Interactive Simulation applications. In particular, the universal data structures present

in OSI communications are thoroughly investigated in terms of DIS applications. Tools

and services available in the ISO Development Environment (lSODE) are used to design

and and conduct the experiments performed in this research.

Distributed Interactive Simulation (DIS)

The Institute for Simulation and Training (1ST), based at the University of Central

Florida (UCF) in Orlando, has the DoD mission to standardize the information passed

between simulators participating in a networked training exercise. This is being

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3

accomplished in a govemment-industry-academia workshop forum by synthesizing

material from successful networked simulations and by detailed analyses of competing

technologies. In August 1990, 1ST submitted a draft standard of DIS for government and

industry approval. In January 1991, 1ST delivered the draft military DIS POU standard

[MC009Ij.

The issuance of the draft standard is only a small step in the development of a

usable public domain network protocol standard which will provide truly open

interoperability between simulations. In fact, the DIS PDU Standard defines only the

POU data structure used by the Application Layer (layer 7) of the seven layer OSI

network protocol stack. There is a great deal of work which needs to be done to specify,

precisely, the network services required by the DIS application, and then to translate

these requirements into an OSI solution .

Distributed Interactive Simulation also refers to the physical placement of the

interactive simulators or simulations panicipating in a military training exercise.

Networked simulator exercises can be executed in both Local Area Networks (LANs) and

Wide Area Networks (W ANs). A number of simulators may participate in an exercise

at one time and these simulators must share information about the simulated world in

which they are interacting. This information includes: Entity State, which contains

information about the entity being simulated; Weapons Fire, which describes the type of

munition fired, location of the weapon, and the velocity of the munition; Weapons

Detonation, which is issued when the trajectory of the fired munition is terminated;

Collisions, which is issued by a simulator when it determines that a collision has

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4

occurred between the issuing entity and another entity; Radar, which designates a radar

is being used by the entity; and Repair and Resupply, which requests and acknowledges

these services. Each of the twelve DIS PDUs has a header which specifics the

identification number associated with the DIS exercise, the protocol version, and the type

of PDU that follows. For the purpose of this paper, a generic PDU will be used in

transmissions across the prototype OS! communications architecture stack. The DIS

PDU data structures are included in Appendix A.

Open Systems Interconnection (OSD

Introduction

The Open Systems Interconnection (OSI) Reference Model was developed in 1977

by the International Organization for Standardization (ISO) in response to the need to

interconnect heterogeneous (developed by different vendors) computers. OSI defines a

framework for the interaction of users and applications in a distributed data processing

environment [lS084]. This environment may include a variety of computer and terminal

equipment, as well as many different kinds of communications technologies. The

standards for connecting "open- systems for distributed applications are based on a

structuring technique called layering, in which the communication functions of the

network are divided into a hierarchical set of layers . Each layer performs an integral

subset of special functions required to communicate with another layer of similar type.

Two layers which correspond in this manner are called peer layers. The peer layers

communicate by means of a set of rules or conventions known as protocols. Each layer

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

in the OS] reference model relies on the operation and services of the adjacent lower

layer to perform more primitive communication functions. The interface between these

layers is known as the Service Access Points (SAPs). The seven layer OS] reference

model is shown in Figure 1.

Layer 7: Application

(presentation SAP)

Layer 6: Presentation

(Session SAP)

Layer 5: Session

(Transport SAP)

Layer 4: Transport

(Network SAP)

Layer 3: Network

(Data Link SAP)

Layer 2: Data Link

(physical SAP)

Layer 1: Physical

Figure I. Open Systems Interconnection Reference Model

A brief definition of each layer of the OSI model. according to [STAL871.

follows:

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Si

6

Layer 1: The Physical Layer is concerned with transmission of unstructured bit stream
over the physical link. This includes the mechanical, electrical, and procedural
characteristics to establish, maintain, and deactivate the physical link.

Layer 2: The Data Link Layer provides for the reliable transfer of data across the
physical link.

Layer 3: The Network Layer is responsible for establishing, maintaining, and
terminating connections.

Layer 4: The Transport Layer provides reliable, transparent transfer of data between
end points.

Layer 5: The Session Layer provides the control structure for communication between
applications. It establishes, manages, and terminates connections between cooperating
applications.

Layer 6: The Presentation Layer performs transformations on data to provide a
standardized application interface and to provide common communications services.

Layer 7: The Application Layer provides services to the users of the OSl environment.

In each of the seven layers, a layer service is defined to identify the set of

functions provided by the layer. A service user of a layer is an entity in the adjacent

higher layer. Layer services in OSI are of two general types: connection-oriented (CO).

which allow the service users to establish and use logical connections; and connectionless

(Cl), which allow the service users to exchange information without having to establish

a connection . A CO service is provided in three distinct phases:

Phase 1: Connection Establishment - The service user and service provider negotiate
the way the service will be used. This is also referred to as a "binding".

Phase 2: Data Transfer - The service users exchange data .

Phase 3: Connection Release - The binding between users is discarded .

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

7

A CL service has only one phase, namely, Data Transfer. In a CL service,

there is no ongoing relationship established between service users. Thus, there is no

connection establishment or connection release phase in a CL service. The 051

application Jayer services are CO in nature. However, the lower layer services offer CO

service with optional interfaces to CL protocols.

OSI Layer Descriptions

The following sections supply more information on each layer of the OSI

reference model, such as the services provided within each layer and the most commonly

used protocols. These descriptions are based on rr ANE881.

Layer 1; Physical Layer. The Physical layer is concerned with transmitting raw data,

i.e. , unstructured bit streams, over a communication channel. The design of this layer

involves such issues as signal voltage swing and bit duration. Mechanical; electrical, and

procedural interfaces, as well as the physical transmission medium are a1so considered

in the design of this layer.

One of the most common physical layer standards in use today is RS-232-C ,

which specifies a 25-pin connector between two devices. Also included in this layer are

the IEEE 802 protocols, adopted by ISO (IEEE 802 .3, 802.4, 802.5). These standards

define the Carrier Sense Multiple Access With Collision Detection (CSMA/CD) (ISO

880213), Token Passing Bus (ISO 8802/4), and Token Ring (ISO 8802/5) protocols,

respectively. The IEEE 802 protocols are used mainly in local area networks. The

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

8

newest addition to the physical layer protocols is the Fiber Distributed Data Interface

(FOPI), which specifies the use of optical fiber as the transmission medium. FDDI has

been adopted by ISO and is specified by ISO 9314. The last commonly used Physical

layer protocol is the CCITI Integrated Service Digital Network (ISDN). ISDN standards

allow the integration of data, voice and video over the same digital links. ISDN spans

the Physical , Data Link, and Network layers (Layers I, 2, and 3) of the OS! model. In

the Physical layer, ISDN is defined by the International Telegraph and Telephone

Consultative Committee (CCITr) 1.430 and 1.431.

Layer 2: Data Link Layer. The Data Link Layer has the task of reliably transfering

data across the physical link. This is accomplished by having the sender break the input

data into data frames with the necessary synchronization, error control, and flow control

information. Since the physical layer only accepts and transmits a stream of bits without

regard to structure, it is the task of the data link layer to create and recognize these

boundaries. This is accomplished by attaching special bit patterns to the beginning and

end of a frame.

Some of the protocols which fall into this layer include the High-Level Data Link

Control (HDLC), which is a synchronous bit-oriented protocol (ISO 7776) and the IEEE

Logical Link Control (LLC) (ISO 8802/2) . The LLC protocol is an IEEE protocol which

has been adopted by ISO. In the IEEE standards, the LLC is used in conjunction with

the Medium Access Control (MAC) protocol. The MAC manages the communication

over the link, while the LLC manages the frame transmitted over the link. The MAC

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9

operates over both the OSI Physical and Data Link Layers. MAC is not an ISO adopted

protocol. ISDN is also a common protocol for the Data Link layer and is defined by

CCIIT Q.921.

Layer 3: Network Layer. The Network Layer provides the upper layers with

independence from the data transmission and switching technologies used to connect

systems. A key design issue for network layer protocols is determining how packets afe

routed from source to destination.

The Network layer is a point of divergence between the ISO and non-ISO

communities. Within the CCIIT protocol suite, the X.25 (Layer 3) protocol is the

standard for public packet switched networking for Wide Area Networks (VVANs) . X.25

has been adopted by ISO as a Layer 3 network standard (ISO 8208). The Department

of Defense also has a protocol which falls into Layer 3 of the OSI model. This protocol

is called the Internet Protocol (lP) and is responsible for internetwork routing and

delivery. IP (deflned in Request For Comment (RFC) 791) is not an ISO standard. The

CCIIT ISDN is defined in this layer by Q.931. There are two additional OSI Network

layer protocols, Connectionless Network Protocol (CLNP) and Connection Oriented

Network Service (CONS) . CLNP (defined by ISO 8473) accomplishes the routing of

messages by adding addressing information to each message, thus operating in a

connectionless manner. CONS (defined by ISO 8348) allows the Transport service to

bypass CLNP when operating over a single X.25 subnetwork.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

10

Layer 4; Transport Layer. The goal of the Transport Layer is to accept data from the

Session layer, divide the data into smaller units if necessary. pass this data to the network

layer, and ensure that aU pieces arrive correctly at the destination. These functions will

be performed in reverse order at the destination. This transparent delivery of data

between end points provides end-la-end error recovery and flow control. The transport

layer also determines what type of service to provide to the session layer; connection

oriented (CO) service with messages delivered in order or connection less (eL) service

with no guarantee about the order of delivery. The transport layer is the end-lo-cnd or

source-la-destination layer.

For this layer, ISO specifies the Transport Protocols (TP) which consists of 5

classes (TPO-TP4). These classes are defined in ISO 8073 . The TPO-TP3 protocol

classes work wi th a CO-mode network service, while TP4 works with both CO- and CL

mode network services. The OS1 model also defines the Connectionless Transport (CL 1)

defined by ISO 8602. CLT provides a connectionless datagram service.' However, the

most widely accepted and used transport protocol is the DoD Transmission Control

Protocol (TCP) , defined in RFC 793 . TCP, like IP, is not an ISO standard.

Layer 5: Session Layer. The Session Layer allows users on different computers to

establish and use a connection , cal led a session. The Session layer provides the structure

for controlling the dialogue or communication between applications. This dialogue may

be two-way simultaneous, two-way alternate, or one-way. The Session Jayer can also

provide a checkpointing mechanism so that if a failure occurs, the session ent ity can

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

II

retransmit all data since the last checkpoint. The Session service is defined by ISO 8327.

Examples of a Session service might be to invoke a remote log-in or to transfer files

between two computers.

Layer 6: Presentation Layer. The Presentation Layer is concerned with the syntax and

semantics of the data being transmitted between machines. Typically. computers have

different methods for representing data (ASCII (American Standard Code for Information

Interchange), EBCDIC (Extended Binary Coded Decimal Interchange Code), one's

complement, two's complement, etc.} Thejob of the Presentation layer is to manage the

abstract data structures which define the different representations and convert these

representations between internal and external devices. Examples of Presentation prolocol

functions include text compression and encryption. The Presentation layer is defined by

ISO 8823 .

An integral part of the Presentation and Application layers is the concept of an

Abstract Syntax Notation (ASN). An ASN defines data structures in a machine

independent fashion. Currently. there is only one ASN in OSI . Abstract Syntax Notation

One (ASN.I). ASN.I provides a formal notation for specifying the data that cross the

interface between the application and presentation layer and is defined by ISO 8824.

Layer 7: Application Layer. The Application Layer supports the communication

requirements of applications (Le., information processing tasks) requiring co-ordinated

processing activities in two or more open systems. The Application Layer is supported

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

12

by the Presentation Layer, which contains facilities for representing information

exchanged between application-entities (AEs) and the Session Layer. which contains the

mechanisms that may be used for controlling interactions between AEs [1509545]. An

AE is an aspect of an Application Process (AP). An AP is an element wi thin an OS1-

compliant system which performs the information processing for a particular application

[1507498] . As the highest layer in the 051 reference model, the Application layer

provides a means for the APs to access the OSI environment. Hence the Application

layer does not interface with a higher layer. The purpose of the Application layer is to

serve as the window between corresponding APs which are using the OSI to exchange

meaningful information. APs exchange information in the Application Layer by means

of AEs, application protocols, and presentation services [ISO 7498].

The current generation of OSI Application Layer protocols are based on a

connection-oriented transport service with either a connection-oriented or a connection Jess

network service. The DIS protocol, which is currently being investigated, would

logically fit into the Application layer. Some ISO Application services which are

currently available include the following:

Directory Services (DS) is responsible for the management of names and associated
attributes, such as addresses. A name is an explicit description of an entity within the
application. Each application uses the DS to determine the presentation address of its
peer. DS is both an ISO standard (9594) and a CCITf standard (X.500).

File Transfer, Access and Management (ITAM) allows network users to transfer files
between heterogeneous systems and to access remote tiles and records on other systems.
flAM is defined by ISO 8571.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

13

Message Handling System (MIlS) is the standard for electronic mail and messaging
between heterogeneous systems. MHS provides the capability of handling, transferring,
and forwarding messages. MHS is defined in c cnT by X.400.

Virtual Tenninal (VT) allows terminals on a heterogeneous network to interact with
hosts regardless of terminal type. A user at one terminal could gain access to any host
on the network. VT is defined by ISO 9041.

The most commonly used OS! and non-OS! networking protocols are summarized

in Table 1.

TABLE 1

COMMONLY USED OSI AND NON-OSI PROTOCOLS

OSI CCITT IEEE 000

Application FTAM (857 1) MHS (X. 4oo)
VT (9041) OS (X.5OO)
OS (9594)

Presentation (8823)

Session (8327)

Transport TPO-TP4 TCP (RFC793)
(8073)

CLT (8602)

Network CLNP (8473) (X.25) IP
CONS (8348) ISDN (Q.93 1) (RFC791)
X.25 (8208)

Data Link LLC (8802/2) ISDN (Q.921) LLC (802.2)
HDLC fJ776) MAC

Physical 802.3 (8802/3) ISDN MAC
802.4 (8802/4) (1.430,1.431) (802. 3)
802.5 (8802/5) (802. 4
FODI (9314) (802.5)
RS-232

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

14

Application Layer Infrastructure

Within the Application layer, there exist Application Processes (APs) which

perform information processing for a particular application . The communication aspects

of theses processes are rpresented by Application Entities (AEs). The AEs are composed

of one or more Application Service Elements (ASEs) , which is the part of the AE which

provides an OS! environment capability. using appropriate underlying services.

[IS07498] The way in which the ASEs interact with each other and with the underlying

services defines the application protocol used by the application entity [ROSE90a] . An

Application protocol is a service, such as file transfer. When invoked, an application

protocol forms an application context with its peer system and is assigned an Application

Context Name (ACN). Subsequently, the ACN is assigned an Object IDentifier (OID).

An example of an application context name in the ISODE is ISO FfAM or ISO VT. In

this experiment, the DIS will have an ACN of ISODE DIS, since it is an ISODE

application, not an ISO application. The relationship between APs and ASEs is shown

in Figure 2.

When a specific instance of an AP wishes to communicate with an instance of an

AP in some other open system (i.e. J APt in System 1 wishes to communicate with AP 1

in System 2), it must invoke an instance of an AE in the Application layer of its own

open system . It then becomes the responsibility of this instance of the AE to establish

an association with an instance of an appropriate AE in the destination open system.

This process occurs by invoking instances of entities in the lower layers. When the

association between the two AEs has been established, the AP can communicate

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

15

[IS07498] . It is important to note that each peer AP is composed of the same ASEs.

Also, each ASE communicates only with its peer ASE in a remOle system . This is

accomplished by assigning unique presentation context information (PCI) [0 each ASE

so that the application protocol data units (APDUs) can be delivered to the correct ASE.

SYSTEM 1 SYSTEM 2

APl AP2 APl AP2

~ EJ
~ EJ ~ EJ
EJ EJ ~ EJ

ACN=ISO ABC ACN=ISO n'Z A.CN'=ISO ABC ACN=1S0 XYZ

APPUCATJON LAYER .APPUCATION LAYER

PCU - abe PCJ2_1"YX PCU bc PCI2:.:XY7-

PRESENTATION LAYER PRESENTATION LAYER

Figure 2. Application Layer Infrastructure

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

16

There are two categories of ASEs: common-ASEs, which provide capabili ties that

are generally useful to a variety of applications and specific-ASEs, which provide

capabilities required to satisfy the particular needs of specific applications [15084] .

Three common-ASE's currently exist in the OS! reference model for building application

processes. They are described as follows [ROSE90a):

Association Control Service Element (ACSE) establishes and releases the association

to the remote or peer system. An association is a binding between two entities that is

supported by an underlying presentation connection. The ACSE manages the Application

associations. As a consequence, all OSI applications contain an ACSE. The ACSE has

two phases: association establishment and association release. The ACSE is defined by

ISO 8650.

Reliable Transfer Service Element (RTSE) is responsible for bulk mode data transfers

between systems. The term "bulk mode" refers to the size of the data being transmitted.

RTSE provides the service of reliably transfering arbitrarily large amounts of data from

one application entity to another. The RTSE seIVice has three phases: association

establishment, data transfer, and association release. Data transfer may take more than

one transfer, depending on size. When the transfer is completed and confirmed, the

requesting entity is given an acknowledgement that the transmitted object has been

secured by the RTSE on the accepting side. If the transfer fails, the requesting

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

17

application entity is notified and appropriate corrective actions are taken by the protocol.

The RTSE is defined by ISO 9066.

Remote Operations Service Element (ROSE) is a superset of many conventional

Remote Procedure Call (RPC) facilities. ROSE is used to manage the request/reply

interactions for an application entity. When an application entity requests an operation,

it is said to be Rinvoking" or "initiating" the operation. Similarly, an application entity

that receives the request is called the "performer" or "responder". The ROSE has two

phases: binding an association and invoking operations. The ROSE is defined by]SO

9072.

Application services, such as the Message Handling Service (MRS), utilize the

ACSE to open and close the association with the remote peer entity; utilize the ROSE to

manage the remote request/reply to transfer the file; and utilize the RTSE to provide the

reliable transfer of information. The prototype architecture for DIS developed in this

thesis will utilize only the ACSE and the ROSE. This is due to the nature of simulator

PDU traffic. That is, the transmission of DIS PDUs does not necessarily require

reliability. In this experiment, a connection will be established with the remote system

using the ACSE and the PDU data transmitted using the ROSE. However, the actual

DIS implementation might utilize the RTSE for bringing new members on-line to an

exercise by reliably transferring the battle history data required to update a simulation

to the current state of the exercise.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

18

ISO Development Env;nmment (JSOOEl

The feasibility of using 051 net~ork protocols to provide network communication

services for the DIS application is currently under investigation as part of the

development of the DIS standard. One problem which surrounds this effort is the lack

of a full seven layer OSI protocol stack implementation with which to experiment. A

partial implementation of an as! stack has been developed and is currently being used

internationally to study the upper four layers of the 051 stack. This "quasi-OSI"

software application is called the ISO Development Environment (IS0DE).

ISODE is a non-proprietary software implementation of the upper layers

(Application, Presentation, and Session) defined by ISO [ROSE90bj. This software runs

on UNIX-based workstations and utilizes the DoD TCP/IP protocol suite (layers 4 and

3 protocols, respectively) to provide inter-workstation communication over Ethernet.

The TCPIlP protocol suite is mature and well tested. It is used by a large number of

U.S . computer manufacturers. Consequently, application developers are using the

TCP/IP protocol suite to study OSI-based protocols in the upper layers while avoiding

the development of the less defined OSI lower layer infrastructure. The tools and

services of the ISODE are implemented through a set of software routines, libraries, and

databases written in the C programming language. The services and protocols

represented in the ISODE are shown in Figure 3.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

19

!"rAM VT DS MHS

ASRI

APPlJCATION UYER - TOOLS
ACSE ROSE RTSE

I
PRESENTATION UYER

I
SESSION UYER

.......... _----_ . .••. _ .•• H •••.•••.•••.• __ .H._ •. * •••••••••• _ ••• _ H •••••••• _ _ ""
TPO OVER TP. OVER

TCP AND US SunLtnk OS!

Figure 3. ISODE Model of OSI Protocols

As mentioned earlier, the ISODE uses the TCP/IP protocol suite for Network and

Transport services. ISODE supports a Transport service class 0 (fPO) interface for the

TCP and X.25, and a TP4 interface for SunLink OSI. SunLink OSI is a proprietary

product developed by the SUN Computer Corporation .

ISODE implements the elements of the OSl upper layer infrastructure in the

following way [ROSE90b). First, the raw facilit ies available to applications are modeled.

These include the ACSE, ROSE, RTSE, and the abstract syntax and transfer mechanisms

from ASN .1. The services upon which the application facilities are built are also

described. These include the Presentation service (including the PSAP), the Session

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

20

service (including the SSAP), and the Transport Service Access Point (TSAP) . Also

modeled in the ISODE Application Layer are the Application Layer protocols defined by

ISO. ISODE currently includes Fr AM, Fr AM/File Transfer Protocol (FrP) gateway,

DS, and VT (basic class, TELNET profile). Modules planned for future ISODE release

include: OSI MHS and MHSISimpleMail Transfer Protocol (SMTP) gateway. ISODE

is also aligned with the U.S . GOSIP in its mapping strategy for service definitions.

Mapping is a process handled by the Directory Services (DS) . This process associates

the distinguished name of the application entity with its presentation address . When the

presentation address is given to the service element in the application layer, a connection

can be established [ROSE90a].

Computer Network Perfonnance

The performance of a computer communications network is a crucial factor in

determining the feasibility of executing specific applications using its communication

services. Different applications require different levels of network performance.

Applications such as file transfer and electronic mail require reliability and

interoperability. While other applications, such as DIS, require not only reliability and

interoperability, but also high-speed, real-time communication services in order to

simulate a real world environment. Therefore, the performance metrics used to evaluate

an application should be tailored to satisfy the applications requirements.

Network performance consists of two elements: I) the network hardware

performance and 2) the communication protocol architecture (software) performance.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

21

Network hardware performance is a function of each computing device connected to the

network. Once the network hardware is configured, it is a fixed factor which influences

the final performance results. Although the hardware performance is fixed , it can be

modified to increase efficiency by replacing lower performance devices with higher ones

(i.e., a IOMbps medium can be replaced by a 50Mbps medium). Communication

protocol architecture is the second major component which determines overall network

performance. The communication protocol architecture establishes the dialogue

procedures between two or more machines. It provides the functionalities such as eITor

recovery, flow control, packet routing, synchronization, and serialization.

It is difficult to measure the communication protocol performance apart from the

network hardware influence since the performance of the communication protocols are

dependent on the speed. implementation, and reliability of the hardware platform.

Therefore, it is necessary to identify the performance associated with the hardware

platforms and establish a common environment for all measurements. If this

environment can be established, measuring network performance can be viewed as

measuring the performance of the communication protocol architecture.

Network performance can be expressed in the following terms: reliability. which

includes error checking, data loss, security, and recovery; and speed, which includes

throughput, latency, and idle time. An analysis of the reliability of the ISODE

communication architecture is beyond the scope of this experiment. However, this

research focu ses on evaluating the ISODE architecture performance in terms of speed and

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

22

effective transmission capability. In this context, performance will measure how

efficiently the ISODE protocols handle the PDU traffic and the possible errors that may

occur during the communication process.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER II

APPROACH

Methodology

The objective of this thesis is to gain insight into the details of implementing an

OSI-based network for the DIS application. ISODE tools and facilities were used in to

develop the prototype DIS architecture. Experiments were conducted and performance

data were gathered and analyzed using both ISODE and UNIX facilities. This

experiment consisted of four major steps:

1) Encoding PDUs in the ASN. l language;

2) Building the Distributed (DIS) Prototype Application using ISODE;

3) Sending the DIS PDUs between workstations via the ISODE stack; and,

4) Collecting and analyzing time domain data relating to the application-to

application transfer characteristics of the prototype DIS implementation.

Hardware Environment

The hardware setup for the experiments consisted of two Sun-4 SPARe (Scalable

Processor ARChitecture) workstations and two Motorola VME 1147 workstations, all

interconnected via ETHERNET. The Sun workstation is a high-performance, bit

mapped workstation, utilizing a Reduced Instruction Set Computer (RISC) architecture

23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

24

CPU. The Motorola is a single board UNIX system designed specifically for real-time,

multi-processing configurations. This network is represented in Figure 4.

Motorola VME WorkstaUons

ISODE 6 .0 ISODE 6.0

AT&T UNIX AT&T UNIX
S5R3 S5R3

ETHERNET

ISO DE 6.0 ISODE 6.0

BSD UNIX BSD UNIX
V4.3 V4.3

SUN Spare Wo rkstetions

Figure 4 . Experimental Network Hardware Configuration

Software Environment

All workstations in the experiment used the UNIX operating system . The Sun

SPARC stations used the SunOS operating system which is an enhanced version of the

4.2 BSD and 4.3 BSD UNIX system derived from the University of California at

Berkeley. The Motorola workstations used AT&T, System V.3 UNIX. UNIX

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

25

commands and scripts were used in the experiments for program execution and data

logging. Scripts are a collection of UNIX commands which perform a specific function.

All software for this project was written in the C programming language. The

programs involving transfer of PDUs from Application Layer to Application Layer

across the network utilized the ISODE libraries and databases. These libraries are

collections of C source programs which can be modified by the user for specific

applications. Software listings for the programs created in this experiment are included

in Appendix B.

Test Plan

A set of sending and receiving (initiator/responder) programs called SEND was

designed using the ISODE remote operations utilities. These programs provided the

capability to establi sh an initial connection with a remote application; transmitted generic

PDUs across the network from initiating process to responder process; received the same

PDU reflected back from the responder process; and released the connection. The

SEND programs also had a built-in clock that counted the time starting the moment after

connection establishment and ending immediately before the connection was released.

Therefore, the clock registered the time elapsed to send and receive the echo of the

generic PDU, giving an indication of the speed of the protocol stack running on each

workstation. With this measurement scheme, the connection establishment and release

times were not included. What remained was the Round Trip Time (RTf) of the PDU.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

26

The RTT was the elapsed time for a single PDU to perform a round trip between

two computers. The round trip path is shown in Figure 5. It included sending the POU

down the ISODE stack, across the TCPIIP I onto the Ethernet where it was transmiued

to the target host (or responder) . Once the PDU arrived at the responder, it passed

through the TCPIIP, through the ISODE, finally reaChing the target remote operations

application . To complete the round trip, the PDU passed through the ISODE, through

the TCP/IP, across the ETHERNET, up the initiator's TCP/IP and ISODE, where it

arrived at the host remote operations application.

INITIATOR RESPONDER

ISODE lSOD8

TCP/IP TCP/lP

PHYSlCAL PHYSlCAL

~~

----_;1> Oat.& Flow

Figure 5. PDU Round Trip Path

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

u &

Research of Problem

Summary or Relevant Research

27

An extensive literature search was conducted on the following topics: real-time

simulation and simulation architectures; OS! protocols; and communication network

protocol performance. As a result of this survey ,one project was identified as being

relevant to this research thesis. The paper, SAFENET - A Navy Approach to

Computer Programming [pAIG90], describes the development of a military real-lime

computer architecture using OSI standards. A description of the SAFENET project

follows .

The Survivable Adaptable Fiber Optic Embedded Network (SAFENET)

program is an effort by the U.S. Navy to develop standard computer network profiles

which meet the requirements of Navy shipboard mission critical computer systems.

There are two SAFENET standards: SAFENET I and SAFENET II . SAFENET I is

based on the IEEE 802.5 LAN standard (Token Ring), while SAFENET II is based on

FDDI (Fiber Distributed Data Interface, ISO 9314) . Each standard describes a network

profile which covers the full seven layer]50 model. Each SAFENET standard can be

implemented as any of three protocol suites: OS], lightweight , or the combination of the

two. The OSI suite is intended to provide fully ISO compliant networking, while the

lightweight suite is intended to support systems with real-time communication

requirements. The SAFENET physical topology is based on a dual counter-rotating ring

architecture which provides many survivablity features [PAIG90j .

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER DI

IMPLEMENTATION

Encoding Protocol Data Units in ASN.l

An abstract data type is a concept for describing a data structure in a machine

independent manner. Although a data structure may have a concrete representation on

a given system (i .e., a "struct" in the C language), its corresponding abstract data type

is defined in a implementation-independent manner called the abstract syntax. There

is also a well defined set of rules associated with a data structure. These rules are

termed the abstract transfer notation. The abstract transfer notation serializes (Le.,

converts to a bit stream) the abstract syntax and generates a data stream corresponding

to the abstract data type for transmission on the network [ROSE88] . This process is

termed encoding of data structures. When the data are received at the destination, the

process is executed in reverse order. This process is termed decoding. This mapping

process is shown in Figure 6.

28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

data structure
Concrete Representation

is mapped to its
abstract data type

abstract syntax
Abstract Transfer Notation

is used to genera le the
Concre te Syn1.ax: serial ized

stream of octets

data s tructure

abstract syntax

'-___ ~ £cr.. u... Koot1Ndl __ --'

Figure 6. ASN.l Mappings

29

ASN.l descriptions consist of several tokens or expressions. These expressions

can take the form of one of the following: words, which consist of upper- and lower-case

letters, digits, and hyphens; numbers, which consist of digits; strings, which are either

character, hexadecimal, or binary; and punctuation. A collection of ASN.l descriptions

is termed a module [IS0882]. The high-level syntax of a module is as follows:

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

<module > DEFINlTIONS :: =
BEGIN

<linkage>

< declarations >

END

30

The < module> term names the module. For our purposes, the module name

will be the name of the DIS PDU. For example the DIS Entity State PDU will have a

name of EntityState; similarly, the DIS Update Threshhold Request PDU would have a

name such as UpdateThreshRequest.

The < linkage> term links this module with other modules. Within this section

of the module, any other modules which should be imported or exported will be

identified. For the DIS application, the DIS POU header or descriptor file, which is

common to all DIS PDUs, can be derIDed once, and then imported into -all DIS PDU

modules.

The < declarations> term contains the actual ASN.l definitions. Three kinds

of objects are defined using ASN.l: types, values, and macros. Each object is named

using an ASN.l word, for which alphabetic case convention is important. For a type,

the word starts with an uppercase letter; a value word starts with a lowercase letter; and

a macro consists of entirely uppercase letters.

An ASN.l type is defined in the following manner:

NameOffype ::=

TYPE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

31

NameOIType would represent a data field within a DIS PDU and TYPE would

describe its declaration, such as INTEGER. The ASN.l notation defines a collection of

types to be used in the module declaration. The following types are available: simple,

object, constructor, tagged, and meta. DIS PDUs will primarily use the simple and

constructor types. A brief description of each type follows.

Simple types are viewed as the primitive data elements. ASN.l defines the

following simple types:

BOOLEAN - data type taking one of two distinguished values True or
False

INTEGER - data type taking a cardinal number as its value

ENUMERATED - represents the complete set of values that a data type
is allowed to assume

REAL - data type taking a real number as its value

BIT STRING - data type taking zero or more bits as its value

OCTET STRING - data type taking one or more octets as its value

NULL - data type that is a place-holder

Two of the simple types turned out to have complicated semantics. Consequently.

a separate type called objed types was created to handle them. These object types are

as follows:

OBJECT IDENTIFIER - data type denoting an authoritatively named
object; provide a means of describing an object regardless of the semantics
associated with it

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

32

OBJECT DESCRIPTOR - denotes a textual string that also references an
object

Simple types can be combined to build complex data types within the

< declaration> of a module. These types are called constructor types.

SEQUENCE - data type denoting an ordered list of zero or more elements

SEOUENCE OF - data type denoting an ordered list of zero or more
elements of the same ASN.I type

s.&I - data type denoting an unordered Hst of zero or more members

SET OF - data type denoting an unordered list of zero or more members,
each member having the same ASN.I type

Tagged types provide a method for distinguishing unique occurrences of the same

ASN.I data types. There are four different ciasses of tags:

UNlVERSAL - provides a global identification of the well-known data
types discussed thus far

APPUCATION-WIDE - provides identification within a given ASN.I
module

CONTEXT-SPECIFIC - provides identification unique to a constructor
type

PRIVATE-USE - provides a unique identification within a given project
specific agreement

The last type, meta, transcends both simple and constructor types.

CHQICE - data type that is defined as the union of one or morc data
types

ANY - data type that is the union of all possible data types

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

33

EXTERNAL - data type that is defined by some document outside the
current module

SUBTYPES - a refinement of some "parent" ASN.I type

ASN.l also specifies syntax for describing value objects. Value notation

produces human-readable descriptions of the ASN.I transfer syntax. The last object

defined by ASN.l are macros. The macro facilities arc used to capture additional

semantic information. This is accomplished by ASN.l macro notation, which literally

rewrites the grammar rules of ASN.1.

The components of an ASN.I module are diagramed in Figure 7.

I
<linkage>

I

lmports exports

simple

ASN.! Module

typel

<declarations>
I

valuell

I
veluc notation

object construc tor

Figure 7. ASN.I Module Components

Encoding DIS POUs

macros

meta

To explore the application of ASN.I to DIS POUs, the DIS Entity State POU will

bc examined. The bit layout for this POU [MC009I] is shown in Table 2. In the OIS

I
I

34

I
TABLE 2

I DIS ENTITY STATE PDU

I
FIELD ENTITY STATE POU flELOS FIELD TYPE
SIZE

(octets)

• Entity ID , Site 10 16 bit Integer
HOlt 10 16 bit Integer
Entity ID 16 bit Integer

I
2 PADDING Unu.ed 16 bit

8 Entity Type Entity Kind 8 bit enumeration I
Domain 8 bit enumeration
Country 16 bit enumeration
Cateeory 8 bit enumeration I
Subcategory 8 bit enumeration
Specific 8 bit enumeration
E,1n 8 bit enumen.tion I • Timestamp 32 bit Integer

2. Entity Location X - component 64 bit A oating Point
Y - component 64 bit Aoating Point I
Z - component 64 bit Floating Point

12 Linear Velocity X - component 32 bit Floating Point
Y - component 32 bit Floating Point I
Z - component 32 bit Flo.tin, Point

12 Linear X - component 32 bit Floating Point
Acceleration Y - component 32 bit Floatin, Point I

Z - component 32 bit Floating Point

12 Entity Orientation Poi Euler 32 bit Angle
", Angtel 32 bit Angle I
Phi 32 bit Angle

12 Angular Velocity X - component 32 bit Integer
Y • component 32 bit Integer I
Z • component 32 bit Integer

8 Dead Rcckonina TBD 64 bill
Paramctcn I

• Entity 21 bit Integer
Appearance I

12 Entity Marking 11 bit ChanCIer Set

I • Capabilities 32 bit Boolean

3 PADDING Unused

1 , of Articulated 8 bit Integer I
... '"

I VariCi Alticulatcd Parta

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

35

Entity State PDU ASN.1 module, all fields represented in the PDU must be defined.

The following is an example ASN.l encoding definition:

EntityStatePDU :: =

}

SEQUENCE{
EntityId,
Paddingl ,
EntityType,
TimeStamp,
EntityLocation,
EntityLinearVelocity.
EntityLinearAcceieration,
EntityOrientation,
Entity Angu1arVelocity I
DeadReckoningParameters,
EntityAppearance,
EntityMarking,
Capabilities,
Padding2,
NoArticulatedParts,
ArticulatedParts

The first field in the Entity State PDU is the Entity ID #. This field is composed

of three sub fields, Site ID, Host 10, and Entity 10. Each subfield is represented by a

16 bit integer. In an ASN.1 module, the Entity ID # field would be coded as follows:

EntityId :: =
SEQUENCE{

SiteId

}

INTEGER,
Hostid

INTEGER,
EntityId

INTEGER

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

36

Where the subfields are represented in a SEQUENCE (ASN.1 constructor type)

and identified as the ASN.l simple type INTEGER.

The next field in the Entity State PDU is the PADDING field. Since this field

is unused, it can be represented by the simple type J\'ULL.

Padding :: =
NULL

The Entity Type field is comprised of seven subfields: Entity Kind, Domain ,

Country. Category, Subcategory I Specific, and Extra. Each subfield is represented by

an 8 bit or 16 bit enumeration. This field would be coded in an ASN.1 module as

follows:

EntityType :: =
SEQUENCE{

}

EntityKind
ENUMERATED,

Domain
ENUMERATED,

Country
ENUMERATED,

Category
ENUMERATED,

Subcategory
ENUMERATED,

Specific
ENUMERATED,

Extra
ENUMERATED

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

EntityKind : : =
ENUMERATED{

}

Domain ::=

Other (0),
Platform (I) ,
Munition (2) ,
LifeForm (3),
Environmental (4) ,
CulturalFeature (5)

-- for Platform, Life Form, Environmental,
ENUMERATED{

Other (0) ,
Land (I),

-- and Cultural Features

}

Air (2),
Surface (3),
Subsurface (4),
Space (5)

Domain: : = -- for Munition
ENUMERATED{

}

Other (0),
AntiAir (I),
AntiArmor (2),
AntiGuidedMunition (3),
AntiRadar (4),
AntiSatellite (5),
AntiShip (6),
AntiSubmarine (7),
BattlefieldSupport (8),
Strategic (9) ,
Miscellaneous (10)

37

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

country ::=
ENUMERATED{

Other (0).
Afghanistan (I).
Albania (2).

}

Zambia (179).
Zimbabwe (180).
PalestineLiberationOrganization (181),
Neutral (200)

38

The Country sub field has not been fully described here due to the size of the

enumeration (Le., approximately 200 countries) . Similarly, the Category, Subcategory,

Specific. and Extra sub fields vary depending on the Entity Type specified in the Entity

Kind sub field. Therefore, these fields are also not elaborated but would follow the same

format which has been identified.

As seen in the above example for the Entity Type field, once a sub field is initially

identified (as with the SEQUENCE type). the enumeration can be further detailed by

defining the subfield as a separate entity (Le . • EntityKind ::= ENUMERATED{ }) .

Other fields in the Entity State PDU, such as Entity Location, Linear Velocity,

and Linear Acceleration would be defined in an ASN.I module as a SEQUENCE of

REAL types. These REAL sub fields would then be further defined by identifing the

mantissa, base, and exponent for each. Additionally, the Entity Marking field would be

identified as a simple OCTET STRING and the capabilities field would be defined as

a simple BOOLEAN type.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

39

Experimental Constraints

Since the DIS PDU standard has only recently been released, there are very few,

if any, simulators which generate and use the DIS PDUs. At 1ST, one project is

underway to generate and test these PDUs [CENG9Ij. However, the programs being

generated have not fully implemented all of the DIS PDUs. Therefore, actual DIS PDU

information is not available for testing.

As stated earlier, the testing performed in this thesis measures the round trip time

from connection establishment to connection release. Conceptually, the bytes transmitted

across the ISODE stack can be generated by any means, e.g . . a string input from the

keyboard represents the same information, with respect to measuring round trip time, as

an actual DIS PDU. Therefore, a significant factor in the experiment is the length of the

information being transmitted across the network through the ISODE stack. The lengths

of the DIS PDUs are stated in Table 3.

A typical entity represented by the Entity State PDU would be an MI Al main

battle tank. A tank might typically portray two articulated parts (i .e., the main gun and

the turret) each of which might have one articulated parameter (i .e .. pitch angle for the

gun and yaw angle for the turret) . Depending on the vehicle modeled. the Entity State

PDU could conceivably be very large (i.e .. a ship may have upwards of ten articulated

pans), possibly in the 200 to 250 byte range. Therefore, the lower boundary established

for DIS PDU size is 16 bytes (Resupply Cancel PDU plus Header file). Similarly, the

upper bound for a DIS PDU is 250 bytes (Entity State PDU plus Header file).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TABLE 3

LENGTH OF DIS PDUS

DIS PDU Length in Bytes

Header File 4

Entity State 124 + n (12m; + 4)

Weapons Fire 84

Weapons Detonation 108

Update Threshold Request 40

Update Threshold Response 16

Service Request 16 + 12n

Resupply Offer 16 + 12n

Resupply Received 16 + 12n

Resupply Cancel 12

Repair Response 16

Collision 16

Radar 20 + r (12s; + 44)

n numoer 01 artlculatea arts p
mj = number of articulated parameters
r = number of radar systems
Sj = number of entities illuminated

40

The generic DIS Entity State PDUs used in this experiment were input from a

user-generated file EXEC. This file sends varying length strings (1 byte to 440 bytes)

which are described in the ASN.l module by a SEQUENCE of IMPLICIT

GraphicString, which is a Universal Tagged type of 25 (See [IS08824].). By using

IMPLICIT, only the tag associated with GraphicString will be transmitted on the

network. The ASN.l module developed for the generic DIS PDU prototype architecture

(PDU-ASN.PY) is located in Appendix C.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

41

Buildine the Distributed Interactive Sjmulation Prototype Application in ISODE

In OSI, remote operations are viewed as an integral part of the methodology for

building distributed applications. A Remote Operation (RO) is a request/reply operation

between two Application Processes (AP), located either in a local or distributed

environment. In a RD, an operation is invoked by an AP. In response, its peer returns

an outcome of the operation. The most basic application consists of an initiator J which

requests the service or desired operation, and a responder, which provides the service

or operation. The concept of the initiator/responder distributed application is shown in

Figure 8.

SYSTEM 1: lNlTlATOR SYSTEM 2: RESPONDER

~ I n~1 ELEJ<EN'l'

STATIC STATIC

INITIATOR PACIUTIES INlTlATOR FACILITIES
DISCIPUNE DlSClPUNE

RUN-Tl~[E RUN-TIME

ENVIRON. ENVIRON.

I
I ACSE I I ROSE I I ACSE I I ROSE I

I I

Figure 8. Dynamic and Static Facilities of Distributed Applications

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- &±

42

The initiator and responder both have static and dynamic facilities [ROSE90a].

The RO-specification, which is the formal definition of the remote operation, is the static

facility. This includes the ASN. l data structures which enumerate the complete set of

operations, errors , and abstract data types which are used by the system. The dynamic

facilities include the following: the initiator and responder disciplines, which initiate or

respond to the service or desired operation; the ACSE, which establishes and terminates

the associations used by the entity; the ROSE, which manages the request/reply

interactions; the DSE, which maps the seIVice required by the system onto the entities

available on the network; and finally I the run-time environment, which maps the C

structures, using ASN.l compilers, into the corresponding abstract syntax which is then

presented. this to the RO service for delivery.

The Remote Operation (RO) facilities within OS! are designed to provide the

mechanisms for building diverse applications such as message handling, directory

services, and remote database access. Using RD, the generic PDUs can be transmitted.

between remote simulators, or as is the case for this experiment, between remote

workstations.

There are four distinct steps to building a distributed. application in ISDDE:

defining the naming and addressing information in the ISODE databases; building and

compiling lhe remole operalions module; compiling lhe abslraCl synlaX module; and

building the initiator and responder programs. The following sections describe how these

steps were accomplished for the DIS prototype.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

43

Naming and Addressing Inronnation

In the OS! reference model, naming and addressing information is the function

of the Directory Services Element (DSE) of the DS protocol. At a minimum, the DSE

determines the presentation address of each application participating in a binding. A

binding provides the mechanisms for establishing an association between two application

entities or processes. This binding process is accomplished in the fOllowing way. The

identity of an application entity is its distinguished name in the OS! Directory, which is

an authoritative description of the AE. The application contacts the OS! Directory J

presents the distinguished name of the AE with which it is interested in communicating,

and asks for the presentation address attribute associated with that name. A presentation

address consists of a presentation selector, a session selector, and a transport address.

A transport address consists of a transport selector and one or more network addresses.

The presentation address is given to the service element in the Application Layer to

establish a connection. This address is passed to the presentation service, which uses the

presentation selector. The remainder is given to the session service, which uses the

session selector. The ultimate remainder is given to the transport service. The transport

service looks at each network address and decides which mode of network service

(connection-oriented or connectionless) will be used for the address . Based on the

derived network service, the communications qual ity of service desired by the

application, the transport service selects a transport protocol. The network addresses are

then ordered by preference, and for each network address, the transport service starts the

appropriate transport protocol and the underlying network service is invoked. [ROSE90a]

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

44

In ISODE, the naming and addressing information is managed through the use of

databases. There are three databases used for this function [ROSE90b] :

isobjects: which maintains the mappings between object descriptors (00) and
object identifiers (OlD) (ODs and OlDs were described in the ASN.l object types
section);

isoentities: which manipulates the mappings between application-entity
information and presentation addresses; and,

isoscrvices: which maintains the mappings between textual descriptions of
services, service selectors, and local programs.

The application services which need to be defined in the isobjects, isoentities, and

isoservices databases are the following :

abstract syntax: This describes the data structures being exchanged by the
service.

application context name: This describes the protocol being used by the service.

application-entity infonnation: This uniquely names an entity in the network.

presentation a ddress: This locates an entity in the network.

local program: this identifies the program on the local system which implements
the service.

First, the abstract syntax presentation context information (PCI) of the service,

along with the application context need to be identified. This is perfonned in the

isobjects database through the use of object identifiers (OlD). The object identifier tree

1.17.1 was used for defining local services in ISODE. Therefore, the new service will

be assigned the number 1.17 .I.n , where n is the lowest unassigned number in the tree.

The isobjects database will contain the abstract syntax PCI as the first notation in the

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

45

1.17.1.n subtree, and the application context as the second. The entry appears as

follows:

"isode send string demo pei"

"isode send string demo"

1.17.1.13.1

1.17.1.13.2

Next, the template for the application-entity infonnation and presentation

address should be defined. These are outgoing connections and are defined in the

isoentities database. The application-entity information is currently an object identifier,

from the 1.17.4.1 subtree in ISODE. The presentation address is composed of a

presentation selector, a session selector, a transport selector, and a set of network

addresses. Within ISODE, this is implemented by using an empty (Le., no information)

presentation and session selector, a unique transport selector, and a simple default

template for the network address (This is filled in during connection establishment.) .

The "empty presentation and session selector" is an implementation decision made by the

ISODE authors. The isoentities database will be edited to appear as follows:

default sendslring 1.17.4 .1.8 #10411

Finally, the program on the local system which implements the desired service

should be defined. This definition is used for incoming connections and is performed in

the isoserviccs database. The local program in this experiment that transmits DIS Entity

State PDUs across the network is the SEND program. Therefore, SEND will need to

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

46

be defined in isoservices. The strategy used for allocating the presentation addresses

above necessitates a mapping only between the transport selector and the SEND program.

Therefore, the entry in the isoservices database appears as:

"tsap/isode sendslring" #1041 ros.send

The isobjects, isoentities. and isoservices databases developed for this experiment

are included in Appendix B.

Remote Operations Module

The RO module defines the operations, errors, and abstract syntax of the data

structures to be exchanged by the service. The operation performed in this experiment

consisted of sending the generic PDU to the remote host (or workstation) and reflecting

back the POU to the initiating process (or workstation). The error defined in the RO

module alerted the user if congestion occured during the transmission, preventing the

sending of the POUs. The last definition included in the RO module was the abstract

syntax of the generic PDU. This was defined in a previous section and can be found in

Appendix C. The RO module, SEND.RY, can also be found in Appendix C.

The ISOOE program ROSY (Remote Operations Stub-generator (Y ACC-based))

reads the ASN.l module that uses the RO-notation and generates the following: a set of

remote operation definitions with associated data types (PDU-OPS.C); a set of error

definitions with associated data types (PDU-OPS.C); and , a set of C stubs and definitions

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

•

47

that are either invoked or called to request an operation by the performer (PDU·

STUB.C)[ROSE90j. (Y ACC is a UNIX operating system facility which generates code

that interprets the syntax rules of the language, e.g., a compiler-compiler), The software

routines produced by the ROSY compiler are included in Appendix C.

Abstract Syntax Module

An abstract syntax module defines the data structures being exchanged by the

service, as defined earlier in this chapter. ISODE provides two compilers for encoding

this module. The POSY (PEPY Optional Structure-generator (Y ACC·based)) program

reads an ASN.l module and produces the fOllowing: the corresponding C structures

definitions and an augmented ASN.l module. This augmented ASN.l module relates the

C structures (pDU-TYPE.C) to their ASN.! counterparts (pDU-TYPE.PH). The

augmented module is also read by the PEPY (Presentation Element Parser (Y ACC

based)) compiler. The PEPY compiler generates and interprets ASN. I encodings

(SEND.C). Using the augmented ASN.! module, PEPY can produce C code fragments

that map between the C structures and the augmented ASN.! [ROSE90aj. The C

structures produced by the POSY program are mapped by the ISODE run-time

environment to the abstract syntax and then used for mapping the abstract syntax to the

machine specific concrete syntax. The encoding process described above enables the

invoker and performer to deal only with the native machine C structures. This creates

an open systems interface which is entirely automatic [ROSE90a]. The software

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

48

structures produced by the POSY and PEPY compilers are included in Appendix C. This

entire compilation process is depicted in Figure 9.

RO t.nd. £lo r !>r - C .tn!clur. - CGD"r.1on
d",fJalUOILI ddlJL1UoDil Jor rouU ne. lar

- Prooodu data typ_ datt, l1P1JtI
1:1am • • ' or - J.u Il .. d.
In.,oklo, oper. ASN.l modul .. (mllpplne lDJ'o.)

RO ROSY POSY PEPY
Specification Compiler I- Compiler - Compiler

St:ND.RY PDU-OPB.C
PDO'-sntB.C
PDV-ASN.PY

PDU-T'iPE.C
PDO-TYPI.PH

Figure 9. ISODE Stalic Facilities

Initiator and Responder Programs

SEND.C

The initiator and responder disciplines for the SEND program were developed for

this experiment from the existing ISODE libraries and programs. By adding C code to

the ISODE utilities, the user is able to design the operation of the desired application .

A sample of the available utilities include: event handlers, routines to set underlying

services, and routines to poll network activity. For more detail on ISODE routines and

libraries, consult [ROSE90b] or [LOPE91] .

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

49

An initiator is responsible for four operations: association establishment, operation

invocation, association release, and error handling. There are two form s of initiators

(ROSE90b] :

interactive: The user runs a program and interactively directs the invocation of

operations; and,

embedded: As part of its running , the program automatically forms an association and

invokes operations as required.

For the purposes of this experiment, the interactive initiator was implemented.

This allowed the user to direct the transmission of PDUs and therefore to control the

operation of data transmission.

The responder is responsible for three functions: association management,

operation response, and error handling. A responder may also take on one of two forms

(ROSE90b]:

single association: Each time the service is requested, a new instantiation of the

program implementing the service is executed (a dynamic approach); and,

multiple association: Each time the service is requested, the request is given to a single,

already excuting, instantiation of the program which implements the service (a static

approach) .

For the purpose of this experiment, the multiple association responder was

implemented. This allowed the user to examine the performance in a static environment.

The SEND initiator and responder programs are included in Appendix B.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

50

Prototype DIS Communication Architecture Execution

This experiment was conducted on three of the four computers connected to the

ETHERNET network. The fourth workstation was not used due to software problems.

The workstations used in the experiment included the two SUN Spare stations (Falcon

and Ibis) and one Motorola VME workstation (Heron). The experiment took the

following factors into account: network load, processing capability of each workstation,

and the size of the message to be transmitted.

The experiment was conducted in two parts. The first part of the experiment

allowed the SUN workstation Ibis to communicate with the Motorola workstation Heron

using the ISODE communication architecture and the SEND programs. The second

experiment consisted of both SUN workstation, Falcon and Ibis, transmitting generic

PDUs. In both experiments, the computer's CPUs were dedicated to performing this

communication taSk, which excluded time for tasks outside this experiment. During the

experiments, activity on the network was limited to the generic PDUs being transmitted.

The network was used essentially as a point-to-point link [SHEN91).

The SEND program used in this experiment could be invoked in one of two ways.

First. by entering the SEND command from the keyboard, an interactive loop would be

entered which would allow the sending of more than one generic DIS PDUs. The second

method, file driven, was chosen for this experiment. The SEND program was invoked

from the program WOP, which subsequently invoked the SEND program several times,

each time transmitting a different length PDU (i.e., I, 10, 100,200, and 440 bytes). By

transmitting varying length PDUs, the varying lengths of the DIS PDUs could be

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

51

modeled. For each length PDU, the SEND process was repeated sending a varying

number of the PDUs (i.e., I, 10, 100,500, and 1000). This was to ensure that the data

collected would be unbiased and robust for statistical analysis. For each intcration of the

SEND process, statistical data were gathered on the round trip time (RTf).

SEND Program: Detail Description

The SEND program made use of the remote operations services implemented in

ISODE. This program sent a generic PDU from the initiating process across the

ETHERNET to the responding process. Once at the responder, the PDU was reflected

back to the initiating host. If the connection was not established, an error message was

returned and displayed. A diagram depicting the SEND process is shown in Figure 10.

The SEND process was accomplished through an interactive initiator, which

managed the association and invoked the operation, and a static responder, which

performed the operation. The initiator performed four operations: association

establishment, operation invocation, association release, and error handling. During

association establishment, the application-entity information and presentation address for

the desired service were computed, along with the application context (ACN) and default

presentation context information (PCI) for the seIVice. Also, a session reference

identifier was chosen. This was done in the ryinitiator routine using the ISODE

AcAssocRequest routine. At this time, the tsap deamon was contacted to invoke the

responder. The tsap dcamon is a process that runs in the background of the UNIX

operating system which handles all incoming connections for ISODE. The tsap process

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

..

I" • • • 1, , ... "

...................
'>-""""'-;::::lL_--, - " '",

,m!ir;lm.,
.. tro.:;,:,;: t:- ·

" ..

_

Figure 10. Flo Oiagram of the SEND Progr.lrn

"

, 1' •

r--~·'·-<·"' ::~·

·.,.t'· _ ... -. , •••• ~:I!::t:-J,.,

. ...

-_.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

53

provides the communication for the remote systems using the ISODE connection services.

If an association was established with the responder , ' the underlying service to be used

for the remote operation (the presentation service) was set using routine RoSetService.

At this time, the interactive loop was entered . A line was read from the input and

a search was performed to determine which computers the SEND process would execute

on. The invocation was performed through a synchronous interface implemented in

routine RyStub. The invoked operation returned one of three results: error, done, or the

echo of the SEND operation. The resul t of the operation, the echoed DIS POU, was

displayed on the screen, and the association was released. Since the user was in an

interactive loop, another PDU was then transmitted. The association was released when

the quit operation was invoked.

Any time an error was encountered, an adios or advise routine reported the error

and terminated the association if appropriate.

The responder was responsible for three function s: association management,

operation response, and error handling. Association management was implemented in

routine ryresponder. After initializing the invoked program, the SEND operation was

registered with the ISODE RyDispatch routine. The routine isodeserver was then called

to set the addresses of event-handlers and to manage any associations. If the call to

isodcscrver was successful, then the program terminated immediately.

When an event associated with a new connection occured, the event-handler

rosJnit was invoked. This routine first called Aclnit to re-capture the Association

Control Service Element (ACSE)-state. If the initialization was successful, the routine

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

54

AcAssocResponse was called to deal with the incoming association from the initiator.

If the association was accepted, the underlying service for remote operations was set

using the RoSetScrvice routine.

If any activity associated with an association occurs, the event-handler ros_ work

was invoked. This routine set a global return vector using setjmp(3) and then called

ISODE routine RyWait to poll for the next operation-related event. This usually resulted

in the registered operation being performed. Next, the operation, sending the PDU, was

attempted. If it was successful, the result (an echo of the DIS PDU) was returned to the

initiator by the RyDsResult routine. Otherwise, the error was returned by the

RyDsError routine. The RyWait then indicated that no more network activity was

pending. If extraordinary conditions existed for the association, routine ros_indication

was called. This routine processed any errors that occurred, caused control to return to

the setjrnp call, and terminated the association.

The isodeserver routine used the lNetAccept routine to wait for the next event

on existing associations and new connections. If failure occured during this operation

(i.e., network listening failed), the rosJose routine was advised. This routine logs the

error condition and terminates the operation with one of the adios or advise routines.

Experimental Perfonnance Analysis

As stated earlier, the network performance in this experiment is evaluated in

terms of speed. In this context, speed is measured in terms of the Round Trip Time

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

55

(RTf) for a generic DIS PDU to transmi t from one workstation to another, and then be

transmitted back to the originating host. The latency associated with the transmission

will give an indication of the network performance. Latency is the time delay between

the transmission of data and the reception by the peer entity. It is related to transit delay

across the network, but a1 so includes the associated processing delays (i.e., processing

encountered at each level within the ISODE architecture stack) .

Performance Statistics

In order to obtain consistent and meaningful performance assessment data, the

SEND program was executed multiple times while keeping all external factors constant,

and storing all round trip time (RTI) measurements in a data file. UNIX shell programs

were designed [SHEN91) to compute the statistics [HOGG87] as follows:

Minimum - the minimum round trip time

Maximum - the maximum round trip time

Median - the middle observation when the observations were arranged in
increasing order of magnitude

Mean· the average value of the observations

Varia nce - a measurement of dispersion of the observations

Standard Deviation - the square root of the variance

Tables 4 and 5 present the data that was gathered [SHEN91) during the

experiments.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Sample
Size

1

10

100

500

1000

PDU
Bytes

1

10

100

200

440

1

10

100

200

440

1

10

100

200

440

1

10

100

200

440

1

10

100

200

440

56

TABLE 4

PERFORMANCE DATA FOR EXPERIMENT 1

Minimum Maximum Moan Median Variance Standard
Time Time (ms) Time Time (ms) Deviation
(ms) (ms) (ms) (=)

40 40 40 40 0 0

30 30 30 30 0 0

40 40 40 40 0 0

50 50 50 50 0 0

40 40 40 40 0 0

30 40 38.9 40 8.9 2.983

40 40 40 40 0 0

40 40 40 40 0 0

40 70 41.9 50 75.7 8.701

40 50 47 50 21 4.583

30 90 39.58 40 49.85 7.06

30 50 39.19 40 15.36 3.919

30 80 4l.1 8 40 40.43 6.358

40 90 45 .54 49 46.37 6.81

40 60 47.09 50 24.55 4.955

30 130 39.688 40 44.436 6.666

30 90 39.424 40 32.046 5.661

30 120 40.34 40 29.93 5.471

40 110 45.648 50 41.274 6.424

39 120 48.26 50 52.634 7.255

30 120 39.6 40 38.406 6.197

30 110 39.457 40 29.501 5.431

30 130 40.728 40 34.003 5.83 1

36 120 46. 159 50 54. 16 7.359

40 120 48.127 50 4336.982 65.856

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Sample
Size

1

10

100

500

1000

PDU
Byles

1

10

100

200

440

1

10

100

200

440

1

10

100

200

440

1

10

100

200

440

1

10

100

200

440

57

TABLE 5

PERFORMANCE DATA FOR EXPERIMENT 2

Minimum Maximum Moan Median Variance Standard
Time Time Time Time Deviation

36 36 36 36 0 0

39 39 39 39 0 0

31 31 31 31 0 0

39 39 39 39 0 0

40 40 40 40 0 0

29 31 30 29 5.6 2.366

29 36 30.1 29 4.3 2.074

29 38 31.1 30 6.3 2.51

32 39 33.1 32 5.3 2.302

33 40 34.2 34 4.2 2.049

28 31 29.55 29 1.15 1.072

29 36 29.65 29 1.29 1.136

29 40 30.47 30 1.85 1.36

31 40 32.46 32 1.99 1.411

33 40 33.56 33 1.03 1.015

22 38 29.606 29 1.52 1.233

29 99 29.924 29 10.912 3.303

29 114 30.784 30 22.134 4.705

29 107 32.446 32 12.3 3.507

33 85 33.654 33 6.332 2.516

24 36 29.574 29 1.081 1.04

26 31 29.824 30 1.332 1.154

23 96)0.515 30 5.586 2.363

25 39 32.46 32 1.373 1.172

30 108 33.793 33 12.649 3.551

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

58

Resulls and Analysis

As mentioned earlier, this experiment was conducted on three of the four

computers connected to the ETHERNET network. The workstations used in the

experiment included the two SUN Spare stations (Falcon and Ibis) and one Motorola

VME workstation (Heron), as shown in Figure 11 .

Heron

ISODE 6 .0

AT&T UNIX

S5R3

ETHERNET

ISODE 6.0 ISODE 6.0

BSD UNIX BSD UNIX
V4.3 V4.3

Falcon Ibls

Figure 11. Experimental Network

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

59

The experiment was conducted in two parts. The first part of the experiment

allowed the SUN workstation Ibis to communicate with the Motorola workstation Heron

using the ISODE communication architecture and the SEND programs. The second

experiment consisted of both SUN workstation, Falcon and Ibis, transmitting generic

PDUs. In both experiments, the computer's CPUs were dedicated to performing this

communication task. During the experiments. activity on the network was limited to the

generic POUs being transmitted. The network was used essentially as a point-la-point

link [SHEN91].

The results of the first part of the experiment are shown in Figure 12. The graph

indicates that as the size of the observations (samples) increase, the mean value of the

round trip time tends to converge. The graph also shows correlation between the time

elapsed for the message to perform a round trip between two computers and the size of

the message transmitted. This graph indicates that as the DIS PDU increases in size,

more time will be required to transmit these PDUs across the network. Therefore, the

DIS PDU which will potentially exhibit the largest latency problems will be the Entity

State PDU . This latency will vary depending on the degree of complexity modeled in

an entity. For example, a tank is less detailed than a ship.

Figure 13 plots the message size versus the round trip time for 500 iterations of

the test. This graph indicates that the variance remains approximately unchanged through

out the experiment. This confirms that the experiments were conducted in an adequately

controlled environment.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

60

The results of the second part of the experiment are shown in Figure 14. The

profiles of this graph are similar to those in Figure 12. However, the RTf is

significantly lower. This demonstrates that the faster RISe microprocessors on the SUN

workstations accounted for a significant portion of the communication performance in this

experiment. Again, as the size of the PDU transmitted increases, the RTf also

increases.

Figure 15 presents the variance behavior in the second experiment for a sample

size of 500. This graph indicates that the environment was adequately controlled for this

experiment. Also, when comparing Figure 13 with Figure 15, the difference in

workstation processors becomes more obvious. The median RTf in Figure 13 IS

approximately 50ms, while the median RTI in Figure 15 is approximately 32ms.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

61

(From Ibis to Heron)

Time (ms)
60r---~~~----------------------------------,

50 r ... · ························ ... ···· ... ···················...................

:: ~ :::.::::=::~.:
20

I 0 _ ... _

oL-______ ~ ________ -L ________ ~ ______ ~L-______ -"

o 100

t time

--e-- 500 limes

200 300 400

Size of Message (Byte)
Sam ple Size

~ 10 limes

---*- 1000 limes

--- 100 Umes

Figure 12. Experiment 1: Message Size vs . Average Round Trip Time

500

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

62

(From Ibis to Heron)

Time (ms)
60----~~~----------------------------------,

::~···=·=················::::·::: s.~ .••••••••••• ~~···· ... ;::::===-=:=:
30

20 ••..........................•.•............................••••.••..........................•.......

10

oL-____ ~ ______ ~ ______ -L ______ -L ______ ~

o 100 200 300 400 500

Size of Message (Byte)

Sample Size

-- Mean --+- Median -*- Mean +Stddev -e-- Mean-Slddev

Figure 13 . Experiment 1: Message Size vs. Average Round Trip Time

(Sample Size = 500)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

63

(From Falcon to Ibis)

Time (ms)
50~~~~~----------------------------------,

4 0 17··"'·····"'·····:::::·····:::::······:::::·····::::···::::·····:;:::·····::::··· .. :::: ::::: ... ::::: ;;;:; ;;;:; "" ... = = = = = = ==- ----..................... .
30 ~---...... "" "" ~ ~ ~ :!: :::: :::: :::: :::: :::: :: :: :: :: ::: := ::: ::: ::: ::"'
20 .. .

10 r···································· .. .

0
0 100 200 300 400 500

Size of Message (Byte)

Sample Size

1 time --+- 10 times --;0- 100 limes

-&- 500 limes -- 1000 times

Figure 14 . Experiment 2: Message Size vs. Average Round Trip Time

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

64

(From Falcon to Ibis)

Time (ms)
40r-----~~--------------------------------------~

30E!" ~ ~ ===. ~ ~

20

10 .. .

o ~--------~--------~--------~--------~--------
o 100 200 300 400 500

Size of Message (Byte)

Sample Size

-- Mean -+- Median ~ Mean+Stddev -e-- Mean-Slddev

Figure 15 . Experiment 2: Message Size vs. Average Round Trip Time

(Sample Size = 500)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER IV

CONCLUSIONS

The objectives of this research were the following: describe the Distributed

Interactive Simulation (DIS) application and its requirements; introduce the Open System

Interconnection (OS I) Reference Model and its applicability to the DIS application;

present an overview of the ISO Development Environment (ISODE) , its services and

faci lities; describe a prototype architecture for the DIS application developed using the

ISODE; present an experiment and test plan for evaluating the prototype DIS

architecture; and discuss the data obtained and analysis thereof.

The DIS application is still an evolving standard which has the potential to bridge

the communication barrier for all military simulators and training devices. The Protocol

Data Units (PDUs) for describing entity appearance and entity interactions are emerging .

However, the communication architecture through which DIS will transmit this

information is still being studied and specified. Since the objective of the DIS initiative

is to provide an open communications environment in which DIS vendors can develop

standard DIS compliant products, the OSI protocol suite and the GOSIP mandate will

have a tremendous effect on the communication architecture selected and the protocols

developed.

65

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

66

The primary rationale for utilizing the ISODE to implement a prototype DIS

architecture was to gain insight into the details of working with an OS! compliant

communications protocol stack. Clearly. an actual DIS implementation within a

simulator systems using ISODE would be ludicrous. However, the nature of this work

was research and from that point of view, the project produced surprising results .

All of the experiments were conducted on workstations running standard (AT&T

or Berkley) UNIX operating systems. Due to the real-time nature of the DIS application,

standard UNIX would most probably have to be replaced by a more real-time UNIX type

of operating system. And even in the experiments conducted as pan of this thesis, it is

almost impossible to ascertain the impact of UNIX related delays on the stati stical data

gathered. Perhaps some performance differences between the Motorola and SUN

workstations can be attributed to the different implementations of the UNIX operating

system. The majority of the performance differences in the SUN SPARC workstation

and the Motorola workstations is a consequence of the microprocessors used in each.

The SUN workstations use Reduced Instruction Set Computing (RISC) technology which

has demonstrated a compilation speed of nearly four times faster than the Motorola

workstation [LOPE9 Ij.

From a long term perspective, the applicability of OSI to DIS will be

demonstrated by means of an evolving and iterative process. Until actual

implementations of the DIS protocol are developed, one can only theorize on how far

DIS will be able to comply with the OSI guidelines. Moreover, if the DIS does, in fact,

become embraced globally in the simulation marketplace as the standard for simulation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

67

become embraced global ly in the simulation marketplace as the standard for simulation

networking, it may very well drive the direction of OS! to some extent. The major

problem here is that the market for DIS products is very limited today (e .g.,

U.S.Government procurements for military training devices) and the incentive for

industry to migrate to the DIS voluntarily is minimal. If however, the DIS does continue

its evolution along the OS! guidelines, the task of integrating actual OSI .. compliant

communications systems with DIS systems will be much easier.

Some comments concerning the prototype architecture presented herein are

warranted. Due to the nature of the ISODE implementation, all experimental interactions

between systems in which data were transmitted over the prototype DIS network stack

were done so under connection-oriented constraints. In an actual DIS implementation,

connection-less services would be utilized, due to the multicast (sending PDUs from one

to-many instead of one-to-one) nature of the protocol. While time measurements taken

as a part of the experimental analysis attempted to isolate the effects of connection

establishment and release, it is extremely difficult to guarantee that these effects were

totally negated.

There are a1so several points which should be highlighted concerning the ASN.l

implementation . Under all experiments conducted herein, the DIS Entity State PDUs

were "pre-coded" in ASN.l before they were actually transmitted over the prototype DIS

protocol stack. In actual OSI applications, ASN encoding and decoding is performed

"on-the-fly", or during the run time of the application. The current viewpoint of the DIS

Communications Architecture working group is that the overhead associated with the

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

68

run-time ASN encoding and decoding of DIS PDUs will be too great for the real-time

constraints . Inasmuch as the experiments carried out as part of this thesis adopt the DIS

Communications Architecture viewpoint, there are still many experiments which must be

carried out to determine whether or not the departure from conventional OS!

implementations is warranted.

The performance data presented herein represents a first attempt at utilizing the

ISODE system and associated tools to build a prototype and pass data over a

communications protocol stack with the networking requirements of DIS (e.g., reaHime

performance) being held as paramount. The ISODE is a massive software system, in its

own right. And the process of obtaining, installing, and util izing ISODE has taken over

two man years worth of engineering effort . The performance measurements give some

insight into the delay times associated with the ISODE stack processing of the DIS

prototype implementation. However, and more importantly, the fact that any

performance statistics were gathered at all demonstrates an in-depth understanding of not

only the ISODE system, but the UNIX system as well. And while the ISODE is a good

jumping-off point for a research environment, its lack of documentation makes it

probably unsuitable for use in an industrial, developmental environment.

I
I
I
I APPENDICES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDIX A

DISTRIBUTED INTERACTIVE SIMULATION

PROTOCOL DATA UNIT FORMATS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

F1llil SIZE
(b i ts)

8

8

8

8

71

DIS PDU Header

PROTOCOL OAT A lJl',IT
HEADER FIELDS

PROTOCOL 8 • bit u:uiJ!le.d intc.er
VERS;ON

E.XERClSE 8 • bil wuirned inll:l:cr n-. 'DE). TIFIER

POL'
S - bit enumcu.lion

n~E

PADD[.':C 8 bits unused

I
I

72

I
I Entity State PDU

I
I FlELO SIZE E\ TIn' STATE POU FIEI.l:lS

(bll_)

Sill · 16 · bit lUu:ii!'le4 r.n!.e,er

<8 "'"!TTY !O HOST · 16 . bit wn1illed :nICI" I
E'iTiY . 16 · btl WlJiplc4 LnIC&CT

16 PADOJ:'G 16 bill \IlIUIc4 I
~-nTY KlSD· B . bil en~~tlon

OOMAL'O • • • hit ~IiDl'l

"'mY COl.~"'TR Y • 16 • bLl cnllmfnuon

64 TYPE CATEGORY - . - bit enwctnuon
I

SI."BCATEGORY·" bU cnumrnuon

S?EC!FlC ••• bit enumcn. tion I
EXTItA - •. bit enwnenuon

32 rotE ST A.\{P 32 • bu IIlIl:isncd inltlC":"

X - Component· 60(- bit nClUlla POint

192 "'"!TTY
I..OCATIO~ Y • Component - 64 • b,t fiOl Una jIOllIl

Z· Componml . 64 • b,t floltin& p;lLllt

I
I

"'"!TTY X • Component - 32 - bi, floaUnI POint

96 ~"EAR y . Canponcnl • 32 . 1111 fiO&W1& poifll
VELOCrTY

Z • Component- 32 • bit nOlllll, point I
"'"!TTY

X . Component ·)2 • bil noaunl POUII

96 ~"EAR Y • Component· 32 • bll noaW'l, POUlt

ACCEURAno~
Z • Component· 32 - bil fkMQnI point

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Entity State PDU (Cont)

F3 JSiZE E'-Tr.I' STATE POl: FiEUlS (CO:".TD)
(bIIS)

?n 3Z . bil BA.\<{

96 E--.rTTY
Th~u. J~ . bit BA."I

QR.IE\.i'ATIO:-; --
Ph.i J2 - bit BA."'"

"TIIT
X . Componellt _ J: _ bit signed I,Mel er

96 A."GL1.AR Y . Component· Jl . bI(lII.&1'cd U\~ieT

va=n' Z • Component· n . bll Signed \lILei;tT

DEAD
64 RECKQ:-.-r-;G 64 biu • W',,:lcrUlcd

P AR.A,.\n;:n:RS

32 "mY
APPEARA.'\"CE 32 - bit wlli,ncd inte&n

96 "TIIT CHARAC'l"'EJ{ SET · ! . bit mwncr.u.ion

~"'G 11 c!ement ,hano;l U swe

32 CAPABnJ'l'IES J:! bit, of Boolu.n fieldl

24 PADot'\G 24 biu \IJIlued

8 ,. of uricula~
& • bit unsiiT'cd in LCIC'T

pans

nx ARTICL;U.TED See Figure G-l. Appendix G
(96m + 32) PARTS

n = II of articu1:ued parts
rn = # of articul ation p3rilrlleters for elCh part
(i=110n)

73

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FZ..OSi2E
(bIll)

48

48

48

32

In

128

96

32

Fire PDU

FIRE PDU FIFl.OS

TARGET
.",mID

EVE\'T·to

BL'RST
DESCJ\lPTOR

SITE •

"

)2 . bit no.una pt

74

I
I 7S

I
I

Detonation PDU

I
FlELDSi2E DETOl'ATIOl' PDU FIELDS

(b its)

SITE • 16 - bit uruignc.d inll:ge:'
FlRll<G

HOST· 16 · bi! unsirned i:I~ge r 48 "lITY1D
I

ENTITY · 16 . bil unsigned irlt.r:ger

SITE· 16 - bit wuigned integer
TARGET

48 EO-"lITYID HOST · 16 . bit uns igned inl.t&tf

ENTITY · 16 • bit unsigned IZIlt:ger

SITE · 16· bit unsigned integer

I
I

48 MtlhmONID HOST· 16 · bit unsigned inlt:ger

E"ITTY · 16 . bit uruipled integer I
SITE • 16 • bit unsigned integer

48 EVENrID HOST · 16 . bil uns igned inlt:gcr

EVE:"IT · 16 - bit uruigntd inICGC':'
I
I 32 TIME ST A,\fP 32 • bit unsigned integer

X -coordinllt: • 64 - bit flolting pt

192 LOCATION
Y -coordinate. 64 • bit nai ling pI INWORlD

Z-eoordinate - 64 - bit nOl ting pi

I
I

MUNlllON • Sec Entity Type Record

WARHEAD · 16 - bit cwnerltion
128 BURST

OESCRlYTOR FUZE • 16 • bit enumeration

I
I Q UANTTTY. 16 • bit uns igned integer

RATE · 16· bit uns igned inlCleT

I
I
I
I

I
I 76

I
I

Detonation PDU (ConL)

I
I rm1)SI2E

DETONA nON PDU FIELDS (CO~TD)
(bits)

x . component· 32 • bit floating pI.

96 VELOCITY
Y • c:omponent • 32 • bit noaUng pt.

I
I Z • component· 32 • bit floating pt.

X - coordinate - 32 - bit flolting pI.

96 LOCATION IN
ENITTY Y • coordinate · 32 • bit fl oating pt.

COORDINAns I
Z • coordinate· 32 • bit flolting pl.

I
S DETONATION 8 • bit enumeration

RESULT

I 24 PADDING 24 bi IS Wluscd

I 32 ENERGY 32 • bit floltina pi

32 DIRECnON·
AUTY 32 • bit floltin, pI

32 MOME>111IM 32 • bit no.tin, pI
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FIELD SIZE
(bits)

48

48

96

96

32

77

Update Threshold Request PDU

UPDATE TIiRESHOLD
REQUEST PDU FIELDS

sm . 16 . bit un.s igned integer
ISSUlJ'-;G

HOST· 16· bit uruipled integer
El-1ITY ID

E/".'TlTY· 16 · bit utl.5i&ned integer

RESPONDING
SITE . 16 . bit unsigned integer

EMTrYID HOST · 16 . bit unsigned integer

Er-rrrrY · 16 . bit unsigned inullcr

Uh'EAR
x • 32 . bit floal ing pi

TIlRESHOlD 'i . 32 • bit floating pi

1 • 32 . bit nOl1ina: pi

Psi · 32 . bit BA.\f

ROTATIONAL
Thet& . 32 . bit BAM

TIlRESHOlD

Phi . 32 . bit BAM

DURATION OF
CHANGE 32 . bit unsicncd intc~er

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FJELOSIZE
(bits)

48

48

8

8

16

78

Update Threshold Response PDU

UPDATE rnRESHOLD
RESPONSE PDU FIELDS

SITE· 16 . bit uruilmcd inIC'le":"
RES POl'-;l)('.;G

HOST. 16 . bit unsigned in \.eg cT
","!TTY ID

El'-ITTY · 16· bit unsigned i,nl.ej;ef

REQi.'ETING
SITE · 16 . bit uruigncd integer

E}.'1lTYID HOST. 16 · bit unsilflcd in\.eBe':"

E~"T1TY • 16· bit uruigned int.l:I"

RESULT 8 . bit enumeration

REMAINING 8 - bit uns ilned integer
TIME

PADDING 16 bits unused

I
I 79

I
I

Service Request PDU

I F1ELDSIZE SERVICE REQUEST PDU FIELDS (bits)

SITE· 16. bit unsigned integer

48 REQUESTING HOST. 16 . bit uruigned integer .",mYID I
ENTITY· 16 . bit unsigned inLf;gCT

SERVICING
SITE · 16 . bit unsigned intc,e~

48
''''''TYID HOST · 16 • bie wuigned integer I

ENTITY • 16 • bit unsi(l1Cd intelt'l'

8 SER\1CE TYPE 8 • bit enumeration I
8 Number oC (n) 8 - bit wuigned inlc,e~

Su=lv tvDI!S

16 PADDING 16 bits WlUSed I
n X 96 SIJPPLY Enliry Kind· 8 . bi t cnumerllion

QUANTlTY Domain · 8 • bit enumeration I
Counlry' 16 • bit enumeration

Category. 8 . bit enumeration I
Subcategory . 8 . b it mumeration

Specific. 8 • bit mumeralion

£lb'1 • 8 • bit enumeration I
I

Quantity . 32 • bit fl o.tina pI

I
I
I
I
I
I

I
I 80

I
I

Resupply Orrer PDU

I
fIELD SIZE RESUPPLY OFFER PDU fIELDS

(bilS)

SITE· 16 • bit unsigned integer

48 REQUESI1J<G HOST · 16 . bit unsigned inl.l:icr
I

"'"TTIY ID ENTITY - 16 · bit lmSi(JIed 1I11eic:r

SUPPLYU\G
SITE· 16 • bit unsigned integer I

48 "'"TTIYID HOST · 16 - bit unsigned inl.l:ger

E"'TITY · 16· bit unsigned intcgel'

8 Number of (n) 8 • bit unsigned intcicr
Supply ry'pC!

I
I 24 PADDING 24 bits unused

Entity Kind • 8 . bit enumeration

Domain· 8 • bit enwncr&lion

Country. 16 • bit cnwncntion I
n X 96 SUPPLY Category - 8 • bil enumeration

QUANlTlY Subc:attcgory • 8 • bit enumeration I
Specific.8 • bit enwneralion

Extra· 8 • bit enumeration

Quantity . 32 • bit nOlting pI
I
I
I
I
I
I
I
I

I
I 81

I
I

Resupply Received PDU

I FIELDSlZE
RESUPPLY RECEIVED PDU FIELDS (bits)

SITE · 16 • bit unsigned lTIteger

48 RECEIVING HOST - 16 • bil unsigned inlegt:!"
E>-1TIYID

I
Er-.'TITY . 16 • bit unsigned integer

SUPPLYING
SITE • 16· bit unsigned integer

48 E>-1TIYID
HOST. 16 . bit Ul'Uigned integer

I
ENTITY · 16 . bit waiplcd intege~

8 I ~umber 0 (n) 8 • bit unsigned integCT
Supply typn

I
I 24 PADDING 2A bilS unused

n X 96 SUPPLY
Enti ty Kind • 8 • bit enumeration

QUMTITY Doma.in - 8 • bit mumC'l'llion

Country. 16 • bit enumeration I
Category. 8 • bi t enumeration

Subcategory. 8 • bit enumCTation I
Specific.8 • bit enumeration

Exira - 8 • bi! enumeration

Quantity . 32 • bit noating pI
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

F1ElDSIZE
(bils)

48

48

82

Resupply Cancel PDU

RESUPPLY CANCEL PDU FIELDS

SITE · 16 - bit Wl.S irned integer
RECEIVING HOST · 16 - bit wuigncd integer
ENIlTYID

ENTITY - 16 - bit unsigned inll!&er

SUPPLYING SITE - 16 . bit unsigned integer

ENIlTYID HOST - 16 - bit wuirncd inl.t&tf

ENTITY . 16 - bil wuicned muae!"

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FJElDSrzE
(bits)

48

48

16

16

83

Repair Complete PDU

REPAIR COMPLETE POU FIrl.DS

SITE · 16 . bit unsigned inulC'T
REQUESTING

HOST - 16 . bit utUigned inteler
ENt1TYID

ENTITY. 16 . bil unsigned inceler

SITE . 16 . bit unsigned inle,er
REPAlRlNG

HOST· 16 . bit wuigncd inteler
EMTTYID

ENTITY . 16 • bit uruisned inteler

REPAIR REPAIR TYPE·16 . bit C'\umeratio

PADDING 16 bits unused

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FIElDSlZE
(bi u)

48

48

8

24

84

Repair Response PDU

REPAIR RESPONSE PDU

SITE · 16 . bit unsigned i.n~l!ier

REQlJES1lNG HOST· 16 . bit unsigned integer
ENlTlYlD

El'(lTIY . 16 . bll unsigned inllCser

REPAIRING
SITE - 16 . bit unsigned inl.Cger

E»'IT1Y1D HOST· 16 . bit urui&ned inleser

E..:''lITY· 16· bit unsigned integer

REPAllt
RESUlT 8 • bit enumeration

PADDING 24 biLS WlU$c.d

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FIELD SIZE
(bits)

48

48

32

48

16

96

64

96

85

Collision PDU

COUlSIOr-; POU fIE11)S

SITE · 16 • bit ll1ISign"d lntcacr
ISSUING

HOST · 16 • bit unsigned integer
ENTm'ID

ElIo'11TY . 16 • bit uns igned inlese.

SITE· 16 - bit unsigned intEger
COLllDI1'C

HOST· 16 • bit uruigned integer
ENTm'ID

ENTITY· 16 • bit unsigned intcse

TL\otE Sf AMP 32 - bit unsigned integer

EVENT SITE - 16 - bit wuigned integer

ID HOST - 16 - bit unsigned inttge

EVENT - 16 • bit wuicned inulcr

PADDING)6 bits unused

x • 32 • bit floating pI
vn.ocrry

y • 32 • bit flow, pI

Z - 32 • bit noaMI. pI

MASS 64 • bit no.tin, pI

x • 32 - bit floating pi
LOCATION

(with respect ID
Y • 32 • bit floWng pl

Entity) :z: . 32 • bil floating pI

I
I
I
I
I FIElD SIZE

(bm)

I 48

I 16

32

I 48

I 8

I
8

I
I

nx
(96ml + 352) I

I
I
I
I
I
I

Radar PDU

RADAR PDU rn:LDS

SITE · 16· bit unsigned integer
E..WTT'L"G HOST· 16 . bit unsigned in ~ger
ENTTTY ID

ENTITY· 16 • bit uns igned integer

PADDING 16 biu unused

TIMESTA.MP 32 • bit unsigned integer

EVE>-1"
SITE · 16 · bit unsigned integer

ID HOST · 16 . bit unsi gned inILger

EVE.l\,'T . 16 • bit uns igned integer

PADDING 8 bits unused

Numbcr of 8 • bit uns igned integer
Radar Systems (n)

x • 32 • bit nOlting 1'1
LOCATION (w/ 'i . 32 • bit flo ating pI

respect to
entity) z . 32 • bi t nOltin, pI

RADAR SYSTE.1vI 32 • bit unsirned integer

POWER 16 • bit integer

RADAR MODE 8 • bit enumeration

I llUMINED 8 . bit unsigned intta CT
(m~)

SPECIFIC 64 • bit inleger
DATA

Azimuth cenLel' • 32 • bit BAM

'WEE'
Azimuth swup • 32 - bit BAM

Elevation C:mlef • 32 • bit BAM

Elevation sweep · 32 • bit BAM

SITE · 16 • bit wuirned integer
TARGFY' HOST · 16 · bit unsirned inte, er

ID
ENTITY . 16 - bit unsirned mlcler

PADDING 16 biu; unused

RADAR DATA 32 - bit unsisned integer

352 bits

96xm; bits
(i = 1 to n)

86

I
I
I
I APPENDIX B

I .sEND PROGRAMS AND DATABASES

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

88

####1111#1#1#1111##11##1####111111#11111111#11########1#####
#1#111111#######111

isobjects - ISODE objects Database

Mappings between object descriptors and object
identifiers

$Header: If/osi/config/RCS/objects.local,v 7 .0 89/11123
21 :2 6:10 mrose ReI $

SLog: objects.local , v $
Rev ision 7 . 0 89 / 11 /23 21:26:10 mrose
Re l ease 6.0

#1######11###1#1###111#####11111111##11#########1####1######
###1#####1##1111111

###1111#####1#11111#111##11#11111111111###1#1##111##########
1111####1###1111111

Syntax:

<o bject descriptor> <object id>

Each token is separated by LWSP, though double-quotes may
be used to prevent separation

#####################1#1########11##########################
###############11##

######1###1#111##1##11##111111######1###11##################
#############1#####
loca lly defined objects
(thi s s ection is usually e mpty ...)
#######1####1#1#1###1#1#111#111###1##11#1#1##1########1##11#
###11########1##11#

##/1####/#/#/######1#/##////111/111//####/1#1#//#######1####
##11#111#1#####111#

$Header: If/osi/support/RCS/objects.db,v 7.1 90/01111
I 18:38:03 rnrose Exp $

$Log: objects.db,v $
Revision 7. 1 90/01 / 11 18:3 8 : 03 mrose
real - sync

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

89

Revision 7.0 89/11/23 22:27:43 mrose
Release 6.0

##1########1#1######1/1111111#1/1##'##1/######1#############
1##1#1#####111##11#

################1#############111##11##111##1###############
###1##1###1#1##1#1#
ISO ASN.l
##/#######/#####################1####1######################
####11#############

150 standard 8824
"iso asn.l abstract syntax" 1.0.8824

150 standard 8825
lIiso asn.l abstract transfer" 1.0.8825

joint-iso-ccitt asn1(1) basic-encoding(l)
"basic encoding of a single asn.l type" 2.1.1
temporary (for backwards compatibility)
"asn.1 basic encoding ll 2.1.1

#####1########1######//##1#1//1##1###1//####################
###############1##1
ISO ASSOCIATION CONTROL
#####################11##1#1#1111111###11#1#################
########1##1#######

joint-iso-ccitt associationcontrol(2) abstractSyntax(l)
apdus(O) versionl(l)
Ilaese pci version 1" 2 . 2.1.0.1

#####1##11#######################1##########################
###############11##
ISO/CCITT RELIABLE TRANSFER
##1#1#####1####11/#111111111111/111#1#//11#1111###########1#
####1#####1111/111/

joint-iso-ccitt reliable-transfer (3) apdus (0)
"rtse pci version 111 2.3.0

joint-iso-ccitt reliable-transfer (3) aseID (1)
"rtse ase identifier" 2.3.1

joint-iso-ccitt reliable-transfer (3) abstract-syntax (2)
II rtse abstract syntax" 2.3 . 2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

90

################1###
###,###,,#######1##
ISO/CCITT REMOTE OPERATIONS
#######11###1###################1##111##################1###
###1####11111##11##

joint-iso-ccitt remote- operations (4) notation (0)
"rose notation" 2.4.0

joint-iso-ccitt remote-operations (4) apdus (1)
"rose pci version 111 2.4.1

joint-iso-ccitt remote-operations (4) notation-extension (2)
IIrose notation-extension" 2 . 4.2

joint- iso-ccitt remote-operations (4) aseID (3)
"rose ase identifier" 2.4 . 3

joint-iso-ccitt remote-operations (4) aseIO-ACSE (4)
"rose ase identifier ACSEII 2.4.4

####################11#1#############1##1################1##
####1############11
ISO/CCITT DIRECTORY SERVICES
#####################1#1###1###1##########################1#
111##1#######1111##

joint-iso- ccitt ds(5) applicationContext(3)
directoryAccessAC(l)
"directory direct oryAccessAC" 2.5.3.1

joint- iso- ccitt ds(5) applicationContext(3)
directorySystemAC(2)
IIdirectory directorySystemACn 2.5.3.2

joint-iso-ccitt ds(5) abstractService(9)
directoryAccessAS(l)
IIdirectory directoryAccessASII 2.5.9.1

joint-iso-ccitt ds(5) abstractService(9)
directorySystemAS(2)
"directory directorySystemAS II 2 . 5 . 9 . 2

#1#########11########1111#11####11###1######1##'#######1####
###########1####1#1
ISO FTAM
#1########11##1##1#11#11########11##1#1####11#########1#####
###1##1##1111111111

iso standard 8571 abstract-syntax (2) ftam-pci (1)
"ftam pci" 1.0.8571.2.1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

91

I 1so standard 8571 application-context (1) iso-ftam (1)
Iliso ftam" 1.0.8571.1.1

nbs-ad-hoc ftam-nil-ap-tltle (7)
"nil AP title " 1.3.9999.1. 7
"null AP title" 1.3.9999.5.1

##1 BEGIN DIS FTAM ###

Iso standard 8571 transfer-syntax (3) ftam- pei (1)
"ftam pei transfer syntax" 1.0.8571.3 .1

##1 END DIS FTAM 1##

########################1##1##########1#####################
###################
ISO VT
#########111##
###################

I TEMPORARY
lIiso vt pci"
"iso vt"

II telnet"
"forms"
"defau lt"

1.17.1.10.1
1.17.1.10.2

1.3 . 9999.1.8.0
1. 3.9999.1. 8.1
1. 3.9999.1. 8.2

##########################1########1##1############### ######
################1##
ISO CMIP
#1##1######11###1111###"'1#"######'#'1########'######,,###
#1#####'##1#1######

Iso standard 9596 abstractSyntax{O) cmip-pci(O)
"cmip pcil! 1.0.9596.0.0

Iso standard 9596 cmip(2) version(l) acse(O)
I functional-units(o)
"cmip initialize pci" 1.0.9596.2.1.0.0

Iso standard 9596 cmip(2) version(!) acse(O)
m-abort-source(l)
"cmip abort pci" 1.0.9596.2.1 .0 .1

TEMPORARY application- context until 9596-2 gets its act
I together
"iso cmip" 1.17 .1 .11.2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

92

#1111111#1"'1#'11##1#1#####11##11###1###1#####1#1#######,##
#1"##"#"'###'#"
1
I ,

I

ISODE Object Identifiers

The pcr is an object identifier
without asking ISO's permission, we usurp the t ree of
object identifiers that start with sub-elements
111.17"

I
########1#1###1'###1###############11####111######1###"""
"#",,,"#'##1""

I reserved for ISODE debug aids: 1.17.0
1.17. 0. n . 1 pci for debug
1.17.0. n .2 application context for debug

1.17.0.1 isode echo
"isode echo pci ll 1.17. 0. 1 .1

1.17.0 . 2 isode sink
"isode sink pci" 1.17.0 .2.1

reserved for ISODE demo programs: 1.17.1
1.17.1.n.1 pei for demo
1.17.1.n.2 application context for demo

1.17 .1.1 isode miscellany
" isode miscellany pci" 1. 17.1. 1. 1
"isode miscella ny" 1.17.1.1.2

I 1.17.1 . 2 isode image (obsolete)

1.17.1.3 isode callback demo
reserved (not actually used yet)
" isode cal lback demo pci" 1.17.1 . 3.1
"isode ca llback demo" 1.17.1.3.2

1.17.1.4

"isode listen
"isode listen

isode listen demo
reserved (not actually used

demo pCi" 1.17.1.4.1
demo" 1.17.1.4.2

isode passwd lookup demo

yet)

1.17.1.5
"isode passwd
"isode passwd

lookup demo pci" 1.17.1.5.1
lookup demo " 1.17 . 1. 5 . 2

1.17.1.6 isode dbm demo
"isode dbm demo pci" 1. 17.1. 6 .1
"isode dbm demo" 1.17.1.6.2

I 1.17.1.7 obsolete

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I 1.17.1.8 isode shell
1.17.1.8.1
1.17.1.8.2

lIisode shell ll

lIisode shell pei"

1.17.1.9 isode idist
1.17.1.9.1
1.17.1.9.2

"isode idist"
lIisode idist pel"

1.17.1.10 VT (temporary)

1.17.1.11 CMIP (temporar y)

1.17.1.12 Z39.50 (temporary)
IIIRP Z39.S0" 1.17.1.12.2

1.17.1.5 isode passwd lookup demo
"isode send string demo pei" 1.17.1.13.1
"isode send string demo" 1.17.1.13.2

reserved for local ISODE programs: 1.17.2
1.17 . 2.n.1 pei for local program
1.17.2.n.2 application context for local program

93

additions for local ISODE programs are made to the site's
objects. local file

reserved for ISODE FTAM document types: 1.17.3
see the isodocuments(5) file

reserved for application entity titles: 1.17.4
1.17.4.0 templates for services
1.17.4.1 templates for local services
1.17.4.2 examples of specific services
1.17.4.3 specific services under different
administrations

reserved for
1.17.5.0
1.17.5.1

use with Directory attributes: 1.17.5
reserved
attributes under different administrations
(numbers parallel to 1.17.4.3 tree)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

94

11111#11#1#111####11#####1111###1###11#####11###############
##11####111####### #

isoentities - ISOOE Applicat i on Entity Title Dat abase
I
Application Entity Titles as pe r ACSE
I
I This file takes the pla ce of "real" director y ser vices ;
oros a r e used for AETs , rather t han Dis t i ngu i s hed Names.

$Header : / f/osi/support/RCS j entities.prefix,v 7 . 0 89/ 11/ 23
22:27:11 mrose ReI $
I
I
$Log : entities. prefix, v $
Rev ision 7. 0 89 / 11/23 22:27:11 mrose
Re l e ase 6.0

##1#1#1#####11## # ###1######11#11#1#1##1######1"############
#11#########11#1###

##########111##1##1##111########111########1##############1#
##1# #1#1#111##

Syntax:

<h ost > <serv i c e > <aet> <paddr>

Each t oken is s e parated by LWSP, though double -quo t es ma y
be u sed to prevent s eparat ion

##111############1### 1#1#11#11# #1####11#11##11#############1
##1######1#####11##

########1##1#11##1## ##11##111# #1##1### ######################
##########111# # ####

Application entity titles : 1.17.4

1.17.4.0 templates for serv i ces
1.17 .4.1 template s for local ser v i ces
1 . 17 . 4 .2 e xamp l e s of specific s ervice s
1.17 . 4.3 s pecific services under diffe rent
admin istrations

##############1#####'1###"'#1"11#'1##1111#"'##1#1##"1#1#
#,#############",#

t emplates for s e rvices : 1.17.4. 0

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

default

I this is
'default

default

default

default

default

default

default

default

default

default

default

default

default

default 1.17.4.0.0

where ISODE 3.0 FTAM (DIS over
filestore 1.17 . 4.0.1 1256/

DIS) lived

lIisode/echoli 1.17 . 4.0.2 #512/

I'isode/ rtse echo" 1 . 17 . 4.0.3 #513/

lIisode j ros_echo" 1.17 . 4.0.4 #514/

lI isode/sink" 1.17.4.0.5 #515/

lI isode/rtse sink" 1.17.4.0 . 6 1516/

lIisode/ros_ sink" 1.17.4.0 . 7 #517/

"isode miscellany" 1.17.4.0.8 #5 18 /

imagestore 1.17.4 . 0.9 #519/

"isode callback demo " 1 . 17.4.0.10 #520/

"isode listen demo" 1.17.4.0.11

passwdstor e 1.17.4.0. 1 2 #521/

dbmstore 1.17.4.0.13 #522/

95

temporary until the FTAM/FTP gateway is co-resident with the
FTAM responder
default ftpstore 1.17.4.0 . 13 #523/

default directory 1.17.4 . 0.14 #257/

this is
#default

where ISODE 4.0 FTAM (DIS over IS) lived
disfilestore 1.17.4.0.15 #258/

this is where ISODE 5.0 (and later) FTAM (IS over IS) lives
default filestore 1.17.4 . 0.16 #259/

default

default

default

default

shell 1.17.4.0.17

terminal 1.17.4.0.18

#524/

#260/

"isode idist" 1.17.4 . 0.19

mib 1.17.4.0.20 #26 1/

1525/

1#1###1#####1###1##11111111#1#111#111##111#1##111#1####1#1##
1111111111#11##1111

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I $He ader: /f/osi/config/RCS/entities,local,v 7.0 89/11 /2 3
21:26:03 mrose Rel $

$Log: entities.local,v $
Revision 7.0 89/11/23 21:26:03 mrose
Release 6.0

96

############1###
####1/##1###1####1#

templates for local services: 1.17.4.1
local additions go here ...
default passwdstore 1.17.4.1.7

default send 1.17.4.1.8

#1040/

#1041/

1 local additions end here (do not remove this line)

examples of specific services: 1.17.4 .2
this section is empty

11#1111#####11'####'###1'##"##1################1'######1###
#1111##111#11111111

$Header: /f/osi/support/RCS/entities.db,v 7 . 2 90/01/11
I 18:37:58 mrose Exp $
I

$Log: entities.db,v $
Revision 7.2 90/01/11 18:37:58 mrose
real-sync
I
Revision 7.1 89/12/06 17:29:38 mrose
update

Revision 7.0 89/11/23 22:27:10 mrose
Release 6.0
I
1##11#1#1########111####1#1#11######1###########1###########
###1#1##1####111#1#

#############1#1###1##1###11###111#1###1#######'############
########11###1'#11#

specific services under different administrations: 1 . 17.4.3

1.17. 4.3.0 local administration
1.17.4.3.1 Northrop Research and Technology Center

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.17.4.3.2
1.17.4.3.3
1.17.4.3.4
1.17.4.3.5
1.17.4.3.6
1.17.4.3.7
1.17.4.3.8
1.17.4.3.9
1.17.4.3.10
1.17.4.3.11
1.17.4.3.12

1.17.4.3.13
1.17.4.3.14
1.17.4.3.15
1.17 .4 . 3 .16

1.17.4.3.17
1. 17 • 4 • 3 • 18
1.17.4.3.19
1.17.4.3.20
1.17.4.3.21
1.17.4.3.22

1.17.4.3.23
1.17.4.3.24
1.17.4.3.25
1.17.4.3.26
1.17 .4 . 3. 27
1.17.4.3.28
1.17.4.3.29
1.17.4.3.30
1.17.4.3.31
1.17.4.3.32
1.17.4.3.33

1.17.4.3.34

1.17.4.3.35
1.17.4.3.36
1.17.4.3.37

University College London
Nottingham University
National Physical Laboratory
National Computing Centre
INRIA
Swedish Institute of Computer Science
Televerket (Swedish Telecom)
COS
University of Sussex
CNET
University
Laboratory

of Cambridge computer

The Wollongong Group
CHORUS
RARE
Swiss Federal
Zurich

Institute of Technology

Tampere University of Technology
Diab Data AB

97

AU-system
Swedish Defense
NCR Sweden
Swedish Agency
Development
TeleDelta

Material Administration

for Administration

TeleLOGIC
Upsala University Computing Center
Royal Institute of Technology
Swedish state Power Board
CSIRO
Brunel University
Heriot-watt University
Oce Research and Development
NYSERnet Inc.
Finnish University and Research Network
Project
German National Research Center for
Computer Science
Erlangen-Nuernberg University
University of Surrey
Rutgers University

most sites contain a single entry:

site default 1. 17. 4 . 3 . nn. 1. 0 1111 "" ""
network addresses

#############################1##############################
#######/###########

Northrop Research and Technology Center: 1.17.4.3.1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9 8

I 1.17.4 . 3.1.1 greml i n

gremlin default 1.17.4 .3 .1 . 1 . 0 \
Internet=gremlin . nrtc. northrop. com

University College London: 1.17.4.3.2

ucl default 1.17.4.3.2.1.0 \

Int-x25(BO)=23421920030013:Janet=00000511160013IInterne t = 128
.16.5 .1

hubris default 1 . 17.4.3.2.5.0 \

Int-X25(BO)=234219200300 4 7 iJanet=00000511160047:Internet=128
.16 .B.3

dir d e fault 1.17.4.3.2.7 . 0 \
Janet=OOOOOS11320041

Nottingham University: 1.17.4.3.3

nott default 1.17.4.3.3.1.0 \

Int- X25 (80) = 23426020017299:Janet=000021000018+PIO+0301 0100

National Physical Laboratory: 1.17.4 . 3.4

snow default 1.17.4.3.4.1.0 \
Int-X25(BO)=2342139011029B

National computing Centre: 1.17 . 4.3.5

sol de fault 1.17.4 . 3.4.1.0 \
Int- X25(BO)=23426160013967

zeb default 1 .17. 4.3 . 4.2.0 \
Int-X25(BO)=23426160013957

INRIA: 1.17.4 . 3 . 6

inria default 1 .17.4.3 . 6 .1. 0 \
Int-X25(80)=20B07802017 036

Swedish Ins titute of Computer Science: 1.17 .4.3.7

tvtf default 1.17.4.3 . 7.1.0 \

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

99

Int-X25(80)=2402 001328

Televerket (Swedish Telecom) : 1.17.4.3.8

sics default 1.17.4.3.8.1.0 \
Int-X25(80)=2402001203+PID+03010100

COS: 1.17.4.3.9

echo default 1.17.4.3.9.1.0 \
Int-X25(80)=31342023004600IInternet=echo

r eserved for University of Sussex: 1.17.4.3.10

CNET : 1.17.4.3 .11

cnet default 1.17.4.3.11.1.0 \
Int-X25 (80)=20809202045601+PID+0301010 0

University of Cambridge computer Laboratory: 1.17 . 4 . 3.12

be scot default 1.17.4.3.12.1.0 \
Int-X25(80)=23422233939909IJanet=000008 0 131 7 7 0 1

Acting as an NRS distribution center

nrs filestore 1.17.4.3.12.1.1 \
#256/Int- X25(80)=23422233939909:Janet=00000801317701

The Wollongong Group: 1.17.4.3.13
1.17 .4.3.13.1 gonzo
1.17.4.3.13.2 boomer
1.17.4.3.13.3 dart
1.17 .4.3.13.4 philj

gonzo default 1.17.4.3.13.1.0 \

Inte rnet=gonzo.twg.comilnt-X25(SO)=31344152401010+PID+0 30101
OO INS+470004000B000141524010100000INS+4900590800 2 0004053feOO

gonzo tsbridge 1.17.4.3.13.1.1 \

Internet=gonzo . twg.com+17004IInt-X25(BO)=3134 4 15240101O+PID+
03018000

gonzo "is ode listen demo" 1.17.4.3.13.1.2 \
#521/Internet=gonzo.twg.com+17001

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

boomer

dart

philj

default
Internet=boomer

1.17.4.3.13.2.0 \

default 1 .17.4.3.13.3.0 \
#1/NS+49005902608c425403fe04:Internet =dart

default 1 . 17 .4.3 .13.4 .0 \
#1/NS+49005902608C884255fe04lInternet=philj

Chorus Systems: 1.17.4.3.14

chorus default 1.17.4.3.14.1.0 \
Int-X25(BO)=20B07B091969

reserved for RARE: 1.17.4.3.15

100

Swiss Federal Institute of Technology Zurich: 1.17. 4.3 .16

multimeth default 1.17.4.3.16.1.0 \
Int-X25(BO)=22B49911084131

I reserved for Tampere University of Technology: 1.17.4.3.17

Diab Data AS: 1.17.4.3.18

diab default 1.17.4.3.1B.1.0 \
Int-X25(80)=2402000166+PIO+03010100

reserved for AU-system: 1.17.4.3.19

reserved for Swedish Defense Material Administration:
1.17 . 4.3.20

reserved for NCR Sweden: 1.17.4. 3.2 1

reserved for Swedish Agency for Administration Development:
1.17.4.3.22

reserved for TeleDelta: 1.17.4.3. 23

reserved for TeleLOGIC: 1.17.4.3.24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

101

reserved for Upsala University Computing Center: 1.17.4.3.25

reserved for Royal Institute of Technology: 1.17.4.3.26

reserved for Swedish state Power Board: 1.17.4.3.27

CSIRO: 1.17.4.3.2B

ditmela default 1.17.4.3.2B.1.0 \
Int-X25(BO)=5052334300013+PID+03010100

guppy default 1.17.4.3.2B.2.0 \
Int-X25(BO)=5052334300017+PID+03010100

Brunel University: 1.17.4.3.29

brunel default 1.17.4.3.29.1.0 \
Janet=00004114000001+PID+03010100

bru-me default 1.17.4.3.29.1.0 \
Janet=00004113150001+PID+03010100

bru-cc default 1.17.4.3.29 .1.0 \
Janet=00004113150002+PID+03010100

Heriot-watt University: 1.17.4.3.30

ra default 1.17.4.3.30.1.0 \
Jane t=00007024661010

helios default 1 .17 .4.3 .30.2.0 \
Janet=00007024661011

solarls default 1.17.4.3.30.3.0 \
Janet=00007024661013

reserved for Oce Research and Development: 1.17.4.3.31

I NYSERNet Inc.: 1.17.4. 3.32
1.17.4.3.32.1 osi.nyser .net
1.17.4.3.32.2 ull.psi.com
1.17.4.3.32.4 oele

osi.nyser.net default 1.17.4.3.32.1.0 \

Internet=osi.nyser.net:lnt-X25(BO)=31106070013600+PID+03010100

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

osi.nyser.net Z39.50 1 . 17 . 4.3.32.1.1 \
#1025/Internet=osi . nyser . net

uu.psi.com default 1.17.4.3.32.2.0 \
Internet=uu.psi . com

oclc Z39.50 1.17.4.3.32 . 4.1 \
#1025/Int-X25(80)-31106140003659+PID+03010100

reserved for Finnish University and Research Network
Project: 1 . 17 . 4.3.33

102

reserved for German National Research Center for Computer
Science: 1 . 17.4 . 3.34

Erlangen-Nuernberg University: 1 . 17.4.3.35

faui45 default 1.17 . 4.3.35.1 .0 \
Int-X25(80)~26245913144345+PID+03010100

University of Surrey: 1.17.4.3.36

sur-ee defau l t 1 .17.4.3.36.1.0 \
Janet=C0004800200101+PID+03010100

do not , under any circumstances , remove anything beneath
this line

end of isoentit ies database

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

103

##1#1#1#11#111########1####1#1#######1######################
1##1###1########1##

isoservices - ISOOE Services Database

Mappings between services, selectors, and programs
I
I
$Header: If/osi/config/RCS/services.local,v 7.0 89/11/23
21:26:17 mrose ReI $
I

$Log: services.local,v $
Revision 7.0 89/11 /23 21:26:17 mrose
Release 6.0

####1#11#1##11##1###1##############1111#1111###1############
##1/1#####11111#"#

##########111111##1##############1##111#####11##1###########
#######1####1###1##

Syntax:

<provider>/<entity> <selector> <argO > <argl> ... <argn>

Each token is separated by LWSP, though double-quotes may
be used to prevent separation

#1####1##1####1###1##1#1##########1111#11#11########11######
##1#######11#######

##########11#####111#1###1#######11#1#1#1####11#############
1########1111#11##1
locally defined services
(this section is usually empty ...)
#1###1###1#111###1###1#11#1#11##1#11#####1111#1##1#####1####
##1###1###11##1#11#

local additions end here (do not remove this line)

######1#######################11######1####1#1#############1
###1#####1###1##11#

$Header: /f/ osi/support /RCS/services.db,v 7.1 90/01/11
18: 38:07 mrose EXp $

$Log: services .db,v $

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Revision 7.1 90/01/11 18:38:07 mrose
real-sync

Revision 7.0 89/11/23 22:27:44 mrose
Release 6.0

104

#######1###########

###################

Entities living above the lightweight presentation service

Selector is unimportant

###########################1################################
###################

"1pp/isode miscellany"
lpp/rnib 1111

1111 Ipp. imisc
Ipp.cmot

#####1###1
###################

Entities living above the transport layer, expressed as TSAP
IDs

o
1-127

128-255
256-511
512-1023

1024-2047
2048-32767

32768-65535

reserved
reserved for GOSIP
GOSIP-style TSAP IDs for ISODE
TSAP selectors for ISO applications
TSAP selectors for ISODE
TSAP selectors reserved for local programs
unassigned
process-specific

###########################1################################
###################

internal server to support asynchronous event INDICATIONs
tsap/isore #0 isore

GOSIP-style addressing
tsap/session

debug aids
tsap/echo
tsap/sink

ISO applications

#1

#128
#129

tsapd-bootstrap

isod.tsap
isod.tsap

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

this is where ISODE 5.0 FTAM
"tsap/fl1estore" #259

this is where ISODE 4.0 FTAM
"tsap/filestore" #258

this is where ISODE 3 . 0 FTAM
"tsap/filestore ll #256

QUIPU is a static server
"tsap/directory" #257

"tsap/terminal ll #260

"tsap/mib" #26 1

"tsap/Z39.50 11

ISODE applications
"tsap/isode echo"
"tsapj isode rtse echo"
"tsap/ isode ros echo"
"tsap/isode sink ll

"tsap/isode rtse sink"
"tsap/isode ros sink"
"tsap/isode miscellany"
imagestore is obsolete

#262

#512
#513
#514
1515
1516
1 517
1518

"tsap/imagestore" #519
"tsapjisode callback demo"
"tsap/passwdstore" #521
"tsap/dbmstore" #522

(IS over IS) lives
iso.ftam

(DIS over IS) lives
iso.ftam-4 .0

(DIS over DIS) lived
i so.ftam-3.0

i so .quipu

iso.vt

ros .cmip

iso.z39-50

isod .acsap
i sod. rtsap -rtse
isod . rtsap -rtse -rose
isod.acsap
isod.rtsap -rtse
isod.rtsap -rtse -rose
ros.imisc

ras.image
'520 iso.callback

ras.lookup
ros . dbm

105

t emporary until the FTAM/ FTP
FTAM responder
IItsapjftpstore"

gatewa y is co-resident with the

"ts ap/shell"
"tsap/isode idist ll

"tsap/ i sode passwd"
"tsap/isode send

#523
#524
#52 5
#1040
/ 1041

iso . ftam-ftp
ras.ash
ros.idist
res . lookup
rcs.send

#1###11####11#####1#1#111111#1111#111##1######1111####1##1#1
####1111#1#1######1

Entities living above the session layer, expressed as SSAP
IDs
I
I

o
1-127

128-255
256-1023

1 024-2047
2048-32767

32768-65535

reserved
reserved for GOSIP
GOSIP-style SSAP IDs for ISODE
unassigned
SSAP selectors reserved
unassigned
process-specific

for local programs

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

106

####,###,###########,,##############,,##########,###########
####1/1#1###"###"~

GOSIP-style addressing
ssap/presentation #1 tsapd-bootstrap

tsapd-bootstrap
tsapd-bootstrap

ssap/rts #2
ssap/ros #3

debug aids
ssap/echo
ssap/sink

#128
#129

isod.ssap
isod.ssap

####"###,#,##,#####,#########"###,#""",,#,,,,,#,#######
#,##",###,##,##,##

Entities living above the presentation layer, expressed as
, PSAP IDs ,
,

o
1-127

128-255
256-1023

1024-2047
2048-32767

32768-65535

reserved
reserved for GOS!P
GOSIP-style PSAP IDs for ISODE
unassigned
PSAP selectors reserved
unassigned
process-specific

for local programs

####1'##1#"'##1#'##########,########1"#"'#'##'#,##,#,,###
,###"",,",##"##

GOSIP-style addressing
psap/ftarn "

debug aids
psap/echo
psap/sink

#128
#129

iso.ftam

isod.psap
isod.psap

##'#1'#"#',######",#,###"##,,####,,####,,,##,########,#,#
##,#,######1#####',

Old-style RTS addressing ,

o
1-127

128-255

reserved
reserved for GOS!P
GOSIP-style for ISODE

####11###################################,##################
####'1####1###1####

mhs
rtsap/p1
rtsap/p3

1
3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

debug a ids
rtsap/echo
rtsap/sink
rtsap/ros echo
rtsap/ros-s ink
IIrtsap/file transfer"

#128
#129
n30
/131

#132

isod.rtsap
isod.rtsap
i sod.rtsap
isod .rtsap

iso.rtf

107

####1#######1################111######1##1#######1#######1##
###################

Old-style ROS addressing

o
1-12 7

128-255

reserved
reserved for GOSIP
GOSIP-style for ISODE

#####1#####111#1#1######1##1#11##1#####1#1##################
#######1#########1#

debug a ids
rosap/echo
rosap/sink

#128
129

isod.rosap
isod.rosap

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

c 2

108

/* SEND.C
1* Program initiator modified from Lookup to perform

' / the essential communication set-up and funtion definition

*'
linclude <stdio .h>
#include <strings.h>
'include <math.h>
#include <sys/time .h>
#include "timer.hl!
#include "ryinitiator.h"
initiators */
#include "POU-ops.h"

*' #include "PDU-types .h"

*'
'*

'* for generic interctive

1* operation definitions

1* type definitions

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 0 9

DATA *'
/. the following three statements de! ine the name for the
process */
1* and they are related with the ISODE object, entity and
service files */

static char *myservice -= "sendstring"i
static char *mycontext = "isode send string demo";
static char *mypci = "isode send string demo pCill;

'* ARGUMENTS *' int do send (), do_quit e)i

'* RESULTS *' int send result e)i

'* ERRORS *' int send_error e)i

1* This is the declaration of the available processes in this

' 1 intiator program with the standard structure dispatch

*'
static struct dispatch dispatches(] = {

IIsend ll
, operation POU send,

) ;

'*

do send, free PDU-Pdu~
send result, send-error,
"send a pdu" , -

"quit", 0,
do quit, NULLIFP,
NULLIFP, NULLIFP,
"terminate the association and exit",

NULL

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

110

MAIN *'
'* ARGSUSED *' '* Here is the top level call for the send program. The
ryinitloop */ '* routine resides in the ryinitiator.c program

*'
main (argc, argY, envp)
int argc;
char .*argv,

**envpi
{

(void) ryinitloop (argc, argv, myservice, mycontext,
mypci ,

table_PDU_Operations, dispatches, do_quit);

exit (0); '* NOTREACHED *'
}

'*

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ARGUMENTS *'
'* ARGSUSED *'

111

/* do_send routine checks for the commmand line entered by the
user */
1* and buffers it

*'
static int do_send (sd, ds, args , arg)
int sd;
struct dispatch *ds;
char **args;
register struct type_PDU_ Pdu **arg;
(

}

'*

char *CPi

if «cp - *args++) -- NULL) (

}

advise (NULLCP, "usage: send pdu");
return NOTOK;

timer(O)i
if «*arg = str2qb (cp, str1en (cp), 1)) -- NULL)

adios (NULLCP , "out of memoryll);

return OK;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

112

*/

/* ARGSUSED */

1* The do quit routine handles the case when the user request
a */ -
/* graceful disconnect. Basically it calls the AcRelRequest to
*/
/* perform the disconnection

*/

static int do_quit (sd, ds, args, dummy)
int sd;
struct dispatch *dsj
char **args;
caddr_t *dummYi
{

struct AcSAPrelease acrs;
register struct AcSAPrelease *acr = &acrs;
struct AcSAPindication acis;
register struct AcSAPindication *aci = &acis;
regist er struct AcSAPabort *aca = &aci -> aci_abort;

if (AcRelRequest (sd, ACF_NORMAL, NULLPEP, 0, NOTOK, acr,
aci) -- NOTOK)

acs_adios (aca, "A-RELEASE.REQUEST");

if (!acr - > acr affirmative) {
(void) AcUAbortRequest (sd, NULLPEP. 0 , aci);
adios (NULLe?, "release rejected by peer: %d", acr - >

acr reason);

)

/*

)

ACRFREE (acr);

exit (0);

,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RESULTS *1

1* ARGSUSED *1

113

'* This is the function that handles the response that comes
back *' /* from the responder's program. Basically it displays the
message */
1* string on the terminal

*1

static int send result (sd, id, dummy, result, roil
int sd,

id ,
dummy;

register struct type_PDu_Pdu .result;
struct RoSAPindication .roi;
(

)

1*

char *tmpi
tmp=qb2str(result) ;
timer(strlen(tmp» ;
printf(lI\n");
putchar(I (I);
printf(tmp);
printf(") < - echoed back by the responder\n");
return OK;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ERRORS *'
'* ARGSUSED *'

114

1* send error routine checks for the error during the message

' 1 sending

*'
static int send error (sd, id, error, parameter, roil
int sd,

id,
error;

caddr t parameter;
struct RoSAPindication *roii
{

}

register struct RyError *rye;

if (e rror ~~ RY REJECT) (
advise (NULLCP; II%S", RoErrString ((int) parameter»;
return OK;

)

if (rye = finderrbyerr (table POU Errors, error»
advise (NULLCP, II%S", rye -> rye_name);

else
advise (NULLCP, "Error %d", error);

return OK;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

115

1* ryinitiator.c - qeneric interactive initiator */

#ifndef lint
s tatic char *rcsid = "$H eader:
If /osi lothers/ lookup /RCS/ryinitiator.c, v7.089/11/2322:56: 41
mrose ReI $";
lend!f

include <stdio.h>
inc lude <math.h>
include <varargs.h>
#include "ryinitiator.h"
include "wait.h tl

1*

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DATA *'
s tatic char *myname = IIryinitiator";

extern char *isodeversion;

'*

11 6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

117

INITIATOR */

ryinitloop (argc, argv, myservice, myconte xt, mypc i, cps,
dispatches , quit)
int argc;
char **argv,

*myservice,
*mycontext,
*mypci;

struct RyOperation ops[] ;
struct dispatch *dispatches;
IFP quit;
{

int n,i,j;
int i l oop,

sd[lO];
char buffer[BUFSIZ],

*vec{NVEC + 1];
r egis t er struct dispatch *ds;
struct SSAPref sfs;
r egiste r struct SSAPref *sf;
reg i ste r struct PSAPaddr .pa[lO) ;
s truct AcSAPconnect aces;
register struct AcSAPconnect *acc ~ 'aces;
struct AcSAPindication acis;
regis ter struct AcSAPindication *aci = &acis;
r egister struct AcSAPabort *aca = &aci - > aci_abort;
AEI aei[lO];
010 ctx,

pcii
struct PSAPctxlist pes;
register struct PSAPctxlist .pc = &pes;
struct RosAPindication rois;
regis ter struct RoSAPindication *roi = &rois;
r egister struct RoSAPpreject *rop = 'roi - > roi_preject;

int cnt;
double tm;
printf(lIargc=%d\ n ll ,argc) ;
if (tm = atof(argv[argc-l]))

argc- - ;
else

tm=O;
printf ("argc=%d tm=%f\nll, argc, tm) ;
i f (cnt = atoi (argv[argc-l))

a r gc--;
e l se

cnt=l;
printf("argc=%d cnt=%d\n",argc ,cnt);

if (myname = rindex (argv[O], IIi» ~
myname++;

if (myname == NULL :: *myname == NULL)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

myname = argv{O]i

/* checking the command syntax */

if (argc < 2)
adios (NULLCP, "usage: %5 host (operation { arguments

]]", myname)i

1* de tecting the number of nodes the connect */
n=l;

l UI

do {
n++j

} while ((n<argc) && (s t rcmp(argv[n], "send" ») i
n-- i

if ((sf = addr2ref (PLocalHostName (») == NULL) {
sf = &sfs;
(void) bzero «char *) sf, sizeof *sf)i

)

118

/ * this section checks if interactive mode or not and set the
1 ' value of iloop
*1

if (argc < n+2) {
printf ("%Sll , myname);
if (sf -> sr u l en > 2)

printf (n running on host %s", sf -> sr_udata + 2) i
if (sf - > sr clen > 2)

printf (" at %s", sf -> sr cdata + 2);
printf (" (%5, lI,mycontextl";

}

printf (11 %s]\n 'I, rnypci);
printf (liusing %s\n", isodeversion);

(void) ffl u sh (stdout);
iloop = 1;

else {
for Cds = dispatches ; ds -> ds name; ds++)

if (strcmp (ds -> ds_name,-argv{n+l) == 0)
break;

if (ds -> ds name == NULL)
adios (NULLCP, "unknown operation \ " %s \ "",

a rgv[n+l]);

iloop = 0;
)

/ * This block sets
*1

/* establish a

some initial parameters and use tham to

connect and stores the connection

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

119

identification */ '* number in the variable sd

*'
for (1=1;i<=n;1++)
{ if «aei[i) = str2aei (argv(i], myservice» == NULLAEI)
adios (NULLep, "%S-%S: unknown application-entity",

argv[i), myservice);
if «pa[i) = aei2addr (aei[i}» == NULLPA)

adios (NULLep, "address translation failed");

if «ctx = ode2oid (mycontext» == NULLOID)
adios (NULLep, II%S: unknown object descriptor!!,

mycontext);
if «ctx = oid cpy (ctx» == NULLOID)

adios (NULLep, "'out of memory");
if «pci = ode2oid (mypci» == NULLOID)

adios (NULLep, I1%S: unknown object descriptor ll , mypci)i
if «pci = oid cpy (pci» -- NULLOID)

adios (NULLep, "out of memory");
pc -> pc nctx = 1;
pc -> pc-ctX[O).pc id = 1;
pc -> pc-ctX[O).pc-asn = pci;
pc - > pc:ctX(o].pc=atn = NULLaIDi

if (iloop) {

print! ("%5 . .. ", argv(i);
(void) fflush (stdout);

)

if (AcAssocRequest (ctx, NULLAEI, aei[i], NULLPA, pari],
pc, NULLOID,

NULLQOS,
0, ROS_MYREQUIRE, SERIAL NONE, 0, sf, NULLPEP, 0,

acc, aci)
== NOTOK)

acs_adios (aca , "A-ASSOCIATE.REQUEST")i

if (acc -> acc result != ACS_ACCEPT) {
if (iloop) -

printf (lffailed\n")i

adios (NULLCP , Itassociation rej ected: [%s J It,
AcErrString (ace -> acc_result» i

)

if (iloop) {
printf (llconnected\nll)i
(void) fflush (stdout);

)

sd[i] = aec -> acc_sd;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 20

ACCFREE (ace);

1* This function call defines the types of lower layer
services */
/ * r equired by the initiator process (this call can be found
in * /
1* the r e sponder side as well in ryresponder.c

*'
)

if (RoSetService (sd{i], RoPService, roil == NOTOK)
ros adios (rop, "set RO/PS fails");

/ * this block in a infinite loop when inte ractrive mode is
chos en */
/ . and finishes when the user enters the quit command.
Basically */
1* the program calls the disconnect service to have a graceful

' 1 disconnection

*' if (iloop) (
for (;;) {

)
)
else

if (getline (buffer) -~ NOTOK)
break;

if (str2vec (buffer, vee) < 1)
continue;

for (ds = dispatches; ds - > ds name; ds++)
if (strcmp (ds - > ds name, vec{o]) == 0)

break; -
if (ds -> ds name ~- NULL) {

)

advise (NULLCP, "unknown operation \ II %S \ IIII, vec(O)i
continuei

for (i=lii<=nii++)
for (j-1;j<-cnt;j++) (

)

invoke (sd(i), ops, ds, vee + l)i
wait(tm) ;

f or (i=l;i<=nii++)
for (j=lij<=cntij++) {

)

invoke (sd(il, ops, ds, argv + n + 2)i
wait(tm)i

I
I 121

I for (i=l;i<=nii++)
(*quit) (sd[i], (struct dispatch *) NULL, (char **)

NULL, (caddr_t *) NULL);

I
)

1*

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

122

*' / * this routine calls the Rystub to send the name of the
process to */
1* be performed by the responder and the parameter of that
process */

static invoke (sd, ops, ds, args)
int sd;
struct RyOperation apsE];
register struct dispatch *ds;
char **args;
{

int result;
caddr tin;
struct RoSAPindication roisi
register struct RoSAPindication *roi = &roisi
register struct RoSAPpreject *rop = &roi - > roiyreject;

in = NULL;
if Cds - > ds argument && (*ds - > ds_argument) (sd, ds,

args, &in) == NOT OK)
return;

switch (result = RyStub (sd, ops, ds - > ds_operation,
RyGenID (sd), NULLIP,

in, ds -> ds_result , ds -> ds_error,
ROS_SYNC,

roi» {
case NOTOK: 1* failure */

if (ROS FATAL (rop - > rap reason»
res adIos (rop, .. STUB II) ;

ros advise (rop, "STUB");
break;

case OK:
break;

/* got a result/error response */

case DONE: /* got RO-END? */
adios (NULLCP, "got RO-END.INDICATION")j '* NOTREACHED *'

default:
adios (NULLCP, "unknown return from Rystub=%:d",

result) j

)

'*

'* NOTREACHED *'
)

if (ds - > ds free && in)
(void) (*ds-- > ds_free) (in) j

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

123

' 1 routine that get the line entered by the user and buffers

it *'
static
char

int getline
*buffer;

(buffer)

{
register int
register char

i;
*cp,

static int
*ePi

sticky = 0;

if (sticky) {
sticky = 0;
return NOTOKi

)

printf ("%s> II, mynarne)i
(void) fflush (stdout);

for Cep = (cp = buffer) + BUFSIZ - 1; (1 = get char (» !=
'\n'i) {

)

'*

)

if (i == EOF) {

)

printf ("\nlt);
clearerr (stdin);
if (cp != buffer) {

)

stickY++i
break;

return NOTOKi

if (cp < ep)
*cp++ = i;

*cp = NULL;

return OK;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

*/

void res adios (rop, event)
register-struct RoSAPpreject *roPi
char *event;
{

ras advise (rop, event);

exit (1) i
}

void ras advise (rop, event)
register-struct RoSAPpreject *ropi
char *event;
{

char buffer[BUFSIZ] ;

if (rop -> rap cc > 0)

124

(void) sprintf (buffer, "[%:5] %:*. *s" I RoErrString (rop ->
rap_reason) I

rap -> rap_ce, rap -> rap_cc, rap - > rap_data);
else

(void) sprintf (buffer, 11(%5]11, RoErrString (rop->
rap_reason» ;

advise (NULLCP, I1%S: %s", event, buffer);
}

/*

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

*1

void aes adios (aea, event)
register- struct AcSAPabort *aca;
char *event;
{

aes advise (aca, event);

exit (1);
)

void aes advise (aca, event)
register-struct AcSAPabort *aca;
char *event;
{

char buffer[BUFSIZj;

if (aca -> aca_cc > 0)
(void) sprintf (buffer, 11[%S) %*.*s",

AcErrString (aca - > aca_reason) ,
aca -> aca_ce , aca -> aca_ee, aca - > aca_data);

else

125

(void) sprintf ,buffer, "(%s]", AcErrString (aca ->
aca_reason)), i

)

1*

advise (NULLep , "%s: %s (source %d)", event, buffer,
aca - > aca_source);

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

"
l ifndef lint
void _adv ise ()i

v oid adios (va alist)
va del -
{

va_start Cap);

_advise Cap);

va_end Cap);

_exit (1);
)
#e l se

" VARARGS "

void adios (what, fmt)
char *what,

*fmt;
{

adios (what, fmt) ;
)
#endif

ifnde f lint
void advise (va_a l ist)
va del
{

)

va list api

va_start Cap);

_advise (ap) j

va end (ap);

static void advise Cap)
va list api
{

char buffer[BUFSIZ]i

asprintf (buffer, ap);

(void) fflush (stdout);

126

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

fprintf (stderr, "%s: II , mYiname);
(void) fputs (buffer, stderlr);
(void) fputc ('\nl, stderr) ;

(void) fflush (stderr);
}
#e lse
f O VARARGS o f

void advise (what , fmt)
char *what,

*fmt;
{

advise (what , fmt);
}
#endif

lifndef lint
vo id ryr advise (va_alist)
va del -
{

va_start Cap);

_advise Cap);

va end Cap);
}
#e lse
f O VARARGS Of

vo id
char

{

r yr advise
*what,
*fmtj

(what, trnt)

ryr_advise (what, fmt);
}
lendif

127

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 28

1* ryinitiator.b - include tila tor the qeneric interactive
initiator */

" * $Header: If/osi/others/lookup/RCS/ryinitiator.h,v
89/11/23 22:56:43 mrose ReI $, ,

• $Log: ryinitiator.h,v $
• Revision 7.0 89/11/23 22 :56:43 mrose
* Release 6.0 ,
"

" , , NOTICE

7.0

* Acquisition, use, and distribution of this module and
related

• materials are subject to the restrictions of a license
agreement .

• Consult the Preface in the User's Manual for the full
terms of
* this agreement. ,
"

#include "rosy.hl!

static struct dispatch {
char *ds name;

) ;

int ds_operation;

IFP
IFP

IFP
IFP

char

ds argument;
ds=)ree;

ds result;
ds:'error;

void adios (), advise e)i
void acs adios (), acs advise ();
void ros-adios (), ros=advise ()i

int ryinitiator ()i

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

129

1* ryresponder.c - generic idempotent responder */

lifndef lint
static char *rcsid ... n$H eader:
/f/osi/others/loOKUp/Rcs/ryresponder.c,V7.089/11/2322:56:44
mrose ReI $";
#endif

/*
• $Header: /f/osi/others/lookup/Rcs/ryresponder.c,v 7.0

89/11/23 22:56:44 mrose Rel $

*
*
• $Log: ryresponder.c,v
* Revision 7.0 89/11/23
• Release 6.0
*
*/

$
22:56:44

/*
*
*

NOTICE

mrose

* Acquisition, use, and distribution of this module and
related
* materials are subject to the restrictions of a license

agreement.
* Consult the Preface in the User's Manual for the full

terms of
• this agreement.
*
*/

#inc lude <stdlo.h>
#include <setjmp .h>
#include <varargs.h>
#include IIryresponder.h"
#include "tsap .h" 1* for listening *1

/*

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

130

DATA of

int debug = OJ

s tatic LLog -pgm_1og = {
"responder .10g", NULLCP, NULLCP,

-1,
LLOG_ FATAL : LLOG_EXCEPTIONS : LLOG_ NOTICE, LLOG_FATAL,

LLOGCLS : LLOGCRT : LLOGZER, NOTOK
} ;
LLog *pgm_ log = &_pgm_log;

static char *myname = "ryresponderUj

static jrnp_buf toplevelj

static IFP
static IFP

startfnxj
stopfnxi

int ros init (), ros work (), ros indication () , ros lose (}i

ext e rn int errnoi

fO

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

131

RESPONDER */
1* this top level routine acts as a responder to the incoming
message */
1* string. Basically it responds toto connection request and
sets the */
1* lower layer services

*/

int ryresponder (argc, argv, host, myservice, dispatches,
ops, start, stop)
lnt argcj
char **argv,

*host,
*myservice;

struct dispatch *dispatchesj
struct RyOperation *ops;
IFP start,

{
stop;

register struct dispatch *ds;
AEI aei;
struct TSAPdisconnect tds;
struct TSAPdisconnect *td = &tds;
struct RoSAPindication rois;
register struct RoSAPindication *roi = &rois;
register struct RoSAPpreject *rop = &roi -> roi_preject;

if (mynarne = rindex (argv[O], '/1»
myname++i

if (myname == NULL :: *myname == NULL)
mynarne = argv(O];

isodetailor (myname, 0);
if (debug = isatty (fileno (stderr»)

11 dbinit (pgm log, mynarne);
else { -
static char myfile[BUFSIZ];

(void) sprintf (rnyfile, U% s.log",
(strncmp (myname, "ros.", 4)

&& strncmp (myname, "lpp.", 4»
I: myname[4] == NULL

? myname : myname + 4);
pgm log -> 11 file = myfile;
11 hdinit (pgm log, myname);

) - -

advise (LLOG_NOTICE, NULLCP, "starting");

if «aei = str2aei (host, myservice» == NULLAEI)
adios (NULLCP, "%S-%S: unknown application-enti ty", host,

myservice);

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

132

for (ds = dispatches; ds -> ds_name; ds++)
if (RyDispatch (NOTOK, ops, ds - > ds_operation, ds _>

ds vector, roil
- == NOTOK)

ros adios (rop, ds - > ds name)i

startfnx = start;
stopfnx = stop;

1* this routine handles the initial connection establishment,
the '/
1* message transmissions and the connection release calling

'/
1* ros_init, ros_work and ros_lose respectively

'/

if (i s odeserver (arge, argv , aei, ros_init, ros_work,
ros lose, td)

)

/'

)

== NOTOK) {
if (td - > td cc > 0)

adios (NULLCP, uisodeserver: [\:s) '*.*s" ,
TErrString (td - > td reason),

else
td -> td_cc, td - > td_ cc, td - > td_ data);

adios (NULLCP, "isodeserver: [%5]",
TErrString (td -> td_reason»;

return 0;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

133

*' /. thi s routine respondes to t he connection establishment
request *'
static lnt ras in it (veep, vee)
lnt veep;
char •• vee;
{

int reply,
result ,
sd;

struct AcSAPstart aCSSj
register struct AcSAPstart *acs - &acss;
struct AcSAPindication acis ;
register struct AcSAPindication .aci = &acis;
register struct AcSAPabort *aca = &aci - > aci abort;
register struct PSAPstart *ps = &acs - > acs start;
struct RoSAPindication rois; -
register struct RoSAPindication .roi = &rois;
register struct RoSAPpreject .rap = &roi -> roi_preject;

if (Aclnit (veep, vee , acs, aci) == NOTOK) {

}

acs advise (aca , t'initialization fails");
return NOTOKi

advise (LLOG NOTICE, NULLCP,
"A-ASSOCIATE.INDICATION: <%d , %5, %5, %s , td>u,
acs - > acs sd, oid2ode (acs - > acs context) ,
sprintaei (&acs -> acs callingtitle),
sprintaei (&acs -> - acs calledtitle), acs - >

acs_ninfo) ; -

sd = acs -> acs_sd;

for (vec++; *vec; vec++)
advise (LLOG EXCEPTIONS ,

\~ ' tS\II" , *vec); -
NULLCP , " unknown argument

reply = startfnx ? (*st artfnx) (sd, acs) ACS_ACCEPT ;

result = ACAssocResponse (sd,
reply ! = ACS ACCEPT

reply ,
? ACS

ACS_USER_NULL,
NULLOID ,

ps_defctxresult,
NULLAEI, NULLPA ,

USER NOREASON

NULLPC , ps - >

ps - > ps-prequirements ,
SERIAL NONE,

ps - > ps_srequirements,

- ps - > ps_settings,
aci);

ACSFREE (acs);

if (result -- NOTOK) {

&ps - > ps_ connect , NULLPEP, 0,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

}

/*

}

acs_advise (aca , "A- ASSOCIATE.RESPONSE");
ret urn NOTOKj

if (reply !~ ACS_ACCEPT)
return NOTOK;

if (RoSetService (sd , RoPSer vice , roil == NOTOK)
ras adios (rop , "set RO/PS fai l s tl) ;

return sdj

134

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

135

*/
1* This routine handles the incoming message strings sent by
the */
/* initiator. It waits for the process request sent from the

*/
1* initiator

*/

static int ros work (fd)
int fd;
{

int result;
caddr tout;
struct AcSAPindication acis;
struct RoSAPindication rois;
register struct RoSAPindication *roi = &rois;
register struct RoSAPpreject *rop = &roi -> roiyreject;

switch (setjmp (toplevel» {
case OK:

break;

default:
if (stopfnx)

(*stopfnx) (fd, (struct ACSAPfinish *) 0);
case DONE:

(void) AcUAbortRequest (fd, NULLPEP, 0, &acis);
(void) RyLose (fd, roil;
return NOTOK;

}

switch (result = RyWait (fd, NULL!P, &out, OK, roil) {
case NOTOK:

if (rop -> rap_reason == ROS_TIMER)
break;

case OK:
case DONE:

ros indication (fd, roi);
break;

default:
adios

RoWaitRequest=%d",
}

return OK;
}

/*

(NULLCP,
result) ;

lIunknown return from

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

136

*/
/* This routine handles the possible errors that might happen
during *1
1* the message transmission

*/

static int ras_indication (sd, roil
int sd;
register struct RoSAPindication *roi;
{

int reply,
result;

switch (roi - > roi type) {
case ROI INVOKE: -
case ROr-RESULT:
case ROI ERROR:

adios (NULLCP, "unexpected indication type=%d ll , roi
-> roi type);

- break;

case ROI UREJECT :
{
register struct RoSAPureject

roi ureject;
*rou = &roi ->

if (rou -> rou noid)
advise (LLOG EXCEPTIONS, NULLCP,

"RO-REJECT-U.INDICATION/%d: %Sll,

else
sd, RoErrString (rou - > rou reason»;

advise (LLOG EXCEPTIONS, NULLCP,
"RO-REJECT-U,INDICATION/%d: %s (id=%d)",
sd, RoErrString (rou - > rou reason) ,
rou -> rou_id); -

)
break;

case ROI PREJECT:
{
register struct RoSAPpreject

roi_prejecti
*rop = &roi - >

if (ROS FATAL (rop -> rop reason))
ros-adios (rop, "RO-REJECT-P.INDICATION")i

ros advIse (rop, "RO-REJECT-P.INDICATION")i
)
break;

case ROI FINISH:
{
register struct AcSAPfinish *acf = &roi - >

roi_finish;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

137

struct AcSAPindication acis;
regist er struct AcSAPabort *aca = &acis.aci_abort;

advise (LLOG NOTICE NULLCP,
"A-RELEASE.INDICATION/%d : %d lt ,

sd, acf - > acf_reason);

reply = stopfnx ? (*stopfnx) (sd, acf) : ACS_ACCEPT;

resu l t = AcRelResponse (sd, reply , ACR_NORMAL ,
NULLPEP , 0,

&acis)i

ACFFREE (acf) ;

if (result == NOTOK)
acs advise Caca, "A- RELEASE . RESPONSE") ;

else -
if (reply != ACS ACCEPT)

break; -
l ongjmp (toplevel, DONE) ;

} '* NOTREACHED *'
default:

adios (NULLCP , "unknown indication type=%d", roi _>
rei type) ;

-)
)

'*

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

*f

static int ros lose (td)
struct TSAPdisconnect *td;
{

if (td -> td cc > 0)
adios (NULLCP I "TNetAccept : (%5] %*. *s" I

138

TErrstring (td -> td_reason), td - > td_cc , td - >

else
td - > td_dat a);

adios (NULLCP, "TNetAccept: [%s]", TErrString (td - >
td_reason» ;
)

f*

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ERRORS */

void ras adios (rop, event)
register-struct RoSAPpreject *roPi
char *event;
{

ras_advise (rop, event);

}
longjrnp (toplevel, NOTOK);

void ras advise (rop, event)
register-struct RoSAPpreject *rop;
char *event;
{

char buffer[BUFSIZ)i

139

if (rop - > rap cc > 0)
(void) sprint! (buffer, "[%5] %*.*5", RoErrString (rop->

rap_reason) I

rap - > rap_ee, rap - > rap_ce, rap - > rap_data);
else

(void) sprintf (buffer I "(%5] ", RoErrstring (rop _>
rap_reason»;

}
advise (LLOG_EXCEPTIONS, NULLCP, II%S: %s" I event, buffer);

/*

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

*/

void acs advise (aca, event)
register-struct AcSAPabort *aca;
char *event;
{

char buffer(BUFSIZ)i

if (aca -> aca_cc > 0)
(void) sprintf (buffer, n(%s] '*.*5",

AcErrstring (aca - > aca_reason),
aca -> aca_cc, aca - > aca_cc, aca - > aca_data);

else

140

(void) sprintf (buffer, "[%5)", ACErrString (aca ->
aca_reason»i

advise (LLOG_EXCEPTIONS, NULLCP, U%s: %5 (source %d)",
event , buffer,

aca - > aca_source)i
)

/*

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

*1

#ifndef lint
void adios (va_alist)
va del
{

va_start (ap) ;

11 log (pgm_log , LLOG_ FATAL, ap);

va_end Cap);

_exit (1);
)
#e lse
1* VARARGS2 *1

void adios (what, fmt)
char *what,

*fmt;
{

adios (what, frnt);
)
#endif

#ifndef lint
void advise (va allst)
va del -
{

int code;
va list api

va_start Cap);

code = va_arg (ap, int);

_II_log (pgm_log , code, ap) ;

va_end Cap);
)
#else
1* VARARGS3 *1

void advise (code, what, fmt)
char *what,

*fmtj
int code;
{

advise (code, what , fmt);
)

141

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

#endif

#ifndef lint
void ryr advise (va_alist)
va del -
(

va list ap i

va start Cap) ;

I

_II_log (pgm_log , LLOG_ NOTICE, ap);

va_end Cap);
}
#else '* VARARGS2 *'
void ryr advise (what , fmt)
char *what ,

*fmt;
{

ryr_advise (what , tmt) ;
}
lendif

14 2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

143

1* ryresponder.h - include file f or the qeneric idempotent
responder */

1*
* $Header: /f/osi/othersj lookup/RCS/ryresponder.h,v

89/11123 22:56:46 mrose Rel $

*
* * SLog: ryresponder.h,v
* Revision 7.0 89/11/23
* Release 6.0
*

$
22:56:46

*1

1*
*
*

NOTICE

mrose

7 . 0

* Acquisition, use, and distribution of this module and
related
* materials are subject to the restrictions of a license

agreement.
* Consult the Preface in the User's Manual for the full

terms of
* this agreement.
* *1

#include "rosy. hI!
#include "logger.h"

static struct dispatch {
char *ds name;
int ds_operation;

IFP ds_vector;
} ;

extern int debug;

void adios e) , advise e)i
void acs advise ()i
void ras-adios (), ras advise e)i
void ryr=advise ()i -

int ryresponder (li

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/* timer.h - timer utility -- common subroutines */

#ifndef
lend!f

,*
lint

144

• $Header: /f/osi/others / lookup/timer,c,v 7.0 89/11/23
22:10:50 mrose ReI $

*
* * Revision 7.0 89/11/23 22:10:50 mrose
• Release 6 . 0

*
' ,
*
*

NOTICE

* Acquisition , use, and distribution of this module and
related
* materials are subject to the restrictions of a license

agreement.
* Consult the Preface in the User's Manual for the full

terms of
* this agreement.

*
*'

#include <varargs.h>
lif defined(SYS5) && !defined(HPUX)
#include <sys/times.h>
Idefine TMS
#endif

'*

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

*/

'ifndef
Idefine
lendif

NBBY
NBBY 8

#ifndef TMS
timer (ee)
lnt CCi
{

long ms;
float bSj
struct timeval stop ,

tdj
static struct timeval

if (ee -- 0) {

start;

(void) gettimeofday (&start, (struct timezone *) 0);
return;

}
else

(void) gettimeofday (&stop, (struct timezone *) 0);

tvsub (&td, 'stop, &start);
ms - (td.tv see * 1000) + (td.tv usee / 1000);

145

bs - « (float) ee * NBBY * 1000) I (float) (ms ? ms : 1»
/ NBBY;

printf (llround trip of: %d
Kbytes/s)\n

)

(t.2f
ee, td .tv usee I 1000, bs /

bs / 0~128, 128 / bs);

static tvsub (tdiff, tl, to)
register struct timeval *tdiff,

*tl,
*tOi

(

bytes in %d
(t.2f

ms/bit) .. I

1024,

ms (%.2f
bits/s)\n

tdiff -> t v sec = tl - > tv sec - to -> tv_sec;
tdiff -> tv usee = tl - > tv usee - to - > tv_usee;
if (tdiff -> tv usee < 0)
tdiff -> tv_sec-- , tdiff - > tv usee += 1000000;

}

#else
long times e)i

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

static
int CC;
{

long
float
long

timer (ee)

td,

rns;
bs;
stop,

sees,
mseCSi

struct trns tm;
static long start;

if (ee ~~ 0) {

)

start = times (&tm);
return;

else
stop = times (&tm);

td = stop - start;
sees = td / 60, msecs = (td % 60) * 1000 / 60;
rns = (sees * 1000) + msecsi

146

bs ~ «(float) ee • NBBY • 1000) / (float) (rns ? rns : 1))
/ NBBY;

printf("l-round trip of: %d bytes in %d.%02d seconds (%.2f
Kbytes/s)II,

)
#endif

ee, sees, msecs / 10, bs I 1024);

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDIX C

ABSTRACT SYNTAX NOTATION ONE (ASN.I) MODULES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

14 8

-- BEND.RY - the 1ST message transmission data specification

PDU DEFINITIONS ::=

BEGIN

-- operations

-- send pdu
send OPERATION

ARGUMENT Pdu
RESULT Pdu
ERRORS { noSuchUser, congested}
: : = 0

-- errors

no matching user in the database
noSuchUser ERROR

: : = 0

congestion at responder
congested ERROR

: :... 1

-- types

Pdu

END

.. -.. - -- pdu

[APPLICATION 1J
IMPLICIT SEQUENCE {

echo[OJ
IMPLICIT GraphicString

)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 49

-- PDU-OPS . C --
/ * automatically generated by rosy 6 . 0 13 (falcon) , d o not
edit! *1

#include <stdio.h>
#include "PDU- cps.hl!

#include "POU-types . h"

/* OPERATIONS */

1* OPERATION send */
int encode POU Pdu (),

decode-PDU-Pdu (),
free POU Pdu e)i

int encode POU Pdu e),
decode-PDU-Pdu () I

free _ POU _ Pdu ();

s tatic struct RyError *errors POU send[] = {
&table POU Errors[O],
&table:POU=ErrorS[l]

) ;

struct RyOperation table POU Operations [] = { -,* OPERATION send */

) ;

"send", operation POU send,
encode POU send argument,
decode-PDU-send-argument ,
free POU send argument,
1, encode PDU- send result,

decode- PDU-send-result,
free POU send result,

errorS_PDu_send,-

NULL

/* ERRORS */

s truct Ry Error table_PDU_Errors(] - { '* ERROR noSuc hUse r */
"noSuchUser" , error POU noSuchUser,

encode_pou_nosuchuser-parameter,
decode_POU_noSuchUser-parameter ,

free POU noSuchUser parameter,
- - -/* ERROR congested * /

" congested" , error POU congested,
encode_pou_ congested_parameter,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

} ;

d e c o cte_ PDU_congested_parameter,

free_PDU_congested-parameter,
NULL

1 50

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

151

-- PDU-STUB.C --'* automatically generated by rosy 6.0 #3 (falcon), do no t
edit! */

linclude <stdio.h>
linclude "POU-ops.hl!
' include "PDU- types.h"

#ifdef lint

lnt stub POU send (sd, id, in, rfx, efx, class, roil
int sd,

id,
class;

struct type POU Pdu* in;
IFP rfx, - -

efx;
struct RoSAPindication *roi;
{

return Rystub
operation POU send, id,

-(caddr_t) in,
}

(sd,
NULLIP,
rfx, efx,

table_POU_Ope rati ons,

class, roil;

int op_PDU_send (sd, in, out, rsp, roil
i nt sd;
struct type pou Pdu* in;
caddr t *out; -
int - *rsPi
s truct RoSAPindication *roii
{

return RyOperation
operation POU send,

-(caddr_t) in, out,
}
#endif

rsp, roi);

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

152

-- PDU-ASN.PY --
-- automatically gene rated by r osy 6 . 0 #3 (falcon), do not
edit !

PDU DEFINITIONS .. -
BEGIN

Pdu :: =
(APPLICATION 1)

I MPLICIT SEQUENCE (
echo(O)

IMPLICIT GraphicString
)

END

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

153

-- PDU-TYPE.C --
1* automatically generated by posy 6.0 #4 (falcon), do not
edit! */

#ifndef
#define

#include
#ifndef
#define
#endif
#include

#define
#define
#endif

module POU defined
-module-PDU-def ined-

"psap . h"
PEPYPATH
PEPYPATH

II • • !pepy/UNIV-types.h"

type PDU Pdu
free-PDU-Pdu

type UNIV GraphicString
free=UNIV=Graphicstring

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

154

-- PDU-TYPE.PH --
-- automatically generated by posy 6.0 #4 (falcon) I do not
edit!

PDU DEFINITIONS ::=

%{
#include <stdio.h>
#inc lude IIPDU-types.h"
%}

PREFIXES encode decode print

BEGIN

ENCODER encode

Pdu [[P struct type PDU Pdu 0» ::=
[APPLICATION 1)

IMPLICIT SEQUENCE

{

}

%{
%}

echo[D)
IMPLICIT GraphicString
[[p parrn JJ

DECODER decode

Pdu [[P struct type_PDU_Pdu 00» "=
[APPLICATION 1)

END

%(

%)

IMPLICIT SEQUENCE

{

}

%{
%}

echo[D)
IMPLICIT GraphicString
[[p &((Oparm»»

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

155

-- SEND.e --
/* automatically generated by pepy 6 . 0 #4 (falcon), do not

edit! *'
linclude "psap .h"

#define advise

void advise ();

1* Generated from module POU */

#include <stdio.h>
#include npDU-types.h"

ifndef PEPYPARM
#define PEPYPARM char *
lendif 1* PEPYPARM *1
extern PEPYPARM NullParmi

1* ARGSUSED *1

lnt encode POU Pdu (pe, explicit, len, buffer, parm)
register PE- -·pe;
int explicit;
integer len;
char *buffer;
struct type PDU Pdu * parmi
{ - -

PE po z = NULLPEi
r eg i ster-PE *pO = &PO_ Zi

if (((*pe) ~ pe alloc (PE CLASS APPL, PE FORM CONS, 1)) ~~
NULLPE) { - - - --

}
{

advise (NULLep, "Pdu: %Sll, PEPY_ERR_NOMEM);
return NOTOKi

line 20 "PDU-types . py"

}
(*pO) ~ NULLPE;

{ /* echo *1
if (encode UNIV Graphicstring (pO, 0, NULLINT , NULLep,

parm) ~~ NOTOK) - -
return NOTOKi

(*pO) -> pe class ~ PE_CLASS_CONTi
(*pO) - > pe=id = 0;

#ifdef DEBUG
(void) testdebug «*pO) I "echoll) ;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

#endif

)

if «>pO) != NULLPE)
if (se«...add «>pe), (>pO), -1) == NOTOK) {

advl.se (NULLCP, "Pdu %5%SIl, PEPY ERR BAD SEQ,
pe_error «.pe) - > pe_errno»); -

return NOTOKi
)

#ifdef DEBUG
(void) testdebug ((*pe), "PDU.Pdu");

#endif

return OK;
)

156

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

BIBLIOGRAPHY

[CCITT88a] Integrated Services Digital Network (ISDN). International Telegraph and
Telephone Consultative Committee, November, 1988. Recommendations
1.430 and 1.431.

[CCITT88b] Integrated Services Digital Network (ISDN). International Telegraph and
Telephone Consultative Committee, November, 1988. Recommendation
Q.921.

[CCITT88c] Integrated Services Digital Network (ISDN). International Telegraph and
Telephone Consultative Committee, November, 1988. Recommendation
Q.931.

[CCITT88d] Message Handling: System and Service Overview. International Telegraph
and Telephone Consultative Committee, November, 1988.
Recommendation X.400.

[CCITT88e] The Directory - Overview of Concepts, Models, and Services.
International Telegraph and Telephone Consultative Committee,
November, 1988. Recommendation X.500.

[CENG91] Cengeloglu, Y. ; Ng, H.K.; and Pourparviz, G., "Investigating the Use 10
the Distributed Interactive Simulation Protocol Standards for Real Time
Simulation Networking", Institute for Simulation and Training, Publication
Number IST-TR-91-4, February 15, 1991.

[FIPS87] Federal Information Processing Standards, "GOSIP Draft", National
Bureau of Standards Federal Information Processing Standards Publication
(FIPS PUB), National Technical Information Service, U.S . Department
of Commerce, Springfield, VA 22161,1987.

[GAUD89] Gaudette, P. , "A Tutorial on ASN.I", U.S. Department of Commerce,
National Institute of Standards and Technology, Technical Report
NCSUSNA-891I2, May 1989.

[ISI8Ia] Information Sciences Institute, University of Southern California, Internet
Protocol. Request for Comment 791, DDN Network Information Center,
SRI International, September 1981.

157

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[ISI81bJ

[IS084J

[IS086J

[IS087aJ

[IS087bJ

[IS087cJ

[IS087dJ

[IS088aJ

[lS088bJ

158

Information Sciences Institute, University of Southern California,
Transmission Control Protocol. Request for Comment 793, DON
Network Information Center, SRI International, September 1981.

Information Processing Systems - Open Systems Interconnection -
Basic Reference Model. International Organization for Standardization and
International Electrotechnical Committee, 1984. International Standard
7498.

Information Processing Systems - Data Communications - High-Level Data
Link Control Procedures - Description of the X.25 LAPB-Compatib1eDTE
Data Link Procedures. International Organization for Standardization and
International Electrotechnical Committee, 1986. International Standard
7776.

Information Processing Systems - Local Area Networks - Logical Link
Control. International Organization for Standardization and International
Electrotechnical Committee, 1987. Draft International Standard 8802-2.

Information Processing Systems - Data Communications - Network Service
Definition. International Organization for Standardization and International
Electrotechnical Committee, 1987. International Standard 8343.

Information Processing Systems - Open Systems Interconnection - Protocol
for Providing the Connectionless-Mode Transport Service. International
Organization for Standardization and International Electrotechnical
Committee, 1987. International Standard 8602.

Information Processing Systems - Open Systems Interconnection - Basic
Connection Oriented Session Protocol Specification. International
Organization for Standardization and International Electrotechnical
Committee, 1987. International Standard 8327.

Information Processing Systems ~ Data Communications - Protocol for
Providing the Connectionless-Mode Network Service. International
Organization for Standardization and International Electrotechnical
Committee, 1988. International Standard 8473.

Information Processing Systems - Open Systems Interconnection -
Connection Oriented Transport Protocol Specification. International
Organization for Standardization and International Electrotechnical
Committee, 1988. International Standard 8073.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[IS088eJ

[IS088dJ

[IS088eJ

[IS089aJ

[IS089bJ

[IS08geJ

[IS089dJ

[IS08geJ

[IS089f]

159

Information Processing Systems - Open Systems Interconnection ~
Connection Oriented Presentation Protocol Specification. International
Organization for Standardization and International Electrotechnical
Committee, 1988. International Standard 8823.

Information Processing Systems - Open Systems Interconnection - The
Directory. International Organization for Standardization and International
Electrotechnieal Committee, 1988. Draft International Standard 9594.

Information Processing Systems - Open Systems Interconnection - File
Transfer, Access and Management. International Organization for
Standardization and International Electrotechnical Committee, 1988.
International Standard 857 I.

Information Processing Systems - Open Systems Interconnection -
Specification of Abstract Syntax Notation One (ASN.l) . International
Organization for Standardization and International Electrotechnical
Committee, 1989. International Standard 8824 with Draft Addendum I.

Information Processing Systems - Open Systems Interconnection -
Application Layer Structure. International Organization for Standardization
and International Electrotechnieal Committee, 1989. International Standard
9545.

Information Processing Systems - Local Area Networks - Part 3: Carrier
Sense Multiple Access with Collision Detection (CSMA /CD) Access
Method and Physical Layer Specifications. International Organization for
Standardization and International Electrotechnica1 Committee, 1989.
International Standard 8802-3.

Information Processing Systems - Local Area Networks - Part 4: Token
Passing Bus Access Method and Physical Layer Specifications.
International Organization for Standardization and International
Electrotechnical Committee, 1989. Draft International Standard 8802-4.

Information Processing Systems - Local Area Networks - Part 5: Token
Ring Access Method and Physical Layer Specifications. International
Organization for Standardization and International Electrotechnical
Committee, 1989. Draft International Standard 8802-5.

Information Processing Systems - Fibre Distributed Data Interface (FODl).
International Organization for Standardization and International
Eleetrotechnieal Committee, 1989. In ternational Standard 9314.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

160

[lS089g] Information Processing Systems - Data Communications - X.25 Packet
Level Protocol for Data Terminal Equipment. International Organization
for Standardization and International ElectrotechnicaI Committee, 1989.
Draft International Standard 8208.

[IS089h] Information Processing Systems - Open Systems Interconnection - Virtual
Terminal Protocol. International Organization for Standardization and
International Electrotechnical Committee, 1989. Draft International
Standard 9041.

[LOPE9l] Loper, M.L.; Shen, D.; Thompson, J.; and Williams, H., "ISODE
System Installation Manual". Institute for Simulation and Training,
Internal Report, January, 1991.

[MCD090] McDonald, B.L.; Pinon, C.; Glasgow, R.; and Danisas, K., "Rationale
Document Protocol Data Units for Distributed Interactive Simulation",
Institute for Simulation and Training, Publication Number 1ST -PD-90-l,
June IS, 1990.

[PAIG90] Paige, LT. J.L., "SAFENEf - A Navy Approach to Computer
Programming", IEEE 15th Conference on Local Computer Networks,
Minneapolis, Minn., October 1-3, 1990.

[PISC86] Piscitello, D.M.; Weissberger, A.J.; Stein, S.A .; and Chapin, A.L.,
"lntemetworking in an OS1 Environment", Data Communications, May
1986, pp. 118-136.

[ROSE8?] Rose, M.T., "ISODE: Horizontal Integration in Networking",
ConneXions, The Interoperability Report, vol. I, no. I, May 1987.

[ROSE88] Rose, M. T., "Building Distributed Applications in an OSI Framework" ,
ConneXions, The Interoperability Report, vol. 2, no. 3, March 1988.

[ROSE90a] Rose, M.T., "The Open Book: A Practical Prespective on OSI" , Prentice
Hall , Englewood Cliffs, N.J., 1990.

[ROSE90b] Rose, M.T., "The ISO Development Environment: User's Manual,
Volumes 1-5", Performance Systems International , Inc., January 14,
1990.

[SHEN9l] Shen, D., "ISODE Network Performance Experimental Analysis",
Institute for Simulation and Training, Internal Report, February IS , 1991.

F

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[STAL87]

161

Stallings, W., Local Networks, Second Edition , Macmillan Publishing
Company, N.Y., 1987.

[fANE88] Tanenbaum, A.S., Compuler Nelworks. Second Edition, Prentice Hall,
Englewood Cliffs, N.J., 1988.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

'. 0000007

	OSI-based Communications Architecture For The Distributed Interactive Simulation Application Utilizing The ISODE: An Evaluation Of A Prototype
	Recommended Citation

	0000007.pdf

