S —'-— RS University of Central Florida
/ k STARS

Institute for Simulation and Training Digital Collections

1-1-1992

User-level Threads

Sanuijit Senapati

Find similar works at: https://stars.library.ucf.edu/istlibrary
University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been
accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation
Senapati, Sanujit, "User-level Threads" (1992). Institute for Simulation and Training. 205.
https://stars.library.ucf.edu/istlibrary/205

- + . +

S + o+ O G
. + ‘

Central e, .+ + | STARS

Florida . + . + Showcase of Text, Archives, Research & Scholarship *

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/205?utm_source=stars.library.ucf.edu%2Fistlibrary%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

INSTITUTE FOR SIMULATION AND TRAINING

USER- LEVEL THREADS
SANUJIT SENAPATI
DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF CENTRAL FLORIDA

DECEMBER 11, 1992

]

W 21

-/**

‘ EMISSION PDU *
¥

DIS VERSION *

* *
Emission PDU Transmission *
When an Emission PDU is received by the protocol manager, *

* messages containing EMISSION_INFOs with one Emitter Systems are *
created. *

‘ Emission PDU is created from the info in EMISSION_INFO and sent *
* over the network. *
¥ *
*

t Responsibility: Sanujit Senapati
***/

I// *%% INCLUDES #***

#include <stdio.h>
include <string.h>
include "sim.h"

#include "util.h"
pragma hdrstop

éinclude <assert.h>
include <limits.h>

#include <mem.h>
include "dr_emit.h"

minclude "exec.h"

#include "loc_dis.h"
include "p_num.h"

vinclude "simaddr.h"

‘/ *%% CONSTANTS **%*
define MAX PACKET 1500
/ *** TYPES *x

typedef struct

{

l UINT mem_check; // checked for memory overwrite
char comm_area[MPHS]; // for Network headers
DIS_PDU_HEADER header; // Generic DIS PDU header
DIS_EMISSION_VARIANT var; // The PDU proper

} DIS_EMIS_PACKET;

/ *%% STATIC DATA **%

static char *buffer;
tatic DIS_EMIS_PACKET *whole;
':tatic EMISSION_INFO *emit_info;

// **%* LOCAL PROTOTYPES #*%%*

I// *%% FUNCTIONS #**

I/**
*

Initialize the Emission PDU and allocates memory for the packet *
R T e Iy

lvoid InitEmission()

buffer
whole
emit_info

(char *)malloc(MAX_PACKET):;
(DIS_EMIS_PACKET *)buffer:;
(EMISSION_INFO *)buffer;

o

¥ de % e d Je Je & & de Je e & de de Je ke K de Je K de de de K de Je Fe K d Jo Fe Je K de Je K & de de de % d do K K d de do K K Je do K & de K K d do K K de o K d d e K K de % J %k Kk

Copy info Beam Parm data to packet Beam Parm data. *
***/

tatic void DISBeamFromBeamInfo(DIS_BEAM_PARMS *dest, EMIT_FUND *src)

- N SN N .

dest->frequency = src->frequency;
dest->freq_ range = src->freq range;
dest->erp = src->erp:;
dest->prf = src->prf;

I dest->pulse_width src->pulse_width;
}

Copy info Beam dir data to packet Beam dir data. *
***/

static void DISBeamDirFromBeamDir

'(

‘**

DIS_BEAM_DIR *dest,

EMIT_DIRECTION *src_dir,

l EMIT_SWEEP *sSrc_sweep
)

src_dir->azimuth_center;
src_dir->eleva_center;
src_sweep->azimuth_sweep;
sSrc_sweep->eleva_sweep;
Src_sweep->sync;

{
dest->azimuth_center
l dest->eleva_center
dest->azimuth_sweep
dest->eleva_sweep
l dest->beam_sweep_sync
}

o

r**

Copy packet Beam Parm data to info Beam Parm data *
hkdkkhkhhhkdkkhhhhhhkhhhhhhhhhhhhhhhhhhkhkhhhhhkhhhhkhkhhhhhhhdhkkhhkhhhhhhkkhhddhkkkkk /

static void BeamInfoFromDISBeam(EMIT_FUND *dest, DIS_BEAM_PARMS *src)

{

I dest->frequency
dest->freq range
dest->erp

I dest->prf
dest->pulse_width

src->frequency;
src->freqg_range;
src->erp;
src->prf;
src->pulse_width;

I}
g T T T LT T

* Copy packet Beam dir data to info Beam dir data *
**/

tatic void BeamDirFromDISBeamDir

(
EMIT DIRECTION *dest_dir,
I EMIT_SWEEP *dest_sweep,
DIS _BEAM_DIR *src

I
dest_dir->azimuth_center src->azimuth_center;
dest_dir->eleva_center src->eleva_center;
l dest_sweep->azimuth_sweep src->azimuth_sweep;

src->eleva_sweep;
src->beam_sweep_sync;

dest_sweep->eleva_sweep
I} dest_sweep->sync

Copy packet emitter parms to emitter parms *
hkdedddhddhhhhhhhhhdhdhhhkddddddhhhdddkdkkkhkhhdddkdkdddhkdhdhhhhhhhhhhhhhhhhhhkhhk /

static void DISEmitDescToEmitDesc(EMITTER_DESC *dest,DIS_EMITTER_DESC *src)

‘**

{
I dest->freq_band src->freq_band;

dest->name = src->name;
dest->category = src->category:;
= src->id:;

l dest->id
)

m**

Copy emitter parm to packet emitter parms %
**/
rtatic void EmitDescToDISEmitDesc(DIS_EMITTER_DESC *dest,EMITTER_DESC *src)

{
dest->freq_band
dest->name
dest->category
dest->id

src->freq_band;
src-=>nane;
src->category:
src->id;

W

l/**
*

Send an emission pdu on the network. *
Jededededkdkdhkddddddkhhhhdddkkdhhhhdddkkdkkdhhdddddkkkhhhhhhdkhkhhhddkhhhhhbkkhkkhhhdidkk/

Illoid SendEmis (EMISSION_INFO *emis_info,TIME rightnow)
{

VehicleID id;

l EMITTER_INFO *emitter;
DIS_EMITTER *dis_emitter;
int i,j,k,

pdu_size, info_size;

pdu_size = sizeof (DIS_PDU_HEADER) + sizeof(DIS_EMISSION_VARIANT);
info_size = sizeof (EMISSION_INFO);

// Assignment done to detect memory overwrites while building headers
whole->mem_check = CHECK_VAL;

// Build DIS envelope in whole.header
whole->header.version = DISProtocolVersionJdan91l;
whole->header.exercise = getExerciselID():;
whole->header.kind = EMISSIONPDUKIND;

// Fill in non-header DIS fields(flxed information)
whole->var.emitting_id emis_info->entity_id;
whole->var.timestamp simToDIStime(rightnow):;
whole->var.event_id.simulator emis_info->entity_id.simulator;
whole->var.event_id.event 1;

whole->var.emitter_count emis_info->emitter_count;

nuwaunn

// pointer to emitter info and packet area
dis_emitter = (DIS_EMITTER *)(whole+l):;
emitter (EMITTER_INFO *)(emis_info + 1);

for (i=emis_info->emitter_count; i>0; i--)

DIS_BEAM *dis_beam (DIS_BEAM *)(dis_emitter+l); // beam pckt area

BEAM_INFO *beam (BEAM_INFO *)(emitter+1); // beam info area
// Fill in emitter data

//

dis_emitter->rel_loc = emitter->rel_loc;

dis_emitter->beam_count = emitter->beam_count:;

EmitDescToDISEmitDesc(&dis_emitter->desc, &emitter->desc);
SwapDISEmitter(dis_emitter):;

// Fill in information related to beams in the emitter

//

for(j=emitter->beam_count; j>0; j--)
{

EMIT_TARGET *target;

DIS_BEAM_TARGET *dis_target;

UINT target_count = beam->target_count;
dis_beam->mode = beam->mode;
dis_beam->function = beam->function:;
dis_beam->id = beam->id;

dis_beam->target_count target_count;

DISBeamFromBeamInfo(&dis_beam->parms, &beam->parms) ;
DISBeamDirFromBeamDir (&dis_beam->dir, &beam->dir, &beam->sweep):;

SwapDISEmissionBeam(dis_beam);

dis_target = (DIS_BEAM_TARGET *)(dis_beam + 1);
target = (EMIT_TARGET *)(beam + 1):;

// Fill in information related to targets in the beans

//

for (k=target_count; k > 0; k--,target++,dis_target++)
{

dis_target->id = target->id;
dis_target->emitter_id = target->emitter:;
dis_target->beam_id = target->beam;

SwapDISEmissionTarget(dis_target):;
}

pdu_size += sizeof(DIS_BEAM) +
target_count*sizeof (DIS_BEAM_TARGET):;
info_size += sizeof (BEAM_INFO) + target_count*sizeof (EMIT_TARGET) :;

dis_beanm = (DIS_BEAM *)dis_target;
beam = (BEAM_INFO *)target;

}

pdu_size += sizeof (DIS_EMITTER);

info_size += sizeof (EMITTER_INFO);

(EMITTER INFO *)beam;
(DIS_EMITTER *)dis_beam;

emitter
dis_emitter

}
// Update the distribution manager

setAddressToThisNode(&id.simulator):;
id.vehicle = DIST_MGR;

msg_build_and_send(&id,EMISSION_DATA,info_size,emis_info,NO_DELAY,FALSE,O0);

// Internal send is done, now complete the packet
SwapDISEmissionVariant(&whole->var);

// All finished, ship it out
netSend(&whole->header,
pdu_size,
DISProtocolNumber,
(int)whole->header.exercise,
disPort()):

// watch out for header overwriting memory.
assert(whole->mem_check == CHECK_VAL):;

khkkhkhkhkkhkhkhhkhkhhkhhhhhhhhkhkhkhkhhhkhkhkhkhkhhkhhhkkhkhhkhhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhhkhkhhhkhhhhhhhhik

Build an emission structure from an arriving DIS EMIS pdu. *
Local data area is used to build info. *
S T T e T YL

0id BuildSendEmission(DIS_EMISSION_VARIANT *evar)

VehicleID id;
DIS_EMITTER *dis_emitter;
EMITTER_INFO *emitter;

int i,j,k,

info_size = sizeof (EMISSION_INFO);

// Swap all multi-octet fields
//

SwapDISEmissionVariant(evar):;

// Build Internal representation of emittingID
£r

emit_info->entity_id
emit_info->timestamp
emit_info->emitter_count

evar->emitting_id;
evar->timestamp;
evar->emitter_count;

// pointer to emitter packet area

//

dis_emitter = (DIS_EMITTER *)(evar+l):;
emitter = (EMITTER_INFO *)(emit_info+l);

for(i=evar->emitter_count;i>0;i--)
{
DIS_BEAM *dis_beam:;
BEAM_INFO *beam;

SwapDISEmitter(dis_emitter);

// Fill in emitter information in EMISSION_INFO
//

emitter->rel_loc = dis_emitter->rel_loc:;
emnitter->beam_count = dis_emitter->beam_count;
DISEmitDescToEmitDesc(&emitter->desc, &dis_emitter->desc):;

// pointer to beam pckt area and beam info area

Il I I B S B = B e HE_ i .= B =N =N BN =N =

//
beam = (BEAM_INFO *)(emitter + 1);
dis_beanm = (DIS_BEAM *)(dis_emitter + 1);

for (j=emitter->beam_count; j>0; j--)
{
DIS_BEAM_TARGET *dis_target;
EMIT_ TARGET *target;
UINT target_count;

// Fill in beam information in EMISSION_INFO
//

SwapDISEmissionBeam(dis_beam);

beam->mode dis_beam->mode;
beam->function (EMIT_FUNC)dis_beam->function;
beam->id dis_beam->id;

beam->target_count
target_count

dis_beam->target_count;

BeamInfoFromDISBeam(&beam->parms, &dis_beam->parms) ;
BeamDirFromDISBeamDir (&beam->dir, &beam->sweep, &dis_beam->dir);

dis_target
target

= (DIS_BEAM_ TARGET *)(dis_beam + 1);
= (EMIT_TARGET *)(beam + 1):;
for (k=target_count; k > 0; k--, target++, dis_target++)

{
SwapDISEmissionTarget(dis_target);

target->id = dis_target->id;
target->emitter = dis_target->emitter_id;
target->bean = dis_target->beam_id;

)
info_size += sizeof (BEAM_INFO) + target_count*sizeof (EMIT_TARGET):;

dis_bean = (DIS_BEAM *)dis_target;
beam = (BEAM_INFO *)target:;
}

info_size += sizeof (EMITTER_INFO);

dis_emitter = (DIS_EMITTER *)dis_beam;
emitter = (EMITTER_INFO *)beam;
)

assert(info_size < MAX_PACKET):;

// Address of simulator and ID of vehicle

//
setAddressToThisNode(&id.simulator);

id.vehicle = DIST_MGR:;

// Send it in the name of the protocol manager
l proto_msg_send(&id, EMISSION_DATA,info_size,emit_info);
)

(/ *kk*k End of file *%%%

2
*

Ahkkkkhhhhhhhhhhhhhhhhkkhhhhhhhhkkhhhhhhhhkkhhhhhhhhkkhhhhbhbddddhhhhkorrrhhn)
EMITTER DEAD RECKONING *

This module maintains the DR model of an emitter.

IE
It When the distibution manager receives a message from the protocol
manager with EMISSION info, it checks the emitting entity list. If an
emitting entity exists then it is updated else a new emitting entity

’ is created.

* Responsibility: Sanujit Senapati

‘***t***********
/

N *F ¥ R

/ *%*% INCLUDES *%%

minclude <stdio.h>
include <mem.h>
#include "sim.h"
include "ent_mgr.h"
include "objects.h"
#include "util.h"
pragma hdrstop
iinclude "dist_mgr.h"
include "dr_emit.h"
#include "simaddr.h"

.// *%% CONSTANTS *#*%*
.// *kk TYPES %%
// **% STATIC DATA ***

tatic CHAIN_HEAD emitting_entity_list
tatic CHAIN_HEAD detection_entry free

{0);
(0}

/ **% LOCAL PROTOTYPES #*#*%*
// **%* FUNCTIONS *%*

#define ReceiveEmission(recv_const,emit_const,dist) \
(dist <= (recv_const)*(emit_const))

% % Je Je Je ¢ e Jo Je & Je de Je Je K de Je Je d de & K Fe de de de do Je K K Je Je de K Fe Je K de K K de Je K K de K K K K de K de de de K de ke K K de Kk Kk de T K K e %k T d Kk Kk ke

Calculate the ’‘emitter dr constant’ from the emitter parameters. The *
formula used for detection by a receiver is based on the parameters of *
the receiver and the candidate emitter. The receiver’s parameters are *
Antenna Gain(AG), Minimum Discernable Signal (MDS), and Front End Loss *
(FEL). The emitter’s parameters are Frequency (F) and Effective Radiated*
Power (ERP). The receiver precalculates a constant containing factors
contributed by its parameters. The emitter parameters can be similarly
precalculated.

The complete equation follows:

Detection Range (km) =
(7.549 * 1072) *
square root
(
(antilog (ERP/10) * antilog (GR/10) * antilog (MDS/10)) /
(FA2 * antilog (FEL/10))

% % % % % % ¥ ¥ ¥ F ¥ ¥ F ¥ ¥ *

* o ¥ % ¥ ¥ * *F * ¥ ¥ *

v
1
1l
i
I
[

A

The follow ’‘emitter dr constant’ is extracted from the above equation:
Emitter dr constant = square_root (antilog (ERP/10.0) / F~2)
This simplified detection range equation results:

Detection Range = receiver_ constant * emitter_dr_constant.

- - -.
% % % ¥ % ¥ % X % * *

Return: the ’emitter dr constant’ value explained above
Ikdkdkddhdhhhhkdkdddhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkkhhkhhhkhhkk /

tatic float EmitterDRConstant (float erp, float rf)
{

I}
/**

This routine initializes the Emitting Entity List. *
*************************************'k********************'k****************/
void InitEmittingEntityList(void)
{
I DLL_init(&emitting_entity list);
DLL_init(&detection_entry_ free):;

*
*
*
*
*
*
*
*
*
*
*
*

return (sqrt (pow (10, erp / 10.0) / (xrf * rf)));:

)
l/**************************************'k*************************************
*

Creates a new Emitting Entity Entry and points at the DR of the entity. *
L L e L e Ty

ITTING_ENTITY *MakeEmittingEntity(VehicleID *entity_id)

EMITTING_ENTITY *emit=0:;
DEAD_REC *dr_model:;

// Do not add emitter if there is no dr model
//
if (dr_model = get_dr_model(entity_id))

{
EMITTING_ENTITY *previous;

emit = (EMITTING_ENTITY *) malloc(sizeof (EMITTING_ENTITY)):
// Initialize emitter

enit->dr_model = dr_model;
emit->entity_id = *entity_id;

// Put emitter in ascending order

//
previous = (EMITTING_ENTITY *) DLL_getnxt(&emitting_entity_list);

while (previous &&
RelationID(&previous->entity_id,LESS_THAN,entity_id))
previous = (EMITTING_ENTITY *) DLL_getnxt(previous);

if (previous)
DLL_prepend(&previous->1ink, &emit->1ink);

else
DLL_append(CLink(&emitting_entity_list),&emit->1link);

-~

-----A?’

% ¢ J¢ & do de & J de de de de K de de ke K K de de de ke de K K de de K K d de de K Fe de e K K de de de ke de de K K F de de de K d Je K Je de K K de K K K de K K d de K K d de K % Kk k

This routine locates an Emitting Entity structure in the *
emitting_entity list and returns its address (NULL if it can’t match *

* the vehicle ID). *
F;**/

ITTING_ENTITY *GetEmittingEntity(VehicleID *entity_id)

.} return(emit);

{
EMITTING_ENTITY *emit = (EMITTING_ENTITY *)
l DLL_getnxt(&emitting_entity_list):;

while (emit && !match_ids(&emit->entity_id,entity_id))
emit = (EMITTING_ENTITY *)DLL_getnxt(emit);

return(emit);
IL**

* This routine locates an emitter with the given ID in the emitter list. *

t A pointer to the emitter is returned (NULL if it can’t find a match). *
***/

EMITTER_DR *GetEmitterDR(CHAIN_HEAD *emitter_list, UCHAR id)
Ir EMITTER DR *emitter = (EMITTER_DR *) DLL_getnxt(emitter_list);

while (emitter && emitter->desc.id != id)
l emitter = (EMITTER_DR *)DLL_getnxt(emitter):

return(emitter);
l}
JRdddddddkdkkdekkkkkkkhh Ak hkhhhhhhdhhhhhhddkhdhddhhdhdhdhddhhhdhhhhkkddiiikkkkkkikit
Update the DR beam parameters using the beam info. *
New beams are created and added to list. *
Kkkkkhhkhhkhhhkhhhhhkkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhkhrhhhhhhhhhhhhhrkhhhhhidhn /
static void UpdateDRBeam(CHAIN_HEAD *head, BEAM_INFO *beam_info)

{
EMITTER_DR_BEAM *beam = (EMITTER_DR_BEAM *) DLL_getnxt(head);

// Search for beam in linked list.
while (beam && beam->id != beam_info->id)
beam = (EMITTER_DR_BEAM *)DLIL_getnxt(beam):

if (beam && beam_info->mode == OFF)

{
// Beam is OFF, delete from list

l DLIL_release(&beam->1ink);
)
else
if (!beam && beam_info->mode != OFF)

{
// New beam, add to list

beam = (EMITTER_DR_BEAM *) malloc(sizeof (EMITTER_DR_BEAM)):;
DLL_append(CLink(head), &beam->1ink);

// Update parameters of active beans.

//

if (beam && beam_info->mode != OFF)
{

beam->mode beam_info->mode;
beam->function beam_info->function;
beam->id beam_info->id;
beam->parms beam_info->parms;

beam_info->dir;

beam_info->sweep:;

EmitterDRConstant (beam->parms.erp,
bean->parms . frequency) ;

beam->dir
beam->sweep
beam->parm_const

if (beam_info->target_count)
beam->target = *((EMIT_TARGET *)(beam_info + 1));

% % % ¥ % % d % g de gk de de de K K de de ke de dede de ke Fe de de de de g de de e de de de de de de de de de de de de de de de de de de K de de ke ke ke e ke K K de de de de de K de K K K ke dede ke

M W BN BN B BN BN .

Update the emitting entity chain as needed based on a new emission *
info. If the emission PDU is for a new entity, a new emitting entity *
entry is created; otherwise the existing emitting entity list is *
updated. *

hkdkdkdkdddddhhddhhdkdkdhhdkhhdkdhdhhkdhhhhhhkhhhkdhhhhhkhhhhhhkhhhhkhhkhhhkhdkhhhhhhkkkhdkhk /
'(loid NewEnmitter (EMISSION_INFO *info)

EMITTING_ENTITY *emit;

I // Get the emitting entity entry or else attempt to make one; otherwise
// forget about emission (no dr model exist for entity).
//
I if ((emit = GetEmittingEntity(&info->entity_id)) ||
(emit = MakeEmittingEntity(&info->entity_id)))
UpdateEmissionDR(&emit->dr_model->emitters,info);

/**

* Update the emitter chain in the entity dead reckoning model as *
l: needed based on a new emission info. If the emitter does not *
exist, then a new emitter is created. The beams and parameters are also *

* updated. *

It***/
0id UpdateEmissionDR(CHAIN_HEAD *emitter_list, EMISSION_INFO *info)
{

EMITTER DR *emitter;

I EMITTER_INFO *emit_info = (EMITTER_INFO *)(info + 1);
BEAM_INFO *beam;
UINT i,3:

for (i=info->emitter_count; i>0; i--)
{
if (!(emitter = GetEmitterDR(emitter_list,emit_info->desc.id)))
(
emitter = (EMITTER_DR *) malloc(sizeof (EMITTER_DR)):;
emitter~>beam_count = 0;
DLL_init(&emitter->beams);
DLL_append(CLink(emitter_list),&emitter->1ink);

// Update emitter
//
emitter->timestamp
emitter->desc
emitter->rel_loc

info->timestamp;
emit_info->desc;
emit_info->rel_loc;

// Update beans

//
beam = (BEAM_INFO *)(emit_info + 1):
for (j=emit_info->beam_count; 3j>0; j--)

{
UpdateDRBeam(&emitter->beams, beam) ;

beam = (BEAM_INFO *)((EMIT_TARGET *)beam + beam->target_count)+1;
}

emnit_info = (EMITTER_INFO *)beam;

T

)

/**

* Release the emitter data in dr model. Also release the *
I: corressponding entry in the emitting entity list. *
***/

void ReleaseEmitterDR(CHAIN_HEAD *emitters)

(
I EMITTER_DR *emitter:;

I while (emitter = (EMITTER_DR *) DLL_getnxt(emitters))

{
EMITTER_DR_BEAM *beam;

I while (beam = (EMITTER DR_BEAM *) DLL_getnxt(&emitter->beans))
DLL_release(&beam->1ink);

I DLL_release(&emitter->1ink);

}

/**

* Builds a list of Emitters detectable by a Receiver based upon its

* receiver parameters, emitter parameters, and distance between the
I* receiver and emitter.

* Reception equation variables have been rolled up into constants for

* receiver and emitter. The multiplication of these constants gives the
I* maximum detection range.

de e ddedede gk dekde kg dek gk dh ko ddedhdhdkhdkhkddkdkdkdkddkkdkddhikkkiekdkikikdkiikhkikikkkikk

void DetectableEmissions(LOC *recv_loc, float recv_const, CHAIN_HEAD *list)

N * * %k *F

EMITTING_ENTITY *emit_ent = (EMITTING_ENTITY *) &emitting_entity_list;
DLL_init(list);
k!

DEAD_REC *dr
EMITTER_DR *emitter

emit_ent->dr_model:;
(EMITTER_DR *) &dr->emitters;

o

while (emitter = (EMITTER_DR *) DLL_getnxt(emitter))

I{
I while (emit_ent = (EMITTING_ENTITY *) DLL_getnxt(emit_ent))
I {

EMITTER_DR BEAM *beam;
LOC emitter_loc;
float dist;

RelativeToActual(&emitter_loc,emitter->rel_loc,dr):
dist = distance(recv_loc,&emitter_loc):
/* Determine if at least one beam can be received */

/* Evaluate beams */
beam = (EMITTER_DR_BEAM *) &emitter->beams;

while ((beam = (EMITTER_DR_BEAM *) DLL_getnxt(beam)) &&
!ReceiveEmission(recv_const,beam->parm_const,dist));

if (beam)

{
E_DR_ENTRY *emit_dr;

// Get or create an emission detection entry

//

if (emit_dr = (E_DR_ENTRY *) DLL_getnxt(&detection_entry_free))
DLL_delete(CLink(emit_dr));

else
emit_dr = (E_DR_ENTRY *)malloc(sizeof(E_DR_ENTRY)):

// assign dr model and emitter system
// to entry and append to entry list
//

emit_dr->dr = dr;

emit_dr->e_dr = emitter;
DLL_append(CLink(list),&emit_dr->1ink);

1’

/**

I* Append an emitter detection entry list to the detection free list. *
**/

void ReleaseEDREntryList(CHAIN_HEAD *e_dr_entry_ list)
{

}

% % % % % Fe Je de de de d g K e A de T de K o o T Kk kK ke K ke K de do K K Kk K K K K T de Tk K Kk K K e kK K Kk ke k kK Kk Kk Kk kg kK Kk kK gk ok kk

* Append an emitter detection entry to the detection free list. *
**/

I#oid ReleaseEDREntry(E_DR_ENTRY *edr_entry)

{
DLL_delete(CLink(edr_entry)):
I DLL_append(CLink(&detection_entry_free),CLink(edr_entry)):
)

DLL_AppendList(&detection_entry_free,e_dr_entry_list);

I// *%% END OF FILE **%%

dkkdkdkhkdkhkhhhhdhhhhkdkhkhkhhhhhhhhhdhdhhdhdkhhhhhhhdkdhdhhdkdhkhhhhhhdhdhhdhdhddhddkddhhhhhhdkhhkdkkk
TRACK BEAM SIMULATION

Track beam scan.

Responsibility: Sanujit Senapati

*
*
*
*
**/

e S o I N

#include
include
‘include
include

#include
include

*%% INCLUDES *#*%/

<stdio.h>
<stdlib.h>
<string.h>
"sim.h"
"objects.h"
"util.h"

pragma hdrstop

#include
include
include

#include

"dist_mgr.h"
"ent_mgr.h"
"extrepor.h"
“"fsm.h"

')’include "loc_emis.h"
Y/

%% CONSTANTS **%/

l/*** TYPES *%%/
l/*** STATIC DATA **%/
static float dir_threshold = M_PI/360; // Radian value of 1/2 degree

/ Indicates if the header information is put in the Emission Info

/ /
static int push_header = FALSE;

l/*** LOCAL PROTOTYPES *%*/

I/*** FUNCTIONS #**%/

/**

* Set the value of direction threshold value to the given angle value. *
**/

tatic void setDirTH(int angle)

{
I dir_threshold = degrees_to_radians(angle):;
}

/**

I Determine the minimum interval when one of an emitter’s track beams
will require an update of its direction.

* *

The interval for each beam is calculated as the time required for the
target to traverse the chord across the direction threshold angle
assumming worst case (i.e. the target and observer are traveling in
opposite directions and are adjacent to each other).

The interval value is given by the following formula (t=m/v):

% % % % % % ¥ F ¥ ¥ ¥

I = interval value

- _—-.

D = distance from observer to target

TA = tangent of direction threshold angle

CL = Length of chord

S = relative speed between observer and target

CL =D * TA

I=CL/S=D%*TA /S
L T T Ty
atic UINT TrackInterval(ENTITY_CB *e_cb, EMITTER *emitter)

.. -

* F % ¥ F F* *

*

L
ot *

int i,
interval = e_cb->ew.repeat_rate;
float tan_dir = tan(dir_threshold),
ent_speed = abs(e_cb->dynamics.loc_dyn.speed);
LOC emit_loc:
TRACK_BEAM *beamnm = emitter->track.beams;
DEAD_REC *dr;

RelativeToActual (&emit_loc,emitter->rel_loc,e_cb->own_dr);

for (i=emitter->track.beam_count; i>0; i--, beam++)
if (beam->active && (dr = get_dr_model (&beam->target.id)))

(

float dist distance(&dr->dr_loc, &emit_loc),

vel_x = dr->dynamics.vel[0],
vel_y = dr->dynamics.vel[l],
vel_z = dr->dynamics.vel[2],
speed = ent_speed +

sqrt(vel_x*vel_x + vel_y*vel_y + vel_z*vel_z);
if (speed)
(int delay;
delay = dist*tan_dir / speed;

if (interval > delay)
interval = delay:;

)

return(interval):;

I)
/**
* Update the Track Direction Parameters (azimuth and elevation center) *

l* based on the current location of the tracked target with respect to the *
* observing emitter. *
* Return boolean: change greater than the threshold value? *

IQ***/

i

nt UpdateTrackDir(LOC *emit_loc, LOC *target_loc, TRACK_BEAM *beam)

&beam->last_dir,
&beam->dir;

EMIT DIRECTION *last_dir
*dir

i oH

dir->eleva_center elevation(emit_loc,target_loc);

return

I(
I dir->azimuth_center = bearing(emit_loc,target_loc):
I (

. (abs_diff(dir->azimuth_center, last_dir->azimuth_center)
I > dir_threshold)

(abs_diff(dir->eleva_center, last_dir->eleva_center) > dir_threshold)

/**
[Track targets and update the direction and tracking status. Report any *

change in tracking status. Build a PDU for all the track beams with *
* direction changes. Return TRUE if direction of one or more track beams *
* is changed. *
t***/
tatic int EmitterTrackScan(ENTITY_CB *e_cb, EMITTER *emitter)
{
int i,
push_emitter = FALSE,
track_changed = FALSE;
EMITTER_DESC *emit_desc = &emitter->desc;
EMITTER_TRACK *track = &emitter->track:
TRACK_BEAM *beam = track->beans;

LoC enit_loc;
RelativeToActual(&emit_loc,emitter->rel_loc,e_cb->own_dr):;

for (i=track->beam_count; i>0; i--, beam++)
if (beam->active)
{

LOC target_loc;

if (mob_loc_from_id(&target_loc,&beam->target.id) &&
distance(&target_loc,&emit_loc) <= beam->range)
{

}

l else
{

track_changed = UpdateTrackDir (&emit_loc, &target_loc, beam);

// Lost track on target, deactivate track beam

SendRadarReport(e_cb, emit_desc, &beam->target.id,
RADAR_DEACTIVATE) ;

track->active_beam_count--;

beam->active = FALSE;

track_changed = TRUE;

)

if (track_changed)
{
if (!push_header)
{
// No Emission Info header, push header
// and set the header pushed flag TRUE
//
PushHeader (&e_cb->dynamics.vehiclelID,e_cb->control.useTime);
push_header = TRUE;
)

if (!push_emitter)
{
// Emitter Information not inserted,

// push emitter info and set flag

//
PushEmitterSystem(emitter):;

push_emitter = TRUE;
)

// Push the changed tracked beam and parameters

//
PushTrackBeam(beam,beam->active ? ON : OFF);

)

et

return(track_changed):;

dede e gk g de ke ok ok ke dede ke ke ke de ke ok ok ok ode ok ok ok ok ko dkodkd ok de ok ok ok ok dh ok kdkdddkkddddkddddkkkiddkdkkkikkkikkkkkkkk

Emitter Track Scan FSM which tracks targets for all the active emitter *

¥* track beams within the emitter tracking capability. *
m*********************'k***/

L

oid EWTrack(FSM_RECORD *fsm)

{
ENTITY _CB *e_cb = (ENTITY_CB *)fsm->cb:;

fsm->name = "EWTrack";

if (Destroyed(e_cb->dynamics.appearance))
FSM_suicide(INCAPABLE):;

else

{

ENTITY_EW *kew &e_cb->ew;

EMITTER *emitter = (EMITTER *) &ew->active_emitters;
int active = FALSE,
changed = FALSE,

track_interval,
repeat_rate = e_cb->ew.repeat_rate;

// Process each emitter in active emitter list
//
while (emitter = (EMITTER *) DLL_getnxt(emitter))
{
if (emitter->track.active_beam_count) // track function
changed i= EmitterTrackScan(e_cb,emitter):

track_interval = TrackInterval(e_cb,emitter);

if (repeat_rate > track_interval)
repeat_rate = track_interval;

if (emitter->track.active_beam_count)
active = TRUE;

else

if (!emitter->search.active)

{
// This emitter is no longer active.
// Remove it from active list.

DLL_delete(CLink(emitter)):
DLL_append(CLink(&ew->emitters), &emitter->1link);

if (changed)
{
// Send the Emission Info
//
SendEmitter();
push_header = FALSE;
)

// Repeat state if the track beam is still active.
if (active)
FSM_repeat(repeat_rate):;

N

*%% END OF FILE *%%/

Il 5l E N N N B In S SN S B B .

User-Level Threads

Sanujit Senapati
Department of Computer Science

University of Central Florida
December 11, 1992

Abstract

Threads are the velicles of concurrency in many approaches to parallel pro-
gramming. Threads separate the notion of a sequential execution stream from
other traditional processes. such as address spaces and 1/0 deseriprors. T'he objec-
tive of this separation is to make the expression and coutrol ol parallelisin simpler
for use. Threads are supported cither by the operating svstem or by an nser-level
library. In this term paper we will study the varions characteristics and function-
ality of user-level and kernel threads. the various approaches of user-level thread
design, the various implementation issues and the adaptability wnd use of threads

in real-time operating svstems.

1 Introduction

Threads are a part of most operating svstems. because of their efficiency. portability
and clarity in implementing parallelisin in programining, Traditional processes are
not suitable for parallel programming cousidering the efliciencey and system over-

head in creating and svuchronizing keruel processes. ‘Therefore many run-time envi-

-

ronments have implemented threads which are hasicallyv lightweight processes with
the required data structurcs and functionality to implement parallelisin. Threads
have been immplemented in operating systems at kernel and user-level,

In the following sections, we will discuss the varions functionality of threads in

5 ;
general, the advantages and disadvantages of user-level threads over kernel threads,
the various approaches used in the design and implementation of user-level threads,
g |

the adaptability of threads for use in real-time operating systems,

2 Functionality of Threads

The main functionality of an user-level threads package can be divided into calls re-
garding thread manipulation (c.g.. creation). thread coutrol (e.g.. svnchronization),
and higher level utilities (c.g., condition variables). Thie varions data structures a
threads package usually maintains consists of:

stack pool, for locally executing threads.

- a pool of thread descriptors.

- scheduling information.,

- a memory pool for future memory allocation/deatlocation requests.

The varions thread manipulation calls can be call for forking operations. Thread
control calls are sleep, wakeup and lock operations. Other memory allocation
operations can be memory allocation. memory deallocation. Iieh level operations

can be wail and signal.

3 User-Level vs Kernel Threads

Threads can be supported ecither at user tevel or i the kernelo Facl of these ap-
proaches has its advantages and disadvautages. Belore comparing the two classes

of threads, we will discuss the primary characteristics of both the approaches. Ker-

nel threads are built in the operating systen and have their own address space,

priority, private file descriptors. ete like any other kernel process. Scheduling op-
erations on these threads are done by the kernel. Kernel threads runin the kernel
space. On the other hand. user-level threads are implemented as run-time library
routines which can be linked to an application just like any other functions in a
programming language. This approach of thread management does not require
any kernel intervention, thereby has the flexibility of implementing parallelism in

programming at the user-level. Besides user-level threads run in the user space.

3.1 Kernel Threads

The kernel based approach treats threads similar 1o o process. thus resulting in
degradation of performance due to the overhead of process management. like unique
address space, registers, program counter. ete aud svochironization. .\ thread may
or may not need its own address space, priovity. private file deseriptors or signal
interface. T'hese are unused in the user space and can inenr unwarranted costs. Ker-
nel threads support a limited number of user aud application thread requirements

and semantically inflexible.

3.2 User-Level Threads

On the other hand, user-level avoid the problems associated with kernel threads, but
they also introduce new problems. User-level threads require that the kevnel provide
a set of non-blocking system calls. Otherwise execution of other threads may be
prevented. Another problem with user-level threads is the fack of coordination
between scheduling and svnchronization. Synchronizaiion between threads. either
in the same address space or in overlapping address spuce may be adversely aflected
by kernel scheduling decisions. A thread that is preenipted by the kernel may
be performing operations for which other. running thireads iy hold a mutual
exclusion lock forcing other threads to spin or block. therehby slowing exccution.

Considering the above [actors. proper approaches with flexibility aud better per-

formance arc required in user-level thread design. The approaches shonld address

the following problems:

4

Functionality: the user level thread should exhibit these behavionr of a kernel
thread management system:

- No processor idles in the presence of ready threads.

- No high priority thread waits for a processor while a low priority thread
runs.

- When a thread traps to the kernel to block, the processor on which the
thread was running can be used to another thread from the same or from a
different address space.

Performance: the cost of thread manageinent operations should be within an
order of magnitude of a procedure call. essentiallv the same as that achieved
by the best existing user-level thread management svstenn,

Flexibility: the user-level part should be structired 1o simplify application

specific cnstomization.

Related Work

Several approachies supporting uscr-level threads. have beeu timplemented in the

past.

4.1

We will discuss a few of them in this section.

Scheduler Activations Model

The approach given in [1] provides each application with « virtual multiprocessor.

Each application knows exactly how many (and which) processors have been al-

located to it and has complete control over whicl threads are runuing on these

processors. T'he operating system kernel has control over the allocation of pro-

cessors among addresses including the ability to chance the mimber ol processors

assigned to an application during its execution. To aclicve this. the kernel notifies

the address space thread scheduler ol every event allecting the address space. The
kernel’s role is to vector events that influence uscr-level scheduling to the address
space for the thread scheduler to handle. rather than tointerprer these events on its
own. Also, the thread svstemn in cach address space notifies the kernel of the subset
of user-level events that alfect processor allocation decisions. By communicating
all kernel events. functionality is improved hecanse the application has complete
knowledge of its scheduling state. By communicating downward ouly those events
that affect processor allocation, good performance is preserved. since most events
do not need to be reflected to the kernel. These kernel mechanisins realizing these
ideas are called scheduler activations. A scheduler activation is the execntion con-
text for an event vectored from the kernel to an address space: the address space
thread scheduler uses this context to handle the event 1o modify user-level thread

data structures, to exccute nser-level threads. and 1o make requests of the kernel.

4.2 Psyche Model

Another similar approach in wlich the above concept of virtual multiprocessor is
given in [2]. A design of a kernel imterface 1o be used by user-level thread pack-
ages has been implemented. Short-term scheduling tikes ploce in the nser space.
The kernel remains in charge of the resonree allocation wd protection. The vari-
ous operations performed by the threads package including creation. destraction,
synchronization, and context switching. ocenr in user space withont entering the
kernel.

The kernel has access to thread state information maintained by the threads
package through shared data structures. which makes it casier for conveying in-
formation efficiently in both directions. The kernel provides the thread package
with software interrupts (signals. upcalls) whenever a scheduling decision may be
required. Timer interrupts support the time-slicing ol threads. Warnings prior to
preemption allow the thread package to coordinate svachrounization with kernel-

level scheduling. An interrupt delivered each time a thread blocks in the kernel

---*-

makes every system call non-blocking by defanlt. withow modifving or replacing
the kernel interface, and provides an uniform cntry mechanism iuto the user-level
scheduler when a thread has blocked or unblocked. The operatiug system estah-
lishes a standard interface for user-level schedulers. and provides locations in which
to list the functions that implement the interface. Nbstractions shared hetween
thread packages can then invoke appropriate operations to block and nnblock dif-
ferent kinds of threads. Although the kernel never calls these operations it identifies
them in the kernel/user data area so that user-level code can invoke them without
depending on the referencing environment of any programming language or thread

package.

4.3 Continuation Model

The approach discussed in {3] is an iprovement ol the user-level threads of Mach
threads and interprocess communication with the use ol continuations as a bhasis
for control transfor hetween execution contexts.

In this system. a thread blocks in the keruel in one of the two wavs, It either
preserves its register state aud stack and resimes oxeeution by restoring this state,
or it specifies its resumption context as a continuation. a function that the thread
should exccute when it next runs. by allowing a thread 1o block with a coutin-
uation, the kernel programmer can space and time doring thread management.
Continuations enable a thread to discard its stack while blocked. thereby reducing
the space required to support threads in the kernel. Continuations also allow a
thread to present a high-level representation ol its exccution state while blocked,
reducing control transfer overhead because the state can be examined and acted
upon.

The kernel has been restructured so that a thread can use either the process
model or the interrupt model when blocking. Wher o thread blocks nsing the
interrupt model. it records the execution context in wiich it should be resumed in

an auxiliarv data structure, called a continnation. T'he blocked thread is resumed

---*-

by means of a call to the saved continuation. The process has advantages because
a thread may block with its stack context intact at any tine within the kernel. On
the other hand when the thread has little or no context. say hecanse it is wailing
to receive a message from another thread, or becanse the next instraction it should
execute is in user space, it may relinquish its kernel stack entirely, Furthermore,
since a continuation is accessed through a machine-independent interface, it is
often possible to examine a continuation at rontime and avoid using it. because
the system’s current state makes it unnecessary. Another advantage is that many
low-level optimizations associated with control transler in operating svstems can

be recast in terms of continuations.

5 Adapting User-level threads for real-time
operating systems

Real-time operations are time bound in nature and hiave hieh timing regaircments.
Besides real-time thread desien should cousider the requirements of predictability
and high cfficiency for real-time kernels. The essentinl idea underlying real-time
threads is that the schedulability of real-time threads may be derermined at the
time of program compilation (static scheduling) or at the time of threads ereation
(dynamic scheduling). Dynamic scheduling of threads cannot be schoeduled off-line.
Static scheduling may be performed at the the thime ol program initialization or by
simply initializing the package’s data structures containing scheduling information
based on the decisions of ofl-line algorithms. The tyvpieal nse of real-time threads
in an actual svstem, then. is to make static (initialization time or compile-time)
guarantees [or the application’™s minimal task set while the rontiime guarantees are

made for threads with unpredictable avrival and execution timoes.

=3

6 Conclusion

In the effort for making threads perform ellicienty and offer flexibility to a variety
of user and application requirements, the varions approaches discussed in this term
paper, have shared the functions of tvpical threads between the user level and
kernel implementations. IFunctions which do not need much of kernel support like
memory allocation and scheduling have been implemented at the user-level and
the functions like resource allocation have been implemented ar vhe kernel level.
The various interfaces between the kernel and nser-level data steactures have been

properly studied.

7 References

(1] Anderson. 'I'. 1., Bershad. B. N.. Lazowska. I Dooond Leva 4 ML 7 Scheduler
Activations: Ilfective Nernel Support for User-Level Management ol Parallelism™,
In Proceedings of the [3th ACM Symposivi of Opcrating Systeur Prineiples, Oc-
tober 1991.

[2] Marsh, B. D.. Scott, M. L., LeBlane, ‘T J. and Markavos. 1. P 7 First-Class
User-Level Threads™. In Procecdings of the 15th AC V] Symposivi of Operating
System Principles, October 1991.

[3] Draves, R. I.. Bershad. B. N.. Rashid. R. I, and Dean. RO " Using Con-
tinuations to Implement Thread Management and Conmpmunication in Operating
Systems”, In Proccedings of the 13th ACM Syposiuie of Opcraling System Prin-
ciples, October 1991,

[4] Schwan. K.. Zhou, I, Gheith. A" Real-"Time Threads™. Opcrating System: Re-

view, April 1991.

0000133

	User-level Threads
	Recommended Citation

	tmp.1440086406.pdf.gTwIi

