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1 . I nt r o duct i on 

1.1 Purpose 

This document is the final technical report required as a 
deliverable under University of Central Florida Division of 
Sponsored Research grant #90370 , titled "Efficient Line of Sight 
Determination in Polygonal Terrain". It is also a non-required 
deliverable under DARPA contract N61339 - 89 - C- 004, titled 
"Intelligent Simulated Forces: Evaluation and Exploration of 
Computational and Hardware Strategies". The research described 
herein was supported by those two sources. 

1 . 2 structure ot this doeument 

Following this subsection, the remainder of section 1 introduces 
the Line of Sight problem in the context of real-time battlefield 
simulation, describes polygonal terrain, and lays out the 
objectives of this research. section 2 explains in detail the 
Line of Sight algorithms developed during this project, and the 
existing algorithm used as a standard for comparison. Section 3 
presents the comparison experiment performed on those algorithms, 
and the experimental results obtained. section 4 summarizes the 
results and identifies potential areas of future related work. 
Sections 5 and 6 contain references and appendices related to the 
project. 

This document assumes that the reader is familiar with computer 
algorithm design in general , but no t with the specific algorithms 
or data structures used for Line of Sight determination. It 
further assumes that the reader has some familiarity with 
real-time battlefield simulation, as exemplified by the SIMNET 
system. 

(This document shares some text excerpts with 1ST Technical 
Repor t IST-TR- 92 - 6, titled "The 1ST Semi-Automated Forces 
Dismounted Infantry System: Capabilities, Imp lementation, and 
Operation". Most of the shared t ext is contained in section 2.3 
of this document. The text is repeated so as to allow each 
report to be read without requiring the reader to have access to 
the other.) 

1 .3 Line of Sight in batt l ef ield s imul ation 

In an interactive real-time battlefield simulation (such as 
SIMNET), a question of paramount concern is this: can two 
hostile entities, such as tanks, see each other? More for mally, 
does there exist a Line of Sight (LOS) between them? The 
existence of a LOS between a pair of entities in the simUlation 
substantially affects their behavior ; for example , a LOS is a 
prerequisite of direct fire. It is the simulated terrain that 
can block the LOS; two tanks on opposite sides of a hill cannot 
see each other. 

1 
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A LOS determination must be made for each pair of entities whose 
behavior may be affected by the existence of a LOS. The 
potential number of LOS determinations that must be made in a 
simulation is very large; in ~he worst case, for a scenario with 
n entities, on the order of n individual LOS cheCKs must be made 
during each LOS check cycle. More precisely, the worst case is 
approximately 

Heuristics exist to reduce this in the average case to O(n), but 
the worst case remains 0(n 2 ). (See section 1.6 for a definition 
of order notation.) 

Furthermore, those LOS determinations must be made often to 
ensure realistic behavior. For a typical real-time simulation, 
each entity should check for a LOS to each hostile entity at 
least once each second, and preferably more often, to maintain 
realism. 

The point is that in a simulation of a size typical for 
interactive battlefield simulation, a great many LOS 
determinations must be made in a short time. The required LOS 
calculations can consume a significant portion of the 
computational power of the simulation computer, reducing the 
resources available for more interesting processing , such as 
realistic vehicle dynamics or intelligent behavior. An 
improvement in LOS algorithm run-time efficiency could have a 
significant impact on simulation system performance. 

By now, a reader who is familiar with distributed battlefield 
simulation systems such as SIMNET will be raising the issue of 
SIMNET's inherent parallelism. In SIMNET, it is often the case 
that each simulated enti~y is supported by a separate simulation 
computer. Thus, the O(n ) LOS determinations are distributed 
onto n simulation computers. The situation can be described as a 
parallel algorithm requiring O(n) LOS determinations on each of n 
processors. Furthermore, there are no data dependencies, given 
the usual SIMNET situation of a redundant static terrain database 
on each simulation computer. 

There are two points to consider in relation to the preceding 
observation. First, reducing the num~er of LOS determinations 
for each simulation computer from O(n ) to O(n) does not change 
the fact that an improvement in the efficiency of each LOS 
determination makes more computational power available to other 
tasks. Second, SIMNET simulations often include simulators that 
control multiple, possibly many, entities. Semi-automated forces 
systems are a prime example of this . Those systems must perform 
LOS determinations for each of the entities they support, between 
each pair of those entities as well as the other entities in the 
simulation. For semi - automated forces systems, the processing of 
LOS determinations has been estimated to consume more than half 
of a system's computational power (Companion,1989]. Clearly, a 
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more efficient LOS algorithm is of considerable importance to 
semi-automated forces systems. 

1.4 Polygonal terrain 

In nearly all interactive real-time battlefield simulations, the 
terrain over which the simulation takes place is constructed from 
a large set of planar polygons. Adjacent polygons share edges , 
but are not necessarily coplanarj the ridges, valleys and rolls 
in the terrain are determined by the 3D spatial coordinates of 
the polygons. See figure 1.1 for an example. 

Figure 1.1. Polygonal terrain representing a hillside (seen 
from an oblique viewpoint). 

1.5 Resaarcb goals 

Of course, real-time battlefield simulations exist (e.g. SIMNET), 
so LOS algorithms have been produced. They are often ad hoc 
algorithms whose performance is adequate but not optimized 
(Stanzione,1989], or approximation algorithms that achieve good 
performance at the expense of occasionally incorrect results 
(Gonzalez,1990). 

Some interesting theoretical results in the computer science 
subdiscipline of computational geometry have been derived that 
are potentially relevant to the problem of efficient LOS 
determination; see any of (Guibas,198?), (Ghosh,198?}, 
[Chazelle,1988), [Hershberger,1989 ), or especially [Cole,1989]. 

Unfortunately, there are two features of the theoretical results 
that make them something less than a definitive answer to the LOS 
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problem. The first shortcoming is that many of the results are 
for restricted domains. The polygonal terrain of most 
battlefield simulations is made up of many polygons, located in 
three dimensions (3D) , and the polygons cannot be assumed to be 
triangles. The theoretical results are often for one polygon, 
for coplanar polygons, and/or for triangles or triangulated 
polygons. 

The second problem with the theoretical results is that the 
analysis of the time required for these algorithms is usually 
taken only to the point of showing that the algorithm requires 
time linear in the size of the problem. (The "size of the 
problem" may be the number of entities performing line of sight 
checks, as in section 1.2, or the number of polygons involved in 
the LOS check, as in most LOS algorithm analysis.) In other 
words, linear algorithms require a time proportional to the 
number of polygons or polygon vertices to be considered times a 
multiplicative constant. Such algorithms are called "optimal". 
However, as is the practice in theoretical algorithmic analysis, 
the magnitude of the multiplicative constant is neither given nor 
even known. It should be clear that an algorithm requiring time 
proportional to 2 times the number of polygons is much more 
suitable than one requiring time proportional to 5 times the 
number of polygons. 

The objective of this project was to develop more efficient 
algorithms for LOS determination in polygonal terrain, and to 
measure their efficiency empirically. Three new LOS algorithms 
were developed at 1ST under this project; they are herein 
referred to as algorithms F, C, and P, and are described in this 
report. Their performance was compared to the SIMNET Planview 
Display LOS algorithm, which is also briefly described. 

1.6 Or4er notation 

This document will often give the computational time or space 
requirements of a particular LOS algorithm or sub-algorithm. The 
standard order notation, as used in algorithmic analysis, will be 
employed for that purpose. This section defines the order 
notation for those readers who are not familiar with it. The 
definition is adapted from (Preparata,19B8] and [Brassard,19BB). 

O(f(n» denotes the set of all functions g(n) such that there 
exist positive constants C and nO with Ig(n) 1 S CfCn) for all 
n ~ nO' 

In other words, O(f(n» is the set of functions that are at most 
as large as some constant times f(n). This notation is used to 
specify the upper-bound or worst-case performance of the 
algorithm. Informally , if an algorithm's time complexity is 
described as O(log nl, for example, that means that the time 
required by that algorithm to run will increase by an amount 
proportional to the logarithm (usually base 2) of the size of the 
increase in the problem. 

4 
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2. LOS alqorithms 

2.1 General algorithm structure 

Although they differ substantially in detail, the three LOS 
algorithms developed for this project share a cornmon abstract 
structure. This section will describe that structure; the 
following sections will explain the algorithms in depth. 

In its simplest form, the LOS problem can be stated in this way: 
given a finite set of polygons in 3-space, and a line segment in 
3-space specified by its endpoints, does the line segment 
intersect any of the polygons? In this formulation, the set of 
polygons corresponds to the polygonal terrain database, where the 
terrain itself, the treelines, the buildings, and all of the 
other features of the terrain database can be constructed from or 
considered as polygons, and the endpoints of the line segment 
correspond to the sighting and target entities. Thus a naive 
brute-force algorithm would simply check every polygon in the 
finite set to determine if that polygon and the line segment 
intersected ; if none did, the LOS is Unblocked. 

Ending point 

Line of Sight 

Treeline Polygon edge 

Figure 2.1. A simple LOS example, seen from directly above. 

Of course, the polygons of a polygonal terrain database have 
considerable organization beyond that of a set, assuming the 
database is representing the surface of a piece of normal 
terrestrial terrain. For example, the base polygons (the 
polygons that represent the surface of the terrain) of a 
polygonal terrain database do not overlap, and adjacent base 
polygons share common edges. The LOS algorithms to be explained 
take advantage of the organization inherent in the terrain 
database polygon set as a means of reducing the execution time of 
a LOS determination . In order to use that organization, the 
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polygons must be converted into some data structure that embodies 
or represents the organizational structure of the terrain 
polygons. (Terminological note: hereinafter, terrain database 
refers to the polygon set that represents the terrain; these 
terms will be used interchangeably.) 

Constructing the data structure representing the polygons is 
referred to as preprocessing; during preprocessing, the polygons 
of the terrain database are converted into a data structure 
specific to the particular LOS algorithm. One possible data 
structure, but by no means the only one, is a SIMNET format 
terrain database. Preprocessing is done only once for a given 
terrain database and LOS algorithm. 

Once the terrain data structure has been constructed, it is used 
to determine if a LOS exists between the sighting and target 
points. This LOS determination has two basic steps. In the 
first step, referred to as point location, the terrain data 
structure is used to identify the base terrain polygons which 
include the two points. Of course, both points may be in the 
same polygon. Point location is alwoays performed in two 
dimensions (20); the sighting and target points, as well as the 
base polygons, are projected onto the xy plane by setting all the 
z coordinates to o. (Point location, taken as the general 
problem of determining the 20 region containing a given point, is 
an entire problem category in computational geometry; see 
[Preparata,1988].) 

The second step of the LOS determination process is herein 
referred to as LOS traversal . During LOS traversal, the terrain 
data structure is used to identify all the base terrain polygons 
through which the line segment joining the sighting and target 
points passes. As in point location, the LOS traversal is 
considered in 20; the line segment and the base polygons are 
projected into the xy plane . 

As each polygon through which the LOS passes is identified, 
either during point location or LOS traversal, it is checked to 
determine if the LOS intersects it, i.e . if it blocks the LOS. 
Note that this check considers the LOS and the polygon in 3D. 
The mechanisms for performing the check are different for each 
algorithm, but they all take advantage of the easily proven fact 
that if the LOS intersects a planar polygon, it must pass through 
or below one of the edges of the polygon. (Here below refers to 
having a smaller Z coordinate, which is interpreted as under the 
surface of the terrain.) 

Each LOS algorithm consists of these three components, or sub­
algorithms: preprocessing, point location, and LOS traversal. 
FigUre 2.2 (on the next page) shows the algorithms explained in 
this section and identifies for each the sub-algorithm used for 
each of the three components. 

6 
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All of the LOS algorithms described in this document accept 
starting and ending sighting points as input, and return 1 if a 
LOS can be established between the two points, and return 0 if 
not. 

Typically, a single terrain database is involved in many LOS 
determinations. For each LOS determination, the data structure 
constructed during preprocessing is used for point location and 
LOS traversal. Thus, it is appropriate to expend additional 
computational effort during preprocessing, which must be done 
only once for each terrain database, in order to reduce the time 
required to perform point location and/or LOS traversal, which 
must be done for every LOS determination. Computational time 
spent during preprocessing is not considered in the computational 
cost of the LOS determinations. 

2.2 Polygonal terrain database 

As previously mentioned, a base polygon is one that forms the 
ground surface of the terrain being represented. Hills, va lleys, 
and flat areas are constructed from base polygons. In a properly 
constructed terrain database, projecting the complete set of base 
polygons into the xy plane produces a complete coverage of the 
plane, with no overlaps or gaps between the base pOlygons. (Note 
that this assumption rules out the possibility of caves, 
overhanging cliffs, and similar terrain structures. We do not 
consider this to be a serious limitation; SIMNET uses no such 
terrain.) 

Features are defined to mean terrain features, also constructed 
from polygons, which are not base polygons, and may block a LOS. 
Two types of features are considered in the terrain database used 
for this project. Treelines are fencelike sequences of vertical 
polygons, which extend up from base polygons to a fixed distance 
above them. A treeline may consist of up to 256 continuous 
polygons. They are intended to represent rows or narrow strips 
of trees . A canopy is intended to represent a group or clump of 
trees. A canopy is constructed from a treeline which begins and 
ends from the same point, together with a set of LOS-blocking 
polygons that form a "roof" or "cover" extending across from one 
side to the other of the surrounding treelines. 

Polygonal terrain databases may contain other features or objects 
on the terrain, such as individual trees , buildings, utility 
poles, or water towers. For purposes of this project, such 
objects are not considered to block a LOS and are thus not 
processed by the LOS algorithms. In general, such objects would 
be handled by the algorithms in a manner similar to the treeline 
or canopy features. 

The terrain database used in this project as input to the 
preprocessing routines consists of records, each containing a 
single polygon. The polygon records identify the type of the 
polygon and list the polygon's vertices. The polygons are either 
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triangles or quadrilaterals for base polygons and canopy 
polygons, and can have up to 256 vertices for treelines (canopy 
and treelines are defined below). Road, river, and object 
polygons are not processed, as they are not considered to block a 
LOS. 
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2.3 1ST algorithm F: Grid/edge method 

2.3 . 1 Overview 

Algorithm F, the Grid/edge method, determines point-to-point LOS 
using the SIMNET terrain database; i.e. the data structure 
produced during the preprocessing step is a SIMNET format terrain 
database. The LOS calculation involves deciding whether the line 
between two points is blocked by a feature of the terrain 
database. For this algorithm, as for the others to follow, there 
are three types of terrain which can block the LOS: elevation of 
the terrain (e.g. mountains, hills, and valleys) in the form of 
base polygons, treelines, and canopies. 

To check whether the LOS is blocked by the elevation of the 
terrain, the algorithm must determine if the LOS intersects a 
polygon along the LOS. The check for intersection is done by 
determining if the LOS has a lower height (i.e. z coordinate) 
than the height of any polygon edge the LOS crosses, at the point 
the LOS crosses the edge. 

Section 2.3.2 discusses the preprocessing required by this 
algorithm . Sections 2.3.3 and 2.3.4 present the point location 
and LOS traversal steps, which are part of the run-time LOS 
determination . 

2.3. 2 Preprocessinq 

The preprocessing step builds from the terrain polygons a SIMNET 
format terrain database. The process of constructing a SIMNET 
format terrain database is involved and tedious, and the original 
development of that preprocessing algorithm ~as not part of the 
research performed for this project (although a new program to 
perform that preprocessing was written by a member of the project 
team). Consequently, the preprocessing itself will not be 
detailed; instead, the structure of t h e SIMNET format terrain 
database will be described. 

The terrain database is divided into blocks which represent 500 
meter x 500 meter squares called patches. Each patch is composed 
of 16 125 meter x 125 meter squares called grids. Both patches 
and grids can be referenced by computing indices based on the 
coordinates of a point inside them. 

The surface of the terrain is represented in the database by 
polygons; the 3D vertices of each polygon are used to compute the 
height of any point within the polygon. Polygons are organized 
by their patch and grid locations. Each edge within a patch 
structure has a code that tells which grids within the patch 
contain that particular edge. Polygons do not span patch 
boundaries; that is, the polygons are defined so that patch 
boundaries and polygon edges are always collinear, although the 
reverse is not true. Polygons may span grid boundaries. 

10 
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The terrain for each patch is represented in the database as 
vertices, edges, and polygons in the following manner. Each 
vertex is an entry in a point array; the point array holds the 
coordinates of all vertices. Each edge is an entry in an edge 
array; the edge array holds the indices into the vertex array of 
the edges' vertices. Each polygon is an entry in a polygon 
array; the polygon array holds the indices into the edge array of 
the polygons' edges. 

In short, the database is defined in such a fashion that an 
algorithm can move among patches, grids, polygons, edges, and 
vertices with ease. 

2.3. 3 Poin t l ocation 

The patch and grid structure of the SIMNET terrain database makes 
point location quite simple. Because the patches and grids are 
square and of fixed size, it is possible to determine the patch 
and grid containing a given sighting point using arithmetic 
operations in 0(1) time. Although a grid may contain multiple 
terrain polygons, it is not necessary to determine which polygon 
in the grid contains the point; identifying the grid is 
sufficient for this algorithm, for reasons the next section will 
make clear. 

2 . 3. 4 LOS t raversal 

As mentioned in section 2.1, if a LOS intersects a polygon, it 
will intersect or pass under (in 3D) one of the edges of that 
polygon. Thus one way to determine if a line intersects a 
polygon is to find the point of intersection, if any, of the line 
with each edge of the polygon . Because the terrain database 
contains a list of edges of polygons indexed by grid location, it 
is not necessary to make reference to the list of polygons in 
order to compute LOS. Instead, this algorithm computes the 
intersections with the LOS of all edges of polygons which are 
within the grids containing the LOS . This removes a l eve l of 
indirection and speeds the process of determining LOS. 

with that in mind, the first task in determining LOS within the 
SIMNET terrain database is to determine which patches and grids 
the LOS passes through; those patches and grids must be searched 
for the possible LOS blockages by base, treeline, or canopy 
polygons. In Algorithm F, the patch and grids through which the 
LOS passes are found using Bresenham1s algorithm (Bresenham,1965] 
(see below). First, the patch and grid indices are computed for 
the endpoints of the LOS . Then Bresenham1s algorithm is used to 
determine all (patch, grid) pairs which lie along the LOS. The 
result is a list of (patch, grid) pairs which are then checked 
for intersections with the LOS. 

Bresenham1s algorithm, as presented in (Foley,1982], is a two 
dimensional (20) scan-conversion algorithm used in computer 
graphics. Given the endpoints of a segment to be drawn on a 20 
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raster graphics display, Bresenham's algorithm computes the 
coordinates of the pixels which lie near the line segment. To 
adapt this algorithm to the problem of identifying the patches 
and grids through which a LOS passes in 20, one need only think 
of the corners of the grids as pixels. 

2.3 . 4.1 Intersecting LOB with base pOlyqons 

The next step in determining LOS is to test whether any of the 
base polygons in the grids through which the LOS passes block the 
LOS. This is accomplished by testing each of the polygon edges 
within the current grid for intersection with the LOS (the line 
intersection algorithm used is listed in the section 2.3.4.4). 
The line intersection is computed using (x, y) coordinates only. 
Then, if the polygon edge and the LOS are found to intersect in 
20, the z coordinates are calculated for the edge and the LOS at 
the intersection point. These z coordinates determine whether 
the LOS is blocked. If the z value for the polygon edge is 
higher than the z value for the LOS, the LOS function immediately 
decides that the LOS is blocked, and returns 0 without fUrther 
processing. 

2 . 3.4.2 Intersecting LOS with tree lines 

After the base polygons are checked, the treelines which are 
within the (patch, grid) pairs are checked to see whether they 
block the LOS. The treeline check proceeds in a manner very 
similar to the polygon edge check. Treelines are represented by 
a linked list of 3D coordinates; the treeline extends between 
these points. Further, the treelines have a constant height 
above the ground. The approach used to determine whether the 
treelines block the LOS involves first computing the (x, y) 
intersection point of each treeline edge with the LOS. If the 
treeline edge and the LOS intersect, the height of their 
intersection point in the treeline is computed as the height of 
the treeline plus the height of the terrain. This is compared to 
the height of the point along the LOS to determine whether the 
LOS is blocked. If the LOS is blocked, the LOS function returns 
0, which indicates that the LOS is blocked, without further 
processing. 

2.3.4.3 Intersecting LOS with canopies 

Canopies are represented in the terrain database as a combination 
of one or more treelines (the border) and polygons (the cover). 
Thus the LOS test for a canopy involves combining the steps 
outlined above for base polygons and treelines. Canopies are 
organized by patches rather than grids. Therefore, all canopies 
located within a patch through which the LOS passes are checked . 

2.3.4.4 Line intersection algorithm 

The processes of intersecting the LOS with base polygons and of 
intersecting the LOS with treelines both depend on determining if 

12 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

and where two line segments intersect. This algorithm determines 
whether two line segments 1 and m intersect. Segments 1 and m 
are defined by their coordinates (lxl ' lYl) - - > (lx2' lY2) and 
(mxl, mYl) - - > (mx2' mY2)' If the segments do intersect, the 
intersection point can be determined based on the values found as 
the result of computing parameters tl and t2 , as well as 
determinant D. If the lines are coincident , this fact is 
returned to be dealt with by the LOS traversal algorithm. 

The intersection algorithm is as follows: 

Parameterize the line segments. 

1: <X, y> = <lxl' lYl> + tl • <ldx, Idy> 
m: <x, y> = <mxl, mYl> + t2 • <mdx , mdy> 

where Idx = lX2 - IX1' 
Idy = lY2 lYl' 
mdx = mX2 mXl, 
mdy = rnY2 - mYl, 
0 <= tl <= 1, 

and 0 <= t2 <= 1. 

Rewrite these equations into 2 equations with (tl, t2) as the 
solution by setting the x and y values equal: 

ldx • tl 
ldy • tl 

mdx • 
- mdy • 

t2 
t2 

= mXl - IXl 
= mYl - lYl 

Using Cramer 1 s rule [Munem,1984], define D, tl, and t2 as 
follows: 

ldx -mdx 
D -

ldy -mdy 

dx -mdx 
Tl= 

dy -mdy 

ldx dx 
T2 -

ldy dy 

where dx = mxl - lXl' 
and dy = mYl - lYl' 

Then, the two line segments intersect if and only if 

0 <= tl <= D and 0 <- t2 <= D (if D > 0) 
D <= tl <= 0 and D <= t2 <- 0 (if D < 0) 

The point of intersection can be calculated by using the original 
equations for land m. However, it should be noted that the tl 
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and t2 values calculated above need to be scaled by 0 (t l = Tl/D 
and t2 = T2/D) in order to use them in the equations for 1 a nd/or 
m. 

The lines are parallel if 0 = O. They are coincident if 0 = 0 
and tl = 0 (t2 will also be 0). 

2 .3 .5 Order a nalysis 

The time and space complexity of several components of the 
overall algorithm are given in this section. 

Point location: 
0(1) time (simple arithmetic on the point ' s coordinates 
suffices) . 

Line intersection: 
O(n) time per grid , where n is the number of polygon edges in 
the grid. 

Features: 
Oem) checks per grid, where m = number of feature segments in 
the grid. 

Note that the order analysis is not very informative for this 
algorithm. For example, although each line i ntersection test can 
be done in 0(1) time, the LOS a l gor ithm does many more line 
intersection tests than are strictly necessary , because it tests 
every edge in a grid, instead of o n ly those edges through which 
the LOS passes. 
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2.4 IST algorithm C: DCEL Traversal method 

2.4.1 Overview 

The basic idea of the DCEL Traversal method is to begin at the 
start point and check each base polygon traversed (in 20) by the 
LOS to determine if it bloCKS visibility. The polygons traversed 
by the LOS are identified quickly using a DCEL data structure, 
which will be explained below. The features ( t reelines and 
canopies) which lie on these base polygons must also be checked. 
As soon as a base polygon or feature is found that blocks the 
LOS, the determination i s halted; if no blocking polygon is 
fou nd , the LOS is clear. 

Section 2.4.2 discusses the preprocessing required by this 
a lgorithm. Sections 2.4.3 and 2.4.4 present the point location 
and LOS traversal steps, which are part of the run-time LOS 
determination. 

2.4 . 2 preprocessing 

The preprocessing step constructs the two main data structures 
used for the point location and LOS traversal steps . The LOS 
traver s al uses a doubly-connected-edge-list (OCEL) data 
structure, as described in (Muller,1978] and [Preparata,1988]. A 
DCEL is well suited to represent a planar embedding of a 
connected planar graph. Under reasonable assumptions, such as no 
overlapping base polygons and no gaps in the terrain, a polygonal 
terrain database projected into 2D by removing the z coordinate 
is such a graph. The preprocessing step constructs the DCEL by 
first constructing an intermediate data structure, herein 
referred to as a sorted edge list, from the terrain database and 
then building the DCEL from the sorted edge list. The sorted 
edge list has the following form: each vertex in the database 
has a doubly linked list associated with it, which holds every 
edge which has that vertex as an endpoint, sorted by their radial 
angles . 

The sorted edge list is somewhat difficult to build due to the 
nature of the polygon set used for testing (see sections 2 . 2 and 
3.2). In particular, the polygon set contains duplicate 
polygons . Furthermore, some of the edges of different polygons 
overlap, yet are not the same edge (i.e. they partially overlap; 
see Figure 2.3). The DCEL structure requires that each edge in 
the connected planar graph it represents , and thus the terrain 
database, be unique and non-overlapping. Also, the terrain 
database consists of both triangles and quadrilaterals. In order 
to avoid special cases during the LOS determinations, all 
quadrilaterals must be split into triangles. 

Sections 2.4.2.1 through 2 .4.2 .5 describe in detail how the DCEL 
is constructed from the terrain database polygons. 
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A second phase of the preprocessing is to set up the data 
structure which will be used for the point location step. That 
structure is a set of sorted lists of vertices. Section 2.4.2.6 
describes those lists in more detail, and explains how they are 
built. 

a 

d 

c 

Figure 2.3 Edge Be of triangle 1 overlaps edges ab of triangle 2 
and edge be of triangle 3. 

2.4.2.1 Read and prepare polygons 

The terrain polygons are read in, one at a time, from the terrain 
database file. Each polygon is handled according to its type. 
Treeline and canopy polygons are stored as edges in a list for 
later use (see section 2.4.2.5). Base polygons are immediately 
processed. 

Processing of base polygons is performed in several steps. 
First, any base polygons that are quadrilaterals are split into 
two triangles. Splitting a quadrilateral into triangles requires 
that the vertices of the quadrilateral be ordered. Because there 
is no guarantee the vertices are given in order, they are ordered 
by sorting them by radial angle around a point inside the 
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polygon. Such an interior point can be computed by averaging the 
coordinates of any three of the four vertices. Once the vertices 
have been ordered, the quadrilateral is split along one of its 
diagonals, producing two triangles. 

Next , the vertices and edges of the polygon are stored in two AVL 
trees, a vertex AVL tree and an edge AVL tree. (An AVL tree is 
height balanced binary tree, where the difference in height 
between two of its subtrees is at most 1. Once the AVL tree is 
constructed, an element of an AVL tree may be accessed in 0(109 
n ) time. See (Knuth,1973 ) or (Stubbs,1985] for more information 
on AVL trees.) The vertices are stored by ascending y and x 
coordinates, respectively . As each vertex is stored in the 
vertex AVL tree, it is given an unique identifier, which is 
returned for use with edge insertion. If a given vertex already 
exists, it is not stored, but the existing identifier is 
returned. At the end of this process, the total number of 
vertices in the terrain is known. 

For each edge, its endpoints (which are vertices) are first 
ordered by ascending y and x coordinates. The edge is then stored 
in the edge AVL tree by the y and x coordinates of its first 
endpoint. If the first endpoint is identical to the endpoint of 
an edge already in the tree, the second endpoints are used. If 
both endpoints are identical to those of an edge already in the 
tree, the edge is not stored. As with the vertices, each edge is 
assigned an unique identifier. An edge is identified by the two 
vertex identifiers (assigned above) wh ich correspond t o its 
endpoints. 

2. ~ .2.2 Bui ld edge and ver tez lists 

At this point, the vertices and edges have been numbered 
(assigned unique identifiers) and duplicate vertices and edges 
have been removed. The two AVL trees are then transformed into 
lists which provide direct access to the information. 

Two vertex lists will be constructed in a single pass through the 
vertex AVL t ree. The first list will store the vertices 
sequentially into an array using the ID number they were 
assigned. Using this array the coordinates for a vertex can be 
easily retrieved given its identifier, or number. The second 
list will store the vertices in sorted order for use in building 
the point location structures (see section 2.4.2.6). Using a 
recursive depth-first traversal of the vertex AVL tree, the 
vertices are removed and placed into the sequential list 
according to their number as well as being placed in the second 
list in sorted order. 

Building the sorted edge list mentioned in the previous section 
is a bit more difficult . The sorted edge list has one slot for 
each existing vertex. These slots will point to a list of edges 
which have the corresponding numbered vertex as an endpoint. 
Thus, every edge will appear in the edge list exactly twice, once 
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for each endpoint. The edges are inserted by ascending radial 
angle, and are doubly linked, so that the next and previous edges 
can be easily accessed. The process of building the edge list is 
as follows: 

for eleh edge in the edge AVL tree : 
remove In edge from the edge AVl tree 

compute the r~i. l Ing l e wi th re5~t to the ~ · .x ;s usi ng the 
first endpo int .5 the or igin of tht edge 

s tore the edge acc ording by ascend ing rad ia l Ing l e in the 
lis t point ed a t by t he s lot at the index ~ ; ch 

cor responds t o the f irs t endpoint'S ident i f i er 
compute the r,d i , l ang l e wi th respect to the x· , xis usi ng 

the second endpo int .5 the orig in of the edge 
st ore the edge acc ord ing by .scending radial Ingle In the 

li lt pointed It by the SlOt at the index which 
corresponds to the second endpoint's identifier 

endfor 

2.4.2.3 Remove overlappinq edqes 

As previously stated, the terrain database contains overlapping 
edges. These must be removed for the DCEL structure (see next 
section) to operate properly. The edge list built in the 
previous section provides easy identification of the overlapping 
edges, as well as a means for removing them. 

Unfortunately, simply removing the overlapping edges will not 
necessarily preserve triangulation. Figure 2.4 (a) shows a 
situation where a problem may arise; in figure 2.4 (a), edge ac 
overlaps with edges ab and bc. Removing edge ac produces a 
quadrilateral abcd and so requires that edge bd be added to 
preserve the triangulation. The final product is shown in figure 
2.4 (b) on the next page. 

Note that both occurrences of edge ac must be removed from the 
edge list (there is one in the list for vertex a, and another in 
the list for vertex c). Similarly, edge bd must be inserted into 
the list for each of its endpoints, band d. 
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with this in mind, the process of removing overlapping edges can 
be described. Overlapping edges have the same radial angle from 
a cornmon vertex, and thus will be adjacent in that vertex's list 
of edges. Using the longer of the two overlapping edges, the 
next clockwise edge of one endpoint is compared with the next 
counterclockwise edge of the other endpoint, and vice versa. One 
of these comparisons produces a common vertex which defines an 
existing triangle with the endpoints of the longer overlapping 
edge. This common vertex will be used to divide the triangle 
into two smaller ones by adding an edge from the common vertex to 
the vertex of the shorter overlapping edge which is not an 
endpoint of the longer edge. The latter vertex will lie on the 
longer overlapping edge; it shall be called the overlapping 
vertex. The new edge must be inserted into the edge lists for 
each of its endpoints . 

The longer overlapping edge cannot simply be removed, since it 
may still overlap one or more edges. Instead it is shortened to 
exclude the shorter overlapping edge, taking the overlapping 
vertex as its new endpoint . The original longer overlapping edge 
is then removed from the list of the vertex it originally shared 
with the shorter overlapping edge, and the modified edge is added 
to the list of its new endpoint, the overlapping vertex. The 
other vertex of the modified edge is unchanged, and thus no 
adjustment to its list is necessary. The modified edge can now 
be compared to the edges adjacent to it in the edge list to 
determine if it exactly overlaps (has the same endpoints as) 
another edge and thus can be removed, or if the process needs to 
be repeated for another overlapping edge. 

This process must be repeated until no overlapping edges remain 
in the edge list. 

2. 4 .2. 4 Bui ld DCEL 

With the overlapping edges removed, everything is in place to 
build the DCEL structure. The DCEL contain s six fields for each 
edge in the edge list. The first field (Vl in the figure) 
contains the first endpoint of the edge. Likewise, the second 
field (V2) holds the second endpoint. (First and second 
endpoints are determined arbitrarily . ) The third and fourth 
fields (Fl and F2 ) hold the identification numbers of the 
polygons which lie on the left and right side of the edge, with 
left and right determined by orienting the edge from the first 
endpoint to the second. (In a DCEL , polygons are usually 
referred to as faces; in this presentation, face and polygon are 
equivalent.) Similarly, the fifth and sixth fields (Pl and P2) 
hold the numbers of the first edges encountered when moving 
counterclockwise from the first and second endpoints, 
respectively. Figure 2.5 is an example of a DCEL. 

The process of building a DCEL from an edge list begins with 
filling the vertex fields. This can be accomplished in a single 
pass through the edge list. Each edge has a number associated 
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with it, which is used as an index into the DCEL. As an edge is 
encountered, its vertices are placed into the vertex fields Vl 
and V2 at that edge's index. Recall that the vertices were 
ordered as they were s t ored into the vertex AVL tree, so no 
conf l ict will arise f r om edges being in the edge list twice. 

After the vertex fields have been filled, the edge pointer fields 
PI and P2 can be enter ed. This is performed with a single pass 
over the DCEL . An edge is located in the edge list using the 
first vertex for that edge. The index of the next edge in the 
list will fill field Pl, since it is the index of the first edge 
encountered when moving in a counterclockwise direction (the 
edges a re sorted according to radial angle). Field P2 is 
similarly filled using vertex 2. 

VI V2 FI F2 PI P2 

v3 
1 

2 
a3 

al vI v2 n n a2 a3 

• 
• 

vI a2 v4 vI n 
• 

• 

a3 v2 v3 n 
v4 

• 

Figure 2.5 Example DCEL . 

Fi l ling the face (or po l ygon) fields Fl and F2 is slightly more 
complic ated. The gen e r al p r ocedure is t o s t art with an edge, 
select an unnumbered fa c e adjacent to it, assign that face a 
face number, and follow the edge pointers to assign the face 
number to all of the edges surrounding that face. The a l gorithm 
proceeds as follows: 
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for each ~ge in the Deft: 
if F1 of OCEL[edge] has not bern assigned. I"IU!ber 

fill F1 of OCEl(edgr] with currenthceNl.n'ber 

vert ex ~ VI of OCEl(edge] 
~xtEdge s Pl of OCEL{edge] 
whil e (~xtEdge Is edge ) 

If (VI of OCEL[M)(tEdge] s ver tex ) 

f; I t F2 of DeEl (nextEdgeJ wi th currentFaceNl.II'ber 

ve r tex s v2 of DCEL(nextEdge] 
MxtEdgt s P2 of DCEl(nextEdge] 

else ( V2 of Den [neJ(tEdge] .. vertex) 
fill F1 of DCEl[nextEdge) with currentFaceNumber 
vertex. V1 of OCEL[nextEdge) 
nextEdge .. Pl of DCEL[nextEdge] 

t~ i f 

endwh ile 
currentFaceNumber • currentFeceNumber + 

end it 
tl"od fo r 

It can be shown that if the Fl field of every edge is filled, 
then the F2 field of every edge must also be filled, so checking 
the Fl fields only will suffice. 

2.4.2 . 5 Add feature segments 

Section 2.4.2 . 1 stated that the polygons for features (treelines 
and canopies) are stored as edges in a list. For the purposes of 
LOS determination, only those featUres which lie on polygons 
traversed by the LOS need to be checked for obstructing the LOS. 

The approach taken by this algorithm is to associate the feature 
edges with the terrain polygons they lie in. For this , a list of 
pointers is created with a slot for each face (or terrain 
polygon) in t he DCEL. Each pointer points to a list of feature 
edges which lie on its associated face. The feature edges are 
stored as follows: 

for eleh ea;e In the fel t ure ea;e list 
detenmlne the flee eontl inl ng the endpo ints of the edge 
if the endpoints l ie in the S lme flee 

store the edge in thlt flee's felture tlst 
e lse 

find the intersection of the edge Ind the flee 
d ivi de the edge into two pertl using the intersection 

point 
stor e the pert of the edge which l ies ent i rety with t he 

flee in thlt flee' S edge list 
repelt the procelS on the part of the edge wh ich lies 

outside the face using the adjlcent face 
ondif 

~for 
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The adjacent face mentioned in the algorithm can be found using 
the DCEL, since the intersecting edge of the current face is 
known . The current face is one of the faces associated with the 
intersecting edge, the adjacent edge is the other. 

2.4.2.6 Initialize slabs 

The slab method for point location [Preparata,1988] was chosen 
for this project on the basis of execution speed; it provides a 
worst case point location time of 0(109 n). The slab method can 
be used on any planar straight-line graph (PSLG), which, as 
previously observed, includes reasonable polygonal terrain 
databases projected into the xy plane. 

The basic idea of the slab method is to divide the graph into 
"slabs" by drawing a horizontal line through each vertex (see 
Figure 2.6). By sorting the slabs by y coordinate, the slab in 
which a query point lies can be found quickly with a binary 
search. 

Slab i 

Slab 1 

------~~~~------
Slab 0 

-----------
Figure 2.6 The vertices of the terrain polygons determine the 

horizontal slabs. 

Each slab is partitioned by edges of the graph, or in this case, 
edges of the terrain polygons. These edges define trapezoids and 
triangles within the slab. Note that within a slab the edges 
cannot intersect, since each vertex defines a slab boundary. By 
sorting the segments within a slab by x value along one y 
boundary of the slab, the trapezoid or triangle within a slab in 
which a query point lies can again be found with a binary search. 

The process of building the slabs is facilitated by structures 
and routines already in place. A planar scan process is used to 
build the slab data structure, where the scan's event points are 
the vertices. The sorted vertex list built from the vertex AVL 
tree (see section 2.4.2.2) holds the event points (vertices) for 
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building the slabs. Another AVL tree is used to store the edges 
within the slabs in sorted order . At each event point (vertex), 
the incoming edges (radial angle > 180) are deleted from the tree 
and the outgoing edges (radial angle < 180 and not equal to zero) 
are inserted into the tree. 

Horizontal edges are not used. For this process, the edge list 
described in section 2.4.2.2 is be used, since for each vertex, 
the edges which have that vertex for an endpoint are stored 
sorted by their radial angles. After a slab has been updated, 
the tree is output, producing the next slab. It is important to 
note that more than one vertex may have the same y-value, so all 
vertices with the same y-value must be processed before the slab 
is output. 

2.4.3 Point location 

To begin the LOS determination, it is necessary to identify the 
base polygons which contain the starting and ending sighting 
points, when they are projected into the terrain. 

The point location data structures which will be used have been 
initialized by the preprocessing routines. To determine which 
terrain polygon a sighting point lies within requires two binary 
searches. The first search is on y values to determine which 
slab contains the point. The second search is on x values to 
find the edge within the slab the point lies just beyond (the 
slope of the edge within the slab is, of course, considered). 
Once the edge has been identified, a simple lookup in the DCEL 
will provide the number of the terrain polygon (face) in which 
the sighting point lies. 

Thus locating the polygon in which a point lies requires two 
binary searches, one on the slabs' y coordinates, and one on the 
x coordinates of a single slab's partitioning edges; hence the 
O ( log n) point location time. 

2.4.4 LOB traversal 

Having identified the start and finish polygons for the LOS, the 
DCEL is now used to identify all the base polygons through which 
the LOS passes (as described in section 2.1, this traversal is 
considered in 2D) . 

The LOS enters each traversed terrain polygon across one of its 
edges. Since terrain polygons are all triangles, and only 
straight lines are present, the LOS must leave through one of the 
remaining two edges of the triangle. The edge pointers PI and P2 
in the DCEL are used to determine the other two edges; the other 
two edges must share the same face as the edge through which the 
LOS entered. The v ertical plane containing the LOS is tested for 
intersection with the other two edges using one of the 
intersection tests described in the following sections. 
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When an intersection is found between the LOS's vertical plane 
and the edge, the height values of the terrain edge and the LOS 
at the point of intersection are compared to determine if the LOS 
is blocked. If so, 0 is returned to indicate failure. 
Otherwise, the intersected edge is used to determine the next 
face to be entered by the LOS, and the traversal continues. 

2.4.4.1 LOS and edge intersections 

Intersections between the LOS and edges in the terrain database 
are determined by two routines. One routine calculates the 
intersection between a plane and a line segment, while the other 
calculates the intersection between two line segments. The 
plane-line intersection routine is used for the bulk of the 
intersection tests because it requires fewer arithmetic 
operations than the line-line intersection routine. In the 
plane-line intersection routine the vert ical plane in which the 
LOS lies is tested for intersection with edges from the terrain 
database. 

However, the plane-line intersection routine is not appropriate 
for situations where it may find an intersection beyond t he LOS. 
This situation occurs in the start and finish polygons, where the 
plane-line intersection routine will find two intersections, one 
along the LOS, and one in the opposite direction which does not 
intersect the LOS. The same situation can occur with feature 
segments on the start and finish polygons. It is in these 
situations that the line-line intersection routine is used. Both 
of these routines are more fully discussed below. 

2.4.4.1.1 Plane-line segment intersection 

The plane-line segment intersection routine uses the normal to 
the vertical plane in which the LOS lies, which only need be 
computed once, and a point on the plane, which can be an endpoint 
of the LOS, to determine the intersection between the LOS and an 
edge of the terrain database. The method is as follows: 

Parametric equations: 

plane: Nx(x-xO) + Ny(Y-YO) + Nz(z-zO) 

where N is the norma l to the plane 

line: 

and <xo , yo ,zO > is a point on the plane 

x = Xl + (x2 
Y ~ Yl + (Y2 
Z = zl + (z2 

where <xl,Yl,zl> and <x2,Y2 ,z2 > are endpoints of the 
line segment. 

Using the parametric equations for the plane and for the line 
determined by the endpoints of the line segment, solve for t. If 
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o <= t <= 1, the l ine segment intersects the plane, and the 
parametric equations can be u sed to compute the point of 
intersection. 

2.4.4.1.2 Line segment-line segment intersection 

Usi ng the parametric equations for the LOS and an edge in the 
terrain database , the following method is used to determine their 
intersection: 

Parametric equations: 

where <ax,ay ,az > and <bx,by,bz > are endpoints of a 
line segment . 

X2 = Ux + (vx - ux)t 
Y2 ~ u y + (Vy - Uy)t 
z2 = Uz + (vz uz}t 

where <ux,uy,uz > and <vx,vy,vz > are endpoints of a 
line segment. 

Solve for sand t by setting <xl,Yl,zl> equal to <x2,y?,z2 > ' If 
0 .0 <= s,t <= 1.0 the line segments intersect. The po~nt of 
intersection can then be computed by substituting either s or t 
into the corresponding parametric equations. 

2.4.4.2 Check features of polyqon 

If the LOS is established across a base polygon, the features 
(treelines and canopy polygons) which are on that polygon are 
cheeked. The feature polygons for a given terrain polygon, if 
any, have been stored as edges in a list for that terrain 
poly gon. The LOS is then checked for intersection with each of 
these edges , using the intersection routines (see the previous 
section). The actual intersection location is computed and 
compared with the LOS coordinates at that location only if an 
intersection occurs. Again, if the LOS is found to be blocked, 
the LOS determination process immediately terminates, indicating 
a failure to e s tablish a LOS by returning o. 

2.4.4.3 Terminate when finish polyqon is reached 

When the current polygon location is found to be the finish 
polygon, and no features of that polygon block the LOS, the LOS 
has been established. In this case, the algorithm indicates that 
the LOS exists, i.e. is not blocked, by returning 1. 
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2 .4.5 Or4er analysis 

The time and space complexity of several components of the 
overall algorithm are given in this section. 

Point location: 
0(109 n) time, 0(n2) space where n ~ number of vertices. 

Line Intersection: 
0(1) time per polygon. 

Determine next polygon: 
0(1) time per polygon. 

Features: 
Oem) checks per polygon, where m = number of feature segments 
in the polygon. 
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2.5 IST algorithm P : Triangle Tra ver s a l me t b od 

2.5. 1 o v e rview 

This section describes the Triangle Traversal method and its 
implementation. The basic idea of this method is to triangulate 
the polygonal terrain, and then construct a simple data structure 
which stores the three neighbors for each terrain triangle. This 
triangle list can be used to quickly trace the LOS from one 
triangle to the next. 

Section 2.5 . 2 discusses the preprocessing required by this 
algorithm. Sections 2.5.3 and 2.5 . 4 present the point location 
and LOS traversal steps, which are part of the run- time LOS 
determination. 

2. 5 .2 Preprocessing 

The primary goal of the preprocessing step is to create the data 
structures used to facilitate the point location and LOS 
traversal algorithms. Point location is used to determine the 
triang l es within the terrain which contain the starting and 
ending points of the LOS. The LOS traversal algorithm is used to 
determine if, given two endpoints in 3-space, there is an 
obstruction between them. This obstruction could be terrain, or 
some feature on the terrain. 

The main data structure created dur ing preprocessing consists of 
a list of triangles , referred to as the Triangle list. A 
triangle on the Triangle list stores the following information: 

Vertex 1, 2, 3; 
Neighbor 1, 2 , 3; 
Features; 

Venex3 

Figure 2.7. Triangle T and its neighbors. 
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Vertex 1, 2, and 3 are the triangle's associated vertices in 
clockwise order. Neighbor 1 is a pointer to the triangle's 
neighbor along its 1-2 edge; similarly, Neighbor 2 is a pointer 
to the triangle's neighbor along its 2-3 edge, and Neighbor 3 is 
a pointer to the neighbor along the 3-1 edge. Vertex 1, 2, and 3 
are stored as indices into a master list of vertices, referred to 
as the Vertex list, and Neighbor 1, 2, and 3 are stored as 
indices into the Triangle list. Figure 2.7 shows triangle T, 
where T's Neighbor 1 is triangle A, T's Neighbor 2 is triangle B, 
and T's Neighbor 3 is non-existent (indicated by storing 
, -1' as Neighbor 3' s index) . 

In order for there to exist exactly one Neighbor along each edge 
of each triangle, it is imperative that any two triangles which 
have an overlapping edge share exactly the same edge. 
Consequently, given the four polygons shown in Figure 2.8 to be 
triangulated, Triangulation 1 is incorrect, while Triangulation 2 
is correct. Triangulation 1 is incorrect since triangle F shares 
its right edge with triangles H, J, and L. 

B 

A C 

D 

/ 
F 

E 

Triangulation 1 Triangulation 2 

Figure 2.8. Triangulation ~ is incorrect, Triangulation 2 is 
correct. 

K 

M 
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The last piece of information s tored in a triangle , Features, is 
a pointer to a list of feature edges which reside on the given 
triangle. Given SIMNET terrain, such features consist of 
treelines and canopies. 

The Triangle lis t is used d uri ng both the point location and the 
LOS traversal algorithms. Additional data structures created 
i nclude the Vertex list and the Y-Slab list as described in 
section 2.5 . 2.1. The sorted Vertex list is used both f o r point 
location and t o reduce the amount of storage used. The Y-S!ab 
list is used for point l ocation and to fac i litate the 
triangulation of the terra in base polygons. 

The following sections describe the process of reading in the 
terrain polygons and how the information is stored. 

2.5.2.1 Create Vertex list and Y-Slab list 

The polygons are read and processed one at a time, in mul t iple 
passes. Each polygon is one of the following types: base, road, 
river , object, treeline , canopy cover, and canopy treeline . The 
base polygons store the actual terra in, while the other polygons 
are features on the terrain. The purpose of the first pass over 
the input polygons is to create the Vertex list, where vertices 
are stored in ascending y and x coordinates, respectively. This 
is accomplished by inserting each base polygon vertex into an AVL 
tree. Once the AVL tree is created, the sorted vertices are read 
from the tree and stored in a sorted array, the Vertex list, for 
direct access. The AVL tree is then deleted. 
As the Vertex list is being created from the AVL tree, an 
additional structure is also created for the point location 
process, called the Y-Slab list. The Y-Slab list serv es to 
partition the terrain into horizontal slabs. Each entry in the 
Y-Slab list stores two items, beginV and endV, which are indices 
into the sorted Vertex list. For each Y-Slab in the Y-Slab list, 
the vertices from beginV to endV all have the same y coordinate 
and ascending x coordinates. The identifying y coordinate of 
each Y-Slab in the Y-Slab list is unique and the Y-Slabs in the 
list are ordered in ascending y coordinates. Figure 2.9 shows a 
s mall set of base polygons of terrain and its associated Y-Slab 
list. 

In addition, each v ertex in the Vertex list stores an index into 
the Y-Slab list indicating which Y-Slab it belongs to. 
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7 8 9 10 

6 

3~----------k-------~~5 

o 1 

YSlab1 ~ 10,21 
YSlab2 = 13, 51 
YSlab3 • IS, 61 
YSlab4 • 17, 101 

Figure 2.9. Example Y-Slab lists. 

2.5.2.2 Create Triangle list 

2 

The primary purpose of the second pass over the input polygons is 
to create the Triangle list, where the triangles are constrained 
as described in section 2.5.2. The polygons are again read in, 
one at a time, from the terrain database file. Road, river, and 
object polygons are discarded. Treelines and canopy polygons are 
stored as edges in a list to be handled after the Triangle list 
is cre'ated, as described in section 2 . 5.2.4. The base polygons 
are processed to create the Triangle list, where a SIMNET base 
polygon is known to be have either 3 or 4 sides. A 3-sided base 
polygon is input to the triangulation routine as is; a 4-sided 
base polygon is first split into two 3-sided base polygons, and 
each 3-sided base polygon is then input to the triangulation 
routine. The triangulation rouE ine can be summarized as follows: 
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1. Sort t ne base polygon's 3 ver tices in clockwi se order . 

2. Set edgeV.ttices '"' s et of a l t ver ti ces which t i e on po lygon's 
edges , other the" it s or ig in.\ t hree ver ti ces. 
(Th i s is perfo~ us ing the ordered VerteA l i st, the Y' Slab 
l ist, .nd each verteA' S po inter to its , ssoci,ted Y· St.b . ) 

3 . If edgeVer ti ctS '"' t he ~ty set t neon 

e l se 

Cre. te • new tr i ang t e T f r~ the base po lygon 
Add T to the Triang l e l is t 
Return 

Cont l l"lUe with Step 4 
end!f 

4 . Sor t the pol ygon vertices and edgeVert ;ces in clockw is e order . 

5. Usi ng the ordered ver t lc eS
I 

tri,ngul at e po lygon, add ing each 
new tr l,ng le to the Tr ;an; e lis t . 

Figure 2.10 shows the triangulation of 3-sided base polygon P 
(Pl, P2, P3), as would occur in Step 5 of the above routine. The 
t~iangles Tj, Tj+l, Tj+2, and Tj+3 would be added to the Triangle 
l1st . 

PI 

1'3-------"'Pl 

Base Polygon P becomes 

PI 

¥----.....:..-~Pl 
1'3 

Figure 2.10. Triangulation of polygon P. 

A vertex triangle list is associated with each vertex, and 
contains the index of each of the triangles which use the vertex. 
As each new triangle Ti is added to the Triangle list, each of 
its vertices is updated with the addition of Ti's index i to the 
v ertex's vertex triangle list. The vertex triangle lists are 
used to help set each triangle's neighbors, as described below, 
and during the point location process. 

2.5.2.3 sat triangles' neighbors 

At this point, the entire Triangle list has been created; 
however, many of the triangles' neighbors have not yet been set. 
This is because new triangles are often added to the Triangle 
list with either some or all of their neighbors not yet 
determined. In fact, the only time a triangle is added with its 
neighbors predetermined is when it is created in step 5 of the 
above triangulation routine . Consequently, once the Triangle 
list is created, a pass is made over this list to set the 
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neighbors of each triangle as required. This can be accomplished 
quite simply, since each vertex stores a list of a ll triangles 
which use that vertex, its vertex triangle list. For instance, 
to set Neighbor 1, the neighbor along the 1-2 edge of triangle T, 
the algorithm simply looks through vertex l's vertex triangle 
list searching for a triangle which uses vertex 2. 

2.5.2.4 Add feature segments 

Section 2.5.2.2 stated that features are stored as edges in a 
list to be handled after the Triangle list was created. For the 
purpose of the LOS traversal, only those featu r es which lie on 
triangles crossed by the LOS need to be checked for obstructing 
the LOS . 

The approach taken in this algorithm is identical to the approach 
used in algorithm C (see section 2 . 4) wherein feature edges are 
associated with the terrai n t riangles they lie in. The following 
is the method used for incorporating the feature edges into the 
Triangle list. 

for eech edge in the feeture edge list 
~int tocete the endpoints of the edie 
If the endpo ints lie in the SIMe trlengle 

else 
Store the edge in thet tr i engle's fe.ture l i st 

find the intersection of the edie end the trllngte 
divide the edge into 2 pertl USIng the intersection po int 
Itore the pert of the edge which lies entirely in the 

trilngle in the triingle ' l Fe.turel l is t 
repest the sbove procell on the pert of the edie wh ich 

lies outside of the trl.ngl e , using It I neIghbor 
Itong the given edge 

end!' 
endfor 

This completes the preprocessing for the Triangle Traversal 
method. 

2.5 . 3 Point location 

Point location is required to determine the triangles which 
contain the starting and ending points of the LOS. Given point p 
to be l ocat ed, the method used for point location is as follows: 

1. Locsre the bounding upper Ind tower Y'Sllb for point p. 
(Requirel one binsry selrch.) 

2. Let v1 s the vertex closest to p on the lower Y·Sllb. 
Let v2 • the vertex closest to p on the upper Y·Sllb. 
let v • the closer of (v1, v2) to p. 
(Requires two binsry selrches.) 

3. Telt elch trilngle Y in V'I vert ex tr!lngle li.t to dete~ine 
if p is inc:11.Mded in T. If fOU'ld. return trilngle T' s index, 
otherwise continue to Step 4. 

4. Follow line fr~ vertex v to point p. using the Trlsngle 
to detennine elch next triengle Ilong the line vp to be 
tel ted f or poi nt inc:lusion of p . 

list 

The method used in Step 4 to go from triangle to triangle is 
almost identical to the LOS traversal algorithm's method for 
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stepping through the triangles with the pleasant e xception that 
there is no "special case" as described in section 2 . 5.4 .1. 

2 . 5.4 LOS traversal 

The LOS traversal algo rithm accepts as input the LOS starting and 
ending points, along with the triangles Tstart and Tend which 
contain them, and returns 1 (not blocked) if a LOS can be 
established between the two points or 0 (blocked) otherwise. The 
general idea is to start at triangle Tstart and check every 
triangle along the LOS to determine if the LOS is blocked, either 
by the triangle itself, or by a Feature edge on the triangle. 
This process is continued until either a blockage is found or 
Tend is reached. 

To determine if the triangle itself blocks the LOS, the algorithm 
projects the LOS and the tr i angle to 20, ignoring z coordinates. 
It then determines the location where the LOS intersects an edge 
of the triangle in 20. Then, given the (x, y) location of the 
intersection point, it computes and compare the z-values for the 
LOS and the intersected edge to determine if the edge is above 
the LOS, indicating an obstruction. If the triangle itself does 
not create an obstruction, then each of its associated Feature 
edges is checked to determine if any of them create an 
obstruction. If no obstruction is found, then the "next" 
triangle that the LOS crosses is examined, and so on, until 
either an obstruction is found or the algorithm reaches the last 
triangle, Tend. 

The "next" triangle along with which of its edges is intersected 
by the LOS is determined using the current triangle's intersected 
edge, along with its third vertex as described in the next 
section. 

2.5.4.1 Stepping from triangle to triangle along the LOS 

Assume that the algorithm is currently examining triangle Ti 
which is intersected by the LOS L = QR (Q and R are the 
endpoints, i.e. the sighting and target points). Call the vertex 
above the LOS on the intersecting edge A, and the vertex below 
the LOS on the intersecting edge B, and the remaining vertex on 
the current triangle C. (The LOS and the triangles have been 
projected into the xy plane, so in this section above means have 
a larger y coordinate, and below means having a smaller y 
coordinate. Above and below indicate relative postions when 
drawn in a conventional 20 coordinate system.) The algorithm 
will determine the next intersected edge and its intersection 
point, Pn+l' and the next triangle Ti+l' 
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11 

A= 1 

Q 

Figure 2.11. 

R 
6 

Finding the next triangle (the values on the 
vertices are their y coordinates) . 

These determinations can be made as follows, where L is the LOS: 

else C .bove (In 20) L: (IS in Figure 2.11) 

Pn+1 '" L intersect EGg! Be (in 20) 
check Pn+1 to Itt if LOS obstruct..::l (in 30) 
T i+1 '" T i 's Neillhbor elong edlle Be 
A '" C B • B. C '" T i+1 ' s vertell other thl" It. .nd 8 

use C below L: 
Pn+1 • l internct fdsle I.e <in 20) 
check. Pn+1 t o SH if LOS obstructed (in 30) 
T < +1 • T i ' s Neiehbor 'long edge I.e 
A~ .8 '-c, C '" Tj.,'1 vertex other thl" A end B 

cueConL: 
Pn+1 • C 
check Pn+1 to .. e if LOS obstructtod (in 30) 
hindi. " s peci' l ClSeM for determining A, B, C, end T i+1 

Once Ti+l has been identified, check T~+l's Features to determine 
if any features constitute an obstructIon . 

As each of the LOS checks is performed, if an obstruction is 
found, then the LOS traversal algorithm returns a 0 (blocked) and 
terminates. The above sequence is repeated until either an 
obstruction is found or Ti+l = Tend' 

Note that Pn+l is calculated in 20, that is, its (x, y) value is 
determined. The check on Pn+l involves calculating the z-value 
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of that (x, y) point on the LOS, call this LOS z , and calculating 
the z-value of the same (x , y) point on the triangle's 
intersected edge (BC or AC), call this Tzo If T z is greater than 
LOS z , the LOS is blocked. 

The following shows how the "special case", where vertex C on 
Line L=QR, is handled. 

wh ile (edge E • ce' is colli!'leer with L end C' between C and II) 
check C' to see if LOS obstruc;t ll'd 
check Fe.turfs for trilng l es on both sides of ce' for 

obstruction 
C"'C' 

endwh i l e 

At this point it is known that no edge emanating from C is 
collinear with L=QR, and so one of following two cases is true: 

(i) One of the triangles of which C is a vertex is the last 
triangle Tend' 

or 

(ii) One of the triangles of which C is a vertex intersects L, 
both at the point C and somewhere along the edge AB where A 
and B are the two vertices, other than C, on the triangle. 

If case (i) is true, then the LOS traversal is complete. 
Otherwise, it is necessary to search through vertex C's 
triangles, found in its vertex triangle list, to find the 
triangle T which intersects L with its edge AB, where A and Bare 
the two vertices, other than C, on triangle T. The algorithm 
then tests the newly found intersection point on segment AB and 
also tests the Feature edges of triangle ABC for an obstruction. 
Since identifying one vertex as A and one as B is determined 
arbitrarily, once the edge AB which intersects L is found, A is 
set to be the vertex above Land B to be the vertex below L. The 
next triangle, Ti+1, is set to the neighbor of the triangle ABC 
along the AB edge. The new C is set to be Ti+1's vertex other 
than A and 8. Figure 2.12 illustrates this process. 
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B 

C Q __ ~L~~ ____ ~ ______ ~~ ______ ~ ____ ~ __ _ 
R 

A 

T~l 
c 

Q __ ~L~~ ____ ~ ______ ~~ ______ ~ ____ ~ __ _ R 

B 

Figure 2 . ~2. C lies on the LOS. 

At this point the handling of the special case is complete; the 
algorithm is r eady to test if t h e current vertex C is above, 
below , or on the line L=QR and continue normally. 

As mentioned above, the algorithm traces from triangle to 
triangle until either an obstruction is found or triangle Tend is 
reached. If Tend is reached , the algorithm returns a 1, 
indicating that the LOS is unblocked. 
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2.5.5 Geometric support routines 

The point location and LOS determination algorithms are highly 
dependent on a core set of 20 and 3D geometry routines. In order 
for the top level algorithms to be as efficient as possible, it 
is very important that these core r outines be extremely fast. 
Altho ugh the LOS traversal is intrinsically a 3D problem, almost 
all calculations can be made in 20, increasing efficiency. In 
fact, the only time a 3D calculation is made is to determine the 
z-value of an (x, y) point of intersection of the LOS and a 
triangle edge as explained in section 2.5.4. 1. 

The fo llowing gives a brief description of the core set of 
geometry routines. 

2.5.5.1 Lert turn (20) 

Given three points P, Q, R, 

return 1 if P, Q. R form a left turn 
o otherwise. 

if ((OX' • PX" • CRy. Pyl • (IIx • Px ' • Cay. Py )) )' 0) 
-l"eturn [1] ; 

e t$ e 

endit 
return (OJ; 

The above routine is used to determine if a point is located 
within a specified triangle in 20. This is based on the fact 
that point P is contained in triangle QRS iff QRP, RSP. and SQP 
each form a left turn where Q, R, and S are counter-clockwise. 
The routine ' s mathematical equation is determined u sing the fact 
that given the points P, Q, and R, then they form a left-hand 
turn if and only if the following determinant is greater than 
zero [Preparata,1988]: 

Px Py 1 
Ox Oy 1 
Rx Ry 1 

2.5.5.2 Point on l i n. (2D) 

Given two points P and Q and a test point T 

return 0 if T 
1 if T 
2 if T 
3 if T 

is 
is 
is 
is 

not on 
on the 
within 
on the 

the (infinite) line PQ 
open ray P 
the l ine segment PQ 
open ray Q 
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i f ABS«Oy' Py ' • (T X - Px ) - (Ty • Py ' • (OX - PX)) ,.. 

MA XC ABS(O", - Px >. ABS(Oy • 'y" 
r eturn[O] , 

i f (OX ;( Px Ind Px '" lX' or COy" Py 1M Py '" Ty ) return CD; 

if Ox '" Px .nd PX ': OX ' or cry ;( Py and Py ..: Qy ' return [ll; 

i f (P x '" Ox and OX ': lX' or (P y .: Qy.nd 0y '" Ty) return [3]; 

i f (T X '" 0X ' nd Ox 0: PX ' or Cly < 'y ,,'" 'y < 'y' return [3]; 
return- (21; 

The above routine is used during preprocessing to aid in the 
triangulation process. Specifically, it is used in Step 2 of the 
triangulation routine in section 2.5.2.2. 

This routine was written by Alan W. Paeth of the University of 
Waterloo and can be found in (Glassner,1990]. 

2.5.5.3 Point above/below/oD liDe segment (20) 

Given the point P and line segment LS with slope m, intercept b, 
and lineType equal to VERTICAL or REGULAR, 

return -1 if P below LS 
1 if P above LS 
o if P on LS . 

(Note: ' b' is a y-intercept , unless LS is of lineType VERTICAL, 
in which case 'b ' is an x-intercept.) 

if (lineType is VElTICAl) then 
if (the rut nulbtrs Px Ind b Ire "~I") 

return [0]; 

else 

e l se 
if (Px» b ) 

e l se 
return [-1]; 

return [1); 
endif 

endif 

onLineV.lue • III • Px + bj 
if (the rell nulbtrs Py Ind onlineValue Ire 

return [D); 
else 

if (Py» onlineV.lue) 
return [1]; 

e lle 
return [-1]; 

The above routine is used repeatedly to determine if a particular 
point is above, below, or on the LOS. Specifically, these are 
the three cases tested for as described in section 2.5.4.1. 
Since the LOS does not change, the values of m, b, and lineType 
are computed once and each call to the above routine requires at 
most one multiplication and one addition. 
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2 .5 .5. 4 Point of inters ection between l ine segments 
(20) 

Given the parametric equation of one line segment LSl: 

<R X1 Ry> = <Ux , Uy > + t * <Vx , Vy > 

and endpoints A, B of the second line segment LS2, where LSl and 
LS2 are known to intersect, set the intersection point P of LSI 
and LS2 . 

Px '" AX .. (8x -"x)(CAy-Uy'*Vx (Ax-Ux) · Vy'!(CBx ' AX)*Vy-CBy-Ay)*VX); 

Py '" Ay .. (8y-"y)«Ay-Uy)· ... x - (AX-UX)* Vy)f(CBx -"X)·Vy-<BY-"'Y ) · VX1; 

The above line segment intersection routine is used repeatedly to 
determine the point of intersection between the LOS and a crossed 
triangle edge . Again, since the LOS does not change, its 
parametric equation is computed once and repeatedly input as LSI. 
LS2 is the triangle's edge that is known to intersect the LOS as 
described in section 2.5.4.1. 

2. 5 .5 . 5 Calcu l a te z - value o f (x, y ) point on line segment (3D) 

Given the parametric equation of line segment L 

<RX' Ry , Rz > = <Ox' Oy' Qz> + t * <Mx ' My, Hz> 

where L is known to be NOT perpendicular to the xy plane , and 
Point P, where Px and Py are already determined, 

set Pz such that P is on the line L. 

if (MX does not ~I 0.0) 

Pz • Oz • (Px . Ox) I MX • "z . 
. tse 

erw::I i ~Z • Qz • (Py . 0y) I My • MZ; 

This is the only 3D geometry routine. It is used repeatedly to 
determine the z-value of an (x, y) location on the LOS during the 
LOS traversal algorithm. One test is made to determine if the 
LOS is perpendicular to the xy plane before a call to this 
routine is ever made. Thus some operations are saved since it is 
known that if Mx is zero and L is NOT perpendicular to the xy 
plane, then My is non-zero. 

A separate, almost identical, routine is used to calculate the 
z-value of an (x, y) point on an arbitrary line segment, and is 
used to calculate the z - value of an (x, y) point on a triangle 
edge during the LOS traversal algorithm. The body of this 
slightly modified routine is: 
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i f ("X dees not ~l 0 ,0) 

P z " Qz • (P x . ax) I "x • "z; 
e lse 

if (My does not ~l 0.) 

Pz '" QZ • (Py - 'y ' I My • "z: 
e lse 

if 04Z ~ 0.0) 

e l se 

end i f 
end if 

~i f 

PZ " OZ*MZ; 

,liz . OZ; 

The third branch occurs if the line segment is perpendicular to 
the x y-plane, which could theoretically occur for a given 
triangle edge. In this case, the z-value is assigned the greater 
z-value of the two endpoints on the line segment . 

This concludes the set of support geometry routines. 

2.5.6 Order analysis 

The following summarizes the time and space order analysis for 
the point location, and the LOS traversal. 

2.5.6.1 Point location 

Given terrain with mostly uniformly spaced vertices, as is true 
for SIMNET terrain, the point location algorithm requires 
0(109 n) time for the average case~ where n is the number of 
vertices. It does not require O(n ) storage as does the more 
popular slab method [ Preparata,1988] , but instead requires O(n) 
storage. The downfall of this method is that a worst case could 
requ i re O(n) time, where n is the number of polygons in the 
terrain database, which in some applications may be intolerable. 

2.5.6.2 Line ot sight determination 

0(1) time is required to process each triangle along the LOS, 
since constant time is required to determine which edge is 
intersected, the intersection point, and the next triangle to be 
examined. Even when handling the "special case" where the vertex 
C is on line L, if it can be assumed that there is some maximum 
number of triangles emanating from anyone vertex, then the 
special case still requires constant time . However, the 
coefficient of this constant will probably be higher when 
handling the special case. 

since each Feature segment requires 0(1) time to process, then 
given the number of Feature segments for a particular triangle is 
r, the time to check Feature segments for that triangle is OCr). 

The space required is O(n) for each of the vertex list, Triangle 
list, and Y-Slab list, where n is the number of vertices. 
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2.6 BBN SIKNET PVD a lgorithm 

2.6.1 Overview 

The BBN SIMNET Planview Display LOS algorithm (hereinafter called 
the PVD algorithm) determines point to point LOS on the SIMNET 
terrain database. This algorithm determines if a LOS is blocked 
by: 

1. base polygons, which may form mountains, hills, and valleys; 
2. objects, such as towers, buildings, telephone p o les; 
3. trees; 
4. treelines; 
5 . canop ies ; and 
6. vehicles along the LOS. 

The PVD algorithm also determines if there are any terrain 
features behind the target location along an extended LOS. These 
background features are termed "clutter ll and while clutter does 
not block LOS other algorithms may use clutter to obscure a 
target. 

This algorithm was not developed by IST as part of this research 
project; consequently, it will not be explained in as much detail 
as the other LOS algorithms. More information on this algorithm 
is available in (BBN , 1991]. 

2 .6 .2 Preprocess i nq 

Because this algorithm uses the SIMNET terrain database, the 
preprocessing step consists of assembling that database from the 
polygon set. That process has been previously discussed , as well 
as the format of that database, in section 2.3. 

2 .6. 3 LOS d eterminat ion 

The PVD algorithm consists of 5 major steps. First, the 
necessary data elements and structures are initialized . This 
involves determining the starting location's patch, determining 
the LOS's slope, determining vertical and horizontal distances 
for stepping through the patches, and a variety of support data. 

The second step in the algorithm determines if the minimum 
elevation of any patch along the LOS is greater than the LOS in 
that patch. This constitutes a relatively quick check for a 
relatively large LOS blockage by the terrain . If the mi n imum 
elevation within a patch is greater than the LOS in the patch, 
then all terrain feature in that patch is higher than the LOS and 
something in the patch must block the LOS. If such a patch is 
found, the algorithm terminates with the LOS blocked. 

If the second step does not find the LOS blocked, the third step 
in the algorithm is performed. The PVD algorithm checks all 
vehicles to determine if any vehicle intervenes between t he 
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starting location and the target location. Each vehicle is 
modeled as a sphere rather than a silhouette or cutout of its 
actual shape. This step excludes the vehicles at the starting 
and target locations so that the sighting vehicle and target 
vehicles do not block the LOS. If a vehicle blocks the LOS, the 
algorithm terminates with the LOS blocked. 

If LOS is still open, the fourth step in the algorithm is 
performed. This step does the most exhaustive analysis of the 
terrain. The PVD algorithm moves through each patch along the 
LOS. For each patch, the algorithm checks for five types of LOS 
blocks. 

1. All the edges in the patch are checked to determine if any 
edge intersects the LOS in 20 (x and y, not elevation) and is 
higher than the LOS. If so, the LOS is blocked. 

2. Each object within the patch is checked to determine if the 
LOS traverses the "box" defining the outline of 
the object. 

3. The algorithm checks all trees within the polygon to 
determine if any individual tree blocks LOS. 

4. The algorithm checks each treeline in the polygon. Each 
treeline is checked in two ways. First, the treeline as a 
vertical polygon is checked and second, the trees at each 
end of the treeline are checked. A LOS may, from 
certain angles, intersect both a tree and the treeline. 

5. The algorithm checks each canopy within the patch to 
determine if any canopies obscure the LOS. 

The fifth step in the PVD algorithm checks for t'clutter lt by 
extending the LOS beyond the target location and checking the 
minimum elevation of each patch beyond the target against the LOS 
at that patch. If the minimum elevation within a patch is 
greater than the LOS, the algorithm terminates, indicating that 
the LOS has "clutter". This check is similar to the second step 
except that patches beyond the target rather than between the 
starting location and target are checked. 

The PVD algorithm has three broad classes for LOS determination. 
A LOS may be unblocked and uncluttered, unblocked and cluttered, 
or blocked. Blocked LOSs are further divided into a number of 
categories indicating what kind of blockage occurred, e.g . by 
terrain, tree, treeline, etc and whether the blockage is complete 
or partial. 
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2.6.5 Experimental modifications 

The 1ST LOS algorithms explained in the previous sections 
consider only terrain, treelines, and canopies. To provide a 
suitable comparison to the 1 ST algorithms, the PVD algorithm was 
modified by 1ST to not perform the checks for: 

1. objects, 
2. intervening vehicles, and 
3. clutter. 
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3 . LOS comp a r i s on expe riment 

3.1 Discus s ion 

The LOS comparison experiment was simple in concept. All four 
LOS algorithms ( the three developed at IST and the BBN PVD 
algorithm) were used to preprocess the same set of input terrain 
polygons, and then to process the same set of LOS test cases. A 
common shell program was written to call the preprocessing 
routine for each algorithm, to call t he LOS determination routine 
for each LOS test case, and to track the time required for each 
step of each algorithm. 

For the experiment, all four algorithms were compiled using the 
Borland c++ 2.0 compiler, under the large memory model. Although 
a c++ compiler was used, all algorithms were written in ANSI C, 
without using any c++ features. The timing runs were executed on 
a Hewlett Packard Vectra RS /2 5C, equipped with an Intel 80386 CPU 
and an Intel 80387 math coprocessor. For this experiment, the 
CPU clock speed of the Vectra was set to 4.77 Mhz; this was done 
because we were interested not in absolute speed but in relative 
speed of the algorithms and a slower CPU clock speed would 
magnify efficiency differences between the algorithms . 

For the preprocessing step, the entire input terrain polygon file 
( see section 3 . 2 ) was read from disk and saved in internal memory 
before the preprocessing routine was called and the timer 
started. By doing so, the preprocessing times do not include any 
disk I/O time. A similar approach was used for the LOS test 
cases (see section 3.3); all were read into internal memory 
before processing to avoid disk I/O during the timed portion of 
the runs. 

section 3 . 4 gives the actual r un times for the var ious algorithms 
during the experiment. The times given in section 3.4 are for 
the processing of the entire LOS t est case set, not a single LOS 
determination. section 3 . 3 gives more deta il on the LOS t est 
case set. 

3 . 2 Tes t p o lyqo nal terra i n 

The test polygonal terrain database used for this project is a 
subset of t he standard Ft. Knox KY S I MNET ter rain database. All 
of the base, treeline, and canopy polygons from a 1500 meter 
square portion (that is, a 3x3 set of terrain patches) of the 
database were extracted and converted into the generic polygon 
file which is the input to the preprocessing for the LOS 
algorithms . 

Note that in the case of Algorithm F, which uses the SIHNET 
terrain dat abase as its LOS data structure, the generic polygon 
file was converted back i n to SIMNET forma t by its preprocessing 
step. This was done so as to measure the time required f o r t h a t 
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preprocessing, i.e. the time required to build a SIMNET terrain 
database. 

The polygon file contains 28 1 polygons, including 270 base 
polygons, 7 treelines, 2 canopy treelines, and 2 canopy polygons. 
The southwest corner of the 9 patch square used is located at 
point (39500, 39500) from the southwest corner of the standard 
Ft. Knox KY SIMNET terrain database . 

3.3 Test LOS cases 

A thorough set of test cases was developed for use in testing the 
LOS algorithms. The individual test cases (pairs of entities on 
the terrain) were be selected to exercise all aspects of LOS 
determination, according to the principles of systematic test 
case design [Myers,1979]. 

The set of test cases included the following situations, as well 
as others: 
1. unblocked LOS 
2. LOS blocked by base polygons 
3. LOS blocked by treelines 
4. LOS blocked by canopies 
5. blocked and unblocked LOSs which were collinear with one or 

more polygon edges. 

Each record in the test case file contained, in addition to the 
LOS endpoints, the test case number , a brief description of the 
test case, and the expected result of the test case (either 1 not 
blocked or 0 blocked). The LOS test shell program compared the 
answer returned by the LOS algorithms with the expected result in 
the test case and aborted the run if they did not match. 

During the LOS determinations, each test case was considered in 
both directions; in other words , given a test case wi t h endpoints 
P1 and P2, the LOS from Pl to P2 and t h e LOS from P2 to Pl were 
both checked . 
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3 . 4 Experimental results 

The following execution times were experimentally obtained for 
each algorithm. For these timed runs, each of 20 distinct LOS 
test cases were run, in both directions as described above, and 
each was repeated 1 00 times, for a total of 4000 LOS 
determinations. The times were tracked by the test shell 
program. All times are in seconds. 

Algorithm Preproc Pt Loe Travers LOS Tot 

F: Grid /edge method 12 00 . 0 n .a . n.a. 258.0 

C: DCEL Traversal 10.9 4. 0 111.9 115.9 

P: Triangle Traversal 17.0 50.9 '6.7 147.6 

BBN SIMNET PVD n.a . n.a. n.a. 154.2 

Preproc: Preprocessing; time spent converting the input polygons 
into the LOS data structure. 

Pt Lee: Point location; portion of the time spent performing 
the LOS determinations that was used in point location. 

Travers: LOS Traversal; portion of the time spend performing 
the LOS determinations that was used traversing the LOS 
from one polygon (or grid) to the next). 

LOS Tot: LOS Total; total time for the LOS determinations. 
Recall that these times are for the entire LOS test 
case set, not a single LOS determination. 

The point location and LOS traversal times for Algorithm F and 
the BBN SIMNET PVO algorithm could not be tracked separately due 
to the structure of those algorithms; LOS Total time only is 
given for them. 
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4. Conclusions a nd future work 

As can be seen from the timing results in section 3.4, two of the 
three 1ST LOS algorithms were faster than the SIMNET PVD LOS 
algorithm; Algorithm C was just over 24.8% faster. This result 
was quite gratifying because essentially no optimization was 
performed on the IST algorithms. It had been intended to use a 
run-time profiler to identify heavily-used portions of the code 
and optimize those portions for maximum performance, but project 
time was not available for that step_ The algorithms were simply 
designed, implemented, debugged, and immediately timed. 

1ST's Intelligent Simulated Forces project is currently 
implementing a Semi-Automated Forces Testbed for the SIMNET 
battlefield simulation environment {Smith,1992], under DARPA 
contract N61339-89-C- 0044 . Ironically, the LOS algorithm used in 
that Testbed is Algorithm F, the slowest algorithm by far in this 
experiment. Future versions of the Testbed will likely use an 
enhanced version of one of the other LOS algorithms. A faster 
LOS algorithm would free additional computational resources to 
the Testbed's other processing. 

This experimental study is just a beginning; there is clearly 
much additional work to be done in this area. One idea is 
obvious from an examination of the timing results table . The 
table shows that Algorithm C had the fastest point locat ion 
process, whereas Algorithm P per formed the LOS t r aversa l more 
efficiently. An obvious step to take would be to combine 
Algorithm C ' s point location with Algorithm P's LOS traversal to 
produce an algorithm t hat could probably complete the test cases 
in appr oximately 100 seconds, for a projected 50% speedup over 
the S1MNET PVD algorithm . The p r ice of such a combination would 
be incr eased preprocessing time and storage requirements. 

The SIMNET PVD algorithm contains a number of interesting and 
clever " tricks" which very quickl y check simple situations that 
could block the LOS; if one of t hose is found, the entire LOS 
travers al process is rendered unnecessary and is not executed 
(see section 2.6) . Those checks are not present in any of the 
1ST algori t hms; integrating t h em into the 1ST algorithms would 
certain l y increase their speed. Doi ng s o mayor may not r educe 
the generality of the LOS algor ithm, depending on how t he special 
checks are built into the algori t hm. 

Both the S1MNET PVC algorithm and 1ST Algorit hm F take advantage 
of the patch/grid structure of t he SIMNET terrain database to 
perform point l ocation in 0(1) (i.e. constant) t ime . Al gor ithm C 
and Algorithm P (the two fastes t algorithms), because they do not 
use the S1MNET terrain database , must perform searches of the 
terrain polygons for point locat ion. They manage to overcome 
that disadvantage and still r un faster t han the S1MNET PVC 
algorithm and Algorithm F by vir tue of their highly efficient LOS 
traversals. One member of the project t eam has already designed 
a point location algorithm, inspired by the patch/grid s t ructure, 
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which can be used by those algorithms and may provide constant 
time point location in the average case . 

In terms of future work, the final po i nt to be made is that there 
remains considerable theoretical research in this area that may 
be applicable to the pragmatic problem of LOS determination. A 
number of research publications, especially [Cole , 1989], contain 
ideas that seem very promising but were not applied in this 
preliminary experiment. A substantia l increase in efficiency in 
LOS algorithms, beyond what was achieved here, appears to be very 
possible. As this is written, prelimi nary design of improved 
algorithms has already begun. 
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6 . Append ice s 

6 .1 List of a cronyms 

A number of acronyms are used in this document. While each is 
defined the first time it is used, all acronyms are defined again 
in this section in alphabetical order for ease of reference. 

BBN 
DCEL 
DSR 
I / O 
IST 
LOS 
~z 
PSLG 
PVD 
SIMNET 
UCF 
2D 
3D 

Bolt, Beranek, and Newman Systems and Technologies 
Doubly Connected Edge List 
Division of Sponsored Research 
Input / Output 
Institute for Simulation and Training 
Line of Sight 
Megahertz 
Planar straight Line Graph 
Planview Display 
Simulator Network 
University of Central Florida 
Two dimensions, or two dimensional 
Three dimensions, or three dimensional 
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6.4 Test data tiles and algorithm source code 

The test polygon data file, the LOS test case file, and the 
source code for the implemented algorithms are all available upon 
request from IST . Their length precludes their inclusion in this 
document. 
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