
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-1992

Preliminary Investigations Into Efficient Line Of Sight Preliminary Investigations Into Efficient Line Of Sight

Determination In Polygonal Terrain Determination In Polygonal Terrain

Mikel D. Petty

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Petty, Mikel D., "Preliminary Investigations Into Efficient Line Of Sight Determination In Polygonal Terrain"
(1992). Institute for Simulation and Training. 154.
https://stars.library.ucf.edu/istlibrary/154

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/154?utm_source=stars.library.ucf.edu%2Fistlibrary%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
J
J

Contract Number N61339-89·C-0044
February 28, 1992

Preliminary Investigations
into Efficient Line of Sight
Determination in
Polygonal Terrain

Institute IOf Simulation and Training
12424 ReMatCh Parkway. Suite 300
Orlando FL 32826

University 01 COntral FIorldll
Division of Sponsored Research

iSl

IST-TR-92-5

I
I I NS T ITUT E F O R SIMULATION AND TRAINING

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Preliminary Investigations into Efficient Line of Sight
Determination in Polygonal Terrain

Contract N61339-89-C-0044
February 28.1992

IST·TR·92·5

Prepared by
Mikel D. Petty, Char1es E. Campbell , Robert W. Franceschini,

Micheline H. Provost. Clark R. Karr

Reviewed by

Richard A. Dunn-Roberts

~DP~

(Ltcbw< .. -(~

Insl ilul8 lor Simulation and Training • 12424 Research Parkway, Suile 300 • Orlando, Florida 32826

University of Central FlorkJa • Division of Sponsored Research

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PRELIMINARY INVESTIGATIONS INTO
EFFICIENT LINE OF SIGHT DETERMINATION

IN POLYGONAL TERRAIN

Mikel D. Petty
Charles E . Campbell

Robert W. Franceschini
Micheline H. Provost

Clark R. Karr

February 28, 1992

IST-TR-92-5

Institute for Simulation and Training
12424 Research Parkway, Suite 300

Orlando FL 32826

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Tabl e of Contents

1. Introduction .
1.1 Purpose.

2.

3 .

4.

5.

6.

1.2 structure of this document
1.3 Line of Sight in battlefield simulation
1.4 Polygonal terrain
1.5 Research goa l s
1.6 Order notation

LOS algorithms .
2 .1 General algorithm structure
2.2 Polygonal terrain database
2 . 3 1ST algorithm F: Grid/edge method
2 . 4 1ST algorithm c: DCEL Traversal method
2.5 1ST algorithm P: Triangle Traversal method
2.6 BBN SIMNET PVD algorithm

LDS
3 .1
3.2
3 • 3
3.4

comparison experiment
Discussion
Test polygonal terrain
Test LOS cases
Experimental results.

Conclusions and future work

References

Appendices
6.1 List of acronyms
6.2 Authors' biographies
6.3 Credits.

•

6.4 Test data files and algorithm

•

source code

1
1
1
1
3
3
4

5
5
8

10
15
28
42

45
45
45
46
47

48

50

52
52
52
53
53

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 . I nt r o duct i on

1.1 Purpose

This document is the final technical report required as a
deliverable under University of Central Florida Division of
Sponsored Research grant #90370 , titled "Efficient Line of Sight
Determination in Polygonal Terrain". It is also a non-required
deliverable under DARPA contract N61339 - 89 - C- 004, titled
"Intelligent Simulated Forces: Evaluation and Exploration of
Computational and Hardware Strategies". The research described
herein was supported by those two sources.

1 . 2 structure ot this doeument

Following this subsection, the remainder of section 1 introduces
the Line of Sight problem in the context of real-time battlefield
simulation, describes polygonal terrain, and lays out the
objectives of this research. section 2 explains in detail the
Line of Sight algorithms developed during this project, and the
existing algorithm used as a standard for comparison. Section 3
presents the comparison experiment performed on those algorithms,
and the experimental results obtained. section 4 summarizes the
results and identifies potential areas of future related work.
Sections 5 and 6 contain references and appendices related to the
project.

This document assumes that the reader is familiar with computer
algorithm design in general , but no t with the specific algorithms
or data structures used for Line of Sight determination. It
further assumes that the reader has some familiarity with
real-time battlefield simulation, as exemplified by the SIMNET
system.

(This document shares some text excerpts with 1ST Technical
Repor t IST-TR- 92 - 6, titled "The 1ST Semi-Automated Forces
Dismounted Infantry System: Capabilities, Imp lementation, and
Operation". Most of the shared t ext is contained in section 2.3
of this document. The text is repeated so as to allow each
report to be read without requiring the reader to have access to
the other.)

1 .3 Line of Sight in batt l ef ield s imul ation

In an interactive real-time battlefield simulation (such as
SIMNET), a question of paramount concern is this: can two
hostile entities, such as tanks, see each other? More for mally,
does there exist a Line of Sight (LOS) between them? The
existence of a LOS between a pair of entities in the simUlation
substantially affects their behavior ; for example , a LOS is a
prerequisite of direct fire. It is the simulated terrain that
can block the LOS; two tanks on opposite sides of a hill cannot
see each other.

1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A LOS determination must be made for each pair of entities whose
behavior may be affected by the existence of a LOS. The
potential number of LOS determinations that must be made in a
simulation is very large; in ~he worst case, for a scenario with
n entities, on the order of n individual LOS cheCKs must be made
during each LOS check cycle. More precisely, the worst case is
approximately

Heuristics exist to reduce this in the average case to O(n), but
the worst case remains 0(n 2). (See section 1.6 for a definition
of order notation.)

Furthermore, those LOS determinations must be made often to
ensure realistic behavior. For a typical real-time simulation,
each entity should check for a LOS to each hostile entity at
least once each second, and preferably more often, to maintain
realism.

The point is that in a simulation of a size typical for
interactive battlefield simulation, a great many LOS
determinations must be made in a short time. The required LOS
calculations can consume a significant portion of the
computational power of the simulation computer, reducing the
resources available for more interesting processing , such as
realistic vehicle dynamics or intelligent behavior. An
improvement in LOS algorithm run-time efficiency could have a
significant impact on simulation system performance.

By now, a reader who is familiar with distributed battlefield
simulation systems such as SIMNET will be raising the issue of
SIMNET's inherent parallelism. In SIMNET, it is often the case
that each simulated enti~y is supported by a separate simulation
computer. Thus, the O(n) LOS determinations are distributed
onto n simulation computers. The situation can be described as a
parallel algorithm requiring O(n) LOS determinations on each of n
processors. Furthermore, there are no data dependencies, given
the usual SIMNET situation of a redundant static terrain database
on each simulation computer.

There are two points to consider in relation to the preceding
observation. First, reducing the num~er of LOS determinations
for each simulation computer from O(n) to O(n) does not change
the fact that an improvement in the efficiency of each LOS
determination makes more computational power available to other
tasks. Second, SIMNET simulations often include simulators that
control multiple, possibly many, entities. Semi-automated forces
systems are a prime example of this . Those systems must perform
LOS determinations for each of the entities they support, between
each pair of those entities as well as the other entities in the
simulation. For semi - automated forces systems, the processing of
LOS determinations has been estimated to consume more than half
of a system's computational power (Companion,1989]. Clearly, a

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

more efficient LOS algorithm is of considerable importance to
semi-automated forces systems.

1.4 Polygonal terrain

In nearly all interactive real-time battlefield simulations, the
terrain over which the simulation takes place is constructed from
a large set of planar polygons. Adjacent polygons share edges ,
but are not necessarily coplanarj the ridges, valleys and rolls
in the terrain are determined by the 3D spatial coordinates of
the polygons. See figure 1.1 for an example.

Figure 1.1. Polygonal terrain representing a hillside (seen
from an oblique viewpoint).

1.5 Resaarcb goals

Of course, real-time battlefield simulations exist (e.g. SIMNET),
so LOS algorithms have been produced. They are often ad hoc
algorithms whose performance is adequate but not optimized
(Stanzione,1989], or approximation algorithms that achieve good
performance at the expense of occasionally incorrect results
(Gonzalez,1990).

Some interesting theoretical results in the computer science
subdiscipline of computational geometry have been derived that
are potentially relevant to the problem of efficient LOS
determination; see any of (Guibas,198?), (Ghosh,198?},
[Chazelle,1988), [Hershberger,1989), or especially [Cole,1989].

Unfortunately, there are two features of the theoretical results
that make them something less than a definitive answer to the LOS

3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

problem. The first shortcoming is that many of the results are
for restricted domains. The polygonal terrain of most
battlefield simulations is made up of many polygons, located in
three dimensions (3D) , and the polygons cannot be assumed to be
triangles. The theoretical results are often for one polygon,
for coplanar polygons, and/or for triangles or triangulated
polygons.

The second problem with the theoretical results is that the
analysis of the time required for these algorithms is usually
taken only to the point of showing that the algorithm requires
time linear in the size of the problem. (The "size of the
problem" may be the number of entities performing line of sight
checks, as in section 1.2, or the number of polygons involved in
the LOS check, as in most LOS algorithm analysis.) In other
words, linear algorithms require a time proportional to the
number of polygons or polygon vertices to be considered times a
multiplicative constant. Such algorithms are called "optimal".
However, as is the practice in theoretical algorithmic analysis,
the magnitude of the multiplicative constant is neither given nor
even known. It should be clear that an algorithm requiring time
proportional to 2 times the number of polygons is much more
suitable than one requiring time proportional to 5 times the
number of polygons.

The objective of this project was to develop more efficient
algorithms for LOS determination in polygonal terrain, and to
measure their efficiency empirically. Three new LOS algorithms
were developed at 1ST under this project; they are herein
referred to as algorithms F, C, and P, and are described in this
report. Their performance was compared to the SIMNET Planview
Display LOS algorithm, which is also briefly described.

1.6 Or4er notation

This document will often give the computational time or space
requirements of a particular LOS algorithm or sub-algorithm. The
standard order notation, as used in algorithmic analysis, will be
employed for that purpose. This section defines the order
notation for those readers who are not familiar with it. The
definition is adapted from (Preparata,19B8] and [Brassard,19BB).

O(f(n» denotes the set of all functions g(n) such that there
exist positive constants C and nO with Ig(n) 1 S CfCn) for all
n ~ nO'

In other words, O(f(n» is the set of functions that are at most
as large as some constant times f(n). This notation is used to
specify the upper-bound or worst-case performance of the
algorithm. Informally , if an algorithm's time complexity is
described as O(log nl, for example, that means that the time
required by that algorithm to run will increase by an amount
proportional to the logarithm (usually base 2) of the size of the
increase in the problem.

4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2. LOS alqorithms

2.1 General algorithm structure

Although they differ substantially in detail, the three LOS
algorithms developed for this project share a cornmon abstract
structure. This section will describe that structure; the
following sections will explain the algorithms in depth.

In its simplest form, the LOS problem can be stated in this way:
given a finite set of polygons in 3-space, and a line segment in
3-space specified by its endpoints, does the line segment
intersect any of the polygons? In this formulation, the set of
polygons corresponds to the polygonal terrain database, where the
terrain itself, the treelines, the buildings, and all of the
other features of the terrain database can be constructed from or
considered as polygons, and the endpoints of the line segment
correspond to the sighting and target entities. Thus a naive
brute-force algorithm would simply check every polygon in the
finite set to determine if that polygon and the line segment
intersected ; if none did, the LOS is Unblocked.

Ending point

Line of Sight

Treeline Polygon edge

Figure 2.1. A simple LOS example, seen from directly above.

Of course, the polygons of a polygonal terrain database have
considerable organization beyond that of a set, assuming the
database is representing the surface of a piece of normal
terrestrial terrain. For example, the base polygons (the
polygons that represent the surface of the terrain) of a
polygonal terrain database do not overlap, and adjacent base
polygons share common edges. The LOS algorithms to be explained
take advantage of the organization inherent in the terrain
database polygon set as a means of reducing the execution time of
a LOS determination . In order to use that organization, the

5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

polygons must be converted into some data structure that embodies
or represents the organizational structure of the terrain
polygons. (Terminological note: hereinafter, terrain database
refers to the polygon set that represents the terrain; these
terms will be used interchangeably.)

Constructing the data structure representing the polygons is
referred to as preprocessing; during preprocessing, the polygons
of the terrain database are converted into a data structure
specific to the particular LOS algorithm. One possible data
structure, but by no means the only one, is a SIMNET format
terrain database. Preprocessing is done only once for a given
terrain database and LOS algorithm.

Once the terrain data structure has been constructed, it is used
to determine if a LOS exists between the sighting and target
points. This LOS determination has two basic steps. In the
first step, referred to as point location, the terrain data
structure is used to identify the base terrain polygons which
include the two points. Of course, both points may be in the
same polygon. Point location is alwoays performed in two
dimensions (20); the sighting and target points, as well as the
base polygons, are projected onto the xy plane by setting all the
z coordinates to o. (Point location, taken as the general
problem of determining the 20 region containing a given point, is
an entire problem category in computational geometry; see
[Preparata,1988].)

The second step of the LOS determination process is herein
referred to as LOS traversal . During LOS traversal, the terrain
data structure is used to identify all the base terrain polygons
through which the line segment joining the sighting and target
points passes. As in point location, the LOS traversal is
considered in 20; the line segment and the base polygons are
projected into the xy plane .

As each polygon through which the LOS passes is identified,
either during point location or LOS traversal, it is checked to
determine if the LOS intersects it, i.e . if it blocks the LOS.
Note that this check considers the LOS and the polygon in 3D.
The mechanisms for performing the check are different for each
algorithm, but they all take advantage of the easily proven fact
that if the LOS intersects a planar polygon, it must pass through
or below one of the edges of the polygon. (Here below refers to
having a smaller Z coordinate, which is interpreted as under the
surface of the terrain.)

Each LOS algorithm consists of these three components, or sub­
algorithms: preprocessing, point location, and LOS traversal.
FigUre 2.2 (on the next page) shows the algorithms explained in
this section and identifies for each the sub-algorithm used for
each of the three components.

6

terrain
polygons

SIMNET format
terrain database

Doubly Connected
Edge List

Triangle List

"--v-"
Preprocessing

Algorithm F: Grid/Edge Method

,
Arithmetic Bresenham's and

grid/edge checks

Algorithm C: DCEL Traversal Method

Slab Melhod OCEl traversal

Algorithm P: Triangle Traversal Method

Triangle traversal
with traversal

'---"V'--""

Point Location

""------ --_/,...
LOS Traversal

Figure 2.2. The three LOS algorithms in abstract.

LOS
determination

LOS
determination

, LOS , determination

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

All of the LOS algorithms described in this document accept
starting and ending sighting points as input, and return 1 if a
LOS can be established between the two points, and return 0 if
not.

Typically, a single terrain database is involved in many LOS
determinations. For each LOS determination, the data structure
constructed during preprocessing is used for point location and
LOS traversal. Thus, it is appropriate to expend additional
computational effort during preprocessing, which must be done
only once for each terrain database, in order to reduce the time
required to perform point location and/or LOS traversal, which
must be done for every LOS determination. Computational time
spent during preprocessing is not considered in the computational
cost of the LOS determinations.

2.2 Polygonal terrain database

As previously mentioned, a base polygon is one that forms the
ground surface of the terrain being represented. Hills, va lleys,
and flat areas are constructed from base polygons. In a properly
constructed terrain database, projecting the complete set of base
polygons into the xy plane produces a complete coverage of the
plane, with no overlaps or gaps between the base pOlygons. (Note
that this assumption rules out the possibility of caves,
overhanging cliffs, and similar terrain structures. We do not
consider this to be a serious limitation; SIMNET uses no such
terrain.)

Features are defined to mean terrain features, also constructed
from polygons, which are not base polygons, and may block a LOS.
Two types of features are considered in the terrain database used
for this project. Treelines are fencelike sequences of vertical
polygons, which extend up from base polygons to a fixed distance
above them. A treeline may consist of up to 256 continuous
polygons. They are intended to represent rows or narrow strips
of trees . A canopy is intended to represent a group or clump of
trees. A canopy is constructed from a treeline which begins and
ends from the same point, together with a set of LOS-blocking
polygons that form a "roof" or "cover" extending across from one
side to the other of the surrounding treelines.

Polygonal terrain databases may contain other features or objects
on the terrain, such as individual trees , buildings, utility
poles, or water towers. For purposes of this project, such
objects are not considered to block a LOS and are thus not
processed by the LOS algorithms. In general, such objects would
be handled by the algorithms in a manner similar to the treeline
or canopy features.

The terrain database used in this project as input to the
preprocessing routines consists of records, each containing a
single polygon. The polygon records identify the type of the
polygon and list the polygon's vertices. The polygons are either

8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

triangles or quadrilaterals for base polygons and canopy
polygons, and can have up to 256 vertices for treelines (canopy
and treelines are defined below). Road, river, and object
polygons are not processed, as they are not considered to block a
LOS.

9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.3 1ST algorithm F: Grid/edge method

2.3 . 1 Overview

Algorithm F, the Grid/edge method, determines point-to-point LOS
using the SIMNET terrain database; i.e. the data structure
produced during the preprocessing step is a SIMNET format terrain
database. The LOS calculation involves deciding whether the line
between two points is blocked by a feature of the terrain
database. For this algorithm, as for the others to follow, there
are three types of terrain which can block the LOS: elevation of
the terrain (e.g. mountains, hills, and valleys) in the form of
base polygons, treelines, and canopies.

To check whether the LOS is blocked by the elevation of the
terrain, the algorithm must determine if the LOS intersects a
polygon along the LOS. The check for intersection is done by
determining if the LOS has a lower height (i.e. z coordinate)
than the height of any polygon edge the LOS crosses, at the point
the LOS crosses the edge.

Section 2.3.2 discusses the preprocessing required by this
algorithm . Sections 2.3.3 and 2.3.4 present the point location
and LOS traversal steps, which are part of the run-time LOS
determination .

2.3. 2 Preprocessinq

The preprocessing step builds from the terrain polygons a SIMNET
format terrain database. The process of constructing a SIMNET
format terrain database is involved and tedious, and the original
development of that preprocessing algorithm ~as not part of the
research performed for this project (although a new program to
perform that preprocessing was written by a member of the project
team). Consequently, the preprocessing itself will not be
detailed; instead, the structure of t h e SIMNET format terrain
database will be described.

The terrain database is divided into blocks which represent 500
meter x 500 meter squares called patches. Each patch is composed
of 16 125 meter x 125 meter squares called grids. Both patches
and grids can be referenced by computing indices based on the
coordinates of a point inside them.

The surface of the terrain is represented in the database by
polygons; the 3D vertices of each polygon are used to compute the
height of any point within the polygon. Polygons are organized
by their patch and grid locations. Each edge within a patch
structure has a code that tells which grids within the patch
contain that particular edge. Polygons do not span patch
boundaries; that is, the polygons are defined so that patch
boundaries and polygon edges are always collinear, although the
reverse is not true. Polygons may span grid boundaries.

10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The terrain for each patch is represented in the database as
vertices, edges, and polygons in the following manner. Each
vertex is an entry in a point array; the point array holds the
coordinates of all vertices. Each edge is an entry in an edge
array; the edge array holds the indices into the vertex array of
the edges' vertices. Each polygon is an entry in a polygon
array; the polygon array holds the indices into the edge array of
the polygons' edges.

In short, the database is defined in such a fashion that an
algorithm can move among patches, grids, polygons, edges, and
vertices with ease.

2.3. 3 Poin t l ocation

The patch and grid structure of the SIMNET terrain database makes
point location quite simple. Because the patches and grids are
square and of fixed size, it is possible to determine the patch
and grid containing a given sighting point using arithmetic
operations in 0(1) time. Although a grid may contain multiple
terrain polygons, it is not necessary to determine which polygon
in the grid contains the point; identifying the grid is
sufficient for this algorithm, for reasons the next section will
make clear.

2 . 3. 4 LOS t raversal

As mentioned in section 2.1, if a LOS intersects a polygon, it
will intersect or pass under (in 3D) one of the edges of that
polygon. Thus one way to determine if a line intersects a
polygon is to find the point of intersection, if any, of the line
with each edge of the polygon . Because the terrain database
contains a list of edges of polygons indexed by grid location, it
is not necessary to make reference to the list of polygons in
order to compute LOS. Instead, this algorithm computes the
intersections with the LOS of all edges of polygons which are
within the grids containing the LOS . This removes a l eve l of
indirection and speeds the process of determining LOS.

with that in mind, the first task in determining LOS within the
SIMNET terrain database is to determine which patches and grids
the LOS passes through; those patches and grids must be searched
for the possible LOS blockages by base, treeline, or canopy
polygons. In Algorithm F, the patch and grids through which the
LOS passes are found using Bresenham1s algorithm (Bresenham,1965]
(see below). First, the patch and grid indices are computed for
the endpoints of the LOS . Then Bresenham1s algorithm is used to
determine all (patch, grid) pairs which lie along the LOS. The
result is a list of (patch, grid) pairs which are then checked
for intersections with the LOS.

Bresenham1s algorithm, as presented in (Foley,1982], is a two
dimensional (20) scan-conversion algorithm used in computer
graphics. Given the endpoints of a segment to be drawn on a 20

11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

raster graphics display, Bresenham's algorithm computes the
coordinates of the pixels which lie near the line segment. To
adapt this algorithm to the problem of identifying the patches
and grids through which a LOS passes in 20, one need only think
of the corners of the grids as pixels.

2.3 . 4.1 Intersecting LOB with base pOlyqons

The next step in determining LOS is to test whether any of the
base polygons in the grids through which the LOS passes block the
LOS. This is accomplished by testing each of the polygon edges
within the current grid for intersection with the LOS (the line
intersection algorithm used is listed in the section 2.3.4.4).
The line intersection is computed using (x, y) coordinates only.
Then, if the polygon edge and the LOS are found to intersect in
20, the z coordinates are calculated for the edge and the LOS at
the intersection point. These z coordinates determine whether
the LOS is blocked. If the z value for the polygon edge is
higher than the z value for the LOS, the LOS function immediately
decides that the LOS is blocked, and returns 0 without fUrther
processing.

2 . 3.4.2 Intersecting LOS with tree lines

After the base polygons are checked, the treelines which are
within the (patch, grid) pairs are checked to see whether they
block the LOS. The treeline check proceeds in a manner very
similar to the polygon edge check. Treelines are represented by
a linked list of 3D coordinates; the treeline extends between
these points. Further, the treelines have a constant height
above the ground. The approach used to determine whether the
treelines block the LOS involves first computing the (x, y)
intersection point of each treeline edge with the LOS. If the
treeline edge and the LOS intersect, the height of their
intersection point in the treeline is computed as the height of
the treeline plus the height of the terrain. This is compared to
the height of the point along the LOS to determine whether the
LOS is blocked. If the LOS is blocked, the LOS function returns
0, which indicates that the LOS is blocked, without further
processing.

2.3.4.3 Intersecting LOS with canopies

Canopies are represented in the terrain database as a combination
of one or more treelines (the border) and polygons (the cover).
Thus the LOS test for a canopy involves combining the steps
outlined above for base polygons and treelines. Canopies are
organized by patches rather than grids. Therefore, all canopies
located within a patch through which the LOS passes are checked .

2.3.4.4 Line intersection algorithm

The processes of intersecting the LOS with base polygons and of
intersecting the LOS with treelines both depend on determining if

12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

and where two line segments intersect. This algorithm determines
whether two line segments 1 and m intersect. Segments 1 and m
are defined by their coordinates (lxl ' lYl) - - > (lx2' lY2) and
(mxl, mYl) - - > (mx2' mY2)' If the segments do intersect, the
intersection point can be determined based on the values found as
the result of computing parameters tl and t2 , as well as
determinant D. If the lines are coincident , this fact is
returned to be dealt with by the LOS traversal algorithm.

The intersection algorithm is as follows:

Parameterize the line segments.

1: <X, y> = <lxl' lYl> + tl • <ldx, Idy>
m: <x, y> = <mxl, mYl> + t2 • <mdx , mdy>

where Idx = lX2 - IX1'
Idy = lY2 lYl'
mdx = mX2 mXl,
mdy = rnY2 - mYl,
0 <= tl <= 1,

and 0 <= t2 <= 1.

Rewrite these equations into 2 equations with (tl, t2) as the
solution by setting the x and y values equal:

ldx • tl
ldy • tl

mdx •
- mdy •

t2
t2

= mXl - IXl
= mYl - lYl

Using Cramer 1 s rule [Munem,1984], define D, tl, and t2 as
follows:

ldx -mdx
D -

ldy -mdy

dx -mdx
Tl=

dy -mdy

ldx dx
T2 -

ldy dy

where dx = mxl - lXl'
and dy = mYl - lYl'

Then, the two line segments intersect if and only if

0 <= tl <= D and 0 <- t2 <= D (if D > 0)
D <= tl <= 0 and D <= t2 <- 0 (if D < 0)

The point of intersection can be calculated by using the original
equations for land m. However, it should be noted that the tl

13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

and t2 values calculated above need to be scaled by 0 (t l = Tl/D
and t2 = T2/D) in order to use them in the equations for 1 a nd/or
m.

The lines are parallel if 0 = O. They are coincident if 0 = 0
and tl = 0 (t2 will also be 0).

2 .3 .5 Order a nalysis

The time and space complexity of several components of the
overall algorithm are given in this section.

Point location:
0(1) time (simple arithmetic on the point ' s coordinates
suffices) .

Line intersection:
O(n) time per grid , where n is the number of polygon edges in
the grid.

Features:
Oem) checks per grid, where m = number of feature segments in
the grid.

Note that the order analysis is not very informative for this
algorithm. For example, although each line i ntersection test can
be done in 0(1) time, the LOS a l gor ithm does many more line
intersection tests than are strictly necessary , because it tests
every edge in a grid, instead of o n ly those edges through which
the LOS passes.

14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.4 IST algorithm C: DCEL Traversal method

2.4.1 Overview

The basic idea of the DCEL Traversal method is to begin at the
start point and check each base polygon traversed (in 20) by the
LOS to determine if it bloCKS visibility. The polygons traversed
by the LOS are identified quickly using a DCEL data structure,
which will be explained below. The features (t reelines and
canopies) which lie on these base polygons must also be checked.
As soon as a base polygon or feature is found that blocks the
LOS, the determination i s halted; if no blocking polygon is
fou nd , the LOS is clear.

Section 2.4.2 discusses the preprocessing required by this
a lgorithm. Sections 2.4.3 and 2.4.4 present the point location
and LOS traversal steps, which are part of the run-time LOS
determination.

2.4 . 2 preprocessing

The preprocessing step constructs the two main data structures
used for the point location and LOS traversal steps . The LOS
traver s al uses a doubly-connected-edge-list (OCEL) data
structure, as described in (Muller,1978] and [Preparata,1988]. A
DCEL is well suited to represent a planar embedding of a
connected planar graph. Under reasonable assumptions, such as no
overlapping base polygons and no gaps in the terrain, a polygonal
terrain database projected into 2D by removing the z coordinate
is such a graph. The preprocessing step constructs the DCEL by
first constructing an intermediate data structure, herein
referred to as a sorted edge list, from the terrain database and
then building the DCEL from the sorted edge list. The sorted
edge list has the following form: each vertex in the database
has a doubly linked list associated with it, which holds every
edge which has that vertex as an endpoint, sorted by their radial
angles .

The sorted edge list is somewhat difficult to build due to the
nature of the polygon set used for testing (see sections 2 . 2 and
3.2). In particular, the polygon set contains duplicate
polygons . Furthermore, some of the edges of different polygons
overlap, yet are not the same edge (i.e. they partially overlap;
see Figure 2.3). The DCEL structure requires that each edge in
the connected planar graph it represents , and thus the terrain
database, be unique and non-overlapping. Also, the terrain
database consists of both triangles and quadrilaterals. In order
to avoid special cases during the LOS determinations, all
quadrilaterals must be split into triangles.

Sections 2.4.2.1 through 2 .4.2 .5 describe in detail how the DCEL
is constructed from the terrain database polygons.

15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A second phase of the preprocessing is to set up the data
structure which will be used for the point location step. That
structure is a set of sorted lists of vertices. Section 2.4.2.6
describes those lists in more detail, and explains how they are
built.

a

d

c

Figure 2.3 Edge Be of triangle 1 overlaps edges ab of triangle 2
and edge be of triangle 3.

2.4.2.1 Read and prepare polygons

The terrain polygons are read in, one at a time, from the terrain
database file. Each polygon is handled according to its type.
Treeline and canopy polygons are stored as edges in a list for
later use (see section 2.4.2.5). Base polygons are immediately
processed.

Processing of base polygons is performed in several steps.
First, any base polygons that are quadrilaterals are split into
two triangles. Splitting a quadrilateral into triangles requires
that the vertices of the quadrilateral be ordered. Because there
is no guarantee the vertices are given in order, they are ordered
by sorting them by radial angle around a point inside the

16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

polygon. Such an interior point can be computed by averaging the
coordinates of any three of the four vertices. Once the vertices
have been ordered, the quadrilateral is split along one of its
diagonals, producing two triangles.

Next , the vertices and edges of the polygon are stored in two AVL
trees, a vertex AVL tree and an edge AVL tree. (An AVL tree is
height balanced binary tree, where the difference in height
between two of its subtrees is at most 1. Once the AVL tree is
constructed, an element of an AVL tree may be accessed in 0(109
n) time. See (Knuth,1973) or (Stubbs,1985] for more information
on AVL trees.) The vertices are stored by ascending y and x
coordinates, respectively . As each vertex is stored in the
vertex AVL tree, it is given an unique identifier, which is
returned for use with edge insertion. If a given vertex already
exists, it is not stored, but the existing identifier is
returned. At the end of this process, the total number of
vertices in the terrain is known.

For each edge, its endpoints (which are vertices) are first
ordered by ascending y and x coordinates. The edge is then stored
in the edge AVL tree by the y and x coordinates of its first
endpoint. If the first endpoint is identical to the endpoint of
an edge already in the tree, the second endpoints are used. If
both endpoints are identical to those of an edge already in the
tree, the edge is not stored. As with the vertices, each edge is
assigned an unique identifier. An edge is identified by the two
vertex identifiers (assigned above) wh ich correspond t o its
endpoints.

2. ~ .2.2 Bui ld edge and ver tez lists

At this point, the vertices and edges have been numbered
(assigned unique identifiers) and duplicate vertices and edges
have been removed. The two AVL trees are then transformed into
lists which provide direct access to the information.

Two vertex lists will be constructed in a single pass through the
vertex AVL t ree. The first list will store the vertices
sequentially into an array using the ID number they were
assigned. Using this array the coordinates for a vertex can be
easily retrieved given its identifier, or number. The second
list will store the vertices in sorted order for use in building
the point location structures (see section 2.4.2.6). Using a
recursive depth-first traversal of the vertex AVL tree, the
vertices are removed and placed into the sequential list
according to their number as well as being placed in the second
list in sorted order.

Building the sorted edge list mentioned in the previous section
is a bit more difficult . The sorted edge list has one slot for
each existing vertex. These slots will point to a list of edges
which have the corresponding numbered vertex as an endpoint.
Thus, every edge will appear in the edge list exactly twice, once

17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

for each endpoint. The edges are inserted by ascending radial
angle, and are doubly linked, so that the next and previous edges
can be easily accessed. The process of building the edge list is
as follows:

for eleh edge in the edge AVL tree :
remove In edge from the edge AVl tree

compute the r~i. l Ing l e wi th re5~t to the ~ · .x ;s usi ng the
first endpo int .5 the or igin of tht edge

s tore the edge acc ording by ascend ing rad ia l Ing l e in the
lis t point ed a t by t he s lot at the index ~ ; ch

cor responds t o the f irs t endpoint'S ident i f i er
compute the r,d i , l ang l e wi th respect to the x· , xis usi ng

the second endpo int .5 the orig in of the edge
st ore the edge acc ord ing by .scending radial Ingle In the

li lt pointed It by the SlOt at the index which
corresponds to the second endpoint's identifier

endfor

2.4.2.3 Remove overlappinq edqes

As previously stated, the terrain database contains overlapping
edges. These must be removed for the DCEL structure (see next
section) to operate properly. The edge list built in the
previous section provides easy identification of the overlapping
edges, as well as a means for removing them.

Unfortunately, simply removing the overlapping edges will not
necessarily preserve triangulation. Figure 2.4 (a) shows a
situation where a problem may arise; in figure 2.4 (a), edge ac
overlaps with edges ab and bc. Removing edge ac produces a
quadrilateral abcd and so requires that edge bd be added to
preserve the triangulation. The final product is shown in figure
2.4 (b) on the next page.

Note that both occurrences of edge ac must be removed from the
edge list (there is one in the list for vertex a, and another in
the list for vertex c). Similarly, edge bd must be inserted into
the list for each of its endpoints, band d.

18

I I I I I I I I I I I I I I I I I I I

u

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

with this in mind, the process of removing overlapping edges can
be described. Overlapping edges have the same radial angle from
a cornmon vertex, and thus will be adjacent in that vertex's list
of edges. Using the longer of the two overlapping edges, the
next clockwise edge of one endpoint is compared with the next
counterclockwise edge of the other endpoint, and vice versa. One
of these comparisons produces a common vertex which defines an
existing triangle with the endpoints of the longer overlapping
edge. This common vertex will be used to divide the triangle
into two smaller ones by adding an edge from the common vertex to
the vertex of the shorter overlapping edge which is not an
endpoint of the longer edge. The latter vertex will lie on the
longer overlapping edge; it shall be called the overlapping
vertex. The new edge must be inserted into the edge lists for
each of its endpoints .

The longer overlapping edge cannot simply be removed, since it
may still overlap one or more edges. Instead it is shortened to
exclude the shorter overlapping edge, taking the overlapping
vertex as its new endpoint . The original longer overlapping edge
is then removed from the list of the vertex it originally shared
with the shorter overlapping edge, and the modified edge is added
to the list of its new endpoint, the overlapping vertex. The
other vertex of the modified edge is unchanged, and thus no
adjustment to its list is necessary. The modified edge can now
be compared to the edges adjacent to it in the edge list to
determine if it exactly overlaps (has the same endpoints as)
another edge and thus can be removed, or if the process needs to
be repeated for another overlapping edge.

This process must be repeated until no overlapping edges remain
in the edge list.

2. 4 .2. 4 Bui ld DCEL

With the overlapping edges removed, everything is in place to
build the DCEL structure. The DCEL contain s six fields for each
edge in the edge list. The first field (Vl in the figure)
contains the first endpoint of the edge. Likewise, the second
field (V2) holds the second endpoint. (First and second
endpoints are determined arbitrarily .) The third and fourth
fields (Fl and F2) hold the identification numbers of the
polygons which lie on the left and right side of the edge, with
left and right determined by orienting the edge from the first
endpoint to the second. (In a DCEL , polygons are usually
referred to as faces; in this presentation, face and polygon are
equivalent.) Similarly, the fifth and sixth fields (Pl and P2)
hold the numbers of the first edges encountered when moving
counterclockwise from the first and second endpoints,
respectively. Figure 2.5 is an example of a DCEL.

The process of building a DCEL from an edge list begins with
filling the vertex fields. This can be accomplished in a single
pass through the edge list. Each edge has a number associated

20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

with it, which is used as an index into the DCEL. As an edge is
encountered, its vertices are placed into the vertex fields Vl
and V2 at that edge's index. Recall that the vertices were
ordered as they were s t ored into the vertex AVL tree, so no
conf l ict will arise f r om edges being in the edge list twice.

After the vertex fields have been filled, the edge pointer fields
PI and P2 can be enter ed. This is performed with a single pass
over the DCEL . An edge is located in the edge list using the
first vertex for that edge. The index of the next edge in the
list will fill field Pl, since it is the index of the first edge
encountered when moving in a counterclockwise direction (the
edges a re sorted according to radial angle). Field P2 is
similarly filled using vertex 2.

VI V2 FI F2 PI P2

v3
1

2
a3

al vI v2 n n a2 a3

•
•

vI a2 v4 vI n
•

•

a3 v2 v3 n
v4

•

Figure 2.5 Example DCEL .

Fi l ling the face (or po l ygon) fields Fl and F2 is slightly more
complic ated. The gen e r al p r ocedure is t o s t art with an edge,
select an unnumbered fa c e adjacent to it, assign that face a
face number, and follow the edge pointers to assign the face
number to all of the edges surrounding that face. The a l gorithm
proceeds as follows:

21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

for each ~ge in the Deft:
if F1 of OCEL[edge] has not bern assigned. I"IU!ber

fill F1 of OCEl(edgr] with currenthceNl.n'ber

vert ex ~ VI of OCEl(edge]
~xtEdge s Pl of OCEL{edge]
whil e (~xtEdge Is edge)

If (VI of OCEL[M)(tEdge] s ver tex)

f; I t F2 of DeEl (nextEdgeJ wi th currentFaceNl.II'ber

ve r tex s v2 of DCEL(nextEdge]
MxtEdgt s P2 of DCEl(nextEdge]

else (V2 of Den [neJ(tEdge] .. vertex)
fill F1 of DCEl[nextEdge) with currentFaceNumber
vertex. V1 of OCEL[nextEdge)
nextEdge .. Pl of DCEL[nextEdge]

t~ i f

endwh ile
currentFaceNumber • currentFeceNumber +

end it
tl"od fo r

It can be shown that if the Fl field of every edge is filled,
then the F2 field of every edge must also be filled, so checking
the Fl fields only will suffice.

2.4.2 . 5 Add feature segments

Section 2.4.2 . 1 stated that the polygons for features (treelines
and canopies) are stored as edges in a list. For the purposes of
LOS determination, only those featUres which lie on polygons
traversed by the LOS need to be checked for obstructing the LOS.

The approach taken by this algorithm is to associate the feature
edges with the terrain polygons they lie in. For this , a list of
pointers is created with a slot for each face (or terrain
polygon) in t he DCEL. Each pointer points to a list of feature
edges which lie on its associated face. The feature edges are
stored as follows:

for eleh ea;e In the fel t ure ea;e list
detenmlne the flee eontl inl ng the endpo ints of the edge
if the endpoints l ie in the S lme flee

store the edge in thlt flee's felture tlst
e lse

find the intersection of the edge Ind the flee
d ivi de the edge into two pertl using the intersection

point
stor e the pert of the edge which l ies ent i rety with t he

flee in thlt flee' S edge list
repelt the procelS on the part of the edge wh ich lies

outside the face using the adjlcent face
ondif

~for

22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The adjacent face mentioned in the algorithm can be found using
the DCEL, since the intersecting edge of the current face is
known . The current face is one of the faces associated with the
intersecting edge, the adjacent edge is the other.

2.4.2.6 Initialize slabs

The slab method for point location [Preparata,1988] was chosen
for this project on the basis of execution speed; it provides a
worst case point location time of 0(109 n). The slab method can
be used on any planar straight-line graph (PSLG), which, as
previously observed, includes reasonable polygonal terrain
databases projected into the xy plane.

The basic idea of the slab method is to divide the graph into
"slabs" by drawing a horizontal line through each vertex (see
Figure 2.6). By sorting the slabs by y coordinate, the slab in
which a query point lies can be found quickly with a binary
search.

Slab i

Slab 1

------~~~~------
Slab 0

Figure 2.6 The vertices of the terrain polygons determine the

horizontal slabs.

Each slab is partitioned by edges of the graph, or in this case,
edges of the terrain polygons. These edges define trapezoids and
triangles within the slab. Note that within a slab the edges
cannot intersect, since each vertex defines a slab boundary. By
sorting the segments within a slab by x value along one y
boundary of the slab, the trapezoid or triangle within a slab in
which a query point lies can again be found with a binary search.

The process of building the slabs is facilitated by structures
and routines already in place. A planar scan process is used to
build the slab data structure, where the scan's event points are
the vertices. The sorted vertex list built from the vertex AVL
tree (see section 2.4.2.2) holds the event points (vertices) for

23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

building the slabs. Another AVL tree is used to store the edges
within the slabs in sorted order . At each event point (vertex),
the incoming edges (radial angle > 180) are deleted from the tree
and the outgoing edges (radial angle < 180 and not equal to zero)
are inserted into the tree.

Horizontal edges are not used. For this process, the edge list
described in section 2.4.2.2 is be used, since for each vertex,
the edges which have that vertex for an endpoint are stored
sorted by their radial angles. After a slab has been updated,
the tree is output, producing the next slab. It is important to
note that more than one vertex may have the same y-value, so all
vertices with the same y-value must be processed before the slab
is output.

2.4.3 Point location

To begin the LOS determination, it is necessary to identify the
base polygons which contain the starting and ending sighting
points, when they are projected into the terrain.

The point location data structures which will be used have been
initialized by the preprocessing routines. To determine which
terrain polygon a sighting point lies within requires two binary
searches. The first search is on y values to determine which
slab contains the point. The second search is on x values to
find the edge within the slab the point lies just beyond (the
slope of the edge within the slab is, of course, considered).
Once the edge has been identified, a simple lookup in the DCEL
will provide the number of the terrain polygon (face) in which
the sighting point lies.

Thus locating the polygon in which a point lies requires two
binary searches, one on the slabs' y coordinates, and one on the
x coordinates of a single slab's partitioning edges; hence the
O (log n) point location time.

2.4.4 LOB traversal

Having identified the start and finish polygons for the LOS, the
DCEL is now used to identify all the base polygons through which
the LOS passes (as described in section 2.1, this traversal is
considered in 2D) .

The LOS enters each traversed terrain polygon across one of its
edges. Since terrain polygons are all triangles, and only
straight lines are present, the LOS must leave through one of the
remaining two edges of the triangle. The edge pointers PI and P2
in the DCEL are used to determine the other two edges; the other
two edges must share the same face as the edge through which the
LOS entered. The v ertical plane containing the LOS is tested for
intersection with the other two edges using one of the
intersection tests described in the following sections.

24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

When an intersection is found between the LOS's vertical plane
and the edge, the height values of the terrain edge and the LOS
at the point of intersection are compared to determine if the LOS
is blocked. If so, 0 is returned to indicate failure.
Otherwise, the intersected edge is used to determine the next
face to be entered by the LOS, and the traversal continues.

2.4.4.1 LOS and edge intersections

Intersections between the LOS and edges in the terrain database
are determined by two routines. One routine calculates the
intersection between a plane and a line segment, while the other
calculates the intersection between two line segments. The
plane-line intersection routine is used for the bulk of the
intersection tests because it requires fewer arithmetic
operations than the line-line intersection routine. In the
plane-line intersection routine the vert ical plane in which the
LOS lies is tested for intersection with edges from the terrain
database.

However, the plane-line intersection routine is not appropriate
for situations where it may find an intersection beyond t he LOS.
This situation occurs in the start and finish polygons, where the
plane-line intersection routine will find two intersections, one
along the LOS, and one in the opposite direction which does not
intersect the LOS. The same situation can occur with feature
segments on the start and finish polygons. It is in these
situations that the line-line intersection routine is used. Both
of these routines are more fully discussed below.

2.4.4.1.1 Plane-line segment intersection

The plane-line segment intersection routine uses the normal to
the vertical plane in which the LOS lies, which only need be
computed once, and a point on the plane, which can be an endpoint
of the LOS, to determine the intersection between the LOS and an
edge of the terrain database. The method is as follows:

Parametric equations:

plane: Nx(x-xO) + Ny(Y-YO) + Nz(z-zO)

where N is the norma l to the plane

line:

and <xo , yo ,zO > is a point on the plane

x = Xl + (x2
Y ~ Yl + (Y2
Z = zl + (z2

where <xl,Yl,zl> and <x2,Y2 ,z2 > are endpoints of the
line segment.

Using the parametric equations for the plane and for the line
determined by the endpoints of the line segment, solve for t. If

25

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

o <= t <= 1, the l ine segment intersects the plane, and the
parametric equations can be u sed to compute the point of
intersection.

2.4.4.1.2 Line segment-line segment intersection

Usi ng the parametric equations for the LOS and an edge in the
terrain database , the following method is used to determine their
intersection:

Parametric equations:

where <ax,ay ,az > and <bx,by,bz > are endpoints of a
line segment .

X2 = Ux + (vx - ux)t
Y2 ~ u y + (Vy - Uy)t
z2 = Uz + (vz uz}t

where <ux,uy,uz > and <vx,vy,vz > are endpoints of a
line segment.

Solve for sand t by setting <xl,Yl,zl> equal to <x2,y?,z2 > ' If
0 .0 <= s,t <= 1.0 the line segments intersect. The po~nt of
intersection can then be computed by substituting either s or t
into the corresponding parametric equations.

2.4.4.2 Check features of polyqon

If the LOS is established across a base polygon, the features
(treelines and canopy polygons) which are on that polygon are
cheeked. The feature polygons for a given terrain polygon, if
any, have been stored as edges in a list for that terrain
poly gon. The LOS is then checked for intersection with each of
these edges , using the intersection routines (see the previous
section). The actual intersection location is computed and
compared with the LOS coordinates at that location only if an
intersection occurs. Again, if the LOS is found to be blocked,
the LOS determination process immediately terminates, indicating
a failure to e s tablish a LOS by returning o.

2.4.4.3 Terminate when finish polyqon is reached

When the current polygon location is found to be the finish
polygon, and no features of that polygon block the LOS, the LOS
has been established. In this case, the algorithm indicates that
the LOS exists, i.e. is not blocked, by returning 1.

26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2 .4.5 Or4er analysis

The time and space complexity of several components of the
overall algorithm are given in this section.

Point location:
0(109 n) time, 0(n2) space where n ~ number of vertices.

Line Intersection:
0(1) time per polygon.

Determine next polygon:
0(1) time per polygon.

Features:
Oem) checks per polygon, where m = number of feature segments
in the polygon.

27

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.5 IST algorithm P : Triangle Tra ver s a l me t b od

2.5. 1 o v e rview

This section describes the Triangle Traversal method and its
implementation. The basic idea of this method is to triangulate
the polygonal terrain, and then construct a simple data structure
which stores the three neighbors for each terrain triangle. This
triangle list can be used to quickly trace the LOS from one
triangle to the next.

Section 2.5 . 2 discusses the preprocessing required by this
algorithm. Sections 2.5.3 and 2.5 . 4 present the point location
and LOS traversal steps, which are part of the run- time LOS
determination.

2. 5 .2 Preprocessing

The primary goal of the preprocessing step is to create the data
structures used to facilitate the point location and LOS
traversal algorithms. Point location is used to determine the
triang l es within the terrain which contain the starting and
ending points of the LOS. The LOS traversal algorithm is used to
determine if, given two endpoints in 3-space, there is an
obstruction between them. This obstruction could be terrain, or
some feature on the terrain.

The main data structure created dur ing preprocessing consists of
a list of triangles , referred to as the Triangle list. A
triangle on the Triangle list stores the following information:

Vertex 1, 2, 3;
Neighbor 1, 2 , 3;
Features;

Venex3

Figure 2.7. Triangle T and its neighbors.

28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Vertex 1, 2, and 3 are the triangle's associated vertices in
clockwise order. Neighbor 1 is a pointer to the triangle's
neighbor along its 1-2 edge; similarly, Neighbor 2 is a pointer
to the triangle's neighbor along its 2-3 edge, and Neighbor 3 is
a pointer to the neighbor along the 3-1 edge. Vertex 1, 2, and 3
are stored as indices into a master list of vertices, referred to
as the Vertex list, and Neighbor 1, 2, and 3 are stored as
indices into the Triangle list. Figure 2.7 shows triangle T,
where T's Neighbor 1 is triangle A, T's Neighbor 2 is triangle B,
and T's Neighbor 3 is non-existent (indicated by storing
, -1' as Neighbor 3' s index) .

In order for there to exist exactly one Neighbor along each edge
of each triangle, it is imperative that any two triangles which
have an overlapping edge share exactly the same edge.
Consequently, given the four polygons shown in Figure 2.8 to be
triangulated, Triangulation 1 is incorrect, while Triangulation 2
is correct. Triangulation 1 is incorrect since triangle F shares
its right edge with triangles H, J, and L.

B

A C

D

/
F

E

Triangulation 1 Triangulation 2

Figure 2.8. Triangulation ~ is incorrect, Triangulation 2 is
correct.

K

M

29

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The last piece of information s tored in a triangle , Features, is
a pointer to a list of feature edges which reside on the given
triangle. Given SIMNET terrain, such features consist of
treelines and canopies.

The Triangle lis t is used d uri ng both the point location and the
LOS traversal algorithms. Additional data structures created
i nclude the Vertex list and the Y-Slab list as described in
section 2.5 . 2.1. The sorted Vertex list is used both f o r point
location and t o reduce the amount of storage used. The Y-S!ab
list is used for point l ocation and to fac i litate the
triangulation of the terra in base polygons.

The following sections describe the process of reading in the
terrain polygons and how the information is stored.

2.5.2.1 Create Vertex list and Y-Slab list

The polygons are read and processed one at a time, in mul t iple
passes. Each polygon is one of the following types: base, road,
river , object, treeline , canopy cover, and canopy treeline . The
base polygons store the actual terra in, while the other polygons
are features on the terrain. The purpose of the first pass over
the input polygons is to create the Vertex list, where vertices
are stored in ascending y and x coordinates, respectively. This
is accomplished by inserting each base polygon vertex into an AVL
tree. Once the AVL tree is created, the sorted vertices are read
from the tree and stored in a sorted array, the Vertex list, for
direct access. The AVL tree is then deleted.
As the Vertex list is being created from the AVL tree, an
additional structure is also created for the point location
process, called the Y-Slab list. The Y-Slab list serv es to
partition the terrain into horizontal slabs. Each entry in the
Y-Slab list stores two items, beginV and endV, which are indices
into the sorted Vertex list. For each Y-Slab in the Y-Slab list,
the vertices from beginV to endV all have the same y coordinate
and ascending x coordinates. The identifying y coordinate of
each Y-Slab in the Y-Slab list is unique and the Y-Slabs in the
list are ordered in ascending y coordinates. Figure 2.9 shows a
s mall set of base polygons of terrain and its associated Y-Slab
list.

In addition, each v ertex in the Vertex list stores an index into
the Y-Slab list indicating which Y-Slab it belongs to.

30

................... -------------------------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

7 8 9 10

6

3~----------k-------~~5

o 1

YSlab1 ~ 10,21
YSlab2 = 13, 51
YSlab3 • IS, 61
YSlab4 • 17, 101

Figure 2.9. Example Y-Slab lists.

2.5.2.2 Create Triangle list

2

The primary purpose of the second pass over the input polygons is
to create the Triangle list, where the triangles are constrained
as described in section 2.5.2. The polygons are again read in,
one at a time, from the terrain database file. Road, river, and
object polygons are discarded. Treelines and canopy polygons are
stored as edges in a list to be handled after the Triangle list
is cre'ated, as described in section 2 . 5.2.4. The base polygons
are processed to create the Triangle list, where a SIMNET base
polygon is known to be have either 3 or 4 sides. A 3-sided base
polygon is input to the triangulation routine as is; a 4-sided
base polygon is first split into two 3-sided base polygons, and
each 3-sided base polygon is then input to the triangulation
routine. The triangulation rouE ine can be summarized as follows:

31

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1. Sort t ne base polygon's 3 ver tices in clockwi se order .

2. Set edgeV.ttices '"' s et of a l t ver ti ces which t i e on po lygon's
edges , other the" it s or ig in.\ t hree ver ti ces.
(Th i s is perfo~ us ing the ordered VerteA l i st, the Y' Slab
l ist, .nd each verteA' S po inter to its , ssoci,ted Y· St.b .)

3 . If edgeVer ti ctS '"' t he ~ty set t neon

e l se

Cre. te • new tr i ang t e T f r~ the base po lygon
Add T to the Triang l e l is t
Return

Cont l l"lUe with Step 4
end!f

4 . Sor t the pol ygon vertices and edgeVert ;ces in clockw is e order .

5. Usi ng the ordered ver t lc eS
I

tri,ngul at e po lygon, add ing each
new tr l,ng le to the Tr ;an; e lis t .

Figure 2.10 shows the triangulation of 3-sided base polygon P
(Pl, P2, P3), as would occur in Step 5 of the above routine. The
t~iangles Tj, Tj+l, Tj+2, and Tj+3 would be added to the Triangle
l1st .

PI

1'3-------"'Pl

Base Polygon P becomes

PI

¥----.....:..-~Pl
1'3

Figure 2.10. Triangulation of polygon P.

A vertex triangle list is associated with each vertex, and
contains the index of each of the triangles which use the vertex.
As each new triangle Ti is added to the Triangle list, each of
its vertices is updated with the addition of Ti's index i to the
v ertex's vertex triangle list. The vertex triangle lists are
used to help set each triangle's neighbors, as described below,
and during the point location process.

2.5.2.3 sat triangles' neighbors

At this point, the entire Triangle list has been created;
however, many of the triangles' neighbors have not yet been set.
This is because new triangles are often added to the Triangle
list with either some or all of their neighbors not yet
determined. In fact, the only time a triangle is added with its
neighbors predetermined is when it is created in step 5 of the
above triangulation routine . Consequently, once the Triangle
list is created, a pass is made over this list to set the

32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

neighbors of each triangle as required. This can be accomplished
quite simply, since each vertex stores a list of a ll triangles
which use that vertex, its vertex triangle list. For instance,
to set Neighbor 1, the neighbor along the 1-2 edge of triangle T,
the algorithm simply looks through vertex l's vertex triangle
list searching for a triangle which uses vertex 2.

2.5.2.4 Add feature segments

Section 2.5.2.2 stated that features are stored as edges in a
list to be handled after the Triangle list was created. For the
purpose of the LOS traversal, only those featu r es which lie on
triangles crossed by the LOS need to be checked for obstructing
the LOS .

The approach taken in this algorithm is identical to the approach
used in algorithm C (see section 2 . 4) wherein feature edges are
associated with the terrai n t riangles they lie in. The following
is the method used for incorporating the feature edges into the
Triangle list.

for eech edge in the feeture edge list
~int tocete the endpoints of the edie
If the endpo ints lie in the SIMe trlengle

else
Store the edge in thet tr i engle's fe.ture l i st

find the intersection of the edie end the trllngte
divide the edge into 2 pertl USIng the intersection po int
Itore the pert of the edge which lies entirely in the

trilngle in the triingle ' l Fe.turel l is t
repest the sbove procell on the pert of the edie wh ich

lies outside of the trl.ngl e , using It I neIghbor
Itong the given edge

end!'
endfor

This completes the preprocessing for the Triangle Traversal
method.

2.5 . 3 Point location

Point location is required to determine the triangles which
contain the starting and ending points of the LOS. Given point p
to be l ocat ed, the method used for point location is as follows:

1. Locsre the bounding upper Ind tower Y'Sllb for point p.
(Requirel one binsry selrch.)

2. Let v1 s the vertex closest to p on the lower Y·Sllb.
Let v2 • the vertex closest to p on the upper Y·Sllb.
let v • the closer of (v1, v2) to p.
(Requires two binsry selrches.)

3. Telt elch trilngle Y in V'I vert ex tr!lngle li.t to dete~ine
if p is inc:11.Mded in T. If fOU'ld. return trilngle T' s index,
otherwise continue to Step 4.

4. Follow line fr~ vertex v to point p. using the Trlsngle
to detennine elch next triengle Ilong the line vp to be
tel ted f or poi nt inc:lusion of p .

list

The method used in Step 4 to go from triangle to triangle is
almost identical to the LOS traversal algorithm's method for

33

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

stepping through the triangles with the pleasant e xception that
there is no "special case" as described in section 2 . 5.4 .1.

2 . 5.4 LOS traversal

The LOS traversal algo rithm accepts as input the LOS starting and
ending points, along with the triangles Tstart and Tend which
contain them, and returns 1 (not blocked) if a LOS can be
established between the two points or 0 (blocked) otherwise. The
general idea is to start at triangle Tstart and check every
triangle along the LOS to determine if the LOS is blocked, either
by the triangle itself, or by a Feature edge on the triangle.
This process is continued until either a blockage is found or
Tend is reached.

To determine if the triangle itself blocks the LOS, the algorithm
projects the LOS and the tr i angle to 20, ignoring z coordinates.
It then determines the location where the LOS intersects an edge
of the triangle in 20. Then, given the (x, y) location of the
intersection point, it computes and compare the z-values for the
LOS and the intersected edge to determine if the edge is above
the LOS, indicating an obstruction. If the triangle itself does
not create an obstruction, then each of its associated Feature
edges is checked to determine if any of them create an
obstruction. If no obstruction is found, then the "next"
triangle that the LOS crosses is examined, and so on, until
either an obstruction is found or the algorithm reaches the last
triangle, Tend.

The "next" triangle along with which of its edges is intersected
by the LOS is determined using the current triangle's intersected
edge, along with its third vertex as described in the next
section.

2.5.4.1 Stepping from triangle to triangle along the LOS

Assume that the algorithm is currently examining triangle Ti
which is intersected by the LOS L = QR (Q and R are the
endpoints, i.e. the sighting and target points). Call the vertex
above the LOS on the intersecting edge A, and the vertex below
the LOS on the intersecting edge B, and the remaining vertex on
the current triangle C. (The LOS and the triangles have been
projected into the xy plane, so in this section above means have
a larger y coordinate, and below means having a smaller y
coordinate. Above and below indicate relative postions when
drawn in a conventional 20 coordinate system.) The algorithm
will determine the next intersected edge and its intersection
point, Pn+l' and the next triangle Ti+l'

34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

11

A= 1

Q

Figure 2.11.

R
6

Finding the next triangle (the values on the
vertices are their y coordinates) .

These determinations can be made as follows, where L is the LOS:

else C .bove (In 20) L: (IS in Figure 2.11)

Pn+1 '" L intersect EGg! Be (in 20)
check Pn+1 to Itt if LOS obstruct..::l (in 30)
T i+1 '" T i 's Neillhbor elong edlle Be
A '" C B • B. C '" T i+1 ' s vertell other thl" It. .nd 8

use C below L:
Pn+1 • l internct fdsle I.e <in 20)
check. Pn+1 t o SH if LOS obstructed (in 30)
T < +1 • T i ' s Neiehbor 'long edge I.e
A~ .8 '-c, C '" Tj.,'1 vertex other thl" A end B

cueConL:
Pn+1 • C
check Pn+1 to .. e if LOS obstructtod (in 30)
hindi. " s peci' l ClSeM for determining A, B, C, end T i+1

Once Ti+l has been identified, check T~+l's Features to determine
if any features constitute an obstructIon .

As each of the LOS checks is performed, if an obstruction is
found, then the LOS traversal algorithm returns a 0 (blocked) and
terminates. The above sequence is repeated until either an
obstruction is found or Ti+l = Tend'

Note that Pn+l is calculated in 20, that is, its (x, y) value is
determined. The check on Pn+l involves calculating the z-value

35

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

of that (x, y) point on the LOS, call this LOS z , and calculating
the z-value of the same (x , y) point on the triangle's
intersected edge (BC or AC), call this Tzo If T z is greater than
LOS z , the LOS is blocked.

The following shows how the "special case", where vertex C on
Line L=QR, is handled.

wh ile (edge E • ce' is colli!'leer with L end C' between C and II)
check C' to see if LOS obstruc;t ll'd
check Fe.turfs for trilng l es on both sides of ce' for

obstruction
C"'C'

endwh i l e

At this point it is known that no edge emanating from C is
collinear with L=QR, and so one of following two cases is true:

(i) One of the triangles of which C is a vertex is the last
triangle Tend'

or

(ii) One of the triangles of which C is a vertex intersects L,
both at the point C and somewhere along the edge AB where A
and B are the two vertices, other than C, on the triangle.

If case (i) is true, then the LOS traversal is complete.
Otherwise, it is necessary to search through vertex C's
triangles, found in its vertex triangle list, to find the
triangle T which intersects L with its edge AB, where A and Bare
the two vertices, other than C, on triangle T. The algorithm
then tests the newly found intersection point on segment AB and
also tests the Feature edges of triangle ABC for an obstruction.
Since identifying one vertex as A and one as B is determined
arbitrarily, once the edge AB which intersects L is found, A is
set to be the vertex above Land B to be the vertex below L. The
next triangle, Ti+1, is set to the neighbor of the triangle ABC
along the AB edge. The new C is set to be Ti+1's vertex other
than A and 8. Figure 2.12 illustrates this process.

36

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

B

C Q __ ~L~~ ____ ~ ______ ~~ ______ ~ ____ ~ __ _
R

A

T~l
c

Q __ ~L~~ ____ ~ ______ ~~ ______ ~ ____ ~ __ _ R

B

Figure 2 . ~2. C lies on the LOS.

At this point the handling of the special case is complete; the
algorithm is r eady to test if t h e current vertex C is above,
below , or on the line L=QR and continue normally.

As mentioned above, the algorithm traces from triangle to
triangle until either an obstruction is found or triangle Tend is
reached. If Tend is reached , the algorithm returns a 1,
indicating that the LOS is unblocked.

3 7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.5.5 Geometric support routines

The point location and LOS determination algorithms are highly
dependent on a core set of 20 and 3D geometry routines. In order
for the top level algorithms to be as efficient as possible, it
is very important that these core r outines be extremely fast.
Altho ugh the LOS traversal is intrinsically a 3D problem, almost
all calculations can be made in 20, increasing efficiency. In
fact, the only time a 3D calculation is made is to determine the
z-value of an (x, y) point of intersection of the LOS and a
triangle edge as explained in section 2.5.4. 1.

The fo llowing gives a brief description of the core set of
geometry routines.

2.5.5.1 Lert turn (20)

Given three points P, Q, R,

return 1 if P, Q. R form a left turn
o otherwise.

if ((OX' • PX" • CRy. Pyl • (IIx • Px ' • Cay. Py)))' 0)
-l"eturn [1] ;

e t$ e

endit
return (OJ;

The above routine is used to determine if a point is located
within a specified triangle in 20. This is based on the fact
that point P is contained in triangle QRS iff QRP, RSP. and SQP
each form a left turn where Q, R, and S are counter-clockwise.
The routine ' s mathematical equation is determined u sing the fact
that given the points P, Q, and R, then they form a left-hand
turn if and only if the following determinant is greater than
zero [Preparata,1988]:

Px Py 1
Ox Oy 1
Rx Ry 1

2.5.5.2 Point on l i n. (2D)

Given two points P and Q and a test point T

return 0 if T
1 if T
2 if T
3 if T

is
is
is
is

not on
on the
within
on the

the (infinite) line PQ
open ray P
the l ine segment PQ
open ray Q

38

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

i f ABS«Oy' Py ' • (T X - Px) - (Ty • Py ' • (OX - PX)) ,..

MA XC ABS(O", - Px >. ABS(Oy • 'y"
r eturn[O] ,

i f (OX ;(Px Ind Px '" lX' or COy" Py 1M Py '" Ty) return CD;

if Ox '" Px .nd PX ': OX ' or cry ;(Py and Py ..: Qy ' return [ll;

i f (P x '" Ox and OX ': lX' or (P y .: Qy.nd 0y '" Ty) return [3];

i f (T X '" 0X ' nd Ox 0: PX ' or Cly < 'y ,,'" 'y < 'y' return [3];
return- (21;

The above routine is used during preprocessing to aid in the
triangulation process. Specifically, it is used in Step 2 of the
triangulation routine in section 2.5.2.2.

This routine was written by Alan W. Paeth of the University of
Waterloo and can be found in (Glassner,1990].

2.5.5.3 Point above/below/oD liDe segment (20)

Given the point P and line segment LS with slope m, intercept b,
and lineType equal to VERTICAL or REGULAR,

return -1 if P below LS
1 if P above LS
o if P on LS .

(Note: ' b' is a y-intercept , unless LS is of lineType VERTICAL,
in which case 'b ' is an x-intercept.)

if (lineType is VElTICAl) then
if (the rut nulbtrs Px Ind b Ire "~I")

return [0];

else

e l se
if (Px» b)

e l se
return [-1];

return [1);
endif

endif

onLineV.lue • III • Px + bj
if (the rell nulbtrs Py Ind onlineValue Ire

return [D);
else

if (Py» onlineV.lue)
return [1];

e lle
return [-1];

The above routine is used repeatedly to determine if a particular
point is above, below, or on the LOS. Specifically, these are
the three cases tested for as described in section 2.5.4.1.
Since the LOS does not change, the values of m, b, and lineType
are computed once and each call to the above routine requires at
most one multiplication and one addition.

39

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2 .5 .5. 4 Point of inters ection between l ine segments
(20)

Given the parametric equation of one line segment LSl:

<R X1 Ry> = <Ux , Uy > + t * <Vx , Vy >

and endpoints A, B of the second line segment LS2, where LSl and
LS2 are known to intersect, set the intersection point P of LSI
and LS2 .

Px '" AX .. (8x -"x)(CAy-Uy'*Vx (Ax-Ux) · Vy'!(CBx ' AX)*Vy-CBy-Ay)*VX);

Py '" Ay .. (8y-"y)«Ay-Uy)· ... x - (AX-UX)* Vy)f(CBx -"X)·Vy-<BY-"'Y) · VX1;

The above line segment intersection routine is used repeatedly to
determine the point of intersection between the LOS and a crossed
triangle edge . Again, since the LOS does not change, its
parametric equation is computed once and repeatedly input as LSI.
LS2 is the triangle's edge that is known to intersect the LOS as
described in section 2.5.4.1.

2. 5 .5 . 5 Calcu l a te z - value o f (x, y) point on line segment (3D)

Given the parametric equation of line segment L

<RX' Ry , Rz > = <Ox' Oy' Qz> + t * <Mx ' My, Hz>

where L is known to be NOT perpendicular to the xy plane , and
Point P, where Px and Py are already determined,

set Pz such that P is on the line L.

if (MX does not ~I 0.0)

Pz • Oz • (Px . Ox) I MX • "z .
. tse

erw::I i ~Z • Qz • (Py . 0y) I My • MZ;

This is the only 3D geometry routine. It is used repeatedly to
determine the z-value of an (x, y) location on the LOS during the
LOS traversal algorithm. One test is made to determine if the
LOS is perpendicular to the xy plane before a call to this
routine is ever made. Thus some operations are saved since it is
known that if Mx is zero and L is NOT perpendicular to the xy
plane, then My is non-zero.

A separate, almost identical, routine is used to calculate the
z-value of an (x, y) point on an arbitrary line segment, and is
used to calculate the z - value of an (x, y) point on a triangle
edge during the LOS traversal algorithm. The body of this
slightly modified routine is:

4 0

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

i f ("X dees not ~l 0 ,0)

P z " Qz • (P x . ax) I "x • "z;
e lse

if (My does not ~l 0.)

Pz '" QZ • (Py - 'y ' I My • "z:
e lse

if 04Z ~ 0.0)

e l se

end i f
end if

~i f

PZ " OZ*MZ;

,liz . OZ;

The third branch occurs if the line segment is perpendicular to
the x y-plane, which could theoretically occur for a given
triangle edge. In this case, the z-value is assigned the greater
z-value of the two endpoints on the line segment .

This concludes the set of support geometry routines.

2.5.6 Order analysis

The following summarizes the time and space order analysis for
the point location, and the LOS traversal.

2.5.6.1 Point location

Given terrain with mostly uniformly spaced vertices, as is true
for SIMNET terrain, the point location algorithm requires
0(109 n) time for the average case~ where n is the number of
vertices. It does not require O(n) storage as does the more
popular slab method [Preparata,1988] , but instead requires O(n)
storage. The downfall of this method is that a worst case could
requ i re O(n) time, where n is the number of polygons in the
terrain database, which in some applications may be intolerable.

2.5.6.2 Line ot sight determination

0(1) time is required to process each triangle along the LOS,
since constant time is required to determine which edge is
intersected, the intersection point, and the next triangle to be
examined. Even when handling the "special case" where the vertex
C is on line L, if it can be assumed that there is some maximum
number of triangles emanating from anyone vertex, then the
special case still requires constant time . However, the
coefficient of this constant will probably be higher when
handling the special case.

since each Feature segment requires 0(1) time to process, then
given the number of Feature segments for a particular triangle is
r, the time to check Feature segments for that triangle is OCr).

The space required is O(n) for each of the vertex list, Triangle
list, and Y-Slab list, where n is the number of vertices.

41

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.6 BBN SIKNET PVD a lgorithm

2.6.1 Overview

The BBN SIMNET Planview Display LOS algorithm (hereinafter called
the PVD algorithm) determines point to point LOS on the SIMNET
terrain database. This algorithm determines if a LOS is blocked
by:

1. base polygons, which may form mountains, hills, and valleys;
2. objects, such as towers, buildings, telephone p o les;
3. trees;
4. treelines;
5 . canop ies ; and
6. vehicles along the LOS.

The PVD algorithm also determines if there are any terrain
features behind the target location along an extended LOS. These
background features are termed "clutter ll and while clutter does
not block LOS other algorithms may use clutter to obscure a
target.

This algorithm was not developed by IST as part of this research
project; consequently, it will not be explained in as much detail
as the other LOS algorithms. More information on this algorithm
is available in (BBN , 1991].

2 .6 .2 Preprocess i nq

Because this algorithm uses the SIMNET terrain database, the
preprocessing step consists of assembling that database from the
polygon set. That process has been previously discussed , as well
as the format of that database, in section 2.3.

2 .6. 3 LOS d eterminat ion

The PVD algorithm consists of 5 major steps. First, the
necessary data elements and structures are initialized . This
involves determining the starting location's patch, determining
the LOS's slope, determining vertical and horizontal distances
for stepping through the patches, and a variety of support data.

The second step in the algorithm determines if the minimum
elevation of any patch along the LOS is greater than the LOS in
that patch. This constitutes a relatively quick check for a
relatively large LOS blockage by the terrain . If the mi n imum
elevation within a patch is greater than the LOS in the patch,
then all terrain feature in that patch is higher than the LOS and
something in the patch must block the LOS. If such a patch is
found, the algorithm terminates with the LOS blocked.

If the second step does not find the LOS blocked, the third step
in the algorithm is performed. The PVD algorithm checks all
vehicles to determine if any vehicle intervenes between t he

42

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

starting location and the target location. Each vehicle is
modeled as a sphere rather than a silhouette or cutout of its
actual shape. This step excludes the vehicles at the starting
and target locations so that the sighting vehicle and target
vehicles do not block the LOS. If a vehicle blocks the LOS, the
algorithm terminates with the LOS blocked.

If LOS is still open, the fourth step in the algorithm is
performed. This step does the most exhaustive analysis of the
terrain. The PVD algorithm moves through each patch along the
LOS. For each patch, the algorithm checks for five types of LOS
blocks.

1. All the edges in the patch are checked to determine if any
edge intersects the LOS in 20 (x and y, not elevation) and is
higher than the LOS. If so, the LOS is blocked.

2. Each object within the patch is checked to determine if the
LOS traverses the "box" defining the outline of
the object.

3. The algorithm checks all trees within the polygon to
determine if any individual tree blocks LOS.

4. The algorithm checks each treeline in the polygon. Each
treeline is checked in two ways. First, the treeline as a
vertical polygon is checked and second, the trees at each
end of the treeline are checked. A LOS may, from
certain angles, intersect both a tree and the treeline.

5. The algorithm checks each canopy within the patch to
determine if any canopies obscure the LOS.

The fifth step in the PVD algorithm checks for t'clutter lt by
extending the LOS beyond the target location and checking the
minimum elevation of each patch beyond the target against the LOS
at that patch. If the minimum elevation within a patch is
greater than the LOS, the algorithm terminates, indicating that
the LOS has "clutter". This check is similar to the second step
except that patches beyond the target rather than between the
starting location and target are checked.

The PVD algorithm has three broad classes for LOS determination.
A LOS may be unblocked and uncluttered, unblocked and cluttered,
or blocked. Blocked LOSs are further divided into a number of
categories indicating what kind of blockage occurred, e.g . by
terrain, tree, treeline, etc and whether the blockage is complete
or partial.

43

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.6.5 Experimental modifications

The 1ST LOS algorithms explained in the previous sections
consider only terrain, treelines, and canopies. To provide a
suitable comparison to the 1 ST algorithms, the PVD algorithm was
modified by 1ST to not perform the checks for:

1. objects,
2. intervening vehicles, and
3. clutter.

44

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3 . LOS comp a r i s on expe riment

3.1 Discus s ion

The LOS comparison experiment was simple in concept. All four
LOS algorithms (the three developed at IST and the BBN PVD
algorithm) were used to preprocess the same set of input terrain
polygons, and then to process the same set of LOS test cases. A
common shell program was written to call the preprocessing
routine for each algorithm, to call t he LOS determination routine
for each LOS test case, and to track the time required for each
step of each algorithm.

For the experiment, all four algorithms were compiled using the
Borland c++ 2.0 compiler, under the large memory model. Although
a c++ compiler was used, all algorithms were written in ANSI C,
without using any c++ features. The timing runs were executed on
a Hewlett Packard Vectra RS /2 5C, equipped with an Intel 80386 CPU
and an Intel 80387 math coprocessor. For this experiment, the
CPU clock speed of the Vectra was set to 4.77 Mhz; this was done
because we were interested not in absolute speed but in relative
speed of the algorithms and a slower CPU clock speed would
magnify efficiency differences between the algorithms .

For the preprocessing step, the entire input terrain polygon file
(see section 3 . 2) was read from disk and saved in internal memory
before the preprocessing routine was called and the timer
started. By doing so, the preprocessing times do not include any
disk I/O time. A similar approach was used for the LOS test
cases (see section 3.3); all were read into internal memory
before processing to avoid disk I/O during the timed portion of
the runs.

section 3 . 4 gives the actual r un times for the var ious algorithms
during the experiment. The times given in section 3.4 are for
the processing of the entire LOS t est case set, not a single LOS
determination. section 3 . 3 gives more deta il on the LOS t est
case set.

3 . 2 Tes t p o lyqo nal terra i n

The test polygonal terrain database used for this project is a
subset of t he standard Ft. Knox KY S I MNET ter rain database. All
of the base, treeline, and canopy polygons from a 1500 meter
square portion (that is, a 3x3 set of terrain patches) of the
database were extracted and converted into the generic polygon
file which is the input to the preprocessing for the LOS
algorithms .

Note that in the case of Algorithm F, which uses the SIHNET
terrain dat abase as its LOS data structure, the generic polygon
file was converted back i n to SIMNET forma t by its preprocessing
step. This was done so as to measure the time required f o r t h a t

45

....................... ---------------------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

preprocessing, i.e. the time required to build a SIMNET terrain
database.

The polygon file contains 28 1 polygons, including 270 base
polygons, 7 treelines, 2 canopy treelines, and 2 canopy polygons.
The southwest corner of the 9 patch square used is located at
point (39500, 39500) from the southwest corner of the standard
Ft. Knox KY SIMNET terrain database .

3.3 Test LOS cases

A thorough set of test cases was developed for use in testing the
LOS algorithms. The individual test cases (pairs of entities on
the terrain) were be selected to exercise all aspects of LOS
determination, according to the principles of systematic test
case design [Myers,1979].

The set of test cases included the following situations, as well
as others:
1. unblocked LOS
2. LOS blocked by base polygons
3. LOS blocked by treelines
4. LOS blocked by canopies
5. blocked and unblocked LOSs which were collinear with one or

more polygon edges.

Each record in the test case file contained, in addition to the
LOS endpoints, the test case number , a brief description of the
test case, and the expected result of the test case (either 1 not
blocked or 0 blocked). The LOS test shell program compared the
answer returned by the LOS algorithms with the expected result in
the test case and aborted the run if they did not match.

During the LOS determinations, each test case was considered in
both directions; in other words , given a test case wi t h endpoints
P1 and P2, the LOS from Pl to P2 and t h e LOS from P2 to Pl were
both checked .

46

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3 . 4 Experimental results

The following execution times were experimentally obtained for
each algorithm. For these timed runs, each of 20 distinct LOS
test cases were run, in both directions as described above, and
each was repeated 1 00 times, for a total of 4000 LOS
determinations. The times were tracked by the test shell
program. All times are in seconds.

Algorithm Preproc Pt Loe Travers LOS Tot

F: Grid /edge method 12 00 . 0 n .a . n.a. 258.0

C: DCEL Traversal 10.9 4. 0 111.9 115.9

P: Triangle Traversal 17.0 50.9 '6.7 147.6

BBN SIMNET PVD n.a . n.a. n.a. 154.2

Preproc: Preprocessing; time spent converting the input polygons
into the LOS data structure.

Pt Lee: Point location; portion of the time spent performing
the LOS determinations that was used in point location.

Travers: LOS Traversal; portion of the time spend performing
the LOS determinations that was used traversing the LOS
from one polygon (or grid) to the next).

LOS Tot: LOS Total; total time for the LOS determinations.
Recall that these times are for the entire LOS test
case set, not a single LOS determination.

The point location and LOS traversal times for Algorithm F and
the BBN SIMNET PVO algorithm could not be tracked separately due
to the structure of those algorithms; LOS Total time only is
given for them.

47

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4. Conclusions a nd future work

As can be seen from the timing results in section 3.4, two of the
three 1ST LOS algorithms were faster than the SIMNET PVD LOS
algorithm; Algorithm C was just over 24.8% faster. This result
was quite gratifying because essentially no optimization was
performed on the IST algorithms. It had been intended to use a
run-time profiler to identify heavily-used portions of the code
and optimize those portions for maximum performance, but project
time was not available for that step_ The algorithms were simply
designed, implemented, debugged, and immediately timed.

1ST's Intelligent Simulated Forces project is currently
implementing a Semi-Automated Forces Testbed for the SIMNET
battlefield simulation environment {Smith,1992], under DARPA
contract N61339-89-C- 0044 . Ironically, the LOS algorithm used in
that Testbed is Algorithm F, the slowest algorithm by far in this
experiment. Future versions of the Testbed will likely use an
enhanced version of one of the other LOS algorithms. A faster
LOS algorithm would free additional computational resources to
the Testbed's other processing.

This experimental study is just a beginning; there is clearly
much additional work to be done in this area. One idea is
obvious from an examination of the timing results table . The
table shows that Algorithm C had the fastest point locat ion
process, whereas Algorithm P per formed the LOS t r aversa l more
efficiently. An obvious step to take would be to combine
Algorithm C ' s point location with Algorithm P's LOS traversal to
produce an algorithm t hat could probably complete the test cases
in appr oximately 100 seconds, for a projected 50% speedup over
the S1MNET PVD algorithm . The p r ice of such a combination would
be incr eased preprocessing time and storage requirements.

The SIMNET PVD algorithm contains a number of interesting and
clever " tricks" which very quickl y check simple situations that
could block the LOS; if one of t hose is found, the entire LOS
travers al process is rendered unnecessary and is not executed
(see section 2.6) . Those checks are not present in any of the
1ST algori t hms; integrating t h em into the 1ST algorithms would
certain l y increase their speed. Doi ng s o mayor may not r educe
the generality of the LOS algor ithm, depending on how t he special
checks are built into the algori t hm.

Both the S1MNET PVC algorithm and 1ST Algorit hm F take advantage
of the patch/grid structure of t he SIMNET terrain database to
perform point l ocation in 0(1) (i.e. constant) t ime . Al gor ithm C
and Algorithm P (the two fastes t algorithms), because they do not
use the S1MNET terrain database , must perform searches of the
terrain polygons for point locat ion. They manage to overcome
that disadvantage and still r un faster t han the S1MNET PVC
algorithm and Algorithm F by vir tue of their highly efficient LOS
traversals. One member of the project t eam has already designed
a point location algorithm, inspired by the patch/grid s t ructure,

48

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

which can be used by those algorithms and may provide constant
time point location in the average case .

In terms of future work, the final po i nt to be made is that there
remains considerable theoretical research in this area that may
be applicable to the pragmatic problem of LOS determination. A
number of research publications, especially [Cole , 1989], contain
ideas that seem very promising but were not applied in this
preliminary experiment. A substantia l increase in efficiency in
LOS algorithms, beyond what was achieved here, appears to be very
possible. As this is written, prelimi nary design of improved
algorithms has already begun.

49

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

5. References

BBN (1991) . Software Design Document, PVD CSCI (3), BBN Systems
and Technologies, June 1991, 388 pages.

Brassard, G., and Bratley, P . (1988). Algorithmics: Theory and
Practice, Prentice- Hall, Englewood Cliffs NJ, 361 pages.

Bresenham, J. E. (1965). "Algorithm for Computer Control
Digital Plotter", IBM Systems Journal, Vo l . 4, No.1, pp.

of
25-30.

Chazelle, B., and Guibas, L. J. (1988). "Visibility and
Intersection Problems in Plane Geometry", Technical Report
CS-TR-167-88, Princeton University , June 1988, 40 pages.

Cole, R., and Sharir ,
Polyhedral Terrains",
pp. 11-30.

M. (1989).
Journal of

"Visibility Problems for
Symbolic Computation 7,

Companion, M. A. (1989). "Intelligent Simulated Forces:
Evaluation and Exploration of Computational and Hardware
strategies" Quarterly Progress Review #1, Institute for
Simulation and Training, University of Central Florida, 20 July
1989, 17 pages.

El Gindy, H., and Avis, D. (1981). "A Linear Algor ithm for
Computing the Visibility Polygon from a Point", Journal of
Algorithms 2, pp. 186-197.

Foley, J. D., and Van Dam, A. (1982). Fundamentals of
Interactive Computer Graphics, Addison-Wesley, 664 pages.

Ghosh, s. K., and Mount, D. M. (1987). " An Output Sensitive
Algorithm for Computing Visibility Graphs", Proceedings of the
28th IEEE Symposium on Foundations of Computer Science, Los
Ange les 1987, pp . 11-19.

Glassner, A. S. (Editor) (1988). Graphic Gems, Academic Press,
New York NY, 833 pages .

Gonzalez, G., Mullally, D., Smith, S., Vanzant- Hodge , A.,
Watkins, J., and Wood, D. (1990). "A Testbed for Automated
Entity Generation in Distributed Interactive Simulation",
Technical Report IST-TR-90-15, Institute for Simulation and
Training, University of Central Florida, 15 August 1990, 37
pages.

Guibas, L. J., Hershberger, J., Leven, D., sharir, M., and
Tarjan , R. E. (19B7) . "Linear Time Algorithms for Visibility and
Shortest Path Problems inside Simple Polygons", Algorithmica 2,
pp. 209-233.

50

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

"Optimal Shortest Guibas, L. J., and Hershberger, J. (1989).
Path Queries in a Simple Polygon", Journal
Sciences 39, pp. 126-152.

of Computer and System

Her shberger, J. (1989). "An optimal visibility Graph Algorithm
for Triangulated Simple Polygons", Algorithmica 4, pp. 141-155.

Knuth , D. E. (1973). The Art of Computer Programming, Volume 3:
sorting and Searching, Addison-Wesley, Reading MA.

Lee, D. T., and Preparata, F. P. (1979). "An Optimal Algorithm
for Finding the Kernel of a Polygon", Journal of the ACM, Vol.
26, No.3, July 1 979, pp. 415 - 421.

Muller, D. E., and Preparata, F. P. (1978). "Finding the
intersection of two convex polyhedra ll , Theoretical Computer
Science 7 (2) , pp. 217-236, October 1978.

Munem, M. A., Tschirhart, W., and Yizze, J. P. (1974). College
Algebra, Worth Publishers, 518 pages.

Myers, G. J. (1979). The Art of Software Testing, John Wiley &
Sons, 177 pages.

Nagy, G. and Wagle, S. G. (1979). "Approximation of Polygonal
Maps by Cellular Mapsll, Communications or the ACM, Vol. 22, No.
9, September 1979, pp. 518-525.

Preparata, F. P., and Shamos, M. I. (1988) . computational
Geometry: An Introduction, 2nd Edition, Springer-Verlag, New
York NY, 398 pages.

Smith, S. H., Karr, C. X., Petty, M. D., Franceschini, R. W., and
watkins, J. E. (1992). liThe IST Semi-Automated Forces Testbed ll ,
Technical Report IST-TR- 92 - 7, Institute for Simulation and
Training, University of Central Florida, 28 February 1992.

Stanzione, T. (1989). "Terrain Reasoning in the SIMNET Semi­
Automated Forces Systemll, Geo'89 Symposium on Geographical
Information Systems ror Command and Control, SHAPE Technical
Centre, The Hague, Netherlands, October 1989.

Stubbs, D. F., and Webre, N. W. (1985). Data structures with
Abstract Data Types and Pascal, Brooks / Cole, Monterey CA, 459
pages.

51

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6 . Append ice s

6 .1 List of a cronyms

A number of acronyms are used in this document. While each is
defined the first time it is used, all acronyms are defined again
in this section in alphabetical order for ease of reference.

BBN
DCEL
DSR
I / O
IST
LOS
~z
PSLG
PVD
SIMNET
UCF
2D
3D

Bolt, Beranek, and Newman Systems and Technologies
Doubly Connected Edge List
Division of Sponsored Research
Input / Output
Institute for Simulation and Training
Line of Sight
Megahertz
Planar straight Line Graph
Planview Display
Simulator Network
University of Central Florida
Two dimensions, or two dimensional
Three dimensions, or three dimensional

6 . 2 Autho r s' b iogra p h ies

Mikel D. petty is Principal Investigator of the Intelligent
Simulated Forces project at the Institute for Simulation and
Training . He has earned a M.S . in Computer Science from the
University of Central Florida and a B.S. in Computer Science from
the California State University, Sacramento. He is currently a
Ph . D. student in Computer Science at UCF, with research interests
in simulation, artificial intel l igence, and computational
geometry. He has over ten years experience participating in and
leading large software development projects.

Charl •• E . c ampbell is a Graduate Research Assistant for the
Intelligent Simulated Forces project at t h e Inst itute for
Simulation and Training. He has earned a M. S. in computer
Science from the university of Centra l Florida and a 8.S. in
Computer Science from Indiana University. His career interests
include computer graphics , vir t ual reality, and object- oriented
programming .

Robert w. Francesc h i n i is an Undergraduate Research Assistant for
the Intelligent Simulated Forces project a t the Institut e for
Simulation and Training. He will ear n a B.S. degree in Computer
Science from the University of Centra l Florida i n May, 1992. He
is curr e n tly an undergraduate Mathematics student at UCF, and
will begi n work on an M.S. in Computer Science at UCF i n Fall,
1992 . His research interests include artificial intelligence,
object-oriented programming, and graph theory.

Ki cheline H. Provost is a Graduate Research Assistant at t he
Institute for Simulation and Training. She has earned a M.S . in
Computer Science from the University of Central Florida; the

52

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

title of her thesis is "ExploreNet: A Networked Simulation
Environment for Cooperative Problem Solving. II In addition, she
has earned a B.S. in Computer science and a B.S . in Mathematics,
also from the University of Central Florida. Her career
interests include computer simulation and object oriented
methodologies.

clark R. Xarr is a Software Engineer in 1ST's Intelligent
Simulated Forces project. He served as the Semi-Automated Forces
Dismounted Infantry (SAFOI) Team Leader. He has earned a M.S. in
computer Science from the University of Central Florida and a
8 . 5. in Biology from the University of Denver. He is currently a
Ph.C. student in Computer Science at ueF. His research interests
are in the field of artificial intelligence, specifically
intelligent behavior in simulated environments and natural
language understanding.

6 . 3 Credits

Algorithm F, the Grid/edge method, was designed by Robert w.
Franceschini and Mikel D. Petty, and implemented by Franceschini.
His implementation included a a program to build a SIMNET format
terrain database from a set of 3D polygons. Algorithm C, the
DCEL Traversal method, was designed and implemented by Charles E.
Campbell. Algorithm P, the Triangle Traversal method, was
designed by Micheline H. Provost and Mikel D. Petty, and
implemented by Provost. Clark R. Karr adapted the BBN PVC LOS
algorithm to this project's test environment, assisted with the
algorithm timing tests, and prepared many of the figures for this
technical report. Richard Dunn- Roberts performed the IST review
of this technical report, and is responsible for a number of
valuable improvements to it. Mikel D. Petty conceived, proposed,
and led the Line of Sight project.

6.4 Test data tiles and algorithm source code

The test polygon data file, the LOS test case file, and the
source code for the implemented algorithms are all available upon
request from IST . Their length precludes their inclusion in this
document.

53

I
I
I
L
I
I
I
I
I
I
I
I
I
I
I
I
I
I

0000037

I

	Preliminary Investigations Into Efficient Line Of Sight Determination In Polygonal Terrain
	Recommended Citation

	0000037.pdf

