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Constraint-based programming is an area of computer science 

research which has been rece iving considerable attention in recent 

years . Intuitively. constraints are understood as limitations or 

restrictions . Applied to problem-solving and simulation. constraints 

express the interrelationships among the subparts of a problem or 

the subsystems of a modeled object. This general foundati on in 

logical or mathematical relations makes constraints applicable In a 

wide range of fields. including knowledge representation . logic , 
~ 

programming. labeling problems. theorem-proving. term rewriting 

systems. physical modeling In graphics. CAD systems. linear 

programming. and optimization theory . Our survey dis cusses 

constraint-based programming in this variety of contexts. 

We divide the survey into finite-domain and continuous-domain 

constraint satisfaction. Finite domain constraint satisfaction is 

described as a basic labeling problem to be solved with backtrack-

search techniques. Continuous-domain constraint satisfaction 

defines constraints over real number variables and can involve 

simplex-like algorithms or algorithms for solving systems of linear 
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and non-lin ear equations. In each domain . we review the standa rd 

co nstraint sat isfaction methods and existing systems wh ich apply 

co nstraints to problem-solving , modeling, and simulat io n . We 

conclude with a discussion of constraint logic programming languages 

which , in one framework , allow constra ints to be defin ed over a 

variety of domains. 
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INTRODUCTION 

Freedom and constrajnt are two aspects of the same necessity, 
which js to be what one js and no other. 

Antojne de Sa jnt-Exupery 

What is a constraint, and why does this word keep reappeann g 

m computer science literature? The notion of a constraint is an 

intuitively accessible one. We aU-too-frequently bump up agai nst 

constraints m our everyday lives, and from these encounters we 

hav e come to know constraints as limitations, fences in th e way of 

what cannot be. Then what good are they? Perhaps we need to look 

at constraints from another perspecti ve. SI. Exupery poi nt s out that 

a constraint equall y defines what can and must be. It is from thi s 

perspective that we begin to see the usefulness of constraints as a 

modeling and problem-solving tool in computer programmin g. 

A constraint is a relation ; one thing is constrained by a no th er. 

Ybur desire to travel is constrained by your responsibilities at work . 

The movement of your arm is constrained by its attachment to your 

shoulder. These are both statements of con straint s, but th ey 

circumscribe your behavior at different level s. At one level, yo ur 

actions are determined by your goals and values. At another, your 

motion is defined by the physical properties of your body. With a 

constraint description, we can draw boundaries around you , and in 

doing so we are sketching your outline, focusing the picture more 

clearly with each constraint. 

Constraints are of interest as a programmmg tool becau se th ey 

provide a natural mode of . expressIOn for mod e ling rea l and 
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Imaginary objects . In computer modeling, the problem is to find an 

appropriate representation of an object we see or imagine. A 

constraint-based program describes an object as the sum of its parts 

and the constraints among them . This approach facilitates the 

modeling process In that a complex system can be decomposed into 

its subsystems. Each constraint is in a sense a subsystem, a smaller 

part of the whole object, a piece which can be more readily grasped 

and described . 

Another attraction of constraints is that they imply more than 

they say. Your hip bone is connected to your thigh bone, but your 

thigh bone is connected to your knee bone, and all these connections 

together affect how you walk. The constraints, or subsystems, 

interact through their shared parts, and from the parts, we get the 

whole picture. 

This movement from local constraints to global implications 

makes ~onstraint programming useful in problem-solving. Just as it 

is easier to describe a complex system in terms of its subsystems, it 

is often easier to describe a complex problem In term s of 

subproblems. In systems of simultaneous equations, for example , we 

may have no trouble expressing in one equation a relation among the 

variables, but solving the whole system of equations is another 

matter. 

The idea behind constraint-based programming IS that a 

declarative expression of a problem or a declarative description of an 

object is often more natural than a procedural one. But once the 

problem is expressed, there must be some mechanism for solving it; 
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that is, we need a constraint satisfaction system. In problem-

solving, we can view this system as an algorithm which deduces th e 

global implications of local constraints; that is, it looks at the parts 

and gives you back the whole. In modeling, we can view it as an 

overlord which sees to it that an object obeys its own internal laws 

and the laws of its environment. 

In this survey, we will view constraints from a number of 

perspectives m an effort to understand their usefulness as a 

modeling and problem-solving tool. 

precisely the basic definitions. 

1. DEFINITIONS 

We begin by stating more 

1.1. Constraint-Based Programming 

Constraint-based programmmg IS a declarative st yle of 

programming with applications in modeling and simulation , user

interface con struction, design and planning, and general problem

s6hung.:,. A constraint problem requires two parts for its solution: 

--a description of the relations between variables and 

--a constraint satisfaction system which enforces the rel ati ons. 

Constraint-based languages stand in contrast to procedural 

languages, in which a program is a step-by-step specification of ; lOW 

to solve a problem. Constraint programming offers an alternative 

mode of expression in cases where a declarative description of a 

problem is more natural than a procedural one. The procedurality is 

inferred by the constraint satisfaction system, which monitors the 

variables and enforces the stated constraints. 
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1.2. Constraints 

We define a constraint generally as a relation between or among 

variables. For example, the statement 

A = 2.3 • B 

is a constraint between the variables A and B . Given a value for B, a 

constraint satisfaction system should be able to deduce a value for A. 

Similarly, the system should be able to start from A and derive B. 

The important point to note is that a constraint is not a procedure; it 

is an assertion of a fact which must always hold true. Furthermore , a 

constraint such as this one is bi·directional in that the constraint 

satisfaction system can propagate values in either direction. 

The example above is a numerical constraint which can be 

satisfied with real number values. A constraint may also · involve 

variables defined over discrete, finite domains. For example, the 

relation 

'" ~ different colors (A, B) 

might represent a constraint requiring that variables A and B be 

assigned two different colors from the list {red, blue , yellow}. 

Although there are some basic similarities between constraints 

defined over discrete, finite domains and those defined over 

continuous, numerical domains, they are solved with different 

techniques and lead to different applications, as discussed below. 
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2. CONSTRAINT SATISFACTION IN THE FINITE DOMAIN 

More than one definition of constraint satisfaction over finite 

domains has appeared In the literature. The most ge neral 

formulation is referred to as the consistent labeling problem. 

2.1. The Consistent Labeling Problem 

The problem of satisfying constraints over a finite domain has 

been formulated under the name of the consistent labeling p robl em 

[Haralick and Shapiro 1979]. Haralick and Shapiro identify consis tent 

labeling as a generalization of a number of other well-k nown 

problems, including subgraph isomorphism, graph colorin g, Boolean 

satisfiability, and scene labeling. 

Haralick and Shapiro define the compatibility mode l f or the 

cons istent labeling problem by the quadruple (U ,L , T ,R), where the 

followin g definition s and conditions hold: 

" U = {I, . .. ,M} is a set of units. 
~ 

L is a set of labels. 

If Uj, ... ,UN E U and Ij .... ,IN E L then (/j, ...• IN ) is called a labeling of 

(Uj , .. . ,UN) . 

T ~ U N is the set of all N -tuples of units which are mutually 

constrained. 

R ~ (U x L)N is the set of all 2N -tuples of unit-label paITS 

(Uj.lj, .. . ,uN.lN), where (/j, ... .lN) is a legal labeling of 

(Uj , .. . ,UN). 

A labeling (/j , ... ,Ip ) is a consistent labeling of units (Uj •...• up ) 

iff OJ , .. .. iN} ~ {l .. . . ,p} and (Uil'" .• UiN) E T impl y 

(uil ,li l'" .,uiN.liN) E R. 
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The consistent labeling problem is to find all consistent 

labelings of units {l, ... ,M} with respect to the compatibility 

model. 

More informally. the problem is to assign labels to a set of units . 

Some of the units are mutually constrained; only certain 

combinations of labels for these units are compatible. These 

constraint relations are given in the set T. which is a list of the unit

sets which have a constraint among them. The set R tells us 

precisely which combinations of labels are legal for the mutually 

constrained units. 

As an example of a consistent labeling problem, we will use the 

blocks puzzle described in Figure 1. The task is to fill a rectangular 

area with a number of blocks. In the consistent labeling formulation, 

the units to be labeled are the five empty puzzle slots: Positions 1, 2 , 

3,4, and 5 . The possible labels are the six types of blocks: Blocks A, 

B, C, D, E , and F. Each label can be used any number of times in the 

" la6eli~. The consistent labeling formulation of the blocks puzzle IS 

as follows : 

v = {J ,2,3,4,5} 

L = {A.B,C,D,£,F} 

N = 2, M = 5 
1'\ " 

T = {(l,2), (2.3), (3,4), (4,5)} 

R = ( (1,A,2,A), (1,A,2,C), (l,A,2.£), (1,C,2,D), (1,E,2,8), (1.£,2 ,F), 

(2,A,3,A), (2,A,3,C), (2,A,3,E) , (2,8,3,D), (2,C,3,D), (2,D,3,A), 

(2,D,3,C) , (2,D,3,£), (2.£,3,8), (2.£,3,F) , (2,F,3,8) , (2 ,F,3,F) , 

(3,A,4,A), (3,A,4 ,C), (3,A,4.£), (3,8,4,D), (3,C,4,D), (3,D,4,A), 

(3,D,4,C), (3,D,4.£) , (3.£,4,B), (3.£ ,4 ,F), (3,F,4,B), (3,F,4 ,F), 

(4,A,5,A), (4,8,5,D), (4,C,5,D), (4,D,5,A)}. 
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BLOCKS PROBLEM 
THE PROBLEM: AITange blocks so they fill the rectangular area. 

Blocks cannot be rotated 

AREA TO FILL 

I 1 J I 

POSmON 1 POSmON 2 rosmoN 3 POSmON 4 POSmON 5 

BLOCK 
A 

r---'I L........., 

BLOCK 
E 

BLOCK 
B 

I 

I 

BLOCK 
C 

I 

BLOCK 
F 

Figure 1. First blocks puzzle example. 

BLOCK 
D 

T tells which slots are side-by-side and thus are mutu all y 

constrained. R tells which blocks can fit together in these slots. The 

tuple (J ,A ,2 ,A ) in R indicates that unit J can be labeled A while 2 is 

A; i.e., a type-A block can fit in slot J while another type-A fits in 

slot 2. 

Note that if there is no constraint among a subset of units, then 

there is no restriction in the labeling of these units; all possible 
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combinations of labels are permissible. This lack of constraint IS 

referred to as the universal constraint. In the representation of the 

problem. it is more convenient to record no constraint in T for the 

universal constraint. and thus no tuples (rather than all possible 

tuples) are listed in R for the unconstrained units. In our example. 

blocks which do not touch share the universal constraint. 

The problem is to assign labels to all units such that none of the 

constraints are violated . This involves choosing locally consistent 

labelings which are also globally consistent. 

The basic procedure for solving the consistent labeling problem 

IS a depth-first search with backtracking. First. the units are ordered 

for labeling. At each node Ui in the search tree. we already have a 

consistent labeling for units Ul through Ui-l (called the past units). 

and we must find a label for U i which is consistent with the past 

units' labels. An assignment of labels to a subset of units is 

consistent if it satisfies all the constraints impinging on those units . 

A dead-end is reached when no consistent label can be found. for Ui. 

and the search backtracks to try a different label for U i -1. If the 

dead-end is the root. the search halts with failure to find a solution . 

A solution is found when all M units have consistent label 

assignments. The problem usually entails finding all such solutions. 

but in some specific constraint problems one solution suffices. 

The search tree for general constraint satisfaction is exponential 

In the worst case. O(a n ) where a is the number of labels and n is the 

number of units. Clearly. constraint satisfaction is NP-complete since 
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graph coloring, a subproblem of constraint satisfaction , I S N P

complete [Haralick et al. 1978] . 

2.2. Constraint Satisfaction for Binary Constraints 

Much of the early work in constraint satisfaction grew out of 

applications in computer vision, and another definition of th e finit e

domain constraint satisfaction problem emerged from this work. It 

was found that scene interpretation problems could be stated 

conveniently in terms of constraints. (See Section 2.4.5.) Since unary 

and binary con straints were sufficient for the se applicat ion s, th e 

definition of the constraint satisfacti on problem was res tri c ted 

accord ingly, and is as follows l [Mackworth 1977; Dechter and Pearl 

1988] : 

Let V = {v 1, v2 , . .. , v n} be a set of variables . Let D i be the domain 

of possible values for Vi E V. Let Q ij !:;;; D i x Dj denote the constraint 

between v i and v j . That is, v j can have the value x at the same time 

that.. vj_has the value y iff Q ij(x ,y) is true. A unary constraint on Vi is 

denoted Pj . That is, variable Vj can have the value x iff P dx) · is true. 

Given these variables and the constraints between them, the problem 

is to find all assignments {aJ ,a2, .. . ,an} to the respective variabl es 

(v J ,V2 , .. . , v nJ such that all constraints hold trut' . 

A matri x is a convenient representation for finite -domain 

constraint satisfaction. A 1 in position (x,y) of.matrix Q ij indi cates, 

for example, that it is permissible for variable V j to be an x while 

variable Vj is a y . A 1 in position (x.x) of matrix P j indicates that it IS 

1 It should be DOled thai nOI all cODslraiDI problems can be slaled entirely in 
le rm s o f unary and binary conslra inls [Montanari 1974]. 
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permissible for variable Vi to be x. All non-diagonal elements In Pi 

are O. 

The blocks puzzle is represented as a finite-domain constraint 

satisfaction problem in Figure 2. A 1 in position (B ,D) of Q 12 indicates 

that block 1 can be a B while block 2 is aD. 

Note that Q J 2 represents which two blocks fit together from left 

to right, but it does not constrain the first block to one that is flat on 

its left side. This information is captured in the unary predicate P J • 

It is possible to induce a new constraint by performing Boolean 

matrix multiplication between P J and Q 12 (and similarly between Q 4 5 

and P 5). The operation P J . Q J 2 propagates the implications of the 

first constraint to the second, and results in a synthesis of the two 

(Figure 3). (See Section 2.5.3.) 

2.3. Constraint Satisfaction and Prolog 

A logic programming language such as Prolog can be used as a 
" 

simple-constraint satisfaction system. For example, the blocks puzzle 

IS implemented as a Prolog program in Listing 1. 

Let us examine the relationship between finite-domain 

constraint satisfaction (i.e . consistent labeling) and logic 

programming more closely. We first need to define some terms. (For 

good introductory discussions of symbolic logic, logic programming, 

and mechanical theorem-proving, see [Lloyd 1987] and [Chang and 

Lee 1973] .) 
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THE BLOCKS PUZZLE AS 
FINITE DOMAIN CONSTRAINT 

SATISFACTION 

A 

B 

C 

D 

E 

F 

A 

B 
~ C 

D 

E 

F 

v = (vI, v2, va, v4, v5) 
Dt , D2 , Ds , D4 ,Ds = (A, B, C, D, E, F) 

ABCDEF ABCDEF 
1 

1 

1 

PI 
ABCDEF 
1 

1 

P5 

A 

B 

C 

D 

E 

F 

A 

B 

C 

D 

E 

F 

1 

1 

1 

1 

1 

1 

P2 ,P3 ,P4 
ABCDEF 
1 1 1 

1 

1 

1 1 1 

1 1 

1 1 

Figure 2. Representing a blocks puzzle in the 
context of constraint satisfaction. 
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A 

B 

C 

D 

E 

F 

ABCDEF 
1 1 1 

1 

1 1 

Q'12 = PI • Q12 

A 

B 

C 

D 

E 

F 

ABCDEF 
1 

1 

1 

1 

Q'45 = Q45 • P5 

Figure 3. Synthesizing new constraints by matrix 
operations on known constraints. 

Prolog is based upon predicate calculus. or more precisely . Horn 

clause logic [Clocksin and Mellish 1987]. In Prolog. an object is 

represented by a term. Constants are terms which refer to specific 

objects. while variables are terms which refer to different objects at 

different times. (Constants correspond to labels and variables 

correspond to units in the consistent labeling problem. ) A term can 

also take the form f ( tl •.. .• t n ). where f is an n-ary function and Ii , ...• In 

are terms. 

In order to reason about objects, we express propositions about 

them. An atomic proposition (or, more simply, an alom) consists of a 

predicate symbol followed by an ordered sequence of terms which 

are its arguments. An atom or its negation is called a literal. 

Propositions express relations (i.e. constraints) among objects . 

The predicate symbol gives a name to the relation. For example, 

neig hb o rs (V l .V2) is used to represent the fact that the first two 
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positions In the puzzle are constrained to be neighboring blocks. The 

predicate is true when the constraint is satisfied . 

blocks-puzzle(Vl,V2,V3,V4,V5) ;
leftend(Vl), 
neighbors(Vl,V2), 
neighbors(V2,V3), 
neighbors(V3, V 4), 
neighbors(V4,V5), 
rightend(V5). 

leftend(a). 

leftend(c). 
leftend(e). 

neighbors (a,a). 

neighbors(a,c). 
neighbors(a,e). 
neighbors(b,d). 
neighbors(c,d). 
neighbors(d,a). 
neighbors(d,c). 
neighbors(d,e). 
neighbors(e,b). 
neighbors(e,f). 
neighbors(f,b). 
neighbors(f,f). 
rightend(a). 
rightend(d). 

Listing 1. Prolog program for blocks problem 

In predicate calculus, a clause is defined as a fin ite disjunction of 

zero or more literals (Le. , literals connected by ors). The proposi tion 

is a clause, where each Pi is a literal and Xj . ... ,Xs are all the variables 

occurring in pjV .. . VPm' 
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Statements in a Prolog program are also referred to as clau se s. 

although superficially they take a different form from the 

proposition above. These clauses have two possible forms . A un it 

clause contains only one literal. Compound clauses take the form 

q :- PI.P2. · · ·.Pn. 

where q and P J.P 2. · ·· .P n are literals . q is the head of the clause; 

P J.P2.·· ·. Pn is the body. (A unit clause has a head but no body.) 

In predicate calculus. the above Prolog clause would be written 

as 

PI /\ P2 /\ . .. /\ Pn ~ q. 

Note that this clause is logically equivalent to 

~PI v ~ P2 v .. . v ~ Pn v q. 

Thus. all clauses in Prolog are Horn clauses. i.e .• clauses with at most 

one unnegated literal. Restriction of Prolog to Horn clause logic 

simJllifies the execution of a program. 

The first clause in the Prolog program above states th at the 

blocksyuzzle relation is satisfied if the Ie/tend . rightend. and all the 

ne ighbors relations are satisfied. Ground unit clauses (i.e. those 

containing constants rather than variables) correspond to the tuples 

which specify the constraints in the consistent labeling problem . 

They tell precisely which objects fulfill each relation . (Here we see a 

difference in the consistent labeling problem and a Prolog program : 

Since a predicate used in the body of a clause can also be used in the 

head of another clause. we get a kind of part-subpart decomposition 
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of the problem in Prolog . In the consistent labeling problem, one 

constraint cannot be defined in terms of another. ) 

A goal clause in Prolog is a clause of the form 

?- TJ •.. .• rn. 

Each rj is a subgoal of the clause. A goal clause can also be called a 

query . 

Although logic programming is intended to be essenti all y 

declarative , the logic of Prolog has a procedural interpretation whi ch 

IS easily understood . A program clause 

q ;- PJ .· ·· .Pn 

can be viewed as a procedure definition . A program begi ns wi th an 

initial goal. Say we are given a goal clause 

?- TJ •. ·..rn· 

Each rj can be thought of as a procedure call. If the current goal IS 

a step in the computation entails matching r J with the head q of 

some program clause q ; - pJ, . . .• Pn. This matchin g process in volves a 

con sistent substitution of terms for variables, whi ch substitut ion 

unifies r J and q (makes them the same expression.) Once th is occurs, 

the current goal becomes : 

?- (PJ, · · ·,Pn.r2·· ..rn)8. 

where 8 is a postfix function that represents the uni fyi ng 

substitution. From a procedural point of view, substitution can be 

viewed as the equivalent of parameter passing. 

- 15 -

'I 
II 
II 
II 
Ii 
II 

'I 
II 

I 
II 

'I 

" 

II 
II 
II 
I 

I 



II 
II 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Since unit clauses have no body, they do not cause any more 

literals to be added to the goal. Thus, all literals are eventually 

"erased," and computation terminates when an empty goal is 

reached. 

In our example, the goal is: 

?- blocksyuzzle (A.B,C.D,E). 

As execution begins, the goal must be matched with one of the 

clauses In the program. To match, the literals must have the same 

predicate symbols and the same number of term s as their 

arguments. Constants must be matched exactly. A variable can be 

matched to a constant, and the match causes the variable to be 

bound to the value of the constant. In our simple constraint 

satisfaction program above, variables receive values which satisfy 

the constraints when a match is made with a ground unit clause. 

A Prolog program can also be viewed as a resolution theorem-
.... 

pro-Ving- system. Based upon a set of axioms (Le. the clauses) which 

express what we know about our "world," we would like to see what 

can be logically inferred. The inference mechanism which controls 

the execution of a Prolog program is based upon the resolution 

principle [Robinson 1965]. When we issue the goal ?- TJ •. .. • rn. what 

we really wish to prove is 

3xj . .. 3x,(rjl\. . . l'Ifn). 

The goal is in fact the negation of the above statement. 

Resolution theorem provers work by refutation. That is, if the 

negation of the proposition to be proved is added to the axioms. and 
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if a contradiction is logically derived, then the proposition I S true . 

Thus, in Prolog, if we can finally arrive at an empty goal, we have 

shown that there exist values for our variables such that all the 

propositions In the goal are true. During execution, these values have 

been bound to the variables . If there is more than one set of values, 

Prolog can produce them all. 

Prolog's unification algorithm gives it the power to handle simple 

finite-domain constraint satisfaction problems. Like the general 

constraint satisfaction algorithm described in Section 2.1, Prolog' s 

inference mechanism uses matching and backtrack-search 

techniques. However, we will see in Section 4 that Prolog has onl y 

limited ability in the domain of numerical constraint sati sfac ti on. 

Prolog II [Colmerauer 1986] was a first step toward replacing the 

unification algorithm with a more general strategy founded upon 

constraint sati sfaction. Prolog III [Colmerauer 1990] extend s thi s 

wo{k by providing for the definition of constraints over Booleans, 
~ 

integers, rational numbers, and lists, with the corresponding 

operations in these domains . Prolog III is discussed in Section 4.1. 

2.4. Finite-Domain Constraint Satisfaction Systems 

Because of it~ similarity to logic programming, theorem-proving 

systems [Fikes and Nilsson 1971; Loveland 1978], truth maintenance 

systems [Doyle 1979], and general problem-solving [Newell and 

Simon 1972], finite-domain constraint satisfaction IS generally 

classed as an artificial intelligence problem. Constraint satisfaction is 

also related to Minsky's frame representation language [Minsky 

1975] and object-oriented programming because constraints are a 
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matter of how one chooses to represent knowledge in the modeling 

process -- i.e., declaratively, in a part-subpart decomposition , with 

encapsulation of the modeled object. 

The movement from local relations within an object to the 

implied relation within the total object makes finite-domain 

constraint satisfaction applicable to design, modeling, and planning 

problems . 

2.4.1. MOLGEN 

MOLGEN [Stefik 1981] is a knowledge-based hierarchical planner 

which takes a description of a hormone to be synthesized in a 

molecular genetics experiment and formulates a plan for 

synthesizing it. Like the General Problem Solver [Newell and Simon 

1972], MOLGEN compares goals, finds differences , and chooses 

operators to reduce differences. The planner operates upon a 

number of plan variables representing laboratory objects, pl acing 

c"onst~ints between objects dynamically to ensure that they are 

compatible for a given experiment. 

The use of constraints in MOLGEN is motivated by Stefik's view 

of the design and modeling process, which he 

decomposition of a complex system into subsystems. 

sees as the 

He notes that 

the variables shared by two different constraints provide a channel 

of communication between two different subsystems of an object. 

Similar to designing and modeling, planning is a problem suitably 

represented by constraints, in that constraints can express · a partial 

description or commitment which will be refined during planning. 
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2.4.2. GARI 

GAR! is another knowledge-based system for process pl annin g. 

In this case applied to the metal -cutting industry [Descott e and 

Latombe 1985]. Given a description of a metal part. GAR! produces a 

plan of cuts to be executed , the order of execution, the machine tools 

needed, and so on. Knowledge is contained in production rules of the 

form conditions ~ pieces of advice. The left-hand side consists of 

conditions about the part, the machines, or the plan itself. The right

hand side constitutes the constraints. The constraints tell the system 

more efficient or careful ways of making cuts. Thus GARI applies 

constraints differently from MOLGEN, uSIflg them to represent 

preferences or pieces of advice. (ThingLab, discussed in Section 

3.3 .2.2, also gives weights to constraints.) 

2.4.3. User Interfaces for CAD Systems 

Grossman and Ege [I987] use constraints in a flo or-layout 

problem. The idea IS to allow more than one designer to work on a 

design simultaneously from different workstations . For example. an 

architect can design a floor in a house by inserting walls, doors, and 

windows . An interior designer at the same time furnishes th e room 

with desks, ;hairs, and sofas. A logic programming implementation 

helps to maintain consistency between one worker 's view and 

another's. Objects Ifl the room are represented by logical variables 

which are instantiated in the design process. In this application , 

constraints serve as elimination rules since the binding of. for 

example, a wall vari able may eliminate some choices which th e 
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interior designer might have otherwise made in laying out th e 

furniture. 

2.4.4. PROTEAN 

PROTEAN is a knowledge-based system for identifying the three

dimensional conformations of proteins in solution on the basis of 

empirically-deri ved constraints [Hayes-Roth et al. 1986] . The 

constraints reflect what is known about the architecture of helices, 

covalent bonds, amino acids , etc. PROTEAN differs from the 

applications above in that it attempts to model a real-world object 

about which the modeler has only partial knowledge, repre sented in 

the constraints placed on the object. 

2.4.5. Scene Interpretation 

Scene interpretation problems are a natural application of 

constraint satisfaction since they begin with local information about 

pixels, edges or regions and move to a more global interpretation . 
. , 

Jun ction labeling is one specific vision problem represented well by 

constraints. Edge detection algorithms first analyze a scene in terms 

of 2-dimensional lines meeting at junctions . Once edges are 

identified , the next step is to label junctions such that their 

connections are physically possible . Here we find a constraint 

problem: Neighboring junctions are constrained in that the edges 

connecting them must have the same interpretation at each end. For 

example, if an edge in one junction is labeled an occluding edge, it 

must be identified consistently as occluding in any other junction 

which shares that edge . 
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Constraint-based formulations of low-level vision problems are 

surveyed in [Davis and Rosenfeld 1981]. 

2.5. Reducing the Search Space 

2.5.1. Waltz Filtering and Node, Are, Path Consistency 

Scene interpretation was the first application of constraints to be 

of real practical use. The general problem of constraint satisfaction is 

intractable in the worst case [Haralick et al. 1978]. One way to deal 

with the computational complexity of constraint satisfaction is to 

devise an algorithm which falls short of achieving a full answer, but 

which stills yields some useful information . Waltz filterin g [Waltz 

1975], applied to junction labeling, is such an algorithm. 

Waltz recognized that it is a simple matter to eliminate many of 

the dead-end branches of the search tree. We can do so by pruning 

the domains of the variables, eliminating values which we know 

cannot contribute to a solution. For example, if there exists a value x 

in "'lhe-domain of v i which does not satisfy a unary cons traint Pi 

placed on Vi, then x cannot be used in a solution and can be ' thrown 

out of the domain. 

This type of inconsistency is called node inconsistency, the term 

arisin6 from a graphical depiction of a constraint problem . A 

constraint satisfaction problem restricted to binary constraints can 

be represented as a constraint graph (or network), where the 

variables to be labeled constitute the nodes of the graph , and a 

constraint between two variables is represented by an arc. Implicit 

in each arc is a set of variable-value pairs specifying permi ssi bl e 

local labelings. No arc is shown in the graph for variables which 
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have no constraints between them; conversely, when there IS no arc 

between nodes Vi and Vj, we can assume that Qij = Di x Dj. 

A node Vi in a constraint graph is said to be node consistent iff 

for each value xED i, Pi(X} is true. 

Waltz noted another type of inconsistency in the following 

situation: Consider a variable Vi given a label x. If for some other 

variable V j, there is no value available which is compatible with vi's 

value of x, then Vi cannot possibly be labeled x, and we can 

eliminate x from vi's domain. This observation led to the definition 

of arc consistency: 

An arc (Vi, Vj) in a constraint graph is arc consistent iff for each 

value x E Di, there is a value y E Dj such that Q ij(x ,y} 15 true 

[Mackworth 1977). 

It is easy to see how this prumng of domains for arc consistency 

could in turn reduce the search. If Vj has no value compatible with 

ih-e v-alue of x for Vi, then the presence of x in Vi'S domain could lead 

to thrashing in the backtrack search. An example of this thrashing is 

illustrated in Figure 4. 

We are looking at the piece of the tree where Vi received the 

label x. There is another variable Vj, to be labeled after Vi, which has 

no value compatible with Vi = x. The variables between Vi and Vj 

receive their values. The problem is that each time the search gets 

to V j, it has reached a dead-end. The procedure will continually 

relabel Vj-l (and also Vj-2 back to Vi+l), each time searching through 

all of vj's values without success. 
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Vi is labeled x 

Vi+I is labeled 

• 
• 

• 

Vi·I is labeled 
Vi·I is relabeled 

All values for Vi are tried. All values for Vj are tried again. 

Figure 4. Thrashing during backtrack 

The Waltz filtering algorithm ensures arc consistency In a 

constraint network . While it falls short of arriving at a complete 

solution, it is useful for the junction-labeling problem de sc ribed 

above In that it leaves only a few ambiguous junctions whi ch can 

easily be labeled by other means . 

A related notion is path consistency, defined as follow s 

[Montanari 1974; Mackworth 1977]: 
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A path of length m through nodes (Vio .Vi] •...• Vim) is path 

consistent iff for any value x E Dio and y E Dim such that Pio (x ) and 

P im (y) and Q iO im (x.y) there is a sequence of values 

Zl E Di1 •.. .• Zm-1 E Dim_1 such that QiOi1(x.Zj) and Q i1i2(z],Z2) and ... and 

Qim_1im(Zm-1.y). 

A constraint graph is said to be node or arc consistent iff each 

node or arc. respectively. is consistent. A constraint graph is path 

consistent iff any pair allowed by any direction relation Q ij is also 

allowed by all paths from Vi to Vj. Montanari [1974) has shown that 

if every path of length 2 of a complete graph is path consistent. the 

graph is path consistent. Since all constraint graphs are implicitly 

complete graphs (except that arcs are not shown where the universal 

constraint applies), it suffices to show path consistency for paths of 

length 2. 

We can illustrate node. arc. and path consistency with another 

bi(kks~puzzle (Figure 5). The puzzle is written as a constraint 

satisfaction problem below: 

V = {V1.V2.V3.V4.V5 .V6} 

D1.D2.D3.D4. = {A,B.C.D.EF} 

D5. D6 = (GJI)} 

P j = {(A). (C). (F)} 

P2. P3 = {(A). (B). (C). (D). (E). (F)} 

P4 = {(C). (E). (F)} 

Q12. Q23. Q34 = ( (A,B). (B.D). (B.E). (CA) . (C.C). (CF). (D,B) . (EA). 

(E.C). (EF). (FA). (F.C). (F F)} 

Q25. Q46 = {(A)). (BJI). (C)). (DJI), (EJI). (F,G)} 

Q15. Q36 = {(A)). (B.G). (BJI). (C)). (D.G). (DJI) . (E.G) . (E,H)} 
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V5 

SLOTS TO FILL 

Figure 5. Node, arc and path oonsistency 

- 25 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

To achieve node consistency. we delete B , D. and E from the 

domain of v}. and we delete A. B. and D from the domain of V4. 

To achieve arc consistency. we first note that if V} is F. there is 

nothing we can put into v 5. Similarly. v 3 cannot be F; otherwise we 

could not label v 6. Thus we delete F from the domains of V} and v 3. 

To achieve path consistency. we note that if V} = A and V2 = B. 

then there is no value for v 5 that is compatible with both V} and V2. 

Thus we delete (A.B) from Q} 2. Other pairs are deleted in a similar 

manner. After editing for node. arc. and path consistency. we are left 

with the following relations : 

Q12 = 

Q23 = 

034 = 
Q15= 

Q25 = 

.... 036= 
~ 

046= 

2.5.2. 

{(CAY, (C,C)) 

((A,B), (B,D), (B,E), (CA), (C,C), (D,B), (EA), (E,C), (FA), (F,C)} 

{(B,E), (C,C), (EF)} 

{(CJ)} 

{(AJ), (B,H), (CJ), (D,H) , (E,H), (F,G)} 

{(B,H), (CJ), (E,G)} 

{(CJ) (E,H), (F,G)} 

k.Consistency 

Freuder [1978) noted that arc and path consistency algorithms 

do not fully synthesize the global constraint. Often additional search 

is required to find a solution. This can be seen in the example above. 

where there are two solutions: (C.A,B.E,I,H) and (C.C,C,C,I,l) for 

variables 1 through 6 respectively. Furthermore, it is possible for a 

constraint network to be arc and/or path consistent and still be 

un satisfiable. as illustrated in Figure 6. 
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B .... ----·C 
Color each vertex of the triangle 
from the domain (RED, GREEN) 
such that no two ~acent 
vertices are the same color. (The 
constraint network is arc 
consistent but unsagsfiabJe.) 

A 11""'"" __ B 

c D 

Color each vertex of the square 
from the domain (RED, GREEN, 
YELLOW) such that no two 
~aoent vertices are the same 
color. (The constraint network is 
path consistent but 
unsatisfiable.) 

Figure 6. Consistency and satisfiability 

Freuder offers an algorithm which synthesizes th e global 

solution by moving from unary to binary to tertiary and so on to n

ary constraint satisfaction, where n is the number of variable s. 

Freuder's synthesis algorithm uses a process of constraint 

propagation. For i = I to n, the algorithm synthesizes i-ary relation s, 

finding consistent i-tuples for these. After k steps of the algorithm, 
" 

k-consi-Stency is ensured. (Node, arc, and path consistency are 1-, 2-, 

and 3-consistency, respectively .) If k = n, a solution has been found . 

If k < n, a search can be performed to find the remaining values with 

the assurance that backtrack will not be necessary in the first k 

levels. 

Dechter and Pearl [1988] generalize the notion of k-consistency 

in an adaptive consistency algorithm, in which the level of 

consistency varies from one node to another, depending upon the 

order in which variables are instantiated. 
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2.5.3. A Minimal Constraint Network 

Freuder's algorithm and the algorithms for arc and path 

consistency are based upon the idea of successively eliminating 

misleading information from the original constraint problem. That is, 

there may be tuples in the constraint specification which can never 

contribute to a solution. Such tuples can be eliminated through the 

logical propagation of information from one constraint to another. 

More formally, in problems restricted to binary constraints, the 

composition of two constraints Qij ' Qjk (through Boolean matrix 

multiplication) induces a new constraint Q ik. For the induced 

constraint Q ik, a tuple (x,z) is in Q ik iff there exists at least one value 

y E Dj such that (x,y) E Qij and (y,z) E Qjk. 

A constraint Qij is tighter than Q'ij, denoted Qij ~ Q'ij, iff.(x ,y ) E 

Q ij implies (x ,Y) E Q 'ij. A constraint network Q is tighter than a 

network Q' (denoted Q ~ Q ') iff, for each pair of corresponding 

constraints Q ij and Q'ij in the respective networks, Q ij ~ Q ' ij 

[Dechter and Pearl 1988] . 

By inducing new constraints from existing ones, a network can 

be made tighter and tighter. The tightest network of binary 

constraints equivalent to a given network is the minimal network 

[Montanari 1974]. Two constraint networks on n variables are said 

to be equivalent if they have the same set of n-tuples for their 

solutions . 

In the minimal network, every tuple in every relation must 

contribute to some consistent labeling of all n variables. To minimize 
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a network, we make the global constraint as local as possible by 

deleting any tuples which do not participate in some globally 

consistent labeling. 

2.5.4. Time Complexity of Consistency Algorithms 

Finding a minimal network clearly must be NP-complete since 

once a network is minimized, the backtrack-free search requires only 

O( ae) time (where e is the number of constraints and a is the number 

of labels) [Montanari 1974]. 

The arc and path consistency algorithms are polynomial. 

Mackworth and Freuder [1985] show arc and path consistency 

algorithms which are O(ea3 )andO(n3a 5) respectively. Mohr and 

Henderson [1986] offer faster algorithms of 0 ( e a 2) and 0 ( n 3 a 3 ) 

respectively (where n is the number of variables). Because each 

node in the constraint graph can be processed independently, arc and 

path consistency algorithms also lend themselves to parallel 

pro.ces~ng [Rosenfeld, Hummel, and Zucker 1976]. 

2.5.5. Parallel Algorithms for Node, Arc Consistency 

From their conception, the node and arc consistency al gori thms 

were described (if not implemented) as parallel algorithms . In the 

case of node consistency, it is clear that each variable can check its 

own domain , all variables working in parallel. In the case of arc 

consistency, the parallelism arises at more than one level. At the 

largest level of granularity, each variable in parallel with the others 

can be checking its entire domain. At the next level down, all values 

in the domain of a given variable can be checked in parallel. Finally , 

a given value can be checked against all other variables in parallel. 
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Since the deletion of a value from the domain of a variable could 

precipitate another deletion of a value from the domain of another 

variable, the parallel checking must be iterated until no further 

changes are made. 

This inherent parallelism has been realized In a hardware 

implementation by Swain and Cooper [1987]. Their arc consistency 

chip consists of two arrays of JK flip-flops and their logical 

connections . The first array represents the unary constraints Pi and 

is called the node array. The second array represents the binary 

constraints Q'j and is called the arc array. The hardware can be used 

to compute any arc consistency problem where the sizes of Pi and Q ij 

are bounded by n and a, respectively (Figure 7) . 

The arc array consists of a2 n(n-l) flip-flops, called v(iJ ,x ,y) and 

initialized to Q ij( x ,y). That is, if variable i can be labeled x while 

variable J is labeled y, then flip-flop v(i,J,x,y) is a 1. (Also, if Vi and 

V l'-do ~ot share a constraint, v(i.j ,x ,y) is 1.) The arc array does not 

change values during the computation. 

The node array consists of a. n flip -flops, called u ( i ,x ) and 

initialized to Pdx). That is, if x is a permissible label for node i, then 

the flip-flop u(i,x) is initialized to 1. The node array is used to keep 

track of which labels are in the domain of each variable, and at the 

end of the computation it contains the final answer, i.e., the domains 

of the variables pruned for arc consistency. 
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Figure 7. Hardware label·discarding 
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Additional combinational circuitry IS used to implement the label 

discarding rule. We want the flip-flop representing the label x at 

node i to be reset to 0 if there exists some other node which has no 

permissible label while node i is labeled x. The circuitry to 

accomplish this ties the J (set) input of each JK flip-flop to 0 and uses 

the K input to reset the flip-flop ' s value to 0 based on 
n a 

rese/(u(i,x)) == ..... /\ V (u(j,y) /\ v(iJ,x,y)). 

j==l ;j ... i y==I 

Figure 8 shows a partial circuit diagram for this equation . It 

depicts the reset circuitry for flip-flop u( I,A). To determine if A 

should remain in l's domain, we must ensure that if I is labeled A, 

there is a label for every other variable which shares a constraint 

with 1. We are considering only the constraints which variable I 

shares with variables 2 and 3, as indicated in the portion of the arc 

al'NlY ~own in Figure 8. Since 1 is mutually constrained with 2 and 

3, we must check that variables 2 and 3 have permissi ble . labels. 

Doing this first for variable 2, we have three u(j,y) /I v(i.j ,x,y) gates, 

one for each of the potential labels of variable 2. These in turn are 

or-ed together, since we need only one label for variable 2 which is 

consistent with the label of A for 1. We check variable 3 similarly, 

and we and them together. 

The time complexity of the hardware implementation is O( an) if 

propagation through the and and 0 r gates is considered 

instantaneous. If a logarithmic time cost is assigned to the large fan

in and and or gates, the complexity is O(a[og(a)n[og(n)). 
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Figure 8. Partial circuit diagram for AC chip 
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Despite the apparent parallel nature of the consistency 

algorithms , the speedup achievable by their parallelization appears 
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to have limitations. Kasif [1986] has shown that arc consistency IS 

log-space complete for P. This suggests that it is not likely that a 

poly-log time algorithm will be found. Thus, the O(an) for the 

hardware implementation is likely to be close to the minimum 

achievable with polynomially-many processors. 

Cooper [1988] also describes a connectionist implementation for 

a subproblem of binary constraint satisfaction, namely, labeled graph 

matching. Like the filtering algorithm for scene labeling, this 

hardware implementation does not guarantee a complete matching of 

the graphs, but is does quickly reject a large number of candidates . 

2.5.6. Learning While Searching 

Thus far, we have discussed the consistency algorithms as pre

processing procedures. However, they can also be incorporated as 

procedures within the backtrack-search such that the local 

consistency of values is checked when an assignment is attempted. 

When --!in inconsistency is detected, the reason for it can be 

determined, and this information can be recorded in some manner. 

Dechter suggests identifying the conflict set which led to a dead-end 

in the search and recording it as a new constraint, referring to this 

technique as learning while searching [Dechter 1986; Dechter 1988] . 

Learning within a constraint network can also be considered 

from another point of view. From this perspective, a constraint 

problem models a world or an object of which we have only 

incomplete, uncertain knowledge. The constraints represent the 

current state of our knowledge about the world being modeled, and 

it is subject to revision. As new facts come to light, we enter them 
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into the constraint specification and observe their implications. Thi s 

view of a constraint problem leads to a dynamic constraint network 

which IS satisfied incrementally when new knowledge (i .e. "learning") 

comes in from an external source (i.e. the user) . 

Within this scheme, Dechter and Dechter [1987] devise an 

algorithm for computing the support for a label x of a variable Vi. 

Through a process of support propagation, the algorithm computes 

the number of solutions in which the labeling Vi = X participates. 

This value represents the strength of our belief that Vi = x. When a 

new fact IS entered into the system, say Vj = y , the system enters a 

stage of contradiction resolution. This algorithm ide ntifi es the 

minimum number of assumptions that mu st be changed in order to 

restore consistency. (Some variables in the network are designated 

as assumption variables which are initially assigned default values. 

These may be assigned other values to resolve contradictions.) Both 

the support propagation and the contradiction resolution algorithm s 
" -

lend themselves to parallel implementation . 

2.5.7. The <p k,p Operator 

The notions of arc and path consistency have been extended 

from binary to N -ary relations in Haralick and Shapiro's work with 

the consistent labeling problem [1979]. Like Dechter's learning 

algorithm, their tree-search-reduction procedure is executed during 

the search rather than as a preprocessing step. 

With the qJ k,p operator, we check in turn each N -tuple of R . For 

each such N -tuple, we fix a subset of k units to their labels in the 

tuple, and we check to see if that labeling can be extended to p unit s 
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for every possible combination of p - k remaining units. In this 

context, arc consistency for N -ary relations is given by cP I ,N, while 

path consistency is CP2 ,3. 

Consider applying the CP2 ,4 operator to the tuple (1 ,A ,3 ,B) in the 

consistent labeling problem below, with k = 2 and p = 4: 

U = {l,2.3 ,4,5} 

L = {A,B,Cj 

T = {(l.2), (l.3), (l,4), (l,5), (2.3), (2,4), (2,5), (3,4), (3,5), (4,5)} 

N = 2, M = 5 

R = { (l,A.2.A) , (l.A,2,B ), (l ,A.3.A), (l,A,3,B), (l ,A ,3,C), (l.A,4 ,A) , 

(l,A,4,B), (l,A ,4,C), (l,A,5,A) , (2,A.3.A), (2.A.3,B ), (2,B.3 ,C), 

(2 ,A ,4,A), (2,A,4,B), (2,A,4 ,C), (2,B ,4,C), (2,A,5,A), (2,B,5 ,A), 

(3,A,4,A), (3,A,4,B), (3,B,4,A), (3,C,4,A), (3,C,4 ,C) , (3 ,B,5,A ), 

(3,8,5,B) , (3,C,5.A) , (4,C,5,A), (4,C.5,B)} 

This entails fixing 1 to the label A and 3 to the label B , and 

checking that this labeling can be extended to a consistent labeling 

for the subsets of units {I ,2 ,3 ,4}, {l ,2,3,5}, and {l ,3 ,4,5} . We find 

th~e exists a consistent labeling for the subset {l ,2,3 ,4} : {A,A,B ,A}. 

Similarly , {A ,A ,B ,A} is a consistent labeling for the subset {l.,2 ,3 ,5}. 

However, there is no consistent labeling possible for the subset 

{I ,3 ,4 ,5} if 1 and 3 are fixed at A and B respectively. Thus the tuple 

( J ,A ,3 ,B ) is deleted from R. 

2.5.8. Domain·Pruning Strategies 

Arc and path consistency algorithms, the CPk,p operator, and 

Waltz filtering are examples of lookahead operators. Haralick and 

Elliott [1980] have classified strategies for reducing the tree search of 

binary constraint problems into full looking ahead, partial looking 
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ahead. forward checking. backchecking, and backmarking, and th ey 

give search algorithms which incorporate these strategies . 

Looking ahead is a technique for trimming the domains of the 

units not yet labeled (called future units) at each point in the search 

tree. Each time a label assignment is made, the current unit (the unit 

just labeled) is checked for consistency against all future units. That 

is, the domains of future units are reduced to include only tho se 

labels consistent with the current unit. Then on the basi s of the 

restricted domains. every future unit is checked again st every other 

future unit. If there exists a label x for future unit Ui which does not 

have a compatible label for some other future unit u j, then x is 

deleted from u j's domain . 

Looking ahead is illustrated by the labeling problem In Section 

2.5.7. D i denotes the set of labels (the domain) available for unit l. 

The units (1 ,2 ,3 ,4 ,5) are to be labeled in numerical order. Unit 1 is 

as&)$ned the first label in its domain, A. In the current -future -
consistency checks, we see that if 1 is A, then 2 must be A Qr B; 3 

can be A, B or C; 4 can be A, B , or C; and 5 must be A. The domain s 

are restricted accordingly. 

In the future-future checks, we first check 2 against 3 , 4 , and 5 . 

Unit 2 's domain has been restricted to (A ,B) in the current -future 

checks. If 2 is A, 3 can be A or B; 4 can be A, B, or C ; and 5 can be A. 

If 2 is B, 3 can be C ; 4 can be C, and 5 can be A. Thus there are labels 

available for all other future units if 2 is labeled A or B , and 2' s 

domain does not change . Checking 3 against 2, 4, and 5, we find that 

if 3 is A, there is no label available for 5 . Thus, 3 's domain is 
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restricted to {B, C} . In a similar manner, 4 's domain is restricted to 

{C}. Since labels remain in the domains of all units, the label of A for 

1 has been verified. and we continue down the search tree. 

SEARCHING WITH LOOK·AHEAD 

e·F: D2 = (A,B), D3 = (A,B,e), D4 = (A,B,e), Ds = {A} 

F·F: D2 = (A,B), D3 = {B,e) , D4 = (e), Ds = (A) 

~:§ 2,B 

C-F: D3. {B), D4 = (e), Ds = {A} 
F·F: D3 = 0, D4 = (e), Ds = {A} 

C-F: D3 = (e), = (e), Ds = !Al 
F·F: SAME AS e·F 

e 
e·F: D4 = (e), Ds = {A} 
F·F: SAME AS e·F 

C-F: Ds = {A} 

C-F .. CURRENT·FUI'URE 
F·F .. FUnJRE.FUI'URE 

Figure 9. Look·ahead search strategy 
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The entire search tree, which incorporates looking ahead, is 

given in Figure 9. The arcs are labeled with the restricted domains 

resulting from the current-future and future-future look-aheads . A 

recursive algorithm for looking ahead is given by Haralick and Elliott 

[1980). 

The idea behind looking ahead is that if more consistency checks 

are done early in the search, fewer will have to be done later, for a 

total savings. Haralick and Elliott compare the performance of their 

algorithms In terms of the expected number of consistency check s 

required to complete the search . From this point of view, full looking 

ahead is expensive in the total number of consistency checks, and 

partial looking ahead has been shown experimentally to perform 

better. In partial looking ahead, each future unit u is compared 

against only those units in its own future, that is, against only those 

units which will be labeled after u. If the units are to be labeled in 

the_ order ( I ,2 ,3 ,4 ,5), then after 1 is labeled, partial lookin g ahead 
~ 

checks 3 against 4 and 5, but not against 2. 

An even better strategy (in terms of total consistency checks) I S 

forward checking, a type of looking ahead in which current-future 

checks are done as before, but future-future checks are elifl"inated 

entirely. When combined with an optimal unit order, where the unit 

to be labeled is always the one with the fewest labels left, forward 

checking leads to the most efficient tree search among those 

analyzed by Haralick and Elliott. 

The search tree incorporating forward checking is gl ven In 

Figure 10. Note that the search tree with looking ahead is smaller 
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than the one with forward checking. but at the expense of more 

consistency checks. 

SEARCHING WITH FORWARD CHECKING 

D2 II: (A,B), D3 .. (A,B,e), D4 = (A,B,C), DS = (A) 

D3 = (A,B), D4 = (A,B,e), Ds = (A) 

9 
= (e), Ds = (A) 

D4 = (A,B), Ds = 0 
D4 = (A), Ds = (A) d D4= (e),Ds= (A) 

~ 
Il5= 0 

ns=(A) 

Figure 10. Forward checking search strategy 

Backchecking . differs from looking ahead in that domains are 

restricted only with respect to label assignments already made. For 
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example, in Figure 11 we see that once J has been gIven the label A, 

2 's domain can be restricted to (A. B) . This information is 

"remembered" so that if the search must backtrack after trying an 

assignment of A to 2, only the assignment of B to 2 remains to be 

tried. 

Backmarking [Gashnig 1974; 1977; 1978) is an improved version 

of backchecking based upon the observation that in backchecking, 

some consistency checks may be repeated unnecessarily. In Figure 

II, the nodes are numbered in the order of the depth-first search . 

Note that at node 4, before a value assignment is made for unit 4, its 

domain is restricted in accordance with the assignments alread y 

made for J. 2. and 3. The check between units 4 and J, for example, 

entails determining which of A. B. and C are possible labels for 4 in 

view of the fact that J is A. 

A t node 7, another attempt is made to label unit 4. Again, 4 ' s 

do,~ain must be restricted, but since unit 1's label of A and unit 2' s 

label of A have not been changed since the last trip to unit. 4, the 

consistency checks between J and 4 are the same as the ones done 

previously. In backmarking, unit 3 would be marked as the lowest 

numbered unit to have changed its label since the last visit to unit 4 . 

Then at the second visit to 4, 4's domain would be checked against 

only 3. In this way, repetitive checks can be avoided. 
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SEARCHING WITH BACKCHECKING 

D4 = (AJ D4 = Ie) 
7 

1);=0 

Figure 11. Backcbecking search strategy 

2.5.9. Ordering Variable and Value Assignments 

Both the order in which variables will be considered and the 

order in which values will be tried affect the size of the search in 

constraint satisfaction. 
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Haralick and Elli.ott [1980] try a technique for dynami call y 

ordering the variables to be labeled, choosing as the next variabl e 

the one with the fewest labels left. They find that performance 

Improves for all their search strategies when variables are ordered 

In this manner. 

Nudel [1983] extends the work of Haralick and Elliott by 

obtaining the expected complexities for various consistent labeling 

algorithms (e .g. standard backtracking vs. forward checking ) usin g a 

statistical mod el based upon a particular labeling problem ' s set of 

constraints . He thereby extracts a theory-based search orderin g and 

an algorithm-selection heuristic that is specific to the problem . 

Finally, he shows that his experimental results compare well 10 hi s 

theoretical predictions. 

Dechter and Pearl [1988] note that, when the order of variables 

is fixed , the portion of the tree exposed by a backtrack algorithm 

searchU!g for all solutions is invariant to the order of value selection . 

However, in systems seeking only one solution, the orderin g of 

values has a significant effect on the size of the search . Dechter and 

Pearl incorporate an advice-generating scheme into the backtrac k 

algorithm, estimating the number of possible solutions stemming 

from each candidate value and ordering their instantiation s 

accordingly. 

2.6. Discrete Relaxation and Relaxation Labeling 

In vision applications, the arc consistency algorithm is referred 

to as a kind of discrete relaxation or relaxation labeling . The term 
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relaxation is used because of the algorithm's similarity to the 

iterative processes used in numerical analysis. 

Davis and Rosenfeld (1981) describe the relaxation processes 

used in vision problems as follows: 

1. A list of possible labels is selected for each part of an image. For 

example, we may be labeling a pixel as part of an edge, a corner, 

an interior point, or an exterior point. At a higher level of 

abstraction, we may be labeling an image segment as a table, a 

chair, or a bed. A measure of confidence (a weight) can also be 

associated with each label. (Weighted labels are sometimes 

referred to as fuzzy labels.) 

2 . In a parallel, iterative fashion, the labels for each part are 

compared with those for related parts, based upon our 

knowledge of how things can "fit together." Labels are deleted 

or weights adjusted to reduce inconsistencies . 

,,~ TQ. accomplish the relaxation, we need to specify the neighboring 

(i.e. mutually constrained) variables, and how the labels . of one 

variable will change with respect to its neighbors' labels. The 

simplest relaxation mechanism is the label discarding rule 

implemented in the arc consistency algorithm. 

Hummel and Zucker (1983) extend the relaxation procedure to a 

procedure for continuous relaxation labeling, where both label 

assignments and constraints are given weights. The weight with 

which label x is assigned to variable Vi is denoted Pdx) (where 0 S 

P dx) S 1), while the relative support for label x at variable Vi that 

arises from label x' at variable v j is denoted by the real-valued 
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compatibility function Q ij(x .x ') . On this foundation. Hummel and 

Zucker attempt to build a more general theory of consistency USIng 

variational calculus and standard optimization techniques. 

Another variation of the original Waltz filtering algorithm works 

upon variable domains expressed as real-number intervals [Davis 

1987] . For example. the domains of V I. V2. and v 3 may be expressed 

as : 

VI E [1.101. V2 E [3.B1. V3 E [2.71. 

and the constraints may be expressed as 

v I + V2 = V3 . V2!{ v I· 

Then by a process of label refinement. the label set of each node 

is restricted in accordance with the domain s of its neighbors . After 

applying the numerical equivalent of the Waltz filtering algorithm, 

we are left with VI E [3 .41. V2 E [3 .4/. and V3 E [6.71. 

While this procedure goes by the name of interval lab eling and 
-, 

borrows a technique from finite-domain constraint satisfaction . it 

defines constraints over real-number domains and for th is' reason 

perhaps is more properly classed with the numerical constraint 

satisfaction methods to be discussed in Section 3. 

3. CONTINUOUS-DOMAIN CONSTRAI~T SATISFACTION 

3.1. Numerical Constraints: Modeling, Problem-Solving 

A constraint problem as a labeling problem tells us which 

discrete parts In a domain of finite elements "fit together ." 

Continuous-domain (Le . numerical) constraints. on the other hand. 
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are expressed as equalities or inequalities defined over a real

number domain. 

In modeling and simulation, numerical constraints might 

describe the physical subsystems of an object, involving properties 

such as mass, density, pitch, color, current, voltage, position, velocity, 

and the like. In this way, continuous-domain constraints are a 

powerful modeling tool. 

Numerical constraints lend themselves to the definition of 

geometric objects since they readily describe the relative positions of 

an object's parts. Section 3.3.2 reviews a number of these 

applications. Numerical constraints are also applicable to the 

description of an object as a physical system, e.g. an electrical circuit, 

as discussed in Section 3.3.3 . Finally, constraints can be used to 

model systems in a physically realistic manner, behaving in 

accordance with forces, torques, energies, and the laws of Newtonian 

PQ.?::s ics. The application of constraints to physically-based modeling 

is discussed in Section 3.3.4. 

We begin by reviewing the basic methods for numerical 

constraint satisfaction. 

3.2. Techniques for Numerical Constraint Satisfaction 

3.2.1. Propagation of Known States 

An equality or inequality defines a constraining relationship 

among the variables it involves. For example, the equation 

TC-d=c 
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expresses a constraint between the diameter and circumference of a 

circle . Values which abide by this relation are implicit in th e 

semantics of the equation . Given a value for c, we can derive d, and 

vice versa. 

In his revIew of constraint-based programming, LeIer [1988] 

suggests a graphical representation of numerical constraints 10 

illustrate the operation of propagation of known states (also referred 

to as local propagation). (In this section, we will be referring to the 

type of graph depicted below when we speak of a constraint graph , 

as opposed to the constraint networks described in Section 2.5. ) 

c 

Figure 12. Constraint graph for circumference 

Squares in Figure 12 represent variables, and circles represent either 

operators or constants. The arguments to the operator appear on the 

left, while the result is placed on th" right (with no = sign required ). 

Propagation of known states is a procedure by which known values 

are used to compute new values in a constraint equation . It should 

be emphasized that values can propagate in either direction . It is up 

to the constraint satisfaction system to recogmze when a sufficient 

number of variables have been bound to values and to understand 

the semantics of the operators in either direction . Thus, if c is known 
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In the constraint above, a constraint satisfaction system based upon 

local propagation should be able to compute d by dividing c by 3 .14. 

Propagation of known states is the simplest of the constraint 

satisfaction methods. Another advantage to this method is that the 

path by which a particular answer was produced can be recorded. 

Thus the user can request explanations of an answer, and can even 

roll back the solution to an earlier point, continuing from there 

without requiring the system to re-evaluate the entire problem. 

However, local propagation is of limited use since it considers only 

information local to a node, and thus it cannol be applied to 

constraints involving cycles. 

Consider the following constraints: 

A+B=C 

B+C=D 

Because of the interdependency of Band C, these constraints form a 

cycle ... as represented in Figure 13. --..... 

A 
D 

Figure 13. Comtraint graph with a cycle 
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Local propagation cannot find a solution to this set of constraints. To 

see this, consider starting with A = 5, B = -1, C = 4, D = 3. This 

satisfies the constraints since A + B = C = 4 and B + C = D = 3. Now, 

what happens if we change A to 9 and attempt to keep D unchanged? 

Using propagation, we could compute C = A + B = 9 - 1 = 8. We could 

then compute B = D - C = 3 - 8 = -5, and corne to a conflict with B 

having values -1 and -5. 

If we accept the latest value of B, -5, and propagate this , we will 

get C = 4 and then B = -1. B's value is flipping back and forth in a 

simple cycle. Relaxation (Section 3.2.3) can be used to try a 

compromise, B = -3, the midpoint of -1 and -5 . Alternatively, 

algebraic manipulation can be used to produce solutions even in the 

presence of cycles. 

3.2.2. Algebraic Manipulation and Term Rewriting 

Looking back at Figure 13, we can see that this constraint might 

be'.Je~lved by algebraic simplification. In particular, we could 

subtract the second equation from the first and determine that 

A+B-B-C=C-D. 

Combining like terms, we get 

or 

A+D=2C 

C 
(A + D) 

2 

In other words, C is just the average of A and D. 
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One way to make algebraic transformations of subparts of a 

constraint expression is by means of a term rewriting syst ems 

(Section 3.3.1.) In a term rewriting system, expressions can be 

rewri tten according to a set of rewrite rules. Each rewrite rule 

consists of a head (the left-hand side) and a body (the right-hand 

side), e.g. 

X - X ~ 0 

i i 

head body. 

We let uppercase characters 10 the rewrite rules denote 

variables, which can be matched to any subexpression. When the 

head of a rewrite rule matches a subexpression of an expression E, 

that subexpression can be rewritten in accordance with the body of 

the rule. For example, given the rewrite rule 

X -X ~ 0 

" 
we~ can match the head of the rule to the subexpression B - B in 

A + B - B - C = C - D, and rewr.ite the entire expression to 

A + 0 - C = C - D. Then, given the rewrite rule 

X+O~X 

we can rewrite the equation to A - C = C - D. 

Term rewriting can be used to transform a simple cycle which 

could not otherwise be handled by local propagation. However, 

cycles formed by simultaneous equations cannot be broken by 

standard term rewriting techniques. For these we need numerical 

relaxation techniques or more sophisticated equation solvers. 
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3.2.3. Relaxation 

A number of iterative numerical methods have been devised for 

solving systems of linear equations [Maron 1982]. These methods 

are applicable to cyclical constraint sets which constitute a system of 

linear equations. 

Consider a system of linear equations, which take the form : 

anXj + aJ2X2 + ... + aj nXn = bj 

a2jxj + an X2 + ... + a2nxn = b2 

anjXj + an2x2 + ... + annxn = bn. 

One method of solving for the unknowns is to make initi al guesses . 

estimate the errors that would result from these values. deriv e new 

guesses based on the errors, and iterate until the method converges 

on a solution. The Gauss -Seidel procedure uses this strateg y. It 

begins with initial values for Xj, 1 sj s n, and repeatedly computes 
" 

x/new)-[rom Xj using the i-th equation. according to: 

] n 
x/ new) = Xj + a .. {bi - LPikXkl. 

IJ k=] 

(To improve chances of convergence, it IS best to solve as many 

equations as possible for the variable having the greatest-magnitude 

coefficien t.) 

This method can be viewed as adding some increment dXj to Xj 

In order to get x/new): 

x/new) = Xj + dxj 
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where dXj = The increment dXj indicates how well 

Xj satisfies the i-th equation, and the change in dXj indicates how 

well the algorithm is converging. Convergence is not guaranteed for 

the Gauss-Seidel method. 

A technique called relaxation is sometimes used to improve the 

likelihood or rate of convergence. Relaxation works by solving the 

i-th equation for Xi and mUltiplying the increment by some Ai: 

When 0 < Ai < 1, underrelaxation is being used, and when 

1 < Ai < 2, overrelaxation is being used. A value of Ai = 1 provides no 

relaxation and commonly leads to non-convergence. 

To see how relaxation works, we return to solving the 

constraints of Figure 13. In keeping with our standardized form s for 

systems of linear equations, we can rewrite the constraints as 

' -C -LJ = A, and 

B+C=D, 

where A and D are fixed as the constants 9 and 3. 

for Band C are 

B(l) = -1 and C(l) = 4. 

[lJ 

[2J 

Our initial guesses 

Using [IJ as the basis for computing Band [2J as the basis for C, 

we get new approximations by the formulas 

B (new) = B - AB(9-(C-B)) 

C(new) = C + Ac(3-(B+C)). 

and 
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If we set A8 = AC = 1 (no relaxation), we get succe ss ive 

approximations as follows: 

B(I ) = -1 

B (2) = -1 - (9-5) = -5 

B(3) = -5 - (9-13) = -1 

and we are in an infinite loop. 

better: 

BO ) = -1 

1 
B (2 ) = -1 - 2(9-5) = -3 

1 1 
B (3) = -3 - 2(9-8) = -3 "2 

1 1 1 3 
B ( 4 ) = -3"2 - "2(9 - 9 4) = -3 8 

3 1 7 5 
B (5) = -3 8 - 2 (9 - 976) = -3 32 

e(l) = 4 

e(2) = 4 + (3+1) = 8 

e(3J = 8 + (3-7) = 4 

1 
Setting AB = AC = 2 

e(1) = 4 

1 
e (2) = 4 + - (3 -1) = 5 

2 

work s much 

1 J 3 em = 5 + 2 (3 - 1 "2) = 54 

3 1 3 1 
e(4) = 5 4 +"2(3 - 2 8) = 676 

5)- L. 1... 29_ 2-e( - 6 J 6 + 2 (3 - 2 32) - 664 

Yet another approach is to relax just one variable, say B. Here 

. J 
we Will set A8 = 2 and AC = 1 (no relaxation). 

B O) = -1 eO) = 4 

J 
B (2) = -1 - "2(9-5; = -3 e(2) = 4 + (3-1) = 6 

J 
B (3) = -3 - 2 (9-9) = -3 e(3 ) = 6 + (3 -3) = 6. 

For this particular example, convergence was achieved quickly by 

the last choice of relaxation constants. In general, selecting good 

values is a non-trivial problem. In fact, even the choice of which 

variables to satisfy is not always obvious. 
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The next section further addresses the issue of which variables 

might be advantageously relaxed . 

3.2.4. Propagation of Degrees of Freedom 

The relaxation approach just discussed can be inefficient if we 

choose to relax variables which do not participate in cycles . A better 

approach is to prune the constraint graph until the only nodes left 

are those tied up in cycles. This technique, called propagation of 

degrees of freedom, counts the number of constraints applied to each 

node. A node with no freedom (a constant) can be ignored for now, 

since its value is fixed. One with just one constraint also represents 

an easy case. Such a node cannot be m a cycle, and hence its value is 

determinable by simple propagation of known values along its one 

constraint. 

To isolate the cycles, we remove constant nodes first. We then 

remove those controlled by just one constraint. Removal of such a 

n~de r.educes the number of constraints on its neighbors, and so we 

can continue this process. Finally, the cycles are identified and can 

be resolved by relaxation methods. 

Looking back at Figure 13, we can see that A and D are involved 

in just one constraint each. Removing them leaves us with a two

node cycle on which we must perform some cycle-breaking 

technique such as relaxation or algebraic manipulation. 

A side benefit of propagation of degrees of freedom is that it 

provides a plan for propagating values after the cycle is broken. This 

plan is just propagation of values through the nodes just removed, in 

reverse chronological order (the last removed shall be the first to be 
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evaluated except, of course, for constants which have already been 

evaluated .) Thus, propagation of degrees of freedom can result In a 

pre-compiled constraint method for the satisfaction of a se t of 

constraints. 

3.2.5. Constrained Optimization, Linear Programming 

While constraint-based programming has only recently become a 

field of research in its own right, the idea of expressing a problem 

quantitatively in terms of constraints IS nothing new . The 

recognition that many real -world problems can be expressed In 

terms of constraints led to the development of classical optimiza ti on 

theory and its application in fields as diverse as classical mec hanics 

[Goldstein 1965J and operations research [Shamblin and Stevens 

1974 J. 

In the basic constrained optimization problem, the goal is to 

minimize or maximize an objective function 

.... J(X/, X2, ... .xn) -
given a number of constraint functions of the form 

In a constrained optimization problem, we want not only values 

which are consistent with all the constraints, but In some sense the 

"best" such values. If all the functions in the problem are linear 

functions, we have ' what is known as the linear programmin g 
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pr oblem. the most widely -used form of mathematical constrained 

optimization . 

As an example. consider the following practical problem: A 

company produces two products. Xl and X2 . The profit for product Xl 

is $100 per unit. while the profit for X2 is $150. One unit of product 

Xl requires 20 hours of production time. while one unit of X2 requ ires 

35 hours . The total time available for manufacturing in one year is 

1500 hours. Based on expected demands. it has been determined 

that not more than 42 units of Xl and not more than 30 units of X2 

should be produced each year. The goal is to maxi mize the profit. 

The problem is modeled by the objective function 

100Xl + 150X2 

and the constraint functions 

20Xl + 35x2 ~1500. 

Xl ~ 42. and 

... ~ -!2 ~ 30. 

One well-known method for solving the linear programming 

problem is the simplex alg orithm. The simplex algorithm takes 

advantage of the facts that the objective function is linear. and the 

intersections of the constraints form a convex polyhedron. This is 

easy to picture in the case of a two-dimensional function . as shown In 

Figure 14. (Since it does not make sense for Xl and X2 to be negative. 

we need consider only the non-negative quadrant of two

dimensional Euclidean space.) 

It is also known that if an optimum solution exists. at least one 

of the vertices of the polyhedron will be an optimum solution . In 
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Figure 14. the point (42. 18 .9) represents the optimum value for the 

objective function within the feasible solution space. 

The simplex algorithm begins by converting the inequaliti es to 

equalities by means of slack variables. In this example we get: 

20x] + 35x2 + U] = 1500 

X] + U2 = 42 

X2 + U3 = 30. 

with slack variables U] . U2 . and U3. We now have a system of linear 

equations. but we have fewer equations than unknowns. 

. 

Objective function 
10Ox1+150x2 = 7029 

~ 

~ 
~~~ Feasible solution space 

based on constraints 
:? 

Best money maker 
(42.18.9) 

/ 

xl <42 

xl 

Figure 14. Simplex method checks vertices only 

If we test all the vertices of the polyhedron. we will eventually 

find an optimum solution. In this example. this can be done by 

setting two of the five variables to 0 (for every possible pair of 
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variables) and solving the resulting system of linear equations. The 

variables in solution are called basis variables, and the variables set 

to 0 are called non-basis variables. 

Since all of our inequalities are $, we can begin by setting Xl and 

X2 to 0, making the origin the first feasible solution . In more 

complicated cases, the origin may not lie in the feasible solution 

space, and the first phase of the algorithm entails finding a first 

feasible solution. Since a feasible solution is not guaranteed to exist, 

the first phase is in effect an algorithm for determining the 

sati sfiability of the system of inequalities. (This part of the simplex 

al gorithm is used in CLP(9I), a constraint satisfaction system to be 

discussed in Section 4.2.) 

The simplex algorithm saves computation by considering only 

those intersection points which can yield a solution better than the 

one just computed. By considering the gradient vector of the 

obj~ctive function at each iteration (i.e. the increase or decrease of 
~ 

the function with respect to each variable), the algorithm det~rmines 

which variable to include in the set of basis variables next. 

Details of the simplex algorithm can be found in any standard 

text on optimization (e.g. [Hestenes 1975]). 

3.3. Numerical Constraint Satisfaction Systems 

3.3.1. General Equation Solvers 

Equation solving techniques used in symbolic algebra systems 

such as MACSYMA [Moses 1971] and Mathematica [Wolfram 1989J 

are extremely powerful in that they can solve systems of linear 

equations . Unfortunately, their generality leads to complex 
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algorithms. Our need for fast algorithms to perform constraint 

satisfaction leads us to investigate alternative systems for algebraic 

simplification and equation-solving. Specifically, this section will 

discuss the application of term rewriting systems based on 

equational logic . 

Two term rewriting systems that have been used in constraint 

programming are the Purdue Equational Interpreter [O'Donnell 1985] 

and Bertrand [Leier 1988]. We will concentrate on Bertrand, a 

language that was specifically designed to create constraint systems 

for numerical problems. 

Bertrand is a rule-based specification language which lend s it self 

to the building of constraint satisfaction systems . In Bertrand , the 

user can specify a system of constraints as a set of rules. These rules 

are interpreted by an extension of term rewriting called augmented 

term rewriting. To standard term rewriting, Leier has added the 

ability to bind values to variables. 
" 
~ 

As a subject expression is 

rewritten and variables receive values, constraints are satisfied . 

In this scheme, a constraint satisfaction system is comprised of 

three parts : 

--a set of rewrite rules, 

--a subject expression (the main of the program), and 

--an augmented term rewriting system (the control mechanism). 

A rule consists of a head and a body. 

X+O 

head 

(X) 

body 
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A subject expression can be rewritten if it contains a subexpression 

matching the head of some rule. For example, the subject expression 

((8 - 2) + 0) * 9 

contains the subexpression (8-2) + 0, which matches X + O. In the 

head of the rule, X is a parameter variable which can match an 

arbitrary expression. The matching process substitutes (8-2) for X, 

and the subject expression is rewritten to (8-2) * 9. 

Binding is accomplished with a special infix operator is. The left 

argument of is must be a bindable variable; the right argument can 

be an arbitrary expression. For example, the expression x = y + 5 

can be rewritten as x is y + 5. The is operator has important side

effects: It binds its right argument as the value of its left argument, 

and all other occurrences in the subject expression of the newly

bound variable name are replaced by the variable's value. 

For example, the subject expression 

o'-J ==.y + 5 ; x = y * 2 

can be rewritten to 

x is y + 5; y + 5 = y * 2. 

If a library of rules for algebraic simplification is included , the 

remaining expression can be solved for y. Thus, a system for 

handling numeric constraints, including those containing cycles, can 

be written in Bertrand and solved by means of augmented term 

rewriting. 

It is also possible to define structured objects in Bertrand; that 

IS , Bertrand allows the programmer to model an object by a part-
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subpart decomposition . A primitive object IS created by a rule such 

as 

aNumber {true}. 

This rule will match a subexpression containing the nullary operator 

aNumber. As a side-effect, when the labeled expression 

n: aNumber 

is rewritten, an object named n of type rational number is created in 

the name space. 

Higher-level objects can be built from the primitives. For 

example, the rule 

aPoint {x : aNumber; y: aNumber; true} 

can be applied to the subject expression pi: aPoint , resulting 10 the 

creation of subparts pi .x and pl .y. 

By the same mechanism, constraints can be placed on the parts 

of.,~ structured object. We can create an instance of a horizontal line 

with the following rewrite rule: 

aHorizLine {p: aPoint; q: aPoint ; p.y = q.y} 

Finally, a typing mechanism makes it possible to overload 

operators. For example, if a "horizontal" operator were defined for 

both lines and squares, the rule could be "typed" as follows: 

horiz L'line {L.p.y = L.q.y} 

The 'line indicates that the horiz operator 10 the rule will match only 

parameters which are lines. To complete the typing, a type name 

must be attached to an object created by a rule, as in 

aLine {p : aPoint; q: aPoint ; true} 'line . 

- 61 -

I" 



I 
I 
I 
I 
I 
I 
I 
I 
I' 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

While Bertrand does not have interactive graphics capability, 

graphic output can be achieved with a number of primitive operators 

for drawing lines, circles, rectangles, and character strings, Graphical 

objects are not drawn automatically, but a postfix ! (bang) operator is 

supplied by the system . A bang applied to a graphical object will 

cause the object to be drawn. Thus, a "midpointIine" object can be 

defined as shown in Listing 2. (This object has become the canonical 

example for another constraint satisfaction system, ThingLab, to be 

discussed in Section 3.3.2.2). 

aMidpointline ! line: aline; 
mid: aPoint; 

•.. center constraints 
mid.x = (line.end.x + line.begin.x)/2; 
midy = (line.endy + line.begin.y)/2 

) 'midpointIine 
.•• draw command 
mpl' midpointline I ! mplline!; mpl.mid.!; true} 
main! 
•. a simple test of the midpoint constraint 

mpline: aMidpointIine; 
mpline.line.begin.x = 0.5; 
mpline.line.begin.y = 0.5; 
mpline.line.endx = 2.5; 
mpline.line.endy = 2.5; 
mpline! 

} 

Listing 2. Bertrand code for midpointIine 

A more interesting example (because it entails solving a system 

of linear equations) is a model of an electrical circuit. The circuit 

connects two 100 ohm resistors in series with a 10 volt battery. The 

program shown in Listing 3 outputs the current for this circuit. 
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resistance' linear resistor ( 
voltagein: aNumber, 
voltageout: aNumber, 
current: aNumber, 

voltagein - voltageout = current • resistance 
) 'eob 

voltage' linear battery ( 

voltagein: aNumber, 
voltageout: aNumber, 
current: aNumber, 
-voltage = voltagein - voltageout 

)'eob 

a' eob series b' eob ( 

) 

ILCUlTent = b.current & 

a.voltageout = hvoltagein 

n kilo ( 1000 • n) 
nvoIt (n) 

nohm (n) 
ground (0) 

main ( 

) 

bl: (10 volt battery); 
rl: (100 ohm resistor); 
1"2: (100 ohm resistor); 
bl series rl; 
rl series 1"2; 
1"2 series bl; 
bl.voltagein = ground; 
rl.current 

Listing 3. Electrical circuit in Bertrand 
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The main of this program drives the entire process. Its first 

statement b1: (10 volt battery) results in a series of rewrites. 10 

volt matches the head of n volt {n} and is thus rewritten as 10. 10 

battery matches Voltage' linear battery, since lOis an instance of 

linear. This then results in a new object being placed in the symbol 

table. This object, named b1, has parts voltagein, voltageout, and 

current , and the constraint that 

-10 = b1 .voltagein - b1.voltageout. 

Similar rewriting creates resistor objects r 1 and r2 with the added 

constraints 
r1 .voltagein 

r2. voltagein 

r1 .voltageout = r1 .current * 100 

r2.voltageout = r2.current * 100. 

The next three statements in main specify that b 1 is 1D series 

with r 1; r 1 is in series with r 2; and r2 is in series with b 1. The 

rewriting rule associated with series adds the following constraints: 

b1.current = r1 .current 

b1. voltageout = r 1.voltagein 

r 1.current = r2 .current 

r1.voltageout = r2.voltagein 

r2 .current = b1 .current 

r2. voltageout = b1 .voltagein . 

The next statement adds the constraint 

bl.voltagein = 0 

sInce ground rewrites to O. The final statement in main returns the 

value of r l's subpart current. This value (current = 0 .05) is 

computed by solving the simultaneous linear equations represented 
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by the above constraints, a process which can be handled by 

additional rewriting rules. 

Bertrand's primary strength is its facilities for building new 

constraint systems. Its weaknesses are speed and the fact that the 

augmented term rewriting system cannot handle inequalit ies, nor 

can it produce multiple solutions to a problem. These features are 

offered by Prolog III and CLP(91), the constraint satisfaction systems 

discussed in Section 4. 

3.3.2. Constraints for Graphical Applications 

Constraint-based programming lends itself readily to graphics 

applications. Because a geometric object is defined by the relative 

sizes and positions of its parts, it is usually easier to describe the 

object declaratively rather than procedurally. Furthermore , the bi-

directionality of a constraint-based description facilitates user 

interface construction, allowing the user to manipulate the object 
" 

while the constraint satisfaction system ensures that the object keeps 

its essential character based upon the constraint description . 

3.3.2.1. Sketchpad 

Ivan Sutherland's Sketchpad was the first system to take 

advantage of constraint satisfaction for the definition and 

maintenance of geometric objects [Sutherland 1963]. 

Sketchpad is an interactive system in which the user can sketch 

a rough version of a geometric figure , add constraints to it, and 

create a primitive from the object with the mac r 0 facility. 

Constraints are limited to a pre-defined primitive set, including 

--making two lines parallel, perpendicular, or of equal length ; 
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--making a line horizontal or vertical ; 

--constraining a point to lie on a line or arc ; and 

--producing digits on the display for some scalar value. 

Figure 15 shows how an equilateral hexagon can be created USIng 

constraints that force the hexagon's vertices to lie on a circle and 

then using additional constraints that force its sides to be of equal 

length . 

6-sided 

constrain vertices 
to circle 

circle put 6-sided in circle 

constrain sides to 
equal lengths 

Figure 15. Using Sketchpad constraints to create an equilateral hexagon 

Merge constraints, performed recursively on the subparts of an 

object, are used to replace two objects with a single equivalent 

object. Constraint satisfaction is accomplished using propagation of 

degrees of freedom and relaxation for constraint sets involving 
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cycles. Relaxation takes its initial values from the user' s rough 

sketch of an object, making it faster. 

Sketchpad was ahead of its time in its use of constraints for 

interactive graphics, and it served as a model for later systems such 

as ThingLab. 

3.3.2.2. ThingLab 

ThingLab [Borning 1979; 1981; 1986] is a constraint-based 

simulation laboratory written 10 Small talk , an object -oriented 

programming language [Goldberg and Robson 1983] . It is designed to 

handle numerical constraints and has special features for the 

creation and manipulation of graphical objects. 

In Borning's system, ThingLabObject is a special class of Object, 

defined by its instance variables . (its subparts) and the con straints 

among these instance variables. For example, MidP oi ntLin e is 

defined as a subclass of ThingLabObject, with two instance variables : 
" 
~ 

line (an instance of class Li n e S e g men t) , and point (an instance of 

class Point ). An instance of LineSegment in turn has two in stance 

variables, its endpoints. These endpoints are accessible to the object 

via a path name, e.g. line pointl. 

The Smalltalk code which defines the class MidPointLine is gIven 

In Listing 4. 

There are two constraints defined on the object. The first 

requires that the midpoint be halfway between the endpoints . 

Notice that because ThingLab has no facilities for algebraic 

manipulation, the user must supply local methods for maintaining 

- 67 -

'I 
II 
II 
II 
II 
I. 
I. 
I 
I 
I 
I. 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

the constraint. In this example there are three such methods, one for 

computing each point, given the other two. 

ThingI abObject subclass: 'MidPointLine 
instanceVariabIeNames: 'line point' 
classVariableNames: 0 

poolDictionaries: 0 

category: 'Prototypes'. 

MidPointLine prototype parts: 'line'. 
MidPointLine prototype locations: 'point'. 
MidPointLine prototype field: 'line' 

replaceWith: (40@40line: 1()()@20). 
MidPointLine prototype field: 'point' 

replaceWith: 70@30. 

MidPointLine prototype inserters: '('line point!' 'line point2'). 
MidPointLine prototype constrainers: I('line'). 

(Constraint owner: MidPointLine prototype 
rule: 'point = «(line pointl + line point2) 112)' 
error: 'line location dist: point' 
methods: I( 

'seIfprimitiveSet.point: (line pointl + line pointl)/I2' 

'line primitiveSet.point2: line pointl + (point • line pointl * 2)' 
'line primitiveSet.pointl: line point2 + (point • line point2 * 2)') 

priority: *required) isOKtoSplit. 

Constraint owner: MidPointUne prototype 
stay: I('point') 
priority: fweakDefault. 

Listing 4. Smalltalk code for ThingJah midpointline 

ThingLab provides an interactive interface, the 

ThingLabBrowser, where the user can define and edit graphical 

objects (Figure 16). A number of pre-defined graphical objects are 

supplied, with which the user can build more complex objects 
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without having to resort to Small talk code. Objects constructed In 

this manner inherit constraints from their subparts . 

................. . . . ...............•... . .. _ ......... .. ..... __ ... _ ........ 

Bitlmate insert Bitlmage 
T deIet.e LineSeement 

IlMi £ all values constrain Mid 
MidPointLine _ .................... ~ MidPointLine 
Point move Point 
Rectangle I==. .:. ,-, Rectangle 

--- ~ 

Figure 16. TbingJ.ab's midpointline 

The ThingLabBrowser offers three views of an object : its 

picture, its structure, and its values. The picture of a ThingLabObje c/ 

reflects the current values of the object's prototype. With a mouse, 

the user can edit the prototypical object. For example, the user can 

pull on the endpoint of a MidPoin/Line, initiating constraint 

satisfaction. That is, the object tries to maintain its constraints at the 

same time that it satisfies the user's request. 
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For constraint satisfaction, Thin gLab uses propagation of degrees 

of freedom and relaxation where the former fails. The algorithm 

begins by gathering all the constraints on the object and arranging 

them in a Constraint Hierarchy Graph . The ability to prioritize 

constraints distinguishes Borning's system from other numerical 

constraint satisfaction systems [Borning 1987; 1989] . 

A constraint can be defined at one of five levels : 

Co -- Required (constraints which must be upheld) 

C, -- Strongly Preferred (anchors for values which should not be 
changed during constraint sati sfaction ) 

C2 -- Preferred (user editing requests ) 

C3 -- Default (stay constraints , which keep prototype values in 
place, unless a higher level constraint demands a change) 

C4 -- Weak default (stays with derived values, e.g. the midpoint of a 
MidPointLine) 

When ThingLabObjects are defined , a stay is automatically 

placed on each object. The weak default on the midpoint in effect 
'"'~ says tlTht if one of the endpoints is moved, the user would prefer to 

move the midpoint in satisfaction of the required constraint ; rather 

than move the other endpoint. This constraint is intended to be in 

keeping with The Principle of Least Astonishment. With the 

constraint hierarchy, an object-designer has a clear way of specifying 

how an object should change when constraints can be satisfied in 

more than one manner. The constraint to keep an endpoint In place 

is made stronger than the constraint to keep the midpoint In place 

because, when pulling on one endpoint, the user probably does not 

expect to see the other endpoint stretch out in the opposite direction . 
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Once the Constraint Hierarchy Graph has been constructed. the 

algorithm repeatedly traverses the graph from the Co level down . 

looking for a useable constraint. A constraint is useable if 

it has a method associated with it for which there is sufficient 
input to produce an output; and 

a change in the output of the candidate method will not violate 
a higher level constraint . 

Typically, prototype values are gathered from the stay constraints in 

the first few passes, at which point there is sufficient information to 

derive output from a more interesting constraint. 

The constraint satisfier finds useable methods from among th ose 

given in the definitions of the constraints and orders these meth ods 

such that values are propagated from one to another. The sequence 

of local methods constitutes a global method for satisfying the user 

request and maintain ing the constraints on the object. Thi s 

constraint satisfaction method is then compiled and placed in the 

objec t's-method dictionary so that, if in the future the user makes a 

similar editing request, the object will know how to respond to it 

immediatel y. 

3.3.2.3. ThingLab II 

ThingLab's rapid response to an editing operation for which it 

has already compiled a constraint satisfaction method is in sharp 

contrast to its slow response after any changes are made to the 

constraints governing an object's behavior. Any change, no matter 

how simple, results in ThingLab's throwing out all methods that it 

has developed for that object. The consequence is that it must now 

create completely new methods, even if the changes have no effect 
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on some of those methods already compiled. This slow operation 

during development makes ThingLab of limited use as a tool for 

producing interactive interfaces. 

ThingLab II [Maloney, Borning, and Freeman-Benson 1989; 

Freeman-Benson, Maloney, and Borning 1990] has been designed as a 

constraint environment that is hospitable for the creation of 

interactive interfaces. It includes most, but not all of ThingLab's 

power, and yet it rapidly resolves constraint systems, even while the 

underlying constraints are undergoing constant alteration. The 

secret to ThingLab II's success is incremenlal constraint satisfaction. 

The incremental method of satisfying constraints in ThingLab II 

is based on a deceptively simple concept called the wa I k abo u I 

slrenglh of a variable. The walkabout strength of some variable v is 

the strength of the weakest constraint in the current solution that 

needs to be violated in order for v to have a value determined by 

s'orne ~different constraint. Using walkabout strengths to guide its 

search , the incremental algorithm achieves the effect of. a new 

coqstraint by searching for either an unconstrained variable or a 

constraint whose strength is sufficiently weak to allow it to be 

violated in order to satisfy the new, stronger constraint. While the 

search may visit all constraints in an effort to find one that can be 

retracted, experimental evidence indicates that this situation is rare. 

Changes to a constraint graph usually exhibit the localilY principle 

commonly encountered in other areas of computer science. 

While incremental constraint algorithms are mandatory for the 

rapid resolution of dynamic constraint systems, they are not 
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necessarily best when we are faced with systems that rarely change. 

Their first and most glaring deficiency comes from the fact that these 

algorithms rarely work on constraint graphs that contain cycles. A 

second, more easily avoided problem is that they are inefficient 

when applied to a completely unresolved constraint system 

Other derivative works from ThingLab include the Filters Project 

[Ege, Maier, and Borning 1987; Ege 1989] and Animus [Duisberg 

1986]. The first of these concerns the development of user 

interfaces. The second adds animation based on temp oral 

constraints . 

3.3.2.4. The Filters Project 

The Filters Project [Ege, Maier, and Borning 1987] grew out of 

the observation that a declarative specification of the model -view 

relationship might facilitate the construction of user interfaces . 

Small talk, the language in which ThingLab is written, relies on its 
.... 

Mo(l-el--¥iew-Controller paradigm [Goldberg and Robson 1983], an 

interface-building strategy which is more clear-cut in theory than In 

application. Ege's claim is that constraints provide a clearer, more 

natural description of the model-view relationship. 

The Filters Project attempted to use Small talk's class object

oriented paradigm and ThingLab's constraint satisfaction system as a 

basis for a constraint filter specification language. A Ji/te r is an 

object which, in terms of constraints, describes the relationship 

between a source (the data model) and the user's view of it. It is 

constructed from subJillers relating subparts of the source and view. 

Subfilters can be placed together in a Jiller pack with sequen c e , 
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iteration, and condition operators. A number of atomic filters 

(primitives) were provided by the implementation, including 

IntegerEquality, StringRender, StringConversion, and PopUpMenu. 

The Filter Specification Language attempted by Ege was limited 

in its ability to express conditional and set constraints, which are 

necessary for a complete interface-construction package. For this 

reason, a new implementation is being attempted based upon the 

CLP(91) constraint logic programming language [Ege 1989) (Section 

4.2). Issues of part-subpart and class-subclass inheritance are being 

addressed in this new version. 

3.3.2.5. Animus 

Animus is a ThingLab-inspired system which uses constraints 

for animated user interfaces [Duisberg 1986). The Animus system 

adds three classes of temporal constraints to ThingLab's static 

constraints: TimeDi!!erentiaIConstraint, TimeFunctionConstraint, and 

trigg_erC onstraint. The first class handles simulations of continuous 

time relations, such as i = dq/dt; the second class handles val ues 

which are a function of time, such as verticalOffset = A sin wt; and 

the third class handles actions which are triggered by discrete 

events, such as objects moving across the display screen in response 

to certain messages. 

The name Animus refers to the idea that each animated object 

has an anima or soul that gives it life and sets it in motion. When a 

ThingLabObject is created (e.g. Circuit), the system automatically 

creates a corresponding anima class (CircuitAnima) and its prototype 

instance. All such anima classes are subclasses of Anima, they hold 
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instance vari ables for tim e and e ventQueu e , and th ey manage 

constraint satisfaction for the animated object. 

Temporal constraints are defined on instances of Thin gLabObjec t 

In ThingLab style. An object may have both static and te mporal 

constraints on it. For example, a dynamic electrical circuit might 

contain a resistor with the constraint 

delta v = i * r 

as well as an inductor with the constraint 

delta vlL = dUdt. 

However, when the Thin g LabObject is in stanti ated, all temporal 

constraints migrate to the object"s anima, since it is the anima whi ch 

responds to the tick of the global clock and keeps track of the event 

queue . 

A temporal constraint is a relation between a stimulus (e.g ., a 

tick of the clock or the receipt of some message) and a response in 

the, j orm of an event or a stream of events. An instance of cl ass 

E ve nt is a representation of a Small talk method along with a time 

stamp specifying at what time the event-message is to be sent. 

As the simulation begins, the anima compiles responses for all of 

its temporal constraints . The compiled methods contain messages 

which will place the constraint's response events on the event queue 

when the constraint is triggered at run-time. The events are ordered 

by time stamp so that they can be activated at the appropriate 

moment. The time stamps also make it possible to interleave 

animations of different objects so that they appear simultaneous. 
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In the case of a TimeDi//erentiaIConstraint, the constraint 

satisfaction method is fairly simple. Consider an electrical circuit 

containing a capacitor with the constraint j = dqldt. This constraint 

requires that the charge on the capacitor be adjusted upon each tick 

of the clock . Constraint satisfaction yields a finite difference 

approximation of the differential equation by assuming that the 

value for i at the onset of each discrete time interval is good for the 

duration of that interval. Thus, the message which increments i IS 

placed on the event queue and is sent at the next tick of the clock. 

A TimeDi//erentiaIConstraint is satisfied with an 

ImmediateResponse, that is, a single event which occurs at the next 

time instant. TimeFunctionConstraints are handled similarly. 

TriggerConstraints, on the other hand, generally initiate more 

elaborate responses, instances of class Flasher, Trajectory, Script, or 

Seq u e n c e . These responses are comprised of a series of time-

" stamped- events which are placed on the event queue. A Sequence , 

for example , points to a file containing an array of bi tmaps' to be 

displayed one after the other. A Traje c tory response causes an 

object to move across the display screen at a given velocity or 

following a given path . A Flasher specifies a rectangle on the screen 

which flashes from black to white. 

Below is an example of a TriggerConstraint placed on an instance 

of SortQueue. 

• 
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TriggeI{::onstraint owner. SorlQueue prototype 
to: 'list' 
trigger: fcompare:with: 
causes: '(Flasher with: (list at: a1)) enqueueEvents. 

(Flasher with: (list at: &2» enqueueEvents' 

The list is an instance variable of Sort Que u e and contains the 

values to be sorted. The constraint states that when the list receives 

the message compare :with :, a series of events is to be placed on the 

event queue causing the graphical display of the values being sorted 

to flash . The constraint causes the SortQueue 's anima to compile the 

method gi ven below : 

thingsortQueue3list.compare: tl with: t2 
(Flasher with: (thing sorlQueue3 list at: t1)) enqueueEvents. 
(Flasher with: (thing sorlQueue3list at: t2» enqueueEvents. 
self tick: 1. 

ithing sortQueue3list compare: tl with: t2. 

Then all calls to c omp are : wit h: are replaced by calls to thi s 

newJy-<:?mpiled method . The intention in this design is to separate 

the application program from the code implementing its animation. 

3.3.2.6. MET AFONT 

METAFONT uses constraints and an equation solver to describe 

the shape of a character of text [Knuth 1979]. The constraints are 

restricted to sets of linear equations that can be solved in one pass . 

The system can be run interactively, the user specifying the positions 

of points by constraints and drawing the character a command at a 

time with the points as parameters . However, the user cannot edit 

the resulting image by pointing to it with a mouse, a limita tion 

addressed by a later system, JUNO. 
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3.3.2.7. JUNO 

JUNO is a constraint-based graphics system which adds a what

you-see-is-what-you-get editor to a MET AFONT-style language 

[Nelson 1985). Like METAFONT, JUNO allows the user to describe an 

object by geometric constraints, but constraints are not limited to 

linear equations, allowing for geometric predicates of parallelism and 

congruence. 

Another added feature is the ability to select a pre-defined 

constraint, represented graphically by an icon, and apply it to a point 

with the mouse. While this simplifies the definition of constraints, it 

limits the applications since the only data object is a point, and only 

four constraints are available: Two points can be constrained to be 

horizontal or vertical to each other, and four points can be 

constrained to describe parallel or congruent lines . 

One interesting feature of JUNO is the facility for building an 

ima.ge~both textually and graphically. An image produced by a 

constraint specification can be moved or stretched with the . mouse, 

and the underlying constraint description is changed accordingly. 

The JUNO constraint solver uses Newton-Raphson iteration, a 

derivative-based method faster than relaxation. Like Sketchpad 's 

relaxation technique, this method benefits from hints from the user, 

who must layout the points of a graphical object in roughly the right 

position in order to give the iteration process a headstart. 
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3.3.2.8. IDEAL 

IDEAL is a high-level graphics language which can be used to 

typeset figures so that they can be printed on the same page with 

text, eliminating the need to cut and paste [Van Wyk 1982]. 

IDEAL's procedures, called boxes, describe a graphical object by 

means of: 

-- a set of constraints on the relative positions of points ; 

a set of drawing commands; and 

-- a list of boundary points . 

For example, the rectangle box is defined as: 
rect { 

}. 

var ne, nw, SW, se, C, ht, weI; 
ne = se + (O,l)*ht; 
nw = sw + (O,l)*ht; 
ne =nw + weI; 
c = (ne + sw)12; 
conn De to nw to SW to se to ne; 

Complex numbers are used to describe points because they can 

implicitly express operations such as translation or rotation. 

A call to a box is made with a put statement, accompanied by 

enough parameters and/or additional constraints to uniquely 

describe the object. For example, both of the following calls draw the 

same rectangle: 
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putrect ( 
ht=2; 
wd= 1; 
8W=0; 

J 

putrect ( 
ht=2; 

J. 

wd I: 0.5 • ht; 
nw = (0, 2); 

IDEAL has procedures for drawing rectangles, circles , and arcs . 

It also has facilities for drawing an object iteratively (p e ns ) , 

obscuring one object with another, and applying a texture over a 

polygonal area. 

Constraints must be expressed as linear or slightly non -linear 

equations. IDEAL's equation solver is similar to METAFONT's, but 

more powerful in one respect: If necessary, it will search for a 

proper ordering of the equations such that the sequence of 
"~ 

substitUiions transforms the equations from non-linear to linear. In 

META FONT, the equations are processed in the order given , and no 

other orderings of substitutions are tried. 

3.3.3. Constraints for Electrical Circuits 

Constraints can also be applied to the modeling of electrical 

circuits, as illustrated by Sussman and Steele's constraint satisfaction 

system [Sussman and Steele 1979). Their constraint language 

interpreter is built around a number of primitive constraints , 

including adders and multipliers. The constraints have subparts, 

down to primitive cells (e.g . numbers), which can be accessed by a 
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path name (e.g. adderJ a1) . Simple constraints can be connected into 

arbitrarily complicated networks with a merge. 

This constraint language is like ThingLab In its hierarchi cal 

construction of objects . Figure 17 gives the definition of a resistor 

and the corresponding schematic diagram. Pathnames are preceded 

by», and merges are denoted by = =. 

An advantage of this system IS that it keeps track of 

dependencies and can tell the user how conclusions were drawn. A 

premise can be changed , and all conclusions dependent on it are 

automatically retracted. 

The primary constraint satisfaction technique used is 

propagation of known states . If propagation fails due to cycles in the 

constraint network, another strategy can be used appropriate for the 

electrical circuit application, namely, equivalent views. 

It is sometimes possible to break a cycle in a constraint network 
.... 

by o ffering an alternate view. For example, the constraint 

X+X=4 

has a cycle, while 

2X = 4 

does not. 

When translated into redundant views in a constraint network. 

equivalent views of a circuit can lead to a design solution. For 

example, the system can be given the additional knowledge that two 

resistors in series are equivalent to a single resistor. 
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A RESISTOR 
(constraint resistor 

« tl terminal) 
(t2 terminal) 
(resistance number) 
(avadder) 
(aiadder) 
(m multiplier» 
(==(» v tl) (» sum av» 
( .. = (» v t2) (» al av» 
(== (» a2 av) (» product m» 
(== (» i tl) (» ml m» 
(== resistance (» m2 m» 
(== (» i tl) (» al ai» 
(== (» i t2) (» a2 ai» 
(constant (» sum ai) 0.0» 

Tl 

T2 

R 

Figure 17. Sussman and Steele resistor constraints 
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Sussman and Steele call the equivalent views SLICES, and they 

use them as an alternative to relaxation for breaking cycles . They 

also discuss, but do not implement, techniques for algebraic 

manipulation that would make their system more powerful. 

3.3.4. Constraints for Physically-Based Modeling 

In the systems and applications discussed so far, constraints are 

viewed as mathematical relations which can be "solved" in more or 

less direct ways. For example, we get new values representing an 

object's state by propagating changes, or we solve the se t of 

constraints as a system of linear equations. 

Physically-based modeling, a growing area of graphics research, 

interprets constraints as the basis for forces or energies that can be 

used to move objects in a physically-realistic manner. Using 

techniques borrowed from optimization theory and classical 

mechanics, a physically-based modeling system converts con straint 
" 

equations into constraint forces or represents constraints as energy 

fields which effectively pull the object in the desired direction: Thus 

physically-based modeling places constraints in a world governed by 

Newtonian mechanics. 

Physically-based modeling begins with the building of an object 

from primitive parts. Geometric constraints effectively snap the 

parts together. For example, a constraint can form a joint between 

two parts of a body (similar to ThingLab's merge, which joins two 

points). loint limits can also be expressed through constraints. Once 

the object has been pieced together, constraints can be used to 

position or animate it. For example, a constraint can anchor a point 
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to a location in space, or it can require a point to follow a predefined 

path [BaTZel and Barr 1988). 

The two most commonly-reported constraint methods for 

physically-based modeling are reviewed in the next two sections. 

These methods have been adapted and augmented by a number of 

researchers, as discussed in Section 3.3.4.3. 

3.3.4.1. Penalty Method 

The penalty method is a technique borrowed from optimization 

theory. The basic optimization problem is to find a vector T w h i c h 

locally optimizes (minimizes or maximizes) a function f(7). The basic 

constrained optimization procedure optimizes the function subject to 

a given constraint. For example, we may wish to 

minimize f(Xj, X2) = 2xj2 + 3X2 2 

subject to g (Xj ,x2) = Xj + 3X2 - 10 = 0, 

wh.c::re f(Xj ,X2) is the objective function and g(Xj ,X2) = 0 IS the 

cons train t. 

The penalty method looks for an approximate solution to this 

problem by first defining a new objective function h (7) which 

includes a penalty for violating the constraint. Since we want the 

penalty to indicate how far we are from satisfying the constraint, it is 

reasonable that the penalty should be of the form k[g(7)J2. Now the 

problem is to minimize 

h (7) = f(7) + k[ g(7)j2. 

The non-negative constant k is a weighting factor which 

indicates how strongly we insist on the constraint. When k = 0, the 
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constraint is ignored . As k ~ 00. the constraint IS comple tely 

satisfied. Figure 18 illustrates how h (X) approaches the constrained 

mInImum for increasing values of k. 

The penalty formulation of a minimization problem can be used 

to model the constrained motion of an object. Here, the objective 

function U (X) represents the potential energy of the unconstrained 

physical system, while the penalty function k [g (X)]2 acts like a 

spring with its own potential energy, attempting to pull the object in 

the direction of the constraint: 

E(X) = U(X) + k[g(X)P [1] 

The penalty method IS also easily generalized to multiple 

constraints since the constraint terms can be summed. The problem 

minimize U(X), subject to gary) = 0; a = 1, 2, .. . ,n 

becomes 

n 

" --minimize E(X) = U(X) + Lka[ga(X)P 
a=1 

[2] 

Since the object will minimize its potential energy over time, we 

can now solve the constrained motion problem as a minimiza tion 

problem. The simplest optimization algorithm is a numerical 

procedure called gradient ascent/descent. (We will put aside our 

energy function for the moment and illustrate the gradient ascent 

(hillC/imbing) procedure with a two-dimensional function since this is 

easier to depict graphically . We will then return to solve the energy 

function for our physical model.) 
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X2 

. . . t mID1mumpom 
(1.4,2.8,0) 

Xl + 3x2 • 10 = 0 

Xl 

Figure 18. Penalty method approaches constrained mjnjmum 

Consider the graph in Figure 19 representing a function 
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which we wish to maximize. The problem is to start at some initial 

position (Xl,X2) and to find a path S which will lead to a local 

maximum for y. However, we don't want to take a circuitous path; 

we want to go straight up the hill. The hillclimbing method is based 

on the observation that the rate of steepest ascent will be alon g the 

gradient of I (Xl,X2) . (Analogously, the rate of steepest descent will be 

opposite the gradient. See [Gottfried and Weisman 1973) for the 

derivation .) 

y 

.;--+--+-----~r-----.X2 

Xl 

Figure 19. Hill climbing to maximum 
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We can understand intuitively why the hillclimbing method 

works if we picture the contour lines of the objective function 

projected down to the Xl. X2 plane (Figure 20) . (The contour lines 

represent the contours of the function when y is set to different 

constants .) Saying that we want to move in the direction of the 

gradient of the function is equivalent to saying that we want our 

path S always to run perpendicular to these contour lines . This will 

take us directly up the "hill" as the values of Xl and X2 vary. Thus. 

we have: 

d Xi _ (Jf 
d t - (JX j 

for i = 1.2. 

(For steepest 

the gradient: 

descent. the variables move In the opposite direction of 
dXj a.t 
dt = - (Jx/ 

We can now use Euler's method to solve the differential 

equations. Let Xi. denote the value of independent variable Xi at 

time He . To get the value of the independent variables at time tk+l . 

we use: 

(Jf 
Xi .. 1 = Xi. + h -;- • 

ciXj 

where h is the step size. We continue to step up the hill in this 

manner until the gradient becomes sufficiently small to indicate that 

we have arrived at a maximum . 
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X2 

Xl 

Figure 20. Projection of contour lines onto Xl-Xl plane 

As noted above, the penalty method can be used to minImI ze th e 

potential energy of a physical object which we wish to place in 

motion. The objective function to be minimized is given by equation 

[1). Applying the gradient descent method , we move the 

independent variables in x in a direction opposite to the gradient of 

the function . This yields: 

L oM .. dx; = F(X) _ 2kg(X) ag 
J IJ d I ax; [3) 
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where M ij is the generalized mass matrix and F (T"") is the generalized 

force on the system [Platt 1989]. 

A simple example (Figure 21) will illustrate this method. Let 

(XI.X2). (X3 .X4) denote the positions of two unit mass balls in 2-d 

space. Their initial positions are (0.4,0) and (0.5,0). respectively . 

The balls are constrained by "springs" to the (0,1) and (1,1) positions. 

respectively, and they are also attached to each other by a spring. 

(0.4,0) (0.5,0) 

Figure 21. Penalty method simulating balls on springs 

This gives the following constraints: 

8j{T) = ..,JX12 + (X2-J)2 • 

8 2(T)=..,J(X3-1)2 + (X4-J)2; and 

83(T) = ..,J(XI - X3)2 + (X2 - X4)2 
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The balls are also constrained not to go below the ground . To 

achieve this effect, we activate a penalty force only when a ball 

moves to a negative y position, as follows : 

term 

g4(X) = UjX2 where Uj = J when X2 < 0; else Uj = 0; 

g5(X) = U2X4 where U2 = J when X4 < 0; else U2 = o. 
Giving each constraint g a(T) a weight of k a , we get a penalty 

n 

Lka[gafT)J2 as follows : 
a=J 

kj [Xj 2 + (X2-J)2 J + k2[(X3·J)2 + (X4-l)2 J + k3[(Xj ·X3 )2 + (X2-X4 )2 J + 

k4UjX22 + k5U2X42 

To apply the gradient descent method, we use equation [3]. 

Since the balls are unit mass particles, the mass matrix is the identity 

and falls out of the equation. The external force F (X) consists only of 

gravity, and thus the force vector is F (X) = [0,-9.8,0,-9.8] . 

equ~tion [3] yields : 

Thus, 

-
i = J,2,3 ,4 

where 
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Integrating these with a time step of 0.01 and then sampling every 

tenth point results in motion of the balls characterized by the time 

and positions in Table 1. 

Time xl z2 lI3 x4 

0.0 0.40 0.00 0.50 0.00 
0.1 0.20 0.66 0.37 0.58 
0.2 0.16 0.37 0.31 0.16 
0.3 0.15 0.28 0.30 0.02 
0.4 0.15 0.26 0.29 -0.01 
0.5 0.14 0.28 0.29 0.02 
0.6 0.14 0.29 0.29 0.05 

., 0.7 0.14 0.31 0.29 0.10 ~ 

0.8 0.14 0.26 0.29 0.00 
0.9 0.14 0.26 0.29 0.00 

1.0 0.14 0.28 0.29 0.03 

Table L Positions ofballs in penalty method 

While the penalty method is fairly simple to use, it does not 

satisfy constraints exactly. This is an advantage in that a 

compromise among constraints is sometimes desirable, but a 

disadvantage in that an object held together by multiple "springs" 

may look too loosely connected. Another disadvantage is that as the 

constraint weights increase, the differential equations become stiff 
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due to the widely separated time constants. Most numerical methods 

require time steps on the order of the fastest time constant. 

However, such large time steps may cause the "springs" to bounce 

unreali stically. 

Application of the penalty method In physically-based modeling 

IS discussed in [Witkin, Fleischer, and Barr 1987], [Platt and Barr 

1988), and [Platt 1989). 

3.3.4.2. Inverse Dynamics 

In some applications, it is necessary that constraints be fulfilled 

exactly . This can be accomplished by a process of inverse dyna mics. 

The forward dynamics problem entails computing an object's 

behavior given the forces which act on it. The inverse dynamics 

problem is just the opposite: Given the constraint equations which 

define an object 's structure, location, and behavior, we compute 

constraint forces which cause the object to move in an appropriate 

" ~ manner. A constraint force works like an invisible hand which 

guides an object in the correct direction or prevents it from ' moving 

beyond its limits no matter what other external forces are exerted on 

the object. 

Witkin, Gleicher, and WeJ.::h [1989) present a derivation of the 

physical equation which yields the appropriate constraint force. 

Given in the problem are a set of constraint functions c;(q, /) and a 

vector q of the object's independent variables, and a time t . Each 

constraint function c i depends on the state of the independent 

variables and possibly also on time. We say that the constraint is 

satisfied when Ci(q, t) = O. 
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The goal is to find a constraining force C which, when added to 

the known external force Q, will result in motion which is consistent 

with the constraints . The object will be moved in accordance with 

Newton's second law of motion, which in generalized form is : 

[ 1) 

M is the generalized mass matrix of the object being moved.2 C is the 

vector of unknown constraint forces, and Q is the vector of known 

external forces with respect to each independent variable. The 

constraint force effectively cancels any component of Q which would 

cause the object to violate its constraints . Once C is known, it can be 

added to Q. Then ii. the second time derivative of the independent 

variables, can be determined. It is then possible to integrate the 

differential equation over time and move the object. 

This equation cannot be solved directly since both C and (i are 

unknown. We need more information. Since we want the constraints 
"> 

always ~o be satisfied, we know that each constraint Ci must be 0 at 

initial time to, the rate of change of C i must be O. and that rate of 

change must not change from O. Thus we have C'i = 0, 1 5 i 5 n 

(where n is the number of constraints). 

Finding C"i and substituting into ii} = Wjk (Ck + Qk) , we get 

dCi de i . d2ci 
dqj Wjk (Ck + Qk) + dqj qj + dt2 = 0 (2) 

where W is the inverse of matrix M. 

2 According to the summation convention, the appearance of an index twice in 
a term implies summation. Thus Mijqj is equivalent to 1: jM ijqj, i.e .• row 1 of 
matrix M times vector q. 
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Rearranging. we get: 

aCj aCj ai: j. d2Cj 

- aqj Wjk Ck = aqj Wjk Qk + aqj qj + dt2 [3 ) 

which is a matrix representation of a system of linear equations with 
ac-

the force vector C unknown. Noting that -a I is an n x m matrix and 
qj 

W is an m x m matrix (where n is the number of constraint equations 

and m is the number of independent variables). we can see that 

equation [3) represents n equations and m unknowns . Since in 

general n < m. we have fewer equations than unknowns. We still 

need more information. 

The fact that there are fewer equations than unknowns indicates 

that the system is underconstrained. which is as it should be. If the 

system were completely constrained. nothing could move . In an 

underconstrained system such as this. there exist many values for 

the constraint force C which would satisfy the equation . However. 

we'~want to add only enough force to cancel out any component of Q 

which would cause the object to deviate from the constraints . . 

To satisfy the constraints. the object can move only along the 

tangent planes to the surfaces Ci = O. Thus. a constraint force that 

lies along the gradient to the constraints C will cancel any illegal force 

while not adding or deleting energy from the system. This 

observation yields: 

aCj 
Cj = ~ aqj' [4] 

where A. is vector of scalars. The components of A. are known as 

La g range multipliers. and this technique of inverse dynamics is 
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sometimes referred to as the Lagrange multiplier method. (See 

[Witkin, Gleischer, and Welch 1989) for a discussion of the principle 

of virtual work.) 

We now have: 

aCj aCr aCj ac j . d2Cj 

-faqjWjk aq/ Ar = aqj Wjk Qk + aqj qj + dt2 [5) 
J 

ac' 
N 

I. 
ote -a IS 

qj 
the Jacobian matrix for the constraint equations. (That is, 

each row i 

constraint Cj.) 

in the matrix represents that gradient vector 
aCr 

Wjk is the inverse of the mass matrix, and -a is 
qk 

for 

the 

transpose of the Jacobian matrix. This gives us, on the left-hand side 

of equation (5), an n x m matrix multiplied by an m x m multiplied 

by an m x n, yielding an n x n matrix . Ar is an n x 1 vector of 

unknowns. On the right-hand side, we get an n x 1 vector of . known 

values. We can now solve this system of linear equations for Ar. 

Once Ar is known, we can get C from equation [4), and we can finally 
" 

solve fer q. 

Theoretically, the above solution should supply a constraint force 

sufficient to ensure that the objects always maintain their 

constraints. However, due to errors introduced in discretizing the 

integration, it becomes necessary to include a "feedback" term which 

inhibits drift. Thus the total force becomes: 

aCj at j 
Qj + Cj + UCj aqj + f3 Cj aqj' 

where a and f3 are constants. 

Application of this method can be illustrated with a simple 

example. We will create a "midpointline" like the one constructed in 
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ThingLab (Section 3.3.2.2), with another fixed-length line attached at 

an endpoint. We will apply an initial force to the unattached 

endpoint of the midpointline and watch it move in response to the 

force. 

Let q = [q] q2 q3 q4 qS q6 q7 q8] be the vector of independent 

variables with initial values [0 0 10 0 20 0 20 10]. That is, we have 

four points (q] ,q2), (q3,q4). (qS.q6). (q7.q8) at initial positions (0,0). 

(10,0), (20,0), and (20,10), respectively. The first two constraints 

make the first three points collinear and equidistant. The third 

constraint fixes the length of the line between (qS .q6 ) and ( q 7. q 8) at 

IO units. 

C]: 2q3 - q] - QS = 0 

C2: 2Q4 - Q2 - Q6 = 0 

c3: 100 - (QS-Q7)2 - (Q6 - Q8)2 = 0 

The points are particles of unit mass. Thus the mass matrix is the 

identity matrix and can be dropped out of the equation . We will ., 
~ 

exert an initial force of 10 units in both the x and y direc tions on 

point (Q1.Q2), which gives an initial force Q = [10 IO 0 0 0 0 0 0] . 

The constraint Jacobian matrix is 

o 
- 1 
o 

At the initial moment to, the second term on the right-hand side 
de· 

of equation [5]. dQ; 4j. will be 0 since the initial velocity is O. For 

de · d d d dc-
time t > to, we have dQ; 4j = dQ/dlCj(Q,(t)))) Qj = dQ/dQ~ q,) Qj . 
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The third term on the right-hand side, 
d 2ci 

will always be 0 In this dt 2 • 

example since the constraint functions do not depend on time. 

Using a time increment of 0.1, we see the following motion of the 

object. (Time t = I occurs after 10 time slices.) 

t ql q2 q3 q4 qS q6 q7 q8 

0 0.00 0.00 10.00 0.00 20.00 0.00 20.00 10.00 

1 83.00 82.00 10.33 36.00 19.83 -0.09 20.00 9.91 

2 1.67 1.64 10.67 73.00 19.67 -0.18 20.00 9.82 

3 2.50 2.45 11.00 1.09 19.50 -0.27 20.00 9.72 

4 3.33 3.27 11.33 1.46 19.33 -0.35 20.00 9.63 

5 4.17 4.09 11.67 1.82 19.17 -0.44 20.00 9.53 

6 5.00 4.91 12.00 2.19 19.00 -0.52 20.00 9.42 

7 5.83 5.72 12.33 2.55 18.83 -0.60 20.00 9.33 

8 6.67 6.54 12.67 2.92 18.67 -0.69 20.00 9.23 

9 7.50 7.36 13.00 3.29 18.50 -0.77 20.00 9.12 

10 8.33 8.17 13.33 3.66 18.34 -0.84 20.00 9.02 ..... 
~ 

Table 2. Positions of midpointline in Lagangian method . 

Figure 22 shows the initial and final positions of this midpoint 

example. The force on the first point has caused it to move in a 45° 

angle, upward and to the right. This is consistent with the fact that 

the force was equal and positive in the x and y directions. This force, 

and the constraint that the second line maintain a fixed length, has 

caused the midpoint line to compress from a length of 20 to a length 

that is slightly less .than 14, whereas the fixed length line retains its 

length of 10. 

- 98 -



3.3.4.3. 

fixed length line " ___ ~~ 

. -...... ~ 
20,10 

.. II • ... ; . 
..; . 

midpointline /I'" ~ ... --- : '\-" ----'. '" ---..... \ : . '. ~. ... . 

0,0 

, . 
'¥ midpoint .... " .. "..: 

10,0 
• • .. 

20,0 

Figure 22. Lagrangian approach to midpoint 
with attached. fi.xed.length line. Solid 
lines are at t=O, dotted are at t=10. 

More Physically· Based Constraints 

Isaacs and Cohen [1987] combine behavior function s, kinematic 

constraints, and inverse dynamics to control th e motion of joi nted 

figures . Behavior functions determine higher level goal s of moti on, 
,~ 

like a h and reaching for an object or a car stopping to avoid a cliff. 

Kinematic constraints specify exactly where a part of an object is to 

go. Inverse dynamics techniques then determine the forces whi ch 

would result in the goal of motion. 

Barzel and Barr [1988] also use inverse dynamics on rigid bodies. 

They divide the modeling problem into two parts : moving the parts 

of an object so that the object satisfies an initially unmet constraint 

(causing the object to "self-assemble"); and maintaining the 

constraint as the object moves and interacts with other objects. A 

catalog of useful constraints and an explicit algorithm for computing 

the constraint forces are given . 
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Platt and Barr [1988] apply reaction constraints and augmented 

Lagrangian constraints to flexible models, that is, putty-like objects . 

Reaction constraints are used to model the collision of a flexible 

model with a polygonal model. Augmented Lagrangian constraints 

combine the penalty method and the Lagrange multiplier method. 

Platt [1989] applies the constraint methods to neural networks . 

The neural networks are actually differential equations that can be 

solved using standard techniques from optimization theory and 

numerical analysis, or implemented directly as circuits . Platt also 

reviews the constraint methods applied to physicall y-based 

modeling. 

4. CONSTRAINT LOGIC PROGRAMMING 

We now turn to programming languages which bring together 

finite- and continuous-domain constraint satisfaction . These 

languages are similar in that they are Prolog-based, and they 
" 

attempt- to establish a consistent framework for constraints defined 

over a variety of domains. 

We saw in Section 2.3 that a Prolog program can express a 

consistent labeling problem, i.e., a finite-domain CSP. However, while 

the domains of the variables in the puzzle problem are implicit in the 

program, it is not possible to declare a finite domain in Prolog. Thus, 

domain-pruning strategies which help to reduce the search are not 

directly applicable in Prolog. 

Furthermore, because Prolog is based upon syntactic matching 

and unification, it has only limited utility in expressing equalities and 

inequalities as constraints . Equalities can be handled as assignment 
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statements, and inequalities as tests which either succeed or fail, but 

statements such as X = Y or X < 3 fail in Prolog if X and Yare 

unbound . 

Consider, for example, the 
n 

the "triangular" number R = I i 
i=l 

following program, 

N(N+1 ) 
= 2 

triangular(O,O). 
trianguJar(N,R) :-

NI = N -I, 
triangular(NI,Rl), 
R:N+Rl. 

which computes 

This program iIlustrates Prolog's inability to express the bi

directionality we expect in a constraint problem. Given the query 

?- triangular(4.R). 

the program responds with R = 10. However, the program cannot 

find a solution to the query 

?- triangular(N,10). 

This is because N1 = N-1 is handled as an assignment statement 

rather than a constraint, and since N is unbound, no assignment is 

possi ble. 

Recognition of Prolog's limitations as a language for stating 

constraint problems has led to the evolution of constraint logic 

programming languages [Cohen 1990]. What we would like in the 

program above is the ability to treat equalities and inequalities as 

true constraints. The following program computes the triangular 

number, but in the style of a constraint logic programming language: 
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triangular(O,O). 
triangular(N, N+R) :
N~ I, 
triangular (N-1, R). 

We can now ask for a solution to the query 

? triangular(N, 10). 

Like Prolog, a constraint logic programming language proceeds 

by matching and unification, but there is an additional mechanism 

for collecting constraints and checking their satisfiability each time a 

match is found. We can see how this operates in a short trace of this 

program. 

The initial query cannot be matched to the first clause, 

triangular(O,O), because the constant 10 in the query does not match 

the constant 0 in the clause. Thus the second clause is matched. As 

the match is made, an equality constraint is created between 10 and 

N + R . Also, the constraint N <! ] is added to the set of constraints . 

Within this clause, a recursive call, triangular(N·],R), IS made. This 

call could not be handled in standard Prolog because N is unbound . 

However, In a constraint logic programming language, an equality 

constraint is simply created between N -] and the variable to which it 

is eventually matched. (Variables are renamed In recursive 

matchings.) The constraint set is checked for satisfiability each time 

a matching takes place. For the next two calls to I ria ng u I a r, 

triang ular(O ,0) fails to match because of the constraints created upon 

matching. When the constraints can finally be satisfied by the match 

triangular(O,O), values propagate through the constraints until the 

solution N = 4 is found . 
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Constraint logic programming languages allow for a consistent 

handling of constraints defined over a variety of domain s. Three 

recently developed constraint logic programming languages are 

discussed in the following sections . 

4.1. Prolog III 

Prolog III . developed by the Groupe d'Intelligence Artificielle in 

Marseille. is a constraint logic programming language which allows 

constraints to be defined over rational numbers, booleans, and li sts 

[Colmerauer 1990]. Each domain has associated with it appropriate 

operations and relations. Operations include +, -, *, ", v, ~ , and . 

(concatenation). Linear equalities . inequalities. and disequ alities can 

be defined over rational terms; equalities. disequalities. and subset 

relations can be defined over Boolean terms; and equaliti es and 

disequalities can be defined over lists. The most recent version of 

Prolog III al so has facilities for calculating maximum and minimum 

val'l1.es of numerical expressions . 

We saw in Section 2.3 that the original Prolog implementations 

were based upon Robinson' s unification algorithm . Prol og III 

integrates constraint satisfaction into the unification algorithm . Thi s 

entails checking constraints for satisfiability as matchin g and 

unification proceed . 

Colmerauer describes the execution of a Prolog III program in 

terms of an abstract machine. Essentially. a logic program can be 

viewed as a sequence of context-free rewriting rules. The initial 

state of the machine is represented by (W, 10 I) ... In , S) . where W is a 

set of variables whose values are to be determined, 10 I) . .. In is a 
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sequence of terms which we are trying to erase In the course of 

rewriting, and S is a system of constraints to be satisfied. (Terms 

correspond to the literals of the Prolog program, e.g. triangular(N,R). 

Constraints are defined using the relevant operators and relations of 

the variable domains, e.g. z = x + 2 * y, or a = ., b v c.) 

A rule which is used to change the state of the machine is of the 

form 

so ~ S] . .. Sm, R, 

where SO .. . Sm are terms, and R is a set of constraints. 

Application of a rule yields a new state: 

(W, S] ... Sm t] ... tn, S vR v (to = SO}). 

That is, the terms S] . •. S m replace to in the list of terms to be 

rewritten, the constraints associated with the rule are added to the 

set of constraints, and equality constraints are created or variables 

art: given values as a result of matching a rule to a term. -. 
~ 

Importantly, the transition to the new state is permitted onl y if the 

constraints are satisfiable given the values assigned to variables thus 

far . Rewriting continues until all terms are eventually rewritten as 

unit clauses, which in turn can be erased. When the machine reaches 

a state in which all terms have been erased, it produces an answer 

on the basis of the remaining constraints. 

To illustrate Prolog Ill's handling of constraints over rational 

numbers, we will solve an electrical circuit problem similar to the 

one solved above in Bertrand (Section 3.3.1). We can now add to the 

problem description some choices of available resistors and batteries, 
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and we can limit the voltage drop across the resistors. (This program 

actually combines features of the Bertrand program and an electrical 

circuit program presented In [laffar and Michaylov 1987] .) The 

program is shown in Listing 5. 

availResistor(IO). availResistor(14). availResistor(27). 
availResistor(60). availResistor(IOO). 

availCell (10). availCell(20). 

battery (Volt, Vin, Vout) :. 
availCell (Volt), 
·Volt = Vin . Vout, 
Vin = O. 

resistor <vm; Vout, Current, Resistor) :. 
availResistor(Resistor), 
Vm = (Current * Resistor) + Vout. 

circuit (V, RI, R2, C) :. 
battery (V, VI, V2), 
resistor (V2, V3, C, RI), 
resistor (V3, VI, C, R2~ . 
V3·VI < 17, 
V3·VI> 14. 

Listing 5. Prolog m code for circuits problem 

The Prolog III program can offer multiple solutions to thi s 

problem based upon the available resistors and batteries . The 
20 

solutions are V=20, R1 = 10, R2 = 27, and C = 37; V = 20, R1 = 14, 

20 20 
R2 = 60, and C = 74; or V = 20, R1 = 27, R2 = 100, and C = 127" 
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Because of the complexity of algorithms for solving constraints 

on integers, the structure underlying Prolog III does not contain a 

relation restricting a number to be an integer. However, there is a 

system-supplied predicate, e num( X) which effectively enumerates 

integers that might satisfy a set of constraints. Thus, a query which 

determines how to get 45 cents with no more than 8 American coins 

is as fol1ows: 

?- enum(q), enum(d), enum(n), enum(p), 

{q + d + n + p ~ 8, 25q + lOd + 5n + p = 45, q ? 0, d ? 0, n ? 0, P ? OJ. 

Prolog III also al10ws constraints to be defined over lists and Boolean 

values . 

An important decision in the implementation of any constraint 

logic programming language is the choice of satisfiability algorithms 

to be used for the various domains. Cost is a consideration, since 

these algorithms are usually computational1y expensi ve. Since 

copstraints are added incremental1y to the constraint set , 
~ 

incremental algorithms are general1y sought. Simplification . of the 

constraint set and the use of canonical forms for constraints can cut 

down on computation. Simplified forms are also desirable when 

solutions are presented in symbolic form. 

The Prolog III numerical module uses an incremental simplex 

algorithm which can operate on linear constraints. This algorithm 

has the advantage of being able to detect the variables which have 

only one possible solution as it attempts to determine if the 

constraints are satisfiable. 
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The Boolean algebra module converts propositions into clausal 

form and uses SL-resolution [Kowalski and Kuehner 1971] . The 

conversion to clausal form is costly, but it has the advantage that, if 

the constraints are satisfiable, a simplified set of constraints 

containing only a minimal subset of variables can be output. 

A prototype of the Prolog III interpreter has been implemen ted 

by Colmerauer and his colleagues at Universite Aix-Marseille II, and 

a commercial version is now being distributed. 

4.2. CLP(9l) 

While Prolog III incorporates constraints over different domain s 

into one constraint logic programming language, CLP(D ) is a family of 

constraint logic programming languages classified according to the 

domain over which constraints are defined. The parenthetical D In 

CLP( D) is a parameter denoting the type of constraints which can be 

handled by the language. Each domain has operations naturally 
" -associated with it, such as set union, logical disjunction, or 

multiplication, and constraints are expressed in terms of these 

operators [Jaffar and Lassez 1987] . 

In CLP(9l), for example, equality and inequality constraints are 

expressed In the domain of real numbers with the standard 

arithmetic operators (+.*. -,f) [Heintze et aI. 1987]. Prolog is CLP(1.J), 

where 1.J is the domain of finite trees subject to equality constraints. 

The portion of Prolog III which handles rational numbers can be 

viewed as CLP(Q). Another recent Prolog extension is referred to as 

CLP(Conceptual Theory) [Beringer and Porcher 1989] . CLP(1:*) is 

constraint logic programming with regular sets [Walinsky 1989) . In 
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this section, we will discuss CLP(91) as a representative of the CLP(Jl ) 

family of languages. 

Prolog III and CLP(91) 

implementation. Like Prolog 

are very similar in syn tax and 

III, CLP(91) replaces syntactic 

unification with a more general constraint satisfaction mechanism. 

Rules in CLP(91) are similar to Prolog clauses except that they can 

contain arithmetic expressions as well as atoms in the body. Both 

CLP (91) and Prolog III are more powerful than Prolog In that they can 

handle equalities and inequalities among unbound variables, and 

they can give solutions in an implicit form, e.g., x > 2. 

The CLP(91) interpreter consists of a Prolog-like inference engme, 

a constraint solver, and an interface module. The inference engine 

operates in the manner described above for the Prolog III program: 

A CLP(91) program begins with a goal and an initially-empty set of 

constraints. When a term IS matched to the head of a clause, an 

'" equalit-¥ constraint is created between unified variables or unified 

variables and constants. Any constraints encountered within the 

body of a matched clause are added to the set of constraints . 

However, unlike Prolog III, which adds all the constraints to the 

constraint set as soon as the clause is matched, CLP(91) adds 

constraints only as they are encountered. 

The interface simplifies the set of constraints, transforming them 

to a canonical form. In doing so, the interface may be able to 

determine the solvability of the constraints. If it cannot, the 

interface sends the constraints to the solver, which determines the 

set's solvability. The solver can handle linear and slightly non-linear 
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equations (where evaluation can be delayed until enough 

information is available to make the set linear). If the set is not 

solvable. the search backtracks in the usual Prolog manner. If the 

set is solvable. a solution is produced. 

Where Prolog III handles constraints over rational terms. CLP(9I) 

can deal with real numbers. As an example of CLP(9I)'s handling of 

numerical constraints. consider the following problem. A bridge 

constructed of piers and spans is to be built across a lake. The bridge 

must be at least 200 meters in length. Each pier costs $100. Spans 

can be purchased in lengths that are multiples of 5 meters according 

to the price list in Table 3. 

span length cost 

5 m $70 
10 m $lro 
15 m $200 
20m $3ro 
25m 
30m 
35m 
40m 
45m 
50m 

$470 

$500 
$710 
$830 
$9ro 

$1000 

Table 3. Cost of bridge spans 

The problem is to determine the cost of the bridge gIven the 

length of spans to be used . The CLP(:R) program is presented in 

Listing 6. 
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bridge (Spanlength, Cost) :-
span (Spanlength, Spancost), 
Piercost • 100, 

Length = 200, 

Numspans • Spanlength >- Length, 
(Numspans - 1) • Spanlength < Length, 
findit (Numspans), 

Cost = Numspans • Spancost + (Numspans + 1) • Piercost. 

finditOO :-
X> 1,X <= 40, 
findit(X-1). 

findit(1). 

span (5, 70). 
span (10, 160). 
span (15,260). 
span (20,360). 
span (25, 470). 
span (30, 590). 
span (35, 710) • 

..,~ sp~ (40, 830). 
span (45, 960). 
span (50, 1090). 

Listing 6. CLP(:R) oode for bridge 

There are multiple solutions to this problem depending on which 

span type is chosen. The CLP(:R) system always answers with a yes, 

a no, or a may be, denoting that the constraints are satisfiable, 

unsatisiable, or indeterminate, respectively . A maybe simply means 

that the system cannot determine if the constraints are satisfiable. 

If the answer is yes; a solution is produced. The solution may show 

values for all variables, or, if this is not possible, it may show a 
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simplified version of the final set of constraints. Each time a solution 

is produced, the system asks the user if another solution is desired . 

Prolog III would handle this problem in a similar manner, 

returning the solution in rational terms. However, there is one 

notable difference. In Prolog III, all constraints are collected and 

added to the constraint set as soon as a clause is matched. Thus 

constraints are written at the end of the clause, as in 

findit(X) :
findit(X-l), 

X> 1, X <= 40. 

If the jindit(X) clause were written in this manner in CLP(9I ), the 

program would never terminate because, not having the constraint 

as a condition under which the clause can match, the recursive calls 

would go on infinitely. 

Linear equalities are handled in CLP(9I) by Gaussian elimination. 

Like Prolog Ill, CLP(9I) handles linear inequalities with an adaptation 
' -

of the simplex algorithm. The implementation is made more ~fficient 

by a delay mechanism, which postpones the test for satisfiability of 

non-linear equalities and inequalities in the expectation that they 

will later become linear. 

4.3. CHIP 

CHIP (Constraint Handling in Prolog) is yet another constraint 

logic programming language which has evolved from Prolog [Van 

Hentenryck 1989al. Like CLP(9I) and Prolog III, CHIP begins with a 

Prolog-style syntax and implementation, but it extends logic 

programming to new computation domains: specifically, finite 
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domains, Boolean terms, and rational terms. cmp also uses a type of 

depth-first branch-and-bound technique to solve discrete 

optimization problems. 

CHIP provides efficient constraint-solving techniques applicable 

to each domain. Equality constraints over Boolean terms are handled 

by a unitary unification algorithm. Linear equalities, inequalities, 

and disequalities over rational terms are solved with a symbolic 

simplex-like algorithm. Details of these implementations and a 

discussion of their applications can be found in [Simonis, Nguyen, and 

Dincbas 1988] and [Graf 1987], respectively. 

A large portion of the work on CHIP has been devoted to 

extensions of logic programming which make it more amenable to 

finite-domain constraint satisfaction. A central idea in the design of 

cmp is the ability to declare finite domains for variables. We saw In 

Section 2.3 how a simple constraint satisfaction problem can be 

for-lJ!ulated as a Prolog program. In this example, the domains of the 

puzzle positions arise implicitly from the definition of the neighbors 

predicate. In CHIP, the domains for the variables in a predicate p 

can be declared explicitly with: 

domain p(d] , .. . ,dn), 

where dj is the domain of the i-th variable. Each domain dj can be 

either a constant, a set of constants or strings, or a sequence of 

natural numbers. If the i - th parameter of p is a list of variables, d j 

applies to all the variables in the list. 

The declaration of domains in CHIP makes possible a kind of a 

priori reduction of the search space in finite-domain constraint 
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satisfaction through the application of consistency checks . CHIP 

offers forward checking, looking ahead, and partial looking ah ead 

(Section 2.5.8) as a means of pruning the domains of the constrained 

variables , eliminating values which cannot contribute to a solution. 

In general, application of the consistency checks in CHIP is left 

within the control of the programmer, who can write the logic 

program such that the search for a solution is performed more 

efficiently . Additionally, specializations of the consistency 

tec hniques provide for efficient handling of commonl y used 

con straint s. Notably , disequalities (e.g. X '" Y) are handl ed by 

forward checking; linear equalities and inequalities (e.g. 3X + 2Y = 5Z) 

are handled by partial looking ahead; and the con straint 

element(l ,L ,X), which holds if the /-th element of the list L is X 

(where L is a list of integers and / and X are integers), is handled by 

looking ahead . Details of these techniques will be discussed below. 

.... _ Wr:.. begin with an example to illustrate how forward checking is 

applied . The problem is to complete the crossword puzzle in. Figure 

23 . A variable is associated with each word place. Each variable has 

a domain of words which are the correct size to fill the given space. 

(In this case , all the words happen to be the same size .) Constraints 

of two types are placed on the words: Each word can be used only 

once, and intersecting words must have the same letter at th e 

positions of intersection. 

While the structure of the program is not dictated, CHIP is used 

most effectively in a kind of generate and test style. That is , the 

constraints between variables are generated first. Then values for 
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the variables are generated and tested against the constraints . The 

program in Listing 7 follows this generate and test format. 

The do ma in declaration states th at all the elements in the li st 

[WI,W2,W3,W4,W5,W6j must be as signed a word from the given li st 

of strings. A disequality is established between each pair of words to 

be placed in the puzzle with the alldifferent constraint. The 

sa me lett e r constraint stipulates that words placed in intersecting 

puzzle positions must have the same letter at their intersection. Once 

the constraints have been generated, the labeling predicate generates 

possible assignments of words to puzzle positions. Words are chosen 

from the domain by the indomain (X) predicate , a system-defined 

predicate which successively chooses values from the domain of 

variable X. 

One effect of adding consistency checks to logic programmIng is 

that a predicate can establish a constraint while not yet making the 

full~ commitment of binding values to variables . In effect, a 

constraint can be "deferred" until additional information m'l-kes it 

useful, at which time its implications are propagated through 

forward checking, looking ahead, or partial looking ahead. We can 

see how this is accomplished in the disequalities and same letter 

constraints of the example above. 

\ 

\ 

\ 
I 
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CROSSWORD PUZZLE: 

FILL THE PUZZLE 
WITH 

HE FOLLOWING T 
W ORDS: 

h 
te 

abet 
lace 
eyes 
cas 
ra 
fare 

6 

3 

2 

4 

5 

SOLUTION: 

~F 

3' ~ 
L A C 

i5
R A 

16 
E Y E S 

H 

1 

1 

A 

B 

E 

T E 

Figure 23. Constraints describing 8 crossword puzzle 
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alldifferent(Ol. 
alldifJerent([X1 Y) :. 

outof(X,Y), 
alldifJerent(Y). 

outonx.m. 
outof(X, [F IT]) :. 

X .. F, 

outoftX,T). 

forward sameletter(g,d,g,d). 
sameletter(I,Wl,J,W2) :. 

findletter(1, Wl,Letter), 
findletter(J,W2,Letter). 

I*firuJ1etter finds the ith position in the string W2 and places it 
in Letter. It can be bandIed by a Prolog system-defined 
predicate for string manipulation. */ 

labellng(Ol. 
labeling([XIy) :. 

indomain(X), 
labeling(Y). 

domain crossword ("abee', "lace", "eyes", "cash" "rate", "fare"). 
..,~ crossword([Wl,W2,W3,W4,W5,W6]) :. 

~ alldifJerent ([Wl,W2,W3,W4,W5,W6]), 
sameletter(3,Wl,4,W3), 
sameletter(4,Wl,3, W5), 
sameletter(2,W2,2,W3), 
sameletter(3,W2,l,W5), 
sameletter(4,W2,3,W6), 
sameletter(3, W3,l,W 4), 
sameletter(2,W 4,2,W5), 
sameletter(3,W4,4,W6), 
labeling([Wl,W2,W3, W4,W5,W6]). 

The program is initiated with the query: 

?-crossword([Wl,W2,W3,W4,W5,W6]). 

Listing 7. CHIP solution to crossword puzzle 
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In standard Prolog, disequalities such as WI.. W2 can be 

handled only when both variables are ground. Once both W I and 

W2 are known, the constraint is simply used as a test which succeeds 

or fails. Disequalities in CHIP, on the other hand, are a specialization 

of the forward checking mechanism. 

When a predicate is subject to forward checking, it is deferred 

until there remains only one variable in it which is not ground. At 

that time, the inference procedure makes use of the constraint by 

propagating the implications of the most recent binding through the 

constraint. The domain of the unbound variable is pruned to include 

only those values consistent with the values already assigned to the 

other variables . 

Given the constraint WI .. W2, for example, if WI is bound to the 

value v, forward checking will prune W2 's domain D to D-{v}. If only 

one value remains in W2 's domain, W2 is bound to that value . This 

is ,itn important augmentation of forward checking, since the binding 

of a value can initiate additional pruning of domains . .In the 

crossword puzzle example, forward checking IS first used when the 

indomain(X) predicate binds W 1 to abet. The disequalities between 

W I and each other variable are then activated, and abet is removed 

from their domains. 

Disequalities are automatically handled In CHIP by means of this 

forward checking mechanism, without any special declaration on the 

part of the programmer. It is also possible to specify that a user

defined predicate be handled in a forward-checking manner, as In 

the case of the forward sameietter(g ,d,g ,d) declaration. This 
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declaration causes the same Ie II e r constraint to be deferred until 

there remains only one domain-variable which is not ground, at 

which time the constraint is subject to forward checking. (The 

variables marked d in the forward declaration are domain-variables, 

i.e., variables with associated domains, while those marked g are 

expected to be ground by a constant.) 

With forward checking, once WI is bound to abet, the constraint 

that the third letter of WI is equal to the fourth letter of W 3 will be 

forward checked, and only lace, rate, and fare will remain in the 

domain of W 3 . Similarly, W5 's domain will be pruned to include only 

ra t e , i.e., W 5 will be bound to ra t e. Because of the binding, all 

disequalities involving W 5 will again be forward checked, and ra t e 

will be removed from the domains of the other variables . Also, the 

binding of W 5 to rat e initiates forward checking on the 

sameletter{l,W5 ,3.W2) and sameletter(2.W5.2.W4) constraints. Thus 

we~ see that with a forward-checking implementation. the search 

space is reduced a priori. In this example. no backtracking .at all is 

required In the search. 

Instead of the forward declaration on the sameletter constraint. 

a lookahead declaration could be used. A constraint p(t] •. ..• tn) is 

available to the lookahead mechanism if at least one of its terms ti is 

a domain-variable (i.e .• a domain has been declared for it) . and each 

of the other terms is either ground or is a domain-variable . Unlike 

the forward checking mechanism, which waits for all but one 

variable to be ground. the looking ahead mechanism can prune 
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domains as soon as the constraint is declared, and again whenever 

the binding of a variable provides new relevant information. 

In CHIP, looking ahead considers in tum each lookahead variable 

v j in a constraint and each element e j in the domain of that variable. 

(A lookahead variable is a variable which is not ground, and which 

has an associated domain .) It retains e j in the domain of Vj only if 

there is an assignment of values to the other variables in the 

constraint which is consistent with the assignment of e j to v j. Thus 

looking ahead can be viewed as enforcing k-consistency among the k 

lookahead variables in the constraint. (See Section 2.5.2 .) Like 

forward checking, looking ahead binds a value to Vj if only one value 

remainS In its domain . 

In the crossword puzzle example, the lookahead declaration on 

the sameletter constraints will cause the domain of W 1 to be reduced 

immediately to abet, eyes, and rate; the domain of W2 will be 

reduced_ to lace, and fare; the domain of W3 will be reduced to lace ; 

and so on. As in the forward-checking version, the problem is · solved 

entirely by the consistency checks. On larger crossword puzzles, 

looking ahead generally is more successful at reducing the amount of 

backtracking, but at the expense of more consistency checks [Van 

Hentenryck 1989al. 

The next example illustrates another domain-pruning technique 

applicable to linear equalities and inequalities. This technique is 

referred to as partial lookahead. We begin with some definitions. 
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A linear equality (inequality) is defined as an equality 

(inequality) between linear terms. 

recursively as follows: 

A linear term is defined 

1. A natural number IS a linear term. 

2. A domain-variable ranging over natural numbers is a linear 
term. 

3. a*X + Y and a*X - Y are linear terms if a is a natural number, X 
is a domain , variable ranging over natural numbers, and Y is a 
linear term. 

Consider now a linear inequality defined as a constraint. 

linear inequality can be normalized into an expression of the form : 

Let 

range over [min1,max1J, and let 

~ 

A 

range over [min2,max2j. Let min be the maximum of min] and min2, 

and let max be the minimum of max1 and maX2. Then to satisfy the 

constraint, both sides of the equation must range over [m in, max j . 

From this we get: 

ajXj + ... + anXn + a:?! min ifminj < min, 

ajXj + ... + anXn + a ~ max if maXj > max, 

and similarly for the right-hand side. We can now see that each 

variable Xi must satisfy: 

aiXi:?! min - (L (ak maxk) + a), 
k,..i 
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a iX i !> max - (L (a k min k) + a), 
k .. i 

where min k and m a x k are the minimum and maximum values 

respectively in the domain of X k. 

This same kind of reasoning can be applied to inequalities and 

results in significant a priori pruning of domains, as illustrated in the 

next example. The bridge problem solved above in CLP(~) can now 

be solved in CHIP, with the additional feature of cost optimization. 

Given the query 

bridge (Cost,Spanlength,Numspans, 200), 

the following program will determine the minimum cost, the length 

of spans, and the number of spans needed to build a bridge 200 units 

10 length. 

As before, we set up the constraints before generating possible 

labelings. Domains and inequality constraints are established with 

" g etN um-spa ns. The inequalities require that enough spans are used 

to cross the water, but only the minimum number needed to do so. 

Since no values in the domain of Spa n Ie ng I h will satisfy the first 

inequality constraint when Numspans is less than 4, the values 

(1,2,3) are deleted from the domain of Numspans. Sim.'.larly, since no 

values in the domain of Spanlength will satisfy the second inequality 

if Numspans is greater than 40, values greater than 40 are deleted 

from the domain of Numspans. More importantly, each time labeling 

generates values for Spanienglh and Spancost, the domain of 

N u m spa n s is restricted to just one value by the inequality 

constraints. 
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domain getNumspans (1 .. 100, {5,10,15,20,25,30,35,40,45,50}, 200). 
getNumspans (Numspans, Spanlength, Length) :. 

Numspans • Spanlength >= Length, 
(Numspans • 1) • Spanlength < Length. 

labeling (5, 70). 

labeling (10, 160). 
labeling (15, 260). 

Iabeling (20, 360). 
JaheJing (25, 470). 

labeling (30, 590). 
labeling (35, 710). 

labeling (40, 830). 
labeling (45, 960). 
labeling (50, 1090). 

bridge (Cost,Spanlength,Numspans) :. 
Piercost = 100, 
getNumspans (Numspans; Spanlength, Length), 

Cost = Numspans • Spancost + (Numspans + 1) • Piercost, 
minimize Oabeling(Spanlength,Spancost), Cost). 

Listing 8. CIDP solution to bridge problem 

The higher order constraint 

minimizer iabeiing( Spaniength,Spancost ),Cost) 

results in the minimization of cost based upon the bindings which 

result from iabeling(Spaniength,Spancost). CHIP uses a simple 

depth-first branch and bound strategy that operates in the following 

manner: When a solution at cost cost is determined, a new constraint 

is introduced dynamically. This constraint requires that the cost of 

any other solution be better than (in this example, less than) cost. 

These new constraints are handled with the usual a priori pruning 
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techniques, resulting In active constraint propagation and a reduction 

of the search space. 

CHIP has been used to solve a number of well-known finite

domain constraint satisfaction problems (e.g. N-queens, 

cryptarithmetic, graph coloring, and cutting stock problems), and Van 

Hentenryck shows through empirical results that solutions which 

benefit from the consistency techniques are significantly faster than 

standard logic programming solutions. A parallel implementation of 

CHIP (or, more precisely, of the portion of CHIP which uses 

consistency techniques for finite-domain constraint satisfaction) is 

now under way [Van Hentenryck 1989b). This implemen tation 

exploits th e or-parallelism inherent In constraint satisfaction, 

pursuing in parallel the multiple solutions to a problem. When 

applied to the optimization predicates, or-parallelism resul ts in a 

parallel, depth-first branch-and-bound approach . 

" 3he CHIP project originated in 1985 at the European Computer

Industry Research Center (ECRC) in Munich, Germany, headed by 

Mehmet Dincbas . A Prolog-style interpreter has been implemented, 

and work has been done on compilation of CHIP. A prototype of the 

or-parallel/finite-domain portion of CHIP has been implemented on a 

Siemens MX500 (equivalent to a Sequent Balance 8000). 

4.4. Concurrent Constraint Logic Programming 

Yet another development in the evolution of logic programming 

is a class of concurrent constraint logic programming languages . Th i s 

class of languages originated from two sources: constraint logic 

programming languages [Jaffar and Lassez 1987) : and concurrent 
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logic programming languages such as Parlog [Clark and Gregory 

1985] and Concurrent Prolog [Shapiro 1987] . 

Saraswat [1989] designs a class of concurrent constraint logic 

programming languages based upon the idea of store as constraint. 

That is, a constraint program defines the relationships among a set of 

variables ranging over some domain, and the store represents the 

constantly refined set of possible values for each variable at each 

step in the computation . Computation emerges from the interaction 

of concurrently executing agents which either place con straint s on 

variables or ask if constraints are upheld by the current store. These 

actions , referred to respectively as atomic Tell and and atomic Ask, 

provide a channel of communication between executing agents which 

lends itself well to concurrency. Saraswat illustrates the usefulness 

of his approach by implementing standard algorithms such as mutual 

exclusion and many-server many-client communication. He also 

show.s that his language can be used to solve a finite -domain CSP 

using fine-grained parallelism. 

More recently, two specific languages have been proposed: 

Janus, a member of the family of distributed constraint programming 

languages (a subset of concurrent constraint programming 

languages), is designed to coordinate the actions of large numbers of 

diverse computations. (A discussion of Janus will appear in the 

Proceedings of the 1990 North American Conference on Logic 

Programming.) Lucy (a syntactic subset of Janus ) is a very simple 

concurrent constraint language based upon the actor model of 

computation [Hewitt and Baker 1988]; [Clinger 1981]; [Agha 1985] . 
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(A discussion of Lucy will appear in the 1990 OOPSLA Conference 

Proceedings.) 

CONCLUSIONS 

The wide-ranging applications of constraint-based problem 

formulations should come as no surprise. We see around us a world 

of complex relationships, but our vision is myopic. Those things 

which we can see clearly, we try to capture in a precise language, 

mathematical or logical. The idea is that this near-sighted view, 

when operated on by the rules which govern our "world ," can lead to 

a more complete picture. In problem-solving, we get solutions which 

satisfy the relations among all the objects simultaneously. In 

modeling and simulation, we see realistic, though perhaps 

unpredicted , behavior emerge from object descriptions. 

It should also come as no surprise that constraint problems are 

generally hard problems In terms of computational complexity . 

WlUk l! is often argued that a declarative rather than procedural 

formulation is a more " natural" way to express many problems, 

where we gain in "natural human expression" we generally lose In 

efficiency of computation. The complexity of constraint problems, as 

well as their relationship to human problem solving, point to parallel 

computation as the next exciting avenue for constraint -based 

programming. As research in this area continues, the challenge 

remains to make computers think the way we think, not only to 

solve problems, but to learn about problem-solving itself. 
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