
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-2000

Design Of An Integrated Feature And Terrain Triangulation Design Of An Integrated Feature And Terrain Triangulation

Algorithm For Driving Simulation Terrain Database Generation: Algorithm For Driving Simulation Terrain Database Generation:

Final Report To The Center For Advanced Transportation Systems Final Report To The Center For Advanced Transportation Systems

Simulation Simulation

Guy A. Schiavone

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Schiavone, Guy A., "Design Of An Integrated Feature And Terrain Triangulation Algorithm For Driving
Simulation Terrain Database Generation: Final Report To The Center For Advanced Transportation
Systems Simulation" (2000). Institute for Simulation and Training. 57.
https://stars.library.ucf.edu/istlibrary/57

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/57?utm_source=stars.library.ucf.edu%2Fistlibrary%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

I
I
1------ INSTITUTE FOR SIMULATION & TRAINING

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Design of an Integrated Feature and Terrain
Triangulation Algorithm for Driving Simulation Terrain

Database Generation

ImaJ Re.nor1-to the C~nter for advanced TJ'ans]!ortation
§..Y.:.~J~InS Simulation

April 27, 2000

Guy A. Schiavone, Art Cortes, Jian-ping Gu, Ying D2.i, Grace Yu,
Walter Winlberly, Christian Buhl, Ryan Leitch

Visual Systems Laboratory
Institutt:: for Simulation and Training

Univ~rsity of Central }'Iorida

1ST -CR-OO··05

• univers ity of

Central
Florida

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Design of an Integrated Feature and Terrain
Triangulation Algorithm for Driving Simulation Terrain

Database Generation

Final Report to the Center for advanced Transportation
Systems Simulation

April 27, 2000

Guy A. Schiavone, Art Cortes, Jian-ping Gu, Ying Dai, Grace Yu,
Waiter Wimberly, Christian Buhl, Ryan Leitch

Visual Systems Laboratory
Institute for Simulation and Training

University of Central Florida

1ST -CR-OO-05

I. 1\vo surface simplification algorithms for polygonal
terrain with integrated road features

ABSTRACT

I
I
I
I

Terrain database generation is one of the most expensive tasks in the development of human-in-the-Ioop visual simulations. I
There are many factors associated with the efficiency of generating the terrain database. Automating the process of extracting
from remote sensing imagery the required database primitives, and constructing detailed 3D feature models offers many
challenging problems. Another problem is to simplify the terrain model by using fewer polygons without significant loss in I
the visual characteristics of the rendered imagery, thereby reducing the complexity of the terrain database and improving
real-time rendering performance. In this paper we present two surface simplification algorithms designed for the pm-pose of
constructing a terrain database that is optimized for driving simulation; one using a bottom-up, polygonal refinement I
approach, the other using a top-down, polygonal removal approach. These two algorithms are applied to terrain surfaces that
include integrated, "stitched-in" road features, and are used to generate terrain surfaces of various levels of detail. We
provide a discussion on the design of these two algorithms, some experimental results of applying the algorithms to real
terrain surfaces, as well as the comparison of the two approaches on the factors of height error and the distance from the road. I
Keywords: terrain, polygonal surface simplification, Delauney triangulation, level of detail

1. INTRODUCTION I
Although it is not generally recognized, terrain database generation is often one of the most expensive and time-consuming
tasks in the development of human-in-the-Ioop visual simulations. Much of the expense incurred in terrain database
generation is due to the lack of automation throughout the data pipeline, creating the need for extensive "hand-modeling" and I
artistic license. Some examples of points in the pipeline that require extensive human intervention can be seen in Figure I,
which depicts a typical instance of a terrain database generation pipeline.

Cad Models.
ArchiltXlurdl

Models. IJIlagel)'
elc.

3D Modeling
(Vegetation,

Buildings. etc)

FIGURE 1. EXAMPLE OF THE TERRAIN DATABASE GENERATION PROCESS.

The process of extracting from remote sensing imagery the required database primitives, such as geospecitk textures,
geometry, and attributes (e .g. surface material types), may be semi-automated using modern image processing techniques but
almost always requires a large degree of intervention in the current state of the art. Although automated extraction of

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

buildings and other 3D features from imagery has been an active area of open research for several years, this task also still
requires extensive interactivity at present. Construction of detailed 3D models is a process that is well known as being labor
intensive, requiring a great deal of domain-specific knowledge and artistry. Another set of hand-modeling (or at best, semi
automated) operations generally referred to as "cut and fill" operations are applied in the process of integrating into the
terrain areal and linear features such as roads, rivers and lakes. These operations refer to local alterations and
repolygonizations to the terrain surface necessary to prevent erroneous conditions such as rivers flowing uphill, lake surfaces
higher than the surrounding terrain, and roads with incorrect grades, improper banks, or overly steep shoulders. Cut and fill
operations are usually necessary in the process of integrating 3D models into the terrain, as well.

In various applications of computer graphics, polygon meshes are used to represent the geometric model of objects, including
terrain model. A common form for representing terrain surfaces is that of the triangulated irregular network (TIN), which
allows for inhomogeneous sampling of terrain in the plane, and a polygonal representation via linear triangles. With the
increasing complexity of the terrain model, tasks such as spatial searching and real-time rendering become more time
consuming, leading to unacceptable performance in real-time applications such as a driving simulator. One peculiar
requirement of a terrain database designed for driving simulators is that of non-homogeneous fidelity . High scene
complexity and finely resolved attributes are required only in the vicinity of roads and other transportation routes. As a
result, the application of procedures and algorithms designed for the generation of terrain databases suited for other types of
simulation, when applied to terrain database generation for driving simulators, may lead to frequent redesign and
recompilation of the terrain database. One point in the terrain database generation process where there is an apparent lack of
algorithms suited to driving simulation is the terrain polygonization step. As an example, one terrain polygonization
algorithm widely used in military simulation applications is the Iterative Triangulated Irregular Network (ITIN) algorithm
developed by Polis and McKeown [1] . This algorithm is one of a large class of algorithms that attempts to minimize
elevation error in a triangulated terrain surface based on some norm. The basic ITIN algorithm is as follows :

• Start the triangulation with 4 points at the corners of the terrain bounding box.
• Calculate absolute elevation error for each planimetric point of the underlying digital elevation model.
• Take the point that has the greatest error and accept it as a new vertex in the triangulation.
• Re-triangulate the surface using a Delauney triangulation.
• Update the absolute elevation error value for the remaining non-vertex points in the digital elevation model.
• Repeat the steps 3 and 4 until a stopping criterion is satisfied.

Using the ITIN, it's possible to generate several levels of detail by storing the successive triangulations, but still there are
several problems with the ITIN algorithm when applied to terrain database generation for driving simulation:

• In its basic form, the ITIN does not allow for direct incorporation of road polygons into the terrain surface.
• Use of the ITIN results in a spatial distribution of triangles that is not well suited for driving simulations. The

triangle density is too high in regions far from transportation routes, and too low in regions near the routes. The
result is essentially a degradation in rendering performance.

• The Delauney triangulation employed in the ITIN results in unnecessary error. A data-driven approach, with
constraints on sliver polygons, is worthy of investigation as an alternative.

• The ITIN does not allow for edge constraints, which is necessary for preserving critical linear features associated
with roads.

• The basic ITIN does not address the topological and logical attributions that are necessary for driving simulation.

There are many simplification algorithms for polygon mesh models that have been proposed in the last few years. We can
classify them into four categories according to the underlying mechanism they use to reduce the number of polygons in the
scene model. Nearly every simplification technique uses some variation or combination of the four basic polygonalization
mechanisms:

- Sampling schemes begin by sampling the geometry of the initial model. The algorithm proceeds to create a polygonal
simplification that closely matches the sampled data. For an example, see [2].

- Adaptive subdivision approaches create a very simple polygonal approximation of the scene, called the base model. The
base model consists of elementary shapes that lend themselves to recursive subdivision until the result surface lies with
in some user-specified threshold of the original surface. For an example, see [3] .

- Decimation techniques iteratively remove vertices or edges or faces from the mesh, retriangulating the resulting "hole"
after each step. For an example, see [4,5,6].

Vertex merging schemes operate by merging two or more vertices of a triangulated model together into a single
vertex, which can in turn be merged with other vertices. These algorithms use a limited vertex merging called an

I
edge collapse, in which only the two vertices sharing an edge are collapsed in each operation. For an example, see I
[7.8.9] .

Using this classification of the simplification mechanisms, we can see there are two general simplification methodologies that I
can be used for the terrain surface: polygonal refinement. a bottom-up approach. and polygonal removal. a top-down
approach. Both the refinement and the removal approaches share a very important characteristic: they seek to derive an
approximation through a transformation of some initial surface. A refinement algorithm is an iterative algorithm that begins I
with an initial coarse approximation and adds elements at each step. As opposed to refinement methods. a removal algorithm
begins with the most detailed surface and iteratively removes elements at each step.

By investigating the problems appearing in the generation of terrain databases for driving simulation. in this paper we explain I
two surface simplification algorithms using the above two different approaches: refinement and removal. respectively based
on a modified ITIN and the edge collapse. The overall goal is produce different level of detail approximations of a terrain
model for driving simulation. In section 2 we describe the algorithms and related preprocesses. In section 3 the experimental I
data are provided to illustrate the algorithm results, and to compare the two algorithms by the factors of height error and the
distance away from the road.

2. ALGORITHMS I
Before introducing the specific algorithm, we must first give a description of the data format for the terrain model and a
necessary preprocess on it. In practice, we constructed the initial terrain model using the Multigen Modeler and output the I
result in the Openflight format. For the convenient handling of the terrain data in the ZCAP· software developed by 1ST. the
terrain model is represented by four related data: vertex data, triangle data. header data and feature data. Vertex data gives
the coordinate of the sample points on the terrain model. and triangle data contains the connective relationship of the sample I
points contained in the vertex data. while the header and feature data provide the extra summary information about the terrain
model.

We use a format conversion tool in ZCAP to convert the terrain model data in Openflight format into the ZCAP native format I
that uses the above described four data files to represent the terrain model. At this point in the database generation process.
the road polygons are distinguished from the terrain polygons by their feature identification code, with road triangles
overlapping over the terrain triangles rather than being built into the terrain surface. It is at this point we tessellate the road I
triangles into the terrain model surface by using following method, illustrated by Figure 2:

With reference to the road integration algorithm presented here. the general case includes more complicated ways that road
triangles may overlap on the terrain triangles. In our present algorithm we consider the two of the simplest cases to clarify I
the explanation of the algorithms workings. By using this preprocessing step, we obtain the four data files on the terrain
model with the road triangles "stitched-in". and an additional road data file that explicitly lists the road vertices.

(a)
two road triangles overlapping on one terrain triangle.

(b)
four road triangles overlapping on one terrain triangle

with one corner.

Figure 2. tessellating operation
triangle with bold line is road triangle; triangle with non-bold line is terrain triangle

• ZCAP is a suite of software tools developed to address terrain database interoperability. It provides capabilities for terrain
and culture correlation testing. terrain and image registration. database analysis and terrain database visualization. The newest
ZCAP release ZCAP4.1 available at http://www.usl.ist.ucf.edulgroups/vtb/

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.1. Edge-Collapse-Based Terrain Simplification Algorithm

For the polygon removal methodology, the edge-collapse based simplification scheme starts with the highest-detailed model
and then iteratively contracts the edges making up the terrain model on each pass. The steps are as follows:
• Read the five data files (.header, .vertex, .triangles, .road, .features), prepared by above preprocess program.
• Initialize the elements (vertex, triangle, edge) of the terrain data.
• Choose the edges that are to be contracted.
• Repeat step 3 until the desired number of triangles is reached.

2.1.1. Initialization

For convenience in implementing the simplification step that follows, in this initial step we need to obtain some required
parameters describing the data elements:
• Since this algorithm is based on edge collapse, by processing the given vertex and triangle data we form the edge

information and use both the triangle and edge data to indicate the connection between different points.
• We calculate the normal of all the triangles, the dihedral angles of all the edges, and the minimal 2D distance from the

road for every point, all of which is information used for the selection of candidate edge to be contracted (removed).
• W flag the vertex, edge and triangle that are on the road and on the border. The flag provides additional required

information used to retain important terrain characteristics during the terrain simplification process.

2.1.2. Edge Contract

Generally the purpose of forming levels of detail (LODs) is to reduce the complexity of the representation, while retaining
the maximum accuracy as measured by some relevant metric. Some distinctive features of polygonal terrain that can be used
for simplification include [3]:
• Near-Planar areas that can be identified by inspecting the normal of adjacent polygons. The adjacent polygon can then

be merged to form bigger ones.
• Sharp edges that can be found by using the angle between the normal of adjacent faces. They can be simplified by

merging connected edges that are nearly collinear.
• Pointed edges, such as the tip of a pyramid, that have high visibility (Le. have a relatively large probability of appearing

on the silhouette of the terrain from a random viewpoint). They can be detected by measuring the local curvature around
the vertex. These can be simplified by pushing neighboring vertices towards the tip of spike .

•
Because of the particular nature of our terrain that includes integrated road features, and by primarily dealing with the
characteristics of planar area and sharp edges, we decide to use not only the dihedral angle of the edge, but also the distance
of the edge as a criteria for the candidate edge selection. Searching all the edges by their weight

W; = (COSBi + 1) / d; (i = 1, 2, ... , e),

where Wi is the weight of edge i, COSBi is the Cosine of the dihedral angle of the edge i, d; is the distance that the edge is
away from the road and e is the number of edges.

Choosing the edge that has the least weight and at the same time is not located on the road or border, we perform the edge
contract operation illustrated by the Figure 3:

I contract ej >

Figure 3. edge contract operation

In our polygon removal method we contract the edge ej to vertex Vj' which is the midpoint of edge ej. As the simplification
proceeds and the simplification depth increases, we may find some edges adjacent to the road or the outside border that needs
to be contracted . In these cases we collapse the edges to the vertex on the road or the vertex on the border to retain the road
environment and the border shape characteristics of the terrain database. Following the edge collapse procedure the changed
parameters of the elements in the terrain model around the collapse area are updated, which completes the overall collapse
operation. This process continues until the desired number of triangles in the terrain is reached, at which point we end the
simplification procedure and get the level of detail terrain model that we need.

2.2. Delauney-based Integrated Feature and Terrain Triangulation Algorithm

Our refinement method is a multi-pass algorithm that begins with a minimal initial approximation; on each pass one or more
points are inserted into the terrain model. The procedure repeats either until the error used for controlling becomes less than
desired error, or until the desired number of vertices is reached. Our Delauney-based Integrated Feature and Terrain
Triangulation (D-IFATT) algorithm is a refinement methodology. Before introducing this algorithm, we need to further
describe the input terrain data. Since refinement methods begin with a simple approximation, as opposed to the polygon
removal approach that starts with the highest-detail terrain model, we will require two terrain models: the highest-detail
terrain model in the form of a regular triangulation created from the source digital elevation model (DEM), and a low-detail
terrain model, both with integrated roads. In our work we created these two files using the Multigen Modeler to create the
polygonal terrain surfaces, which were then refined to integrate the roads by the preprocess program discussed above. At this
point we apply the D-IFATT algorithm to the data as follows:
• Delete the road vertices in the highest-detailed terrain.
• Check which of the remaining vertices in the highest detailed terrain are within the boundary of the lowest detailed

terrain, excluding vertices on the boundary. Insert these vertices into the vertex list of the lowest-detailed terrain.
• Build the expanded vertex list of candidate vertices for Delauney Triangulation, which involves the vertices in lowest

detailed terrain, including boundary vertices and non-boundary vertices, and the inserted vertices from highest detailed
terrain, extracted in step2.

• Compute the distance to the road for each of the vertices in the candidate vertices list, and store it as another item in the
vertex structure in addition to coordinate x, y, z.

• Execute Delauney Triangulation to insert (Figure 4) the desired number of vertices to form required level of detail
terrain model, according to order of the error of each vertex, which is computed by absolute height error divided by its
distance to the road.

In our algorithm, we use the circle criterion to construct the Delauney Triangulation, which works by choosing the
appropriate diagonal of each quadrilateral formed by pairs of triangles which share an edge. The principle of the circle
criterion is: choose an arbitrary diagonal, and construct the circumcircle of one of the two triangles in the quadrilateral; let the
circumscribed triangle be fj and the opposite triangle be fj. Consider the exclusive vertex Vk of fj, defined as the vertex not
associated with the shared edge. If Vk lies within the circumcircle, switch the diagonals. Repeat for every quadrilateral in the
triangulation, until an entire pass ields no diagonal switch (Figure 5).

Figure 4. One Delauney Triangulation Operation for a
pOint into one terrain triangle

Triangle with bold line is terrain triangle; v is the pOint to be
inserted into. In this situation: e2switch to es. e3 switch to
es. while e, needn't switch to e4.

Switch ,
I

diagOnal> : .~~

Figure 5. One diagonal switching operation
for Delauney Triangulation

In this situation: Vk locates into tis circumcircle,
ej switch to ej. if not locates into, no switch
needed.

, , , ,
I
I ,

I , ,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3. EXPERIMENT

We implemented the Edge-Collapse-Based Terrain Simplification algorithm in the C language on Pentium 400Hz, with
128M RAM, using the Linux Redhat 6.0 operating system, while the D-IFATT algorithm was implemented in C language on
SGI IRIX workstation with 128M RAM. The terrain model we used for these two simplification algorithms, a piece of
Wyoming area terrain, is created using the Multigen Modeler. Its size: for the highest-detail terrain model consist of 1829
vertices and 955 triangles; for the lowest-detail terrain model consist of 205 vertices and 136 triangles. Figure 6(b-e) gives
the simplification results based on the Edge-Collapse-Based Terrain Simplification algorithm with the initial highest-detail
terrain model, while Figure 7(b-e) provides the results based on the D-IFATT algorithm with the initial lowest-detail terrain
model Figure 6a.

Figure 6a. Original hlghest-deta" terrain
model with bu"t-In road

The total number of vertices = 955
The total number of triangle = 1829

Figure 6b. First LOD terrain model created
by Edge-Co"apse-Based Terrain

Simplification Algorithm

Figure Sc. Second LOD terrain model
created by Edge-Collapse-Based Terrain

Simplification Algorithm
The total number of vertices = 790 The total number of vertices = 640

The total number of triangle = 1199
Maximal error = 0.023878
Average error = 0.018333

The total number of triangle = 1499
Maximal error = 0.012704
Average error = 0.017874

Figure 6d. Third LOD terrain model created
by Edge-Co"apse-Based Terrain

Simplification Algorithm
The total number of vertices = 490

The total number of triangle = 890
Maximal error = 0.042482
Average error = 0.020689

Figure 6e. Fourth LOD terrain model
created by Edge-Co"apse-Based Terrain

Simplification Algorithm
The total number of vertices = 365

The total number of triangle = 649
Maximal error = 0.099428
A verage error = 0.024463

Since our role is creating the static different LOD terrain model to construct the terrain data base oftline, there is no
compelling requirement on execution time of the algorithm. For Edge-Collapse-Based Terrain Simplitication algorithm, a
large portion of the time cost comes from forming the edge list and selecting the candidate edges to be collapsed, with time
complexities of O(te) and O(e(v+t)f respectively. In the removal algorithm, the basic data structures are three linked lists:
the vertex list, triangle list and edge list. With every edge contract operation, we delete one vertex, two edges and one
triangle, but we also add a new vertex node and two new edges nodes into the vertex list and the edge list. The resulting
space complexity is O(v+e+t+/e!2j*3). For the D-IFATT algorithm, time is largely spent on checking whether points in
high-detailed terrain model lie in the boundary of the lowest-detailed terrain model, whose time complexity is O(vt). This
time obviously can be improved by choosing a more efficient spatial organization, such as a simple quadtree. In the
refinement algorithm, the process of selecting the candidate inserted point and applying Delauney Triangulation on current
terrain model is also time consuming, with time complexity is O(vt). In the refinement algorithm, we use an expanded vertex
list and a triangle list, whose space complexity is O(v+t). According to the time complexity and the space complexity, the
refinement approach has a slight advantage in the present implementation.

The goal of both algorithms is Min-£: based, which means when given an expected size for the approximated terrain model,
the objective is to minimize the error or difference between the original and the resulting terrain model. In both algorithms,
we only minimize the error for each simplitication primitive operation, not for entire simplification process. In this kind of
process, it is important to note that minimizing the error at each step does not guarantee the least error for the final LOD
terrain model. Based on the specific of our terrain model, we agree on a simple error evaluation function:

for each vertex Vj : errorj = iJh j = I Zj.n,w - Zj.old I ' then the average error = E(iJhj / dj) / v (i = 1,2, ... , v)

The vertices set V sampled to compute the error are those original vertices in the highest detail terrain model. Zj.old is the z
coordinate value of vertex Vj when it's in original highest-detailed terrain model, while Zj.new is the z coordinate value of
vertex Vj when it's in resulting LOD terrain model; d j is the distance that the vertex Vj is away from the road and v is the
number of vertices set V. The average error and maximal error of the all vertex error for each LOD terrain model is also
presented in FigureS and Figure 6.

Unlike the Delauney Triangulation that maximizes the sum of the minimum angles of the triangle to prevent slim triangles in
terrain model, the Edge-Collapse-Based Simplification algorithm is a data-driven approach that potentially has the problem
of distorting the terrain through the production of many sliver triangles. We prevent the overproduction of slivers by
controlling the number of triangles sharing the same vertex. This controlling measure limits the simplification degree, with
the result that the lowest LOD we can generate is simplified by approximately 60%; we are prevented from obtaining larger
simplification ratios, say in the vicinity of 90%. In contrast, since the refinement approach starts from the lowest-detailed
terrain model, the simplification degree is not a problem, and its interpolation procedures perform best on triangulation which
are nearly equiangular. However, the refinement approach suffers from at least one additional disadvantage not shared by the
edge-collapse approach: since it employs the Delauney triangulation instead of a data-driven approach, this method may not
be able to capture the exact geometry of the original model, because the edge-swapping destroys the original topology of the
triangulation. Thus, sharp features such as valleys and ridges may be lost.

Bearing in mind the above defects, the comprehensive height error by distance for the D-IFATT algorithm performs better
than for the Edge-Collapse-Based Simplification algorithm, with the average and maximal error shown in the final
experiments.

We reckon the reason is that the D-IFATT procedure itself is using the height error as its vertex insertion criterion. If we
optimize the criterion for choosing the candidate contraction edge in Edge-Collapse-Based Simplification algorithm and
control the vertex location of contracted edge, we estimate a lowest-detailed terrain model with better quality will be
achieved, which can be used for the D-IFATT algorithm to get the terrain LOD of more uniform triangles.

v,t,e is the number of vertices, edges and triangles in the terrain model.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 7a. Original lowest-detall terrain
model with built-in road

The total number of vertices = 136
The total number of triangle = 205

- - -- ~~~~---,

Figure 7b. First LOD terrain model created
by D-IFATT Simplification Algorithm

The total number of vertices = 184
The total number of triangle = 301

Maximal error = 0.114426
Average error = 0.026095

- -- - ~~~--- -- --
, 10-' •

Figure 7c. Second LOD terrain model
created by D-IFATT Simplification

Algorithm
The total number of vertices = 234

The total number of triangle = 401
Maximal error = 0.067909
Average error = 0.019152

Figure 7d. Third LOD terrain model created
by D-IFATT Simplification Algorithm

The total number of vertices = 334

Figure 7e. Fourth LOD terrain model
created by D-IFATT Simplification

Algorithm
The total number of triangle = 601

Maximal error = 0.037218
Average error = 0.011698

The total number of vertices = 384
The total number of triangle = 701

Maximal error = 0.026923
Average error = 0.010154

4. CONCLUSION

In this paper we propose two algorithms to simplify terrain models containing integrated features: one is Edge-Collapse
Based Terrain Simplification algorithm and the other is the D-IFATT algorithm. The two algorithms can, to a good degree,
achieve the goal of trading higher detail in the vicinity of roads for lower detail away from the roads. Experimental results
show that the D-IFATT does better on producing uniform terrain, while Edge-Collapse-Based simplification has the
advantage of better capturing the geometry of the terrain model. For the future work, we plan further investigations in quality
control on the model simplification procedure.

II. Software design for extracting linear feature data from
aeriaVsatellite images and generating terrain databases with
integrated features

For driving simulation, it is critical to have accurate geospecific source data for transportation networks. To generate terrain
databases with integrated features such as roads and trails, the precondition is to obtain reliable feature data. Unfortunately,
for many areas, it is often the case that the feature data are either not available or not accurate enough. For example, there are
no accurate road feature data available for UCF area. In Fig.8, it is shown a database for UCF area that was built by using the
feature data (DLG format) from United States Geological Survey (USGS). It can be seen that there are quite a few incorrect
places in the database. The roads at the top-left part of the database do not exist in reality. The circle at the center of the UCF
campus and most of Gemini Blvd are missed. It can be seen that many other errors exist as well. It is worthwhile to point
out that some of these errors still appear in some newest Orlando street maps published in 1999.

For our project, it is urgent to obtain the related feature data for UCF and Research Park area. There are aerial and satellite
images available for this area. But one needs to extract the road information from the aerial and satellite images. To solve
this problem, we have programmed our own software to extract the roads and trails from the aerial and satellite images that is
designed to form a file that can be used to generate terrain with integrated linear features. Our own software can extract any
linear feature such as roads, trails, rivers and rows of trees etc. from satellite and/or aerial images for any area of interest. Our
software has following properties:

1) The original input images can be aerial or satellite images.

2) Our own tool also accepts maps printed on the papers as input image files supposing the paper maps can be scanned
beforehand.

3) The roads and trails are extracted out by clicking the mouse at the corresponding region in the image.

4) There is no limitation for the number of roads being extracted.

5) The output feature data generated by our own tool can be used together with terrain elevation data to generate 3
dimensional terrain databases with integrated features. In other words, the roads are built in an elevation tield. It is also
possible to build two dimensional databases, which is a special case, by using our tool.

6) Our generated feature files for roads and trails can be used together with terrain elevation databases (for example, DED
files) to build terrain databases with integrated features such as roads and rivers at various levels of details (LODs).

7) By specifying the parameters in the output file, the widths and surface materials such as concrete, asphalt etc. for different
roads can be specified individually.

Fig.9 shows the database for a part of the UCF campus built by extracting roads from an aerial image using our own
software. For simplicity's sake, only some of the roads are included in the figure.

Our tool to extract linear features from aerial/satellite images is easy to use. The procedure to extract the linear features is as
follows:

1) Convert the aerial/satellite images into "xpm" format by using some graphics format converter.

2) Type the name of the executable file UFL TKpick_SateliiteImage" and a window will open.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I 3) Click "load" and pressing "s" key simultaneously.

I 4) Choose the input "xpm" aerial/satellite image file by clicking the name and pressing "s" key simultaneously.

5) Click "OK" while pressing "s" key.

I 6) Click a reference point at the southwest (bottom-left) corner of the image.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

7) Click the second reference point at the northeast (top-right) corner of the image.

8) Click the first point of the road, then click the second point of the road and so on, click the last point and press "space bar"
simultaneously to end the input of that road. One may record the coordinates of the last point since later this information
might be needed.

9) Use the same way to pick out other roads. For each clicking, the coordinates of the point are recorded in a file called
"FLTKsatelliteOUT". The coordinates are also displayed on the screen at the same time.

10) After having picked out all the roads needed, quit the program.

Another program "satellite2dlg" converts the obtained coordinates on the image to UTM coordinates and forms a data file
that can be used to form a file which format is similar to USGS's digital line graphs (DLG) file. To use the software
"satellite2dlg", simply type:

satellite2dlg FLTKsatelliteOUT Filel File2

The coordinates for the points of each road in the image are converted to UTM coordinates and the UTM coordinates are
stored in File!. The coordinates for the points of each road are also recorded in File2. However, it is optional to include File2.

It is also required to decide the longitudes and latitudes for the reference points. This information can be obtained from
available geospecific data for the specific area. A file that has the similar format as USGS's DLG format can be formed by
using Filel after several geological parameters for the specific area have been decided. The generated feature data file is
further converted to a file in DFD format that can be accepted by 3D modeling tool "MultiGen". With this data, we are able
to build 3D terrain databases containing both linear features such as roads and elevation information.

We have solved quite a few problems during the implementation of the software. These problems include how to get
coordinates from aerial/satellite image by clicking the mouse, how to convert the coordinates on images to UTM coordinates,
how to convert the data to MuItiGen acceptable image format, and how to decide quite a few geographic parameters involved
in the transitional file.

We are going to use four- or six- parameter transformations to further improve the accuracy. At moment, we use linear
interpolation method to convert the coordinates of the image into UTM coordinates. The accuracy of linear interpolation
method is acceptable for a small area such as UCF area, but the error may increase for a larger area.

Fig.8 The database for the area of UCF campus built by using USGS's DLG feature data. Note that there exist quite a few
errors. For example, the roads at the top-left part do not exist in reality, the circle at the center of the campus and part of
Gemini Blvd. are missed and so on.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Fig.9 The database for the area of UCF campus. All the roads were obtained from aerial image by using our own software.
Note that only some roads in the area are included and the present terrain is at the very low level of detail (two triangles).

III. Building of the database for the Research Park of Orlando

We have built the database for Research Park area using the "MultiGen" modeling tool. The database can be used as input to
driving simulator for visual simulation of driving on the roads of Research Park Way and Progress Drive.

It is quite time-consuming to build such database. For the usage of driving simulation, the database should be built as real as
possible. First, the 3D models were built for the buildings in the area. A digital aerial image was used as a reference and the
shapes and locations of the buildings were derived according to the aerial image. For getting the right sizes of the related
objects, we have measured the widths of Research Park Way and Progress Drive. The data for the estimated heights of the
buildings were obtained from "Central Florida Research Park Office". Although it is possible for us to build roads on the
terrain using the way mentioned in Section II of this report, for meeting the requirements of UCF driving simulator, the
present database does not contain elevation information for the terrain.

About 20 models of the buildings have been generated. The similar amount of 3D models of the plates for these buildings and
other models for traffic signs and trees have also been produced and input as external references to the main database. For
each face of the models, the corresponding texture has been applied. In the preparation of these texture files, many

photographs were taken. A few have been chosen to generate texture files. It is often the case that there were trees and
shadows in front of the bUildings. For getting a good view effect, we spent a lot of time to remove these trees and shadows in
the photographs by using the tool "Photoshop". The processed photographs were saved in proper format and size and were
applied to the corresponding faces of the buildings. Alignment of the textures was performed to fit contiguous textures on
adjacent faces.

For efficient rendering of the driving simulator, two models have been prepared for each object (building or traffic sign). One
model is at higher level of detail (LOD) and the other is at lower level of detail. The model at lower level of detail normally
has no texture applied. The switch distances between the eye point and the object can be specitied for each model
individually.

The traffic signs and signals are important for driving simulation. We constructed models for various traffic signs such as
stop signs and speed limit signs. In most cases, two models with different levels of detail for each sign have been constructed.
There are four traffic lights in the area. In addition to building the models, we also used an animation technique to change
traffic signals within a period of time. The color of the traffic lights on Research Park Way was chosen to be different from
that on Technology Park Way to simulate the real circumstance.

To make the models of the trees, it is needed to keep the alpha component in the texture files to make the non-tree part of the
texture image transparent. We have put a few trees in the database. However, the number of the trees planted in the database
is limited to reduce the burden to the real-time performance of the driving simulator. The actual number of trees we used was
determined empirically based on several trials using the driving simulator visual system. All traffic signs, traffic lights and
trees have been imported into the database as external references.

The databases have been tested at UCF Driving Simulation Lab (UCFDSL) several times, and the databases were thereafter
modified to fit the performing requirements of the UCF driving simulator. The database at the time of the first trial included
only a few models of the buildings and two roads. Only the 1ST building and the roads were textured. The textures could not
be displayed during that test. In the subsequent test, the database could be displayed by using "MultiGen" at UCFDSL.
However, the textures could not be seen when the database was loaded to driving simulator. Later, we changed the sizes of all
the texture files to make the dimension of every texture pattern (in x and y) to be a power of two.

For further reducing texture memory, we re-textured all the models over the course of several weeks. To do this, we first de
textured all the faces of the models. We reduced the sizes of the texture files to get rid of the extraneous portions of the digital
imagery, and saved all the texture files again. Then, each face of the models was re-textured.

In a test at the end of February, we learned that the present driving simulator did not properly render a terrain that includes
elevation differences. Our understanding is that the database should contain no elevation information to perform in an
acceptable manner. Therefore, we removed part of the database that was built using terrain elevation data, and reconstructed
the database correspondingly.

For solving the Z-buffer contlict problem, we first tried to put the beads of the road polygons beneath the ground polygons in
the database hierarchy. The problem was apparently solved when the database was displayed using "Pertly" on 1ST's SGI
platforms. However, the problem remained when the database was tested at UCFDSL. To fit the requirements of the UCF
Driving Simulator, we were required to carefully modify the database to avoid any overlaps of the polygons.

The database was tested again at the beginning of March, it was found that the database still did not provide acceptable
performance when rendered by the driving simulator, due to the size of the individual textures that were being used. In
addition to the buildings and roads, the database included a large number of external references, such as the signs of the
companies, and traffic signs. Animating the traffic lights also increased the computational burden, affecting performance of
the driving simulator, although this effect was found to be within acceptable limits.

To improve the performance characteristics of the database for UCF driving simulator, we prepared another simplified
database. For that database, we shortened the LOD switch distances and deleted some models (most of the trees, for
example). The design of the traffic lights also was changed to reduce the polygon budget. The two databases were tested at
UCFDSL on March 24. The simplified database was processed successfully by UCF driving simulator, but test involving a
new version of the higher detail database resulted in poor performance.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

We performed further modifications to the high-detail database to improve performance. Specifically, we decreased the sizes
of the texture files and re-textured some models (buildings, plates of the companies, traffic signs etc.). We also rebuilt models
for some buildings and deleted some polygons representing the ground surface where no buildings were present. Also, the
aerial image texture that had been used as reference was deleted. After these adjustments, we believe that the total texture
burden was been nearly optimized to fit the processing capacity of the UCF driving simulator image generation system. This
version of the database has been tested successfully on the UCF driving simulator, and is our final database to be delivered.

Some portions of our database for the Research Parkway area are shown in Figs. 10-12.

Based on our experiences, now we can:

- build similar databases for transportation networks for other areas.
- build databases for other purposes, such as rail or river transportation.
- build 3D terrain databases with integrated linear features such as roads, trails and rivers for specified region. Each road may
have its own attribution (width and surface material).
- build 3D terrain databases with integrated linear features such as roads, trails and rivers for the same region at different
levels of detail (LODs).

I Fig.lO Part of the database of the Research Park. 1ST is on the left.

I
I
I
I
I
I

Fig. 11 Orlando Technology Center and University Technology Center.

Fig. 12 The buildings of Siemens-Westinghouse and Raytheon Companies.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

OTHER MAJOR ACCOMPLISHMENT

1) The paper "Terrain modeling for driving simulation with the integrated feature and terrain triangulation (lFATT)
algorithm" based on the present work has been accepted by "SPIE's 14th Annual International Symposium on
Aerospace/Defense Sensing, simulation, and Controls". This Symposium will be held in Orlando, USA on April 24-
28, 2000. The paper has been presented in Session 6, Model Abstraction Applications on April 26, 2000.

2) During the present work, Guy A. Schiavone and Art Cortes supervised and guided the whole work. Guy A.
Schiavone also designed the terrain surface simplification algorithms with integrated road feature . Following people
also worked and had chance to be trained during the work with the financial support to this project. Jian-ping Gu
designed the software to extract road feature from aerial images and was involved in the work of Research Park
database (RPD) building. Ying Dai and Grace Yu worked on the terrain surface simplification algorithms with
integrated road feature and programmed the codes to implement the terrain surface simplification using two
algorithms. Walter Wimberly was involved in the work of RPD building and gave many good suggestions. Christian
Buhl was involved in the work of RPD building and generated many fine textures and some models for the
buildings. Ryan Leitch and Priya Krishnamachary were involved in the work of RPD building and design of terrain
simplification algorithms, respectively.

3) With the support of the project, Ying Dai will finish her Master thesis based on the present work.

ACKNOWLEDGEMENTS

The authors wish to thank the Florida Department of Transportation for their support in this work. We also would like to
acknowledge the support and guidance provided by our colleagues in the Center for Advanced Transportation Systems
Simulation (CATSS) at the University of Central Florida. We thank Xi an-hong Zhang at UCFDSL for testing the databases.

REFERENCE

I. M.F. Polis and D. M. McKeown, "Issues in Iterative TIN Generation to Support Large Scale Simulations", Proc.
AntoCarto I I, pp. 267-277, 1993.

2. J. Rossignac and P. Borrel, "Multi-Resolution 3D Approximations for Rendering Complex Scenes", IBM Research
Division: T.l. Watson Research Center, IBM Technical Repon: RCI7697, 1993.

3. M. DeHaemer Jr . and M. J. Zyda "Simplification of Objects Rendered by Polygonal Approximations", Computer &
Graphics 15(2), pp. 175-184,1991.

4. W. Schroeder, J. Zarge and W.Lotenson "Decimation of Triangle Meshes", Computer Graphics 26(2), pp. 65-70, 1992
5. F. Schroder and P. RoBbach "Managing the Complexity of Digital Terrain Models", Computer & Graphics 18(6), pp.

775-783, 1994.
6. P. Hinker and C. Hansen "Geometric Optimization", Proceedings of Visualization, Los Alamitos, pp. 189-195, 1993.
7. B. Hamann, "A Data Reduction Scheme for Triangulated Surfaces", Computer Aided Geometric Design 11(3), pp. 197-

214,1994.
8. H. Hoppe, "Mesh Optimization", ACM SIGGRAPH'93 Proceeding 27, pp. 19-26, 1993.
9. M. Garland and P. Heckbert "Surface Simplification Using Quadric Error Metrics", ACM SIGGRAPH'97 Proceeding 3 I,

pp. 209-216,1997.
10. P. Cignoni, C. Montani and R. Scopigno "A Comparison of Mesh Simplification Algorithm", Computer & Graphics

22(I), pp. 37-54, 1998.
11. D. T. Lee and B. J. Shacter, "Two Algorithms for Constructing a Delauney Triangulation", Int. 1. Compo In! Sci. 9(3),

1980.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 0000198

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

	Design Of An Integrated Feature And Terrain Triangulation Algorithm For Driving Simulation Terrain Database Generation: Final Report To The Center For Advanced Transportation Systems Simulation
	Recommended Citation

	tmp.1440012251.pdf.Crnps

