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Abstract 

INTERCONVERSIONS BETWEEN DIFFERENT 
COORDINATE SYSTEMS 

Kuo-Chi Lin, Huat Keng Ng 
Institu te for Simulation and Training 

University 01 Central Florida 
Orlando, Florida 32826 

There are several di fferent coordinate systems which can be used to 
describe the position, o ri entation, and mo tion of the entities in a 
simula tion exercise. The coordinate systems that are referenced in this 
paper are the geocentric, geodetic and topocentric coordinate systems. A 
detailed stud y made on previously published coordi na te conversion 
algorithms and any encountered problems are presented here. In 
converting geocentric to geodetic coordinates, fou r different algorithms 
yielding the same results are presented. The conclusions drawn from 
these analyses illustrate tha t by deriving a set of parametric equations and 
then utilizing N ewton-Raphson 's convergence algori thm results in the 
fastest and most accurate geocentric to geodetic coordinate conversion. In 
the case of a topocentric to geocentric conversion, it was discovered that 
the referenced algorithm was inaccurate. The corrected equations a re 
given in this paper. 

Introduction 

The advent of affordable intercomputer communications networks has 
made possible the interconnection of simulators so as to allow for real­
time interactive training. The precursor to Distributed Interactive 
Simulation (DIS) was a Defense Advanced Research Projects Agency 
(DARPA) sponsored program call Simulator Networking (SIMNED. In 
the SIM1'JET program, DARPA successfully demons trated the feasibility of 
interconnecting multiple distributed simulators, primarily g round based 
armor vehicles, via a local area network (Ethernet) such that the 
simula tors could interact in real-time. DIS is based upon the foundation 
of SD1NET and will be enhanced and expanded to provide the standard 
for future communication of simulators. Due to the expansion of a DIS 
exercise, simulators will be operating at larger geographic distances. As a 
result of this requirement, the geocentric coordinate sys tem was chosen to 
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be the earth-Fixed-axis coordinate system vice the flat-earth topocentric 
coordinate system in SIMNET exercises. 

The geocentric coordinate system is defined as the earth-fixed coordinate 
sys tem with the origin at the cen troid of the earth, the x-axis pass ing 
th rough the Prime Meridian at the Equator, the y-axis passing through 90 
degrees East longitude at the Equator, and the z-axis passing through the 
N orth Pole. The topocentric coordinate system is defi ned with the origin 
centered at a selected poin t on the Earth's surface and aligned at the 
selected point with East, North, and Up. 

In order to es tablish the coordinate transformation between the two 
coordinate systems described, a third coordinate sys tem, the geodetic 
coordina te, will be introduced. The geodetic coordinate is defined using 
three quantities: latitude, longitude, and the geodetic height. The latter 
defines the position of a point on the surface of the Earth with respect to 
the relerence ellipsoid. In DIS, the shape 01 the earth is specilied using the 
World Geodetic System 1984 (WGS84). To deline a geodetic coordinate 
system, the surface of the earth is approximated by a reference ellipsoid 
which is an e llipsoid of revol ution defined by two parameters: the 
equatorial radius a = 6,378,137 meters (the semimajor axis of the ellipse) 
and the flattening I = 1/298.257223563. II the polar radius (the semiminor 
axis 01 the ellipse) is denoted as b, then b = a • (I-O. 

Interconversion From Geodetic to Geocentric 

The process of converting between geodetic and geocentric coordinate 
systems involves transforming a given point in geodetic coordinates with 
quantities 01 la titude (0), longitude (A), and height (h), into the geocentric 
cartesian coordinates (X,Y,Z) . The approach taken in el] relies on 
trigonometry to perform the interconversion. The algorithm in (1J fo r 
geodetic to geocentric conversion is accurate and efficient with two minor 
corrections as described in e3 ]. The solution presented is an exact solution 
and the equations are similar to the ones presented in the Military 
Handbook (21 . The equations are presented below lor completeness. 

x = (R, + h)cos<l>cosA 

Y = (R, + h)cos$sinA ., . 
Z = ("-R, + h)sln$ 

a' 

0) 

(2) 

(3) 
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where Rn is defined as the radius of curv~tUIe in the prime vertical and is 
defined by 

R _ a2 
n-

-J ,2cos'$ + b'sin2~ (4) 

Interconversion From Geocentric to Geodetic 

The interconversion process involved in lconverting a geocentric into a 
geodetic coordinate is more complica ted than the previous conversion . 
The desired solution is to locate the point bn the reference ellipsoid that is 
closest to the original point. The algorithrri. given in (l] has some errors in 
the derivation, which are corrected by (3). However, the resu lts from [1] 
s till do not converge for realistic altitude values in modeling flight 
simulations . The algori thm given in [2] does converge; however, due to 
the excessive use of trigonometric function~, it is considerably slower than 
[3J. The approach taken by [31 does not rely on trigonometry, but instead 
uses a constrained optimization using rlangrange multipliers and the 
multiplier is then adjusted for convergence. The termination is based on 
an approximate error measure term. 

A d ifferen t algorithm will be presented here that d oes no t assume the 
earth to be a sphere in its iteration process. ) This algorithm will be referred 
to as algorithm 4. The intention is to compare this approach wi th the 
algorittun described in [3], and conclude if the approach is justified. The 
equation of the reference ellipsoid is as follows, 

<l>(x,y,z) = lI-'. + y2 I ~ _ 1 = 0 
. 2 ,2 T b2 (5) 

where a = 6378137m and b = 6356752m, denoting the semim ajor and 
semiminor axis respectively. Let the se t of geocentric coordinates (X,Y,Z) 

be the original point and (x,y,z.) be any point in space. Define a vector P, 

p = (X - x)i + (y - y)J + (Z - z)k (6) 
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--------------------~----............. .. 
to be a vector connecting the two given doordinates. Taking the gradient 
of eq. (5) will result in a vector normal to the tangent at point (x,y.z). This 
vector is defined as follows: 

if = V<I>(x,y,z) = ~xi + LyJ + ~zk 
3,2 a2 b2 (7) 

By defining the rela tionship between the t 0 vectors, P and n. as 

p =mn (8) 

where m is a cons tant, the vector P is cpnstrained to pass through the 
point (x,y,z) nonnal to the ellipsoidal surface. From eqs. (6) and (7), a set of 
parametric equations of a straight line in sl ace (where m is the parameter) 
is defined: I 

x = 1 + (2aT( 
(9) 

(J 0) 

(J 1) 

Substituting eqs. (9l- (10), (11) into eq. (5) will constrain (x,y,z) to be on the 
surface of the ellipsoid. The substitution redults are defined by f(m ), 

,I 
+ z - 1=0 

[b+~l' 
f 

_--"Wr..:'=---(m) = -

[a+~f (12) 

where W2 = X l + y 2. An iterative numerical approach can be used to 
determine m , a t which time X, y, Z, and !h can be calculated with the 
derived equations. Using the Newton-Raphson method for convergence, 
the value of m ca n be solved . In order to use Newto n-Raphson's 
algorithm, the der ivative of f(m) must be found . This results in the 
following: 
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4Z' 

(13) 

The essential algorithm is to first guess a Ivalue for m. In the comparison 
study with algorithm {3J, m was set to zero. With this value, substitute 
into eqs. (9), (10), and (11) to determine the initial set 01 coordinates. 
\<Vith the first set of X, y, and z points, calculate h with the following 
equation: 

(14) 

Our test for convergence is met if the new calculated h is less than or equal 
to the previous h by 50 an, as described in Ithe followi ng equation. 

ih; . h;. ll " 0.5 where i = 1,2,3, .. . (1S) 

If eg. (15) is not satisfied, a new value for m must be calculated by 
following the Newton-Raphson convergence algorithm described below: 

~m;.d h . 1 2 3 m i = mi. ! - '( ) were I = . . .... 
f mi_ ! (16) 

With the new m, the convergence process must be reiterated until eg. (15) 
is satisfied. When convergence is satisfied, X, y, z, and h have been 
deterntined by using eqs. (9), (10), (11) and (14). The longitude and latitude 
is easily computed by using the formulas below: 

(17) 

(18) 

where 

(19) 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The equations derived above are the equations used to perform a 
geocentric to geodetic coordinate system conversion. The algorithm is best 
described by a flowchart. This is shown in Figure 1. 

Input 
X,Y,Z 

i = j + 1 

ro 

Initialize ITb 

Calculate ho 
Set i"" I 

Calcu late 

f(mi·t) ,('(mi· t) 

Ca1culate 
x,y, zandhj 

Ihi-hi_11 
<= 0.5 

yes 5clh:hj 
Calculate 
4> and A 

Figure 1: Geocentric to Geodetic Conversion Algorithm. 

Output 
~, A,h 
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Comparisons on Different Geocentric to Geodetic Conversion Algorithms 

Three algori thms ([I], [2], [3]) were referenced in the previous section, and a 
new one was presented in detail. This section will attempt to choose one 
of the four algorithms that best suits a real-time simulation environment. 
Algorithm (1] has to be eliminated because the iterative step fails to 
converge for high altitudes, such as those encountered in modeling flight 
d ynamics. In [2]. trigonometric functions were used extensively. The 
computational cost of using a trigonometric function is 12 floats, where 
one float is defined as the measure of a computational cost in using a 
single floating point operation. Each iteration in algorithm [2] requires 
one inverse ta ngen t, one sine and one cosine funct ion. Due to the 
computational cost involved , algorithm [2] is not recommended for real­
time simulation applications, although it has been proven to converge 
and to be accurate. The algorithm described in [3) and the one described in 
this paper converge and are both accurate. Both algorithms converge 
quickly. For example, a t a height of 165,000 meters, both converge in two 
steps. The measured time for each algorithm is illustra ted in Table 1 
below. 

Table 1: Measured Time for the Different Algorithms 

Algorithm # time used for 1 million per iteration (sec) 
iterations (sec) 

[I) does not converge does not converge 
[2) 103 1.03E-04 
[3) 95 0.9SE-04 
4 86 O.86E-04 

The measured time was taken at one million iterations and the average 
value was noted . This procedure was performed to overcome any side­
effects of running only one iteration. The measurements shown were 
taken from a Sun SPARCWorkstation. As can be seen from the table 
above, alorithm [2J takes the longest time to compu te one iteration. The 
algorithm presented in this paper took only 0.86E-04 seconds for one 
iteration; this is a 19.77% improvement to algorithm {2J. 
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Several runs at different altitudes were taken fo r the two fastest 
algorithms, namely, [3J and 4. These values were generated at a latitude 01 
35N, and a longitude of 40E, and a final tolerance at SOem. The conversion 
from geodetic to geocentric coordinates was done using the algorithm in 
[1 J with the corrections noted in [3J . The results are tabulated in the Table 2 
lor algorithm [3J and Table 3 lor algorithm 4. 

Table 2: Algorithm [3J Results lor Varying Heights. 

Given Height Latitude Longitude Height 
(m) (deg) (deg) (m) 

1500 34.999999 40.000000 1499.956301 
165000 34.999998 40.000000 164999.882064 

3000000 34.999998 40.000000 2999999.811030 

Table 3: Algorithm 4 Results lor Varying Heights. 

Given Height Latitude Longitude Height 
(m) (deg) (deg) (m) 

1500 35.000000 40.000000 1500.000000 
165000 35.000000 40.000000 165000.000000 

3000000 35.000000 40.000000 3000000.000000 

As can be seen from Tables 1, 2 and 3, the results for both algorithms have 
insignificant differences in either case. Both algorithms are accurate and 
fast for real-time simulation exercises. If, however, only one algorithm 
may be chosen, then the algorithm presented in this paper is the most 
accurate and the fastest. 
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Interconversion From Topocentric to Geocentric 

The geometric relationship between geocentric and topocentric 
coord inates is shown in Figure 2 below. In order to perform the 
conversion from topocentric to geocentric, the topocentric coordinate 
system is rotated about three axes, then translated alon g its z axis to the 
origin of the geocentric coordinate system. The algorithm in [1] based their 
translation using a perfect sphere as their earth model. Due to this 
assumption, errors were introduced because the translation never passed 
through the center of the earth. The only time when transla tion passes 
through the center of the earth is when latitude is 0, +90 or -90 degrees. 
When the algorithm in (1} was used, differences as large as 20 km was 
observed when compared to a translation based on an ellipsoidal earth 
model. 
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Figure 2: World Coordinate System. 
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The equation describing this interconversion using an ellipsoidal model 
can be stated as 

1\;: \1 = [RJ'(;: \1 + (;:) 
Zg XYl Zt "yz Zo XYZ (20) 

where the subscripts 8, t and 0 represent geocentric, topocentric and radius 
of the earth (from the cen te r of the earth to the origin of the topocentric 
coordinate system) respectively. The XYZ subscript represents a geocentric 
earth-centered fixed axis, and the xyz subscript represents a topocentric 
fixed axis. The rota tion matrix, R, in terms of latitude (0), and longitude 
(1-) , is given as 

o 
cos4> 

sin~ 1 (21 ) 

The topocentric coordinates are rotated to the geocentric coordinate system 
before being translated into the center of the earth. The coordinates Xo, Yo, 
and Zo can be computed by performing the interconversion between 
geodetic and geocentric coordinate system described in the above section 
given the latitude, longitude and height. Because the equations derived 
for the geodetic to geocentric coordinate system interconversion are based 
on an ellipsoidal model, the radius of curvature of the earth is taken into 
consideration. 

Interconversion From Geocentric to Topocentric 

This conversion is similar to the above algorithm. 
topocentric coordinates results in the following: 

Solving eq. (20) for the 

(22) 

where the rotation matrix, R, is expressed in eq. (21). The algorithm 
described in [1] made a translation of the coordinate system based on a 
perfect sphere and resulted in errors due to the ellipticity of the earth. 
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Conclusion 

In conclusion, this paper has described the various interconversion 
algorithms for the three coordinate systems, namely, geocentric, geodetic 
and topocentric. For a geodetic to geocentric conversion, the algorithm 
presented in [lJ had minor errors which have been corrected by [3J. These 
changes resulted in giving accurate and exact solutions. The results were 
compared with the algorithm presented in [2J and the results obtained 
were similar. 

In the case of a geocentric to geodetic conversion, an approximation 
method is required. Algorithm {1 J did not converge for realistic heights, 
therefo re, it was eliminated. Algorithm [2] was slow for real-time 
networking, thus, it was also eliminated. The differences in results 
obtained from algori thms [3] and 4 were insignificant. However, if one 
algorithm must be chosen, algorithm 4 should be chosen for the following 
reasons. First, its per iteration of computation time was faster; and second, 
it converges to the exact initial values. 

In the case of a topocentric to geocentric coordinate conversion, there was 
an error from paper [1 ]. The algorithms presented did not take the 
curvature of the earth into consideration. The equations were derived 
based on a pure spherical earth. This resulted in approximately a 20 km 
difference to an ellipsoidal earth at latitude regions of 45 degrees. The 
topocentric coordinates must be rotated to the geocentric coordinate 
system before the translation into the center of the earth. 
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