

Proceedings of the APAN – Research Workshop 2018
ISBN 978-4-9905448-8-1

Abstract—In Software Defined Network (SDN), the networks

are vulnerable to attacks by compromised switches, since it often
used programmable software switches are vulnerable than
traditional hardware switches. Although several
countermeasures against compromised switches have been
proposed, the accuracy of detecting malicious behavior depends
on the performance of network statistics gathering by a
controller. In this paper, we propose an approach to verify the
consistency of forwarding state using simultaneously network
statistics gathering from the switch by accurate time scheduling.
Our method enables to detect attacks by compromised switches
without being influenced by the performance of statistics
gathering by the controller. Our method utilizes moving average
thus our method mitigates the effect on the verification accuracy
from the impact of switches performance such as the error of
scheduling. In addition, we implemented the proposed method
with Mininet, and we confirmed that our method is able to verify
without depending on the performance of statistic-gathering by
the controller.

Index Terms—SDN (Software Defined Network), Scheduled
Bundle, Statistics Gathering, PTP (Precision Time Protocol).

I. INTRODUCTION
INCE attackers may compromise switches by abusing
software or hardware vulnerabilities, networks are

vulnerable to attacks by compromised switches. In particular,
several papers indicate that Software Defined Network (SDN)
is often used programmable software switches, and increase

Manuscript submitted May 21, 2018.
Takahiro Shimizu is with Department of Computer and Information

Sciences, Graduate School of Engineering, Tokyo University of Agriculture
and Technology, Koganei, Tokyo 184-8588 Japan (e-mail:
tshimizu@net.cs.tuat.ac.jp).

Naoya Kitagawa is with Division of Advanced Information Technology &
Computer Science, Department of Institute of Engineering, Tokyo University
of Agriculture and Technology, Koganei, Tokyo 184-8588 Japan (e-mail:
nakit@cc.tuat.ac.jp).

Kohta Ohshima is with Department of Marine Electronics and Mechanical
Engineering, Tokyo University of Marine Science and Technology, Koto-ku,
Tokyo 135-8533, Japan (e-mail: kxoh@kaiyodai.ac.jp).

Nariyoshi Yamai is with Division of Advanced Information Technology
& Computer Science, Department of Institute of Engineering, Tokyo
University of Agriculture and Technology, Koganei, Tokyo 184-8588 Japan
(email: nyamai@cc.tuat.ac.jp).

the probability of compromise than traditional hardware
switches [1], [2], [3]. For instance, CVE-2016-2074[4]
reports that attacker can execute arbitrary code with abusing
the vulnerability of buffer overflow in Open vSwitch. Thus,
protection of SDN data plane is more important than
traditional networks.

Byte consistency check, which was proposed in
SPHINX[2], is a countermeasure against suspicious behaviors
by compromised switches such as packet dropping and
injection. However, it has an issue that the verification
accuracy depends on the performance of statistics gathering
of a controller. Moreover, an alternative solution based on
trajectory sampling called WedgeTail [3] has proposed
recently. Although WedgeTail can be verified with higher
accuracy than SPHINX, it requires more resources to perform
verification.

In the field of flow updating in SDN, Time 4 [5] was
proposed as a method to update the flow simultaneously using
Scheduled Bundle. Scheduled Bundle is a method to schedule
the timing of executing OpenFlow messages at switches.
Time4 showed that updating flow at the same time with
Scheduled Bundle can suppress packet loss and without the
performance degradation at Flow Swapping scenario.
Furthermore, since Scheduled Bundle supports all OpenFlow
messages, we considered that utilizing Scheduled Bundle can
gather statistics without relying on the performance of
controller by time triggered OpenFlow messages execution.

In this paper, we propose a novel approach to verify
forwarding state consistency which uses the statistics
gathered from switches at the same time by Scheduled Bundle.
Our method can detect attacks by compromised switches
without being influenced by the performance of controller
statistics gathering. In addition, we evaluated this method by
micro-benchmarking in an emulated minimal SDN
environment implemented in Mininet. Our
micro-benchmarking shows that our method can efficiently
detect the attacks without depending on controller
performance than SPHINX.

II. RELATED WORK

A. Software Defined Network
Software Defined Network (SDN) decouples network

Detecting Suspicious Behavior of SDN
Switches by Statistics Gathering with Time

Takahiro Shimizu, Naoya Kitagawa, Kohta Ohshima, and Nariyoshi Yamai

S

32

control and packet forwarding function which enables flexible
network control by the centralized control plane. Network
intelligence is logically centralized in the trusted
software-based controller that maintains a global view of the
entire network, and packet forwarding function consists of
hardware and software switches which are dumb forwarding
device.

OpenFlow [6] is a protocol to realize SDN using
controllers and switches. OpenFlow messages relevant to this
paper include FLOW_MOD, STATS_REPLY, and
STATS_REQUEST. FLOW_MOD messages create flow
entries in switches. STATS_REQUEST messages request the
statistics to switches from a controller. As a response to
STATS_REQUEST messages, STATS_REPLY messages
report network statistics in switches about flow, table, and
switch port, such as the number of packets and bytes sent or
received.

B. SDN and Time
Scheduled Bundle proposed in Time4 [5] is a method to

schedule the timing of some OpenFlow messages execution
in switches and achieves without depending on the controller
performance. Scheduled Bundle is a flexible method to be
compatible with all types of OpenFlow messages.
Furthermore, OpenFlow 1.5 specification [7] includes
Scheduled Bundle.

To execute scheduled messages simultaneously, Time4
utilizes high precision time synchronization such as Precision
Time Protocol (PTP) to be standardized by IEEE 1588 [8].
PTP can synchronize nanosecond order time synchronization
by using hardware-timestamping enabled NIC module. Time4
shows that updating flow at the same time can suppress
packet loss and without depend on the performance
degradation at Flow Swapping scenario. Additionally,
T. Mizrahi et al. [5] reported 9 out of the 13 SDN capable
switch silicones listed in the Open Networking Foundation
(ONF) SDN Product Directory have native IEEE 1588
support.

C. SDN Security and Network Verification
Several studies showed that SDN is more vulnerable to

compromised switches than traditional networks [1], [2], [3].
To verify network configuration, several studies proposed
such as VeriFlow [9] and NetPlumber [10]. However, these
studies focus on the detection of network bugs such as loops
but infringed switches are out of scope. Hence,
countermeasures against compromised switches in SDN are
required.

SPHINX [2] is one of the countermeasures against
compromised switches, and it assumes trusted controller and
honest majority switches. SPHINX creates a global view of
networks, called flow graph, by collecting FLOW_MOD
messages from the trusted controller, and verifies its
consistency and constraint.

Moreover, SPHINX can verify the legitimacy of SDN data
plane by byte consistency check with flow statistics gathered

from switches. Byte consistency check uses
Similarity Index (Σ), which is the moving average of byte
statistics value regarding flow. Σ must be similar value as to a
particular flow each switch when the networks do not suffer
from attacks from compromised switches such as dropping or
injecting packets.

Byte consistency check is a practical approach to the
countermeasure for attacks by compromised switches, but it
has a scalability issue. Since it influenced by the gap of
statistic gathering timing between each switch, the accuracy
of SPHINX’s byte consistency check is controller
performance dependent. In fact, several studies reported that
controller performance depends on the number of connected
switches [11] and the hardware specification [5]. Furthermore,
A. Curtis et al. [12] showed that threshold-based and
sampling-based statistics gathering method can gather
statistics without depending on the controller performance.
However, unfortunately, when these methods apply for data
plane verification, it has an issue totally dependent on the
timing of statistics report from untrusted switches.

WedgeTail [3] has higher accuracy than SPHINX but also
needs many resources due to gather packet hash and to verify
behaviors of switches with comparing except and actual
packet behaviors.

Thus, current solutions have issues relating scalability such
as the accuracy of verification may depend on controller
performance.

III. SYSTEM DESIGN

A. Overview
As mentioned in Section II, the existing solutions have

scalability issues such as depends on controller performance,
needs many resources. Hence, if the number of switches
increase and a controller specification is insufficient, the
accuracy of verification may decrease.

In this paper, we propose a data plane verification method
which uses the statistics gathered at the same time between all
switches by accurate time scheduling. Our method enables
collecting statistics without depending on the controller
performance, and the controller can handle statistics gathering
simultaneously.

Fig. 1 presents a schematic architecture of the system

Fig. 1: System Overview.

Controller

Apps

Verifier

Hosts Switches

33

assumed in this paper. The part implemented by the proposed
method is indicated by Verifier in this figure, and it intercepts
OpenFlow messages between the switches and the controller
applications. Furthermore, we assume that all the switches
and all the controllers are accurately time synchronized.

B. Threat Model
We focus on data plane security that attacks can detect

from packet transfer statistics analysis as control plane
security is well studied [13]. We assume that a compromised
switch may drop, inject, or delay packets, and it does not
handle the packets according to the rules specified by the
controller correctly. The cause of these behaviors may be
misconfiguration or switch failure. Our method can be
utilized not only to detect compromised switch behaviors but
also to discover network defects. As with the assumption of
SPHINX, we assume that the controller applications are
trusted and majority of switches are legitimate. In other words,
messages from the controller are trusted, in contrast,
messages from any switches may be forged by compromised
switches. We consider that the verifier knows reliable
physical topology information, and assume closed SDN
system, since to focus analysis on only OpenFlow control
messages.

Additionally, we assume that the time of all switches and
the controller are synchronized accurately by time
synchronization protocol such as PTP. Even if a compromised
switches synchronized the time like legitimate switches and
disguise the byte transfer statistics, many other switches
report legitimate statistics. Consequently, since the difference
of byte transfer statistics arises compared with the
compromised switches and many legitimate switches, our
method can detect attacks by compromised switches (See
Section III-C3). Additionally, for the countermeasure of
attacks to PTP protocol, we can utilize prior art such as [14].
Therefore, the security of time synchronization is out of scope
in this paper.

C. Sequence of Validation
Fig. 2 shows the workflow of our method, which involves

three sequences. Our method validates whether the packet
transmissions correctly performed on the path, which
supposes by the trusted controller. The sequence of validation
to specific traffic flow by our method is the following:

1) Calculate the path that the controller supposes, using
physical topology information and FLOW_MOD
messages which send from the controller application.

2) Get actual transfer statistics of all switches at the same
time by using Scheduled Bundle.

3) Validate transfer state consistency using the expected
path by the controller, and difference of statistics
between neighbor switches.

As described in Section III-A, our method intercepts
OpenFlow message, such as FLOW_MOD message and
STATS_REPLY messages, then relay to the destination. Our
method also relays OpenFlow messages which does not
relevant to the verification.

In Section III-C1 through Section III-C3, we present these
mechanisms in detail.

1) Calculate Current Path

Our method needs to construct a flow graph, which is a
graph theoretic represent of network assumed by a trusted
controller, to obtain a current path, similar to SPHINX. The
flow graph constructs only using FLOW_MOD messages
issued by the trusted controller. It includes match field and
instruction, which contains src/dst MAC address, src/dst IP
address, and in/out port information of the switches. The flow
graph is not suffering from untrusted switches since untrusted
STATS_REPLY messages do not use in constructing flow
graph.

The current path assumed by the trusted controller can
obtain by combinations of the information of FLOW_MOD
messages and physical topology information. The current
path uses for identifying the switches through which specific
traffic passes when verification execution.

Fig. 2: Our method’s workflow.

Switches

FLOW_MOD FLOW_MOD

Controller Apps

Expected
Path

Alarm

R
elay

O
penFlow

M
essages

3) Byte consistency check1) Constructing
flow graph

2) Periodically statistics gathering
(Utilizing Scheduled Bundle)

STATS_REQUEST (at TS)

Transfer Statistics

STATS_REPLY (at TS)

Verifier

STATS_REPLY

34

2) Statistics Gathering with Scheduled Bundle
Our method gathers transfer statistics from switches at the

same time periodically. In general, when statistic gathering, a
controller sends STATS_REQUEST messages periodically,
and its timing depends on the controller performance. On the
other hand, our method uses STATS_REQUEST wrapped by
Scheduled Bundle, since it gathers statistics between each
switch simultaneously. It can gather statistics without
depending on controller performance.

Fig. 3 illustrates a flow of gathering transfer statistics at
timestamp TS with Scheduled Bundle. First, the controller
sends BUNDLE_OPEN message to the switch, followed by
BUNDLE_ADD message which encapsulating
STATS_REQUEST message to gather statistics for all flow
entries. Finally, the controller sends BUNDLE_COMMIT
message with the timestamp of schedule execution timing TS.

To verify byte consistency, our method mainly uses
byte_cnt and match field information that contained in
STATS_REPLY messages. Our method associates flow and
statistics according to match field, and calculate byte_cnt
difference from already collected STATS_REPLY
information.

The difference of statistics between the switches may occur
by the timing of FLOW_MOD message send by the controller
application depends on the mechanism of routing control.
Additionally, the statistics of simultaneity gathering also
depends on the performance of the switches, such as the size
of flow table and the accuracy of schedule execution. Thus,
our method uses moving averages of the difference last four
statistics report (i.e. use byte_cnt difference) at the same time
between each switch, called ByteDiff. Since this interval is
sufficient to eliminate the effects of scheduling errors and
traffic bursts, our mechanism can avoid false alarms. In
comparison with SPHINX’s Σ, since the scheduling
mechanism gathers the statistics simultaneously, ByteDiff of
our method does not depend on the controller performance.

3) Algorithm

Algorithm 1 describes the step of executing the consistency
check by a given flow graph and gathered statistics between
switches simultaneously. The algorithm needs the flow graph
as input, and the flow graph includes a current path relevant
to traffic flow F. Our method verifies whether compromised
switches attack the network from the same two points as
SPHINX.

Firstly, this algorithm validates the statistics of switches
over a current path of traffic flow F, in order from the nearest
switch from a source host. Since the algorithm uses the
statistics gathered at the same time, all the switches that
passed through must report the similar value of the statistics
between the switches. Thus, even if a compromised switch
disguises that the statistics are similar to an honest switch, it
can be detected by the honest downstream switch.

The algorithm needs considering the difference of the
statistics values which occurs by propagation delay,
scheduling error, and the difference of flow table size
maintaining by the switches. For that reason, it compares the
statistics of neighbor switches based on the statistics of the
validation already passed switches, called PrevByte, using a
threshold τ. The algorithm reports a violation if it observes
much different from the simultaneous statistics of the
neighbor switch over the current path.

Secondly, the algorithm verifies whether the statistics of
switches, that are not included in the current path associated
with traffic flow F, are zero. In this way, it can verify that no
traffic has been injected and dropped by the switches that are
out of the current path.

The algorithm needs the threshold (τ) as an input, which is
used as the margin of the statistics value similarity. To
consider ByteDiff varied with communication situation, the
algorithm calculates a maximum/minimum ByteDiff with
multiplying PrevByte by the threshold. Additionally, since the
performance of statistics gathering depends on the switch
performance, which occurs from the accuracy of schedule
execution, the flow table size [12], and the implementation of
the switch [15], τ needs to be determined in consideration of
the switch performance. In this algorithm, if the value of τ is
too large, false negatives may occur and a genuine alarm may
not be outputted. On the other hand, If the value of τ is too
small, the algorithm can cause false positives. Therefore, the
administrator must carefully determine the value of τ.

Fig. 3: Sequence of Statistics Gathering with Scheduled Bundle.

Bundle
O
pen re

pl
y

ST
AT
S_

R
EP

LY

Bundle
C
om

m
it

(at Ts)

Bundle
Add

(STATS_R
EQ

U
EST)

re
pl
y

TsSwitch
Time

Controller
Algorithm 1 Proposal algorithm

Input: F :traffic flow, ⌧ :threshold

Output: O:violation switches of traffic flowF
function Verify(F ,⌧)

Initialize:
FG := Get_FlowGraph(F)

CurrP := Get_CurrentPath(FG)

O := ;
PrevByte := 1

for all S 2 CurrP do
FE := Get_FlowEntry(S,F)

ByteDiff := Get_ByteStatsDifference(FE)

if True == ((PrevByte == 1) _
(PrevByte/⌧ < ByteDiff < PrevByte·⌧)) then
PrevByte := ByteDiff

else
O := O [S

for all S 2 FG ^ S 62 CurrP do
FE := Get_FlowEntry(S,F)

ByteDiff := Get_ByteStatsDifference(FE)

if ByteDiff 6= 0 then
O := O [S

35

IV. EVALUATION

A. Experiment Setup
1) Implementation

We suppose our method to integrate into an application of
the controller. However, since we consider the effect of
processing for this experiment, we implemented our method
as a proxy between the controller application and the switches,
separately from the controller application. We implemented it
in Stopcock [16], which is an implementation of OpenFlow
proxy, and we used custom Loxigen [17] script to achieve
compatibility with Scheduled Bundle. We used the OpenFlow
switch called ofsoftswitch13_EXT-340 [18], which
compatible with Scheduled Bundle.

We determined that the interval of the statistics gathering is
three seconds and the time of executing schedule is after one
second at the first BUNDLE_OPEN message sent. Since
ofsoftswitch13_EXT-340 is not supported multiple
scheduling, these intervals are sufficient value to eliminate
the duplicated schedule.

2) Experiment Environment

We evaluated our prototype by micro-benchmarking on an
emulated network with Mininet [19]. Our testbed emulates
the network on a single machine, and each node refers to the
same hardware clock. Thus, we can assume that the time of
each emulated node is synchronized. Although time
synchronization emulation with perfect precision is
impossible due to resource conflict, it is sufficient accuracy
for out method to use statistical average to reduce

performance attributes. Fig. 4 shows that emulated topology
in our testbed by using Mininet (linear, k = 3, n = 1). The
verification program placed on the same host as running
Mininet to emulate time synchronization. To mitigate the
impact of resource conflicting, we used minimal topology and
separated the controller application host and the Mininet host
including the verification program. We hosted the emulated
network and the verification program on a machine equipped
with Intel Xeon E3-1220v5, 3.00GHz, quad-core and 32GB
RAM. We used Floodlight v1.1 [20] as the SDN controller
application, and it hosted on a machine with Intel Core i5,
3.10GHz, quad-core and 8GB RAM.
3) Scheduling Accuracy

We measured the accuracy of scheduling to show the
adequacy of using emulated testbed. Fig. 5 shows the results
of experiments measuring the accuracy of scheduling in the
testbed. In this experiment, we measured the difference
between actual execution time and scheduled execution time,
by sending 1K Scheduled Bundle from the verification
program every three seconds to each switch. The switches
also put a load on by generating traffic from h1 to h3. The
scheduling error depends on the processing power of the
machine, and the frequency of resource confliction. Therefore,
the scheduling error of s3 is larger than others. We observed
that the scheduling error of our testbed is less than 0.3
millisecond in the 90 percentiles at all switches. From this
result, we confirmed that this environment is sufficient to
evaluate our method, since our method can mitigate the
scheduling error with using moving average.

B. Accuracy of Verification
We evaluated the accuracy of the verification in the 3-hop

path which uses TCP flows from h1 to h3 with iperf. We
executed verifications with SPHINX and our method and
compared the accuracy of the verification. Since our testbed
is a minimal configuration, we simulated the variation of the
controller performance by delay (d), which inserts before
sending STATS_REQUEST from the verification program. In
fact, Tootoonchain et al. [11] reported that as increasing the
number of connected switches cause I/O handling overhead
and resource contention on the task, the latency of controller
response increase.

1) False alarm

We analyzed the probability of false alarm caused by the
impact of the controller performance degradation. In this
experiment, it is not preferable to raise an alarm in
verification because all switches are legitimate.
Fig. 6a and Fig. 6b illustrate false-positive rate in SPHINX
and our method. We observed that SPHINX increases false
alarms evidently when the controller performance occurs
degradation (i.e. d become increasing), as it depends on the
controller performance. In contrast, we observed that even if
d increase, the false positive rate of our method is without
increasing, it similar to SPHINX at d = 0.

2) Lack of genuine alarm

We evaluated the probability of the lack of genuine alarm
given the variety of the controller performance using the same

Fig. 4: Microbenchmark topology.

Fig. 5: Scheduling error in our emulated environment.

Controller

Apps

Verifier

s1

h1

s2

h2 h3

s3

Host is
separated

0.0 0.1 0.2 0.3
Scheduling Error[ms]

0.00

0.25

0.50

0.75

1.00

C
D

F

s1

s2

s3

36

conditions, and compared each method. We performed packet
drop on a link of between s2 to s3 by given link loss rates,
such as 2%, 4%, and 6%, to emulate malicious behaviors by
compromised switch or link. In this experiment, although it is
preferable that alarms are generated in all verifications, false
negatives may occur when τ increases.

Fig. 6c through Fig. 6e illustrate false-negative rates of
each method at the three kinds of controller performance
value d (d = 0, 5, 10). We observed that the false negative rate
of our method is slightly higher than SPHINX when d
increases. However, our method can set small τ than SPHINX
(see Section IV-B1). Thus, our method can achieve the
performance of the false-negative rate equivalent to SPHINX
by tuning τ.

C. Overheads
We measured the overhead of statistics gathering from

switches with SPHINX and our method. We measured the
ping latencies between h1 to h3 while gather statistics every
three seconds. Fig. 6f shows the result of this experiment. We
observed that the ping latencies of our method are partly
higher than SPHINX, since the implementation of Scheduled
Bundle by ofsoftswitch13_EXT-340 affects packet
processing.

V. DISCUSSION

A. Limitations
Our method has a few following limitations that similar to

SPHINX.

• Our method cannot identify ingress or egress switch is
compromised or not since it depends on STATS_REPLY
messages from untrusted switches. Thus, if the edge
switch is compromised, our method cannot detect the
attack even if the switch that passes through after is
legitimate. Therefore, our method cannot apply to
End-to-End verification currently. However, it is
possible to detect attacks from compromised switches by
managing all the hosts by the verifier as well as the
switches, and enabling the gathering of statistics from
the hosts at the scheduled time.

• Our method may miss some transient attack since the
span of verification depends on the verification program.
To fix this limitation, it is necessary to shorten the
statistics gathering interval or change to a highly
accurate network monitoring method such as WedgeTail.

• Our method cannot verify traffic integrity. To overcome
the issue, cryptographic mechanisms can support it.

B. Future Work
We need further experiments which evaluate the scalability,

the overhead and the accuracy in a real-world environment
which is synchronized time accurately. Additionally, we plan
to reduce the statistics gathering overhead of Scheduled
Bundle by periodic scheduling, since our current prototype
sends Scheduled Bundle every timing of statistics gathering.

Additionally, the compatibility of our method with
distributed controller environment such as ONOS [21] is
required further investigation. Even if these sites manage
separately, it is possible to synchronize the time of all the

(a) SPHINX’s false-positive rate with variation
in τ and d.

(b) Our method’s false-positive rate with
variation in τ and d.

(c) Comparison of false-negative rate at d = 0
vs τ and link loss rate.

(d) Comparison of false-negative rate at d = 5
vs τ and link loss rate.

(c) Comparison of false-negative rate at d = 10
vs τ and link loss rate.

(f) Comparison of our method’s and
SPHINX’s ping latencies.

Fig. 6: Experiment results.

1.0002 1.0004 1.0006 1.0008 1.001 1.0012
Threshold(⌧)

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls
e-

P
os

it
iv

e
R
at

e

d = 0
d = 2
d = 4
d = 6
d = 8
d = 10

1.0002 1.0004 1.0006 1.0008 1.001 1.0012
Threshold(⌧)

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls
e-

P
os

it
iv

e
R
at

e

d = 0
d = 2
d = 4
d = 6
d = 8
d = 10

1.01 1.02 1.03 1.04 1.05 1.06 1.07
Threshold(⌧)

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls
e-

N
eg

at
iv

e
R
at

e

SPHINX loss = 2
SPHINX loss = 4
SPHINX loss = 6
Proposal loss = 2
Proposal loss = 4
Proposal loss = 6

1.01 1.02 1.03 1.04 1.05 1.06 1.07
Threshold(⌧)

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls
e-

N
eg

at
iv

e
R
at

e

SPHINX loss = 2
SPHINX loss = 4
SPHINX loss = 6
Proposal loss = 2
Proposal loss = 4
Proposal loss = 6

1.01 1.02 1.03 1.04 1.05 1.06 1.07
Threshold(⌧)

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls
e-

N
eg

at
iv

e
R
at

e
SPHINX loss = 2
SPHINX loss = 4
SPHINX loss = 6
Proposal loss = 2
Proposal loss = 4
Proposal loss = 6

0.0 0.2 0.4 0.6 0.8 1.0
Latency[ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

using SPHINX

using Proposal

37

switches and the controllers with sufficiently high precision
by utilizing time synchronization method such as PTP. Thus,
we believe that improved our method is suitable for
distributed controller environment. However, since
distributed controller environment may have link delays
caused by the distances between sites, we plan to improve the
method to consider a link specific delay.

VI. CONCLUSION
Software Defined Network (SDN) is attracting rising

attention as a future networking paradigm. However, although
SDN security such as control plane well studied, the attacks
on data plane by compromised switches can be a more serious
threat. Unfortunately, existing solutions have some issues
relevant to scalability such as increasing false alarm rely on
controller performance. This paper showed that the first step
to a countermeasure against compromised switches by
utilizing to gather statistics with the timing schedule. By
gathering statistics simultaneously from the switches by
scheduling, our method can detect attacks by compromised
switches without depending on the controller performance.
Additionally, our method considered that the difference of
statistics which occurs from scheduling error. From the
results of the experiments, we confirmed that the false
positive rate of our method is lower than SPHINX even if the
controller performance decrease.

REFERENCES
[1] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and

dependable software-defined networks,” in Proc. HotSDN. ACM, 2013.
[2] M. Dhawan, R. Poddar, M. Kshiteej, and M. Vijay, "SPHINX:

detecting security attacks in software-defined networks," in Proc. NDSS.
Internet Society, 2015.

[3] A. Shaghaghi, M. A. Kaafar, and S. Jha, "Wedgetail: An intrusion
prevention system for the data plane of software defined networks," in
Proc. AsiaCCS. ACM, 2017.

[4] "CVE-2016-2074," accessed: May 13, 2018. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE- 2016- 2074/

[5] T. Mizrahi and Y. Moses, "Time4: Time for SDN," IEEE Transactions
on Network and Service Management, vol. 13, no. 3, pp. 433-446,
2016.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, "OpenFlow: Enabling Innovation
in Campus Networks," ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, p. 69, 2008.

[7] Open Networking Foundation, "OpenFlow Switch Specification
Version 1.5.0," 2014, accessed: May 13, 2018. [Online]. Available:
https://www.opennetworking.org/wp-content/uploads/2014/10/openflo
w- switch- v1.5.1.pdf

[8] IEEE, "IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems," IEEE Std
1588-2008, pp. 1-300, 2008.

[9] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, "VeriFlow:
Verifying Network-Wide Invariants in Real Time," in Proceedings of
the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI'13), vol. 42, no. 4, sep 2013, p. 467.

[10] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S.
Whyte, "Real Time Network Policy Checking Using Header Space
Analysis," in Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation (NSDI'13), 2013, pp.
99-112.

[11] A.Tootoonchian,S.Gorbunov,Y.Ganjali,M.Casado,andR.Sherwood,
"On controller performance in software-defined networks," in Proc.
HotICE. USENIX, 2012.

[12] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, "Devoflow: Scaling flow management for
high-performance networks," in Proc. SIGCOMM. ACM, 2011.

[13] S. Khan, A. Gani, A. W. Abdul Wahab, M. Guizani, and M. K. Khan,
"Topology Discovery in Software Defined Networks: Threats,
Taxonomy, and State-of-the-Art," IEEE Communications Surveys
Tutorials, vol. 19, no. 1, pp. 303-324, 2017.

[14] T. Mizrahi, "Time synchronization security using IPsec and MACsec,"
in Proc. ISPCS, no. Icv, 2011, pp. 38-43.

[15] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
"OFLOPS: An Open Framework for OpenFlow Switch Evaluation," in
Lecture Notes in Computer Science, 2012, vol. 7192, pp. 85-95.

[16] P. Wood, "Stopcock," 2014, accessed: May 13, 2018. [Online].
Available: https://github.com/tignetworking/stopcock/

[17] Project Floodlight, "Loxigen," 2018, accessed: May 13, 2018. [Online].
Available: https://github.com/floodlight/loxigen/

[18] TimedSDN, "ofsoftswitch13_EXT-340," 2015, accessed: May 13, 2018.
[Online]. Available:
https://github.com/TimedSDN/ofsoftswitch13_EXT- 340/

[19] Mininet, "Mininet," 2018, accessed: May 13, 2018. [Online]. Available:
http://mininet.org/

[20] Project Floodlight, "Floodlight," 2018, accessed: May 13, 2018.
[Online]. Available: http://www.projectfloodlight.org/floodlight/

[21] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B.
Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an open, distributed sdn os,” in Proc. HotSDN. ACM,
2014.

Takahiro Shimizu received his B.E. degree in computer and
information science from Tokyo University of Agriculture
and Technology, in 2018. Since April 2018, he has been a
graduate student in the Graduate School of Engineering,
Tokyo University of Agriculture and Technology. His
research interests include Software Defined Network (SDN)
security and monitoring.

Naoya Kitagawa received his B.Sc. and M.Sc. degree in
information science from Chukyo University, Toyota, Japan,
in 2009 and 2011 respectively, and his Ph.D. degree in
information science from Nagoya University, Nagoya, Japan,
in 2014.

In April 2014, he joined Information Technology Center,
Nagoya University as a postdoctoral fellow. Since October
2014, he has been an assistant professor in the Institute of
Engineering, Tokyo University of Agriculture and
Technology. His research interests include the Internet,
network security, and distributed system. He is a member of
IPSJ.

38

Kohta Ohshima received his B.E. and M.E. degrees in
electronics and information engineering and his Ph.D. degree
in Tokyo University of Agriculture and Technology, in 2001,
2003 and 2006, respectively. In 2006, he joined the Faculty of
Engineering, Tokyo University of Agriculture and
Technology, as a research associate. From 2013 to 2015, he
was an senior lecturer in the Saitama University of
Technology, and he was an associate professor in the same
department from 2016 to 2016. Since 2016, he has been a
associate professor in the Faculty of Marine Technology,
Tokyo University of Marine Science and Technology. His
research interests include mobile computing, marine
communication, network science, and network architecture.
He is a member of IEICE, IPSJ and JIN.

Nariyoshi Yamai received his B.E. and M.E. degrees in
electronic engineering and his Ph.D. degree in information
and computer science from Osaka University, Osaka, Japan,
in 1984, 1986 and 1993, respectively.

In April 1988, he joined the Department of Information
Engineering, Nara National College of Technology, as a
research associate. From April 1990 to March 1994, he was
an Assistant Professor in the same department. In April 1994,
he joined the Education Center for Information Processing,
Osaka University, as a research associate. In April 1995, he
joined the Computation Center, Osaka University, as an
assistant professor. From November 1997 to March 2006, he
joined the Computer Center, Okayama University, as an
associate professor. From April 2006 to March 2014, he was
a professor in the Information Technology Center (at present,
the Center for Information Technology and Management),
Okayama University. Since April 2014, he has been a
professor in the Institute of Engineering, Tokyo University of
Agriculture and Technology. His research interests include
distributed system, network architecture and Internet. He is a
member of IEICE, IPSJ and IEEE.

39

