
Proceedings of the Asia-Pacific Advanced Network 2011 v. 32, p. 53-62.

Analysis of Redirection Caused by Web-based Malware

Yuta Takata
1,*

, Shigeki Goto
1,*

and Tatsuya Mori
2

1 Waseda University / 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan

2 NTT Service Integration Laboratories / 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585

Japan

E-Mails: {y.takata, goto}@goto.info.waseda.ac.jp; mori.tatsuya@lab.ntt. co.jp

*Tel.: +81-3-5286-3182; Fax: +81-3-5286-3182
http://dx.doi.org/10.7125/APAN.32.7 ISSN 2227-3026

Abstract: Web-based malicious software (malware) has been increasing over the

Internet. It poses threats to computer users through Web sites. Computers are infected

with Web-based malware by drive-by-download attacks. Drive-by-download attacks

force users to download and install the Web-based malware without being aware of it.

These attacks evade detection by using automatic redirections to various Web sites. It

is difficult to detect these attacks because each redirection uses the obfuscation

technique. This paper analyzes the HTTP communication data of drive-by-download

attacks. The results show significant features of the malicious redirections that are

used effectively when we detect malware.

Keywords: Web-based malware; drive-by-download attacks; packet capturing.

1. Introduction

Damage resulting from Web-based malware has been increasing. Web-based malware uses a

drive-by-download technique as its attack methods. Drive-by-download attacks force computer

users to download and install malware without being aware of it by exploiting the vulnerabilities

in a Web browser or some external components [1]. Figure 1 illustrates a typical drive-by-

download attack. A user accessing an entrance site is redirected to malicious Web sites in

sequence. These consist of three separate Web sites. A zombie site redirects the user to the next

zombie site or an attack site. The zombie site is used as a stepping stone. An attack site exploits

the vulnerabilities of the user’s Web browser and forces the user to download malware from the

malware distribution site, which contains malicious script codes or contents. These script codes

cde
Typewritten Text
53

cde
Typewritten Text

are difficult to analyze because they are often obfuscated. Therefore, it is not easy to detect

zombie-site URLs, attack-site URLs, and malware-distribution-site URLs used in drive-by-

download attacks.

There are two problems related to drive-by-download attacks. The first problem is that

malicious Web sites attack users only when they access the malicious Web sites. This makes it

difficult to detect the malicious Web sites because users only access them occasionally. The

second problem is that a normal Web site may be compromised, causing it to play the role of an

entrance site or a zombie site in drive-by-download attacks. An infected popular site like a social

network service will impact a large number of users. The drive-by-download attack increases the

risk to Internet users. Ensuring the security of the Internet poses a serious problem in daily life.

Figure 1. Drive-by-download attack.

There have been numerous research projects regarding drive-by-download attacks based on

the measurement and analysis of malicious contents.

Egele et al. [2] illustrated and analyzed malicious JavaScript codes. They proposed building

defensive mechanisms into a Web browser to mitigate the threats that arise from drive-by-

download attacks. Their study showed a successful approach for mitigating drive-by-download

attacks based on malicious script codes.

In this paper, we propose a new detection method for drive-by-download attacks using

features of the malicious redirections. Our new method is not limited to JavaScript analysis

because we observe a sequence of packets between a Web browser and servers.

Cova et al. [3] presented a method for the detection and analysis of malicious JavaScript

codes. They developed a system that uses numerous features and applied machine-learning

techniques to discriminate the characteristics of normal JavaScript code. Their system can

identify anomalous JavaScript codes by emulating the behaviors and comparing them to the

normal JavaScript profile. Their system specializes in JavaScript codes.

In addition to JavaScript codes, this paper covers other features such as HTTP methods and

URL information. It should be noted here that the evaluation of JavaScript codes is very

expensive. Therefore, although we consider only the existence of JavaScript codes, our method

does not analyze the code in detail.

cde
Typewritten Text
54

2. Newly Proposed Method

This paper proposes a new method for finding the hidden malicious URLs in drive-by-

download attacks by analyzing redirections from captured HTTP communication data packets. It

is relatively easy to trace redirections in HTTP communication by looking for the referrer (or
referer) fields in GET requests and HTTP responses. However, JavaScript codes can hide a

referrer field in the malicious redirections of drive-by-download attacks. This is why a simple

approach, like a blacklist of malicious URLs, does not work effectively. In fact, we find that the

occurrence of a referrer field in malicious redirection accounts for only 10% of malicious attacks.

In this paper, we analyze the HTTP communication data captured in controlled environment

where only the drive-by-download attacks exist. We describe this data-capturing environment

later. We try to reveal the features of the redirection to make it possible to detect unknown

malicious attacks effectively.

2.1. Taxonomy: Session and Server

We define a session as a chain of packet flows. It starts from a DNS name resolution,

continues with an initial three-way handshake in TCP followed by HTTP communications, and

finally finishes with FIN or RST packets in TCP. We can trace a session by sorting with

SEQ/ACK numbers in TCP using the same MAC address, IP address, and port number.

We next define a server. A server is identified by an IP address and domain name
1
. When we

access a Web site, we connect to a Web server or servers, and the Web browser establishes

sessions with the Web server or servers.

Figure 2. Session and server

1 We need to use an IP address and domain name pair because we can operate other domain names

with the same IP address by using the DNS round robin and the virtual domain mechanism.

cde
Typewritten Text
55

2.2. Test Range

Web browsers have a progressive rendering function that accelerates the rendering of a Web

page. This function evaluates data such as HTML files and JavaScript files immediately after the

download. For this reason, we start by analyzing the data from GET requests and define the test

range. The three above mentioned test methods are applied to GET requests and the HTTP

responses generated from the GET requests. HTTP responses are analyzed for 120 seconds time

intervals. We defined this time interval empirically using a preliminary experiment that

measured the time interval from the generation of redirection to the download of the first

malware. Therefore, this range depends on the network environment, including the bandwidth

and number of connected users.

2.3. New Method 1: URL Test

Our new method consists of three tests for detecting redirections. The first test investigates

URLs. The URL test detects redirections by picking up URLs from an HTML content file and a

location field from an HTTP response header. Thus, the URL test covers two methods.

The first method analyzes all of the characters in an HTML content file and extracts URLs.

We assume that all of the HTML files targeted for analysis are from an entrance site because we

are only analyzing the communication of drive-by-download attacks. In addition, we assume that

all of the following HTTP communications will be made automatically by the attack. We look

for GET requests to the above mentioned URL list. When the URL list has GET requests, we

consider that these requests were generated by the redirection.

The second method gets a URL from the “location” field in an HTTP response header. At

this point, the HTTP response header includes the HTTP status code “3xx,” which indicates a

redirection to the URL set in the location field.

2.4. New Method 2: Referrer Test

The referrer test detects redirections based on the referrer field of the GET request. If the

previous URL is set in the referrer field of the GET request, we can trace the redirection. When

we move to a newly clicked URL, the origin site URL is set as the referrer field.

2.5. New Method 3: Host Test

The above mentioned URL test and referrer test are straightforward methods for detecting

redirections. However, these methods cannot detect redirections when URLs are obfuscated or

no referrer redirection is generated by JavaScript. In this paper, we solve these problems by

using the host test, which analyzes the servers and sessions.

cde
Typewritten Text
56

First, we collect the list of all of the servers and sessions in the communication data. We call

this list the first list. Next, we analyze the communication data again and perform the URL test

(2.3) and referrer test (2.4) for each entrance Web site. Some servers and sessions are found to be

redirected. We put the redirected servers and sessions into the other list. We call the list the

second list. Finally, if any sessions in the first list are not covered by either the URL test or

referrer test, we investigate the remaining HTTP communications in detail. If there are any

sessions in the first list with the known servers that appear in the second list, these sessions are

classified as redirected sessions and belong to the same redirection group as the URL test and

referrer test.

The host test is based on the fact that many Web pages are managed by a small number of

servers called hosts. Figure 3 shows an example of a host test.

Figure 3. First list and Second list

Each vertical rectangle shows a session. A session contains a DNS name resolution (D), 3-

way handshake (S), HTTP communication (G, H), and FIN or RST packets (F). Each session

indicates the first packet arrival time of the session at the top of the rectangle. 1:15.4 means 1

minute and 15.4 seconds past from the origin of the timer.

The leftmost session at 1:15.4 is generated by a user who click an entrance Web site URL. If

URL test or referrer test identifies sessions at 1:17.0, 1:19.1, and 1:20.4 as sessions generated

from the entrance Web site, then the sessions identified in the first list are put into the second list

in Figure 3.

First list: All servers and sessions Second list: Redirected servers and sessions

Host test
Host test

×

cde
Typewritten Text
57

In Figure 3, sessions at 1:18.1 and 1:24.4 are not identified by URL test or referrer test

because of obfuscating. These sessions started within 120 seconds from the timestamp of the

entrance session and they communicated with the same server. Therefore, the host test classifies

these sessions into the same redirection group. However, the session at 10:13:6 is not classified

into the same redirection group because the session started about 10 minutes later from the

redirection and out of the test range of 120 seconds (2.2).

We found redirections by three tests from the first list, and put the result in the second list.

2.6. Malware Detection

The purpose of a drive-by-download attack is to force a victim to download the malware.

Therefore, when a Web browser downloads executable files, we can determine that these

redirections are malicious. We used the data captured under a controlled environment containing

a collection of drive-by-download attacks. The data was provided by the Malware Workshop

2010 Datasets project in Japan to facilitate data analysis in the security research area [4]. In this

study, we used the D3M 2010 datasets in the MWS 2010 datasets. The D3M 2010 datasets

contain accessed URL lists, which are found on a public URL black list [6], along with

previously detected drive-by-download attacks. They collected malicious communication data

using a Web client honeypots called Marionette [5]. Marionette does not execute the downloaded

malware, even though it comes under attack because of its vulnerabilities. The D3M 2010

datasets were captured on March 8th, 9th, and 11th of 2010. We can observe the detection

performance for the malicious redirection by successfully detect the download of executable files

using the three proposed test methods.

3. Results of Experiments

We implemented the program to evaluate the performance of our newly proposed methods.

3.1. Program Execution Example

Figure 4 shows a portion of the results from the program.

cde
Typewritten Text
58

Figure 4. Program execution.

2

In Figure 4, the first line indicates the 54th packet to obtain the HTML file. Subsequently, the

Web browser obtains seven JPEG files from the same domain, and the next part refers to other

domain files. We can see that the 176th, 210th, and 248th Web pages are zombie sites because

these URLs contain suspicious characters such as “download” and use ephemeral port numbers

rather than the port number (80). The indent in Figure 4 represents a reference or a redirection

identified by using the URL test or the referrer test. The contents from 79 to 210 are generated

from the 54th HTML file. Similarly, the 248th PHP file is generated from the 210th PHP file.

Finally, the Web browser accesses the file called “banner.php”, and we confirm the information

from the HTTP response header fields such as “exe (Inline)” and “octet-stream”. We can thus

identify it as an executable file. This means the 759th line indicates a redirection, and it is

classified into the same redirection group as the host test. We cannot identify the origin site of

this redirection.

Figure 4 also shows that the Web browser accesses various Web sites (domains) and

downloads an executable file (malware) by merely accessing an HTML file.

3.2. Test Performance

We counted the success rate for each test to acquire the malware distribution URLs. The

results are listed in the following table.

Table 1. Tests to acquire malware distribution URLs.

Date Marth 8
th

 March 9
th

 March 11
th

Total of malicious URLs 202 205 158

URL test 12 (5.9%) 10 (4.9%) 10 (6.3%)

Referrer test 13 (6.4%) 13 (6.3%) 6 (3.8%)

Host test 177 (87.6%) 182 (88.8%) 142 (89.9%)

2 We masked these URLs with “*” for security.

54:http://****ting.com/webalizer/050709wareza/crack=17=keygen=serial.html
79:http://****ting.com/webalizer/050709wareza/images/5.jpg
83:http://****ting.com/webalizer/050709wareza/images/6.jpg
91:http://****ting.com/webalizer/050709wareza/images/8.jpg
122:http://****ting.com/webalizer/050709wareza/images/1.jpg
132:http://****ting.com/webalizer/050709wareza/images/2.jpg
160:http://****ting.com/webalizer/050709wareza/images/7.jpg
165:http://****ting.com/webalizer/050709wareza/images/3.jpg
176:http://****abie.in:3129/js
210:http://****eegh.in:3126/download/index.php

248:http://****eegh.in:3126/download/jabber.php
759:('exe(Inline)', 'octet-stream') http://****eegh.in:3126/download/banner.php?spl=mdac

cde
Typewritten Text
59

3.3. Using Obfuscated JavaScript

We discovered that obfuscated JavaScript codes are used as entrance sites and zombie sites

with a probability of 100% in the D3M 2010 datasets. The obfuscated JavaScript codes are used

not only for HTML files but also for PDF files.

We discovered objects that are used frequently in obfuscated JavaScript codes for example,

the eval function, String object’s functions (fromCharCode, replace, split, and so on),

and location objects.

3.4. HTTP Header Parameters: Referrer Field, Server Field, and Vary Field

By analyzing the HTTP response header parameters, we discovered three significant features

of malicious redirections. First, most redirections to malware distribution sites are not simple

referrer redirections to hide the attack origin site. The attackers use JavaScript codes and force

Web browsers to download malware with no explicit referrer. Second, some malware

distribution servers use Nginx rather than Apache for the Web server. Third, a number of HTTP

response headers set “User-Agent” in the Vary field
3
.

3.5. URL Features

Attackers use specific parameters for GET variables. They use GET variables such as “sql”

and “mdac” and set the user’s environment variables. One example is the URL

“http://hoge.com?sql=2&br=MSIE&vers=6.0”. Additionally, sometimes an IP address and

ephemeral port are also used in a variable, like the 759th packet in Figure 4.

3.6. Using Fake Files

We investigated “Content-Type” fields and counted these fields at the HTTP responses of the

downloaded malware. We discovered malware and attack scripts faked to image files.

3.7. Features Utilization Ratio

We obtained the data listed in the following table after analyzing the usage rates for the above

mentioned features in D3M 2010.

3 When the contents are changed for the User-Agent, the Vary field is set to “User-Agent”; for example,

“Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)” in the D3M 2010. User-Agent is a field that is

used to distinguish the model of the browser or mobile.

cde
Typewritten Text
60

Table 2. Counts of redirections using features in D3M 2010.

Date March 8
th

 March 9
th

 March 11
th

Total of malicious redirections 98 89 77

Obfuscated JavaScript 98 (100%) 89 (100%) 77 (100%)

No referrer redirection 89 (90.8%) 79 (88.8%) 75 (97.4%)

PDF + JavaScript 35 (35.7%) 33 (37.1%) 25 (32.5%)

URL Feature 38 (38.8%) 30 (33.7%) 24 (31.2%)

Vary: User-Agent 29 (29.6%) 27 (30.3%) 25 (32.5%)

Server: Nginx 29 (29.6%) 24 (27.0%) 21 (27.3%)

Ephemeral Port 8 (8.2%) 5 (5.6%) 10 (13.0%)

Fake files 7 (7.1%) 6 (6.7%) 4 (5.2%)

Table 2 indicates that the use of obfuscated JavaScript codes with no referrer redirection can

be used as the fingerprints of malicious redirections because these features are used 100% of the

time. Additionally, Table 2 implies that the use of an ephemeral port and fake files are significant

features because normal Web sites do not use them.

3.8. Unique IP Address in Redirection

Figure 5 shows the number of unique IP addresses in each redirection. It also shows that a

single IP address has been used heavily. This means attackers often operate a number of domains

with a small number of IP addresses using a virtual domain. Such a feature is also an effective

criterion to detect malicious redirection.

Figure 5. Number of unique IP address in redirections.

cde
Typewritten Text
61

4. Conclusion

We analyzed communication data captured in an environment where only the communication

data of drive-by-download attacks existed. We found the significant features of malicious

redirection. The new methods successfully detected the redirections by using these features. Our

future plans are to evaluate the extraction method of malicious redirections by using the acquired

features from normal and malicious communication data and to apply the proposed methods to

communication data captured in various networks.

Acknowledgements

We are thankful for the MWS 2010 datasets provided by the NTT Communications

Corporation, as well as for our discussions with NTT Information Sharing Platform Laboratories.

References

1. Moshchuk, A.; Bragin, T.; Gribble, S.D.; Levy, H.M. A crawler-based study of spyware on

the Web. University of Washington, 2006; Vol. 2.

2. Egele, M.; Kirda, E.; Kruegel, C. Mitigating drive-by download attacks: challenges and

Open Problems. INETSEC 2009 IFIP AICT 309; Vol. 4, pp. 52-62.

3. Cova, M.; Kruegel, C.; Vigna, G. Detection and analysis of drive-by-download attacks and

malicious JavaScript code. WWW 2010; Vol. 4, pp. 281-290.

4. Hatada, M.; Nakatsuru, Y.; Akiyama, M.; Miwa, S. Datasets for anti-malware research

~MWS 2010 datasets~. Computer Security Symposium 2010; Vol. 10, pp. 19-21.

5. Akiyama, M.; Iwamura, M.; Kawakoya, Y.; Aoki, K.; Itoh, M. Design and implementation

of high interaction client honeypot for drive-by-download attacks. IEICE Transactions on
Communications, 2010; vol. 5, pp. 1131-1139.

6. Malware Domain List. http://malwaredomainlist.com

7. Takata, Y.; Mori, T.; Goto, S. Redirect analysis of web-based malware. The 73rd National
Convention of IPSJ, 2011; Vol. 3.

© 2011 by the authors; licensee Asia Pacific Advanced Network. This article is an open-access

article distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

cde
Typewritten Text
62

