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Generating Caenorhabditis elegans UNC-33 
antigens to be used for the Synthesis of 
Polyclonal Antibodies
by Matt Abbott, Jacob Fuller, Mason Howe, Michael 
Caniglia
(Prof. Andrea Holgado, Department of Biological 
Sciences)

UNC-33 and its human homolog, CRMP2 (Collapsin Response 
Mediator Protein-2), have been demonstrated to be involved in 
neurodevelopment as well as neurodegenerative disorders, pri-
marily Alzheimer’s Disease. However, the physiology and inter-
actions of these associations are vague. In order to further un-
derstand UNC-33/CRMP2, our group decided to use molecular 
biology and work toward the production of polyclonal antibod-
ies specific to C. elegans UNC-33. To do this, we utilized the GST 
tag Gene Fusion System and produced two antigens- UNC-33 
amino acid 48 to 212 and UNC-33 amino acid 48 to131 (UNC-
3348-212 and UNC-3348-131).  During this process, parameters were 
developed for the efficient expression and purification of these 
polypeptides. Once an effective protocol was established, GST 
fused UNC-3348-212 and UNC-3348-131 were expressed, purified, 
and tested for purity multiple times.  Overall, these procedures 
resulted in the production of 3.72 mg and 2.10 mg of GST fused 
to UNC-3348-212 and GST fused to UNC-3348-131, respectively. Cur-
rently, these purified polypeptides are being injected into lab-
oratory animals for the generation of polyclonal antibodies for 
UNC-33 research.

Introduction
UNC-33/CRMP is a family of cytosolic proteins conserved 

from worms to humans. In the nematode Caenorhabditis elegans 
(C. elegans), the unc-33 gene encodes for three splicing isoforms, 
UNC-33L (long), UNC-33M (medium), and UNC-33S (short) 
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(1,3-5).  Studies of these protein isoforms demonstrate that 
UNC-33 proteins play a vital role in neuronal development and 
elongation of axons.  Molecular analyses of these functions showed 
that UNC-33 proteins modulate the organization of actin filaments 
and microtubules within the axonal growth cone (1,2).  Conversely, 
CRMP2, the vertebrate homolog of UNC-33, is heavily involved in 
promoting axonal specifications and differentiation (3,6-11). Within 
its normal bounds, CRMP2 binds tubulin to stabilize microtubules 
and facilitates protein trafficking (7,12-13). However, analyses of 
autopsies of patients suffering Alzheimer’s Disease (AD) showed 
that CRMP2 is heavily represented in toxic intracellular protein 
aggregates (7,12-13).  For instance, examinations of the cortex, 
hippocampus, and isocortex identified that hyperphosphorylated 
CRMP2 accumulates at neurofibrillary tangles (NFTs) and 
β-amyloid (Aβ) peptide-rich plaques of AD patients (9,12,15-
16).  Furthermore, studies using a mouse animal model for AD 
suggested that rescue of CRMP2-dependent mechanisms play a 
role in the prevention of synapse loss and neurodegeneration (12). 
Consequently, Hensley and others postulated that CRMP2 could be 
an important target molecule for the development of experimental 
neurodegenerative disease therapeutics (9,17-20). Since then, 
studies from various groups demonstrated that lanthionine 
ketimine ethyl ester (LKE) binds to CRMP2 and rescues neuronal 
circuitry defects associated with mutations of the unc-33 gene (22, 
23, 24). 

Thus, to further investigate UNC-33 isoforms and ascertain 
the molecular bases of LKE action, we began producing two UNC-
33 antigens for the production of polyclonal antibodies. To the 
present time, Kaibuchi and colleagues reported utilizing polyclonal 
antibodies raised against UNC-33-glutathione s-transferase (GST) 
fusion protein. This study also established the existence of three 
splicing forms of UNC-33 – UNC-33L, UNC-33M, and UNC-33S, 
based on three alternative start codons and a common stop codon 
(1). 

Herein, we present strategies followed for the production of 
two truncated UNC-33 fusion proteins and their purification. 
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Truncated UNC-33 fusion proteins were made using two plasmids, 
the first plasmid coding for UNC-33 amino acids 48-212 was 
produced envisioning the production of an antibody that could 
detect isoforms UNC-33L and UNC-33M.  The second plasmid 
coding for UNC-33 amino acids 48-131 was to be used for the 
generation of antibodies detecting of UNC-33L alone (1).  Several 
parameters were investigated during the process of manufacturing 
these antigens, including the length of isopropyl-beta-D-
thiogalactopyranoside (IPTG) induction time, troubleshooting the 
GST fusion affinity purification, filtration and dialysis of the GST 
fused UNC-33 proteins, and subsequent preparation for polyclonal 
antibody production. The proper concentration of glutathione 
sepharose beads and glutathione solution to be utilized was also 
established. In preparing for polyclonal antibody production, 
the protein of interest was concentrated and the elution product 
dialyzed vs. saline solution. This research project resulted in the 
production of 3.72 and 2.10 total mg of GST fused UNC-3348-212 and 
UNC-3348-131, respectively. 

Materials and Methods
GST fusion expression plasmids and bacterial transformation
Plasmids ah139 (coding for GST fused UNC-3348-212) and ah142 

(coding for GST fused UNC-3348-131) were kindly produced by 
LaKesha Seals using conventional molecular biology techniques, 
restriction enzymes Sal I and Bam HI, UNC-33 cDNA coding 
for amino acid 48-212 and 48-131, and pGEX 4T1 plasmid 
(GE Healthcare Life Sciences). Plasmids ah139 and ah142 were 
transformed into BL21-Gold (de3) pLys 5 competent cells 
(Stratagene) using the manufacturer recommendations. 

UNC-33 Protein Induction Times
Overnight liquid cultures of transformed BL21-Gold (de3) 

pLys 5 cells were diluted 1/50 using 2xyT broth containing 100 μg/
mL ampicillin, and incubated in a shaker at 250 rpm, 37°C for 1-4 
hours.  During that span of four hours, the cultures were checked 
every hour until they reached an Optical Density600 (OD600) of 
0.6-0.8. Once desired OD600 was reached, IPTG at 0.5mM of the 
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final concentration was added to each culture to induce protein 
expression.   Cultures were allowed to continue growing in a shaker 
at 250 rpm, 37°C until overnight. Sample culture aliquots were 
taken before induction with IPTG, every two hours from 0-8 hours 
after induction, and overnight.  Cultured cells harvested from each 
sample were centrifuged at 15,700 x g for 1 minute and their pellets 
were prepared for SDS-PAGE analysis using 1X XT sample buffer 
(BioRad) and 1 X reducing agent (BioRad).  Last, samples were 
heated at 100°C for 5 minutes, and run for 1 hour at 150 V using 
precast Criterion gels (4-12% XT MES)(BioRad) and manufacturer 
recommendations. 

Purification of GST Fusion Proteins
Cultures grown and induced according to the optimal empirical 

time were centrifuged at 5000 x g at 4°C for 10 minutes.  The 
supernatant was decanted and the cells were stored at -80°C.

Next, cells were resuspended in 1X PBS solution containing 
1X EDTA and 1X protease inhibitor (ThemoScientific). The 
resuspended pellets were transferred into 50 mL conical tubes and 
sonicated for 3, 30-second intervals with 30 seconds of incubation 
on ice in between.  Triton x-100 in PBS was added to a final 
concentration of 1% and mixture was then incubated on a rotary 
shaker for 20 minutes at 4°C. Immediately following the incubation 
period, the lysate was centrifuged for 20 minutes at 3,220 x g, 4°C. 
Tubes containing 2 mL of glutathione sepharose beads per 500 
mL of original bacterial culture were washed with 1X PBS and 
centrifuged for 1 minute at 3,220 x g, 4°C. This wash process was 
repeated a total of three times. Once the centrifugation of the lysate 
was completed, the supernatant was divided evenly between the 
two tubes containing the beads and incubated on a rotary shaker 
overnight at 4°C.  A 50 μL aliquot was taken of the supernatant 
before mixing with the beads (crude extract), and prepared for 
SDS-PAGE analysis following the procedure mentioned previously.  

Cell lysate was incubated overnight with the GST purification 
resin to allow desired proteins to bind to sepharose beads. Samples 
were centrifuged for 30 seconds at 3,220 x g, 4°C, and before the 
supernatant was decanted and discarded, a 50 μL aliquot (unbound) 
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was taken for SDS-PAGE analysis. Bead pellets containing purified 
protein were washed 3 times with10 mL of PBS each time. Last, 
GST fused UNC-33 proteins were eluted from beads using freshly 
made 2 mL of 15 mM glutathione solution and incubating on 
rotary shaker overnight at 4°C.  After elution, the samples were 
centrifuged for 30 seconds at 3,220 x g, 4°C, and the supernatant 
was transferred to a clean tube for storage.  Beads were washed 
and reconstituted for future purifications. A sample aliquot of the 
eluted (supernatant) and non-eluted (beads) was taken SDS-PAGE 
analysis.

SDS-PAGE analysis
Samples prepared for SDS-PAGE analysis were run for 1 hour 

at 150 V using precast Criterion 4-12% XT MES gradient gels 
(BioRad) and manufacturer recommendations.  Proteins on gel 
were stained with Coomassie brilliant blue R-250 (BioRad) for 1 
hour and destained overnight.  Stained gels were imaged using the 
ChemiDoc imaging system (BioRad)  

Concentration via Amicon® Centrifugal Filter Device
Eluted purified GST::UNC-3348-212 and GST::UNC-3348-131 were 

concentrated using the Amicon® Ultra-15 10K Centrifugal Filter 
Devices (Millipore) and manufacturer recommendations. In brief, 
using Amicon®’s Typical Spin Time to Filtrate Volume Profile, 
the samples were centrifuged at 3220 x g and 1-minute intervals, 
checking after each centrifugation until the desired volume 
remained (27).

Protein Dialysis
Affinity purified antigens were dialyzed using a Slide-A-Lyzer 

Dialysis Cassettes (10K MWCO) (ThermoScientific). Solution 
containing proteins of interest were injected into the dialysis 
cassette following the provided protocol (20). Dialysis cassettes 
were covered with 1X PBS and incubated by stirring overnight at 
4°C. The dialyzed protein solution was removed by following the 
provided protocol as well (26). The purified protein was stored at 
-20°C. 

Determination of Protein Concentration
Protein concentration was determined by quantifying the 
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density of Coomassie brilliant blue R-250 stain in affinity purified 
protein samples and BSA (Bovine Serum Albumin) standards 
ranging from 80-1000 ng.  Standards and other protein samples 
run on the same gel were imaged using image lab software (Bio-
Rad). Volume tools menu of the image lab software (Bio-Rad) 
was utilized to produce a standard curve while concentration of 
unknowns was automatically determined from the line of best fit.

Results
GST::UNC-33 Induction Times
As demonstrated previously, the UNC-33 protein family consists 

of three different splicing forms UNC-33L, UNC-33M, UNC-33S 
(1). In order to pursue an understanding of the functional roles 
and expression patters of these three different splicing forms, we 
began the process of producing antigens GST::UNC-3348-212 for the 
production of antibodies detecting UNC-33L and UNC-33M, and 
GST::UNC-3348-131 for the detection of UNC-33L only. To do so, 
determining the optimum induction time for the expression of 
these proteins was the first of many steps leading to the synthesis 
of UNC-33 antigens. First, plasmids ah139 and ah142 were 
introduced into BL21-Gold (de3) pLys 5 cells, and the optimal 
time of induction leading to the ideal amount of GST::UNC-33 
was determined empirically. Samples collected of various time 
periods after IPTG-mediated induction were analyzed using SDS-
PAGE. Results shown in figure 1 revealed that GST::UNC-3348-212 
and GST::UNC-3348-131 are being expressed at quantifiable amounts 
and poses a predicted size of 50 kDa and 37 kDa, which match 
calculations derived from the amino acid composition. Moreover, 
analysis of induction times for both GST::UNC-3348-212 and 
GST::UNC-3348-131 showed that the intensities of bands observed 
after 4-6 hours of induction are about the highest.   At eight hours 
of induction, the bands either disappeared or lessened in signaling, 
suggesting a lower concentration of the proteins of interest. 

(See figure 1 on page 38)
Affinity Purification of GST::UNC-33 antigens
Purifying GST::UNC-3348-212 and GST::UNC-3348-131 was vital in 



33     SWOSU Journal of Undergraduate Research

the production of polyclonal antibodies for splicing isoforms. Once 
we determined the optimum expression protocol, we continued 
with the adaptation of a affinity purification procedure that best fit 
that of GST::UNC-33. Utilizing the GST tag, affinity purification 
was achieved using the glutathione sepharose beads and glutathione 
solution. Beads containing glutathione bind to GST::UNC-3348-212 
and GST::UNC-3348-131 with high affinity. Glutathione solution, 
on the other hand, elute affinity purified GST::UNC-3348-212 and 
GST::UNC-3348-131 by competing for binding and displacing GST 
fusion proteins from beads. As shown in figure 2, we successfully 
purified both UNC-33 antigens from crude cell extracts and eluted 
most of the GST::UNC-3348-212 and GST::UNC-3348-131 from beads.

(see figure 2 on page 38)
Concentrating UNC-33 antigens
Since results from 4 batches of protein affinity purification 

for GST::UNC-3348-212 and GST::UNC-3348-131 produced diluted 
samples of 0.202 mg/mL and 0.255 mg/mL, respectively. Fusion 
proteins were concentrated to an approximate target of 1.0 mg/
mL.   Concentration of affinity purified proteins was accomplished 
using the Amicon® Ultra-15 10K Centrifugal Filtration Device and 
centrifugal forces.  Results from this procedure produced a volume 
reduction of 12mL to 2.5 mL in the case of GST::UNC-3348-212 
and 12mL to 3 mL for GST::UNC-3348-131mL after eight minutes 
centrifugation at 3220 x g.

Dialysis and Determination of Protein Concentration. 
After purification and concentration of proteins of interest, 

dialysis was necessary to remove glutathione from the elution 
sample. Dialysis against 1X PBS was performed using the Thermo 
Scientific Slide-A-Lyzer® Dialysis Cassettes, which permit the 
diffusion of substances smaller than 10 kDa.  Once dialysis was 
complete, total protein content and concentration were determined 
by densitometry of SDS-PAGE gels. Intensity of Coomassie brilliant 
blue R-250 stained bands was quantified and GST::UNC-3348-212 
and GST::UNC-3348-131 were compared to BSA Standards (Figure 3 
and Figure 4). Results from this measurement led to the calculated 
concentrations equaling 1.24 mg/mL and 0.84 mg/mL for 
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Figure 1. The optimal induction time for both GST::UNC-3348-212 and 
GST::UNC-3348-131 was determined to be around 4-6 hours at 37°C. 
Samples of BL21-Gold (de3) pLys 5 cultures expressing proteins of 
interest were analyzed via SDS-PAGE.  Images obtained after Coomassie 
brilliant blue R-250 staining demonstrated that induction produced the 
highest amount of protein at times 4-6 hours and these proteins match 
the expected sizes of 50 and 37 kDa, respectively.

Figure 2. GST fusion affinity purification protocol successfully produces 
antigens GST::UNC-3348-212 and GST::UNC-3348-131. Analysis of various 
samples of the affinity protein purification process indicates that 
GST::UNC-33 is purified from crude cell extracts and eluted from beads 
using a glutathione solution. Samples examined were crude cell extract 
(crude), unbound fraction (unbound), eluted and two tubes containing 
beads (non-eluted).
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Figure 3. The comparison of GST::UNC-3348-212 and GST::UNC-3348-131 to 
BSA Standards of different concentrations to determine the concentration 
of the proteins of interest.

Figure 4. Standard Curve of BSA Standards of known concentration 
used to determine the concentration of GST::UNC-3348-212 and 
GST::UNC-3348-131. Sample indicators match those shown in Figure 3. 
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GST::UNC-3348-212 and GST::UNC-3348-131, respectively.
(see figures 3 and 4 on page 39)

Discussion
Kaibuchi and colleagues were the first group studying UNC-

33 in C. elegans and producing antiserum samples raised against 
amino acids 1-121 of UNC-33L (antibody anti-UNC-33L) and 
full-length UNC-33S (antibody anti all UNC-33 isoforms) (1). 
Using these antibodies, the group characterized the expression 
pattern of endogenous UNC-33 isoforms in C. elegans as well as the 
nature of the mutation in unc-33 mutant alleles. This investigation 
exhausted all the anti-serum containing UNC-33 polyclonal 
antibodies. Therefore, continuation of research centered on UNC-
33 isoforms required the redevelopment of molecular tools that in 
this case will recognize one, two, or potentially all three isoforms.  
To fill this gap and further examine UNC-33 isoform expression 
pattern throughout development, in situ localization, and protein-
protein interactions, we presented herein initial steps towards the 
production of antibodies specific for C. elegans UNC-33 isoforms. 
Even though a conventional system for the production of GST 
fusion proteins was employed, the steps leading to manufacturing 
the antibodies for UNC-33 required adapting an affinity purification 
protocol for the successful production of GST::UNC-33 proteins. 
Troubleshooting this procedure has required tedious attention as 
the basis for the creation of GST::UNC-33 was performed for the 
first time in our laboratory and preceding published information 
on these terms is not fully disclosed.  First, determination of proper 
induction time was crucial, since induction times that are too long 
or not long enough can detrimentally affect the efficiency of the 
purification and amount of protein produced. Upon adding IPTG 
to the transformed cells, optimal production of the protein of 
interest took about 4-6 hours (Figure 1). This result is in agreement 
with previous work showing that the 4 to 6 hours after the addition 
of IPTG is sufficient for the displacement of the LacI repressor 
and induction of the Lac promoter (25). Thus, production of the 
two variants of GST::UNC-33 was maintained at the six hour time 
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induction period.
In regard to the affinity purification of GST::UNC-33, the 

protocol adapted led to qualitatively and quantitatively sound 
results, but not without the need for improvement. Based on 
Figure 2, both GST::UNC-3348-212 and GST::UNC-3348-131 were 
present in the unbound and non-eluted samples. The unbound 
sample corresponds to the post-binding supernatant that contains 
proteins, which failed to bind to glutathione sepharose beads.   The 
non-eluted sample comprises the glutathione sepharose beads after 
treatment with soluble glutathione.  To decrease the percentage 
of unbound and noneluted proteins, we increased the amount of 
beads used for the purification and extended the time of elution. 
These changes led to an increased yield of the protein of interest. 
However, additional degradation products were observed. The 
appearance of these degradation products were resistant to protease 
inhibitors and EDTA (Figure 3). 

After several batches of affinity purification procedures, 
diluted samples of GST::UNC-3348-212 and GST::UNC-3348-131 were 
concentrated with the Amicon® Ultra-15 Centrifugal Filter Device, 
which was reported to be effective in retaining proteins larger than 
10 kDa. The protocol indicated by Amicon® led to the prediction 
that centrifugation at 4,000 x g for approximately seven minutes 
should filtrate a 10 mL solution (27). Empirical results obtained 
by our group show that eight minutes were sufficient for filtrating 
between 9.0 and 10.0 mL of solvent. 

The tripeptide Glutathione used during elution can result 
in undesired effect when injected together with the antigen.  To 
remove and exchange the glutathione with PBS, we dialyzed the 
concentrated protein sample with Slide-A-Lyzer® Dialysis (26).  
This technique proved to be effective in exchanging the solvents 
and further removing contaminants from the protein samples. 

Together, this research project resulted in the generation of 
3.72 and 2.10 mg of GST::UNC-3348-212 and GST::UNC-3348-131 
at concentrations of 1.24 mg/mL and 0.84 mg/mL respectively. 
Although the ultimate step in this investigation is antibody 
manufacturing, its success is critically dependent on the production 
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of quality GST::UNC033 antigens. Moreover, the protein products 
produced during this research project have the potential to 
transform our current understanding of UNC-33/CRMP2 in health 
and disease. 
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