
A MANAGED APPROACH OF INTERACTION

BETWEEN AGILE SCRUM AND SOFTWARE

CONFIGURATION MANAGEMENT SYSTEM

Abu Wahid Md. Masud Parvez

Abstract - In current age the agile software

development is one of the most popular software

development methodology but due the

mismanagement and lack of efficient handling of

agile scrum and software configuration

management system our software industry is facing

a high rate of failed product, keeping this as my

motivation, I have designed a efficient checklist

which will help the industry to organized the

interaction between agile scrum process and

software configuration management system in a

efficient and managed way and definitely that will

increase the successful project in the software

industry.

Index-term : Agile Scrums, Software

development, Software configuration

management system, Checklist, Successful

project.

1. INTRODUCTION

Agile software development actually a

collection of software development

methodologies. This software development

methodology stands on iterative and incremental

development, where requirements and solutions

evolve through self-organizing, cross-functional

teams. It promotes adaptive planning,

evolutionary development and delivery, a time-

boxed iterative approach, and encourages rapid

and flexible response to change. It is a

conceptual framework that promotes foreseen

interactions throughout the development cycle.

Software configuration management system

(SCM) is combination of many important

factors such as Software configuration

management (SCM) comprises of factors such

as compliance, workflow, security, process

management, code review, build management

and team work. It practices and clearly defines

for development teams how software will be

developed and eventually released.

2. OUR MOTIVATION

For most of the developers in the software

industry, the agile methodology is nothing new.

Most folks know that agile was a direct

response to the dominant project management

paradigm, waterfall, and borrows many

principles from lean manufacturing. [2. 5, 8]

There is often a painful conflict happen between

SCM practices because of the difficulty of

understanding how much structure will be

needed. For an instance, a company’s branching

model can be big and much more details.[3, 5]

But when they go for implementation then that

may not match with the delivery cycle.

Normally a company give effort for frequent

product releases, and normally use large

complex branching structures and that take too

long to merge code. Two-thirds of all software

projects fail, because of improper usage of

software configuration management (SCM). So

there is a big blame always on SCM. After

project management IT users cite configuration

management as the process that most needs

improvement, to make the whole development

system more efficient. In this paper I have

designed a structured checklist that will make

the team effective and make the development

process more efficient. This checklist introduces

a structured process inside the team to build

better product. So the time I was producing the

approach then the following three vital points

always I kept in my consideration:

2.1 Velocity Method:

An Agile and Scrum-based method for

distributed software R&D

2.2 Velocity Platform:

 An integrated suite of various best-of-breed

open source and open source-derived tools for

collaboration, tracking, end-to-end traceability

and product lifecycle management

2.3 Velocity Objects: reusable software product

frameworks that can be used with standardized
1Software Quality Architect, Tech Propulsion Labs,

San Francisco, USA
niloy.cit1@gmail.com,

masud@techpropulsionlabs.com,

 Jurnal Sistem Komputer - Vol.2, No.2, November 2012, ISSN: 2087-4685, e-ISSN: 2252-3456 Jsiskom - 43

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jurnal Sistem Komputer - JSK (Department of Computer System Engineering, Diponegoro...

https://core.ac.uk/display/236215489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

architecture and technology stacks for

distributed software development.

If we ensure all these points in our development

program then we can make our whole system

more at least 30% effective.

3. OUR DEVELOPED CHECKLIST

My Checklist on SCM will help engineers focus

on the importance of the development process

and not the rigid structure and day-to-day

activities associated with an SCM system. In my

checklist there is mainly six check points those

need to be followed and maintain during the

execution of project. The Checkpoints are as

follows:

 Change set and issue tracking

 Introduce effective Continuous

integration

 Impose efficient distributed

development

 Frequent merge and integration

4. CHANGE SET AND ISSUE TRACKING

Development team always working with

backlogs, bugs, and requirements these are

always under some process but the problem is

often team missed to link between these items

and the location of the actual code changes.

Issue tracking systems (ITS) is the primary step

of the whole process as an issue is in

development, there are frequent changes

introduce against an existing code base in order

to complete it. There should be a link as it is

critical to tracking an issue back to the planning

tool. This procedure makes the process easy for

other team members to help complete the issue

or even track its status as well. According to

traditional SCM, developers manually indicate

the linkage between the code and the story it is

associated with as the code is checked in. But

the main issue is, when the development is

finished, it’s hard to determine for the team

which team is totally completed or party

completed or need to plan for the coming sprint.

Then team find though comment fields to find

the status about stories but unfortunately that is

not only inefficient, but fraught with errors. To

get rid of this problem, we introduce tighter

integration, such as syncing issues from your

issue tracking system to your SCM system using

tools and scripts. It is also known as “change

set.”

4.1. Implementation Feedback

Change set links any change in files and

directories with a reason for the change and data

to give full visibility into history. It becomes

very easy for version control, as just pull code

and build. It’s easy to look back in history and

see what changes were made and what tasks

were associated with them but developer need to

be commit tide integration. Change set can

create a task-driven process out of linkage, and

manage change effectively. As we move issues

through the different stages of their lifecycle, it

can be easy to follow that code’s status during

the process. A single issue may go through

many different stages, like-

 Fig. 1 in interaction inside the team

Having our code match those statuses at the

same time that the issues migrate through the

process is the key to pushing a successful build

release out the door.

5. INTRODUCE EFFECTIVENESS OF

CONTINUOUS INTEGRATION

Without continuous integration (CI) the total

process is very inefficient as code is integrated

several just every night or once a week. A more

dangerous situation arises when the storage

computer does allow the document to be opened

by multiple developer (Such an example: Bob

and Susan are two dev) at the same time. Here is

what could happen:

 Bob opens the document on his

computer and works on his section.

 Susan opens the document on her

computer and works on her section.

 Bob completes his changes and saves

the document on the storage computer.

 Susan completes her changes and saves

the document on the storage computer.

 QA

 Product Owner

 UAT

 QA

Jurnal Sistem Komputer - Vol.2, No.2, November 2012, ISSN: 2087-4685, e-ISSN: 2252-3456 Jsiskom - 44

So we can realize, what happen here? All the

changes made by Bob are being overwritten by

Susan.

CI is the process of creating builds very often

and doing some basic sanity tests on the build to

know if it’s good or not. It helps the teams to

focus on problems immediately and fix the

problems instead of carry the defect in the build

long time. A company should plan about it from

the time of designing and implementing a

continuous integration system to further reap its

benefits. To gain the best benefit of CI, I would

propose the following ways:

5.1. Add version of all source code to SCM

All the code components and the tests

5.2. Allowing developer local builds

It make the developer team’s implementation

flexible, in special case they can follow it as

well.

5.3. Automated build in every change or

stages:

Build have to produce on every aspect of

change in the code project

5.4. Staging and private environment

Should provide the staging and private

environment so that dev team can implement in

private and finally push that to staging

environment.

If we follow these ways then any errors arise,

then developers can realize that, correcting them

immediately. This process is certainly easier

when utilizing an SCM system with atomic

commit capabilities

6. IMPOSE EFFICIENT DISTRIBUTED

ENVIRONMENT

Developing in a distributed system always is a

challenge. Like your development team and

your testing team can be set in two different

locations. This distribution of teams not only

strains the development process but always

there are security auditing and integration

problems throughout the process. Dealing with a

distributed SCM is always challenging, even

with the recent addition of DVCS (Distributed

Version Control) systems. It can become more

complex if a remote team asks for its own

repository or server and becomes decentralized.

But if we impose the following perquisite then

we will able to take the real advantages of

distribution development.

6.1. Shared Repositories

By imposing the most updated internet enabled

tools which ensure the feasibility for distributed

software developers to get up-to-date

information with shared repositories. The

mutually shared repositories need to provide a

consolidated, real-time view of all assets, their

current states, and their development histories of

all the users, product lifecycle

management, change management, project

management help to manage processes and offer

integrated collaborative characteristics like

messaging, threaded discussions, etc.

6.2. Competent Network

The system needs acclimatize to provisional

network outages in order to reduce the effect of

the network as a restriction on performance and

availability. For this the connection between

users and the repository ought to utilize nominal

bandwidth. To ensure that users do not feel the

need to circumvent SCM procedures due to the

amount of time required to check in or check

out files, bandwidth efficiency is essential. For a

user to work productively during an outage,

network outages should be minimally disruptive

and be simple for users to resolve changes made

offline when connectivity is reinstated.

6.3. Backing for multi-platform:

Large organizations have numerous

development groups working in cross-platform

environment. Additional challenges to

deployment also arise from the need to integrate

code, as there are lot of update are adding in to

code at the same time. There is also a surge in

the data between groups that follow different

development methodologies and use different

tool sets. It is therefore necessary for a SCM

tool to support all major hardware platforms and

operating systems.

7. FREQUENT MERGE AND INTEGRATE

Frequent or early Merge and often is the

practice of bringing together branches or

changes of code should be committed. As the

probability of a large merge is much higher.

Teams have to pick the best SCM approach for

Jurnal Sistem Komputer - Vol.2, No.2, November 2012, ISSN: 2087-4685, e-ISSN: 2252-3456 Jsiskom - 45

committing merging and integration. On here

situation here can draw the following points:

7.1. Push the merge and schedule

Developers should be able to create private

workspaces and branches to allow them to

create builds, releases and tests of code before

they push those changes to other team members.

7.2. Correct brunch and merge patterns

Branching patterns should make it easy for

developers and team members to move and

integrate code between different branches. It

should be easy and straight-forward to know

where a change belongs at any given time

8. CONCLUSION

Beside this checklist can be used to scale an

enterprise SCM rollout, and keep development

teams focusing on to the important part which is

according to the SCM system. I welcome others

to work with the more effectiveness interaction

between defect tracking system and continuous

integration, more efficient automated brunching

system’s architecture.

REFERENCES

[1] Coetzee, S.; Cox, S.; Herring, J,

“Configuration management of a system of

interdependent standards”,2011,

Standardization and Innovation in

Information Technology (SIIT), page(s): 1

– 12

[2] S. M. Metev and V. P. Veiko, “formal

Engineering method for software quality

assurance”, 2012, FCS.

[3] Cvitak, Lara Drvodelic; Car, Zeljka

“Impact of agile development

implementation on Configuration and

change management in telecom domain”,

2010, MIPRO, 2010 Proceedings of The

33rd International Convention, Page(s):

377 - 381

[4] IBM, “Software Configuration strategies

management”, vol. 2, pp. 45–291,

[5] Sutherland, Jeff, “Introduction to Agile

Software Development: Lean, Distributed,

and Scalable Minitrack”2012, System

Science (HICSS), Page(s): 5441 – 5441

[6] Steve Berczuk, Brad Appleton., “Software

configuration management patterns :

effective teamwork, practical integration ”

[7] Read, A.; Briggs, R.O.,” The Many Lives

of an Agile Story: Design Processes,

Design Products, and Understandings in a

Large-Scale Agile Development

Project”,2012, System Science (HICSS)

[8] Bass, J.M, “Influences on Agile Practice

Tailoring in Enterprise Software

Development”, 2012, AGILE India,

Page(s): 1 – 9.

[9] Anne Mette Jonassen Hass ”Configuration

management and practise”, 2011, web

article.

[10] Traditional software configuration process

model , online open source

[Online].Available:http://ibiblio.org/gferg/ldp/S

CM-OpenSource/scm-traditional.html

Authors

Abu Wahid Md. Masud Parvez received his

bachelor degree in Computer Science and

Information

Technology from Islamic University of

technology (IUT), OIC. He was bored at

23rd april 1987. Masud parvez is currently

working as Software Quality Architect at

Tech propulsion labs (USA), currently he is

appointed in Asia brunch of the company.

Previously he

was working as Research Engineer in

Electronics Research and development center,

Walton.

Jurnal Sistem Komputer - Vol.2, No.2, November 2012, ISSN: 2087-4685, e-ISSN: 2252-3456 Jsiskom - 46

	Materi Utama
	A Managed Approach of Interaction between Agine Scrum and Software Configuration Management System
	Abu Wahid Md. Masud Parves

