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Abstract
To investigate a construction of partial O*-algebras, we consider trace representations of

weights and unbounded conditional expectations for partial O*-algebras.

1 Introduction

Algebras of unbounded operators called O*-algebras and partial O*-algebras have been
studying from the pure mathematical situations and the physical applications. In this
paper we investigate noncommutative integration in partial O*-algebras. In integral
theory and probability theory, the Radon-Nikodym theorem, the Lebesgue decompo-
sition theorem and conditional expectations play a fundamental role. Their noncom-
mutative analogues in von Neumann algebras have been studied in [28, 29]. A typical
feature of integral in von Neumann algebras is that the observables permitted are
usually bounded and some finiteness is imposed. But, unbounded observables occur
naturally in quantum mechanics and quantum probability theory [10, 11, 13, 23, 26] and
o it is natural to consider the non-commutative integration in algebras of unbounded
observables.

2 Pleriminaries

In this section we introduce the basic definition and properties of patial x-algebras [5]
and partial O*-algebras [7].

A partial *-algebra is a complex vector space A with an involution z — x* and a
subset I' C A x A such that:

(i) (z,y) € T implies (y*,z*) € T}

(ii) (z,41), (z,y2) € T implies (z, Ay + pys) € T, for all A\, p € C;

(iii) whenever (x,y) € T', there exists a product z - y € A with the usual properties
of the multiplication:

r-(y+A2)=z-y+ ANz 2) and (z-y)* =y* - 2* for (z,y),(z,2) €T and X € C.
The element e of the A is called a unit if e* = e,(e,z) € T for all z € A, and
e-r=x-e=ux, for all z € A. Notice that the partial multiplication is not required
to be associative. Whenever (z,y) € I', z is called a left multiplier of y and y is called
a right multiplier of x, and we write x € L(y) and y € R(z). For a subset B C A, we
write L(B) = ﬂxEBL($)7R(B) = ﬂ:pEBR(m)

Let H be a Hilbert space with inner product (:|-) and D a dense subspace of H. We
denote by £(D,H) the set of all closable linear operators X in H such that D(X) = D.
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Then L(D,H) is a vector space with the usual operations: X +Y,AX. A subset (resp.
subspace) of L(D,H) is called an O-family (resp. O-vector space) on D. We put

LY(D,H) = {X € L(D,H); D(X*) D D},
LYD) ={X € LY(D,H); XD C D and X*D C D}.

Then L£T(D) is a -algebra with the usual operations: X +Y, AX, XY and the involutions
X — X! = X*[D, and a x-subalgebra of LT(D) is called an O*-algebra on D. We equip
LT(D,H) with the usual sum X + Y, the scalar multiplication AX, the involution
X — X! = X*[D and the weak partial multiplication X0V = XY, defined whenever
X is a weak left multiplier of Y, (X € L(Y) or Y € R(X)). A partial *-subalgebra of
LY(D,H) is called a partial O*-algebra on D.

Let M be a partial O*-algebra on D. The locally convex topology on D defined by
the family {|| - || x; X € M} of seminorms ||| x = ||&]| + [| X¢][, € € D is called the graph
topology on D and denoted by tx¢. The completion of D[ta] is denoted by 5[75/\4]. If
the locally convex space D[t 4] is complete, then M is called closed. We also define the
following domains:

DM)= N D(X), D*M)= ) D(X*),D*(M)= N D((X*[D*(M))"),
Xem Xem Xem

and then N R
D C D(M) C D(M) C D*(M) C D*(M).

The partial O*-algebra M is called fully closed if D = ﬁ(/\/l), self-adjoint if D = D*(M),
essentially self-adjoint if D*(M) = 23(./\/1) and algebraically self-adjoint if D*(M) =
D**(M).

We define two weak commutants of M. The weak bounded commutant M., of M
is the set

M, ={C € B(H); (CX¢&|n) = (C’§|XT17) for every X € M and {,n € D}.

But the partial multiplication is not required to be associative, so we define the quasi-
weak bounded commutant My, of M is the set

M., = {C € My; (CXT¢|Xon) = (CE|(X10X2)n) for all X; € L(X2) and &7 € D).

In general, Mg, C M.

We define the notion of strongly cyclic vector for a partial O*-algebra M on D in H.
A vector &y in D is said to be strongly cyclic if RY(M)&q is dense in D[t o], and & is said
to be separating if M, & = H, where R¥(M) = {Y € M; XOY is well-defined , "X €

We introduce the notions of partial GW*-algebras and partial EW*-algebras which
are unbounded generalizations of von Neumann algebras. A fully closed partial O*-
algebra M on D is called a partial GW*-algebra if there exists a von Neumann algebra
My on H such that MyD C D and M = [My[D]*". A partial O*-algebra M on D is
said to be a partial EW*-algebra if My, = {A € B(H); A[D € M} is a von Neumann
algebra, MyD C D and MID c D.

A x-representation of a partial x-algebra A is a *-homomorphism of A into £(D, H),
satisfying w(e) = I whenever e € A, that is,

(i) 7 is linear;
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(ii) z € LV (y) in A implies 7(z) € LV (7 (y)) and 7(z)0n(y) = 7(zy);
(iii) 7(z*) = w(z)t for every x € A.
Let m be a -representation of a partial -algebra A into £1(D,H). Then we define

5(%) : the completion of D with respect to the graph topology (4,
#(2) = r(@)[D(r), @€ A

D(r) = () D((x)),

ZEA
m(z) = w(x)[D(n), x€ A

D*(r) = () D(n(2)"),

reA
7*(x) = w(a*)[D*(n), x € A

We say that 7 is closed if D = 5(%); Jully closed if D = ﬁ(ﬂ'); essentially self-adjoint
if D() = D*(n); self-adjoint if D = D* ().

We introduce the weak and the quasi-weak commutants of a *-representaion 7 of a
partial x-algebra A as follows:

7w(A)L, = {C € B(H); (C&|m(x)n) = (Cr(z*)€|n) for all x € A and &,m € D(n)}

and

Ca() = {C € AV, : (Cr()elm(z)n) = (CElm(arza)n)
for all x1,x9 € A such that x1 € L(x9) and all £,n € D(r)},

respectively.

3 Radon-Nikodym theorem for biweights and regular bi-
weights on partial x-algebras

In this section, we investigate Radon-Nikodym theorem for biweights and regular bi-
weights on partial *-algebras.

3.1 Radon-Nikodym Theorem

We first state the notion of biweights on partial x-algebras. For a biweight, it possible to
construct the GNS-representation, which gives a representation, of partial x-algebras.

Let A be a partial x-algebra. A sesquilinear form ¢ on D(¢) x D(p), where D(p)
is a subspace of A, is said to be positive if p(z,2) > 0,2z € D(p). Let ¢ be a positive
sesquilinear form on D(y) x D(¢). Then we have

(3.1.1) e(z,y) = ¢(y,2), "2,y € D(p),
(3.1.2) lo(z, y)* < oz, 2)e(y,y), "=,y € D(p).
We put

Ny = {z € D(p); p(x,x) = 0},
By (3.1.2) we have

Ny =A{z € D(¢); o(x,y) = 0 for all y € D(p)},



and so N, is a subspace of D(p). We put
D(p) [Ny = {Ap(2) = 24+ Nysz € D(p)}-

Then D(p)/N, is a pre-Hilbert space with inner product (A, (z)[A,(y)) = ¢(z,y).
xz,y € D(p). We denote by H, the Hilbert space obtained by the completion of
D(¢) /N,

Let ¢ be a positive sesquilinear form on D(¢) x D(p). A subspace B(y) of D(y) is
said to be core for ¢ if it is satisfied the following

(i) B(g) C R(A) ;

(ii) {az;a € A,z € B(p)} C D(yp) ;

(iii) Ay (B(yp)) is dense in Hy;

(iv) plaz,y) = p(x,a’y),"a € A,y € Blg);
(v) pla*z.by) = ¢(z, (ab)y), "a € L(b),”z,y € B(y).
And we denote by B, the set of all cores B(¢p) for p. A positive sesquilinear form ¢ on
D(p) x D(p) such that B, # 0 is called a biweight on A.
Let ¢ be a biweight on A with core B(yp). We put

mo(a)Ap(z) = Ay(az), a € Az € B(p),

then 7, is a *-representation of A. We denote by 7['5 the closure of 7;. The triple
(Trf, Ay, Hy) is called the GNS-representation for the biweight ¢ on A with core B(¢p).
Throughout the section, A denotes a partial x-algebra and ¢ is a biweight on A with

a fixed core B(¢p).

Next we give the Radon-Nikodym theorem of biweights.

Definition 3.1.1. Let 9/, and vy be biweights on A. We say 19 is an extension of i,
and write ¥ C o, if

(i) D(¢1) C D(¢2);

(i) ¥1 = 99 on D(¢1) x D(¢1);

(iii) there exist a core B(1;) for 11 and a core B(19) for ¢y such that B(i;) C
B(v3).

Definition 3.1.2. (1) A biweight ¢ of A is said to be ¢-dominated and denoted by
Y <rypit
(i) D() C D)
(ii) 7r > 0,9(z.2) < rp(z,z), "z € D(p);
(iii) there exists a core B(¢) for 9 such that B(¢) C B(1).
(2) A biweight ¢ of A is said to be @-absolutely continuous if
(i) D) C D)
(ii) the map A, (z) = Ay(x), « € D(yp) is closable;
(iii) there exists a core B(¢) for 9 such that B(¢) C B(1).
(3) A biweight ¥ on A is said to be @-singular if
(i) D(g) € D)
(ii) for any = € D(y) there exists a sequence {x,, } in D(y) such that nlggo Ap(Tn) =
0 and nhﬂngo Ap(Tn) = Ay (2);
(iii) there exists a core B(1)) for v such that B(y) C B(v).
For each (1), (2), (3), if a biweight 1) satisfies
(iii)" B(y) is a core for 1,
then v is said to be uniformly p-dominated, uniformly -absolutely continuous and
uniformly @-singular, respectively.
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Lemma 3.1.3. Let H be a positive self-adjoint operator in H,, affiliated with qu(ﬂg)”
such that D(H) D Ay(D(p)) and HA,(B(p)) is dense in HA\,(D(y)). We put

{D(SDH,H) = D(¢)
omnu(z,y) = (H \p(2)[HAs(y)), z,y € D(p).

Then ou i is a uniformly p-absolutely continuous biweight on A with core B(y).

The following proposition is known as the Radon-Nikodym theorem for uniformly
dominated biweights on A.

Proposition 3.1.4. Let 1 be a p-dominated biweight (v < ryp) on A. Then there

ezrists a positive operator K in qu(ﬂg) such that 0 < K < rl and ¢ C 1, where

o (r,y) = (KAp(2)[Ap(y), 2,y € D(p).

If qu(ﬂ'ff) is a von Neumann algebra, then H = K: € qu(ﬂ'g) and om,r C 1.

We shall show the Radon-Nikodym theorem for absolutely continuous biweights.
For that, we prepare the following lemma.

Lemma 3.1.5. Let o1 and @y be biweights on A such that Xy, 1o, (B(p1+¢2)) is dense
i Ay 40, (D(p1 +¢2)). Then @1 + 9 is a biweight on A and the following statements
hold:

(1) If ¢1 and @y are @-absolutely continuous, then @1 + @9 is an p-absolutely con-
tinuous.

(2) If @1 is wo-dominated and @9 is (uniformly) p-singular, then oy is (uniformly)
p-singular.

Theorem 3.1.6. (Radon-Nikodjm theorem) Let ¢ be a biweight on A with core B(yp).
Suppose that 1 is an @-absolutely continuous biweight on A satisfies Xy (B(p)) is
dense in H,qy. Then there exists a positive self-adjoint operator H in H, affiliated
with Cqw(w8)" such that

(i) Ap(D(¢)) C D(H);

(ii) wm,m is a biweight on A with D(pg ) = D(p) and B(en r) = B(y);

(i) @r.1 C .

Theorem 3.1.7. (Lebesgue decomposition theorem) Let ¢ be a biweight on A with core
B(p). Suppose 1 is a biweight on A such that

() B(y) C B);

(ii) Aptp(B(p)) is dense in Hyppyp;

(iii) qu(w&w) is a von Neumann algebra.
Then 1) is decomposed into 1 = P.+1s, where . is an p-absolutely continuous biweight
on A and ) is a ¢ -singular biweight on A.



3.2 Regular biweights on partial x-algebras

In this section we first give some biweight by a net of biweights on A. Throughout this
section let A be a partial x-algebra with identity e. Let {¢,} be a net of biweights on
A. We put

D(\a/wa) ={z € QD(SDa);SgP Yoz, 1) < 00},

(\a/%)(a?,y) = i{Sgp #alt +y, @ +y) —suppalz —y,z —y)
+ ’iSl;pgDa(QT + iy, z +iy) — isgpgaa(.r — iy, x —iy)},
Yo,y € D(\.{gpa).
Then D(\/,,¢a) is a subspace of A, but \/ ¢, is not a positive sesquilinear form in gen-

eral. Therefore, we investigate conditions under which \/ ¢, is a positive sesquilinear
form.

Definition 3.2.1. A net {¢,} of biweights on A is said that {¢s} has a net property
if for each finite subset {z 1,29, - , 2} of D(V/ ,¢a) there exists a subsequence {a,, }
in {a} such that lim, o0 @a, (Tk, Tr) = sup g (zg, xg) for k=1,2,---  m.

o

We have the following result:

Lemma 3.2.2. Let {¢q} be a net of biweights on A. Then {p,} has a net property if
and only if \/ ,¢a is a positive sesquiliear form on D(\/ ,¢a) X D(V ,%a)-

It is easily shown that \/_ ¢, is a biweight under the following condition.

Lemma 3.2.3. Let {¢o} has a net property. Suppose (), B(¢a) satisfies that
Ve € D(\V¢a), {zn} € NB(pa) s.t. lim (sup o) (zn — x, 2, — ) = 0.
a a n—oo

Then, \/ ,¢a is a biweight on A with a core (), B(¢a)-

Next we define the notions of regularity and singularity of biweights, and give the
decomposition theorem of biweights into the regular part and singular part.

Definition 3.2.4. A biweight ¢ is said to be regular if there exists a net {¢, } of positive
sesquilinear forms on A x A such that ¢, < ¢ for all « and ¢(x,z) = sup ¢4 (z, x) for
o

each z € D(p), and it is said to be singular if there doesn’t exist any positive sesquilinear
form 1 on A such that ¥ < ¢ and ¥ # 0.

We shall investigate the regularity of biweights. For that, we define trio-commutants
T(¢):, and T(p), for a biweight ¢ which play an important rule in regularity of ¢ as

W
follows:

T(p)y = {K = (C.&n);C € 75 (A)y.&n € D*(x))
s.t. Chp(@) = (78) (2)€, C* Ny (2) = (78)* (2)n, Y2 € B(y)},
T(p), ={K = (C,&n) € T(¢)y:&n € D(x))}.
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For K = (C. ¢, n) € T(¢),, we put

w
T(K)=C, N(K)=¢ MN(K)=n.
Then we have the following

Lemma 3.2.5. (1) T(¢)}, is a *-invariant vector space under the following operators

and the involution:
Ki+ Ky = (C +Co, & +&,m +1m2), oK = (aC,af,an), K*=(C*n,f)

for Ky = (C1,&1,m), Ko = (Ca,&2,m2) and K = (C,&,1n) in T(p)y, and a € C.

! . : l ; r B ! B B
(2) T(p)r. is a *-invariant subspace of T(p)y,. In particular, if 7 (A),D(m,) C D(m]),
then T(p). is a x-algebra under the following multiplication.:

K1 Ky = (C1Cy, C1&,C3m)
for Ky = (C,&1,m1) and Ko = (Cy,&,12) in T(p)., and " is a x-homomorphism of

c’

T (). into the von Neumann algebra ©B(A)!, and X is a linear map of T(p). into

c © w c

D(x]}) satisfying «' (K1) N (K2) = N (K1K3) for all K1, Ky € T(g),.

Lemma 3.2.6. Let ¢ be a biweight on A with a core B(p). Suppose 1 is a positive
sesquilinear form on A such that ¥ < p. Then there exists an element K € T(p)!,
such that 0 < 7'(K) < I and ¢(z,e) = (Ay(2)|N(K)) for all x € D(yp).

For the regularity and the singularity of biweights we have following

Theorem 3.2.7. Let ¢ be a biweight on A with a core B(p). Consider the following
statements:
(i) There exists a net {K,} in T(p). such that 0 < 7'(K,) < I for each a and
' (Ko) — I strongly.
(ii) There exists a net {&n} in D(’/Tg) such that ¢(x,z) = sup ]\ﬂg(m)faHQ for all
(%

x € D(p).
(iii) ¢ is regular.
(iv) There exists a net {Ky} in T(¢)!

w

such that 0 < 7'(Ky) < I for each o and
m'(Ko) — I strongly.
Then the implications (i) = (ii) = (iii) = (iv) hold. In particular, the statements (i)

~ (iv) are equivalent when ’/Tg is self-adjoint.

Theorem 3.2.8. Suppose ¢ is a biweight on A with a core B(y) such that 7r(£3 is self-
adjoint. Then ¢ is singular if and only if there does not exist any element K of T(yp).,
such that ©'(K) > 0 and 7' (K) # 0.

As the decomposition theorem of biweight we have following

Theorem 3.2.9. Suppose ¢ is a biweight on A with a core B(p) such that 7T£ s self-

adjoint. Then ¢ is decomposed into ¢ = ¢, + @s, where @, is a reqular biweight on A

with B(p,) = B(p) and s is a singular biweight on A with B(ps) = B(y) such that
B _B

w. are self-adjoint.

7T<PT 7 Ps

Notes of Section 3. Radon-Nikodym theorem for biweights and regular biweights on
partial x-algebras are due to [20].

3.2. Theorem 3.2.7 and 3.2.9 are a generalization of Theorem 3.6 and 3.9 in [17] for
weights on O*-algebra to biweights on partial x-algebras, respectively.



4 Trace representation of weights on partial O*-algebras

In this section, we investigate trace representation of weights on partial O*-algebras.
This study is important for the structure of partial O*-algebras and for the applications
to quantum physics. We extend arguments that are considerd for case of O*-algebras
to case of partial O*-algebras.

4.1 Trace functionals

Throughout this section, suppose H is a separable Hilbert space. Let &q(H) be the
set of all trace class operators on H. Every operator T' in &1(H) can be represented

as T =Y 00 tp&y @ My, where {t,} C C, D7, |tn] < 0o and {&, }nenw and {ny }nenw
are orthonormal sets in H with N = {n € N;¢,, # 0}. Furthermore, the trace norm
v(T) = tr|T| equals ), |t,|. In case T* = T we can have in addition that ¢, € R
and &, = n, for all n € N' [21]. Further, we put &, = n, = 0 for all n € N\ N. If
the preceding conditions are fulfilled, then we call the sum »_>° | £,&, ® 7, a canonical
representation of T. Let {&,} and {n,} be in H. Suppose that > >, [|&ulllInnll < oo
Then we can define a trace class operator >~ | &, @ 7, by

> 600w €M = 2 (alm)n € A
and then
(4.1.1) (3 & © ) = 3 (6nln)

([21], §42.5). Let 9 be an O-family on D in H. We define the following subsets of
Si(H):

S (M) ={T € & (H);TH C D and XT € &,(H),"X € M},
S ={T € &, (H);TH C D,T*H C D and XTY' € &,(H),"X,Y € M},
SN = {T € &,(H); TX" is closable and TXT € &,(H)," X € M},

116(9:“) = {T € 61(7‘[);T7‘[ UT*H C ﬂ D(XT*)
Xem

and XTTY1 € & (H),"X,Y € M}.

Their hermitian parts are denoted by &1 (9M);, S11(9M)p, 1S6(OMN), and 11S(IM)y,, and
their positive parts are denoted by & (9)4, &11(9M) 4+, 1S(M) 4 and 11 S(M),. Then
S1(M), G511 (M), 1S(M) and 1;6(IM) are subalgebras of S1(H), their hermitian parts
are real subspaces of &;(H) and their positive parts are positive cones in &1 (H).
Furthermore, they have the following properties:

Proposition 4.1.1. Let 9 be an O-family on D in H. Then the following statements
hold:

(1) 611 (M) C &1 (M)
N N
116 (m)o Cc 6 (m)oﬁ

where the symbol © means h or +.
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(2) We put
&' (M) ={T = Y tnén ® & € &1 (H)o; TH C D
n=1

oo
and Y |[ta||| X&)% < 00,V X € M}
n=1

and

ISON), = {T = 3 tnbn @& € &1 (H)o: TH C (] D(XT)
n=1 Xem

o0
and Y |t ||| XT*E, 2 < 00, VX € M},
n=1

where T =37 | tn&n @ &, is a canonical represenation of T. Then,

611(932)4. = 6](9ﬁ)+ C 6](9ﬁ)h C Gll(gﬁ)h
N N N
&)+ ='6(M)y < 'SM)) C 1S (M)
(3) Suppose that M is an O*-family. Then the following statements are equivalent:
(i) M is self-adjoint,
(il) 61(M), = 16(M).,
(iii) 611 (M) = 116(M)s.
(4) Suppose that M is a partial O*-algebra. We put
My = {X € M XT € L(X)},
M2 = the linear span of {XToX; X € My }-
Then,
S1(MA), =S M)+ C &M, C S
N N N
S, =16My)y < SO, C 1S(My)n.

Every element T of G1(MP)* N &1 (M) (resp. SEMEN* N &SMZ)) can be written
as T = (T1 — T) +i(T3 — Ty) with T; € G (M), (resp. SN2, ) (5 =1,---,4).
(5) Suppose that M is an O*-algebra. Then,

6] (Sﬁ) = 6]](9)?) and ]6(9)?) = 11(‘5(9)?)
Every element T of &1 (ON)* N &1(M) (resp. 1S(ON)* N 1 S(M)) can be written as
T = (T) —To) +i(T3 — Ty) with T; € &1(M)4 (resp. S(M)y) (j=1,---,4).

It is important for the study of unbounded Tomita-Takesaki theory [2, 3, 4, 11] to
investigate the relation of &11(9) 4 and the space Go(9M) ;4 of positive Hilbert-Schmidt
operators:

H @ H( or Go(H)) : the set of all Hilbert-Schmidt operators on H,
Gy(M), ={T € B(H);TH C D and XT € H ® H for each X € M}.

Then we have the following
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Lemma 4.1.2. Suppose that LT(D, H)(2) is fully closed (it is so for ezample when LH(D)
is closed) and T € B(H)y with TH C D. Then the following statements hold:

(1) T*H C D for all o > 0.

(2) Suppose that there exists an element N of L1(D,H) such that N "M cD and
Nle S1(H). Then, T*H C D and T € &1(H) for each a > 0.

Proposition 4.1.3. Suppose that MM is an O*-family on D in H and ET(D,H)[Q] 18
fully closed. Then,
Sa(M)4 = (T4 T € &1y (M) ).

Let 90t be a partial O*-algebra on D in H. We define two positive cones P(9) and
93?+ by

PO ={> X;IDXk;Xk € Mg (k=1,---,n),n € N},
k=1
M, = {X € M; X >0 iff (X¢|¢) >0,7¢ € D}.

A linear functional f on 90 is said to be positive (resp. strongly positive) if f(X) > 0
for each X € P(M) (resp. M).
It is clear that every strongly positive linear functional on 90 is positive, but the
converse does not hold in general. Woronowicz [30] has given the following example:
As it is well known the Schwartz space S(R) of the infinitely differentiable rapidly
decreasing functions is dense in L?(R). Define the operators @ : S(R) — S(R) and
P:S(R) — S(R) by Qf(x) = xf(x) and Pf(x) = —i%f(q:). In physical literature @
and P are called the position and momentum operator respectively. Let 9tg be the O*-
algebra on S(R) generated by @ and P. Set A = (Q+iP)/+/2. The operator N = AAT
has NU {0} as its nondegenerate spectrum and for this reason it is called by physicists
the number operator. It can be checked that (ATA — I)(ATA — 2I) ¢ P(Mg). Hence
there exists a positive linear functional f on 9g such that f((ATA—TI)(ATA—2I)) < 0.
Let {£,} be the orthonormal basis in L?(IR) consisting of eigenvectors of the number
operator N = AAT. Since
oo

((ATA = 1)(ATA - 21)¢f¢) = Zo(n —1)(n = 2)|(&&)1F > 0
n=
for each ¢ € S(R), we have (ATA — I)(AtA — 2I) € M, which implies that f is not
strongly positive.

For any T € 1&(9) we define linear functionals fr and 7f on 9t by

fr(X) =trXt™T,
Tf(X) = trﬁ, X e M.

Then, for any T € {&(IM)y,

Fr(X) = X 0(XP ). 1/ (X) = 3 tu(6l X7, X €M

n=1

where T = Y 27 t,6, ® &, is a canonical representation of T, and so we have the
following
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Proposition 4.1.4. Let IM be a partial O*-algebra on D in H. Then the following
statements hold:
(1) For any T € G1(M)y,

Fr(X) = 7f(X) = il to(XEnlén), X €M,

If T € &1(M) 4, then fr is strongly positive.
(2) Let T € &(M)y,. Then, fr = 1f if and only if M is algebraically self-adjoint.
(3) Bvery fr, T € &1(MP)*N&, (M), is written as fr = (fr, — fr,) +i(frs — fr,)
whereby Ty € &1 (M) (j = 1,---,4). In particular, if M is an O*algebra on D,
then every fr, T € &1(M)* N &1(M), is written as fr = (fr, — fr,) +i(fry, — fry)
whereby Tj € G (M) (j=1,---.4).

We remark that for 7' € &(9M), even if fir = ¢f, fr is not necessarily strongly
positive.

4.2 Trace representation of weights

In this section we consider trace representation of weights on a partial O*-algebra which
contains the inverse of a compact operator. Let 991 be a fully closed partial O*-algebra
on D in H. A map ¢ of M, into Ry U {+oo} is said to be a weight on M. if

(W) p(aX) = ap(X),a > 0,X € My

(W)y ¢(X +1) = o(X) +9(Y), X,¥ €My,
where 0 - (+00) = 0. Let ¢ be a weight on 9. Refer to [4, 13, 14, 16, 17] for weights
of O*-algebra and to [1, 2, 6, 9] for partial O*-algebras. We put

N) ={X e M X' € L(X) and p(X'0X) < oo}

To consider trace representation of weights on partial O*-algebras, we will use an
ordered x-vector space L(D,DT) defined as follows. Given a dense linear subspace D
of a Hilbert space H, we denote by DT the algebraic conjugate dual of D, that is, the
set of all conjugate linear functionals on D. The set D' is a vector space under the
following operations:

<0 F v, >=< v, >+ <, >, <av,é>=a<v,é> €D,

where < v,& > is the value of v € D at ¢ € D. We denote by L(D,D') the set
of all linear maps from D to D'. Then L(D,DT) is a *x-vector space under the usual
operations: S + T, AT and the involution T — TT (< T1¢,np >= < T, € >, £,n € D).
Furthermore, L(D, DY), = {T € L(D,D"); TT = T} is an ordered set under the order
S <T (< SE€E><<TEE >, "€ € D). We remark that any linear operator X defined
on D is regarded as an element of L(D,D') by < X¢&,n >= (X&), &,n € D. In
particular, £1(D,H) and B(H) are regarded as ordered *-subspaces of L(D, D). For
any pair X,Y € £I(D,H) and A € B(H) we define the product Yo Ao X by

<(Y'oAoX)&n>=(AX{Yn), &neD.

Then we have
YioAoX e L(D, D)

and if A is hermitian and Xt € L(X), then

(4.2.1) X'oAoX <|A|XTOX.

_11_
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A pair (£,M) of an O*-vector subspace £ of 9 and a subset 91 with I of 9 is said to
satisfy the order condition if:

Xt e L(X) and XToX € £,X e M.

We denote by Lg¢ ) the ordered *-vector space generated by £ and {X foAdoX; X €
N, A € B(H)}. Then,

{XTod, Ao X; A€ B(H),X €N} C Ligy C L(D, D).

Lemma 4.2.1. Let (£,N) be a pair satisfying the order condition. Then, every strongly
positive linear functional f on £ can be extended to a positive linear functional f on
L(¢my such that

f(AoX)=1trAXT,
f(XTo A) = trATXT,
f(XToAoX)=trAXTXt, AcF(H),X eN

for some T € 16(N)y4 s.t. TH C Nyen D(X) , where F(H) denotes the set of all
bounded finite rank operators on H.

Using Lemma 4.2.1 we can prove the following main theorem

Theorem 4.2.2. Let M be a partial O*-algebra on D in H and let ¢ be a weight on
M. Suppose that there exists an element N of ‘ﬁ?p which has a positive self-adjoint

extension N such that N~ is a compact operator on H. Then there exists an element
T of 116(mg)+ such that TH C ﬂXemg D(X) and

(1) o(XToX) = tr(TY2XN*T12XT = tr XTX' for all X € M such that XT €
L(X) and NoX € N, (this implies automatically X € N );

(i) @(X)=4TX for each positive operator X in NY,.

Remark 4.2.3. In statement (i) of Theorem 4.2.2 the condition NOoX € ‘ﬁ?p may not
be replaced by the weaker condition that X € ‘ﬂg. We give an example: Let Mg be the
O*-algebra on the Schwartz space S(R) generated by the momentum operator P and
the position operator Q, and N = Y ° (n + 1)&, ® &, the number operator, where
{& 0,1, C S(R) is an ONB in L*(R) consisting of the Hermite functions [23, 50].
Let a weight ¢ on (Mg)4 be defined by

P(X) = lim S (XEl6), X € (Ms)..

n—oe n

Then o(I) = 0 and (N?) = 1. Furthermore, the pair (Ms, @) satisfies the assumptions
of Theorem 4.2.2. Suppose now that there exists a positive trace class operator T on
H such that o(XTX) = tr(TV2XY)*T12X1 for every X € NY. Since o(I) = 0, it
follows that T = 0, which implies that 1 = @(N?) = tr(TY2N)*TV/2N = 0. This is a
contradiction.

On the other hand, Theorem 4.2.2, (i) has the following natural generalization. Put
N for the family of all N € ‘ﬁ?p such that N has positive self-adjoint extension N
and N~! is a compact operator on H. Given N € N, set ‘ﬁg(N) ={X e Xt e
L(X) and NoX € N)}. Then we have
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Corollary 4.2.4. If M is a partial O*-algebra on D in H and ¢ a weight on M, such
that N is not empty. Then there is T € 116(%&) such that

HC N DX)
Xeny

and

o(X'oX) = tr(T'2XTy 112Xt = tr XT X1

for all X € Upepn NY(N).

We have the following

Corollary 4.2.5. Let O be a partial O*-algebra on D. Suppose that there exists an
element N of My which has a positive self-adjoint extension N such that N~ is a
compact operator on H. Then, for any strongly positive linear functional f on I there
exists an element T' of 116(Myy) 4 such that TH C ﬂxemm D(X) and

(i) f(XToX) = tr(TYV2XH*(T1/2X1) = tr XTX for all X € M such that X € My
and NOX € Mg);

(i) f(X) =trTX for each X € Mgy
In particular, if My is fully closed then T' can be taken in 61(937[2})4_. Furthermore, if
I is an O*-algebra, then the above results hold for M instead of Myy). In particular,
if M is a closed O*-algebra, then every strongly positive linear functional f on 9N is of

the form f = fr for some T € &1(9M).

Example 4.2.6. Let P and () be the momentum operator and the position operator
on S(R), respectively. Let MM be a partial O*-algebra on S(R) containing P and Q.
Let N be the number operator and Mg the O*-algebra on S(R) generated by P and

Q. Then, N € Mg, N > I and N 'isa compact operator. Furthermore, since
Mg C 932[1\27] ={X € M X,NoX € My} C Mgy C M, and Mg is a self-adjoint O*-
algebra on S(R), it follows from Theorem 4.2.2 that for any weight ¢ on M, satisfying
©(N?) < oo there exists an element T of 61(mg)+ such that
(i) o(XToX) = tr(T'2XT)y*TV2XT = tr X TX for each X € My 5
(ii) ¢(X) = trTX for each X € (N))4.
Furthermore, it follows from Corollary 4.2.5 that for any strongly positive linear func-
tional f on M there exists an element T of &1(Myy)) + such that f(X) = trXT for all

X € Myy). In particular, every strongly positive linear functional f on Mg is of the
form f = fr for some T € &1(Mg).

4.3 Trace representations of uniformly continuous linear functionals

We define the locally convex topology 7, (resp. 7.) on 9 called uniform topology (resp.
precompact uniform topology) determined by the family of seminorms:

pmn (X) = sup{|(X¢n)|;§ € Myn e N}, X e,

where M and N range over all bounded subsets (resp. precompact subsets) of D[toy].
We have the following
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Theorem 4.3.1. Let MM be a fully closed partial O*-algebra on D in H. Then, every
continuous linear functional f on M[1.] is of the form

f(X)=trXT, XeMm

for some T € &1 (IM).

It is natural to consider the following question: If a continuous linear functional on
M([7.] is strongly positive, then is the trace class operator 7" in Theorem 4.3.1 positive?

Proposition 4.3.2. (1) Let M be a fully closed partial O*-algebra on D in H. Suppose
that there exists an orthonormal basis {&,} in H such that {&, @ &,;n € N} C M (this
holds in particular when MM = LT1(D,H)). Then, every strongly positive continuous
linear functional f on M[1.] is of the form f = fp for some T € S11(M).

(2) Suppose that M is an O*-algebra on D in H such that D[ten] is a Fréchet Montel
space. Then, every strongly positive linear functional f on M is 7,-continuous and it
is of the form f = fr for some T € G1(IM).

4.4 Trace representation of regular weights

Let 9 be a fully closed partial O*-algebra on D in H. A weight ¢ on 91 is said to be
reqular if ¢ = sup,, f, for some net {f,} of strongly positive linear functionals on 9.
We denote by T (91) the collection of all nets {7, } in &1(M), such that the formula

Pry (X) =suptrXT,, X €My
o

defines a regular weight on 9. We remark that ¢ . =~ ({ZTo} C &1(M)4) is not
necessarily a weight on 91,. The collections of all increasing and of all increasing and
mutually commuting nets in & (9) 4 are denoted by 7;(9) and 7;°(9), respectively.
It is clear that T.(90%) C T;(9) C T (IMN).

We can show the following result for trace representation of a weight ¢, , defined

by {Tn} € Ti(M) or {T,} € T(M):

Theorem 4.4.1. Let {T,} € T (M) be given such that (‘ﬂg{T })TD is total in H.

Suppose that {To,} € T;(IM) or that F(H) C M. Then there exists a positive self-
adjoint operator 2 in H such that

N, ={X €My OXT e H@H} C{X € My; X0 € H o H}

and

(XToX) = tr(QXH*QXT = tr(XTQ)* XTQ, X e N’

A partial O*-algebra 91 is said to be QMP-solvable if every strongly positive linear
functional f on 91 is represented as

f(X)=trXT, Xem

for some T € &1(9M),. We shall consider trace representation of weights on QMP-
solvable partial O*-algebras.
A weight ¢ on 94 is said to be m-regular (or monotonously regular) if ¢ = sup f,

«
for some increasing net {f,} of strongly positive linear functionals on 9. Tt is said to
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be sequentially m-regular if ¢ = sup f, for some increasing sequence {f,} of strongly
n

positive linear functionals on 91.

Suppose that ¢ is sequentially m-regular. Then it may be represented also as
@ =Y, gn, Where g1 = f1 and g, 11 = fni1 — fn arve strongly positive as well.
Since M is QMP-solvable, ¢ is of the form ¢(X) = Y, trT,, X for some sequence {7}, }
in &1(M). Thus Theorem 4.4.1 implies the following results.

Theorem 4.4.2. Suppose that M is a QMP-solvable partial O*-algebra on D in H and
that ¢ is a regular weight on M such that (‘ﬂg)TD 15 total in H. Suppose further that
@ 18 sequentially m-regular or that F(H) C 9. Then there exists a positive self-adjoint
operator ) in ‘H such that

MO = {X € My OXT e H@H} C{X € Mpy; XHQ e H@ Y,

¢(XToX) = tr(QXT)*QXT = r(XTQ)*X™Q, X € NY.

Corollary 4.4.3. Suppose that MM is a QMP-solvable partial O*-algebra on D in H
and that ¢ is a regular weight on M, satisfying ¢(I) < co. Suppose further that ¢ is
sequentially m-regular or that F(H) C M. Then there exists a positive Hilbert-Schmidt
operator ) on H such that

N, ={X € My OXT e HH} = {X € Mp; XHQ e HoH],
¢(XToX) = tr(QX1)*QXT = tr(X Q)" X1Q, X € NY.

Notes of Section 4. Trace representations of weights on partial O*-algebras are due
to [15].

4.2. The proof of Theorem 4.2.2 is shown similarly to that of Theorem 4.1 of [16]. Note
that although our proof of part (ii) of Theorem 4.2.2 depends crucially on existence of
an operator N satisfying the required assumptions the operator N itself does not enter
into the final formulation. This is not so in part (i). The result in Corollary 4.2.5 for
closed O*-algebras is a generalization of the Schmiidgen result [25, Theorem 2.2] for
self-adjoint O*-algebras. The results stated in 4.3 and 4.4 are generalizations of those
obtained for O*-algebras to partial O*-algebras, and they are proved almost the same
way as corresponding statements concerning O*-algebra [16, 26].

4.3. The proof of Theorem 4.3.1 is shown similarly to that of Proposition 5.3.4 of [26].
4.4. The proof of Theorem 4.4.1 is shown similarly to that of Theorem 3.4 of [16].
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5 Unbounded conditional expectations for partial O*-algebras

In this section, we consider unbounded conditional expectations for partial O*-algebras.

5.1 Weak conditional expectations

In this section let M be a self-adjoint partial O*-algebra containing the identity / on
D in H with a strongly cyclic vector & and let N be a partial O*-subalgebra of M
such that

(N) (NN RY(M))& is dense in Hy = N&p.

The following is easily shown.
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Lemma 5.1.1. We put

D(my) = (N NRY(M))&o
v (X)YE = (XoY)&, "X e N,YY € NN RY(M).

Then myr is a x-representations of N in the Hilbert space Hy = D(mp).
We denote by Py the projection of H onto Har = D(mar). This projection Py plays
an important role in this reserch. First we have the following

Lemma 5.1.2. PyD C D*(my) and mj(X)Pyé = PyX¢, VX € N and Y¢ € D.

Definition 5.1.3. A map & of M into LI (D(mx), H) is said to be a weak conditional-
expectation of (M, &) w.r.t. N if it satisfies

(AXE|YVE) = (E(A)XE|YE), YAe M,"X,Y e NNRY(M).

For weak conditional-expectation we have the following

Theorem 5.1.4. There exists a unique weak conditional-expectation E(-|N') of (M, &)
w.r.t. N, and
E(AIN) = Py A[D(my), "Ae M.

The weak conditional-expectation E(-|N) of (M, &) w.r.t. N satisfies the following

(i) E(-|N) is linear,

(ii) E(¢|N) is hermitian, i.e., E(AIN)T = E(AT|IN), YA e M,

(iii) E(X|N) = X[D(ny), "X €N,

(iv) E(ATOAIN) >0, YA e M s.t. ATOA is well-defined ,

(v) E(AIN)TOE(AIN) < E(ATOAIN),YA € M s.t. ATOA and E(AIN)TCE(AIN)
are well-defined,

(vi) E(AIN)Omn (X)) is well-defined for any A € M and X € N N RY(M), and
E(AN)omp(X) = E(ADXIA),

(vii) mar(X)DE(AIN) is well-defined for any A € M N RY(N) and ¥X € N, and
T (X)BE(AIN) = E(XTAIN),

(viii) we, (E(AIN)) = we,(4), YA€ M.

5.2 Unbounded conditional expectations for partial O*-algebras

Let M be a self-adjoint partial O*-algebra containing I on D in H and let &, € D be
a strongly cyclic and separating vector for M and suppose that NV 5 [ is a partial
O*-subalgebra of M satisfying (N):(N N RY(M))& is dense in Hy. We introduce
unbounded conditional expectations of (M, &y) w.r.t. N.

Definition 5.2.1. A map £ of M onto N is said to be an unbounded conditional
expectation of (M, &) w.r.t. N if

(i) the domain D(E) of £ is a f-invariant subspace of M containing N;

(ii) £ is a projection; that is, it is hermitian (£(A4)" = £(A"),Y4 € D(€)) and
EX)=X,"X e NV;

(iii) £(A0X) = £(A)oX, YA e D(E),"X e NN RY (M),

E(XDA) = Xn&(A), YAeDE)NRY(N),"X € N;

(iv) we, (E(4)) = we,(4), VA4 € D(E).
In particular, if D(£) = M, then & is said to be a conditional expectation of (M, &p)
w.r.t. N.
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For unbounded conditional expectations we have the following

Lemma 5.2.2. Let £ be an unbounded conditional expectation of (M, &) w.r.t. N.
Then,

E(A)XE& = PvAXE = E(AIN)XE, "AeD(E),"X e NN RY(M).

Let € be the set of all unbounded conditional expectations of (M, &) w.r.t. N.
Then € is an ordered set with the following order C :

£ C & ff D(&) C D(&) and & (A) = &(A),A € D(&).

Theorem 5.2.3. There exists a maximal unbounded conditional expectation of (M, &)
w.r.t. N, and it is denoted by Exr.

5.3 Existence of conditional expectations for partial O*-algebras

Let M be a self-adjoint partial O*-algebra containing I on D in H, £ € D be a strongly
cyclic and separating vector for M and N 3 I a partial O*-subalgebra of M such that

(N) (NN RY(M))&p is dense in Hy,

(N1) Ny D(V) € DN),

(Ng)(NV N RY(M))& is essentially self-adjoint for N,

(N3) Agoit (N‘:V)'Agofit = (ML), 7t € R, where A, is the modular operator for the
full Hilbert algebra (M.,)'&.

Lemma 5.3.1. D(Ey) = {A € M; Py A& € N&y}.

By Lemma 5.3.1 we have the following

Theorem 5.3.2. Let M be a self-adjoint partial O*-algebra containing I on D in H
and let & € D be a strongly cyclic and separating vector for M and suppose that N>
is a partial O*-subalgebra of M satisfying (N), (N1), (N2) and (N3). Then there exists
a conditional expectation of (M, &) w.r-t. N if and only if Py Mé&y = N&.

It is important to investigate the scale of the domain of an unbounded conditional
expectation. We consider the case of partial GW*-algebras.

Theorem 5.3.3. Let M be a partial GW*-algebra on D in H and let & € D be a
strongly cyclic and separating vector for M and suppose that N be a partial GW*-
subalgebra of Msatisfying (N), (N1), (N2) and (N3). Then,
D(Ex) D linear span of {X0A; X € N, A € (M) s.t.
X0OA and X0&"(A) are well-defined }
D linear span of (M},) and N.

In particular, if Np, is a partial GW*-algebra on Py'D, then Ex is a conditional

expectation of (M, &) w.r.t. N.

Corollary 5.3.4. Let M be a partial EW*-algebra on D in H and let & € D be a
strongly cyclic and separating vector for M and suppose that N be a partial EW*-
subalgebra of Msatisfying (No) and (N3). Then,

D(Ex) D linear span of MyN and N My,

_17_
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We consider the case of the well-known Segal LP-space defined by .

Example 5.3.5. Let Mg be a von Neumann algebra on a Hilbert space H with a faithful
finite trace 7. We denote by LP(7) the Banach space completion of My w.r.t. the norm

1A, = 7(|AP)/P, - A€ M.
Then
Mo =L®(1) C LP(r) Cc L*(r) C LY(7) Cc LY(7), 1<¢<2<p< .
Let 2 < p < co. Here we define a x-representation m of LP(7) by
T(X)A=XA, XelLP(r),AeL>().

Then M = 7(LP(7)) is a partial EW*-algebra on L (1) in L?(1) with My = m(L>(1))
which is integrable, that is, 7(X1) = 7w(X)* for each X € LP(1). Furthremore, w(LP(T))
has a strongly cyclic and separating vector &g = \;(I), where I is an identity operator
on H. Let Ny be a von Neumann subalgebra of Mg. We put

N ={n(X); X € LP(7), 7(X)A;(I) € LP(r[No)}, 2<p<oc.

Then N is an integrable partial EW*-subalgebra of M satisfying (Na) and (N3) and
PyME&y = N&. By Theorem 5.3.2, there exists a conditional expectation of (M,&).

Notes of Section 5. Unbounded conditional expectations for partial O*-algebras are
due to [27].
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