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Abstract 

This dissertation was written as a part of the MSc in Data Science at the International 

Hellenic University. 

Disinformation on the web has become an important problem to our society, and generally 

refers to inaccurate information that is intended to harm the public. It includes fake news, 

imposter and fabricated content, hoaxes and other types of false information. Currently, 

most approaches to identify such content are based on fact-checking agencies manually 

searching for evidence that supports or contradicts the news statement. These approaches 

have natural limitations because they require a great amount of manual labour.  The need 

for automatic disinformation detection tools, that can quickly and massively detect disin-

formation by its source has therefore been widely acknowledged. Recent research studies 

deal with this problem by utilizing a variety of Machine Learning and Natural Language 

Processing techniques that in certain domains appear to achieve high prediction accuracy. 

However, none of them involves explanations for their classification; for a model to be 

trustworthy, it has to provide the user with information on why it classified a content item 

as true or false. Machine learning model interpretability is an open research challenge that 

aims to enhance model transparency and reduce bias and prejudice. Opening the “black 

box” of algorithmic tools also allows for a deeper understanding of the inherent charac-

teristics of a domain, which can eventually lead to better approaches for the mitigation of 

its negative aspects. 

This thesis investigates the problem of disinformation detection by implementing various 

fake news classification models using only their textual content and subsequently evalu-

ates state-of-the-art algorithms for explaining classifier decisions. 
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1 Introduction 

With the emergence of social media on the Web, everybody can instantly share infor-

mation with others. Recent studies have shown that most people use social media to get 

informed as it is a free and quick way to read the news [1]. Furthermore, it is considered 

a great asset for keeping the public updated to the current events and on top of that, eve-

ryone can choose between numerous news sources with several topics that satisfy their 

needs. Therefore, social media is a very powerful network, consisting of a huge amount 

of data and information. 

However, this framework also allows the dissemination of false information. It can 

be caused by poor journalism or naive claims made by individuals, who wrongfully be-

lieve certain facts and want to share their thoughts. This form of false information is de-

fined as misinformation. Another type of false information is disinformation, which is 

information that is intended to harm the users. Consequently, disinformation is considered 

the most dangerous form of false information denoting the importance of detecting such 

content and quickly hampering its spread. A type of disinformation is fake news, which 

refers to articles that are intentionally and verifiably false and could mislead people. A 

characteristic example of disinformation dissemination has occurred during the 2016 US 

election cycle, where many fake news stories where published and shared to affect public 

opinion by opposing them against specific political parties [2]. 

Nevertheless, people cannot easily identify the verifiability and authenticity of the 

news pieces. As it is shown in [3], after having given people the task to recognize between 

real and hoax articles, they managed to accurately predict only the 66% of the articles. 

Everyone is vulnerable to disinformation regardless of their social, financial or educa-

tional status. CoInform2, a research project funded by the European Commission aiming 

at increasing resilience to misinformation, states that false information can cause the de-

cay of people’s belief over media and institutions and can mislead the political campaign 

in the 2019. 

                                                 

2 https://coinform.eu/how-will-co-inform-tackle-misinformation-and-make-a-difference-for-our-society 
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The term “fake news” has become highly popular over the last 3 years, (Figure 1.1.) 

Thus, disinformation on the Web poses an important problem to the society. There is a 

need of detecting such content to provide trust to the users. Fake news is mainly identified 

by fact-checking agencies. They refer to group of journalists that, given a news content, 

manually check if an article is fake news. The best practice is to search on the Web evi-

dence that supports or contradicts the claims of the article, which requires a significant 

amount of time. However, as the size of data flowing on the Web exponentially increases, 

it is not feasible to manually check the verifiability of all news content. Several research 

studies have tried to develop automatic fake news detection methods. Yet, most of the 

models have high complexity without providing transparency of their behavior. It is im-

portant to know how a black box model works, in order to ensure that the algorithm is not 

biased to certain parties. In other words, users need to be confident that the fake news 

detection algorithms are fair. Furthermore, it is essential to identify fake news content by 

its source to prevent it from disseminating using only content information. 

 

 

Figure 1.1. Fake news popularity on Google since 2004 

 

In this thesis, we tackle this problem by employing several fake news detection algo-

rithms over text data only and utilizing LIME and EDC algorithms to explain individual 

predictions of the models. 

The rest of the thesis is organized as follows: Chapter 2 provides an overview of re-

search studies regarding disinformation definition and impact, fake news detection mod-

els and methods for explaining the classifier’s decisions. Chapter 3 gives an analysis of 

the dataset used for the experiments, the implemented text classification approaches and 

model explanation algorithms. Chapter 4 presents the experimental results of the em-

ployed approaches. Chapter 5 provides a discussion of the findings of this thesis and 
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future directions to overcome some limitations. Finally, chapter 6 gives a conclusion of 

what has been achieved. 
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2 Literature review 

This chapter provides a review of the research literature on fake news detection and model 

explanation methods for text classification. 

2.1 Fake news definition 

The definition of fake news originates from the question “What is real news?” and can be 

found in various versions in the literature [4]. According to [5], news is “an account of a 

recent, interesting and significant event”. Moreover, in [6], news is defined as “an account 

of events that significantly affect people”. Another formal definition was stated by [7], 

who claim that news is “a dramatic account of something novel or deviant”. News is 

considered as an outcome of journalism which should give “independent, reliable, accu-

rate, and comprehensive information” [8]. Journalism must equip people with the neces-

sary information to be “free and self-governing” and hence all these definitions must re-

port the truth.  

Nevertheless, news is socially constructed for better comprehensibility for the readers 

and hence journalists need to practice subjective expression and decide on which partic-

ular information should include or not in their report. Therefore, news is not only exposed 

to journalists’ beliefs, but also to external groups such as audiences, the government and 

even advertisers [9]. Furthermore, news is considered a specific product, which at first is 

sold in audiences and subsequently these audiences are sold to the advertisers. Conse-

quently, the news audiences are being exposed to market goals. 

Yet, news must be a source of precise and truthful information, which is a total con-

tradiction with the term “fake news”, as the latter means in general copy, counterfeit, 

inauthentic [10]. According to the Oxford dictionary, the word “fake” means not genuine 

or counterfeit or imitation. On top of that, the authors in [11] claim that there is no agreed 

definition of “fake news”. According to [2], fake news is defined as news articles that are 

intentionally and verifiable false and could mislead readers”. Other research papers con-

nect fake news with satire news because the content of satire is considered false. Alt-

hough, it is mostly for entertainment purpose, it reveals misleading intentions to the 
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audiences. Moreover, the authors in [12] define fake news as news originating from web-

sites that falsely state to be news organizations, whereas it is about organizations that 

publish false pieces aiming at maximizing advertising earnings. 

The authors in [13], make a general taxonomy of false information. They claim that 

false information is based on intent or on knowledge (Figure 2.1). The first type can also 

be extended to misinformation and disinformation. Misinformation is defined as the in-

advertent sharing of false information while disinformation is, by definition, the spread 

of false information with the intent to deceive. Disinformation is considered the most 

dangerous type of false information, as it intends to harm the audiences and understanding 

its motives is considered to be highly important. They also claim that fake news is fitted 

as a sub-category of disinformation.  A characteristic example of fake news is the spread 

of political disinformation during the 2016 US elections, which even resulted in public 

shootings [14], [15]. 

 

 

Figure 2.1. Taxonomy of false information according to [13]. Fake news is considered a sub-

category of false information based on intent. 

 

In [16], the authors claim that there is no agreed definition of the term “fake news”, 

as it has been given multiple interpretations. They also suggest the government declines 

this term and utilize a more general definition of misinformation and disinformation, 

which can assist companies and governments for better enforcement and regulation. 

  

2.2 Fake news impact / dissemination 

False information has major influence as its intention is to harm the consumers, as de-

scribed in [13]. More specifically, it has a great impact on the stock market [17], on 
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impeding reciprocation at the time of natural disasters [18] and terroristic activity [14]. 

Its effect on web and social media is measured by the degree dissemination of its content 

to the readers, taking into account statistical metrics, such as number of reads or shares 

and number of days without the fake news piece being removed. 

Measuring impact of false information has been highly studied in the literature. Ac-

cording to [19], the dissemination of false information is far and wide, as its debunking 

takes 12 hours on average since the content is published. During this time period, false 

information propagates expeditiously, because an unverified and recent rumor is likely to 

become viral [20]. In [3], the authors calculated the effect of Wikipedia hoaxes using the 

number of views and the number of days, during which the content had not been de-

bunked. Their results are demonstrated in Figure 2.2.a which presents the relation be-

tween the time duration of a hoax article until it is found to be fake. It indicates that even 

though 90% of hoax articles are debunked within an hour, approximately 1% can survive 

for more than a year. Yet a successfully spread hoax article needs also to be viewed. In 

Figure 2.2.b the duration curve of average number of views of hoaxes (or non-hoaxes) 

articles that sustain over a week is presented. Generally, hoaxes are seen less regularly 

than non-hoaxes pieces, however 1% has at minimum 100 daily views. Moreover, the 

influence of hoaxes can be calculated through their dissemination on the web, using the 

clicked links by readers to attain the news content. It is shown that from approximately 

7% of these articles, at least 5 unique links were clicked. Consequently, even though most 

hoax articles are unsuccessful, a low percentage of Wikipedia hoaxes has a thorough ef-

fect. 

  

Figure 2.2. (a) Distribution of time survival of hoax articles and (b) the number of daily hoaxes and non-

hoaxes views [3] 

 

(a) 

(b) 
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Buzzfeed news examined fake political news on the web with the highest effect, by 

analyzing real and fake election-related articles that have the highest spread on Facebook 

during the 2016 US elections [21]. The degree of impact was measured using the shares, 

responses and comments counts on the news content. They compared the 20 top fake 

election news produced by known fake websites and blogs, with the top 20 real news 

originating from famous websites, such as Washington Post, New York Times etc. Fake 

news pieces had 8.7 million involvements, while the real news contents had 7.3 million 

involvements.  

 The authors in [22] studied the dissemination of real and false information on Face-

book. They gathered, 4.7 thousand rumor contents from snopes.com website, which clas-

sifies known news pieces on social media and examines their veracity. Their analysis 

indicated that rumors have high visibility and propagation of false information is deeper 

than true stories, due to the higher number of reshares.  

 Another research of false information dissemination is presented in [23], where the 

authors analyze 126 thousand rumors on Twitter. They used real and false information 

contents obtained by fact-checking websites and followed their dissemination until their 

origins. They demonstrate that false tweets have higher number of users that retweeted 

and they are diffused much faster as they have higher number of retweets within a brief 

time period. On top of that, they are deeper, as they generally have more retweet hops and 

they are broader, since they have more twitter users in a specific retweet depth. These 

facts were highlighted in all topics of fake news like science, urban legend, politics (in 

higher degree), business etc. They also observed, that the top false-information tweets 

attained over 1 thousand users contrary to tweets with true information. Furthermore, it 

is shown in the literature, that false information on social media and web has attained 

remarkably high numbers a fact that indicates their thoroughly contagious nature. 

 

2.3 Fake news categories 

According to research studies [4], [16], [24], the categories of fake news can be presented 

as follows: 
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• Propaganda [4], [24]. Propaganda is defined as news contents that are created by 

a political party to affect public opinions and aim to improve profit of public in-

dividuals, government or organization. This type of fake news derives from the 

World War and are mainly used for political reasons, in particular to deceive peo-

ple with the purpose to damage a specific political group. Therefore, propaganda 

is considered an impactful type of disinformation as it can result in severe history 

changes, such as the perturbation of the election results. 

• News fabrication [4], [16], [24]. Fabricated news is defined as a false content 

that has no factual evidence and is published in a legitimate style of news content. 

Therefore, it intends to misinform the audiences. This type of fake news is usually 

issued on a blog, website or generally on social media interfaces, such as Twitter 

and Facebook. The problem of discovering fabricated false information arises es-

pecially when partisan groups share such content, which seems to be unbiased and 

fair reporting. 

• Imposter content [16], [24]. Imposter is a type of fake news that try to look like 

the famous media brands. In other words, is impersonates genuine sources to mis-

lead the audiences. It can be verified by using the information of source and au-

thor. 

• Satire [4], [16]. Satire news is articles that have the intention to mock news pro-

grams by producing humorous, yet fake, content. A related example is the comedy 

shows, where they concentrate on current events and individuals, usually utilizing 

a television news report style. Contrary to the previous fake news types, satire is 

for entertainment purposes that is performed by comedians rather than journalists 

and uses humor to attract the readers. However, this type of false information can 

inadvertently mislead audiences. 

• Parody [16], [24]. Parody type of fake news is very similar to satire as both use 

humor to attract readers. Furthermore, it imitates the current popular news content 

and highlights its belief using a humiliating manner. Political parody has a major 

influence on the audience as it can be affected due to hyperpartisan and biased 

political beliefs. 

•  Manipulated content [4], [16]. Manipulated content refers to the twisting of 

original information, which could be either a photo, a video or a text. Image ma-

nipulation is produced by automatic tools and is difficult to distinguish with 
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human eyes. Therefore, it can significantly deceive readers judgements. Some 

plain techniques of photo manipulation are the increase in color saturation, the 

removal of some elements and on top of that, the inclusion of specific individuals 

in a photo which can significantly distract readers. 

• Advertising and public relations [4].  Advertising and public relations refer to 

advertising in an illegal way certain product within an authentic news statement 

with the purpose of financial profit. 

• False context of connection [16]. False context of connection is a reliable content 

that also includes false contextual information. An ordinary example is a title of 

an article which does not appeal to the news piece. 

• Conspiracy theories [24]. Conspiracy theories are news pieces that use conspir-

acy to interpret an event without any evidence. They often refer to illegitimate 

activities of the government or known political parties, which consequently can 

severely harm the audiences and create anger. Moreover, they use unverified in-

formation as evidence to boost their credibility. 

 

The authors in [24] also make a taxonomy of false information according the degree 

of impact on the recipient users. They distinguish 3 different scales; fake news, biased or 

inaccurate news and misleading or ambiguous news. Fake news has the greatest impact 

and includes fabricated content, propaganda, imposter content and conspiracy theories. 

Less severe is considered the biased news group, which consists of hoax articles, hy-

perpartisan content (extremely supporting a specific party) and fallacy (news that use 

faulty reasoning to support its claim). Misleading news is classified as the gentlest group 

and has minor effects on the audiences. It includes rumors (news content on the web that 

is ambivalent or not verified), clickbait (articles that use a misleading title that has no 

connection with the main body with purpose to attract many “clicks”) and satire news. 

 

2.4 Fake news data types 

The authors in [25] categorize the different data types that fake news can be presented as 

follows: 
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• Text: Text consists of the headline and the main article. It presents an intense 

appearance with capitalized letters, high polarity (usually negative) and certain 

grammar characteristics. The headlines in some occasions have no semantic con-

nection with the main article. Text-linguistic and semantic techniques can be uti-

lized to detect such attributes. 

• Multimedia: This category consists of video, images, graphics and audio. They 

are distorted contents, or they present graphic contents to attract viewers’ aware-

ness. Computer vision and deep learning techniques can be used to detect specific 

patterns and outliers on the content. 

• Hyperlinks or Embedded content: Hyperlinks allow writers to connect to exter-

nal news sources that can be used as evidence for their arguments and hence obtain 

audiences’ trust. 

• Audio: This data type is appeared less frequently as a means of reporting news. It 

is implemented in radio/e-radio broadcasts and use only voice and sounds. Speech 

recognition methods are utilized to detect irregularities in the tone or the words 

used. 

 

This thesis studies fake news detection using only raw text data type. 

 

2.5 Fake news detection approaches 

In [11], [13], [25], the authors categorize fake news detection methods as linguistic-based, 

visual-based, user-based, post-based, and network-based.  

• Linguistic-based. Linguistic-based methods are utilized to discover irregularities 

in the language style and content, such as clickbait articles, which do not have any 

connection with the main body of the text with the purpose to gain users attention. 

They refer to linguistic or readability features for document organizations of char-

acters, words, sentences and paragraphs, such as the number of words, number of 

characters for each word, frequency of big words and number of unique words. 

Moreover, research studies suggest the utilization of LIWC (Linguistic Inquiry 

Word Count) [26], [27], which is a transparent text analysis program that counts 

the number of words associated with specific psychological types and extracts 
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psycho-linguistic features. This software tool can extract information about lan-

guage emotion, text statistics and part-of-speech (POS) tagging. Furthermore, lin-

guistic-based approaches include syntactic features such as bag-of-words text rep-

resentation [28]. In the bag-of-words models, every unique word or n-gram (se-

quence of n words) is a feature and is represented with its frequency in the docu-

ment or its term frequency penalized by the frequency in the collection of docu-

ments (Term Frequency-Inverse Document Frequency, TF-IDF), which indicates 

the degree of importance of a word. Other examples of syntactic features refer to 

existence of specific punctuations (question mark and exclamation mark), which 

help to distinguish between real and deceptive news articles. Another syntactic 

method for feature extracting is called CFG (Context-Free-Grammar), which is a 

“set of rules utilized to construct patterns of strings” [25]. Finally, lying-detection 

features can be utilized to identify deception [29]. 

• Visual-based. Visual-based approaches refer to detection of fake news character-

istics in images or video. Visual features in fake images are extracted using ma-

chine learning and deep learning techniques. They can also be detected by ana-

lyzing user and tweet attributes. Moreover, visual features such as clarity score 

and coherence score can be used to improve performance of the machine learning 

model [30]. 

• User-based. Other research studies suggest analyzing user-level characteristics. 

Understanding user profiles and engagements is critical for fake news detection. 

As an example, fake profiles (i.e. automatic bots) are used to provide support to 

fake news items and consequently amplify their dissemination. These character-

istics are classified in individual and group level. Individual level features refer to 

specific user’s characteristics, such as number of tweets and followers as well 

registration date. Group level features correspond to groups of users with certain 

attributes that can form communities and can be calculated using aggregation of 

user profiles. 

• Post-based. Another approach for fake news detection is post-based, which stud-

ies user responses in a fake news content. Skeptical opinions and intense reactions 

could indicate existence of fake news piece and provide valuable information. 

Each user’s comment can be represented using bag-of-words or word embeddings 

[31] to obtain user opinion, topic and the degree of reliability. Topic features can 
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be obtained by the Latent Dirichlet Allocation (LDA) technique [32]. Finally, all 

these features can be aggregated to extract group level characteristics. 

• Network-based. Spread of fake news composes an echo chamber cycle that sug-

gests exploiting network-based techniques. Network features can be obtained by 

creating several types of networks with similar media posts, such as stance, 

cooccurrence and friendship networks. More specifically, stance networks are 

graphs having as nodes all the posts that are relevant to the news and as edges the 

weight of similarity between two articles. Another type of network is the cooccur-

rence network, which evaluates if users write articles in the same category of 

news. Finally, friendship networks (followers) indicate the dissemination degree 

of a news piece. 

 

The authors in [33], studied rumors on Twitter. They gathered 10,000 posts, which 

were manually labeled by fact-checking agents and implemented bag-of-words text rep-

resentation using also n-grams and POS tagging. They also extracted information from 

users’ profile and specifically if a user has previously shared fake news content as well 

as they utilized information from hashtags and links on Twitter. The results indicated 95% 

score of mean average precision in this dataset with the text-related features having higher 

contribution to the classifier’s decisions. 

The authors in [26] studied the use of content-based features for fake news detection. 

They gathered fake news articles annotated by Amazon Mechanical Turk (AMT) work-

ers. Subsequently, they extracted features, such as bag-of-words (TF-IDF), LIWC, read-

ability, syntactic and punctuation features and fed them as input to the machine learning 

model. The model reached 74% mean accuracy which even outperformed human anno-

tators’ effectiveness (70%). 

In [3], the authors study user, network and meta-data-based approaches for hoax arti-

cles detection in Wikipedia. They deployed four distinct types of features: appearance, 

network, support and user features. Appearance features correspond to the article’s 

length, the number of linked sources, etc. Network features evaluate the relation between 

external linked sources and the Wikipedia hyperlink network. Support features check 

whether the headline of news content has the same name with other articles and calculate 

the time difference since the generation of the news piece. User features refer to users’ 

profile history such as the user’s registration date and assess whether the user has 
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previously published fake news content. Network and user attributes achieved highest 

individual accuracy scores and the combination all features boosted the performance of 

the model. 

A research study in [18] deals with fake twitter posts that also contain images. They 

extracted user-related features such as number of connections and time since registration. 

From the tweet content, they utilized linguistic features regarding words count, sentiment 

scores, POS tagging, etc. They also utilized meta-data information such as count of 

hashtags, links and retweets. The dataset consisted of 11500 tweet posts with balanced 

proportion of labels. Decision trees were selected as machine learning model and 

achieved 97.7% accuracy. 

A more advanced approach for fake news detection is presented in [34]. The research-

ers propose a deep neural network called TI-CNN, which consists of multiple convolu-

tional layers and combines as input text and image information. This model can also cap-

ture hidden patterns found in text and images or latent relations between them due to the 

deep learning architecture. Their results indicated that deep learning approaches can boost 

the accuracy of fake news detection methods, especially when combining text and image 

knowledge. 

 

2.6 Fake news datasets 

Previous research studies have dealt with the problem of disinformation and created da-

tasets that can be used to implement and evaluate supervised learning techniques. 

• BS Detector3. It contains only unreliable articles, most of them referring to poli-

tics. This collection of news items represents a basis for generating a fake news 

corpus to train text classification models. Subsequently, the author in [35] con-

structed a fake news dataset, which is evenly split in reliable and unreliable news 

contents. More specifically, he incorporated articles from Kaggle fake news da-

taset to comprise the unreliable news pieces and scraped articles from All Sides, 

which is a website dedicated at hosting news from widely known news providers 

that are considered reliable. This dataset was selected for conducting the 

                                                 

3 https://www.kaggle.com/mrisdal/fake-news/home 
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experiments of this thesis, as its topic corresponds to political news and provides 

binary annotations (real news or not). It is described in more detail in chapter 3. 

• LIAR4  [36]. The dataset contains 12836 short news statements over the past 10 

years, obtained from politifact.com, which is a website dedicated to check the 

truthfulness of social media content by using fact-checker agents. The annotated 

labels include 6 truthfulness ratings: true, mostly-true, half-true, barely-true, false 

and pants-on-fire. However, it is difficult to automatically distinguish between 

these types, as the current machine learning methods implemented on this dataset 

achieved nearly 30% accuracy. 

• CREDBANK5  [37]. CREDBANK is a dataset that consists of 80 million tweets 

(metadata only) that refer to specific topics (consisting of the top 3 terms returned 

of a topic modeling method called Latent Dirichlet Allocation). The tweets were 

gathered from October 2014 to February 2015 (96 days). CREDBANK also con-

tains a file that consists of 62000 topics with labels indicating that it is an actual 

event or not. Finally, it includes a file comprised of 1300 events. These events 

were evaluated by 30 Turkers with credibility rankings of ranging from -2 to +2 

and their analogous explanations for this classification. Nevertheless, it limited to 

keywords of the topics without including the event’s full text as well as the related 

tweets. 

• BuzzFace6  [38]. BuzzFace contains 2263 news stories on Facebook and is em-

powered by 1.7 million comments discussing these news contents. Comments pro-

vide essential information regarding the veracity of the content, as it denotes pub-

lic reaction to a news piece and how likely it is to be spread over the social media. 

Nevertheless, the number of the news stories is small for developing a natural 

language understanding model that can identify the intent to harm from the text. 

 

                                                 

4 https://www.cs.ucsb.edu/~william/data/liar_dataset.zip 
5 https://github.com/compsocial/CREDBANK-data 
6 https://github.com/gsantia/BuzzFace 
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2.7 Black-box model interpretation methods 

2.7.1 Introduction 

Several fake news detection algorithms have been developed, yet, to the best of our 

knowledge, no one provided explanations of the black box model predictions. Model ex-

planations can provide transparency of the classifier’s behavior, helping the user to better 

understand the reasons that lead the machine learning model to classify a news item as 

fake.  

In [39], the author defines interpretability as the level at which a human can under-

stand the reason of a classification. He also provides an alternative definition which is the 

level at which a human can predict the classifier’s response. Higher interpretability of a 

black box means easier comprehension of specific outcomes. However, interpretability 

differs from explanation. Explanation is defined as an answer to a why question, which 

in case of machine learning, is “Why the black box model predicted an instance as a 

specific label?” or “Why should I trust this model?”. It provides an overview of the most 

notable features for individual predictions that will help users understand if it works cor-

rectly or is biased against certain attributes. For example, a model that predicts if an ap-

plicant for a loan should be accepted or rejected can be affected by the person’s gender 

or living location. Subsequently, any problem observed can be corrected, for instance, by 

eliminating these attributes. In text classification, an explanation could be the set of words 

that contribute more to the classification. Humans prefer short explanations, because they 

are easier to comprehend.  

A good explanation comprises of some of the following properties: 

• It is counterfactual: Many people prefer to know why the classifier predicted a 

specific label instead of another prediction. In other words, humans can better 

comprehend when comparing to opposing examples. 

• It is selected: Reading a whole document is difficult and time consuming for the 

human to understand the decisions, hence the explanation should comprise a lim-

ited number of words or phrases that have higher contribution to the model’s re-

sponse. 

• It is social: Explanations need to adapt to the specific user preferences. For exam-

ple, a user on social media that uses a fake news detection model would prefer a 
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simple explanation for predicting an article fake, while a journalist would prefer 

a more descriptive and knowledge-based approach. 

• It focuses on abnormal causes: If an input attribute for a classification is abnor-

mal (such as a rare category of a categorical feature) and has high influence on 

the prediction, it should be mentioned in the explanation. 

• It is truthful: Explanations should be also able to predict a label in similar exam-

ples, i.e. they should be faithful.  

 

Methods for black box model interpretability can be categorized according to different 

criteria: 

• Intrinsic or post hoc. Intrinsic approach indicates the selection of an interpretable 

model for training using the given dataset. It is considered as the simplest form of 

transparency of the model’s decisions, however the predicted accuracy is limited 

as complex models (such as deep neural networks) outperform the plain machine 

learning models.  Post hoc approach uses the predictions from a pretrained classi-

fier to obtain model transparency, which is the method to extract explanations for 

black box model’s responses and constitutes the goal of this thesis. 

• Type of explanation outcome. Many methods provide a feature summary statis-

tic indicating the degree of the feature’s influence on the model outcomes. This 

statistic can also be visualized using graphs that are more comprehensible to hu-

mans. A different approach is the learned weights using a surrogate linear model 

that is trained on the predictions of the black box model.  

• Model agnostic or model specific. Model specific methods provide interpreta-

bility for specific types of classifiers, such as neural networks and tree ensembles. 

Model agnostic approaches are not based on the type of the model and are usually 

post hoc. They work by examining different combinations of features and their 

respected model responses. These methods use no information about the internals 

of the machine learning models, like weights or structural representation. 

• Global or local. Global approaches explain the model behavior, while local meth-

ods explain individual predictions of a black box classifier. 
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2.7.2 LIME 

The authors in [40] propose a model called LIME (Locally Interpretable Model-agnostic 

Explanations). This method provides explanations of individual predictions by creating a 

neighborhood sample of the predicted instance, which is used as training set for a surro-

gate interpretable model that subsequently learns the weights of the features (words). The 

words with highest weights represent the explanation of the classifier prediction. It is 

based on two fundamental characteristics: interpretability and local fidelity. The explana-

tions must be fully comprehensible to humans and explain model prediction. Further-

more, the created neighborhood must be locally faithful. In other words, it must be a good 

representation of how the model behaves in the surrounding of the tested instance. Figure 

2.3 shows the areas (in the feature space) that the black box model learned to classify. It 

is observed that the separating curve of the decisions of the classifier is highly complex, 

however, if we zoom in, it can be locally approximated with a straight line (linear model). 

The bold red cross denotes the predicted instance that is explained, while the size of each 

sample indicates how distant it is to the explained instance. 

 

Figure 2.3. Areas of the decision function of a binary classification with two input features. The 

points denote the sample created around the predicted instance (bold red cross) [40] 

 

The general steps of LIME method are as follows: 

1. Choose instance to explain the classifier prediction 

2. Perturb dataset and obtain the classifier predictions for these new points. 

3. Weight the new samples according to the distance from the tested instance to 

create new dataset. 

4. Train a weighted, interpretable (linear) model on dataset. 

5. Explain prediction by interpreting the local model (using the weights). 
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In text classification, the text is transformed in the bag of words approach where each 

word has a binary representation denoting its presence. These extracted features are sam-

pled uniformly around the instance in the vector space to create the training set. Given 

this dataset of perturbed samples, the goal is to minimize 𝐿(𝑓, 𝑔, 𝜋𝑥) which is a measure 

of how unreliable the interpretable model g is. 

𝜉(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔∈𝐺   𝐿(𝑓, 𝑔, 𝜋𝑥) + 𝛺(𝑔) 

where f is the black box classifier, 𝜋𝑥 is a measure that indicates the distance from the 

tested instance and Ω denotes the complexity of the interpretable model. More specifi-

cally, g is a linear model such that 𝑔(𝑧) = 𝑤𝑔 ∙ 𝑧 , where z is a vector, 𝜋𝑥(𝑧) =

exp (−𝐷(𝑥, 𝑧)2/𝜎2) is a kernel for the distance function, where D is the cosine similarity 

and Ω is the number of features for the linear model. The loss function that must be opti-

mized, is weighted by the kernel function 𝜋𝑥 which leads to: 

𝐿(𝑓, 𝑔, 𝜋𝑥) = ∑ 𝜋𝑥(𝑧) ∙ (𝑓(𝑧) − 𝑔(𝑧′)2

𝑧,𝑧′∈ 𝑍

 

The user can provide the number of words k that constitute the explanation and the algo-

rithm returns the k words with the highest weights of g and hence the higher contribution 

to the individual prediction. 

2.7.3 EDC 

In [41], the authors define explanation as a minimal set of words in the classified docu-

ment, so that deleting all these words, changes the outcome of the black box model. For 

example, in a sentiment analysis task, removing all the positive words {good, excellent, 

wonderful, love, etc.) from the instance, results in different prediction of the classifier 

(negative or neutral). Therefore, this set of words determines the model’s response and 

can be used as an explanation. We used verbatim definition of document explanations 

from the [41] as follows: “Consider a document D consisting of 𝑚𝐷 unique words 𝑊𝐷 

from the vocabulary of m words: 𝑊𝐷 = {𝑤𝑖, 𝑖 = 1,2, … , 𝑚𝐷} , which is classified by clas-

sifier 𝐶𝑀: 𝐷 → {1,2, … , 𝑘} as class c. An explanation for document D’s classification is a 

set E of words such that removing all words in E from the document leads 𝐶𝑀 to produce 

a different classification”. In other words, set of words E is an explanation (1) if the words 

appear in the text, (2) if E is removed the predicted class changes and (3) E is minimal. 

Selecting the minimal set of words is intractable, due to the vast number of word 

combinations. Consequently, they suggest a greedy approach for extracting the optimal 
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explanations of a document classification. The representation of a text instance is trans-

formed to a bag of words representation indicating the presence or absence of each word 

(feature). It is also considered that the black box model has a predict-probability function, 

which returns the prediction probability of a given feature vector for a specific class. 

Then, the algorithm uses a heuristic best-first search, where at each iteration it selects the 

word that when is removed, the probability of classifying the given document to the pre-

dicted label changes at most and the word is appended to the explanation set. When the 

removal of this set changes the outcome of the classification, it can be used as an expla-

nation. For every minimal set of words obtained, there is no need to further search for 

candidates that contain these words. Therefore, they include a pruning step, that removes 

these candidates. The algorithm terminates after a specific number of iterations given by 

the user. The general steps of EDC procedure are demonstrated as follows: 

1. For each word: remove word from document and predict label probability. 

2. Choose word that when is removed changes prediction probability the most. 

3. Append to set E. 

4. If removing all words from E, changes the predicted label, then E is an ex-

planation. 

5. Else repeat with remaining words. 

 

This method is model-agnostic and selects features in an instance-wise manner, because 

it only uses the outcomes of the complex classifier given an input and explains individual 

predictions without using information from the rest of the dataset that the black box model 

was trained. 

 

2.7.4 Other explanation algorithms  

Based on LIME approach, KLIME method [42] splits the data into k partitions using 

unsupervised clustering techniques (e.g. k-means) and trains linear interpretable model 

for each cluster separately. The value of k is selected aiming at maximizing the R2 of the 

local models’ predictions. This algorithm nonetheless lacks in preserving the underlying 

model structure due to the unsupervised approach.  A solution to this problem is LIME-

SUP, which is based on KLIME method but uses supervised techniques (decision tress) 

for splitting the dataset into k partitions. Therefore, it resembles the original model and 

creates more meaningful clusters. Given a new instance, both interpretability models 
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classify it to the most similar cluster and use the local linear interpretable model to explain 

the prediction. 

The authors in [43] propose an extent on LIME that is based on high-precision rules 

called anchors. They define anchors as the subset of words that, even if the remaining 

words in the text instance are perturbated, the model predicts the same outcome with high 

probability.  Anchors are easy to understand and are only implemented when all predi-

cates in rule are satisfied. In text classification, instead of using perturbation technique 

proposed in [40], the creation of text’s neighborhood happens by randomly replacing 

words with words with the same POS tag and with high similarity in an embedding vector 

space.  

The interpretable representation we use is the presence of individual tokens (words) 

in the instance. The perturbation distribution D replaces “absent” tokens by random words 

with the same POS tag with probability proportional to their similarity in an embedding 

space. 

Formally, given a black box model f and a text instance x, an anchor A is a set of 

words from x that has greater precision, 𝑝𝑟𝑒𝑐(𝐴), of the model’s predictions than a 

threshold τ, where: 

𝑝𝑟𝑒𝑐(𝐴) = 𝐸𝐷(𝑧|𝐴)[𝑓(𝑥) = 𝑓(𝑧)] 

However, computing this precision directly is prohibitive and therefore the authors pro-

pose a probabilistic definition that anchors must meet the aforementioned constraint with 

big probability as follows: 

𝑃(𝑝𝑟𝑒𝑐(𝐴) ≥ 𝜏) ≥ 1 − 𝛿 

In case of multiple anchors satisfying this constraint, those with the highest coverage of 

the input space are selected. Subsequently, the algorithm extracts candidate anchors using 

a multi-armed bandit formulation and selects those that optimize this criterion. 

This algorithm is very useful as it can also handle explanations of phrases of words, 

such as bigrams. For example, the phrase “not bad” indicates positive sentiment, but if 

the word “not” is missing, it could confuse the explainee as it would provide an opposing 

explanation. It anchors the subset {not, bad} and understands that these words together 

have extremely high precision 𝑝𝑟𝑒𝑐(𝐴) of the classifier’s predictions. 
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The authors in [44], discuss the fundamental problem of creating the neighborhood of 

an instance in locally surrogate models used for model explanations and propose a novel 

approach that is relevant to the predictions made. They claim that sampling instances 

globally from the input vector space focus mostly on features that have global influence, 

while concealing the features with local impact. Furthermore, they state that randomly 

sampling around a center point could provide a highly imbalanced training set for the 

local surrogate to fit the black box decisions. 

  The general idea of the proposed method is that it also uses the boundary of the deci-

sions of the black box classifier to construct the neighborhood instance. First, the algo-

rithm produces instances in a hypersphere of growing radius which is centered on the 

instance vector. Once the radius reaches the boundary of the black box model’s decisions, 

new instances are randomly created uniformly in a hypersphere S centered on the bound-

ary point with a specific radius 𝑟𝑆𝑥, which eventually creates a balanced training set for 

the local model. Radius 𝑟𝑆𝑥 is considered a measure of locality. 

The authors in [45] propose the use of hierarchical interpretation to extract explana-

tions of deep neural networks’ predictions through agglomerative contextual decomposi-

tion (ACD), which provides a hierarchical clustering representation of word features and 

finds the contribution of each cluster to the classifier’s outcome. This hierarchy is trained 

to identify the most representative groups of words to the predictions. 

For a given deep neural network f(x), we can denote its outcome as a SoftMax process 

applied to sigmoid functions g(x). These functions are the composition of L layers, such 

as convolutional, rectifier linear units (ReLU), max pooling and dropout layers. Contex-

tual decomposition algorithm gCD(x) decomposes the sigmoid functions g(x) into a sum 

of two terms, the first one indicating the importance measure of a feature group and the 

second one highlighting contributions to g(x) not comprising the first term. Once the con-

textual decomposition scores are calculated for each attribute, this algorithm iteratively 

keeps the 90% of the text that has the highest score to create the hierarchy. The procedure 

is terminated when all words are selected. 

This method is considered successful at identifying incorrect classifications and da-

taset bias and can be for any neural network architecture and data type. Furthermore, it is 

very robust to adversarial perturbations of the data. For example, in sentiment classifica-

tion the phrase “not very good” indicates negative sentiment but many algorithms can be 

confused and provide only the phrase “very good” as positive contribution. 
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The authors in [46], define an explainer as an instance-wise feature selector, which 

returns the subset of features that are considered the most informative for the specific 

model response. The goal is to maximize the mutual information of the selected subset 

and the model outcomes. Mutual information is a measure of dependence between two 

random variables X, Y and is defined as: 

𝐼(𝑋, 𝑌) = 𝐸𝑋,𝑌[𝑙𝑜𝑔
𝑝𝑋𝑌(𝑋, 𝑌)

𝑝𝑋(𝑋)𝑝𝑌(𝑌)
] ⇒ 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) ∙ log 
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑥∈𝑋𝑦∈𝑌

 

For example, if X, Y are independent, then 𝑝𝑋𝑌(𝑋, 𝑌) = 𝑝𝑋(𝑋)𝑝𝑌(𝑌) which entails that: 

𝐼(𝑋, 𝑌) = 0 

The general idea of this method is that it learns globally a local explainer by taking into 

consideration the distribution of inputs in relation with the specific model outcomes. 
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3 Materials and methods 

This chapter describes the methods implemented on this thesis for fake news detection as 

well as the explanation algorithms for the predictions of the developed text classification 

models.  

3.1 Introduction 

As previously mentioned, the goal of this thesis is to detect fake news by using only raw 

text and give explanations of the machine learning model decisions for better transpar-

ency and, hence, evaluate if the classifiers predict in an unbiased and fair manner. We 

implement a framework that uses raw text (news article) as input and predicts if the in-

stance is a real news piece or not and explains the prediction by highlighting the most 

significant words for the classification. According to [11], fake news detection is defined 

as “the task of predicting whether a news article is fake news piece or not” which is a 

binary classification task. In this thesis, we examine the task in a different perspective 

and define fake news detection as the task of predicting if a news piece is real or not. The 

reason for this approach is that it is easier to distinguish reliable from unreliable news 

content, as it is factual, precise and needs little interpretation. On the contrary, distin-

guishing fake from non-fake news is harder; there are cases (e.g. satirical news) where it 

is extremely difficult to identify and distinguish from (actual) fake news.[47]. An over-

view of our models is illustrated in Figure 3.1. First, input text is filtered so as to only 

keep the essential information from the content. Then, we transform cleaned text to a 

vector representation that constitutes the input features for the machine learning model. 

To evaluate the classifier’s performance, we randomly split the dataset into training set 

and test set. The machine learning model is trained on the selected training dataset and is 

evaluated with the accuracy of the test set predictions. The trained classifier, which is 

considered a “black box” model, is interpreted using post-hoc approaches and an expla-

nation set of words is returned to better explain why the model predicted the specific 

instance as real or not real. The design and experiments of this model were deployed by 

using Python programming language, which is an object-oriented language that is 
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regularly utilized by the data science research community, due to the huge number of 

libraries that are publicly shared online. 

 

 

Figure 3.1. Overview of the proposed model. Text is cleaned and then converted into vector 

representation to be fed as input in a machine learning model. The interpretable model utilizes the 

predictions of the machine learning model to extract explanations. 

3.2 Dataset 

The dataset used in this thesis, is described in [35] and can be found online on GitHub. It 

consists of 6335 articles equally divided into real and non-real labels. Non-real news con-

tents were obtained from a fake news dataset comprising of 13000 articles published dur-

ing the US election period on November 2016 and can be found online on Kaggle. This 

dataset was created with the utilization of BS Detector7, which is a chrome extension tool 

that uses a curated list of non-reliable websites from opensources.co and warns users 

about unreliable news sources. The articles were scraped using the webhose.io API 

                                                 

7 https://bsdetector.tech/ 
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annotated with labels such as fake news, satire, extreme bias, conspiracy theory, state 

news, junk science, hate group and bs. BS is a label that BS detector returns when it 

cannot specifically identify the correct annotation, but the news item is considered unre-

liable.  It is mentioned, that for our problem all these different labels were considered 

generally as non-real news pieces. On the other hand, real news pieces were gathered 

from All Sides, which is a website that hosts news and stance articles from across the 

political spectrum and is a considered reliable source of information. 

Each article is associated with the title and main text, which we chose to combine as 

a single feature, because words in title tend to be repeated in the main text. And, conse-

quently, the contribution of these words is increased. 

 

3.3 Data cleaning 

Text is an unstructured form of data and could contain noisy content and thus text clean-

ing actions pose a necessary step for classification. In many data science problems, it 

requires almost 60% of research time, because the documents must be manually checked 

for inconsistencies that could prevent incorrect training of the classifier and have to be 

removed. We used the Natural Language Toolkit (NLTK) and Regular Expressions (RE) 

Python libraries for the implementation of data cleaning that perform string operations. 

The text cleaning techniques used in the problem, are presented as follows: 

• Lowercase. Every alphabetical character was converted to lowercase, because 

Python language is case sensitive and hence cannot understand that two words 

with only different letter cases have the same meaning. As an example, first word 

in a sentence is always capitalized but its meaning remains the same. This tech-

nique can also help shrink the size of the vocabulary. 

• URL removals. Many articles share external links to refer to specific sources. 

However, in text classification task, they have no actual meaning. Therefore, we 

replaced any string containing “http” or “https” with “<url>” to keep only the 

information that it is a link.  

• Punctuations. In many cases, punctuations do not share any explicit information 

to the readers. We chose to keep dots (.), because they show the break of the sen-

tence, as well as we did not remove question marks (?) and exclamation marks (!), 

because they indicate polarity in the text, such as anger or admiration.  



-28- 

• Numbers removal. Usually, numbers indicate a scale about something or denote 

the time, date, month etc. This makes difficult for the machine learning models to 

understand their meaning, because numbers can take infinite values, but on top of 

that they depend on the subject that they refer to. For example, the sentence 

“Greece has a population of 1 billion citizens” it is known false information be-

cause Greece has only 10 million citizens and this value is considered significantly 

high. Nevertheless, the sentence “A year consists of 5 months” is also wrong, even 

though 5 is considered a small number. Therefore, we deleted any numerical char-

acter from the text. 

• Tags removal. Tags such as “@username” are widely used on social media to 

refer to a unique user. However, usernames are hard to be interpreted from the 

machine learning model and hence we chose to remove related tags. 

• Replace words containing apostrophe. An apostrophe can be used to replace a 

letter (or letters). For example, word “won’t” comes from the phrase “will not”. 

Therefore, we replaced such words containing apostrophe with the original 

phrases using vocabulary of such cases. 

• Tokenization. After removing noise found in the text, it can be tokenized. In other 

words, the document, which is a large string, is converted to a list of words (to-

kens) 

• Stop-words removal. Stop-words are words that are used frequently in the text 

but have no actual meaning, such as the articles a, the, etc. There is no agreed list 

of stop-words in the literature that outperforms in text classification tasks. We 

utilized the vocabulary of stop-words provided from the NLTK library and re-

moved such words from the documents. 

Another efficient technique for text preprocessing, but have not been implemented, is 

stemming because stemmed words cannot be easily interpreted by humans. Stemming is 

applied to recognize and maintain the root (stem) of a word with the purpose of dimen-

sionality reduction. As an example, the words “accept”, “accepted”, “accepting”, “ac-

ceptance”, which have the same sense, are converted to the word “accept”. We avoided 

utilizing this approach, because explanations that contain stemmed words are hard to be 

interpret by humans. Lemmatization refers to morphological examination of the words 

[48]. This method clusters the diverse forms of a word into a single term. However, it 

requires POS tagging of each word in the text which is vulnerable to errors. 
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3.4 Feature extraction techniques 

3.4.1 TF-IDF 

A widely known feature extraction technique is TF-IDF (Term Frequency – Inverse Doc-

ument Frequency) [49]. TF-IDF is a bag of words approach where each unique word is 

considered a feature. This can also be extended in phrases of words (n-grams) such as 

bigrams and trigrams. This method determines how relevant a given word is in a specific 

document. It is a common term weighting scheme in information retrieval, that has also 

found effective use in document classification. 

The TF-IDF value for a given term t in a document d is defined as: 

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑) ∙ 𝑖𝑑𝑓(𝑡) 

 

where 𝑡𝑓(𝑡, 𝑑) is the term frequency of term t in document d and 𝑖𝑑𝑓(𝑡) is the inverse 

document frequency. 

Term frequency can be calculated in numerous ways: 

1. Raw frequency: 

𝑡𝑓(𝑡, 𝑑) = 𝑓(𝑡, 𝑑) 

where 𝑓(𝑡, 𝑑) is the number of times that term t occurs in a document d. 

 

 

2. Boolean frequency: 

𝑡𝑓(𝑡, 𝑑) = 1 if t occurs in d and 0 otherwise. 

 

3. Logarithmically scaled frequency: 

𝑡𝑓(𝑡, 𝑑) = 1 + log 𝑓(𝑡, 𝑑) and 0 when 𝑓(𝑡, 𝑑) = 0 

 

4. Normalized frequency: 

𝑡𝑓(𝑡, 𝑑) =
𝑓(𝑡, 𝑑)

max {𝑓(𝑤, 𝑑)}
 

 

which is the raw frequency of term t in document d divided by the maximum 

frequency of any term w in the document and can prevent bias towards longer 

documents. 

In this thesis, we used the raw frequency to denote the term frequency metric. Therefore, 

a word is more relevant to a document, if it appears many times in the document. 
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Inverse document frequency of a term t in a collection of documents is defined as: 

𝑖𝑑𝑓(𝑡) = log (
𝑁

𝑑𝑓(𝑑, 𝑡)
) + 1 

where 𝑁 is the total number of documents in the collection and 𝑑𝑓(𝑑, 𝑡) is the number of 

documents that contain the word t. This metric indicates that terms appearing in fewer 

documents (rare terms) will have higher weights. In other words, it penalizes words that 

appear in many documents without giving specific information regarding the uniqueness 

of the document. For example, stop-words occur in every document without providing 

any meaning to the document’s subject. 

We utilized the TfidfVectorizer function provided by sklearn library, which receives 

specific parameters determined by the user. Particularly, we limited maximum number of 

features (max_features) to 100000. This parameter considers the top max_features or-

dered by term frequency across the corpus, while ignoring the rest of features, which 

assists in reducing the dimensionality of our problem as a corpus could include millions 

of words. Furthermore, another parameter that can be configured is ngram_range. Gener-

ally, in text classification a feature is considered a single word. This can also be extended 

to n-grams of words, because phrases of words may have different meaning from a single 

word. For example, the sentence “I live in New York” contains the bigrams “I live”, “live 

in”, “in New” and “New York”. It is observed that the phrase “New York” refer to a 

specific city and each word has different meaning. At the same time, it may have a high 

term frequency in the collection of documents. We selected ngram_range to contain uni-

grams, bigrams and trigrams. The selected parameters were obtained by tuning the hy-

perparameters with purpose to maximize accuracy in validation set using a simple Lo-

gistic Regression classifier.  

An extension of n-grams is skip-grams [50], which is a widely used technique in text 

classification. This method also forms n-grams but on top of that, allows adjacent se-

quences of words. For example, the sentence “I live in Thessaloniki” forms three word-

level bigrams: “I live”, “live in” and “in Thessaloniki”. However, the most important 

phrase of two words in this sentence is considered “live Thessaloniki”, which can be 

traced using the skip-gram modeling by omitting the word “in”. The authors define k-

skips-n-grams for a sentence w1…wm as the set: 

{𝑤𝑖1
, 𝑤𝑖2

, … 𝑤𝑖𝑛
| ∑ 𝑖𝑗 − 𝑖𝑗−1 < 𝑘

𝑛

𝑗=1

} 
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k refers to the number of skips and n to the number determines the type of n-grams (bi-

grams, trigrams ,etc.) with 3-skip-n-grams (n-grams include unigrams, bigrams and tri-

grams) case achieving highest accuracy. This method was implemented by manually con-

figuring the analyzer parameter of TfidfVectorizer. After determining the TF-IDF param-

eters, the algorithm is fitted in the training set (corpus) and transforms documents into 

bag of words consisting of the selected features (n-grams, k-skip-n-grams) with the re-

lated TF-IDF value. 

 Nevertheless, 100000 features are considered a significant dimensionality size for text 

classification. To overcome this problem, dimensionality reduction techniques can be uti-

lized such as Truncated Singular Value Decomposition (TSVD) [51]. Singular Value De-

composition (SVD) is a matrix analysis technique that reduces dimensionality of a high-

dimensional array. In other words, it determines a smaller number of “concepts” that link 

the rows and columns of the array as well as approach the original array in good proxim-

ity. TSVD applies a variant of SVD that only calculates the k greatest singular values, 

where k is a hyperparameter determined by the user. Therefore, in our problem, given the 

transformed TF-IDF matrix X with m documents and n=100,000 features, the algorithm 

returns an 𝑚𝑥𝑛 (𝑘 ≪ 𝑛) matrix that can approximate the original matrix with high preci-

sion.  In document matrices with bag of words representation, it is also referred as Latent 

Semantic Analysis (LSA), because it converts matrix to a vector space of concepts with 

low dimensionality. SVD is a technique that decomposes matrix X into a product of three 

matrices as shown in Figure 3.2. It is defined as: 

𝑋 ≈ 𝑋𝑘 = 𝑈𝑘𝛴𝑘𝑉𝑘
𝑇 

where Xk is the transformed matrix with k selected dimensions, Uk is an 𝑚𝑥𝑘 column-

orthonormal matrix indicating documents-to-concepts similarities, 𝛴𝑘 is a diagonal ma-

trix where all the elements are zero except those in the main diagonal, which have positive 

values sorted in decreasing order denoting the weight for each concept and Vk is an 𝑛𝑥𝑘 

column-orthonormal matrix indicating features-to-concepts similarities. After this opera-

tion, the original training and test sets are transformed into two matrices with k features 

using the following formulas: 

𝑋𝑡𝑟𝑎𝑖𝑛
′ = 𝑈𝑘𝛴𝑘

𝑇 

𝑋𝑡𝑒𝑠𝑡
′ = 𝑋𝑡𝑒𝑠𝑡𝑉𝑘 
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Figure 3.2. Singular Value Decomposition method [52]. A matrix is decomposed in a product of 

three matrices indication correlation with general concepts. 

3.4.2 Graph of words 

The authors in [53], [54], propose a novel approach for feature extraction in text classifi-

cation tasks, which implements a Graph of Words (GoW) representation. More specifi-

cally, each given document d in a collection D is transformed into a graph 𝐺𝑑 = (𝑉𝑑, 𝐸𝑑) 

where 𝑉𝑑 corresponds to the set of nodes and 𝐸𝑑 to the set of edges (links). Each node 

refers to the term t of a document and each edge to the number of times each pair of terms 

cooccur in document d within a sliding window of fixed size. An example of a document’s 

GoW representation is demonstrated in Figure 3.3. This approach reproduces information 

about the relationship between pair of words or n-grams. 
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Figure 3.3. Graph of Words representation of text [54]. Nodes refer to words in document and 

edges correspond to cooccurrences between words within a sliding window. 

 

Using network analysis techniques such as centrality criteria, a term weighting 

scheme that captures its importance in a document, can be correspondingly calculated 

with the term frequency in TF-IDF. More precisely, Term Weight (TW) of term t in a 

document’s d GoW is defined as: 

𝑇𝑊(𝑡, 𝑑) = 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑡, 𝑑) 

As centrality measure, we utilize degree centrality is formulated as: 

𝑑𝑒𝑔𝑟𝑒𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑡, 𝑑) =
deg (𝑡, 𝑑)

|𝑉𝑑| − 1
 

where deg(𝑡, 𝑑) is the degree of node (term) t and |𝑉𝑑| is the total number of nodes in 

graph 𝐺𝑑. 

Other centrality metrics presented in [53] are closeness centrality and PageRank cen-

trality. Closeness centrality corresponds to the length of shortest path between two terms. 

PageRank centrality is based on PageRank which is the core algorithm used by search 

engines to rank search results. It counts the number and quality of links to a term to esti-

mate the ranking of a node. This metric can be extended by taking into consideration the 
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IDF value, which penalizes terms that appear in many documents, as defined in the equa-

tion. Therefore, the TW-IDF model is formulated as follows: 

TW-IDF(𝑡, 𝑑) = 𝑇𝑊(𝑡, 𝑑) ∙ 𝐼𝐷𝐹(𝑡) 

 

A similar approach to IDF is Inverse Collection Weight (ICW), which is a graph-

based penalization concept that is based on a collection level. Given the graphs 

𝐺1, 𝐺2, … , 𝐺𝑛 of documents 𝑑1, 𝑑2, … , 𝑑𝑛, collection-level graph G is defined as the union 

of each document’s graph in the collection. 

𝐺𝐷 = 𝐺1 ∪ 𝐺2 ∪ … ∪ 𝐺𝑛 

This graph is considered the degree of general dependencies between terms in the collec-

tion of documents. Through this definition derives the ICW metric, which denotes the 

maximum TW value in the collection divided by the TW of term t: 

𝐼𝐶𝑊(𝑡, 𝐷) =
𝑚𝑎𝑥𝑢∈𝐷𝑇𝑊(𝑢, 𝐷)

𝑇𝑊(𝑡, 𝐷)
 

 

TW-ICW model is formulated as: 

TW-ICW(𝑡, 𝑑) = 𝑇𝑊(𝑡, 𝑑) ∙ log (𝐼𝐶𝑊(𝑡, 𝐷)) 

𝑇𝑊(𝑡, 𝑑) can be any centrality measure, nonetheless computational limitations must be 

taken into consideration. 

The authors in [53] also propose a supervised term weighting scheme using GoW. 

First, we construct a graph for each label with terms as nodes appearing in documents 

with the specific classification. They define Label Weighting (LW) scheme as follows: 

𝐿𝑊(𝑡) =
max (deg(𝑡, 𝐿))

max (𝑎𝑣𝑔(deg(𝑡, 𝐿)), min(deg(𝐿)))
 

which is the maximum degree of term t in all label graphs (𝐿) divided by the maximum 

value between the average degree of term t in 𝐿 and the minimum degree of all terms in 

𝐿. This metric is combined with 𝑇𝑊(𝑡, 𝑑) and 𝐼𝐶𝑊(𝑡, 𝐷) as follows: 

TW-ICW-LW(𝑡, 𝑑) = 𝑇𝑊(𝑡, 𝑑) ∙ log (𝐼𝐶𝑊(𝑡, 𝐷) ∙ 𝐿𝑊(𝑡)) 
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3.4.3 Word2Vec 

A different approach for text representation in natural language processing is word 

embeddings. Word embeddings capture the semantic information of words by reproduc-

ing them in a semantic vector space, where each dimension corresponds to a “concept” 

similarly with the TSVD method. A widely known framework that learns word embed-

dings representation is Word2Vec, which is available online on Gensim Python library. 

Word2Vec is an unsupervised learning technique that learns word embeddings from a 

collection of documents using contextual information integrated in a shallow neural net-

work, i.e. a neural network that contains only one hidden layer. There are two main ap-

proaches of Word2Vec: Continuous Bag-of-Word (CBOW) model [55] and Skip-Gram 

model [56]. 

CBOW uses the word’s context within a fixed-sliding window as input and the exam-

ined word as output. In other words, the neural network is trained to predict the current 

word from a window of surrounding context words. The simplest case of CBOW model 

is if we consider a sliding window size with only one word in the context and is demon-

strated in Figure 3.4. Given a vocabulary of size V and the hidden layer with N units, each 

word is represented as one-hot vector of size V, with zero values except the cell that de-

notes the input word. 

 

Figure 3.4. CBOW model considering only one-word context [57]. Input layer is a one-hot vector 

indicating the word unique ID. It is a shallow neural network that is trained to predict the next 

word of another term. 

 

Therefore, the neural network in Figure 3.4 is mathematically formulated as: 

𝒉 = 𝑾𝑇𝒙 
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𝒚 = 𝑾′𝑇𝒉 

where 𝑾 is a 𝑉 × 𝑁  matrix corresponding to the weights between the input and hidden 

layer, while 𝑾′ is a 𝑁 × 𝑉 matrix referring to the weights between the hidden and output 

layer. The learning weights are obtained via backpropagation, which is a state-of-the-art 

technique for machine learning in multilayer neural networks [58]. After training, matrix 

𝑾 captures the semantic information of each word, where the i-th row of the matrix ex-

presses the vector representation of i-th word in the vocabulary V. Matrix 𝑾′ gives infor-

mation about how the embedded word 𝒉 relates to its context vector 𝒚 

 This can also be extended to higher window size k of surrounding context words as 

shown in Figure 3.5, where the input layer is the average vector of one-hot vectors of 

surrounding words and the equations are formulated as follows: 

𝒉 =
1

𝐶
𝑾𝑇(𝒙𝟏 + 𝒙𝟐 + ⋯ + 𝒙𝒌) 

𝒚 = 𝑾′𝑇𝒉 

 

Figure 3.5. Word2Vec Continuous Bag-of-Words (CBOW) model [57]. Input layer refers to one-

hot vectors that are aggregated indicating each word’s unique ID. It is a shallow neural net-work 

that is trained to predict the word given a context within a sliding window. 
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On the other hand, Skip-Gram has the opposite approach of CBOW. The neural net-

work is trained to predict the surrounding context (for a fixed-sliding window) of a current 

word. Therefore, the one-hot vector of current word comprises the model’s input and the 

output corresponds to the context words. The general idea of this framework is presented 

in Figure 3.6. 

 

Figure 3.6. Word2Vec Skip-Gram model [57]. Input layer refers to a one-hot vector indicating 

word’s unique ID and the output layer denotes the context (one-hot vector words) within a sliding 

window, that the shallow neural network is trained to predict. 

 

The word embeddings are learned using the training set as vocabulary and the window 

size is specified by the user. In order to extend word embeddings to document embed-

dings, two approaches can be implemented: One is to aggregate the word vectors in a 

document by either calculating the average word vector or summing the vectors alto-

gether. The second approach is to merge the word vectors forming a matrix and feeding 

them to a deep neural network architecture like Long-Short-Term Memory network or a 

Convolutional Neural Network, which are complex models that are very efficient on se-

quential data. 

Apart from training word embeddings in the given dataset, pretrained word embed-

dings can also be utilized, which capture the concept of transfer learning. Transfer 
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learning is the notion of transferring knowledge from an already trained machine learning 

model to another task. It is usually implemented on deep neural networks where the 

lower-level layers capture the most general concepts. For example, a machine learning 

model that is trained to detect cars, can transfer its knowledge to a truck classification 

task by using it as lower-level information and then adding a higher-level layer that dis-

tinguishes a truck. This technique is powerful when training small datasets as it reduces 

the number of learning parameters and prevents overfitting issues. Furthermore, it im-

proves the training performance, because it speeds up the training phase without requiring 

heavy computational resources. In text classification tasks, pretrained word embeddings 

form a language model that can also generalize well. They are trained in large corpus with 

billion words and can be used as a vector representation of text that captures general lan-

guage aspects. 

A widely known pretrained embedding model was trained on Google News corpus8, 

which contains 3 billion running words. This model was implemented on Word2Vec 

framework and includes word vectors with 300 hidden units for a vocabulary of 3 million 

words. 

3.4.4 Doc2Vec 

An extension of Word2Vec is Doc2Vec [59]. Doc2Vec is an unsupervised framework 

that extracts paragraph or document vectors from a collection of documents. It uses the 

same idea as Word2Vec, which is trained to predict the current word from a context 

(CBOW approach) or to predict the surrounding context of a given word. However, it 

includes a paragraph ID one-hot vector that captures the semantic representation of the 

document. Likewise, there are two approaches for learning the document embeddings: 

Paragraph Vector – Distributed Memory (PV-DM) and Paragraph Vector – Distributed 

Bag of Words (PV-DBOW). 

 PV-DBOW is like CBOW in Word2Vec but adds a document ID one-hot vector as 

input together with the word’s surrounding context one-hot vectors. The document vector 

and word vectors are either averaged or concatenated to predict the upcoming word of a 

surrounding context. An example of this method is presented in Figure 3.7. After 

                                                 

8 https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM 
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obtaining the learning weights, the weight matrix between the input and hidden layer en-

codes the document embeddings. 

 

Figure 3.7. Doc2Vec PV-DM approach [59]. It is a shallow neural network that is trained to 

predict a one-hot vector word given a context of one-hot vectors which includes a one-hot vector 

representing the document’s unique ID. 

PV-DBOW captures the same concept with Skip-Gram modeling in Word2Vec. Con-

trary to PV-DM, it ignores the one-hot word vectors within a window but is trained to 

predict a context of words that occur in the document. More specifically, given a one-hot 

document vector, a text window within document is randomly sampled to depict the out-

put. A typical architecture of PV-DBOW model is demonstrated in Figure 3.8. 

In order to obtain document embeddings, after selecting the number of units in the 

hidden layer and the learning rate, we train the Doc2Vec model multiple times, because 

as mentioned, it uses randomized techniques for learning document embeddings. Further-

more, at each training iteration the learning rate is slightly decreased and the collection 

of documents is randomly sampled to avoid biasness in the order of documents. 

 

Figure 3.8. Doc2Vec PV-DBOW approach [59]. It is a shallow neural network that is trained to 

predict a context of one-hot vectors given as input a one-hot vector representing the document’s 

unique ID. 
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3.4.5 Google universal sentence embeddings 

Another approach of transfer learning is by utilizing pretrained sentence embeddings. The 

authors in [60] have trained on a large collection of texts a model that converts text into 

high dimensional vectors (512 dimensionality). Text corresponds to English phrases, sen-

tences or paragraphs. The pretrained model is provided in Tensorflow Hub9 and in our 

problem, is used to obtain document vectors and subsequently a semantic representation 

of documents for text classification. 

 

3.5 Machine learning models 

The examined machine learning models implemented in this thesis are Logistic regres-

sion, Neural Networks and deep learning models such as Long short-term memory net-

works and Convolutional neural networks that according to [61] achieve very good re-

sults. 

 

3.5.1 Logistic regression 

Logistic Regression is a state-of-the-art algorithm for classification tasks [61].  It is a 

regression-based model, which is a method that learns weights for each feature. In other 

words, it captures the importance of each attribute to the classification task. Instead of 

modeling the outcome 𝑦 promptly, it models the probability that 𝑦 belongs to a specific 

label.  A linear regression model is formulated as follows: 

𝑓(𝑋𝑖) = 𝑤0 + 𝑤1𝑥𝑖1 + ⋯ + 𝑤𝑚𝑥𝑖𝑚 = 𝑾𝒙 

 

where 𝑓(𝑋𝑖) is the prediction of the regression model, 𝑥𝑖𝑗 are the features of document i 

and  𝑤𝑖 is the weight of each feature. The probability that an instance is classified as real 

or not real is calculated as follows: 

𝑃(𝑌 = 𝑦𝑗|𝑋) =
𝑒𝑦𝑗∙𝑓(𝑋𝑖)

1 + 𝑒𝑦𝑗∙𝑓(𝑋𝑖)
=

1

1 + 𝑒−𝑦𝑗∙𝑓(𝑋𝑖)
 

                                                 

9 https://tfhub.dev/google/universal-sentence-encoder-large/3 
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where 𝑦𝑗 is the label that can be 1 (real) or -1 (not real). This formula is called sigmoid 

function and its graph representation is shown in Figure 3.9. It is indicated that sigmoid 

function takes values in the range [0,1] and therefore can form probability models. 

 

Figure 3.9. Sigmoid function. It maps a real number in the range of [0,1] indicating probability 

distribution. 

 

The method used to fit the model and calculate the regression coefficients, is called max-

imum likelihood. The goal of this method is to maximize the joint probability of all in-

stances being correctly classified and if we assume that the variables are independent, the 

optimization problem is formulated as: 

𝒘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒘 [𝑙𝑜𝑔 (∑
1

1 + 𝑒−𝑦𝑗∙𝑓(𝑋𝑖)

𝑛

𝑖

)] 

or  

𝒘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘 [𝑙𝑜𝑔 (∑(1 + 𝑒−𝑦𝑗∙𝑓(𝑋𝑖))

𝑛

𝑖

)] 

After finding the regression coefficients, the probability 𝑃(𝑋) = 𝑃(𝑌 = 1|𝑋) is calcu-

lated and by using the 0.5 threshold the instance will be classified as real if 𝑃(𝑋) > 0.5 

and as not real if 𝑃(𝑋) < 0.5. The algorithm was implemented, using the LogisticRegres-

sion function provided in Python sklearn library. 

3.5.2 Neural networks 

Neural networks originate several decades ago. According to the author in [62], a gentle 

definition of a neural network, which is also called Artificial Neural Network (ANN), is: 

“Neural network is a computing system made up of a number of simple, highly 
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interconnected processing elements, which process information by their dynamic state 

response to external inputs.” It is based on human brain concept, where for each observa-

tion specific neurons are activated that lead to a final decision. A typical neural network 

architecture is presented in Figure 3.10.  Neural networks are modeled with layers. The 

first layer is the input layer, which denotes the attributes (units) of each instance. The 

input layer is mapped to a hidden layer space, which is also mapped to another hidden 

layer until it reaches the output layer, which denotes the prediction of the neural network 

model. The first layers of a neural network capture lower-level concepts, while the last 

layers capture notions that are mostly relevant to the classification task. For example, in 

text classification the first layers provide language modeling information and the last lay-

ers capture concepts regarding the prediction (real news or not).  

 

Figure 3.10. Neural network architecture with 2 hidden layers. Each layer is fully connected to 

the next one. 

 

Each neuron in a neural network model has the architecture presented in Figure 3.11.a. 

The mathematical formula is: 

𝑢 = 𝑏 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑚𝑥𝑚 

𝑦 = 𝑓(𝑢) 

where 𝑤𝑖 refer to the weights and 𝑥𝑖 related features. 𝑓(𝑢) is the activation function, 

which indicates the degree of activation of a neuron or in other words, how much infor-

mation pass through the specific neuron. It can be any continuous function but for the 

output layer sigmoid function is preferred because it models probabilities for the out-

comes. 

 The training of a neural network is accomplished with the backpropagation algorithm. 

Backpropagation uses stochastic gradient descent with the purpose to minimize the loss 

function of the outcomes and to converge the values of the weights. In addition to that, 
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sigmoid function should not be used as an activation for the hidden layer units, because 

its derivative has small values which decelerates the convergence of the learning weights 

(vanishing gradient problem). In this case, Rectified Linear Unit (ReLU) activation func-

tion is preferred which is linear in the positive area and rectifies negative values (Figure 

3.11.b). 

  

Figure 3.11. (a) A single neuron architecture: Each neuron 𝑥𝑖 is multiplied with its weight 

𝑤𝑖 and the sum of them u is passed through an activation function 𝑓(𝑢) which restricts 

the outcome in a specific range, (b) ReLU activation function: It keeps only positive val-

ues and is often used in the hidden layers. 

 

The neural network framework was implemented on Keras10, which is a high-level 

neural networks API written in Python language. Keras includes the Sequential model 

which is a user-friendly function that allows constructing and combining multiple neural 

network architectures. 

3.5.3 Long Short-Term Memory networks 

The authors in [63] propose a novel deep neural model, which is called Long Short-Term 

Memory (LSTM) network. LSTM works very well for sequential data, such as time-series 

data and text data which is a sequence of words. It is a complex form of Recurrent Neural 

Networks (RNN), which are neural networks with loops, allowing information to persist. 

A typical RNN architecture is demonstrated in Figure 3.12, where 𝑋𝑡 is a vector. If we 

unfold an RNN it can be observed that it is similar to a multi-layer neural network, where 

each data in the sequence represents a hidden layer with the difference that each layer has 

additional input. The activation of each layer is established by the tanh function, which 

                                                 

10 https://keras.io/ 

(a) (b) 
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returns values in the range (-1,1). In text classification, it is based on predicting the next 

word given a previous fixed-size context. 

 

Figure 3.12. A typical RNN architecture and the unfolded version11. A one-hot vector word 𝑿𝒊 

refers to a word that appears before another word 𝑿𝒕.  

 

Nevertheless, in many cases we also want information from a word or phrase that 

appears earlier in the document, to be able to predict the upcoming word. In other words, 

we also need “long-term” dependencies. For example, in the beginning of a paragraph, 

the phrase “I grew up in Greece” could occur and in the end of the paragraph the phrase 

“I speak fluent Greek”. In order to persist this information, a typical RNN requires a large 

context to consider. However, larger context means greater number of layers, which could 

lead to the vanishing gradient problem. 

LSTM can deal with this problem by including gates that decide how much infor-

mation will be maintained from the previous instances and the degree of updating the 

information for the new instance. An unfolded version of an LSTM network is depicted 

in Figure 3.13. 

 

Figure 3.13. An unfolded LSTM network. It contains two outputs: one regarding the information 

that will persist for the next word and one for the result of the specific word9 

                                                 

11 http://colah.github.io/posts/2015-08-Understanding-LSTMs 
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The LSTM framework was implemented on the Keras Python library. It requires as 

input for each feature a fixed-size 2-dimensional array, which consists of the word em-

beddings within the document. Because Keras requires numerical values as input, each 

word in the vocabulary of the word embedding model is mapped to a unique integer and 

each integer is mapped to the embedding vector space. However, each document has dif-

ferent number of words. To avoid this problem, we utilize a technique called padding. 

We initially specify the maximum size of documents and each document (previously con-

verted to a sequence of integers) that has smaller length will be padded with zeros to 

persist the size of the feature array and map these values to a zero vector in the embedding 

space. We also included a fully-connected (Dense) layer to calculate the probability dis-

tribution of the classification task. The general structure of the implemented model is 

depicted in Figure 3.14.  

 

 

Figure 3.14. The implemented LSTM model architecture. Document is tokenized and each word 

is mapped to a unique integer. Each document is converted in a fixed with missing words covered 

with zeros. Then each word is converted into vector using Word2Vec models and they are fed as 

input to a LSTM layer. The outcomes of LSTS are fed in a fully-connected (Dense) layer to create 

probability distribution of the predicted classes. 
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3.5.4 Convolutional neural networks 

Convolutional Neural Networks (CNNs) are a widely known method for pattern recogni-

tion tasks, such as computer vision [64] and text classification [65]. The general idea is 

that instead of having fully connected layers like a simple neural network, the connections 

happen in certain regions within a sliding window. Furthermore, the connected neurons 

have the same weights for all sliding windows. A typical example of a CNN architecture 

is presented in Figure 3.15. The input is a sequence of words mapped in the embedding 

space, thus each word is a vector. The sliding window size is 2, which means that the 

model considers bigrams of words. Therefore, each convolutional neuron ℎ𝑖 (A) that re-

flects to a specific bigram, is mathematically formulated as: 

ℎ𝑖 = 𝑓(𝑤0𝑥𝑖 + 𝑤1𝑥𝑖+1 − 𝑏) 

where 𝑤0, 𝑤1 are the learning weights for the convolutional layer and 𝑓 is the neuron 

activation function (usually ReLU function is preferred to avoid the vanishing gradient 

problem). Subsequently, the convolutional layer is connected to a max pooling layer, 

which is a layer that selects the most important bigrams in the text similarly to image 

classification tasks, where we are not interested in the value of specific pixels, but in the 

maximum value of a group of pixels. Finally, a fully connected layer F is included to 

calculate the probability of the classification task.   

 

Figure 3.15. A typical CNN architecture considering bigrams and including max pooling and 

fully connected layers12. 

 

                                                 

12 http://colah.github.io/posts/2014-07-Conv-Nets-Modular 
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Convolutional neural networks were implemented on Keras Python. The prepro-

cessing of the input data is implemented the same way as for LSTM models by tokenizing, 

padding and converting to word vectors. 

 

3.6 Model explanations 

In order to explain the decisions of the machine learning models, we utilized LIME and 

EDC explanation algorithms. 

 

3.6.1 LIME 

LIME algorithm is provided in a Python library that is available on GitHub13. This library 

includes a class called LimeTextExplainer that extracts model explanations for text clas-

sification tasks. First, the text is tokenized and neighborhood data is constructed by ran-

domly deleting features from the instance. Then, the algorithm learns locally weighted 

linear models on this data to explain each of the classes in an interpretable way. The 

explanations are presented as a feature importance output, where the top-k important 

words for the classification are extracted with their contribution degree to classification. 

LimeTextExplainer uses by default exponential kernel that takes as input the Euclidean 

distances and kernel width. It includes a function that explains the classifier’s decision 

(explain_instance). This function requires as input the document that will be explained, a 

probability function, the number of words that will be selected as explanations and the 

number of perturbation samples that will be created which form the neighborhood of the 

text instance. The probability function returns the black box model’s prediction probabil-

ities of a set of documents. 

 

3.6.2 EDC 

As previously mentioned, in EDC an explanation is defined as the minimal set of words 

that if is removed from the document the black box model predicts a different class. EDC 

was implemented on Python using the pseudocode provided in [41]. More specifically, 

                                                 

13 https://github.com/marcotcr/lime 
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we created a function that receives as input parameters: the instance to be explained, a 

“pipeline” function that receives a set of documents and returns the prediction probability 

of the text classifier for each sample. The source code is written in Python and is demon-

strated in Appendix. 
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4 Experimental results 

In this chapter we describe the experiments conducted for our proposed disinformation 

detection methods. We compare different feature extraction techniques (TF-IDF, graph 

of words, Doc2vec, Word2Vec, google universal sentence embeddings), that transform 

each document in vector representation, in combination with different machine learning 

models (Logistic regression, neural networks, LSTM and CNN) as described in chapter 

3. We also extracted model explanations for the decisions of the machine learning models 

by utilizing LIME and EDC frameworks. However, LIME uses randomized approaches 

to create the neighborhood dataset from the text instance, which makes it difficult to ro-

bustly compare our models. To overcome this problem, we used a specific random seed 

which is a number that initializes a pseudorandom number generator and subsequently 

the constructed dataset will be the same for each experiment. Furthermore, we selected 

the size of the neighborhood data to be 20000 and that LIME returns the top 30 words 

that contribute to the decision of the black box model. 

We used the same data preprocessing approach for our experiments. First, we ran-

domly split the dataset into training set (80% 5068 instances) and test set (20% 1267 

instances) and merge the title with the main body of each article. Then, we perform text 

preprocessing as described in section 3.2. The explanations algorithms were tested on a 

real news article and on a non-real news article. After exploring the dataset, it is observed 

that fake news pieces have less document length that real news. Specifically, fake news 

articles have on average 389 words per article while real news have 487 words.  

This chapter demonstrates the conducted experiments and compares the accuracy and 

prediction explanations of the black box models for fake news detection. 

4.1 Fake news classification using TF-IDF 

As previously mentioned, TF-IDF was implemented by using the TfidfVectorizer object 

provided by sklearn. We considered the top 100000 words with the highest term fre-

quency in the training corpus to reduce the dimensionality of our problem. We conducted 

experiments using different combinations of n-grams as follows: 
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(a) unigrams 

(b) unigrams and bigrams  

(c) unigrams, bigrams and trigrams 

Moreover, we used Truncated Singular Value Decomposition (TSVD) to further re-

duce the dimensionality of our problem and compared different dimensionalities. 

In addition to that, we examined neural networks (NN) with various layer architec-

tures with one or two hidden layers implemented on Keras library with the combination 

of all n-grams as features. TfidfVectorizer returns a sparse array of the TF-IDF values of 

each term in a document, which reduces the memory usage. Nevertheless, Keras requires 

dense array as input which causes inefficiency. To avoid this problem, Keras provides a 

function (fit_generator) that fits the machine learning model to the training data by using 

an iterator that yields batches of data. We also use a technique called early stopping, 

which is a regularization method in neural networks that monitors the results of the clas-

sifier in a validation set for each training epoch and interrupts the training process when 

the accuracy in the training data increases but not in the validation data. In other words, 

this method learns in which epoch to stop training in order to make the model more gen-

eralizable. The results of these experiments are presented in Tables 4.1, 4.2, which show 

the accuracy of Logistic Regression and neural network classifiers respectively. Table 4.1 

presents the results of various TF-IDF configurations with Logistic regression classifier. 

Table 4.2 demonstrates the results of TF-IDF with n-grams (unigrams + bigrams + tri-

grams), using various neural network architectures with or without TSVD.  

 

Table 4.1. Accuracy results of TF-IDF with n-grams and Logistic Regression classifier 

TF-IDF with n-grams Accuracy 

Unigrams 0.9361 

Unigrams and bigrams 0.94 

Unigrams, bigrams and trigrams 0.94 

All words in the corpus 0.9353 

TSVD with 256 dimensions 0.9227 

TSVD with 512 dimensions 0.9361 

TSVD 1024 dimensions 0.9321 
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Table 4.2. Accuracy results of TF-IDF with n-grams (unigrams + bigrams + trigrams) and neural 

network classifier 

TF-IDF with n-grams Accuracy 

one hidden layer with 128 units 0.9448 

one hidden layer with 256 units 0.9479 

one hidden layer with 512 units 0.9463 

two hidden layers 32x32 0.9471 

two hidden layers 64x32 0.9495 

two hidden layers 128x32 0.9519 

TSVD and one hidden layer with 128 units 0.9353 

TSVD and one hidden layer with 256 units 0.9392 

TSVD and one hidden layer with 512 units 0.9376 

TSVD and two hidden layers 32x32 0.9345 

TSVD and two hidden layers 64x32 0.94 

TSVD and two hidden layers 128x32 0.9432 

 

The results indicate that the combination of unigrams, bigrams and trigrams achieved 

the highest accuracy (0.94) on a Logistic Regression Classifier, while TSVD does not 

improve the accuracy of the model (0.9361). Furthermore, it is observed that considering 

all n-grams in the corpus reduces the accuracy of the results (0.9353) which is caused by 

high dimensionality. Neural networks were implemented on n-gram range (1,3). Extend-

ing Logistic regression to neural networks boosts the result, where a neural network with 

two hidden layers (128 and 32 units respectively) outperformed the rest of the methods 

with accuracy 0.9519.  

Subsequently, we implemented the skipgrams approach on different combinations of 

number of skips and n-grams. NLTK provides a function which converts a document into 

skipgram features. We created a wrapper function as analyzer parameter in TfidfVector-

izer, which uses NLTK to create skipgrams for combination of unigrams, bigrams and 

trigrams. The results of our experiments are demonstrated in Tables 4.3, 4.4. Table 4.3 

shows the prediction accuracy of different combinations of skip steps and n-grams using 

the Logistic Regression classifier. Table 4.4 demonstrates the results obtained using TF-

IDF with 2-skip unigrams, bigrams and trigrams fitted in various neural network archi-

tectures. 
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Table 4.3. Accuracy results of TF-IDF with n-grams and Logistic Regression 

TF-IDF with skipgrams Accuracy 

2-skip unigrams and bigrams 0.94 

2-skip unigrams, bigrams and trigrams 0.94 

3-skip unigrams and bigrams 0.9432 

3-skip unigrams, bigrams and trigrams 0.944 

4-skip unigrams and bigrams 0.9376 

5-skip unigrams and bigrams 0.9384 

6-skip unigrams and bigrams 0.9376 

TSVD 2-skip unigrams and bigrams 0.9345 

TSVD 2-skip unigrams and bigrams 0.9385 

TSVD 3-skip unigrams and bigrams 0.9361 

TSVD 3-skip unigrams and bigrams 0.9353 

 

 

Table 4.4. Accuracy results of TF-IDF with 2-skip unigrams, bigrams and trigrams and neural 

network classifier 

TF-IDF with skipgrams Accuracy 

one hidden layer with 128 units 0.9448 

one hidden layer with 256 units 0.9455 

one hidden layer with 512 units 0.9471 

two hidden layers 32x32 0.9495 

two hidden layers 64x32 0.9432 

two hidden layers 128x32 0.9455 

 

Next, we show the results of two explanations algorithms, namely LIME and EDC, over 

the best results acquired from the previous step. 

4.1.1 Explanations using LIME 

Figures 4.1, 4.2 present the LIME explanations of best TF-IDF models with n-grams us-

ing Logistic regression and neural networks respectively. Figure 4.3 depicts the explana-

tions of TF-IDF with skipgrams using Logistic regression. Words with positive weight 

(green) indicate contribution to real news classification and with negative weight contri-

bution to fake news. It can be seen that real news contains words that refer to third person 

(said, told, say) and also mostly formal words. On the contrary, fake news include more 
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contradicting words like “lie”, “illegal”, “lies” and “breaking” as well as more informal 

words, such as “knew” and “know”. Furthermore, it is indicated that even though neural 

network classifier achieves highest accuracy, explanations of Logistic regression are 

clearer and less biased. 

 

 

 

Figure 4.1. LIME explanations for TF-IDF with unigrams, bigrams and trigrams using Logistic 

Regression classifier. Each word has a weight denoting its contribution to the classification. Neg-

ative values (red bars) indicate contribution to fake news, while positive values (green bars) to 

real news. (a). Real news article, (b) Non-real news article 

 

 

(a) 

(b) 
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Figure 4.2. LIME explanations for TF-IDF with unigrams, bigrams and trigrams using neural 

network classifier with 2 hidden layers (128 and 32 units respectively). Each word has a weight 

denoting its contribution to the classification. Negative values (red bars) indicate contribution to 

fake news, while positive values (green bars) to real news. (a) Real news article, (b) Non-real 

news article 

 

(a) 

(b) 
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Figure 4.3. LIME explanations for TF-IDF with 3-skip unigrams, bigrams and trigrams using 

Logistic Regression. Each word has a weight denoting its contribution to the classification. Neg-

ative values (red bars) indicate contribution to fake news, while positive values (green bars) to 

real news. (a) Real news article, (b) Non-real news article 

4.1.2 Explanations using EDC 

EDC produces explanations as sets of words that, if removed from the documents, would 

change the classification results. Those sets are considered as explanations for each class 

(real vs fake). Table 4.5, 4.6 show the word sets produced by EDC for three different 

experimental setups, namely TF-IDF with n-grams, TF-IDF TSV with n-grams and TF-

IDF with skipgrams using Logistic regression and neural networks, respectively. It is ob-

served that the model explanations that EDC returns, are similar to LIME explanations 

(a) 

(b) 
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with main difference that EDC denotes only the words related to the predicted class. 

Comparing the explanation results in these tables it appears that Logistic Regression pre-

sents more transparent explanations illustrating reliable or unreliable news characteristics. 

Table 4.5. Model explanations of different TF-IDF implementations with Logistic Regression 

using EDC 

Model EDC REAL EDC FAKE 

TF-IDF  

n-grams 

said, convention, monday, cnn, repub-

licans, speech 

hillary, podesta, knew, tanden, email, il-

legal, lie, us, emails, know, october, ex-

posing, ago, cover, leaked, neera, jack-

son, eight, fake, clean, scandal 

TF-IDF 

TSVD    

n-grams 

convention, said, delegates, monday, 

told, cnn, kasich, want 

hillary, podesta, october, jackson, ap, 

greenfield, know, take, breaking, rituals, 

project, associate, cheryl, email, spin, 

rogue, exposing, warned, clean, govern-

ment 

TF-IDF 

skipgrams 

said, convention, monday, cnn, 

speech, trump, told, republican, man-

afort, campaign, say 

hillary, podesta, knew, tanden, emails, 

greenfield, mills, lie, email, illegal, free-

dom, us, eight, neera, know, breaking, 

october, cheryl, state, clean, gov 

 

Table 4.6. Model explanations of different TF-IDF implementations with two hidden layer neural 

network (32x32) using EDC 

Model EDC REAL EDC FAKE 

TF-IDF  

n-grams 

said, convention, told, monday, paul, steve, 

speech, spokesman, ohio, afternoon, say, will-

ingness, kasich, delegates 

hillary, podesta, knew, tanden, 

emails, greenfield, mills, lie, 

email, illegal, freedom, us, eight, 

neera, know, breaking, october, 

cheryl, state, clean, gov 

TF-IDF 

skipgrams 

convention, said, monday, campaign, cnn, 

trump, ohio, say, benghazi, erupted, made, 

success, steve, back, comments, focused, af-

ternoon, eight, speech, manafort 

hillary, podesta, tanden, knew, 

us, greenfield, email, cheryl, lie, 

know, headed, progress, co, ille-

gal, rogue, final, time, anything, 

charge, partial 
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4.2 Fake news classification using graph of words 

Next, we utilized the graph of words approach and calculated the TW-IDF, TW-ICW and  

TW-ICW-LW values for each term in a document. We compared various parameters as 

follows: 

(a) window size = 2 

(b) window size = 3 

(c) window size = 4 

(d) TSVD 

(e) different neural network architectures 

First, we created graphs corresponding to the penalization factors (IDF, ICW, LW) and 

defined a wrapper function that constructs the graph of words for each new document 

with purpose to compute the TW-IDF, TW-ICW and TW-ICW-LW values. The experi-

mental results are presented in Tables 4.7, 4.8 using Logistic Regression and neural net-

works respectively. 

 

Table 4.7. TW-IDF with different window sizes and TSVD using Logistic Regression 

TW-IDF  Accuracy 

window size = 2 0.9282 

window size = 3 0.9258 

window size = 4 0.9282 

window size = 2 and TSVD 0.9227 

window size = 3 and TSVD 0.9155 

window size = 4 and TSVD 0.9132 

 

 

The experiments indicate that using a sliding window of size 2 performs better (0.9282 

with Logistic Regression) and the highest accuracy is obtained by a two-hidden-layer 

neural network with 64 and 32 neurons respectively (0.9353 accuracy). The explanation 

results using LIME and EDC over the best models, are presented in the following sec-

tions. 
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Table 4.8. TW-IDF with window size = 2 and TSVD using various neural network architectures 

TW-IDF  Accuracy 

one hidden layer with 128 units 0.9337 

one hidden layer with 256 units 0.9282 

one hidden layer with 512 units 0.9305 

two hidden layers 32x32 0.9324 

two hidden layers 64x32 0.9353 

two hidden layers 128x32 0.929 

TSVD and one hidden layer with 128 

units 

0.9242 

TSVD and one hidden layer with 256 

units 

0.9266 

TSVD and one hidden layer with 512 

units 

0.9258 

TSVD and two hidden layers 32x32 0.9274 

TSVD and two hidden layers 64x32 0.9282 

TSVD and two hidden layers 128x32 0.9305 

 

 

 

4.2.1 Explanations using LIME 

Figure 4.4 denotes the explanations of TW-IDF model over the best parameters using 

Logistic Regression and neural network architecture. It is observed that graph-of-words 

models perform similar results to bag-of-word approaches (TF-IDF) when using degree 

centrality as term weighting metric. 
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Figure 4.4. LIME explanations for TW-IDF model with window size = 2 using Logistic Regres-

sion. Each word has a weight denoting its contribution to the classification. Negative values (red 

bars) indicate contribution to fake news, while positive values (green bars) to real news. (a) Real 

news article, (b) Non-real news article. 

 

4.2.2 Explanations using EDC 

Table 4.9 shows the explanations for the specific predictions that EDC returns for each 

model over the best parameters, using Logistic Regression and neural network architec-

ture. The explanation results suggest that using TW-IDF with Logistic Regression is less 

biased than the rest of the graph-of-word models, containing explanations for fake news: 

(a) 

(b) 
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knew, illegal, lie, know, exposing, ago, leaked, fake, scandal which are more informal 

and with greater polarity. 

 

Table 4.9. Model explanations of TW-IDF, TW-ICW and TW-ICW-LW implementations with 

Logistic Regression using EDC 

Model EDC REAL EDC FAKE 

TW-IDF  
said, convention, monday, cnn, re-

publicans, speech 

hillary, podesta, knew, tanden, email, il-

legal, lie, us, emails, know, october, ex-

posing, ago, cover, leaked, neera, jack-

son, eight, fake, clean, scandal 

TW-ICW 
convention, said, delegates, mon-

day, told, cnn, kasich, want 

hillary, podesta, october, jackson, ap, 

greenfield, know, take, breaking, rituals, 

project, associate, cheryl, email, spin, 

rogue, exposing, warned, clean, govern-

ment 

TW-ICW-LW 

said, convention, monday, cnn, 

speech, trump, told, republican, 

manafort, campaign, say 

hillary, podesta, knew, tanden, emails, 

greenfield, mills, lie, email, illegal, free-

dom, us, eight, neera, know, breaking, 

october, cheryl, state, clean, gov 

 

 

4.3 Fake news classification using Word2Vec 

We trained word embedding on the training corpus using Continuous Bag of Words 

(CBOW) and Skipgram modelling. On top of that, we utilized the pretrained word em-

beddings (with 300 dimensions) for google news dataset. The experiments were applied 

on Gensim library14, which is a framework for training collection of documents to extract 

word embeddings. The defined parameters for the process are described as follows: 

(a) learning rate = 0.065 

(b) embedding size = 100 

(c) sliding window size = 2 

 

                                                 

14 https://radimrehurek.com/gensim 
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Word2Vec uses a technique called negative sampling (randomized approach) to opti-

mize the training performance. In order to generalize the results, we train the corpus mul-

tiple times and, in each iteration, we shuffle the order of documents and slightly decrease 

the learning rate parameter, which facilitates faster convergence. 

We experimented three different ways for document classification: 

(a) Average word vector 

(b) Long Short-Term Memory (LSTM) networks 

(c) Convolutional Neural Networks (CNN) 

 

We computed the average vector of word embeddings (CBOW, Skipgram and pretrained) 

representing the document embedding. This vector was fed as input in a Logistic Regres-

sion or a neural network classifier. 

LSTM and CNN take as input each word vector in the document, which leads to high 

dimensionality. To overcome with this problem, we consider the 20,000 most frequent 

words in the corpus and keep up to 1,000 words for each document. If a document has 

less words, it is filled up with zeros (padding). We used the LSTM model architecture 

according to Figure 3.14 with 64 number of units and tanh function as activation, which 

is subsequently fed to a dense layer that calculates the classification probability. CNN 

was constructed according to Figure 3.15 with the following parameters: 

(a) filters = 100 (number of output units of CNN) 

(b) kernel size = 2 (CNN considers bigrams) 

(c) activation = ReLU 

 

However, when initially training the CNN model, we observed that it was overfitting to 

the training set. We dealt with this problem by adding a dropout layer after max pooling, 

which is a regularization technique, that randomly ignores specific set of neurons during 

the training phase avoiding the units co-adapting. Co-adapting happens when neurons 

adjust, aiming at reducing the errors of the other units. 

The experimental results are presented in Tables 4.10-4.12. Tables 4.10, 4.11 illus-

trate the accuracy of different embedding models by computing the average word vector 

and using Logistic Regression and neural networks respectively. Table 4.12 presents the 

results of different embedding models combined with LSTM and CNN networks. 
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Table 4.10. Accuracy of different Word2Vec models by computing the average vector and using 

Logistic Regression classifier 

Word2Vec model Accuracy 

CBOW 0.884 

Skipgram 0.8934 

CBOW + Skipgram 0.8958 

Pretrained (Google News) 0.8777 

 

Table 4.11. Accuracy of Word2Vec CBOW, Skipgram, CBOW-Skipgram and pretrained embed-

dings (Google News) by computing the average vector and using various neural network classi-

fiers 

 Accuracy 

Neural Network Architecture CBOW Skipgram 
CBOW-

Skipgram 
Pretrained 

one hidden layer with 128 units 0.9155 0.9219 0.9219 0.8895 

one hidden layer with 256 units 0.9092 0.929 0.919 0.8895 

one hidden layer with 512 units 0.9203 0.9226 0.9187 0.9037 

two hidden layers 32x32 0.91 0.9148 0.9163 0.8958 

two hidden layers 64x32 0.9092 0.929 0.9163 0.8966 

two hidden layers 128x32 0.914 0.9313 0.9242 0.9092 

 

Table 4.12. Accuracy of Word2Vec CBOW, Skipgram, CBOW-Skipgram and pretrained embed-

dings (Google News) by computing the average vector and using various neural network classi-

fiers 

 Accuracy 

Neural Network Architecture CBOW Skipgram Pretrained 

LSTM 0.9116 0.9021 0.9006 

CNN 0.9425 0.9376 0.9392 

 

It is indicated that neural network models outperform the Logistic Regression classifier, 

when using the average word vectors. Furthermore, pretrained models seem to have less 

accuracy than the models trained in the corpus, particularly the Skipgram models. 
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Nevertheless, pretrained models are considered a more robust language model as they are 

trained in a larger collection of documents. Finally, CBOW with CNN achieved greatest 

accuracy (0.9425). Next, we demonstrate the model explanations using LIME and EDC. 

4.3.1 Explanations using LIME 

Figure 4.5 denotes the prediction explanations for Skipgram average vectors with a two 

hidden-layer neural network (128x32), while Figure 4.6 depicts the explanations of a 

CNN model over the pretrained word embeddings. 

 

 

 

Figure 4.5. LIME explanations for a text classification model with average word vectors as doc-

ument embeddings and two-hidden-layer neural network. Negative values (red bars) indicate con-

tribution to fake news, while positive values (green bars) to real news. (a) Real news article, (b) 

Non-real news article. 

(a) 

(b) 
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Figure 4.6. LIME explanations for a text classification model with CNN deep neural network 

model over pretrained word vectors and an additional dense layer. Negative values (red bars) 

indicate contribution to fake news, while positive values (green bars) to real news. (a) Real news 

article, (b) Non-real news article. 

 

It is observed that these text classification models are biased at certain names or months 

such as Hillary Clinton or October (associated to the 2016 US election campaign). Fur-

thermore, the explanations are less interpretable than the previous examples. 

4.3.2 Explanations using EDC 

Table 4.13 shows the explanation results for real and fake news articles of the best per-

formed text classification models with Word2Vec. Similarly to LIME, mostly words like 

(a) 

(b) 
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hillary, obama or october appear to have high contribution to the text classifiers, making 

difficult for humans to understand and have intuition about the predictions. 

Table 4.13. Model explanations of text classification models with pretrained average word vec-

tors and CNN over a neural network using EDC 

Model EDC REAL EDC FAKE 

Average 

vector 

values, convention, speech, said, af-

ternoon, hard, compound, spokes-

man, comments, recalled, empha-

sis, chaotic, governor, told, long, 

statement, treat, dignity, better, 

agree 

hillary, board, wondered, television, 

obama, doubt, old, dodges, contempt, 

outright, progress, shillman, times, of-

ten, away, tell, emails, administration, 

establish, factory 

CNN 

cnn, republicans, ohio, monday, del-

egates, convention, matt, obama, 

controversy 

october, email, emails, censorship, hil-

lary, clinton, censored, ever 

 

4.4 Fake news classification using Doc2Vec 

We extracted document embeddings by training the corpus with two Doc2Vec architec-

tures: Distributed Memory (DM) and Distributed Bag of Words (DBOW). We also uti-

lized the combination of DM and DBOW for creating document embeddings. These mod-

els were implemented on Gensim library. The training process was executed similarly to 

Word2Vec. The parameters given for the models are described as follows: 

a) learning rate = 0.065 

b) embedding dimension = 100 

c) window size = 4 

The experimental results regarding the accuracy of various Doc2Vec models are pre-

sented in Table 4.14, which denote that DBOW outperforms the rest Doc2Vec models. 

 

Table 4.14. Accuracy of Doc2Vec using Logistic Regression classifier 

Doc2Vec model Accuracy 

DM 0.8698 

DBOW 0.9274 

DM + DBOW 0.9084 

 

In the next subsections we demonstrate the explanation results using LIME and EDC. 
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4.4.1 Explanations using LIME 

Figure 4.7 presents the prediction explanations for document embeddings using Doc2Vec 

with a one-hidden-layer neural network of 256 units. The results indicate that formal 

words like willingness or transparent refer mostly to real news articles, while words with 

high polarity, such as fake, rogue, illegal contribute mainly to fake news classification. 

 

 

 

Figure 4.7. LIME explanations for a text classification model with Doc2Vec and one-hidden-

layer neural network of 256 units. Negative values (red bars) indicate contribution to fake news, 

while positive values (green bars) to real news. (a) Real news article, (b) Non-real news article. 

 

(a) 

(b) 
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4.4.2 Explanations using EDC 

Table 4.15 shows the EDC model explanations for the predictions of a text classifier with 

Doc2Vec-DBOW as feature extractor and a one-hidden-layer neural network of 256 units 

as machine learning model. Contrary to LIME, in this case EDC does not provide accurate 

and comprehensible explanations. 

 

Table 4.15. EDC explanations for a text classification model with Doc2Vec and one-hidden-

layer neural network of 256 units 

Model EDC REAL EDC FAKE 

DBOW - 

government, hollow, podesta, us, 

wanted, group, censorship, quickly, ad-

mit, project, clean, windsor, supposed, 

smoothly, looked, clintonworld, barack, 

simultaneously, part, allies 

 

 

 

4.5 Fake news detection using sentence vectors 

Apart from pretrained word embeddings we also utilized pretrained paragraph embed-

dings to feed as input to the machine learning model. Specifically, we used the pretrained 

google universal encoder [60] which extracts 512-dimensional paragraph vectors and is 

provided in Tensorflow Hub. We fed these vectors as input to a one hidden-layer (with 

256 units) neural network. The accuracy of this model was 0.8745, which is less than the 

previous models. Figure 4.8 shows the explanation results using LIME over google uni-

versal sentence embeddings with a hidden layer neural network. Also the LIME explana-

tions indicate that the model is more biased to certain names than the aforementioned 

methods. 
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Figure 4.8. LIME explanations for a text classification model using pretrained universal sentence 

embeddings and one-hidden-layer neural network of 256 units. Negative values (red bars) indicate 

contribution to fake news, while positive values (green bars) to real news. (a) Real news article, 

(b) Nonreal news article. 

4.6 Bigram model explanations using LIME 

LIME provides explanations as a set of unique words with their weights denoting the 

contribution to the black box model decisions. However, producing phrases of words as 

explanations is more understandable to humans. Taking this problem into consideration, 

we utilized the Phraser and Phrases classes provided in Gensim library, which, according 

to [56], [66], is an unsupervised approach that uses mutual information for detecting 

(a) 

(b) 
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bigrams in the corpus and merging them using underscore symbol. However, as the train-

ing phase was conducted with the original form of text, we configured the predict proba-

bility function of the text classifier, that LIME receives as input, to split the words con-

taining underscore leading to the raw form of documents. Figure 4.9 illustrates the pre-

diction explanations for a text classification model of TF-IDF and Logistic Regression 

classifier. The results show that bigrams are more interpretable as they contain also full 

names or certain phrases that give more information about the classification problem. 

 

 

 

Figure 4.9. LIME explanations, containing also bigrams, for the TF-IDF model with unigrams, 

bigrams and trigrams using Logistic Regression classifier. Negative values (red bars) indicate 

contribution to fake news, while positive values (green bars) to real news. (a) Real news article, 

(b) Non-real news article. 

(a) 

(b) 





  -71- 

5 Discussion 

The  outcomes presented in the previous section support the existing findings in the liter-

ature about fake news characteristics [13]. As anticipated, our experiments prove that real 

news tends to have more formal words and words that refer in third person (e.g. said, told, 

stated). In other words, they follow the writing standards for objective journalism. On the 

contrary, fake news use vocabulary that aims at manipulating and affecting people’s opin-

ion, as well as at contradicting them against certain parties such as lie, rogue, breaking, 

threatens. Moreover, they use simple words that are easier for the people to read and have 

less document length. Therefore, producing a set of words that explains the decisions of 

the disinformation detection model can provide interpretability and information to the 

users in respect of the fake news characteristics. In that way, the reader will read the 

article more carefully without being easily affected by the article, a fact which leads to 

the hampering of disinformation dissemination on the Web.  

The experimental results indicated that even though TF-IDF is a simple feature ex-

traction model, it still achieved the highest prediction accuracy in both machine learning 

models we used (Logistic Regression and Artificial Neural Network). The overall best 

accuracy over Logistic Regression was obtained by TF-IDF with skipgrams (3-skips con-

sidering unigrams, bigrams and trigrams), while regarding the neural networks, TF-IDF 

with n-grams (unigrams, bigrams and trigrams) outperformed the rest of the models with 

accuracy 0.9519. Table 5.1 presents an overview of the best results for each method. 

Regarding the explanation algorithms, we deduce that EDC and LIME provide com-

parable results. However, EDC is slower than LIME, as previously demonstrated in the 

literature [46]. EDC’s performance declines with high dimensional documents, as it re-

quires the classifier to run multiple times, while LIME has a fixed number of perturbated 

samples given by the user. In addition to that, LIME provides more insights about the 

classifier's behavior, as it also returns words related to the opposite classification. The 

most comprehensible explanations were produced by TF-IDF with Logistic Regression, 

indicating that simple models can be less biased than complex models, which tend to 

overfit more easily. Explanations of LSTM and CNN did not provide accurate results, 
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which we believe happens because these models are trained on sequential data and are 

sensitive to perturbations of text, as each word is highly depended on its contextual infor-

mation. 

 

Table 5.1. Overview of the different models’ accuracy 

 Accuracy 

Model Logistic regression Neural network 

TF-IDF with n-grams 0.94 0.9519 

TF-IDF with skipgrams 0.944 0.9495 

TW-IDF 0.9282 0.9353 

TW-ICW 0.9361 0.9384 

TW-ICW-LW 0.9376 0.9369 

Word2Vec average vector 0.8958 0.9313 

Word2Vec LSTM - 0.9116 

Word2Vec CNN - 0.9425 

Doc2Vec 0.9274 0.9376 

 

  

The results were promising, however, we are aware that our research may have some 

limitations. First, in our experiments we used a relatively small dataset, making it difficult 

for Deep Learning models (CNN and LSTM) to overcome the state-of-the-art machine 

learning models. Second, the results indicate that the algorithms are biased at certain 

names and dates. Third, we removed stop-words, punctuation marks and numbers while 

we did not split the document in sentences and paragraphs. Finally, we only considered 

textual information without including metadata, network data or multimedia data like 

video and images. 

In order to overcome the aforementioned limitations, the following measures are sug-

gested: First, the results indicate that training the corpus in Word2Vec framework to ex-

tract word vectors, outperformed the pretrained models, denoting the importance of cre-

ating a bigger dataset that can capture most of the fake news characteristics. Second, we 

propose the removal of names using named entity recognition techniques leading to a fair 

algorithm. We believe that disinformation detection using only text should detect the in-

dent of the writer to harm. Third, we address the need of a consistent dataset that contains 

apart from textual information user profiles, metadata and video or image content. In that 
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way, network analysis techniques can be applied to obtain more insights regarding an 

imminent spread of a fake news content.  

In addition, there are further challenges about disinformation detection that shall be 

considered. The existing model explanation algorithms for text classification provide a 

set of words as explanations, which is not entirely comprehensible to humans. In this 

thesis, we dealt with this problem by using an unsupervised approach to detect bigrams 

in the document that have a unique meaning, something that appeared to be more under-

standable. However, this can be further improved by providing certain sentences as ex-

planations or using natural language generation techniques to create a better description 

of the explanations. Furthermore, we believe, that is also important to understand the 

reasons for an imminent dissemination of disinformation. For example, a fake news arti-

cle referring to a politician or a celebrity in general is more probable to be spread across 

the Web. Therefore, we propose, as future direction, the development of a more sophisti-

cated model that contains components for detecting deceptiveness intent in a text, as well 

as components for discovering whether a news article will become viral. 
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6 Conclusions 

In this thesis we tackled the problem of disinformation detection by implementing various 

text classification models using supervised approaches and enhancing transparency of our 

findings by producing classifier’s prediction explanations using LIME and EDC algo-

rithms. The algorithms were tested on a balanced dataset containing news articles with 

reliable or unreliable annotations.  The evidence of this study suggests that fake news 

dissemination can be hampered by automatically detecting such content and providing 

model explanations. This way a reader can be informed that an article is considered un-

reliable with some probability and on top of that, the model provides explanations of the 

predictions as evidence supporting its claim. Moreover, model explanations can show 

inconsistencies in the disinformation detection problem to further improve model effi-

ciency. The results indicated that TF-IDF with Logistic Regression produces the most 

reasonable explanations and achieves high accuracy of 94%. We also concluded that 

LIME outperformed EDC algorithm in terms of interpretability and performance, proving 

that it remains one of the most reliable model-agnostic explanation methods for text clas-

sification. 

Finally, a few potential limitations should be considered. First, in our experiments we 

used a dataset of 6335 news articles. Since the dataset is relatively small, it shall be diffi-

cult to utilize Deep Learning methods, which can overperform the state-of-the-art ma-

chine learning models when they are trained on big amount of data. Second, the disinfor-

mation detection models were biased against certain names and dates. 

We believe that utilizing named entity recognitions techniques can improve the algo-

rithm’s fairness aiming only at predicting the intent to harm or spread false information, 

which is the definition of disinformation. Another future direction is to create a new rich 

fake news detection dataset of bigger size that will also contain image and video content 

(if needed), author profile information, users’ comments and other metadata, which can 

assist researchers to train also Deep Learning models and validly compare different fake 

news detection methods. 
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Appendix 

Explaining Document Classifications (EDC) algorithm in Python: 

# Import the necessary Python libraries 

import numpy as np 

import pandas as pd 

import itertools 

from tqdm import tqdm 

 

def delete_from_text(words, text): 

    alist = [word for word in text.split() if word not in words] 

    return ' '.join(alist) 

 

def combine_lists(base_list, expand_list): 

    out = [] 

    comb = list(itertools.product([base_list], expand_list)) 

    for item in comb: 

        out.append(item[0] + [item[1]]) 

    return out 

 

def prune_list(list2d, R): 

    for i in range(len(list2d)): 

        for j in range(len(R)): 

            list2d[i] = list(set(list2d[i]) - set(R[j])) 

    return [el for el in list2d if el] 

 

 

def explain_instance(text, predict_proba, max_epochs=30): 

 

    # text: instance to explain 

    # predict_proba: predict probability function 

    # epochs: maximum number of iterations 

 

    # Correspoding probability score 

    # predict_proba should return 1 value 

    p = predict_proba([text])[0][1] 

    # Class predicted by trained classifier 

    c = 1 if p > 0.5 else 0 

 

    # Explanation list 

    R = [] 

    # Probabilities explanation list 

    P = [] 

    combinations_to_expand_on = [] 

    P_combinations_to_expand_on = [] 

 

    # List of distinct words in document 

    Wd = list(set(text.split())) 

 

    max_pnew_diff = 0 

    counter = -1 
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    max_index = 0 

    d = 0 

    for i, word in enumerate(Wd): 

        new_text = delete_from_text([word], text) 

        pnew = predict_proba([new_text])[0][1] 

        cnew = 1 if pnew > 0.5 else 0 

        # print(word, pnew, cnew) 

 

        if cnew != c: 

            R.append([word]) 

            P.append((p, pnew)) 

            del Wd[i-d] 

            c += 1 

 

        else: 

            combinations_to_expand_on.append([word]) 

            P_combinations_to_expand_on.append(pnew) 

            counter += 1 

            if abs(p - pnew) > max_pnew_diff: 

                max_pnew_diff = abs(p - pnew) 

                max_index = counter 

 

 

 

    combo = [] 

    for epoch in tqdm(range(max_epochs)): 

 

# max_index = np.argmax(abs(p - np.array(P_combinations_to_ex- 

# pand_on))) 

        combo = combinations_to_expand_on[max_index] 

        combo_set = combine_lists(combo, Wd) 

        combo_set = prune_list(combo_set, R) 

 

        for comb in combo_set: 

            new_text = delete_from_text(comb, text) 

            pnew = predict_proba([new_text])[0][1] 

            cnew = 1 if pnew > 0.5 else 0 

 

            if cnew != c: 

                R.append(comb) 

                P.append((p, pnew)) 

 

 

            else: 

                combinations_to_expand_on.append(comb) 

                P_combinations_to_expand_on.append(pnew) 

                counter += 1 

                if abs(p - pnew) > max_pnew_diff: 

                    max_pnew_diff = abs(p - pnew) 

                    max_index = counter 

    return np.array(R), np.array(P) 

 

 

 


