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Abstract 

The last decades the explosion in diverse domains of IT technology so in hardware as in 

software set new horizons for further research in many fields or defined from the ground 

whole new scientific disciplines. Bioinformatics and biomedicine definitely took 

advantage of tech explosion. As a consequence, sleep medicine is one of those new 

research areas that arose. This study tries to reproduce, extend and optimize state of the 

art technics for automatic sleep microstructure analysis. Especially focuses on the Cycling 

Alternating Pattern (CAP) and the detection of a CAP’s prominent feature, the A-phase. 

An algorithm is reproduced according to state of the art techniques and experimental 

approaches are tested to classify records between Non A-phase and A-phase events 

achieving 91% accuracy, 75% sensitivity and 91% specificity. As the results are 

competitive compared to other studies employing the same dataset (Physionet CAP Sleep 

database), it is believed that the applied techniques could contribute to sleep research.  
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1 Introduction 

1.1 History 

The perpetual endeavor of humanity to explain and even take under control the unknown 

functionalities of sleep began even from its primary years. Sleep constituted a vital part 

of life surrounded by mysteries and myths within an effort to explain something such 

important and undefined at the same time. Consequently, many ancient population 

worship sleep as a god and they used to personify it. We come across such instances in 

ancient Greece and Roman Empire under the names of Hypnos and Somnus.But, as it is 

aforementioned, it was not until the last century that sleep research rocketed by the rapidly 

upgrowth of technology. Advanced medical tools and computing made it possible for 

scientists to accomplish the interpretation of the electrophysiological activity of the brain 

during sleep and elaborate researches on the domain by developing technics and standards 

to better understand and study sleep. In the mid of the 4th decade of 20th century the first 

scientific sleep classification took place by Loomis et(Williams, Karacan, & Hursch, 

1974),(Baxter, Hastings, Law, & Glass, 2008)) and later in 1953 after systematic 

investigation of sleep Aserinsky and Kleitman defined the classification of sleep into two 

main phases. But it was not before1968 where Rechtschaffen and Kales (fA 

Rechtscahffen, A. Kales., 1968) published the most prominent landmark of scientific 

research on the domain in the century and set the foundations for describing the process 

of human sleep by providing a manual of sleep classification. This manual introduced the 

rules for the scoring of sleep in normal human adults and it was based on Kleitman 

classification. It identifies five different stages: one REM stage and four non-REM stages. 

These standards were widely accepted and defined the stages of sleep as they are known 

until present. Additional, it was the only paper that was widely accepted from the 

scientific community of the domain for almost half a century until the research around 

sleep evolve and confront the need for further more specialized and objective standards 

(Novelli, Ferri, & Bruni, 2010). The latest advances on sleep standards and terminology 

introduced by the year 2007 from American Academy for Sleep Medicine (AASM). 

Those updates included changes in terminology, proposed instruction for EEG 
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derivations, definition of a new sleep stage the “movement time” and the merging of stage 

3 and 4 into one stage named N3 (Novelli et al., 2010). 

1.2 Importance of Sleep 

 

Although the importance of sleep in human health and its effects on everyday life are 

evident , there are several studies that validate or challenge it (Cirelli & Tononi, 2008) 

and attempt to investigate the importance of sleep (Cirelli & Tononi, 2008) as well as 

primary causes and relations between sleep and its effects on human body. Some of them 

are addressed, in highlighting the importance of sleep and providing with guidelines as 

an attempt of improving quality of life (Mukherjee et al., 2015), while others are 

investigating the relation between amount and quality of sleep with certain diseases such 

as Stroke, Cardiovascular diseases, Obesity, Coronary heart disease, Dyslipedemia, 

Depression, Diabetes, Hypertension or general with mortality (Jike, Itani, Watanabe, 

Buysse, & Kaneita, 2018) finding indications for linkage between long sleep duration and 

adverse health outcomes. 

Due to huge impact of sleep in humans, there were always efforts to decode functional 

mechanisms of sleep but it is only the last century that researchers possessed the 

appropriate tools by technological innovations to penetrate deeper into sleep functions. 

After that, they achieved to set standards for research (A Rechtscahffen, A. Kales., 1968) 

and discover relations among sleep and other human aspects such as cognition (Ferri & 

Bruni, 2013). 

 

 

Figure 1: Number of sleep research publications per year  

Source: (Ferri & Bruni, 2013) 
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Although, sleep has been systematically investigated for around 70-75 years, there is an 

burst on the evolvements on the field the last 10-15 years. The reason is the exponential 

technological developments so in hardware by the development of faster machines with 

more and more computational power and advances in technological medical equipment 

as in software with state of the art Artificial Intelligence methodologies so in advanced 

management and interface software tools. 

 

2  Sleep Analysis 

2.1 Polysomnography 

In general, the study of a person’s sleep is called polysomnography (PSG). It consist a 

diagnostic assessment from sleep experts (usually neurologist) on someone’s sleep. 

Experts in order to evaluate a sleep use multiple modals and tools and it take place into 

specially designed laboratories which carry the necessary equipment. Sleep experts study 

the outcomes from polysomnography to detect the existence of sleep disorders which 

could indicate diverse physical or psychological disorders (Bullard, Griss, Greene, & 

Gekker, 2013). Some of the modes that Polysomnography combines are 

electroencephalogram (EEG), electroculogram (EOG – detection of eye movements), 

electromyogram to detect the movements of the muscles of the face or legs, (EMG – to 

detect muscle activity), and electrocardiogram (ECG or EKG – detection of heart’s rate 

and rhythm). Additional, measures of respiratory function are employed. The most 

common respiratory measurements are typically pulse oximetry and strain gauges which 

measure the chest’s expansion during breathing. 
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Table 1: Bioelectrical signals and its characteristic  

Source: (Rahman & Nasor, 2015) 

 

 

 

Figure 2: The EOG shows the horizontal movements of the eyes  

Source: (Rahman & Nasor, 2015) 
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Figure 3: The ECG capture the limb movement 

Source: (Rahman & Nasor, 2015) 

 

 

 

 

Figure 4: The EMG captures the activity of the muscles 

Souce: (Rahman & Nasor, 2015) 
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Figure 5: The EEG csptures the electrical activity of the brain 

Souce: (Rahman & Nasor, 2015) 

 

2.2 Links between PSG and sleep disorders  

 

There are several clinical conditions that are related with abnormal indication in PSG. 

Among them are insomnia, medication (hypnotic drugs e.t.c.), paroxysm epilepsy, 

comma, Creutzfeldt-Jakob disease, Obstructive sleep apnea (OSA) e.t.c. For this reason 

there is a growing number of respective studies the last years trying to link specific 

disorders with sleep microstructure variations and respective medication (Korkmaz, 

Bilecenoglu, Aksu, & Yoldas, 2018). For instance, it is found that a proportion around 

10% of men between 30 to 49 years old are suffering from respiratory sleep disorders, as 

well as 17% of men between 50 to 70 years old. As far as women are concerned, 3% of 

women between 30 to 49 years old and 9% between 50 to 70 years old (Peppard et al., 

2013). Moreover, in many cases early diagnosis may have vital importance as obstructive 

sleep apnea (OSA) and many sleep disorders are related with problems in cardiovascular 

(Bradley & Floras, 2009), neurocognitive and metabolic human systems (Hirshkowitz M, 

2008). 
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2.3 Sleep stages 

 

The characterization of sleep stages is inseparably related with the frequency spectrum of 

the electroencephalogram. The below standardization of sleep stages was introduced in 

1968 by Rechtschaffen and Kales (A Rechtscahffen, A. Kales., 1968) and is widely 

accepted and used from the scientific community. In order to acquire more insightful 

information epoching technics are used during the analysis. To clarify, time domain is 

divided into segments (epochs) of 20-30 seconds and stages are assigned to every 

segment. Stages are presented in descent order according to their frequency spectrum 

values which means that the transition from a stage to another usually accompanied with 

a decrease to the frequency spectrum.  

Stage W 

It is referred to the awake condition of the brain when eyes are open and active conscious 

thought exists. This activity is called beta and it is described by high frequency ranging 

from 15 to 60 Hz and low amplitude (∼30 μV) activity (Purves et al., 2004). Moreover, 

relaxed and clam states are characterized by alpha waves which ranging from 8-13 Hz. 

Stage 1 

Stage 1 usually take place when brain activity proceeds from wakefulness to other sleep 

stages or could occur during sleep after body movements. It is a drowsy period that 

characterized from a fall of the frequency values to 4-8 Hz and an increase of amplitude 

of cortical waves to 50-100μV which called theta waves. 

Stage 2 

This is the governing stage of sleep during a physiological noctural sleep and is 

accompanied by descend in the frequency of EEG waves and an increase in their 

amplitude as well as a further decline on muscles tone. In this stage, we can observe 

spontaneous bursts of high frequency activity which are known as sleep spindles and high 

voltage biphasic waves called K-complexes. Sleep spindles possess duration 1-2 seconds 

and frequency of 10-12 Hz and their cause is the interactions between thalamic and 
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cortical neurons while K-complexes is believed to rise as a response to any kind of 

stimuli. 

Stage 3 

As the sleep deepen, the general brain activity slows down and at stage 3 we can observe 

2-4 Hz oscillations with even higher amplitude 100-150 μV. This is considered moderate 

to deep sleep and less sleep spindles can be observed in this stage. 

Stage 4 

Stage 4 or slow-wave sleep is the deepest level of sleep and as a consequence it is hard 

point to awake someone. Here we can come across the lowest frequency spectrum of EEG 

waves during sleep, around 0.5-2 Hz and high amplitude fluctuations among 100-200 μV 

which are known as delta waves. Sleep spindles and K-complexes are no more presented 

in this stage. 

During stages 3 and 4, when delta waves activity takes more than 20% of an epoch (i.e.  

20 or 30 sec long recording), that epoch is considered as stage 3, when it is more than 

50%, as stage 4. A whole cycle is from stage 1 to stage 4 which represents the dominant 

features of night sleep and called (Non-REM) Non-Rapid Eye Movement sleep with 

duration around an hour. 

Non-Rapid Eye Movement (REM) sleep 

The level of deep sleep is followed by a quite different state the REM (Rapid Eye 

Movement) sleep. The sequence of descending frequency is reversed so this stage is 

characterized by low-voltage, high-frequency activity. This fact is similar to the EEG 

activity of an awake person. The REM sleep usually lasts around 10 minutes before it 

returns to the non-REM sleep stages. As previous, in this second round of non-REM sleep 

we can observe slow-wave sleep, but generally this cycling does not continue respectively 

all night. The sequence REM - non-REM sleep occurs around 4-5 times every night and 

its duration widen through the night. In general, the duration of REM sleep also fluctuates 

depending on age. For instance, newborn possess the record of REM sleep duration as it 

takes 8 hours, while it lasts 2 hours at a 20 years old person and only 45 minutes to people 

at the age of 70 years. 
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Figure 6: Physiological changes in a volunteer during the various sleep states in a typical 8-hour sleep 

period. The duration of REM sleep increases from 10 minutes in the first cycle to up to 50 minutes in the 

final cycle; note that slow-wave (stage IV) sleep is attained only in the first two cycles  

Source: (Purves et al., 2004). 

 

 

 

 

Figure 7 The distribution of sleep stages for healthy adult.  

Source: (Purves et al., 2004) 
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Table 2: Percentage of sleep durance on each stage.  

Source: (Purves et al., 2004) 

 

2.4 Cycling Alternating Pattern (CAP) 

 

2.4.1 Cap history 

 

Due to the presence of CAP in pathologic conditions, researchers hypothesized that it 

would be also presence (including CAP features of its arousals) in normal subjects as 

well. Based on this hypothesis the research of Terzano in 1985 marked a new era around 

sleep research. The results of this research are presented in the paper “The cyclic 

alternating pattern (CAP) as a physiological compo-nent of normal NREM sleep” (M. G. 

Terzano et al., 1985). The following years studies and workshops around the topic made 

the use of CAP more and more popular and consolidated it as a necessary tool for sleep 

research. Later during the decade of 1990-2000 several studies were addressed to the 

clinical applications of CAP, as variations in CAP rate could indicate patients with sleep 

disorders such as periodic limb movements, epileptic disorders, sleep apnea syndrome 

and clinical insomnia (Mario Giovanni Terzano & Parrino, 1993). In 2007, American 

Academy of Sleep Medicine (AASM) modified Rechtschaffen and Kales standards and 

introduces scoring rules in order to simplify the process of sleep staging. 
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2.4.2 Cap definition 

 

Studying EEG we can observe repetitive electrological events (Mario Giovanni Terzano 

et al., 2001). Such events last few seconds and are characterized by steep fluctuations in 

frequency and amplitude of the signal. In order to define and describe these events, 

experts use three parameters: the repetitive element (which defines Phase A of a CAP 

cycle) and is recognized by recurring EEG features, the intervening background (which 

defines Phase B of a CAP cycle) which is distinguished as the interim of the repetitive 

elements and the period or cycle which is defined as the total time of a phase A and a 

Phase B and it describes the recurrence rate. 

A very important periodic EEG activity called CAP (Cycling Alternating Patterns) endure 

from 2 to 60 s and is composed by the sequence of a Phases A and the following Phase 

B. This sequence composes a cycle fig.10 and can be detected through any of s1, s2, s3, 

s4 stages of sleep. Temporary events that intensely differentiate from background activity 

in frequency and amplitude and usually occur in non-REM sleep characterize A-phase 

and help to detect it. 

 

Figure 8: An example of cyclic alternating pattern (CAP) in sleep stage 2. The box outlines a CAP cycle 

(C) composed of a phase A (A) and the following phase B (B). Bioplolar EEG derivations using 

international electrode placement; top 6 channels from top to bottom: FP2–F4,F4–C4,C4–P4,P4–O2,F8–
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T4,T4–T6; bottom 7 channels from top to bottom: FP1–F3,F3–C3,C3–P3,P3–C1,F7–T3,T3–T5,F2–C2; 

OCULOG: Oculogram, EKG: Electrocardiogram. 

Source: (Mario Giovanni Terzano et al., 2001) 

 

According to (Mario Giovanni Terzano et al., 2001) the cyclic alternating pattern (CAP) 

is a periodic EEG activity of non-REM sleep. CAP is characterized by sequences of 

transient electrocortical events that are distinct from background EEG activity and recur 

at up to 1 min intervals.” Sleep pathophysiologies and disorders could be detected by the 

occurrence of CAP, but CAP sequence does not always implies the presence of a disorder. 

Into this succession of electrological events there are distinct patterns called CAP cycles 

which are divided into A and B phases. A CAP cycle always begins with phase A and 

afterwards follows B.  

 

Figure 9: Arousal preceded and followed by sleep  

Source: (Mario Giovanni Terzano et al., 2001) 

 

EEG distinguished A-phase activities 

During A-phases could be observed the following EEG events: 

 Delta bursts 

 Vertex sharp transients 

 K-complex sequences with or without spindles 

 Polyphasic bursts 

 K-alpha 

 Intermittent alpha 

 EEG arousals 
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Delta bursts 

In the frequency bandwidth a sequence of two or more waves with range from 0.5 to 4Hz 

and amplitude at least 1/3 higher than the background activity defines the appearance of 

Delta bursts. It is probable to be present deep in stage 2 and they are observed very often 

in stages 3 and 4. They are distinguished from the background activity of stages 3 and 4 

as they exhibit a trend of lower frequency fig 12. 

 

 

Figure 10: Delta burst in slow wave sleep. Top 4 channels: Bioplolar parasagittal EEG derivation of the 

right side similar to top 4 channels in fig.8 .C4–A1: C4 connects to left ear (A1); EOG: 
Electrooculogram; EMG: Electromyogram; EKG: Electrocardiogram.  

Source: (Mario Giovanni Terzano et al., 2001) 

 

Vertex sharp transients 

Vertex sharp transients are EEG potentials which lasts from 50 to 250 ms, with mutable 

amplitude (up to 250 μV) and they are more intense at central vertex areas. At least two 

repetitive potentials in a sequence with duration at least two second form vertex sharp 

transients and they are often observed at the transition between stage 1 and stage 2. 
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Figure 11: Sequence of vertex sharp transients during the transition from stage 1 to stage 2 sleep.  Top 4 

channels: Bipolar parasagittal EEG derivation on the left side similar to channels 8, 9, 10, 11 from above; 

C3–A2: C3 connected to right ear (A2).  

Source: (Mario Giovanni Terzano et al., 2001) 

 

 

 

K-Complexes sequences 

A bi-/triphasic pattern composed of a preceding rapid negative component which is 

followed by a slower positive wave, is called K-Complexes. A sequence of at least two 

successive K-Complexes form a K-Complexes sequence. It is possible that a sleep 

spindles may intervene or follow a K-Complex. A K-complexes sequence lasts at least 2 

seconds as each one K-complex lasts from 0.5 to 2 seconds. Sequences of K-complexes 

can be observed at 2, 3 and 4 sleep stages. 

 

 

Figure 12: K-complex sequences associated with spindles in stage 2 sleep. Top 5 channels: EEG 

derivation as in Fig. 10  

Source: (Mario Giovanni Terzano et al., 2001) 
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Polyphasic bursts 

Clusters of high-voltage delta waves mixed with theta, alpha or beta rhythms, called 

Polyphasic Bursts. At least two delta peaks can be found in Polyphasic bursts. They are 

observed mainly in stage 2, especially before the onset of REM sleep but they can also 

be found stages 3 and 4. 

 

Figure 13: Polyphasic burst in stage 2 sleep. Top 5 channels: EEG derivation as in fig. 10  

Source: (Mario Giovanni Terzano et al., 2001) 

 

K-alpha 

A K-complex instantly followed by an alpha burst shape a K-alpha and endures at least 2 

seconds. 

 

 

Figure 14: K-alpha complex in stage 2 sleep. Top 5 channels: EEG derivation as in fig.11.  

Source: (Mario Giovanni Terzano et al., 2001) 



25 

 

 

Intermittent alpha 

Another feature that is mostly recording from occipital areas is intermittent alpha and it 

is usually prominent from posterior derivations. At beginning of sleep, the rhythm of 

alpha, tends to spread anteriorly. Afterwards, at stage 1 it is divided into intermittent 

sequences and gradually disappears as the sleep proceeds. Alpha rhythm before it 

becomes extinct it is probable to present fluctuations such as raise in amplitude and 

reduction in frequency. Except from the beginning of sleep, intermittent alpha may occur 

during REM sleep and every time that stages happens during the whole length of sleep. 

 

 

Figure 15: Intermittent alpha rhythm in stage 1 sleep.  

Source: (Mario Giovanni Terzano et al., 2001) 

 

 

 

EEG Arousals 

Abrupt frequency changes from slower to faster rhythms (theta, alpha, beta, excluding 

spindles) that interfere sleep for time periods more than 3 seconds called EEG Arousals. 
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Figure 16: Arousal preceded and followed by sleep.  

Source: (Mario Giovanni Terzano et al., 2001) 

 

 

CAP & CAP Rate 

Research on sleep microstructure have proven that the principle role of CAP in sleep is 

generation and disruption of sleep macrostructure (Halász, Terzano, Parrino, & Bódizs, 

2004). As a consequent, CAP can be used to signify instability of sleep. 

According to (Mario Giovanni Terzano & Parrino, 1993): 

 

CAP: "Phasic NREM State Characterized by Controlled Ups and Downs of Vigilance, 

Muscle Tone, and Vegetative Activities" 

CAP Rate: "Polysomnographic Parameter That Measures the Instability of Vigilance 

During NREM Sleep" 

 

The normal values of CAP and as a consequence of CAP rate, diverse through different 

ages. As it is mentioned in (Mario Giovanni Terzano & Parrino, 1993), CAP rate is mostly 

present in very young or quite old ages as in newborns it approaches almost 100% and in 

normal people over 60 years old could reach the proportion of 50%. In mid ages, for 

instances in young adults Cap rate holds about 25% of total sleep and in middle aged 

about 38%.  
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These observations allow sleep experts to recognize the cases where a subject suffers 

from some kind of disorder. Intense deviation from the expected normal values of the 

proportion of CAP rate over total length of sleep could indicate the presence of disorder 

and lead to further investigation. 

Except from the presence of disorder there several parameters that can affect CAP rate. 

Among them, noise can destabilize even normal individual’s sleep, previous absence of 

sleep or medication. For instance, insomniac patients CAP rate could reach levels of over 

60% but this level could drop dramatically by the use of hypnotic drugs. 

 

 

Non-CAP (NCAP) 

The absence of CAP pattern for more than one minute is characterized as Non Cap 

(NCAP) conditions. A secluded A-phase with no A phase before or after for more than a 

minute is characterized as Non-CAP  

All the above, are parameters that a sleep expert has to take into consideration before 

reach to a diagnosis. 

 

 

Figure 17:  The percentage of CAP rate and NCAP rate over the over-night sleep 

Source: (Mario Giovanni Terzano & Parrino, 1993) 
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2.4.3 A-Phase Morphology 

 

Additional, experts classify A-phases into three sub-phases A1, A2, and A3 where some 

of them have quite different characteristics between them. Some features that are quite 

characteristic among them are the mutual proportion of high-voltage slow waves (EEG 

synchrony) and low-amplitude fast rhythms (EEG desynchrony) during whole A-phase. 

A1 phase 

The most prevalent EEG activity is EEG synchrony and when it occurs then EEG 

desynchrony resides at most 20% of the whole A-phase duration. Into A1-phase, K-

complex sequences, vertex   sharp   transients, polyphasic bursts with 20% of EEG 

desynchrony are observed. 

 

A2 phase 

During this subtype EEG desynchrony covers 20-50% of the A-phase and slow and fast 

rhythms can be observed. Polyphasic bursts with more than 20% and less than 50% of 

EEG desynchrony are included in this subtype. 

A3 phase 

The most prevalent feature in EEG activity is rapid low-voltage rhythms with half of 

phase A covered by EEG desynchrony. Samples of this subtype could be among K-alpha, 

EEG arousals, and polyphasic bursts with half of EEG desynchrony. Additional, an event 

of a movement artifact though a CAP sequence is assigned to A3 phase. 
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Figure 18: Phase A subtypes. The dotted spots indicate the fast low-amplitude portion of the phase A. 

EEG derivation as in fig. 12  

Source: (Mario Giovanni Terzano et al., 2001) 
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Figure 19: Isolated phase A black spot box preceded and followed by a low-voltage, mixed frequency 

EEG background for 60 s.  

Source:(Mario Giovanni Terzano et al., 2001) 

 

A-phase in REM sleep 

Under normal conditions, it is not expected to come across A-phases presence during 

REM sleep. In the case that they exist they are formed from desynchronized events as a 

REM sleep’s prominent feature is lack of synchronization. Instead it is common that A-

phase precede REM sleep and end exactly before the beginning of REM stage. A-phase 

events in REM characterized by fast low-amplitude rhythms with average distance 

between them 3 to 4 minutes. However, the existence of a disorder could be highlighted 

by such events. For instance, sequence of A-phase events with intervals among them less 

than 1 minute can produce CAP sequence in REM sleep and that may indicate sleep apnea 

presence. 
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Figure 20: A CAP sequence (between black arrows) associated with a transition from non-REM to REM 

sleep. EEG derivation as in Fig. 12. 

 

Automatic Sleep Staging (Computer assisted CAP scoring) 

Manual Visual Analysis of polysomnography and CAP scoring from sleep experts is a 

slow procedure, requires a lot of time, high cost and specialization. These are the major 

obstacles of large scale application of CAP scoring with large datasets for research and 

for fast clinical results. Consequently, the use of computational services could help 

community to overpass such kind of drawbacks (Ferri et al., 2005). 

 

 

 

 

 



32 

 

3 Related work 

3.1 Relative studies and scarcity 

 

In this chapter, some papers related to this project are analyzed. It will be described the 

data, the leads, the features and the methods that were used in each project as well as it is 

mentioned the percentage accuracy of each work. 

It is only the last years that Automatic sleep microstructure analysis started to attract 

scientific community’s interest. As a consequence, there is a scarcity on respective 

studies. The following results imply indication of this state. Searching through some of 

the most renowned scientific publishers the queries ("sleep" AND "microstructure") and 

("CAP" AND "sleep"), they returned: 

 

 IEEE ACM SPRINGER 

"sleep" AND 

"microstructure" 

20 4 2 

"CAP" AND "sleep" 40 2 12 

 

Table 3: Number of papers in respective publisher 

 

Among 15 relative technical studies only 3 use the same renowned Physionet database:                            

a) "A machine learning model for identifying CAP in the sleeping brain" (Chindhade, Alshi, 

Bhatia, Dabhadkar, & Menon, 2018) 

b)  " Automatic Detection of A phases for CAP classification" (Fabio Mendonça, Fred, 

Mostafa, Morgado-dias & Ravelo-garcía, 2018) 

c)   "Automatic detection of cyclic alternating pattern" ( Fábio Mendonça, Fred, Mostafa, 

Morgado-Dias, & Ravelo-García, 2018) 
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 Mentioned that all 3 of them are recently conducted as they are released in 2018.  The 

study "A machine learning model for identifying CAP in the sleeping brain" (Chindhade, 

Alshi, Bhatia, Dabhadkar, & Menon, 2018) used 16 healthy subjects. The EEG lead that 

was used is F2-F4. A binary logistic regression classifier was used to classify the EEG 

data into phase A and non-phase A. The maximum obtained accuracy was 58% with the 

optimum values of Stride and Window at 1276 and 1536 respectively. 

 (Fabio Mendonça et al., 2018), (Fábio Mendonça et al., 2018) used 14 subjects, 9 males 

and 5 females, both healthy and patients, with ages between 23-78 years old. The EEG 

leads that we used are C4-A1 or C3-A2. The feature set that was used in the analysis was 

consisted by 11 features, which were: The average power, standard variation, Shannon 

entropy, autocovariance, log-energy entropy, Teager energy operator (TEO) and Power 

Spectral Density (PSD) in the delta, theta, alpha, sigma and beta bands. In the first (Fabio 

Mendonça et al., 2018) work, linear discriminant analysis (LDA) was used and achieved 

a mean accuracy percentage of 75%. In the second (Fábio Mendonça et al., 2018) work, 

9 classifiers were used: Logistic regression (LR) with 76% accuracy, Classification Tree 

(CT) with 70%, Ensemble of decision trees (ET) with 70%, SVM with 72%, Feed 

Forward NN (FFNN) with 79%, Cascade Forward NN (CFNN) with 76%, k-means 

Clustering (kMC) with 78%, kNN with 72% and Self organizing map (SOM) with 67% 

accuracy. 

(Navona et al., 2002) employed 10 healthy male subjects, from 22 to 32 years old. The 

EEG leads that were used were F4-C4. They used five frequency band descriptors, one 

for each of the EEG leads and thresholds for classification. The maximum achieved 

accuracy was 77%. 

Similar to (Navona et al., 2002) work is (Barcaro et al., 2004) but instead they used 5 

male and 5 female subjects with the age ranging from 22 to 29 years old. Their approach 

achieved 83.5% accuracy. 

Another approach was by (Mariani et al., 2011) , 8 healthy subjects were used, 4 males 

and 4 females, with ages between 23 and 45 years old. The EEG leads that were used 

were C3-A2 or C4-A1 sampled in 100Hz. The macrostructure stages of wake and REM 

sleep were excluded from the analysis. The following features were computed: band 

descriptors (low delta, high delta, theta, alpha, sigma and beta), Hjorth activity in the low 
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delta and high delta bands and lastly the differential variance of the EEG signal. The 

accuracy varied from 59.89% (sigma band) to 72.44% (differential EEG variance). 

In (Mariani et al., 2012) 8 healthy subjects were used, 4 males and 4 females, with ages 

from 29 to 42 years old. The EEG leads that were used were C3-A2 or C4-A1, with 100 

Hz sampling frequency. The wake and REM sleep stages were also excluded from the 

analysis. The features that were used were the five band descriptors (delta, theta, alpha, 

sigma and beta bands), Hjorth activity (3s windows) in the delta band and the EEG 

variance (1s windows). Four classifiers were used: the linear discriminant that got a mean 

accuracy of 84.9%, support vector machines (SVM) with 81.9%, adaptive boosting 

(AdaBoost) with 79.4% and a 3-layer artificial neural network with 81.5%. 

(Mariani et al., 2010) in another work of theirs, used 4 healthy subjects. The EEG leads 

that they used were C3-A2 or C4-A1. The wake and REM sleep stages were excluded 

from the analysis. Six band descriptors (low delta, high delta, theta, alpha, sigma and 

beta), Hjorth activity in the low delta and high delta bands and the differential variance 

of the raw EEG signal were computed. A 3-layer artificial neural network was used for 

classification that achieved an average accuracy score equal to 81.55%. 

Mendez et al. (2015) used 10 healthy subjects, 5 males and 5 females, with ages from 25 

to 45 years old. The leads that were used were C3 or C4 in 100Hz or 128 Hz sample rate. 

The k nearest neighbors (kNN) classifier was used to find the best features or set of 

features in order to get the higher accuracy. The onset accuracy ranged from 85-91% and 

the offset accuracy ranged from 79-86%. 

(Largo, Munteanu, & Rosa, 2005), used the fast discrete wavelet transform algorithm 

(DWT) with sampling frequency at 128 Hz. The features that were used were the five 

band descriptors (delta, theta, alpha, sigma and beta) but they also separated the delta 

band (0.5-4 Hz) into three sub-bands (0.5-1; 1-2; 2-4 Hz).  The concordance that was 

achieved by the genetic algorithm in this project was 81.1% 

In (A. C. Rosa, Parrino, & Terzano, 1999) were used 4 healthy subjects, 2 males and 2 

females, with a mean age of 43.75 +/- 2.1 years. The EEG lead C4-A1 was used. The 

well-known band descriptors were also used in this approach (delta, theta, alpha and 

sigma activities). For classification, they are using a state machine rule based decision 

system. The mean correctness that was achieved was 89.8% 
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(Karimzadeh, Seraj, Boostani, & Torabi-Nami, 2015) used 8 subjects, 4 healthy and 4 

patients. The C4-A1 EEG leads were used, with signal sampling at 512 Hz. The following 

conventional features were used in the analysis: Frequency band features, Hjorth activity 

for the delta band and differential variance. Three types of classifiers were used in this 

work: Linear Discriminant Analysis (LDA), Support Vector Machines (SVM) and K-

Nearest Neighbors (KNN).  

3.2 Feature proposals 

In some papers, the researchers tried many different features or set of features and 

concluded that a smaller number of specific features could also work in a faster and more 

efficient way. In this section we are presenting each paper’s proposals of significant 

features. 

(Mariani et al., 2011) computed nine descriptors, the six band descriptors (low delta, high 

delta, theta, alpha, sigma and beta), Hjorth activity in the low delta and high delta bands 

as well as the differential variance of the EEG signal. By using ROC curve they found 

out that both band descriptors, hjorth activity and the EEG differential variance are all 

capable descriptors for obtaining good accuracies. Band descriptor mean accuracies were: 

59.90% in sigma band, 63.01% in beta band, 64.41% in alpha band, 66.49% in theta band, 

68.73% in low delta band, 69.19% in high delta band. The Hjorth activities’ mean 

accuracies were: 70.74% in low delta activity and 71.53% in high delta activity. Finally, 

the EEG differential variance had an accuracy of 72.44%. (Mariani et al., 2011) also 

proposes the elimination of the low delta descriptor and the low delta activity, as they 

could be replaced with the respective in the high delta band. Alternatively, useful could 

be a single band descriptor and a single activity descriptor for the whole delta band (0.5-

4Hz). (Hjorth activity was the best feature.) 

(Mendez et al., 2016) used the following features: mean, standard deviation (std), 

skewness, kurtosis, energy, Lempel–Ziv complexity, delta band power, theta band power, 

alpha band power, beta band power, sample entropy, Tsallis entropy and fractal 

dimension. But the features that frequently exist in the best feature sets were the energy, 

the beta band and the delta band, in this order. 

Mendoça et al. (2018) created a list of features order respective to sequential feature 

selection (SFS) that they applied to their model, the list is the following: 
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Features Order 

PSD Beta 1 

Average Power 2 

PSD Theta 3 

Teager Energy Operator 4 

Standard Variation 5 

PSD Alpha 6 

PSD Sigma 7 

Shannon Entropy 8 

Log-energy Entropy 9 

Autocovariance 10 

PSD Delta 11 

Table 4: Features ordered respective to the SFS selection  

Source: (Fabio Mendonça et al., 2018) 

As mentioned in the paper, using the 3 first components achieved the best results with 

variance of 78%. 

(Karimzadeh et al., 2015) proposed the following features that are not used in the state-

of-the-art implementations: Shannon entropy, Spectral entropy, Sample entropy, Tsallis 

entropy, Higuchi Fractal Dimension (HDF), Kolmogorov entropy and band features with 

Kolmogorov entropy. Tables II and III show each feature and the respective accuracy 

values for each classifier, both for healthy subjects and patients. 
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4 Materials and Methods 

4.1 Physionet Sleep CAP database 

 

The dataset employed for this research acquired from Physionet CAP Sleep database and 

it consists of signals recorded at the Sleep Disorders Center of the Ospedale Maggiore of 

Parma in Italy. The overall number of polysomnographic recordings in the Cap Sleep 

Database is 108 and they are classified into 16 recordings from normal subjects as well 

as from patient subjects with the following disorders: 2 subjects with bruxism, 9 with 

insomnia, 5 with Narcolepsy, 40 with Nocturnal frontal lobe epilepsy, 10 with Periodic 

leg movements, 22 with REM behavior disorder and 4 with Sleep-disordered breathing. 

The format of the files is edf (European Data Format) and consists of 3 EEG channels (F3 

or F4, C3 or C4 and O1 or O2, referred to A1 or A2) or more, 2 Electrooculography 

(EOG) channels, Electromyography (EMG) of the submentalis muscle, bilateral anterior 

tibial EMG, respiration signals and Electrocardiography (EKG or ECF). Physionet CAP 

sleep database provide additional information about the gender and age of the subjects as 

well as additional traces in agreement with the 10-20 international system (Fp1-F3, F3-

C3, C3-P3, P3-O1 and/or Fp2-F4, F4-C4, C4-P4, P4-O2). 
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Figure 21: Electrode  positions  according  to  the  10-20  system.  Odd  numbered  electrodes  are  

positioned  over  the  left  hemisphere,  whereas  even    numbered    ones    are    placed    over    the    

right    hemisphere.    Fp=frontopolar,     F=frontal,     C=central,     T=temporal,     O=occipital,     

A=auricular. 

Furthermore, annotations files, from sleep experts educated at Sleep Center, are provided. 

Those files are in .txt format and contain information about: 

 Sleep stages (W=wake, S1-S4=sleep stages, R=REM, MT=body movements) 

 Body position (Left, Right, Prone, or Supine) 

 Time of the day [hh:mm:ss] 

 Event (the A-phase type or the sleep stage) 

 Duration (seconds) 

 Location (the signal(s) in which the event can be observed) 
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The scoring process for sleep stage is in agreement with (A Rechtscahffen, A. Kales., 

1968) and the respective for sleep microstructure in agreement with the Atlas of rules of 

(Mario Giovanni Terzano et al., 2001). 

Dataset 

For the purpose of the current research, were employed only normal subjects and three 

traces C4-P4, F4-C4, C4-A1. Those traces are among the most common in literature as 

they are considered to contain bigger amount of information than others. Moreover, 6 

subjects were chosen due to lack of those traces in all normal subjects of the database. 

Preprocessing 

Initially, the EEG recordings for all selected subjects were sampled at 512Hz, they were 

resampled at 100Hz sampling frequency and they were filtered by a band pass filter from 

0.3 to 40Hz with the programming environment Mat-lab (The Mathworks Inc.). A CAP 

cycle lasts from 2 to 60 seconds, for this reason windows of 2 seconds (the minimum 

CAP cycle length) were extracted. Windows of less than 2 seconds aborted as a choice 

because 2 is the shortest length of CAP phase and windows not more than 2 seconds 

selected in order to capture more abrupt changes in shortest sale. Additional, these 

windows are overlapping with a step of 1 second in order to have much more instances 

and to extract insights in a more microscopic scale. 

The whole dataset including all 6 full night sleep recordings is composed by 180624 

instances where 159787 are out of A-phase events and 20837 belong to A-phase types. In 

the second type of classification that conducted in this study the 20837 instances are 

divided into 2336 instances of A-phase onsets, 16165 instances of events clearly into A-

phase and respective to onsets 2336 instances of A-phase offsets. The previous analysis 

implies that around the 88% of instances of the whole dataset is compiled by out of A-

phase instances which means indicates great class imbalance in the dataset. In order to 

overcome the class imbalance obstacle an oversampling technique called SMOTE was 

applied (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) with the Tomek link method to 

clean data and eliminate noise (Tomek Ivan 1992). 
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4.2 Features 

 

A feature set containing the most common features (diverse metrics, complexity and 

frequency measures) in the literature utilized to extract meaningful insights from the 

dataset. This feature set applied to each window of 2 seconds with 1 second overlapping 

and a new dataset with the values of the features emerged. The metrics include: 

•     Power Spectral Densities (PSD) (low delta, high delta, theta, alpha, sigma, beta) 

• Average Power 

• Standard Deviation 

• Kurtosis 

• Skewness 

• Log-energy entropy 

• Shannon entropy 

• Sample entropy 

• Tsallis entropy 

• Higuchi Fractal dimensions 

• Hjorth parameters: activity, mobility, complexity 

•     Peak number 

Power Spectral Densities  

Power spectral densities include the delta, theta, alpha, beta-gamma bands of frequencies. 

Each one of them range in different frequency range and they are useful to define 

quantitatively diverse states of the brain according to the power of frequency of the EEG 

activity (Myers, Li, & Curry, 2017). Different densities correspond to different brain 

states which characterize respective sleep states and as a consequent they are useful to 

classify them.  
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Low-delta band (ranging 0.5-2 Hz) 

High-delta band (ranging 2-4 Hz) 

Theta band (ranging 4-8 Hz) 

Alpha band (ranging 8-12 Hz) 

Sigma band (ranging 12-15 Hz) 

Beta band (ranging 15-25 Hz) 

For instance, delta waves are prominent characteristic of A1-phase, rapid with high 

frequency EEG waves which belong to high alpha or beta bands indicate phases A2 and 

A3. For every single window and each band, after applying Fourier Transform, turning 

from time domain into frequency domain, the average energy in the frequency range is 

computed. Below are presented many of the complexity measures: 

 

Standard deviation 

 

Skewness 
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Kurtosis 

 

 

Sample entropy (SampEn)  

In time series (such as signals) SampEn provides insights about the underlying 

complexity of the process by measuring the regularity of them (Moorman, 2018). Suppose 

we have the patterns among data that remain similar for m observations, the logarithmic 

probability of these patterns to remain similar on the next incremental comparisons with 

longer patterns is employed to quantify the regularity. The higher the values of Sample 

entropy are the higher the complexity in the data is as well as it implies higher randomness 

which makes the data less predictable. Consider a N length time series y= [x(1), 

x(2),...,x(N)]. Let’s define N−m+ 1  sub-sequences  of  the  form ym(i) = [x(i),x(i+ 

1),...,x(i+ (m− 1))], with constant m. The likelihood  that  two  subsequences  match  for  

m  points  and  the  probability  of  match  for  m+  1  points , where  r  

is  the  tolerance  for  accepting  matches,  give the SampEn, defined as the average of 

these probabilities over the N−m+ 1 subsequences: 

 

Foe the purposes of this experiment SampEn was computed for m=2 and m=5 (as it was 

observed high variance for both values) and r=0.25. The time window on which SampEn 

was applied was 2 seconds which means 200 instances and according to (Moorman, 2018) 

for instamces greater than 100 SampEn is largely independent of record length. 
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Higuchi Fractal dimensions 

Higuchi Fractal dimensions feature was calculated respective to (An, Time, We, & The, 

1988) study. As most of the features it was computed on 200 instances and the 

mathematical formula which it was based on is: 

 

X represents the time series and N the total number of instances in X. The sum (after 

normalization) of absolute differences in ordinates of pairs of points with distance k is 

symbolized by Lm(k). L(k) symbolize the average of the k values Lm(k) for m=1, 

2,..., kmax  and least  squares  linear  best-fitting  procedure computes the value of 

fractal dimension, and  the  angular  coefficient  of  the  linear  regression  of  the  

log–log  graph  of  L(k)  versus  k,  with  k=  1,  2,...,  kmax. In this experiment 

based on (Klonowski, 2007), the value for kmax was 8. 

Tsallis entropy 

Tsalis entropy emerge from the following formula: 

q: can be positive 

It represents the probability distribution of the signal and according to (Dandan Zhang et 

all, 2011). Tsallis entropy is the same as Shannon entropy when q→1. According to 

(Mendez et al., 2016) two values for selected in order to acquire information specific for 

rare and frequent events. 
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Shannon entropy  

With entropy metrics we can measure uncertainty. When it comes to EEG signals it 

signifies the level of chaos in a system (Dalgleish et al., 2007). It is non linear and it and 

it attempts to calculate the degree of randomness in time series (McCranie et al., 2011).  

Let X be a set of finite discrete random variables X={ x1, x2, ..., xm }, xi ∈R^d,Shannon 

entropy, H(X), is defined as (Kannathal, Choo, Acharya, & Sadasivan, 2005): 

 

Log-energy entropy 

 

 

Hjorth Parameters 

Hjorth Parameters include activity, mobility and complexity. Respectively they are 

calculated by the following formulas: 
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Activity is translated as the power of the signal, mobility as the mean frequency and 

complexity brings into comparison the signal with the pure sine wave and returns how 

similar they are (Hamida, Ahmed, & Penzel, 2016). 

 

Time sequence 

Additional, in order to capture sequence characteristic of EEG behavior during time, 4 

previous and 4 next instances added to every instance. In other words, these features 

provide with insights for 8 seconds before and 8 second after each instance as every row 

corresponds to 2 seconds. 

5 Results 

5.1 Experimental Approaches  

 

The contribution of this survey is the introduction of three approaches. First the time 

sequence feature which add insight about the fluctuation of the signal’s values through 

time. Second, the train-test on different classes, train only on instances out of A-phase 

versus into A-phase but during testing those two classes include the onsets and offsets 

instances as described in the following chapter. Third, the grouping of the four classes 

out of A-phase, A-phase onset, into A-phase, A-phase offset into two classes out of A-

phase with A-phase offset and into A-phase with A-phase offset. 

 

Obstacles 

It is really hard to compare diverse models and for this reason there is a scarcity on such 

reviews. Some reasons are the following: 

 Different datasets 

 Diverse PSG channels 



46 

 

 Various evaluation methods 

 Different expert’s scoring 

 

Below are analyzed the results from the combination of the experimental approaches. The 

feature set were extracted from each one of the three traces C4-P4, F4-C4, C4-A1. For 

the evaluation of the results a 10 fold cross validation technique were used so all the 

indices (accuracy, sensitivity, specificity and AUC) are averaged. The term sensitivity in 

this study represents the number of instances that predicted and actually belong to A-

phase over the number of all instances that truly belong to A-phase, the true positive rate 

of predicting A-phases. Respectively, specificity, depicts the number of instances that 

predicted and actually belong to non A-phase events over the number of all instances that 

truly belong to non A-phase events. 

5.2 Experimental questions and answers 

 

 Which classes to use even for the binary classification of Non A-phase versus A-phase 

events. To be clear, for the specific type of classification we could define 4 types of 

events, out of A-phase, A-phase onset, into an A-phase, A-phase offset. The question is 

what grouping of two groups out of the 4 classes to choose. 

Grouping on testing Accuracy Sensitivity Specificity AUC 

Non A-phase/offset vs A-phase/onset 0.91 0.74 0.914 0.59 

Non A-phase vs rest 0.897 0.74 0.9 0.58 

A-phase vs rest 0.918 0.64 0.925 0.59 

Non A-phase/onset vs A-phase/offset 0.9 0.65 0.91 0.577 

 

Table 5: Evaluating metrics values for various groupings under 900 estimators of Extra trees classifier 

and training only on Non A-phase versus A-phase classes but testing on respective grouping. 

 

  How the model would operate if we train it using the two classes that contain only totally 

out of A-phase and totally into A-phase respectively. But test it in different classes, for 
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instance, the two classes would contain out of A-phase and onsets (first class) versus into 

A-phase and offsets (second class). Fig. 27 (above) presents the results from different 

train/test class sets and fig.28 (below) presents the results from train/test on same class 

sets. It is obviously that train/test on different class sets perform better, especially in 

sensitivity metric. 

Grouping on training and testing same Accuracy Sensitivity Specificity AUC 

Non A-phase/offset vs A-phase/onset 0.899 0.6 0.91 0.587 

Non A-phase vs rest 0.886 0.59 0.9 0.58 

A-phase vs rest 0.91 0.57 0.92 0.56 

Non A-phase/onset vs A-phase/offset 0.897 0.57 0.9 0.556 

 

Table 6: Evaluating metrics values for various groupings under 900 estimators of Extra trees classifier. 

Train and test applied on the same grouping. 

 

 Class imbalance is really a problem? Below are presented the results with the best hyper 

parameter and best grouping on testing but additional an oversampling technique was 

applied to the dataset. The technique called SMOTE employs Tomek links method for 

cleaning the data and remove the noise (Tomek Ivan 1992).  

Grouping on testing Accuracy Sensitivity Specificity AUC 

Non A-phase/offset vs A-phase/onset 0.88 0.46 0.94 0.72 

Table 7: Results using oversampling technique 

Fig.29 The results from best model including the oversampling technic Smote with Tomek Links. 

 

It seems that oversampling did not help to further improve results as the sensitivity 

dropped from 75% to 46%. 

After several experiments with all the combination of the modes that the above question 

produce, the best results are presented: 

(I) Classification between Non A-phase and A-phase. No oversampling technique were used. 

The results are accuracy 0.91%, sensitivity 0.75%, specificity 0.914. In the specific 

experiment applied a technique where train and test applied on different classes. To 
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clarify, the model were trained only in two events. Those that are totally out of A-phase 

and totally into an A-phase leaving aside events that belong in onsets or offsets but they 

were tested in the following two classes: 

a.  The first class contains events out of A-phase and events that belong to offsets.  

b. The second class contains events that are into an A-phase and events that belong to the 

onsets. 

The classifier employed to achieve the highest outcomes was Extra trees ensemble 

classifier with hyper parameter of the estimator variable equal to 900. 

(II)  Classification between Non A-phase and A-phase. In this experiment we trained and test 

the model in the same set of classes, without oversampling technique: 

a. The first class contains events out of A-phase and events that belong to offsets. 

b. The second class contains events that are into an A-phase and events that belong to the 

onsets. 

The produced results are accuracy 0.91%, sensitivity 0.70%, specificity 0.92. 

We can observe a decrease in sensitivity than method (I). 

Training only in out of A-phase events versus A-phase, operates better but it wasn’t a 

surprise because of the nature of the data in the classes. This means, that offsets possess 

quite similar characteristics with out of A-phase events as well as onsets possess quite 

similar features with into A-phase events.  
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5.3 Hyper parameters   

 

Estimators Accuracy Sensitivity Specificity 

120 estimators 0.91 0.724 0.915 

150 estimators 0.89 0.73 0.9 

500 estimators 0.91 0.745 0.914 

700 estimators 0.91 0.745 0.914 

850 estimators 0.91 0.7499 0.914 

900 estimators 0.91 0.74 0.914 

950 estimators 0.91 0.7498 0.914 

1000 estimators 0.91 0.746 0.914 

1300 estimators 0.91 0.748 0.914 

1500 estimators 0.897 0.75 0.9 

 

Table 8: Evaluation metrics for various values of estimator’s parameters of Extra trees ensemble model. 

For the value of 900 estimators the model returned the combination of highest values. 

 

5.4 Semi-automated model 

 

Another experimental approach is an assisted classification. This approach includes the 

ground truth of sleep stages S1, S2, S3, REM and the model possesses previous 

knowledge of the current sleep stages. As a result the model has to be trained and classify 

every instance if it belongs to Non A-phase or A-phase. In this direction the model 

achieved classification accuracy 92%, sensitivity 83% and specificity 92%. 
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5.5 Comparing results with similar studies 

 

Comparing the results of this experiment (best results from method (I)) with the results 

of relative studies over the same dataset from Physionet sleep Cap database: 

 Accuracy % 

A-phase vs 

Non A-phase 

Model/Method Sensitivity % Specificity % AUC 

(I) 58 % Logistic 

Regression 

- - - 

(II) 79 % Feed-forward 

neural network 

76 % 80 % 77 % 

(III) 75 % LDA 78 % 74 % - 

This 

study 

91 % Extra trees 

classifier (900 

estimators) 

74 % 91.4 % 59 % 

Table 9: Comparing results with similar studies 

(I) "A machine learning model for identifying CAP in the sleeping brain" (Chindhade, Alshi, 

Bhatia, Dabhadkar, & Menon, 2018) 

(II)  " Automatic Detection of A phases for CAP classification" (Fabio Mendonça, Fred, 

Mostafa, Morgado-dias, & Ravelo-garcía, 2018) 

(III) "Automatic detection of cyclic alternating pattern" (Fábio Mendonça, Fred, Mostafa, 

Morgado-Dias, & Ravelo-García, 2018). 
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6 Conclusions and future work 

The sleep microstructure analysis constitutes a problem with wide range of parameters. 

For this reason, it demands a lot of work and there are many aspects of the problem that 

have to be taken into consideration. For instances, throughout literature there is a diversity 

on the datasets on which the various experiments are applied, as well as there are many 

different sleep experts who apply the annotations (variety of sleep experts means different 

results due to subjectiveness factor). In addition, through literature, we can observe that 

in different datasets, best accuracy is achieved by diverse classifiers and methods. This 

could mean that sleep records from various subjects may be quite different. As a 

consequence, for further advances in the domain, it could be beneficiary the use of some 

baseline datasets. On those datasets, experts could compare the diverse state of the art 

models and every experiment would be more measurable.  

Manual scoring is a quite demanding task (as it includes scoring on signals from a whole 

night sleep) and entails the subjective factor of every scorer. For those reasons, there is a 

high proportion of scoring disagreement between experts when analyzing the same 

records. This percentage ranges between 69% to 78% according to (Agostinho C Rosa & 

Lopes, 2006). Until present, the various studies focus on developing models to imitate the 

sleep expert’s annotations including the subjective factor. This means that models ignore 

a portion of objectivity, of ground truth. From this hypothesis derive two new addresses. 

The first one is to try to extend our models by developing technics to enclose the 

subjective factor of contextually scorer. The second, is to try to direct link records and 

relative metrics on them, with sleep subjects either healthy or patient. To clarify what I 

mean, in a way, there exists three poles, the first is the records, the second the sleep 

standards and rules and the third is the sleep expert (accompanied with his subjectivity). 

The second pole, the sleep standards and rules, function as intermediate between the other 

two poles. The main idea of this direction is to bypass the intermediate pole and directly 

link the rest two. This could be feasible through advanced unsupervised technics which 

would try to specify patterns in both poles and discover connections between them. 

An other direction could be to an automated sequence of classifications. For instance, 

instead of classifying whole dataset with one model into an extended class set like{ stage 

1, stage 2, stage 3, stage 4, REM stage, Non A-phase, A1 phase onset, into A1 phase, A1 
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phase offset, A2 phase onset, into A2 phase,  A2 phase offset, A3 phase onset, into A3 

phase, A3 phase offset }, which would be ideally if we could achieve very high accuracy, 

we could apply a sequence of classification where each classification would be based in 

the previous classification. Firstly, we could train a state of the art model to classify into 

sleep stages s1, s2, s3, s4, REM, afterwards uses the outcome from the previous 

classification as feature for the next classification between non A-phases and A-phases. 

Then, again use the outcome from the previous classifications as feature for the next and 

classify between the A-phases types (A1, A2, A3). 
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APPENDIX 

Machine learning python code 

import pandas as pd 
import numpy as np 

from sklearn.metrics import accuracy_score 

from sklearn import metrics 

from sklearn.ensemble import ExtraTreesClassifier 

#import imblearn 

#from imblearn.over_sampling import SMOTE 

#from imblearn.under_sampling import TomekLinks 

#from imblearn.combine import SMOTETomek 

#from imblearn.under_sampling import ClusterCentroids 

#from imblearn.under_sampling import RandomUnderSampler 

#from xgboost import XGBClassifier 

 

''' Load data''' 

data = pd.read_csv('MLdataset') 

 

''' Remove the feature stges from the semi automated model ''' 

data=data.drop(['stages'],axis=1) 
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''' Built the time sequence feature ''' 

limit = 4 

step = len(data.columns)-2 

data11 = pd.DataFrame(data.iloc[limit-1:-limit-1,:-2].values) # 1 before 

data12 = pd.DataFrame(data.iloc[limit+1:-limit+1,:-

2].values,columns=list(range(len(data.columns)-1,len(data.columns)-1+step))) # 1 front 

data21 = pd.DataFrame(data.iloc[limit-2:-limit-2,:-

2].values,columns=list(range(len(data.columns)-1+step,len(data.columns)-1+2*step))) # 

2 before 

data22 = pd.DataFrame(data.iloc[limit+2:,:-2].values,columns=list(range(len(data.columns)-

1+2*step,len(data.columns)-1+3*step))) # 2 front 

data31 = pd.DataFrame(data.iloc[limit-2:-limit-2,:-

2].values,columns=list(range(len(data.columns)-1+3*step,len(data.columns)-

1+4*step))) # 3 before 

data32 = pd.DataFrame(data.iloc[limit+2:,:-2].values,columns=list(range(len(data.columns)-

1+4*step,len(data.columns)-1+5*step))) # 3 front 

 

data=data.iloc[limit:-limit,:-2].join([data11,data12,data21,data22, 

 data31,data32,data.iloc[limit:-limit,-2:]]) 

 

''' Encode the stage feature from the semi automated model ''' 

#import category_encoders as ce 

# 

#encoder = ce.OneHotEncoder(cols=['stages']) 

#data = encoder.fit_transform(data) 
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''' Fill Nan values with zero ''' 

data = data.replace(np.inf, 0) 

data = data.replace(np.nan, 0) 

 

''' Define the classifier ''' 

clf1 = ExtraTreesClassifier(n_estimators=900, max_depth=300, 

        min_samples_split=2, random_state=0,verbose=3, n_jobs=4) 

 

''' Start the loop for the 10 fold cross validation ''' 

sensitivity=[] 

specificity=[] 

AUC=[] 

accuracy=[] 

prev=0 

for limit in range(round(len(data.targets)/10),len(data.targets),round(len(data.targets)/10)): 

 

    ''' Define train and test for every fold ''' 

    X_train = data.drop(list(range(prev,limit)),axis=0) 

    data1=X_train 

    y_train = data.drop(list(range(prev,limit)),axis=0) 

    y_train = y_train.targets     

    data1.targets=y_train 

    xtest = data[prev:limit] 

    xtest = xtest[xtest.columns[:-1]] 
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    ytest = data[prev:limit] 

    ytest = ytest.targets 

             

    ''' Define the train classes on Non A-phase(c0) vs A-phase(c2)''' 

    c0=data1.loc[data1['targets'] == 'c0'] 

    #c1=data1.loc[data1['targets'] == 'c1'] 

    c=data1.loc[data1['targets'] == 'c2'] 

    #c3=data1.loc[data1['targets'] == 'c3'] 

     

    data1 = pd.concat([c0,c]) 

    data1 = data1.sample(frac=1) 

    X_train = data1[data1.columns[:-1]] 

    y_train = data1.targets 

     

    nl=[] 

    for i in y_train: 

        if i != 'c0': 

          nl.append('c') 

        else: 

            nl.append('c0') 

    y_train=nl 

     

    ''' Grouping Non A-phase with A-phase offsets vs A-phase with A-phase onsets''' 

    nl=[] 
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    for i in ytest: 

        if i == 'c0': 

          nl.append('c0') 

        elif i =='c1': 

             nl.append('c') 

        elif i =='c2': 

             nl.append('c') 

        elif i =='c3': 

             nl.append('c0') 

    ytest=nl         

     

    prev=limit 

     

    ''' Train the classifier''' 

    clf1.fit(X_train, y_train) 

     

    ''' Oversampling technique SMOTE ''' 

#    smt = SMOTETomek(ratio='auto') 

#    X_smt, y_smt = smt.fit_sample(X_train, y_train) 

#     

#    clf1.fit(X_smt, y_smt) 

     

    ''' Predict ''' 

    y_pred=clf1.predict(xtest) 
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    ''' Compute evaluating metrics accuracy, sensitivity, specificity, AUC''' 

    accuracy.append(accuracy_score(ytest, y_pred)) 

#    print('accuracy',accuracy_score(ytest, y_pred)) 

    ##s=pd.Series(y_predclf1) 

    ##s.unique() 

     

    confusion = metrics.confusion_matrix(ytest, y_pred,labels=['c','c0']) 

    print(confusion) 

     

    ##pd.DataFrame(ytest).groupby(0).size() 

     

    TP = confusion[0][0] 

    FP = confusion[0][1] 

    FN = confusion[1][0] 

    TN = confusion[1][1] 

     

    sens = TP/(TP+FN) 

    spec = TN/(TN+FP) 

     

    sensitivity.append(sens) 

    specificity.append(spec) 

     

    from sklearn.metrics import roc_auc_score 
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    nl=[] 

    for i in ytest: 

        if i != 'c0': 

          nl.append(1) 

        else: 

             nl.append(0) 

    ytrue=nl  

    nl=[] 

    for i in y_pred: 

        if i != 'c0': 

          nl.append(1) 

        else: 

             nl.append(0) 

    y_scores=nl  

     

    auc = roc_auc_score(ytrue, y_scores) 

    AUC.append(auc) 

    confusion = metrics.confusion_matrix(ytrue, y_scores,labels=[1,0]) 

     

import statistics as st 

print('accuracy',st.mean(accuracy)) 

print('sensitivity',st.mean(sensitivity)) 

print('specificity',st.mean(specificity)) 
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print('AUC',st.mean(AUC)) 

 

 

 

 


