

INTERNATIONAL HELLENIC UNIVERSITY
SCHOOL OF SCIENCE AND TECHNOLOGY

SIMULATION OF
CYBER ATTACKS
AGAINST SCADA

SYSTEMS

Miltiadis D. Parcharidis

Supervisor: Sokratis Katsikas, Professor

DS50: Master’s thesis

Spring 2018

COPYRIGHT ©

Miltiadis D. Parcharidis

ALL RIGHTS RESERVED

This project is dedicated to my

family for always making me a

better person

1

Abstract
Our everyday lives heavily depend on Critical Infrastructures and SCADA systems are one of

their major backbones. The IT science has managed to create subsystems and protocols that

combine electrical and mechanical technology to monitor and command a plethora of Remote

Terminal Units or PLCs, forming a network of devices and computers. Unfortunately, the

primal protocols do not include the security mindset as they have been built with no vision or

with air-gapped intensions. Todays’ world though is interconnected and the need to monitor

everything from a distance is essential. This is also the entry point for a malicious user to

attempt cyber-attacks against Critical Infrastructures by taking advantage the naivety of

SCADA implementation at its total.

In this thesis, a simulated SCADA environment is attacked by using open source tools in

various ways to achieve the disruption of the normal behavior of the system. The experiments

are proportionally less disruptive in malfunctions and in numbers but manage to raise attention

and thoughts around the old protocols that are still being used in many SCADA systems some

of which in Critical Infrastructures.

Keywords: SCADA, ICS, Simulation, Cyber Attacks, Open Source

2

Preface
This Master’s thesis is the final challenge for me at the MSc program in Communications and

Cybersecurity of the International Hellenic University in Greece. The project, besides its

sophisticated essence, inducted me to an entire new world of the IT science and revealed to

me a cutting edge in the Cyber Security section. Even though my great experience in the field,

this has been a tremendous challenge because all the experiments concern a very rare and

sensitive target therefore there are no guidelines for them. I wish I had more time and

resources to further develop the tests.

For all the above, I would like to express my respect and gratefulness to my supervisor

Professor Sokratis Katsikas as for once more his experience and forward thinking has shown

me the way to new horizons in Cyber Security.

I would also like to thank the International Hellenic University for creating this MSc program

and for fully understanding the needs of an employed person while being a student.

3

Table of Contents
Abstract ... 1

Preface ... 2

1. Introduction .. 6

1.1 Purpose of dissertation ... 6

1.2 Assumptions ... 7

1.3 Dissertation outline ... 7

2. Theory ... 8

2.1 Definitions and components of SCADA systems .. 8

2.1.1. Definitions and short description ... 8

2.1.2 Remote Telemetry Units and Programmable Logic Controllers 9

2.1.3 Communications network ... 10

2.1.4 Central Host .. 10

2.1.5 Operator Workstations .. 11

2.1.6 Software ... 11

2.2 Architecture of SCADA systems .. 13

2.2.1 Monolithic SCADA systems ... 13

2.2.2 Distributed SCADA systems .. 14

2.2.3 Networked SCADA systems .. 16

2.3 SCADA communication protocols ... 17

2.3.1 IEC 60870-5 .. 18

2.3.2 Modbus .. 21

2.3.3 Distributed Network Protocol 3 (DNP3) .. 23

2.4 Vulnerabilities ... 25

2.5 Real Cyber-attacks: The case of Stuxnet .. 26

2.5.1 Political Background and the creation of an ICS cyberweapon 26

2.5.2 Technical analysis of Stuxnet worm .. 27

3. Approach and attack vectors .. 28

3.1 System setup ... 28

3.2 System implementation ... 29

3.2.1 SCADA side .. 30

3.2.2 Attacker side .. 32

4. Attacks and Results .. 40

4

4.1 IEC 60870-5-104 attacks .. 40

4.1.1 Typical communication ... 40

4.1.2 Message flooding .. 42

4.1.3 SYN attack to achieve a Denial of Service ... 43

4.1.4 Control command or Remote Adjustment Command from Unauthorized client . 44

4.1.5 Single command from unauthorized client to a Server .. 45

4.1.6 Unauthorized Read Command to the Server ... 46

4.1.7 Unauthorized Reset Process Command to the Server ... 46

4.1.8 Counter Interrogation Command to the Server .. 47

4.1.9 Man in the middle attacks ... 48

4.2 Results ... 52

5. Discussion ... 53

6. Conclusion .. 55

7. Future Work ... 56

8. References ... 57

9. Appendices ... 59

Appendix A – Virtual Machines’ specifications and settings... 60

Appendix B – Tools .. 63

1. Operating systems and Virtualization software ... 64

1.1 Microsoft Windows 7 ... 64

1.2 Kali Linux 2017.1 .. 64

1.3 Ubuntu 16.04 LTS ... 64

1.4 VMware Workstation Pro 12.5 .. 64

2. Attack tools ... 65

2.1 Hping3 ... 65

2.2 Ettercap ... 65

2.3 Macchanger... 65

2.4 alert_snort_104 Ettercap plugin .. 65

2.5 Wireshark .. 65

3. SCADA software ... 66

3.1 IEC Server .. 66

3.2 QTester 104 .. 66

3.3 OpenMUC j60870 ... 66

5

References ... 67

Appendix C – Code ... 68

1. OpenMUC j60870 ... 69

2. Ettercap filter isolation.if .. 74

Chapter 1

6

1. Introduction

Supervisory Control And Data Acquisition systems are a type of Industrial Control Systems

which collects data and monitors some automation processes across miles away or even at the

same building. All data are represented to the operators of the system via a Human Machine

Interface. This graphical representation of the ICS allows the human operators to take control

of the system and issue commands according to their will such as opening a valve, setting a

temperature point or starting/stopping a pump [1].

The cyber security awareness on SCADA systems has risen from the early beginnings of the

2000s but it was not only until the famous Stuxnet attack that it entered at a government level.

Also, many ICS applications are nowadays using common operating systems like Windows,

well known and vulnerable protocols like TCP and have also spread into smart phones.

Additionally, the security weaknesses of ICS services are widely available online and many

Trojans and worms find holes in the network and they infect the ICS’ servers. Many famous

conventions like DEF CON and Black Hat have increased their talks about industrial systems,

proving that hackers are also paying attention to these vulnerable systems [1]. All the above

show that SCADA systems are a target nowadays and it is interesting to explore a few technical

perspectives during this thesis.

1.1 Purpose of dissertation

In this master thesis, a virtual environment will be implemented to demonstrate various cyber

attacks against SCADA software using open source tools. The SCADA software will be

simulated with programs running on Windows and the network will be implemented using

virtualization software. The tools used for the attacks are open source, freely available and also

some programming code was modified by me to extend the software’s capabilities for further

attack vectors.

The main goal is to demonstrate that there is a margin for cyber attacks in SCADA systems

using open source tools.

Chapter 1

7

1.2 Assumptions

The virtual environment created for this thesis is capable enough to simulate SCADA software

and its main functions. The virtual LAN among the Virtual Machines has also adequate

bandwidth and speed to transfer any data. The attacks however will try and succeed several

disruptions of the system which have a rational logic but the results cannot be very accurate

since a powerful yet mid-range laptop is the backbone of the entire simulation. In general, I

believe that the results pinpoint the meaning and scope of the attacks at a satisfactory level of

accuracy. The main focus of this master’s thesis is the IEC 60870-5-104 protocol.

1.3 Dissertation outline

• Introduction: The first chapter introduces the basic concept of the SCADA system,

the reasons of its cyber security awareness, the main purpose of the thesis and

assumptions of the project.

• Theory: The second chapter describes the definitions of various components, the

protocols, vulnerabilities and concludes with the most famous attack in SCADA

systems.

• Approach and Attack Vectors: The third chapter gives the approach method and

the implementation of the simulated environment.

• Attacks and Results: The fourth chapter contains the experiments and discusses

about the results.

• Discussion: The fifth chapter offers a general discussion of the entire project as well

as some thoughts.

• Conclusion: The sixth chapter is a conclusion of the thesis taking into consideration

the results and the theory.

• Future Work: The last chapter contains a few future thoughts around the project for

further extending my knowledge around the field.

Chapter 2

8

2. Theory

2.1 Definitions and components of SCADA systems

As in every system, one has better understanding of it once it is described, analyzed and

explained to its logical components. This section will provide all the necessary details of the

SCADA elements that form the system and some of its famous protocols which implement

the communication layer among the devices.

2.1.1. Definitions and short description

The abbreviation SCADA stands for Supervisory Control And Data Acquisition. A SCADA

system is used for monitoring and controlling a plant or industrial infrastructures such as water

supply, oil refineries, transportation and telecommunications. It coordinates the flow of data

between the main host computer, where the supervisor resides, and the various RTUs (Remote

Telemetry Units) or PLCs (Programmable Logic Controllers) which are the field devices [2].

A SCADA system consists of:

• A SCADA Central Host Computer or Computers which is also called as Center or

Master station or Master Terminal Unit and it acts as the server of the entire system

where operators are informed for the system’s properties at its whole [2].

• Remote Terminal Units or Programmable Logic Controllers which are the field

devices that interface with actuators, valve and other analog systems and provide the

measurements from the field or receive commands to perform [2].

• A communications system that is used to transfer all the data between the field devices

and the Central Host and it can be a telephone system, radio, satellite, cable and most

often a combination of all when remote sites require complicated means of data

transport [2].

• The software that supports the entire system via a collection of tools/software that are

implemented at the communications layer, in the RTUs and mainly in the Central Host

computer where it provides the operators with a graphical interface that is able to

Chapter 2

9

represent data and act as a control center for the field devices. The latter is often called

as HMI, Human Machine Interface [2].

Figure 1: Typical SCADA system [2]

2.1.2 Remote Telemetry Units and Programmable Logic Controllers

In general, there are two kinds of field devices, the first that consists of simple measurement

transmitters such as water flow, temperature flow, power consumption and the second that

consists of actuators, switchboards and electronic dosing facilities. The formers are the “eyes

and ears” of a SCADA system while the latter play the role of the “hands” providing

automation [2].

Chapter 2

10

2.1.3 Communications network

The communications network is the mean to transmit and receive data between the Central

Host computer and the field devices. It includes the medium, which may be cable, telephone

or radio, the protocol and the network devices that help in the forwarding of the data such as

routers, modems and antennas.

In a closed environment where all the components of the SCADA system are nearby such as

a factory, the cable is the most profitable solution. This is not the case though for

environments that are spread in a wide area. Telephone lines are used for longer distances and

there are two options depending on the needs of the SCADA system, leased or dial-up.

Whenever there is a requirement for online monitoring of remote sites, the leased line is used

but this is expensive since a telephone line per workstation is needed. Dial-up lines are

performing well and economically if the SCADA system needs to monitor the substation at

certain intervals e.g. hourly by dialing a certain number and receiving commands and/or

transferring the recorded data.

As technology evolves, much cheaper solutions are found and nowadays the use of radio offers

more bandwidth and costs less. Radio modems are the required equipment for the

transmission of data and in case of non-visual remote sites to the main station, repeaters are

used to achieve communication [2].

2.1.4 Central Host

The central host computer is the hardware device that represents all the received data from

the RTUs to the operator of the SCADA system. It is most likely that this is a single computer

that runs specific SCADA software, a user interface to monitor and control all the field devices

from a central point. The terminals are connected via Local Area Network or pretty often via

Wide Area Networks in order to transmit or receive data and commands. In the past, the

vendors offered specific hardware for the SCADA operators which was incompatible with

other competitors and required additional cost and time to be expanded and include more

devices. As time passed by, the increased usage and processing power of the office computers

made them capable of running SCADA software with new high detailed graphics.

Chapter 2

11

Furthermore, these office computers are now able to be linked with GIS systems, hydraulic

software modeling software, drawing management systems, work scheduling system and

information databases [2].

2.1.5 Operator Workstations

The Central Host computer of a SCADA system acts as a Server to the network and the

Operator Workstation is its client. It is often a computer-based hardware that runs a software

to connect to the Central Host computer. The software that connects to, accepts commands

from and sends information to the Central Host is named Human Machine Interface a.k.a.

HMI. The operators are using the HMI software to request certain actions by the Operator

Workstations based on the information that they have from the Central Host. A SCADA

software that combines all factors of design, speed, performance, integrity is most likely

successful. Of course, this increases the cost of the software which also comes with the

complexity and scalability of the SCADA system [2].

2.1.6 Software

The critical needs and requirements of a SCADA system leads to two software design

implementations, a proprietary which is built upon a specific system platform and commercial

software that can be used with various vendors. The former solution offers control

functionality and focuses on processes and as with all hardware-specific software, it uses all

the sources of the platform while the latter, as a commercial product, offers flexibility and

compatibility over a wide range of products.

In the following scheme, we will examine the typical software used in the components of a

SCADA system.

• Central Host operating system: It is the operating system that the hardware is running

upon which the HMI software will be installed. Since the Central Host is most likely a

Chapter 2

12

computer-based hardware, this software might be a UNIX or other popular operating

system [2].

• Operator terminal operating system: It is the software that controls the Central Host

and along with that for the central host computer, it contributes to the networking of

the Central Host and the operator terminals [2].

• Central Host computer application: This is the HMI software that is run on the Central

Computer and is responsible for receiving data from and issuing commands to the

Remote Telemetry Units. All the information is displayed by a graphical interface with

various screens and control functions in order to represent to the operator the entire

SCADA state [2].

• Operator Terminal application: It is the software application that offers to the end user

to interact with the Central Host computer application mentioned before and it is

usually a subset of it [2].

• Communications protocol drivers: The Field devices and the Central Host computer

need to communicate in the same manner so that the exchanged data are always in the

right interpreted form for both parties. The software that plays this role is the protocol

drivers [2].

• Communications network management software: As in every system that is expanded

beyond a Local Area Network, a software is needed to be in control of the

communications network and also to test them for latencies and failures [2].

• RTU automation software: Even though these units receive command and measure

data, they still have some software or firmware that runs automation applications and

data processing tasks within the unit. These tasks are local and the local staff maintains

them [2].

Chapter 2

13

All the aforementioned software is part of the SCADA system that is defined, developed,

designed, deployed and tested according to its needs [2].

2.2 Architecture of SCADA systems

The components of a SCADA system consist of computer-related components therefore the

entire system follows the evolution of the Information Technology. As IT evolves, SCADA

systems also enjoy its benefits and creates distinct generations of architectures. From the 1960s

till today, SCADA has met three main phases of development, central, distributed and

networked architectures or generations [3]. In the following paragraphs, a sharp description

of these architectures will take place:

1. First Generation - Monolithic

2. Second Generation – Distribution

3. Third Generation – Networked

2.2.1 Monolithic SCADA systems

In the beginning of SCADA systems, the networks, as we know them today, were fictional

since the concept of a main computer was the dominant model of those days. As a result, a

Monolithic SCADA system was existent with no connectivity to any other system but only to

its RTUs. Even though there was a remote communication, via WAN, the solo purpose of

this implementation was to simply achieve communication with the field device and nothing

else, no other form of data could be transferred [2].

The form of communication was a specific protocol that was designed and deployed by the

RTU vendor and its simple target was to command the device and acquire its data without any

further functionality or future use. The connections to the Central Host were through the bus

level through an adapter. There was a second Central Host in parallel with the primary one

which only monitored its mirror and in case of a failover, the redundant Host took over. This

was the redundancy plan of the Monolithic SCADA systems. In the following Figure, an

overview of a 1st generation SCADA architecture is presented [2].

Chapter 2

14

Figure 2: First generation SCADA system – Monolithic [2]

2.2.2 Distributed SCADA systems

The distributed next generation SCADA systems were based on distributed processing power

by means of functionality separation. Multiple typical computers were performing specific

processes and were interconnected via a LAN to exchange information. Processes like RTU

communication, Human Machine Interface software for the operators, calculations or

database maintenance were some of the many that the next generation SCADA systems were

performing. By distributing the tasks, the entire architecture enjoyed more combined

processing power than a single powerful unit could reach [2].

The communication among the mini-computers was achieved via a LAN interface but

implemented only locally. The vendors created their own protocols and optimized the traffic

Chapter 2

15

among the computers but this in turn created incompatibilities in connecting other vendors’

products [2].

A distributed architecture offered more than combing CPU power and also increased

redundancy. The next generation SCADA system had many computers using the HMI and if

one failed for any reason, others could instantly take place by simply using the same software

without even monitoring for the failover. The Central Host was a distributed set of mini

computers and this upgraded its entire infrastructure to the core of the system but the

hardware, software and peripheral devices were still to be provided by the vendor, not to

mention that the WAN interface remained intact and a step behind this evolution. The field

devices were still using the limited protocols and the specific network traffic they were built

for [2]. A typical 2nd generation SCADA system is shown in the figure below:

Figure 3: Second generation SCADA system – Distributed [2]

Chapter 2

16

2.2.3 Networked SCADA systems

The evolution of SCADA systems, as aforementioned, is affected by the IT pioneer. The

second-generation systems suffered from limited RTUs which only performed specific

operations and the main computers, except from moving one step further to

intercommunication, were facing the vendor-specific casualties of their battle for the market

domination. The need to connect peripheral devices of different vendors brought the

utilization and acceptance of open standards, eliminating the cumbersome logic of vendor-

selected hardware [2].

Also, the technological evolution managed to extend the SCADA functionality from the Local

Area Network to the Wide Area Network, thus putting the RTUs into the system by

introducing the IP protocol for the communication. Vendors were now able to manufacture

field devices that use Ethernet connections and by this, the role of the communications

computer differs from the rest processes [2].

As with previous generations, the redundancy of the system needs to be assured. The

distributed systems offered great reliability if a computer with a certain functionality failed but

in a not so rare scenario of a total disaster, there was no back up plan. Distributed SCADA

systems offer the advantage of extending the aforementioned redundancy from different

computers to different physical locations that are interconnected. Therefore, in a total disaster

of one site, another could take place and in Critical Infrastructures, this is an enormous

advantage compared to previous generations [2]. The figure depicts a typical networked

SCADA system.

Chapter 2

17

Figure 4: Third generation SCADA systems – Networked [2]

2.3 SCADA communication protocols

The SCADA basic architecture consists of a Central Host, which runs an HMI software, and

various RTUs that collect information and receive commands from the central operators. A

SCADA communication protocol is the means for data transferring and command issuing in

a master/slave architecture. There are three most used protocol standards, IEC 60870-5 which

is particularly common in Europe and will be the central focus of this thesis, ModBus and

DNP3 most frequently used in the energy sector. All the aforementioned protocols are based

on TCP/IP [4].

Chapter 2

18

2.3.1 IEC 60870-5

This open standard is created by the International Electromechanical Commission and was

launched in 1995 under companion name IEC 608705-5-101. Almost six years later, the IEC

60870-5-104 companion was used, leaving most of the higher application level functions and

data objects intact but it introduces the definition of data transports of the protocol’s messages

through a network [4]. However, the transmission of messages is carried out without

encryption, in clear text and without any form of authentication thus that it relies on TCP/IP

which already has cyber-security issues. [5]. In the following paragraphs, a short but essential

description of the 60870-5-104 structure will be explained.

The protocol frame structure is named APDU which stands for Application Protocol Data

Unit and consists of two parts: The Application Control Protocol Information (APCI) and

the Application Service Data Unit (ASDU) [4]. The three control types that are used,

structured in the Least Significant Bits, are Numbered Information Transfer (I-format),

Numbered Supervisory Functions (S-format) and unnumbered Control Functions (U-format)

with values 00, 10 and 11 respectively [6]. A figure below details in graphic the entire format.

Figure 5: IEC 60870-5-104 telegram format [6]

The ASDU structure consists of two objects, the data unit identifier and the data payload of

the information object. The data unit identifier in turn consists of the Cause of Transmission

Chapter 2

19

field (COT) which is used by the destination to interpret the carried payload, the address that

determines the data’s identity, the Variable Structure Qualifier and lastly the Type of data.

The Type ID field is comprised of an octet that represents information type, defined by IEC

and it is categorized into 6 groups as shown and explained in Table 1 below.

Figure 6: ASDU message structure under IEC 60870-5-101 [7]

Type ID range Group

1-21

30-40

Process information in monitoring direction

Process telegrams with long time tag

45-51

58-64

Process information in control direction

Command telegrams with long time tag

70 System information in monitoring direction

100-107 System information in control direction

110-113 Parameter in control direction

120-127 File transfer

Table 1: Type ID groups under IEC 60870-5-101 [6]

Chapter 2

20

In order to further understand the Types of ASDU, the group of Parameter in control direction of

Table 1 is presented in the following Figure.

Figure 7: Group of messages in information in control direction [6]

The Variable Structure Qualifier bit specifies the method of addressing the information objects.

A value of 0 indicates that the ASDU may consist of one or more than one equal information

object. The number of objects defines the number of information objects and is binary coded.

A value of 1 indicates that there is a sequence of equal information objects that originate from

the information object. The information elements are identified by increasing numbers +1

from the offset. The number of objects is also binary coded [6].

The Cause of Transmission (COT) field directs the ASDU to a specific application task to be

processed. It is important to underline that the value of zero is not used. There are various

indications for the COT data field such as periodic, spontaneous, activation and data transmission.

The entire list is detailed in [6]. It is important also to mention that there is a test flag and a

P/N bit to indicate Positive and Negative values.

Finally, the IEC 60870-5-104 protocol is by default assigned to the 2404 TCP port [6].

Chapter 2

21

2.3.2 Modbus

Gould Modicon (now Schneider Electric) developed the Modbus protocol back in 1979 and

according to a survey nearly in 2004, more than 40% of industrial applications were using the

protocol. At the same period of time around 20 to 30 manufacturers were producing

equipment with the Modbus protocol and combined with the previous survey’s results,

Modbus protocol can be regarded as a de facto standard for industrial systems. It’s worth

mentioning that there is also the Modbus plus protocol [7].

Technically speaking, Modbus is using the master/slave principle with only the master starting

the transaction. The protocol specifies the Protocol Data Unit (PDU) which consists of a

function code and the data field, regardless of the communication layers. Some basic functions

are depicted in Figure 9. The communication channel is using frames for transmission and the

information of the message on master’s behalf contains the address of the receiver, what the

receiver must do and the necessary data to perform the assigned command. The protocol also

implements an error mechanism through parity, redundancy check or CRC. The reply message

contains the corresponding information; the slave address, the action it performed, what was

the result of the action and the error check mechanism. The two additional fields which expand

the PDU, the address and the error mechanism, implement the Application Data Unit as

shown in Figure 8. The messages can be exchanged in two ways, a) ASCII, which is readable

and b) RTU which is more compact and faster due to its binary form being half in size

compared to the ASCII mode. The RTU is the preferred mode in the industry [7].

Figure 8: General Modbus Frame [8]

Chapter 2

22

Figure 9: Modbus Function Codes' descriptions [4]

The Modbus organization, Modbus.org, extended the protocol in order to work with TCP by

encapsulating the PDU with the Modbus TCP ADU, using the 502 port, and by adding it an

extra header called Modbus Application Protocol (MBAP). The following Figure shows the

Modbus TCP ADU [4].

Figure 10: Modbus TCP ADU [8]

Chapter 2

23

In short, the MBAP header consists of 4 fields, described in the following table.

Fields Length Description Client Server

Transaction

Identifier

2 Bytes Identification of a

MODBUS

Request /

Response

transaction.

Initialized by

the client

Recopied by the

server from the

received request

Protocol Identifier 2 Bytes 0 = MODBUS

protocol

Initialized by

the client

Recopied by the

server from the

received request

Length 2 Bytes Number of

following bytes

Initialized by

the client

(request)

Initialized by the

server (response)

Unit Identifier 1 Byte Identification of a

remote slave

connected on a

serial line or on

other buses.

Initialized by

the client

Recopied by the

server from the

received request

Table 2: Modbus MBAP Header [8]

2.3.3 Distributed Network Protocol 3 (DNP3)

It was in the early 90s when Harris Controls Division, Distributed Automation products

developed the DNP3 open protocol to finally release it in November 1993 to the industry

based DNP3 Users Group. The protocol gained wide acceptance in the industry in various

geographical regions like North and South America, South Africa, Asia, Australia and New

Zealand. It is also very popular in Europe where it competes the IEC protocol with the latter

being widely used there. It is worth to mention though that DNP3 is accepted in a broader

Chapter 2

24

range of industry applications such as water/waste, security and oil & gas while the IEC

protocol is mainly linked with the electrical distribution industry [7].

The DNP3 protocol is specifically designed for SCADA applications and its purpose is to

transfer relatively small packets of data in a reliable way and in a deterministic order. The

benefit of being an open standard is that it offers interoperability when it comes to

manufacturers. A SCADA system using the DNP3 protocol is not required to own particular

models of a specific manufacturer. The RTUs of one supplier can communicate with IEDs of

another supplier which helps the administration of the system to choose products based on

an economic or a specific upgrade factor [7].

The system topology of a DNP3 protocol includes the Master/Slave scheme, Multidrop from

one Master, Hierarchical with intermediate data concentrators and multiple Masters, as

depicted in Figure 11 below [7].

Figure 11: DNP3 system topologies

The protocol is a four-layer subset of the OSI 7-layer model. The layers are the application,

data link, physical and pseudo-transport. The latter includes routing, flow control of data

packets and transport functions like error-correction and assembly/disassembly of packets.

The Data Link uses two Start Bytes to help the receiver understand where the frame begins.

Chapter 2

25

It also contains a 1-byte field of length which specifies the number of octets until the end of

the frame excluded the CRC section. Note that the data link layer may only handle a maximum

of 250 data octets. A field called Link Control is used for coordinating link layers and has

length of 1 byte. The Destination Address is a 2-byte field and identifies the receiver of the

frame while the Source Address field identifies the sender. The two-byte addressing scheme

provides a total of 65.536 addresses for the DNP3 protocol. An explanatory figure of the Data

Link frame of DNP3 is shown in Figure 12 [4].

Figure 12: DNP3 Data Link Frame [4]

The application layer is used also to serve the receiver’s buffer size by breaking down the

messages to 2048 or 4096 bytes. The fragment of 2048 bytes may also be broken into 9 frames

for the transport layer before passing on to the Data Link layer [4].

2.4 Vulnerabilities

SCADA systems are designed to run for years without rebooting and they often have limited

resources (connection speed or processing power) which makes delays not an option.

Therefore, antiviruses or cryptography will offer additional computational costs and latency in

traffic due to extra packets needed correspondingly. They also carry the burden of being built

upon isolated networks or air-gapped networks, meaning that there was no security mindset

[9]. The IEC 60870-5-104 protocol transmits its messages in clear text and there is no

authentication mechanism, while all this happens over TCP which already has security issues

by itself [5], making eavesdropping a very easy task once being inside the network. Modbus

and DNP3 also suffer of the same vulnerabilities. All previous factors create a very ideal

Chapter 2

26

environment for attackers, especially when the outdated protocols, software and machines are

connected to the internet because management decided a rough modernization of its Industrial

Control System to enjoy new capabilities, ignoring the exposure of the entire system to a highly

risk environment.

2.5 Real Cyber-attacks: The case of Stuxnet

In this chapter, I will shortly describe the most famous SCADA worm ever created till now,

its history and reasons of its creation and present the technical details of this sophisticated

cyber weapon.

2.5.1 Political Background and the creation of an ICS cyberweapon

The origins of the Stuxnet idea goes back to 2006 when the White House already had a strong

belief, given by its agencies, that Iran was enriching Uranium in Natanz, a power plant using

peaceful nuclear energy. At that time, president George Bush could not sustain another

military involvement in the Middle East. He was complaining to his secretary of State

Condoleezza Rice and his national security adviser Stephen Hadley, that he only had two

options regarding Iran’s nuclear activity: let them get the bomb or go to war against them to

stop it. But the president of the U.S. was repeatedly asking for “a third option”. This ignited

an idea in the NSA’s headquarters; to secretly create a cyberweapon and infect the SCADA

system of the entire plant with a worm that would eventually destroy its centrifuges without

Iranians noticing about it [10] [11]. Surpassing the spies and the political background story,

Stuxnet was a state of the art cyber weapon that had a very specific target but also a very

difficult one. It is considered even now, the most famous industrial worm that aimed SCADA

systems and the reason is that its creators are unofficially said to be nation state actors, many

claiming to be the U.S. and Israel. The NSA refers to it as Olympic Games or OG while

Stuxnet is the name given by security response personnel [11].

Chapter 2

27

2.5.2 Technical analysis of Stuxnet worm

Stuxnet’s attack vector is divided in 3 steps. At first, it targeted Microsoft Windows machines

and their networks, secondly it was repeatedly seeking for Siemens Step7 software that

programs Industrial Control Systems and finally it compromised the Programmable Logic

Controllers. The first attack vector was implemented by using the 0-day LNK vulnerability

which is the shortcut extension in MS Windows in order to spread itself into USB sticks. The

Natanz nuclear facility was an air-gapped environment meaning no connectivity to the external

world therefore a USB stick was a physical and practical way to infect the isolated system. The

second attack vector included the shared printer spooler vulnerability to make sure the worm

was being spread across the entire network. The last step used two vulnerabilities that were

about privilege escalation in Windows operating systems [12]. A total of 4 zero-days exploits

were used at the same time in a single worm, making it an extremely sophisticated piece of

work. Besides this cutting edge code, the worm was also using among others a few significant

features like a custom encryption algorithm, it was running in memory – one of the first

innovations of that era, it had antivirus evasion techniques, it used an uninstall mechanism set

to self-destroy the worm on the 24th of June 2012, it contained man-in-the-middle code to

attack the SCADA software and finally, it deployed legitimate digitally signed device drivers

which were physically stolen by two private companies [13].

Digging more into the logic and its code, Stuxnet was a 500-kilobyte computer worm that

targeted only Siemens S7 PLCs by searching their fingerprint. When the worm found one, it

loaded rogue code to the controller and even though 100.000 copies were found worldwide,

none became active [14]. It instead was searching for a hard-coded value of 6 lines of

centrifuges, a total of 164 which was the exact number of the configuration of the Natanz

nuclear factory [11].

Chapter 3

28

3. Approach and attack vectors

This chapter describes and analyzes classic but serious attack vectors against SCADA systems

and specifically IEC 60870-5-104 protocol which is mostly used in Europe. A real-time

simulation environment is implemented, with several virtual machines connected to the same

virtual LAN. The adversary is performing the attacks through a virtual machine, already

connected to the same LAN of the SCADA simulated software. In this project, I did not

examine attack methods to infect the SCADA system from external networks; the attacker is

considered to be already a part of the local network.

3.1 System setup

The system consists of two different sections, the virtualized SCADA simulators and the

adversaries. Both sides are connected to the same virtual LAN, named VMNet5 with a range

of IPs among 192.168.5.0/24 but all machines have been given static IPs, described in

Appendix A along with all the rest specifications.

The SCADA side which will be the target, consists of two virtual machines running on

Windows 7, a very stable operating system which is compatible for both SCADA simulator

programs. To avoid further evasion techniques and to achieve unobstructed communication,

both integrated firewalls were turned off.

The attacker side, consists also of two virtual machines, running Kali Linux 2017.1 and Ubuntu

16.04 LTS operating systems. The former includes over 600 penetration testing tools, capable

of performing an enormous range of attacks of various vectors but in this thesis I will use only

a slight portion of these tools. The latter is used for compatibility reasons, since the custom

Ettercap plugin used to perform MiTM attacks was unable to be compiled smoothly by the

Kali Linux platform.

Chapter 3

29

The next figure displays an overall view of the entire system in simulation and attacking.

3.2 System implementation

The entire system is hosted in a virtual environment which is implemented using VMWare

Workstation v12.5. The virtualization software is running on a SONY Vaio laptop with the

following specifications. During the setup, I made sure that all VM instances are able to run

simultaneously without delays and that they were interconnected.

System Specifications

Operating System Windows 10 Home 64bit

CPU Intel i7 4500U at 1.8 GHz

RAM 8 GB DDR3

Hard Drive 500GB SSD

Virtualization Software VMWare Workstation v12.5

Table 3: Host computer specification

In order to ensure an air-gapped environment, I created a new Virtual adapter called VMNet5,

configured in Host-only mode and using IP range 192.168.5.0/24. All virtual machines were

connected solely to this adapter.

Attacker side Target side

Kali Linux

VMNet5

Virtual LAN

Windows 7

IEC Server

Ubuntu

Windows 7

QTester104

Figure 13: Overview of SCADA simulated system and attackers

Chapter 3

30

3.2.1 SCADA side

The following descriptions are about the Virtual Machines and their running software that

simulates a typical SCADA communication through the VMNet5 virtual host-only adapter.

3.2.1.1 IEC Server Virtual Machine

This virtual environment is used to run the IEC Server 104 software which simulates a field

device (RTU) using the IEC 60870-5-104 protocol in a SCADA system. The figure number

14 shows the Graphical User Interface which is separated into 3 horizontal panels.

The top panel (from left to right) contains i) a short but not complete list of IEC 60870-5-104

commands which can be added or removed to the middle panel with the adjacent buttons, ii)

a tick-box to pause the simulation (if unchecked), iii) the buttons to start or stop the simulation

using the port number in the text field between them, iv) and the save or load buttons which

offer the option to store and retrieve configurations.

The middle panel is a blank area where all the commands are displayed after being added and

can be further configured. It contains all the necessary fields of the IEC protocol plus the

option to provide automated simulation via the tick-box called Sim. The button SIMParam.

offers automation options which are time period and value.

The lower panel displays various information options such as the data being sent to the client,

new connections, a list of clients that are connected to the IEC Server and the option to load

a simulation file and start simulating it.

Figure 14: IEC Server 104 GUI

Chapter 3

31

The tool, at version 1.0.3-35, implements 20 messages in total, 12 of which are monitor

messages while the rest 8 are control ones. The table below lists the message types and gives

a short description for each one [15].

IEC SERVER v1.0.3 MESSAGE IMPLEMENTATION

Monitor Messages Control Messages

M_SP_NA Single-point information C_IC_NA Interrogation command

M_DP_NA Double-point information C_CI_NA Counter interrogation command

M_ME_NA Measured value, normalised value C_SE_NA Set-point command, normalised

value

M_ME_NB Measured value, scaled value C_SE_NB Set-point command, scaled value

M_ME_NC Measured value, short floating point value C_SE_NC Set-point command, float value

M_IT_NA Integrated totals C_SC_NA Single command

M_SP_TB Single point information with time tag C_DC_NA Double command

M_DP_TB Double point information with time tag C_CS_NA Clock synchronization command

M_ME_TB Measured value, scaled value with time tag

M_ME_TD Measured value, normalised value with

time tag

M_ME_TF Measured value, short floating point value

with time tag

M_IT_TB Integrated totals with time tag

Table 4: IEC Server v1.0.3 Message Implementation

3.2.1.2 IEC Client Virtual Machine

This virtual environment is used to run the QTester104 software. It is a software that receives

data from a field device (RTU) using the IEC 60870-5-104 protocol in a SCADA system. In

this thesis, it is connected to the IEC Server 104 and displays all the simulated information the

latter is sending. The Graphical User Interface is separated into 3 panels.

The top panel contains connection options as well as command options. In the field Remote IP

Address, the RTU’s IP is entered. By default, the software uses port number 2404 to connect

to the IEC Server but this may be modified in the file qtester1-4.ini along with other options.

Chapter 3

32

In this project, the default value of 2404 is selected. The fields below the connection options

are used to send commands to the IEC Server by entering values and specifically the Information

OBject Address value, the value of the command and the type of the command by selecting it

from a list. The QTester104 at version 1.23 implements 13 commands in control direction.

The lower left panel, displays a scrolling view of the communication log with the Servers as

well as any messages regarding new connections, disconnections and errors.

The lower right panel, displays the information received from the Server and specifically the

Address of the Object (ΙΟΒ), its Value, its command Type, the Cause Of Transmission, any Flags

that accompany the message, the number of messages received by the Server for this IOB

(Count) and the time that were received. In the following figure, the GUI of the software is

already showing some values after its successful connection with the IEC Server 104.

Figure 15: QTester104 GUI displaying received values from the IEC Server 104

3.2.2 Attacker side

The next two Virtual Machines are part of the attacker’s side and contain modified open source

tools to deploy the attacks against the SCADA side. As aforementioned, the operating systems

in use are Kali Linux and Ubuntu Linux, both using tools able perform to perform attacks.

3.2.2.1 Modified OpenMUC j60870 console client

The QTester104 software does not implement all commands of the protocol, so I had to use

the j60870 open source software to deploy more attacks and to demonstrate the variety of

options an attacker has at his disposal. This tool was used in Kali Linux operating system.

Chapter 3

33

The j60870 simulator is implemented using Java programming language, therefore I further

developed the code to create the commands I needed for the tests. The software comes

bundled with only 2 protocol commands if run without development. I downloaded, stored

and extracted the bundle at Kali’s Desktop folder, creating folder “j60870”. In the subfolder

“run-scripts”, I executed the script named “j60870-console-client -h 192.168.5.3 -p 2404” and

connected to the already running IEC Server 104 at that specific IP and port. The figure below

shows the default console menu.

Figure 16: OpenMUC j60870 console client default menu

I opened the source file “ConsoleClient.java” with Sublime text editor to make the necessary

modifications. The file is located in folder “j60870/src/main/java/org/openmuc/j60870/app”.

After inspecting the code and understanding its logic through the documentation [16], I added

the three commands I needed to implemented the attacks. This was done in the following

steps.

First, I added the keys that will correspond to the new commands; they are the last three, as

shown in Figure 17.

Figure 17: Adding keys for the new commands in j60870 console client

Chapter 3

34

Afterwards, I imported the necessary Java classes that will be used when the user selects the

new action keys. These classes were “IeQualifierOfResetProcessCommand” and

“IeQualifierOfCounterInterrogation” and both belong to the package “org.openmuc.j60870”.

Each key corresponds to a certain action and in the ConsoleClient.java this is implemented in

a switch command. I added the last three cases that correspond to the new commands as

below.

Figure 18: The new actions that implement the new commands in the j60870 console client

In the case of the C_RD_NA_1 command, the constructor of the class required the IOB

address of the RTU. In order to provide this information to the constructor, I created an extra

command line parameter when launching the j60870 console client with argument “-iob

{number}”. Default is number 7 but unless an object has that address, the action will not be

performed.

Chapter 3

35

Figure 19: Extra argument when launching the j60870 console client

Finally, I added the actions to the actionProcessor object along with their description that will be

displayed in the main menu of the client upon launch.

Figure 20: Adding the new actions to the actionProcessor object with description

To build the entire project, I used the bundled tool called gradle and issued the command

“gradlew build”. After its successful build, I relaunched the client to check the new menu and

functionality. The next figure displays the result.

Figure 21: The new modified menu of the j60870 console client

Chapter 3

36

3.2.2.2 Custom Ettercap filter

One of the powerful features Ettercap has, is the development of custom plugins or filters

that can perform certain actions using programming language or filtering traffic. After studying

its manual [17], I wrote a custom Ettercap filter in order to perform an isolation attack. After

the full update of Kali Linux, Ettercap was at its most recent version 0.8.2. Upon launch, I

selected “Sniff->Unified sniffing” and then the eth0 local interfacewhich connects to VMNet5

adapter. The software created a new menu with all the possible sniffing features available. The

main concept for a Man in The Middle Attack is to scan for all the subnet clients, select the

targets and ARP poison them. The Figure below displays the result of the command

“Hosts->Scan for hosts” and then “Hosts->Hosts List”.

Figure 22: Ettercap's list of hosts after scanning the local subnet

From this point, the tool offers the option to select 1 or 2 targets to ARP poison by choosing

from the menu “MiTM->ARP Poisoning”.

I created a file named “isolation.if” and placed it into the folder “/usr/share/ettercap”. To isolate

the IEC Server’s traffic, I set a double if statement that checks the IP of the Server and the

Chapter 3

37

IEC port in use. In a real-world environment, a reconnaissance will have to take place first.

For debugging reasons, I printed a message to ensure that the if statement was accessed by

Ettercap.

Figure 23: Custom Ettercap filter for IEC Server traffic isolation

As this is the source code for the filter, I compiled it using the etterfilter command “etterfilter

isolation.if -o isolation.filter”, where -o means output and “isolation.filter” is the name of the

compiled file which is now a ready to use filter.

3.2.2.3 Ubuntu Virtual Machine

This VM is also part of the attacker side because it is used to launch a Man in The Middle

attack using Pete Maynard’s version of Ettercap with a specific plugin, as described in [18]. This

version of Ettercap is available online at Github (https://github.com/PMaynard/ettercap-104-

mitm/blob/master/plug-ins/104_snort_alert/104_snort_alert.c) but as source code and not as a

ready-to-deploy binary. I used Ubuntu instead of Kali Linux because there was a digital

Chapter 3

38

certificate issue while trying to build the source code of Ettercap and I decided not to change

any configuration on the Kali platform but instead, create a new, clean and fully updated

Virtual Machine and use Ettercap from there.

I used the “git clone” command to download Ettercap from Github [19] to the Ubuntu’s

Desktop folder. I used the internal instructions of the “INSTALL” file to prepare and build

the source code using the bundled dependencies and not the ones provided by the system.

This was achieved by issuing the command “cmake -DSYSTEM_LIBS=Off ../”. Within the

“plug-ins/ 104_snort_alert” folder, there exists the file “104_snort_alert.c” which is the plugin of

the attack. The scope of the plugin Pete Maynard developed is to trigger certain Snort signatures,

which are not part of the current project, by modifying the traversing data in an IEC 60870-

5-104 communication after the MiTM attack takes place. The code is written in C language

and the figure below reveals a part of it at the section of TCP data modification.

Figure 24: Part of source code of Ettercap custom plugin for IEC 60870-5-104 data modification

When Ettercap is performing a MiTM attack, as described previously and the plugin is active,

the traversing payload will be altered in purpose with invalid data. The plugin is loaded from

Ettercap menu after following all the steps for a successful ARP poisoning and selecting

“Plugins->Manage the plugins” and then double click on “alert_snort_104”. Upon successful

activation, an asterisk will appear next to the plugin’s name.

Chapter 3

39

Figure 25: Activated plugin for MiTM on the fly data modification

Chapter 4

40

4. Attacks and Results

4.1 IEC 60870-5-104 attacks

In the following tests, we will perform various kinds of attacks against the SCADA targets

which are using the IEC 60870-5-104 protocol (from now on 104). The main purpose is to

show few vulnerabilities of the protocol and to raise the concern around its lack of security.

4.1.1 Typical communication

Before beginning any attacks, it is necessary to setup the typical required SCADA network

between a substation and a IEC 104 client, establish their communication and make sure that

everything is working as if there is no attacker.

The substation (from now on Server) will be simulated in its VM with static IP 192.168.5.3 by

starting the IEC 60870-5-104 Server on the default port 2404. In order to have continuous

flow of data traversing through their internal network, the simulation mode of the Server will

be enabled by adding an IEC field of type M_SP_NA_1 and adjust simulation properties to

change its value every 5 seconds as shown in Figure 26.

Figure 26: IEC 104 Server simulation options

Chapter 4

41

Note: These values are used for test purposes and do not necessary reflect to actual SCADA

environments; they are used in order to assure the communication and automation of the

attacked system.

The IEC client side (from now on Client) will be simulated in its VM with static IP 192.168.5.4

by starting the QTester104 software and use the appropriate settings to connect to the Server.

Once connected, the lower left pane of the software displays the auto-scrolling view of logged

data with the Server that it communicates (Figure 27).

Figure 27: Auto-scrolled communication log of IEC 104 Client with the Server

In order to inspect the 104 protocol further, Wireshark is used to capture packets from the

local interface as shown in Figure 28.

Chapter 4

42

Figure 28: Wireshark captured traffic of IEC 104 protocol in local interface VMnet5

4.1.2 Message flooding

This simulation produces a flood of M_SP_NA_1 IEC 104 messages from the Server to the

Client, an attack which is based on Spontaneous Messages Storm malicious communication

described by Y. Yang in [20]. The Server is configured to send the message at every second,

as shown in Figure 29 below.

Figure 29: IEC 104 Server simulation configuration for sending 1 M_SP_NA_1 message to the Client every 1 second

Chapter 4

43

I used the previous technique to ensure that packets are traversing the local network resulting

in large amounts of false spontaneous messages sent from a server to overwhelm the control

server or control room operators [20].

4.1.3 SYN attack to achieve a Denial of Service

In the following experiment, the famous tool hping3 will be used to flood the local network

with SYN packets and specifically the IEC Server machine, a very usual DoS attack. In order

to be sure that the target has all necessary resources, I temporarily increased the RAM size to

1536MB and added a 2nd Virtual Core to the CPU. I wanted to assure that the attack is

successful due to the lack of network bandwidth and not of memory or CPU power. The

command used by the attacker (Kali Linux) was: hping3 --flood -S 192.168.5.3 where --flood

means send packets as fast as possible, -S to send SYN packets to the IP of the target. In its

normal simulation behavior, the system uses almost 0% CPU, around 573MB or RAM and

almost 0% network traffic of the 1Gbps bandwidth. After running the SYN flood attack for

5 minutes, the system resources changed as in Figure 6.

Figure 30: System resources before the SYN attack Figure 31: System resources after the SYN attack

With an average increase of around 20% in CPU, and an average increase of 2.5% in the

network bandwidth, the system continued to simulate with its Client as normal. It is important

to mention that the Client was receiving simulated messages from the IEC Server as expected

in paragraph 4.1.1. This was not a successful DoS attack but there is strong indication that one

single attacker has managed to increase the workload of the system with a SYN flood. We

must also bear in mind that the communication channel between the Client and the Server has

Chapter 4

44

much less bandwidth than 1 Gbps and the Server or the RTU in real environment has much

fewer resources against our simulated system. Therefore, a SYN flood attack would have had

much more effect in a real testbed with field devices. Last but not least, if more attackers were

active against the Server, like if a Distributed DoS was happening, the Server would probably

fail to offer its service; this is very difficult to achieve in Virtualized environments like this one.

4.1.4 Control command or Remote Adjustment Command from Unauthorized client

An unauthorized client could send a Control or Adjustment command to a Server, in this

particular experiment using the C_SE_NA_1 Set Point command, Normalized Value. To create an

unauthorized Client, I modified the static IP of the authorized Client to 192.168.5.5, an IP

which is not supposed to be part of the recognized network. QTester104 was used with the

following configuration. The 104 Server had previously the value 10 and the command from

the unauthorized client set it to 600.

Figure 32: Unauthorized client sending a Set Point command with QTester104

The QTester104 confirms the acceptance of the value from the 104 Server (it calls it slave).

Below there is a screenshot of the scrolling log file.

Figure 33: QTester104 confirms the reception of the new Set Point Command value from the 104 Server

Chapter 4

45

The 104 Server has changed its value for the device #19 accordingly as clearly shown in the

following figure.

Figure 34: 104 Server’s new value after the Set Point command of the unauthorized client

As stated in [20], this is an illegal action and would trigger the signature-based Snort rule

with sid: 6666606.

4.1.5 Single command from unauthorized client to a Server

I followed the exact same configuration as the previous experiment but this time using the

Single command C_SC_NA_1 from an unauthorized client. To create an unauthorized Client,

I modified the static IP of the authorized Client to 192.168.5.5, an IP which is not supposed

to be part of the recognized network. The Qtester104 was used again to send the command

which was once more accepted by the 104 Server and changed its initial value from 0 to 1.

Figure 35: Unauthorized client sending a Single command with QTester104

This is an illegal action which also belongs to the aforementioned signature-based Snort rule

with sid: 6666606 [20].

Chapter 4

46

4.1.6 Unauthorized Read Command to the Server

In this experiment, the attacker sends a Read command C_RD_NA_1 to a Server. The client

(attacker) is not authorized to the SCADA system, therefore he should not be able to receive

any information from the Server about a field device, as described at page 3 of Yang et al in

[20]. The Read command (102) is not supported by QTester104 so I had to implement it by

using the modified OpenMUC j60870 console client. After issuing the Read command the

following response was received from the Server (Figure 36).

Figure 36: Unauthorized client issuing a Read command via OpenMUC client

4.1.7 Unauthorized Reset Process Command to the Server

The attacker is able to send the Reset Process command C_RP_NA_1 to an IEC Server 104.

This command is implemented through the OpenMUC j60870 console client after certain

modification. After issuing the command by pressing the corresponding key, in this case “r”,

the following message was received (at the end of Figure 37) and the connection stream from

the Server was closed.

Chapter 4

47

Figure 37: Unauthorized client issuing a Reset Process command via OpenMUC client

4.1.8 Counter Interrogation Command to the Server

In this experiment, the attacker sends a Counter Interrogation command C_CI_NA_1 to a Server.

The Counter Interrogation command (101) is not supported by QTester104 so I had to implement

it by using the modified OpenMUC j60870 console client. After issuing the command the

following response was received from the Server to the attacker (Figure 38).

Figure 38: Unauthorized client issuing a Counter Interrogation command via OpenMUC client

Chapter 4

48

4.1.9 Man in the middle attacks

The so-called Man in The Middle is α very well-known technique used in a variety of attacks;

especially wherever the ARP protocol is used. The Media Access Control a.k.a. MAC addresses

are implemented in the link layer while the IP protocol is implemented in the network layer.

The Address Resolution Protocol is a protocol used to resolve the binding between these two

layers. Each device/client is storing a table of pairs MAC/IP into its memory.

The lack of security in this mechanism is that there is no authentication and every client stores

whatever is broadcasted from anyone in the same network (within a switch). The ARP poisoning

technique is implemented when a malicious user sends fake ARP messages to specific or all

the targets, impersonating himself as a different user therefore putting himself in the middle

of the communication i.e. a router and a client. At each test, I changed the MAC address of

the attacker to a random one using the command “macchanger -r eth0”. It is also possible to use

macchanger to print a list of hardware vendors and set a MAC accordingly to trick the victim in

case of forensics.

Ettercap is used during the forth-coming experiments in order to perform a few Man in The

Middle attacks (from now on MiTM) to the simulated SCADA system. It is a powerful open

source tool that makes use of filters to specify rules for traffic sniffing and spoofing and also

various plugins written in C language to perform certain actions during live sniffing. The

greatest power of these extras of Ettercap is that a user can write his own filters or plugins.

4.1.9.1 IEC Server 104 isolation

In this experiment, I used the custom filter “isolation.filter” to isolate the IEC Server’s traffic

from everyone in its Virtual LAN. In order to do this, I used ARP poisoning to perform the

MiTM attack and then applied the custom filter. Before initiating the attack, I used the tool

macchanger to modify my MAC address and issue a random one with option -r, as shown in

Figure 39.

Chapter 4

49

Figure 39: macchanger tool giving a new random MAC address to the attacker on interface eth0

I launched Ettercap for interface eth0, scanned for hosts in the local subnet and added as

targets the IEC Server’s IP address and the Client’s IP address. I checked that the ARP

poisoning attack was successful by entering arp -a in the Server’s command line (Figure 40).

Figure 40: Server's ARP table showing the association of Client's IP with attacker's MAC

Afterwards, I loaded the custom filter “isolation.filter” to isolate the Server’s IEC traffic by

dropping its packets. The log panel of Ettercap shown in Figure 41 displays the custom

message.

Figure 41: Ettercap log panel showing the packet drop from IEC Server

Chapter 4

50

The attack resulted in the disconnection of the 104 Server which is also verified in the

QTester104 log file in Figure 42.

Figure 42: 104 Server disconnected after MiTM attack on filtered port 2404

After stopping the attack, the simulated environment went back to its normal communication.

This can also be considered partially as a DoS attack since one field device is unable to provide

its service to the main station.

4.1.9.2 IEC 104 Data modification on the fly

This experiment aims to intercept the traversing data of normal communication between the

104 Server and the Client and alter it on the fly with almost no delay. This is utilized with a

custom plugin for Ettercap, written by Pete Maynard [19] which is the one I also used. After

performing the MiTM attack, the alert_snort_104 plugin is activated as shown in Figure 43. The

asterisk next to its name shows that the plugin is active and running.

Chapter 4

51

Figure 43: Customized Ettercap plugin for data modification

The purpose of the plugin is to alter various fields of the ASDU of the IEC 60870-5-104

protocol in a random order with values that are unacceptable, triggering rules described at Y.

Yang et al in [20]. The log window of Ettercap is showing the corresponding messages of each

data modification that occurred (Figure 44).

Figure 44: Ettercap's message log of various data modifications in ASDU

The QTester104 is showing all the invalid received data into the scrolling log panel as in

Figure 45.

Chapter 4

52

Figure 45: QTester 104’s scrolling log panel showing protocol's replies during the MiTM attack

4.2 Results

All attack vectors are considered successful. I was able to flood the network with packets,

connect as an unrecognized client and issue commands, increase the workload of the system

and finally perform the most dangerous Man in The Middle attacks in which a device was

isolated or even worse, was accepting maliciously modified data. If the attacker has an in-depth

knowledge of the protocol, he could further parameterize the plugin in order to perform an

attack similar to what Stuxnet did in Natanz back in 2010, by showing the supervisors accepted

data while commanding the field devices with invalid values causing damage.

Chapter 5

53

5. Discussion

In this master thesis, I have been assigned to create a simulated environment to demonstrate

various cyber-attack vectors against SCADA systems. To accomplish this, I had to study the

SCADA protocols and understand the entire framework logic hidden behind. It was a difficult

task because the protocols were plenty and during the limited available time I had to choose

one with many possible vulnerabilities.

In Europe, the most famous protocols used are DNP3 and IEC 60870 [7], therefore my main

focus was to simulate real IEC 60870 traffic using open source software. The SCADA system

I created is using the IEC Server 104 software that plays the role of the field device, offering

data whenever requested or with time intervals via automated simulation. These values were

received and displayed by a client software named QTester104. There are many software

simulators online but these two collaborated perfectly even though they do not implement the

IEC 60870 protocol completely; this is the main reason I chose them to create my SCADA

framework. The second reason was that they both have GUIs, making them easier to configure

instead of resorting to character-mode environments with the need for extra code

implementation like the OpenMUC j60870. In fact, during my QTester104 configuration, I

had the chance and honor to talk to Mr. Ricardo Olsen, the author of the software through

the Linkedin social network. He helped me understand various aspects of the IEC 60870

protocol, part of its logic and configuration of the simulator.

The basis of the attacks is divided into two parts. At first, to cover various attack vectors of

our modern cyber world such as DoS, unauthorized users, Man in The Middle and at second

to reproduce the attacks that trigger some of the Snort [21] rules that are mentioned in the

paper of Y. Yang et al [20] about Intrusion Detection System for IEC 60870 SCADA

networks. To do this, I used the well-known Kali Linux operating system with an enormous

variety of penetration testing tools and an Ubuntu OS, both in Virtual Machines. I have also

developed source code in Java for the tool OpenMUC j60870 in order to implement further

commands, not supported by the QTester104 client, to perform some attacks. The

Chapter 5

54

aforementioned software includes all the commands that IEC 60870-5-104 protocol affords

but needs expansion. Another tool used for the attacks was a custom plugin written by Pete

Maynard, which I also had the pleasure and honor to talk to via emails. He greatly supported

and guided me throughout the technical issues I faced.

I consider my personal benefit from this thesis excellent and the knowledge I have acquired is

definitely precious and spherical. I have even dig into the political perspective of SCADA

attacking by reading the book of David Sanger ‘Confront and Conceal’ where the Stuxnet case

is an entire chapter. Combined with the technical knowledge, I have a strong feeling that I

have met a new IT sector that inspires me and urges me to protect it.

If I was to restart the entire thesis, I would have spent more time taking advantage of the

Metasploit [22] framework’s SCADA modules and further develop Pete Maynard’s plugin. In

general, I am very pleased with the variety of attacks and their results and I strongly believe

that I have proven the high level of knowledge I received from my university and that this

thesis fully corresponds to it.

Chapter 6

55

6. Conclusion

Nowadays, the industry sector is making extensive use of technology and various systems are

going online day by day. Their supervisors are searching new ways to monitor and command

their substations and SCADA systems are going online directly or indirectly day by day. What

is most significant is that Critical Infrastructures such as power stations, water supplies, oil

refineries are also online, a fact that has recently draw the attention to hackers and sometimes

nation state agencies. Cyber attacks in these critical systems can cause severe damage if not

disasters. It is therefore important to raise awareness around the SCADA systems’ security

and to demonstrate their vulnerabilities.

In this thesis, a simulated environment of a SCADA network is implemented with a client and

server side. This system, exchanges information in real time between the two peers using the

IEC 60870-5-104 protocol over TCP. The attacker side consists of two virtual machines that

play the role of a malicious user who is already part of the local SCADA network. In this

thesis, no external penetration techniques are presented. The main focus and goal of this

project was to perform experiments of cyber attacks against the IEC 60870-5-104 protocol.

The conclusion of all the experiments is that the protocol is vulnerable to a wide range of

attacks because it lacks of authentication in its peers and there is no data encryption on the

exchanged information between them. During the tests, an unauthorized client was connected

successfully to the SCADA network, received data measurements about a field device, isolated

a field device from its network, issued invalid commands to it and performed data modification

on the fly, an extremely dangerous attack.

Chapter 7

56

7. Future Work

There is always extra space for improvement and further investigation. This thesis was only a

big step into the world of SCADA and I have already planned plenty of expansions to this

interesting work.

One of my future work to be done could be to develop in detail the plugin made by Pete

Maynard [19] so that it examines specific measurements and change them accordingly in a

static or dynamic way based on statistics or specific purpose. Additionally, further plugins

could be developed for DNP3 and Modbus since they lack of security mechanisms.

The Metasploit project [23], used in Kali Linux, is the most used penetration testing platform

and it has plenty of SCADA modules. I would definitely examine their documentation and

study their usages so that in the future I can use more attack vectors and acquire a deeper

understanding of the entire range of flaws SCADA protocols have. This requires plenty of

work and time and it was impossible to implement it at a decent level for this thesis.

Going a step further, it would be quite interesting to check the security issues of the IEC

62351 and discover techniques that highlight any security flaws. The specific standard offers

encryption and authentication mechanisms and it would be very interesting to explore new

ways to bypass them.

57

8. References

[1] E. J. K. Colbert and A. Kott, Cyber security of SCADA and Other Industrial Control Systems,
Springer, 2016.

[2] Communication Technologies, Inc, "Supervisory Control and Data Acquisition (SCADA)
Systems," NCS, 2004.

[3] Y. Yang, K. McLaughlin, T. Littler, S. Sezer, E. G. Im, Z. Q. Yao, B. Pranggono and H. F.
Wang, "Man-In-The-Middle Attack Test-Bed, Investigating Cyber-Security, Vulnerabilities, In
Smart Grid Scada Systems," Queen’s University Belfast, 2012.

[4] G. A. F. III, X. P. Francia and A. M. Pruitt, "Towards an In-depth Understanding of Deep
Packet Inspection Using a Suite of Industrial Control Systems Protocol Packets," Journal of
Cybersecurity Education, Research and Practice, vol. 2016, pp. 5-13, 2016.

[5] Y. Yang, K. McLaughlin, S. Sezer, Y. Yuan and W. Huang, "Stateful Intrusion Detection for
IEC 60870-5-104 SCADA Security," Jiangsu Electric Power Company Research Institute, 2014.

[6] "LIAN 98(en) _ Protocol IEC 60870-5-104, Telegram structure," [Online]. Available:
http://www.mayor.de/lian98/doc.en/html/u_iec104_struct.htm. [Accessed 8 March 2018].

[7] G. Clarke, D. Reynders and E. Wright, Practical Modern SCADA Protocols: DNP3, 60870.5
and Related Systems, Elsevier, 2004.

[8] Modbus.org, "Modbus Messaging Implementation Guide V1_0b," 24 October 2006. [Online].
Available:
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf.
[Accessed 08 March 2008].

[9] E. Ciancamerla, M. Minichino and S. Palmieri, "Modeling cyber attacks on a critical
infrastructure scenario," Technical Unit for Energy and Environmental Modeling, 2013.

[10] D. E. Sanger, "Olympic Games," in Confront and Conceal, New York, Broadway Paperbacks, 2012,
pp. 188-225.

[11] A. Gibney, Director, Zero Days. [Film]. USA: Global Produce; Jigsaw productions; Participant
Media, 2016.

[12] D. Kushner, "The Real Story of Stuxnet," Spectrum, 26 February 2013.

[13] S. Karnouskos, "Stuxnet Worm Impact on Industrial Cyber-Physical System Security," in
IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society, 2011.

[14] R. Langer, " Stuxnet: Dissecting a Cyberwarfare Weapon," IEEE Security & Privacy, vol. 9, no. 3,
pp. 49-51, 2011.

58

[15] "Package org.openmuc.j60870," [Online]. Available: https://www.openmuc.org/iec-60870-5-
104/javadoc. [Accessed 8 March 2018].

[16] "Standard IEC 60870-5-104 data types - Beckhoff Information System," [Online]. Available:
https://infosys.beckhoff.com/content/1033/tcplclibiec870_5_104/html/tcplclibiec870_5_104
_telegrammstructure.htm. [Accessed 8 March 2018].

[17] "etterfilter -- filter compiler for ettercap filter files," [Online]. Available:
https://github.com/Ettercap/ettercap/blob/master/man/etterfilter.8.in. [Accessed 8 March
2018].

[18] P. Maynard, K. McLaughlin and B. Haberler, "Towards Understanding Man-In-The-Middle
Attacks on IEC 60870-5-104 SCADA Networks," Queen’s University Belfast, 2014.

[19] P. Maynard, "Alert 104 Snort plugin," [Online]. Available:
https://github.com/PMaynard/ettercap-104-mitm. [Accessed 8 March 2018].

[20] Y. Yang, K. McLaughlin, T. Littler, S. Sezer, B. Pranggono and H. F. Wang, "Intrusion
Detection System for IEC 60870-5-104 Based SCADA Networks," Queen’s University Belfast,
2013.

[21] "Snort: Open source intrusion prevention system," [Online]. Available: https://www.snort.org.
[Accessed 8 March 2018].

[22] "Metasploit Framework," Rapid 7, [Online]. Available: https://www.metasploit.com. [Accessed
8 March 2018].

[23] Rapid 7, "Metasploit Framework," [Online]. Available: https://www.metsploit.com. [Accessed 8
March 2018].

[24] K. McLaughlin, S. Sezer, P. Smith, Z. Ma and F. Skopik, "PRECYSE: Cyber-attack Detection
and Response for Industrial Control Systems," Queen’s University Belfast, Austrian Institute of
Technology, 2014.

[25] F. Skopik, I. Friedberg and R. Fiedler, "Dealing with Advanced Persistent Threats in Smart Grid
ICT Networks," Austrian Institute of Technology, 2014.

59

9. Appendices

• Appendix A – Virtual Machines’ specifications and settings

• Appendix B – Tools

• Appendix C – Code

60

Appendix A – Virtual Machines’ specifications and settings

This appendix is used to describe the Virtual Machines’ specifications and simulation

software that was used during the tests

Appendix A

61

SCADA Targets’ specifications

Role: IEC 60870-5-104 Server

Operating System Windows 7 64-bit

CPU 1 single core virtualized

Memory 1 GB

Network VMnet5 host-only adapter

MAC Address 00:0C:29:86:01:4D

IP Address 192.168.5.3 (static)

Simulation Software IEC 60870-5-104 Server v1.03-35

Role: IEC 60870-5-104 Client

Operating System Windows 7 64-bit

CPU 1 single core virtualized

Memory 1 GB

Network VMnet5 host-only adapter

MAC Address 00:0C:29:2E:AF:09

IP Address 192.168.5.4 (static)

Simulation Software QTester 104 v1.23

Appendix A

62

SCADA attacker’s specifications

Role: Attacker/Intruder

Operating System Kali Linux 2017.1 64-bit fully updated

CPU 1 dual core virtualized CPU

Memory 2 GB

Network Vmnet5 host-only adapter

IP Address 192.168.5.128 (static)

MAC Address Varies for undercover reasons

Attack software Further developed in the thesis

Role: Attacker/Intruder

Operating System Ubuntu 16.04 LTS 64-bit fully updated

CPU 1 dual core virtualized CPU

Memory 1 GB

Network Vmnet5 host-only adapter

IP Address 192.168.5.133 (static)

MAC Address Varies for undercover reasons

Attack software Ettercap v 0.8.0 with customized plugin

63

Appendix B – Tools

This appendix is used to describe the software and tools that were used in the simulation of

cyber-attacks against SCADA system

Appendix B

64

1. Operating systems and Virtualization software

1.1 Microsoft Windows 7

Windows 7 is a personal computer operating system developed by Microsoft, part of the

Windows NT family systems and it was released in 2009.

1.2 Kali Linux 2017.1

Kali Linux is a free Debian-based Linux distribution aimed at advanced Penetration Testing

and Security Auditing. Kali contains several hundred tools which are geared towards various

information security tasks, such as Penetration Testing, Security research, Computer Forensics

and Reverse Engineering. Kali Linux is developed, funded and maintained by Offensive

Security, a leading information security training company. It was released in 2017 [20].

1.3 Ubuntu 16.04 LTS

The Ubuntu operating system, at its Long Term Support version, is a free and open source

Linux Distribution. There are releases for desktop as well as for server and cloud architectures

and it was released in 2016.

1.4 VMware Workstation Pro 12.5

VMware Workstation Pro allows running multiple operating systems as Virtual Machines on

a single Windows or Linux PC. It was released in 2015 [2].

Appendix B

65

2. Attack tools

2.1 Hping3

hping is a command-line oriented TCP/IP packet assembler/analyzer. The interface is

inspired to the ping(8) unix command, but hping isn’t only able to send ICMP echo requests.

It supports TCP, UDP, ICMP and RAW-IP protocols, has a traceroute mode, the ability to

send files between a covered channel, and many other features. While hping was mainly used

as a security tool in the past, it can be used in many ways by people that don’t care about

security to test networks and hosts [3].

2.2 Ettercap

Ettercap is a comprehensive suite for man in the middle attacks. It features sniffing of live

connections, content filtering on the fly and many other interesting tricks. It supports active

and passive dissection of many protocols and includes many features for network and host

analysis [4].

2.3 Macchanger

GNU MAC Changer is a utility that makes the manipulation of MAC addresses of network

interfaces easier [5].

2.4 alert_snort_104 Ettercap plugin

The alert_snort_104 plugin is a custom-made plugin, written by Pete Maynard in C language

and it is distributed under GNU license [6].

2.5 Wireshark

Wireshark is a network packet analyzer. A network packet analyzer will try to capture network

packets and tries to display that packet data as detailed as possible [7].

Appendix B

66

3. SCADA software

3.1 IEC Server

This IEC Server in an Software to simulate Server side of Systems using an telecontrol message

Protocol specified in the IEC 60870-5: This Protocol is often used in SCADA Systems for

Information transfer between the RTU Device and SCADA center [8].

3.2 QTester 104

This open source tool, developed by Ricardo Olsen, allows to play the role of the client of

protocol IEC60870-5-104, that is, it obtains data from a server [9]. Mr Olsen is working for a

power transmission utility in the south of Brazil and also owns DSC Systems, a company that

provides SCADA and historian services in the cloud.

3.3 OpenMUC j60870

j60870 is a library implementing the IEC 60870-5-104 communication standard. The library

can be used to program clients as well as servers. j60870 is licensed under the GPLv3 [10].

Appendix B

67

References

[1] “Kali Linux 2017.1 Release” [Online] Available: https://www.kali.org/news/kali-linux-

20171-release [Accessed March 08 2018].

[2] “Workstation Pro” [Online] Available: https://www.vmware.com/products/workstation-

pro.html [Accessed 08 March 2018].

[3] “hping3 Package Description” [Online] Available: https://tools.kali.org/information-

gathering/hping3 [Accessed 08 March 2018].

[4] “Ettercap Project” [Online] Available: http://www.ettercap-project.org/ettercap

[Accessed 08 March 2018].

[5] “GNU MAC Changer” [Online] Available: https://github.com/alobbs/macchanger

[Accessed 08 March 2018].

[6] “Alert snort 104 plugin” [Online] Available: https://github.com/PMaynard/ettercap-104-

mitm/blob/master/plug-ins/104_snort_alert/104_snort_alert.c [Accessed 08 March

2018].

[7] “What is Wireshark?” [Online] Available:

https://www.wireshark.org/docs/wsug_html/#ChIntroWhatIs [Accessed 08 March

2018]

[8] “IEC Server project summary” [Online] Available:

https://sourceforge.net/projects/iecserver [Accessed 08 March 2018].

[9] “QTester 104 description page” [Online] Available:

https://ricolsen1supervc.wordpress.com/2017/07/01/free-tools-for-testing-

communication-protocols [Accessed 08 March 2018].

[10] “j60870 User Guide” [Online] Available: https://www.openmuc.org/iec-60870-5-

104/files/j60870-doc.pdf [Accessed 08 March 2018].

68

Appendix C – Code

This appendix includes modified code of OpenMUC j60870 and Ettercap filter that were

used to conduct the cyber attacks

Appendix C

69

1. OpenMUC j60870

The code below is from file ConsoleClient.java stored in path

j60870\src\main\java\org\openmuc\j60870\app.

/*

 * Copyright 2014-17 Fraunhofer ISE

 *

 * This file is part of j60870.

 * For more information visit http://www.openmuc.org

 *

 * j60870 is free software: you can redistribute it and/or modify

 * it under the terms of the GNU General Public License as published by

 * the Free Software Foundation, either version 3 of the License, or

 * (at your option) any later version.

 *

 * j60870 is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 * GNU General Public License for more details.

 *

 * You should have received a copy of the GNU General Public License

 * along with j60870. If not, see <http://www.gnu.org/licenses/>.

 *

 */

package org.openmuc.j60870.app;

import java.io.IOException;

import java.net.InetAddress;

import java.net.UnknownHostException;

import java.util.ArrayList;

import java.util.List;

import java.util.concurrent.TimeoutException;

import org.openmuc.j60870.ASdu;

import org.openmuc.j60870.CauseOfTransmission;

import org.openmuc.j60870.ClientConnectionBuilder;

import org.openmuc.j60870.Connection;

import org.openmuc.j60870.ConnectionEventListener;

import org.openmuc.j60870.IeQualifierOfInterrogation;

import org.openmuc.j60870.IeQualifierOfCounterInterrogation;

import org.openmuc.j60870.CauseOfTransmission;

Appendix C

70

import org.openmuc.j60870.IeQualifierOfResetProcessCommand;

import org.openmuc.j60870.IeTime56;

import org.openmuc.j60870.internal.cli.Action;

import org.openmuc.j60870.internal.cli.ActionException;

import org.openmuc.j60870.internal.cli.ActionListener;

import org.openmuc.j60870.internal.cli.ActionProcessor;

import org.openmuc.j60870.internal.cli.CliParameter;

import org.openmuc.j60870.internal.cli.CliParameterBuilder;

import org.openmuc.j60870.internal.cli.CliParseException;

import org.openmuc.j60870.internal.cli.CliParser;

import org.openmuc.j60870.internal.cli.IntCliParameter;

import org.openmuc.j60870.internal.cli.StringCliParameter;

public final class ConsoleClient {

 private static final String INTERROGATION_ACTION_KEY = "i";

 private static final String CLOCK_SYNC_ACTION_KEY = "c";

 private static final String READ_KEY = "d";

 private static final String RESET_KEY = "r";

 private static final String COUNTER_KEY = "k";

 private static final StringCliParameter hostParam = new CliParameterBuilder("-h")

 .setDescription("The IP/domain address of the server you want to access.")

 .setMandatory()

 .buildStringParameter("host");

 private static final IntCliParameter portParam = new CliParameterBuilder("-p")

 .setDescription("The port to connect to.")

 .buildIntParameter("port", 2404);

 private static final IntCliParameter commonAddrParam = new CliParameterBuilder("-ca")

 .setDescription("The address of the target station or the broad cast address.")

 .buildIntParameter("common_address", 1);

 private static final IntCliParameter iob = new CliParameterBuilder("-iob")

 .setDescription("The Information Object Address of the target station.")

 .buildIntParameter("iob", 7);

 private static volatile Connection connection;

 private static final ActionProcessor actionProcessor = new ActionProcessor(new

ActionExecutor());

 private static class ClientEventListener implements ConnectionEventListener {

 @Override

 public void newASdu(ASdu aSdu) {

 System.out.println("\nReceived ASDU:\n" + aSdu);

 }

Appendix C

71

 @Override

 public void connectionClosed(IOException e) {

 System.out.print("Received connection closed signal. Reason: ");

 if (!e.getMessage().isEmpty()) {

 System.out.println(e.getMessage());

 }

 else {

 System.out.println("unknown");

 }

 actionProcessor.close();

 }

 }

 private static class ActionExecutor implements ActionListener {

 @Override

 public void actionCalled(String actionKey) throws ActionException {

 try {

 switch (actionKey) {

 case INTERROGATION_ACTION_KEY:

 System.out.println("** Sending general interrogation command.");

 connection.interrogation(commonAddrParam.getValue(),

CauseOfTransmission.ACTIVATION,

 new IeQualifierOfInterrogation(20));

 Thread.sleep(2000);

 break;

 case CLOCK_SYNC_ACTION_KEY:

 System.out.println("** Sending synchronize clocks command.");

 connection.synchronizeClocks(commonAddrParam.getValue(), new

IeTime56(System.currentTimeMillis()));

 break;

 case READ_KEY:

 System.out.println("** Sending the C_RD_NA_1 command.");

 connection.readCommand(commonAddrParam.getValue(), iob.getValue());

 Thread.sleep(2000);

 break;

 case RESET_KEY:

 System.out.println("** Sending the C_RP_NA_1 command.");

 connection.resetProcessCommand(commonAddrParam.getValue(), new

IeQualifierOfResetProcessCommand(3));

 Thread.sleep(2000);

 break;

 case COUNTER_KEY:

 System.out.println("** Sending the C_CI_NA_1 command.");

Appendix C

72

 connection.counterInterrogation(commonAddrParam.getValue(),

CauseOfTransmission.ACTIVATION, new IeQualifierOfCounterInterrogation(1,1));

 Thread.sleep(2000);

 break;

 default:

 break;

 }

 } catch (Exception e) {

 throw new ActionException(e);

 }

 }

 @Override

 public void quit() {

 System.out.println("** Closing connection.");

 connection.close();

 return;

 }

 }

 public static void main(String[] args) {

 List<CliParameter> cliParameters = new ArrayList<>();

 cliParameters.add(hostParam);

 cliParameters.add(portParam);

 cliParameters.add(commonAddrParam);

 cliParameters.add(iob);

 CliParser cliParser = new CliParser("j60870-console-client",

 "A client/master application to access IEC 60870-5-104 servers/slaves.");

 cliParser.addParameters(cliParameters);

 try {

 cliParser.parseArguments(args);

 } catch (CliParseException e1) {

 System.err.println("Error parsing command line parameters: " + e1.getMessage());

 System.out.println(cliParser.getUsageString());

 System.exit(1);

 }

 InetAddress address;

 try {

 address = InetAddress.getByName(hostParam.getValue());

 } catch (UnknownHostException e) {

 System.out.println("Unknown host: " + hostParam.getValue());

 return;

Appendix C

73

 }

 ClientConnectionBuilder clientConnectionBuilder = new ClientConnectionBuilder(address)

 .setPort(portParam.getValue());

 try {

 connection = clientConnectionBuilder.connect();

 } catch (IOException e) {

 System.out.println("Unable to connect to remote host: " + hostParam.getValue() +

".");

 return;

 }

 Runtime.getRuntime().addShutdownHook(new Thread() {

 @Override

 public void run() {

 connection.close();

 }

 });

 try {

 connection.startDataTransfer(new ClientEventListener(), 5000);

 } catch (TimeoutException e2) {

 System.out.println("Starting data transfer timed out. Closing connection.");

 connection.close();

 return;

 } catch (IOException e) {

 System.out.println("Connection closed for the following reason: " +

e.getMessage());

 return;

 }

 System.out.println("successfully connected");

 actionProcessor.addAction(new Action(INTERROGATION_ACTION_KEY, "interrogation

C_IC_NA_1"));

 actionProcessor.addAction(new Action(CLOCK_SYNC_ACTION_KEY, "synchronize clocks

C_CS_NA_1"));

 actionProcessor.addAction(new Action(READ_KEY, "read command C_RD_NA_1"));

 actionProcessor.addAction(new Action(RESET_KEY, "reset process command C_RP_NA_1"));

 actionProcessor.addAction(new Action(COUNTER_KEY, "counter interrogation command

C_CI_NA_1"));

 actionProcessor.start();

 }

}

Appendix C

74

2. Ettercap filter isolation.if

ettercap -- isolation.if filter source file #

IEC Server 104 isolation #

Student: Miltiadis Parcharidis #

Supervisor: Prof. Sokratis Katsikas #

Simulation of Cyber Attacks against SCADA systems #

MSc in Communications and Cyber Security #

International Hellenic University #

This filter will isolate the IEC 104 Server from the Client.

It does it by simply filtering the corresponding traffic

by IP and source port and then drops the packet

if (tcp.src == 2404 && ip.src == '192.168.5.3') {

 drop();

 msg("Dropping IEC 104 Server packet from source port 2404 and IP 192.168.5.3.\n");

}

	Abstract
	Preface
	1. Introduction
	1.1 Purpose of dissertation
	1.2 Assumptions
	1.3 Dissertation outline

	2. Theory
	2.1 Definitions and components of SCADA systems
	2.1.1. Definitions and short description
	2.1.2 Remote Telemetry Units and Programmable Logic Controllers
	2.1.3 Communications network
	2.1.4 Central Host
	2.1.5 Operator Workstations
	2.1.6 Software

	2.2 Architecture of SCADA systems
	2.2.1 Monolithic SCADA systems
	2.2.2 Distributed SCADA systems
	2.2.3 Networked SCADA systems

	2.3 SCADA communication protocols
	2.3.1 IEC 60870-5
	2.3.2 Modbus
	2.3.3 Distributed Network Protocol 3 (DNP3)

	2.4 Vulnerabilities
	2.5 Real Cyber-attacks: The case of Stuxnet
	2.5.1 Political Background and the creation of an ICS cyberweapon
	2.5.2 Technical analysis of Stuxnet worm

	3. Approach and attack vectors
	3.1 System setup
	3.2 System implementation
	3.2.1 SCADA side
	3.2.1.1 IEC Server Virtual Machine
	3.2.1.2 IEC Client Virtual Machine

	3.2.2 Attacker side
	3.2.2.1 Modified OpenMUC j60870 console client
	3.2.2.2 Custom Ettercap filter
	3.2.2.3 Ubuntu Virtual Machine

	4. Attacks and Results
	4.1 IEC 60870-5-104 attacks
	4.1.1 Typical communication
	4.1.2 Message flooding
	4.1.3 SYN attack to achieve a Denial of Service
	4.1.4 Control command or Remote Adjustment Command from Unauthorized client
	4.1.5 Single command from unauthorized client to a Server
	4.1.6 Unauthorized Read Command to the Server
	4.1.7 Unauthorized Reset Process Command to the Server
	4.1.8 Counter Interrogation Command to the Server
	4.1.9 Man in the middle attacks
	4.1.9.1 IEC Server 104 isolation
	4.1.9.2 IEC 104 Data modification on the fly

	4.2 Results

	5. Discussion
	6. Conclusion
	7. Future Work
	8. References
	9. Appendices
	Appendix A – Virtual Machines’ specifications and settings
	Appendix B – Tools
	1. Operating systems and Virtualization software
	1.1 Microsoft Windows 7
	1.2 Kali Linux 2017.1
	1.3 Ubuntu 16.04 LTS
	1.4 VMware Workstation Pro 12.5

	2. Attack tools
	2.1 Hping3
	2.2 Ettercap
	2.3 Macchanger
	2.4 alert_snort_104 Ettercap plugin
	2.5 Wireshark

	3. SCADA software
	3.1 IEC Server
	3.2 QTester 104
	3.3 OpenMUC j60870

	References
	Appendix C – Code
	1. OpenMUC j60870
	2. Ettercap filter isolation.if

