
1

Mitigating concept drift in data mining

applications for intrusion detection

systems

Koutrouki Evgenia

SID: 3307160006

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Communications and Cybersecurity

DECEMBER 2017

THESSALONIKI – GREECE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by International Hellenic University: IHU Open Access Repository

https://core.ac.uk/display/236205292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Mitigating concept drift in data mining

applications for intrusion detection

systems

Koutrouki Evgenia

SID: 3307160006

Supervisor: Prof. Georgios Ioannou

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Communications and Cybersecurity

DECEMBER 2017

THESSALONIKI – GREECE

3

ABSTRACT

The phenomenon of concept drift is defined as the unexpected behavior of a data stream under

changing environments. It is considered one of the major problems of data mining applications.

Intrusion detection systems are correlated with data mining due to the fact that they collect,

monitor and analyze data, so as it is expected, they also experience concept drift. By analyzing

the different types of data mining, machine learning, intrusion detection systems and concept

drift, a new method is developed with the aim to mitigate this phenomenon in data mining

applications for intrusion detection systems.

Koutrouki Evgenia

31/12/2017

4

Contents
ABSTRACT ... 3

CHAPTER 1

INTRODUCTION .. 6

1.1 Context .. 6

1.2 Problem Statement ... 7

1.2.1 Concept Drift .. 7

1.2.2 Machine Learning and Data Mining .. 9

1.2.3 Intrusion Detection Systems .. 10

1.3 Aims & Objectives .. 11

1.4 Dissertation Layout ... 11

CHAPTER 2

LITERATURE REVIEW ... 12

2.1 An overview of data mining techniques.. 12

2.1.1 Classification.. 12

2.1.2 Regression .. 14

2.1.3 Association .. 15

2.1.4 Clustering .. 16

2.2 Data Mining Techniques in Intrusion Detection Systems ... 17

2.2.1 k-Nearest Neighbor Algorithm .. 17

2.2.2 Naïve Bayes Algorithm.. 18

2.2.3 Decision Tree Algorithm .. 19

2.3 Developed Methods for Mitigating Concept Drift in Intrusion Detection Systems 20

2.3.1 MineClass Algorithm ... 20

2.3.2 Early Drift Detection Method .. 21

2.3.3 DWM Algorithm .. 22

2.3.4 FAE Algorithm .. 23

CHAPTER 3

METHODOLOGY ... 25

3.1 Software Setup ... 25

3.1.1 Waikato Environment for Knowledge Analysis (WEKA) .. 25

3.1.2 Massive Online Analysis (MOA) ... 26

3.1.3 Eclipse .. 26

3.1.4 Operating System ... 27

3.2 Experimental Dataset .. 27

3.3 Algorithm Implementation .. 28

5

3.3.1 Objective ... 28

3.3.2 The New Method Hypothesis ... 29

3.3.3 Classifier Behavior.. 30

3.4 Data Analysis ... 30

3.4.1 Output Information .. 30

3.4.2 Testing Method .. 31

3.4.3 Evaluation Methods .. 31

CHAPTER 4

RESULTS AND ANALYSIS ... 33

4.1 DATASET PRESENTATION .. 33

4.2 RESULTS IN WEKA ENVIRONMENT ... 34

4.1.1 Hoeffding Tree ... 35

4.1.2 Naïve Bayes .. 37

4.1.3 J48.. 39

4.1.3 lazy IBk ... 41

4.3 RESULTS IN MOA ENVIRONMENT ... 43

CHAPTER 5

CONCLUSIONS ... 45

REFERENCES ... 46

APPENDIX .. 48

6

CHAPTER 1

INTRODUCTION

This first chapter is the one where the introduction on data mining, machine learning and intrusion

detection system takes place. Along with that, the problem of concept drift is presented and

analyzed. A preview of the methodology used is also explained.

1.1 Context

When discussing about technology, the words machine learning continuously comes up. Those

two terms are paired together because with technology evolving and becoming such a big part

of people’s everyday lives, the need of automating several processes is a critical issue.

Numerous techniques have been developed to automate both systems and communications but

also new problems appear along with that.

Securing sensitive data is also related to automated processes. There are different types of

systems that are built for detecting and preventing attacks that aim sensitive data. That kind of

systems are called intrusion detection systems (IDS). Intrusion detection systems use machine

learning algorithms to become smarter and faster when it comes to detecting a malicious

movement.

Data that are continuously received over a long period of time are known as data streams. As

those sequential data are arriving they are processed and analyzed by the algorithms so that

useful information can be acquired [1]. The data streams can be processed either offline or

online. In offline training the whole training dataset is available when the model is training. When

the model is trained and the training process has finished, it can be used for predictions. In online

training the data keep arriving and the processing is sequential. The training dataset is not fully

complete during the training of the model. The model keeps training as new training data keep

coming up. The trained model is used for predictions before the training dataset is whole [2].

Data mining algorithms have to deal with those high speed streaming data and as it is expected

problems appear with this process. The algorithms must have the ability to absorb the new

7

streaming data and adapt to the unpredicted changes in the streaming environment. This

unexpected behavior of data distribution as it evolves through real time conditions is the

phenomenon defined as concept drift.

Intrusion detection systems use data mining techniques to be more accurate in the detection of

attacks and be able to prevent them as well. With data streams arriving one after another,

intrusion detection systems must cope with concept drift so that they can be robust and able to

adapt fast when the change occurs. In this paper a new method for handling concept drift is

presented and explained. The main tool that is used is Weka, an analysis software that allows

experiments to take place from the University of Waikato and the dataset that is used is the KDD

’99 Dataset, which is a dataset related with network intrusion detection.

1.2 Problem Statement

In the following parts the problem of concept drift is stated and an explanation on machine

learning, data mining and Intrusion Detection Systems is provided, in order to understand the

relation between those terms.

1.2.1 Concept Drift

As the definition of concept drift states, the unexpected behavior of a data stream under changing

environments is a major problem in data mining. In data mining applications for intrusion

detection systems, concept drift forces the system to make less accurate predictions over time.

That is the result of the dynamically changing and non-stationary environments [2]. The

adaptation of the system when new data are incorporated is the most important operation of a

machine learning algorithm and the correct and early identification of the small time windows

which the concept drift occurs is crucial.

There are different time windows that concept drift occurs and that is the reason why there are

different types of drifts. The four known occurring types are sudden (or abrupt) drift, gradual drift,

incremental drift and reoccurring drift [3]. Sudden concept drift is easier to detect in the data

stream than gradual concept drift. The change is sudden drift is instant between concepts and

the algorithm can identify it easier and adapt quicker than the second type. Gradual concept drift

8

introduces a more complicated problem. The drift, in this case, is expressed slowly and without

a certain pattern. The system is not able to detect this drift quickly due to its slow speed of change

and the lack of sudden concept change. In incremental drift the changes are also slow, but in

this case this slow changes between the intermediate concepts are sudden and more obvious

that the changes in gradual drift. Finally, in the reoccurring drift, old or new concepts often

reappear over time and that is why it is also known as seasonal drift.

Figure 1. Types of Concept Drift [9]

Although there is no comprehensive survey for handling concept drift [2] there are techniques

that have been developed so that systems can cope with it. Different learning modes exist that

are mentioned in the first part of the introduction (offline and online learning) and different

strategies.

According the strategies that exist, they are divided in evolving and trigger-based when the model

needs to be updated and they are also divided in using ensembles or a single classifier [3]. On

one way, when the evolving strategy is used, the learning models will continue evolving through

time and keep updating. On the other way, when a trigger-based strategy is used, the data

streams that are arriving are monitored and if there is a suspicion of change then an alert is

triggered by the triggering mechanism and the update process begins by taking into account the

latest data in the system and dropping the old ones [3].

9

The learning system, as it is stated can use ensembles or single classifiers for the learning

process. If the ensemble technique is used, the system has the ability to remember some of the

concepts. An ensemble contains multiple single classifiers that are isolated one from the other

and that is why the accuracy of this technique is higher than using a single classifier only. The

technique falls both in the two previous strategies mentioned above and can be either evolving

or trigger-based. If only a single classifier is used, the system can only make a prediction for a

single model at every time. When this technique is applied, the system keeps in memory only

the last updated model.

1.2.2 Machine Learning and Data Mining

Machine learning is one of the most promising areas of technology. It is defined as the complex

computation processes of automatic pattern recognition and intelligent decision making based

on training data [5]. From those computations a model is created, known as learning model or

learning algorithm. In simpler terms, the machine learning method uses the patterns from the

training dataset so that it can learn the form of a classifier [5].

Machine leaning can be categorized into two learning groups, supervised learning and

unsupervised learning. In supervised learning the algorithm is trained after pairs of input and

output are given (those data are called labeled data). Those data are used so that a learning

model to be trained. The algorithm uses the input data in a way that it can predict the output data

using the minimum resources. In unsupervised learning the algorithm is trained only with input

data because no output data are given in the training dataset (in this case the data are unlabeled).

While the model is training, it brings together key features that appear it the training data and

uses them to create a pattern so that the data to be summarized into clusters with similar key

features. Unsupervised learning is difficult to assess in comparison with supervised learning

because of the lack of labeled data.

The performance of the machine learning algorithms depend on the performance of the

evaluation metrics that are used in each case, the difficulty of the problem and how well the

model is trained.

Data mining can be defined as the process of analysis of large databases in order to find the

knowledge in them [6]. In simpler words, data mining uses analysis tools to look for useful

10

patterns in the data provided. Data mining uses machine learning algorithms to achieve this

purpose.

Data mining can be categorized into two groups, supervised and unsupervised, just like machine

learning. The difference between those groups is exactly the same with the machine learning

groups. In supervised data mining, labeled data are used in the training dataset to create a model

and in unsupervised mining, unlabeled data exist in the training set, so the model is created by

grouping the data based on similar key features.

1.2.3 Intrusion Detection Systems

When using an intrusion detection system, the goal is for the system to understand which of the

incoming data are intrusive and which are non-intrusive and separate them [7]. Intrusion

detection systems use data mining so that they are capable of predicting future results based on

the given data and also to be adaptable when they deal with streaming data and must respond

instantly to threats.

In intrusion detection the two most basic categories are: misuse detection and anomaly detection.

Misuse detection uses labeled data to train the machine learning algorithm. Models are

automatically updated according to the input arriving in the system. A misuse detection intrusion

system can only identify attacks that are already known and attacks that are very similar to those

known attacks (attacks that most of the instances they have are similar to a known attack). So

the system in this case makes its decisions based on the labeled data that are provided, so the

decision is made based on prior knowledge. Misuse detection systems have a high percentage

of accuracy when it comes to the already known attacks [8].

Anomaly detection intrusion systems, on the other hand, operate with unlabeled data. So the

machine learning algorithm does not have a training dataset that contains known attacks. In this

case the training of the algorithm is based on the behavior of the data. The system observes the

data and defines by itself a normal data behavior, so if there is a behavior that does not conform

to the rest, the system raises an alarm. With anomaly detection the system can identify previous

unknown attacks and that is a great advantage.

11

1.3 Aims & Objectives

The aim of this dissertation is to develop a new data mining model, through analyzing datasets

consisting of labeled data, in order to mitigate a phenomenon known as concept drift, in data

mining applications for intrusion detection systems.

For accomplishing this aim clear objectives are set to help defining the developing and research

process. Those are presented below.

 To locate successfully existing concept drift in the dataset.

There are various techniques detecting concept drift in data stream mining, therefore

the most suitable ones for the system are going to be displayed and explained. This

procedure is needed so that different aspects to be examined.

 Development and proposition of a new method.

Having examined all this previous work carefully, the new method will be created in a

way that can bring correct results and manage to mitigate the concept drift problem.

 Maximizing the system’s accuracy and minimizing the execution time.

The system should be able to adapt rapidly in changing patterns, false positive alerts

should be reduced in order the system’s prediction ability becomes more accurate and

different set of variables will be used to reach the most efficient level of operation.

1.4 Dissertation Layout

This dissertation is structured with the following way. In the second chapter there is a

presentation of previous work done on this specific matter along with an explanation of data

mining techniques in general and data mining techniques that are related to intrusion detection

systems. Also, methods that have been already developed to address concept drift are

explained. In the third chapter, a demonstration of the new developed method for mitigating

concept drift is made. In the fourth chapter, the testing phase is presented and the results of the

experiments are introduced as well. In the last chapter of this dissertation a discussion about the

results is taking place and the conclusions are displayed.

12

CHAPTER 2

LITERATURE REVIEW

In this chapter a well-documented review of previous work related to the subject is presented.

The first section describes the most basic and common used techniques in data mining. The

second section concerns data mining algorithms that can be used in an intrusion detection

system. Last, in the third section, known detection techniques that are used to mitigate concept

drift in intrusion detection system are presented.

2.1 An overview of data mining techniques

In data mining different techniques are used for different operations, according to the kind of

applications that the technique targets. Nowadays, too many techniques exist because different

companies develop their own for the purpose they want to serve [10]. However, there are basic

techniques that every new one is based on. Those techniques are going to be analyzed in this

section in the length of operation, testing, measures that they use, algorithms that are based on

and where they are most commonly applied.

2.1.1 Classification

Classification is a supervised mining predictive task for predicting a value of categorical variable

(also known as target). It is supervised due to the fact that it uses the class itself in every training

example and predictive because it predicts an outcome at a current moment. Among data mining

techniques, classification is the one that is the most commonly used. In classification an item is

assigned to one of a set of classes. This happens because the goal in the technique is to make

accurate predictions about the target class from the data for every example [11].

To understand classification better there are some points that need to be made from the

beginning. First, the historical data used in each case are split in two datasets. The first dataset

13

is used in order the predictive model to be created and the second dataset is used so that the

model can be tested. Second, the process is divided in two phases, the learning phase and the

testing phase. Third, classifications are rules created in order to be applied in a new set of data

so that a prediction to be made or a decision to be taken. Knowing all the above, it is time to find

out how classification works.

The task begins by taking the first dataset of the historical data, also known as the training set,

so that the learning phase can be initiated. In this phase the classifier is built. In this dataset the

outcome (which is an attribute) is known and other different attributes are defined. The goal in

this phase is to combine all the attributes correctly so that the algorithm to understand how the

certain value of the outcome is derived from the given data. In simpler words, the model must

understand how the prediction was made so that the decision can be done. From this process a

set of rules is created, also known as classification rules. In the second phase of the task the

rules must be tested, so the second dataset is used, also known as the testing dataset. In the

testing dataset the outcome does not exist, but the rest of the attributes exist. The classification

rules created, now must be tested so that their accuracy to be estimated. So the rules are applied

in the testing dataset and if the outcome is correct then they are considered solid and useful and

can be used for future predictions. For this to be done value of the outcome is compared to the

previous dataset’s known values. Testing dataset must be consistent with the training dataset

that is used to build the prediction model that is the reason that both datasets come from the

same historical one [11].

In order to test the data there are different test metrics that are used such as accuracy (the ability

of the classifier to predict correct the target values compared to the known values), speed (how

fast the classifier can compute the target values), scalability (how fast the classifier is constructed

from the data provided), lift (the ratio of the classifier’s predictions due to the original known target

from the training data), confusion matrix (a table that show the correct and false predictions that

the classifier predicted compared to the original values) and robustness (the correct predictions

that the classifier is able to make when the data is provided) [5]. According to the data that will

be examined there are different algorithms that can be used that will provide better results in

each case.

14

2.1.2 Regression

Regression is a supervised mining predictive task for predicting numeric value. It is supervised

due to the fact that it uses known target at the beginning of the task and predictive because, like

classification, it predicts an outcome at a current moment. Regression is used in predictive

analytics, just like classification, but the difference is that while classification items are assigned

to one of a set of classes, regression is used for predicting continuous numbers or a range of

them. When a feature is given and its value must be predicted, regression is used in order to

predict the value based on the values of the rest features in the dataset [12].

There are different types of regression such as Linear and Nonlinear regression and Multivariate

Linear and Multivariate Nonlinear regression [12]. The historical data provided in a regression

task are divided in two datasets. The first dataset is used to build the model and the second

dataset is used to test it. Again, like classification, there are two phases: the training phase and

the testing phase. With those in mind, a description of a regression task is provided.

The task begins with the training phase where the training dataset is used in order to build the

model. A regression algorithm is applied in the dataset so that an estimation of the value of the

target to be made as a result of the variables that are used for the prediction. The regression

model is built from the combination of the training data, the prediction values and the predicted

outcome. After the model is created, it can be applied in the testing dataset so it can be tested.

In the training phase of the task it is also included the computation of the variables that can be

used to minimize the error percentage in the process. Keep in mind that both datasets are

configured in the same way because they derive from the historical dataset. So next comes the

testing phase where the testing dataset is used. In this dataset the value of the target is, as it is

expected, unknown. To test the model statistics are computed in order to determine the deflection

of the testing results from the original known values. If the performance of the model is accurate

then it is ready to be used to other new datasets.

The test metrics that are used to estimate the model’s error percentage are the Root Mean

Squared Error (also known as RMSE) and the Mean Absolute Error [12]. Of course, there are

many regression algorithms and that leads to different ways to estimate errors in them.

15

2.1.3 Association

Association is an unsupervised mining descriptive task for finding association rules in a dataset

and it is transaction-based. It is unsupervised because there is not a pre-established target in

the data and descriptive due to the fact that it tries to establish correlation between variables and

discover patterns amongst them. Association is usually applied in large datasets and binary

datasets. It is one of the most recognizable techniques in data mining. Association rules are

trying to discover repeated item sets among a dataset. In a transaction, a set of items is called

an attribute [13].

To become more familiar with the association technique further explanation must be provided.

Association is not meant to be used in numeric datasets but as stated before in datasets that

contain items and transactions. A transaction can be declared as a subset of items in a larger

item set. An association rule is an uncovered pattern among related items. So, for pattern

identification the items must be of the same type. In association mining a rule must be claimed

as interesting. This is also known as rule interestingness. For a rule to be interesting a threshold

of the two basic association measures (confidence and support) must be supported. The

threshold is set by the user. A rule that does not satisfy the minimum threshold of the above

measure is not considered interesting. If it does satisfy the threshold then the rule is called strong.

If all possible association rules are found then it is considered to have completeness. Of course,

in each case different thresholds are being set to match the type of the application and data. So

association rules differ according to the dataset that is examined. Below, an analytical

explanation of the two measures mentioned is given.

Support is a percentage derived from the transaction dataset provided in each case. It describes

the transactions (item sets) that the applied association rule satisfies. It is the first step of an

association task. A rule that has a high percentage of support is more likely to be effective.

Confidence is a percentage derived also from the transaction dataset and it describes how

frequently the association rule has been found to be reliable, in other words true among the item

sets. It is the second step of an association task. A rule that has a high percentage of confidence

is considered interesting because its prediction capability is high .So a strong rule that meets the

minimum thresholds of the two measures declares that if a certain item exists there is high

probability of another related item to exist.

Other measures that are used to test association rules are lift (measures if a rule is independent)

and conviction (measures how often an item exist without the item that’s related to don’t) [13].

16

2.1.4 Clustering

Clustering is an unsupervised mining descriptive task for finding relative sets of data into clusters

(also known as natural groups). It is unsupervised due to the fact that there is not at target in the

data and the algorithm is learning on its own and descriptive because the algorithms searches

for relationships that exist among the dataset. Clusters are defined as groups or classes of data

objects or classes that are highly similar to one another in the same cluster and highly dissimilar

in groups of data objects in a different cluster [14].

So a clustering algorithm uses one or more variables to begin with so that it can identify a cluster.

Between the data there might be relationships that are not noticeable before the clustering task

begins. The difference from classification is that a classification model divides data that are

assigned in classes that are already defined. Clustering is mostly used in datasets that contain

very large piles of data and in them exist too many attributes.

A clustering task does not learn from an imported example but from observing the dataset. That

is and the main advantage of clustering because algorithms can identify a single feature in order

relationships and create the clustering model. The resulted clusters must be of high quality. So

one basic measure is the centroid distance. This means that every cluster has a center and every

object in the cluster is divergent from the center a certain Euclidean distance. Centroid distance

is the average of all those distances. If an object is close to the cluster centroid it is assigned to

this cluster. One important information is that clustering due to the way the task works is highly

used in anomaly detection because it can spot objects that do not belong in any clusters.

Clustering is a task that can be reversed and used that way. In a dataset the algorithm can

suppose that a cluster exists in a particular point and after to use the variables to make a

comparison and find out if its assumption is true [15].

In clustering the other measures that are used for establishing a model’s efficiency are, like

association, support and confidence [14].

17

2.2 Data Mining Techniques in Intrusion Detection Systems

Having discussed the basic data mining techniques in the previous section, it is now time to see

which of them apply in an intrusion detection system. An intrusion detection system is in the

second line of defense, as the first is user prevention techniques. Through it, a computer system

is monitored and can also be controlled for certain actions. Data mining is important in intrusion

detection because data streams are continuously keep coming and they must be monitored and

processed in real time. So data mining helps to make the intrusion system more “clever” and

adapt with ease in those real time changes. The most common types of techniques for intrusion

detection are classification techniques.

2.2.1 k-Nearest Neighbor Algorithm

The k-nearest neighbor (also known as k-NN) algorithm is one of the most famous non parametric

supervised algorithms and it is used both for classification and regression methods. It is non

parametric because it does not require previous or specific details about how the current training

set is structured [16]. k-NN is best suited for small datasets because in the large ones it takes

too much processing time. That is why it is also defined as lazy [17].

At first, in the training set of the data, the algorithm is searching for the k closer objects to the

object it wants to test. By searching, k-NN calculates the distance (usually the Euclidian) between

the new data point and the k objects closer to it. The algorithm wants to classify this new testing

data point by predicting a class for it.

The three basic elements of the k-NN algorithm are the already existing data points which are

labeled, a distance or another measure so that the distance between the objects to be calculated

and finally, how many the nearest neighbors are (k value).

For an unlabeled data point to be classified, the algorithm must calculate the distance to all the

labeled objects, identify which are the nearest neighbors around it (k neighbors) and also identify

the labels of the classes of those neighbors so that to used them for assigning a class label to

the unlabeled data point. When all the above actions are done, the data point will be classified

according to the majority class of the labeled neighbors [17].

18

Considering the performance of the k-NN classifier there are some important issues. The

selection of the number of k neighbors is one of them. For a very small k, the classifier may result

to sensitivity in noise objects. For a very large k, the classifier may result to contain many

neighbor objects from other classes. Having this in mind, it is apparent that the classifier operates

better in smaller datasets because in larger ones the processing time for testing all the objects

is too long. Another issue is the choice of the measure for distance. The classifier can use

different measures for distance but the best choice is a measure that considers, apart from small

distance, also the likelihood between the object and the classes. The most common measure

used is the Euclidean distance [17].

The k-NN classifier is based only in the examples that are provided to it and is a classifiers that,

when used in intrusion detection systems, can accurately detect the intrusion in the system and

also have a low false positive rate in its results [16].

2.2.2 Naïve Bayes Algorithm

Naïve Bayes is an algorithm commonly known for its simplicity to be constructed. It is based on

the Bayes Theorem (that is where it got its name too) and it uses conditional probabilities to

classify the unlabeled objects. Naïve Bayes does not need parameters that are too complicated

and that why its interpretation is relatively easy even by unskilled, in classifier technology, users.

That is why it is also known as idiot’s Bayes [18]. This classifier can be applied in very large

datasets and have decent results. Naïve Bayes is also an algorithm that is robust to noise and it

is used to deal with supervised classification problems (both binary and multiclass).

A great advantage of the Naïve Bayes classifier is that it operates very fast and that it is because

of its ability to scan the data with only a single pass. That makes both the training phase and

classification very fast. A disadvantage of the classifier is that by its nature it makes an

assumption that all the features are independent statistically. Although, besides this assumption,

Naïve Bayes has very good results when compared with other classifiers [18].

As it was stated, the classifiers makes the assumption that the features in the dataset are

independent. Although this original assumption, it has been proved that Naïve Bayes provides

good results even in dataset that functional dependencies are present. That is because the

classifier does not interact directly with the degree of the feature dependencies that are

measured [19].

19

The aim of Naïve Bayes classifier is to develop a way of assigning the objects to their classes

based only on the new object’s vector of variables. This aim derives from the fact that the set of

labeled features that is provided to the algorithm have each a known vector of variables.

2.2.3 Decision Tree Algorithm

Decision tree algorithm is a classifier that is based, like Naïve Bayes, in conditional probabilities.

The main task of this classifier is to generate rules so that it can classify the unlabeled objects to

the classes. By rule, the classifier defines a statement, based on the conditional probabilities,

that is easy to be interpreted by the database so that the last can label a set of related records.

With the rules the decision model becomes more transparent [20].

A decision tree is constructed in the form of nodes and edges. The first node of the tree is called

root node and has only outgoing edges. There are two more kinds of nodes: the internal or test

nodes and the terminal or leaf nodes. The first are nodes that have both incoming (one edge)

and outgoing edges (two or more). The second do not have outgoing edges (that is and the

reason why they are called terminal) but have one incoming edge. The root and test nodes

represent the attributes than an object will have and the terminal nodes represent the class label

[20].

The process of classifying a new object using a decision tree algorithm is simple. A number of

sequencing questions are being asked to the new object. Depending, in every step, on the

answer of the first question, the next relevant question is being asked. Those set of questions

and answers are building the decision tree. When the process is finished and the last question

has been answered, the decision tree is ready to easily classify the unlabeled object to a class

label. The paths between the nodes of the tree are forming the algorithms rules. The decision of

how a testing node will split is based on the value of the attributes [20]. The algorithm decides

which of the given attributers has a better of closer value to the unlabeled object and follows the

one that suit it better.

For measuring the complexity of the decision tree some of the following metrics are used: tree

depth, number of attributes used, total number of nodes and total number of terminal nodes [28].

A decision tree algorithm has advantages such as it can be used to solve binary classification

problems and also multiclass classification problems. The interaction between the user and the

20

model is very small and that does not stop the classifier from being accurate. Decision tree is a

fast classifier both in an accurate and timely manner [21].

2.3 Developed Methods for Mitigating Concept Drift in Intrusion

Detection Systems

Mitigating concept drift successfully has been an important task for the scientific world. There is

not a developed method that eliminates it completely yet. In this section, related work for the

already developed concept drift methods is presented. Most of them are novel methods and

focus on detecting concept drift early so that the intrusion detection system can adapt quickly

and other focus on enhancing already existing methods by developing different detection tests.

Specifically all the methods deal with online streaming data.

2.3.1 MineClass Algorithm

MineClass algorithm (Mining novel classes in data streams) is an algorithm that focuses on two

parts: detecting new classes (also known as novel classes) and handling concept drift in

streaming data. Detecting new classes that might evolve later on the data stream is a feature

that not many of the techniques that already exist can perform [22]. The algorithm does not use

a single traditional classifier to identify the new evolving classes because a traditional classifier

can identify correctly only the classes that were used to train it in the training data.

There are two terms that the algorithm relies on, and are also mandatory to be met, cohesion

and separation. With cohesion meaning that all the data points that belong to the same class

must have a close distance to each other and with separation meaning that all these data points

must have a far distance from all data points that belong to different classes. That is and the

main concept that this technique is based on. So in simpler words, the MineClass algorithm is

detecting automatically the appearance of a new class in a dataset that suffers from concept drift

by measuring the cohesion between the testing data points and the separation of the last from

the training data points.

The MineClass algorithm is introducing a novel class detector and proposing its combination with

a traditional classifier. This serves the purpose of discovering the novel classes that might appear

21

without having to manually retrain the data where the new class has been added so a new

completed model to occur [22]. The goal of this proposal is not only to be able to identify the

deviation of a data point from the normal behavior but also to detect if a group of outlying data

points (known as outliers) have mutual connection.

Coming to the second part, that is handling concept drift, an approach of ensemble classification

is adapted. An ensemble of M classifiers (in this case, decision tree and K-NN) is maintained in

order to classify the unlabeled data. There is a division of the data stream in parts (named

chunks) of equal size. Every one of these chunks holds a part of the memory and it is processed

online. As new models are built, they can replace, if there is a need, one of the already existing.

The ensemble of classifiers is evolving and follows the updated concept.

The process the algorithm follows is the next: when a new chunk arrives, its separation is tested.

If they are well separated, a filter is applied the data so that to eliminate outliers that may exist

because of concept drift. Then, the cohesion of the outliers is tested and the new class is set.

After that, the training process continuous and the new model is built. The already existing model

is replaced by the new one. The ensemble of classifiers is also update along with the model with

the new instances that have been labeled from the training. That is how the already built model

is continuously updated with novel classes existing in it.

2.3.2 Early Drift Detection Method

Early drift detection method (or EDDM) is technique for handling concept drift in evolving data

streams by calculating the estimated distribution of the distances between errors of classification

[23]. It is a method that can be handled with two ways: applied inside an incremental and online

algorithm and also by using it to wrap a batch learning algorithm.

Examples are generated because distribution changes over time. So assuming that the data

come from a stationary source might be false. That is why the detection should also be adapting

over periods of time. Concept drift is easier to be detected if the change in the data distribution

is abrupt. The real challenge, that this algorithm is trying to face, is the detection of concept drift

when the data distribution is experiencing a slow gradual change. EDDM has a good result

percentage in this latter case.

22

The method that is used in EDDM in order to detect concept drift is by measuring the distance

between classification errors. This provides the algorithm with a faster adaptation over time

without having an increased rate of false positive results. In this method two thresholds are

defined: the drift level (concept drift exists after this threshold is met) and the warning level

(maximum distance between errors).

The EDDM algorithm process the examples in a sequence of trials with the examples arriving

one at a time. When the new example arrives the algorithm classifies it with help from the already

existing model. The training model adapts if the warning threshold for the distance between

classification errors is met and it starts searching for concept drift in the data distribution. That is

how the model will predict more accurate. The warning threshold in EDDM is set for a minimum

of 30 errors. After those errors have occurred, EDDM uses the second threshold to search for

concept drift in the data. Given that, it is apparent that when the distance between the errors is

small the model operates well but if the distance between the errors is large the model needs to

adapt. The learning algorithms that are used here are a decision tree and two K-NN algorithms

[23].

2.3.3 DWM Algorithm

DWM (or Dynamic Weighted Majority) algorithm is a general ensemble method used in online

learning for handling concept drift and is an extension of the Dynamic Majority Algorithm [24].

This algorithm is using prediction strategies known as experts to boost its performance. It

supports four mechanisms aiming to handle concept drift. The first one is that the online learners

of the ensemble are trained. Second, those learners have weights that are based on how they

perform. Third, the learners can be removed also based on how they perform and fourth,

depending on the ensemble’s global performance, new experts can be added.

The experts in the ensemble are weighted, new can be added and old can be removed, as it was

mentioned above. DWM relies on those weights through this addition and deletion process. The

entire algorithm’s performance is considered as global. Based on the global performance, DWM

is adding or removing experts. If a mistake is produced by the global algorithm, then an expert is

added. If a mistake is produced by an expert, then DWM assigns a lower weight on it. Last, if,

during the whole training process, an expert performs inadequately (this is something that can

be observed from the expert’s low weight) DWM will remove it from the ensemble.

23

The set of experts in the algorithm are assigned with a certain weight. The number of training

examples inserted have a class label and a feature vector each. The algorithm uses a

multiplicative factor (β) that is using when it want to decrease the weight of an expert, because

of its incorrect predictions. A parameter (θ) is used as a threshold and when an expert drops

below it, by performing poorly, it gets removed. DWM also has a parameter p, which checks how

often an expert is created or removed [24].

The way DWM proceeds is actually simple. It begins with forming its ensemble, which, at first,

contains only one learner (the learning algorithms in this example are Naïve Bayes and

Incremental Tree Inducer). The learner has the maximum weight that can be assigned (that is 1)

by the algorithm. For its first prediction, the learner uses a default class or previous background

knowledge. Then, DWM provides the learner with an example (or more than one) coming from

the data stream and waits for the learner to classify it. If the learner makes a false prediction,

then its weight is decreased with the help of the multiplicative factor. This first prediction of the

learner, is also the global prediction of the algorithm due to the fact that there is only a single

learner. It is apparent, if this global prediction is false, a new learner will be created and added

to the ensemble, with its weight set to the maximum level. Then, DWM provides the ensemble

with a new example to be trained. When the training process comes to an end the algorithm will

produce the new global prediction.

When the ensemble contains many experts, DWM gets from each one of them a classification

and if an expert makes an incorrect prediction then its weight is decreased. Despite of the

accuracy of the predictions of the learners, the algorithm uses them (the predictions) combined

with their weights so that it can summarize their weights to compute one for every class. The

class with the highest weight will be considered more important and its prediction will be set as

global [24].

2.3.4 FAE Algorithm

FAE (or Fast Adapting Ensemble) algorithm is an algorithm that can cope with concept drift by

adapting quickly and it has good performance when dealing with repeating patterns [25]. The

algorithm can handle abrupt and gradual changes related with concept drift. The examples

derived from the data stream are divided in parts of equal size (chunks) and an advantage of the

algorithm is that in the learning process more than one examples can be processed

24

simultaneously without having to wait for on example to end and then add a new one. As a result

the classification mechanism can adapt faster. The classifiers used are also divided into active

and inactive during testing the data. This happens because of their behavior and relevance with

the data in present.

The global decision of FAE is made by the decisions of its active classifiers (here Hoeffding Tree

and VFDT are used). FAE stores all learners that are inactive because of their relation to older

concepts and can be found useful if those concepts reoccur. The inactive status can be rapidly

change to active if a certain concept appears. The importance of a classifier also depends on

two parameters in the algorithm which describe the importance of the learner’s behavior when

new or old data are processed, respectively. According to the parameter that has the higher

value each time, the most suited classifiers will be used.

New classifiers can be created and be added to the ensemble if the algorithm thinks are needed.

There is a limit of classifiers that can exist in the storage. If the storage is full and a new learner

must be added then one of them of the already existing is replaced by the new one. There are

rules for this process and a further elaboration will be provided.

The algorithm assigns to all classifiers a weight and it is using those weights for making a

decision. Those weights can be updated from the algorithm by experiencing an increase or a

decrease. That is depending on the classifier’s performance while testing the data. When the

algorithm’s process begins there is only one active learner in the ensemble with the maximum

weight assigned.

The implementation of a drift detector for determining if a new learner is needed whether the data

are experiencing concept drift is another advantage of this algorithm []. If the status of the drift

does not change a new classifier is not necessary. Given that, memory is saved in the storage

and the learners that already exist are favored. Because of this, the algorithm can track gradual

drift too. Only if the drift detector produces two consecutively alerts a new classifier is created. If

the storage is full the procedure must be followed is that the first classifier that will be removed

is one that is inactive and its weight is the lowest. An active learner can be deleted if and only if

an inactive one does not exist but it is important to remember that at every moment one of the

learners must remain active [25].

It should be noted, that none of the above methods makes use of filters in the preprocessing part

of the classification process and also, none of them try to rearrange the form of a dataset in order

to achieve better results.

25

CHAPTER 3

METHODOLOGY

In this chapter, the detailed research plan is explained along with the development of the new

method. In the first section the software that is used for the experiments is presented. After that

the datasets that have been chosen are described. Following, there is a demonstration of the

algorithms implemented and finally a thorough data analysis takes place.

3.1 Software Setup

There are different software that are used, so that the experiments to be conducted. The

operation system that is used during those experiments is presented and the setup for writing

code for WEKA is displayed as long with the WEKA and MOA.

3.1.1 Waikato Environment for Knowledge Analysis (WEKA)

The data mining open source software WEKA is developed by the University of Waikato. WEKA

contains a varied collection of machine learning algorithms and it is best suited for applications

written in Java [26]. It provides a variety of tools for employing all the basic data mining

techniques and has access to SQL databases.

In WEKA there are four available modes in the GUI Chooser. These options are the explorer, the

experimenter, knowledge flow and the simple CLI. For the purposes of this specific dissertation

the three first are going to be used. The software reads arff files that are imported manually. The

format of the datasets used are in arff format.

When the dataset is loaded there are numerous options that are used for its examination. In this

case, there is a use of several filters that remove the noise from the dataset in the preprocessing

step, where the dataset is prepared so that the data mining functions can be used on it.

26

3.1.2 Massive Online Analysis (MOA)

Massive Online Analysis, most commonly known as MOA, is an open source framework

developed by the University of Waikato [27]. MOA implements algorithms using online data

streams. The online and offline algorithms of the software are used, in this dissertation, for

classification.

MOA supports bi-directional interaction with WEKA and is also suited for Java-based

applications. The framework supports arff format for the datasets. It also provides a tool

dedicated for concept drift observation and analysis. This tool will be used for comparing the

original dataset to the processed dataset for observing the mitigation of concept drift.

3.1.3 Eclipse

Eclipse is an integrated development environment (IDE) and it is most commonly used for coding

in Java [28]. Due to the fact that WEKA is compatible for Java applications, WEKA API will be

used for setting up Eclipse.

For setting up WEKA API in Eclipse the following steps must be followed.

Setting up WEKA API in Eclipse

Step 1 Create a new project in Eclipse with the name

‘weka-api’

Step 2 Built a path by selecting the ‘Configure Built

Path’ feature

Step 3 In the ‘Libraries’ tab, add the external JAR file

of WEKA

Table 1. WEKA API in Eclipce

By importing the WEKA JAR file in Eclipse all the WEKA libraries are ready for use.

27

3.1.4 Operating System

The characteristics of the operation system used are the following:

Characteristics

Operation System Edition Windows 10 Home

System Type x64

RAM 8 GB

CPU Intel Core i5-5200 CPU @ 2.2GHz 2.2GHz

Table 2. OS characteristics

3.2 Experimental Dataset

To investigate the problem, one reliable datasets is selected. That is the KDD Cup 1999 Dataset,

commonly known as KDD-99, which is the most widely used dataset in intrusion detection. The

dataset includes network intrusions that are simulated in a military network environment. It was

created by processing the 1998 DARPA Intrusion Detection System for tcpdump portions [29].

There are four types of attacks includes in KDD-99. Those are probing, denial – of – service

(DOS), unauthorized access from a remote machine (R2L) and unauthorized access to local

superuser with root privileges (U2R) [29].

KDD-99 dataset experiences concept drift. That is because the dataset was generated by hand-

injected attacks in a military network, so that different kind of attacks to be produced. All the data

in the dataset are labeled and it is an ideal training set for supervised learning algorithms.

In order to find a solution for coping with concept drift, those artificial data of the KDD-99 dataset

are used for all the experiments and testing of the proposed algorithm. One small detail that

should be mentioned is that WEKA cannot support the size of the whole KDD-99 dataset, so for

the purposes of this dissertation a smaller percentage of the dataset is used. This choice had the

result of lower improvement percentages in the evaluation part. Naturally, this was expected, due

to the fact that the smaller dataset contains a much smaller amount of instances than the original

and also fewer cases of concept drift.

28

3.3 Algorithm Implementation

Different algorithms are going to be applied in the dataset using different classifiers and variables

so that the most optimal result to be presented. With help from those algorithms, the new method

is being developed and presented, for addressing the concept drift problem.

3.3.1 Objective

By carefully examining the dataset for locating concept drift and the speed of adaptation of the

model in the classification process, one idea was always coming up, which was the use of filters.

In order to test this theory, the new method began developing. Taking the above into

consideration, in the following figure the new method is represented in two simple steps.

Figure. New Method representation

In the original dataset the Interquartile Range filter from WEKA is applied. The filtered dataset is

saved and reloaded in WEKA so that the classifiers can be applied on it and get optimal results.

For the above process a Java code is developed, which can be used to automate the steps. The

environment used for the code development is Eclipse with the weka.api configuration. The

developed code is provided in the appendix.

29

3.3.2 The New Method Hypothesis

While developing the new method a fundamental hypothesis is introduced. To apply a filter on

the dataset in the preprocessing part. The choice of the filter is neither arbitrary nor random. In

order understand why the Interquartile Range filter is chosen, the following must be considered.

First, due to the fact that the KDD-99 dataset is labelled, it is known that it contains concept drift.

The class attribute of the dataset has two labels, anomaly and normal. The weight of the

instances between the two labels does not differentiate much, with 67343.0 in normal and

58630.0 in anomaly as it is also shown in the following figure. That means that with such a big

anomaly weight there will be several concept drift changes.

Figure 2. WEKA environment: class attribute weight

Second, from the introduction where concept drift is analyzed, it is known that concept drift forces

the system to make less accurate predictions over time due to the instant or gradual change of

the concepts included in the data. So the system must have the ability to identify in an early stage

of time the presence of drift. Most those concept changes are observed in parts of data that

extreme values and outliers exist.

Based on the two facts above, the Interquartile Range filter is chosen (the filter is applied with its

default configuration). By definition, the filter detects all the extreme values and the outliers in

the dataset based on their interquartile ranges and it doesn’t include the class attribute in this

process [WEKA]. The filter adds two more attributes in the list of the dataset’s attributes, the

outlier attribute and the extreme value attribute. So with the use of this filter the dataset is

rearranged and the outliers along with the extreme values are defined clearly in it. As a result

30

when the new model is built the accuracy of the classifier improves. Also as it is shown in the

evaluation chapter from the results of the experiments the classifier is able to detect quicker the

presence of concept drift and that is why the system adapts faster.

3.3.3 Classifier Behavior

To support the hypothesis of the new method, tests were made using four different classifiers.

Those are Naïve Bayes, J48, Hoeffding Tree and lazy IBk. The classification is performed, on

WEKA, two times for each of the above classifiers, one with the non-filtered dataset and one with

the new filtered dataset.

The decision to keep the outliers and the extreme values in the dataset after the filter is applied

is conscious. The reason is that if the outliers are removed with another filter then the dataset

doesn’t not experiences concept changes because the number of instances is reduced by far

and the dataset is partially clean. This has as a result to partially eliminate or fully eliminate the

drift in the data because the data containing the drift have been removed. This move could be

useful if the objective was to clean the dataset. With the current objectives, there is no point to

remove the drifting data but the purpose is to thoroughly examine them and find a way to mitigate

the drift they experience.

3.4 Data Analysis

Data Analysis is important due to the fact, that all the results can be evaluated with the same

metrics so that the outcomes can be compared to each other. Here the test method for the

classifiers is explained along with the evaluation metrics.

3.4.1 Output Information

When an experiment is done in the output is provided important information about it. This

information is called Run information in WEKA.

The first thing observed is the classifier that is used to train the model. After that, the name of

the dataset used is stated along with the number of instances and attributes in it. Also, the type

31

of the test mode used is also shown. Last but not least, the output also provides the time needed

in order the model to be built.

3.4.2 Testing Method

The test method that is used in the experiments for training and testing the classifiers is the k-

fold cross validation and the number of folds used is ten. With this method, the dataset is divided

in ten parts and in every round, one of the parts takes the role of the test set and the other nine

parts are combined and take the role of the training set. This procedure is repeated as many

times as the existing folds, so in this case, ten times. In every lap the prediction error is calculated

and at the end of all laps the mean prediction error is calculated and displayed as the percentage

of error of the classifier.

3.4.3 Evaluation Methods

For evaluating the results of the experiments the following methods are applied.

In WEKA:

- Correctly Classified Instances: to determine the percentage of accuracy of the

classifier.

- TP Rate: to determine the instances that are classified correctly (true positive).

- FP Rate: to determine the instances that are classified falsely (false negative).

- Precision (aka Positive Predictive Value): to determine the actual number of instances

that belong to a class (true positives) among all the classified instances that belong to

the same class.

- ROC Area: general performance of the classifier.

- Confusion Matrix: representing the correctly and incorrectly classified instances of the

dataset assigned to each class.

32

In the following figure, a random example is displayed so that the above metrics can be

visualized.

Figure 3. WEKA evaluation metrics

In MOA:

- Input: Measures of the resources that are put into process in order to achieve an output.

- RAM – Hours: counts cost per hour and memory used at the same time. Every GB of

RAM deployed for 1 hour equals to 1 RAM-Hour.

- Time: time needed to build the model.

- Memory: the memory required to store the building model and its parameters.

In the following figure, a random example is displayed again so that the above metrics can be

visualized.

Figure 4. MOA evaluation metrics

33

CHAPTER 4

RESULTS AND ANALYSIS

In this chapter, all the results from the method implemented are presented and analyzed based

on the ways explained in Data Analysis from the third chapter.

All the outcomes from the previous implementations of the algorithms (including the new method)

are presented.

4.1 DATASET PRESENTATION

To start the experiments, the original dataset was loaded in WEKA as it is presented in the figure

below. It is clearly seen that the dataset has 42 attributes and that there is not a filter applied on

it, due to the fact that in the filter section ‘None’ is selected.

Figure 5. Original KDD-99 dataset

34

In the second figure below the filter is applied and the new filtered dataset is ready to use. In the

filter section the option ‘InterquartileRange’ is selected in its default settings. The new dataset

contains 44 attributes due to the fact that the attributes ‘extreme values’ and ‘outliers’ were

added.

Figure 6. Filtered KDD-99 dataset

4.2 RESULTS IN WEKA ENVIRONMENT

To present the results in a way that can be easy to interpret, screenshots before and after the

new method are provided and compared to each other.

The original KDD-99 dataset that is used contains 125.973 instances and 42 attributes and the

altered, from the filter, KDD-99 contains 125.973 instances and 44 attributes. The four classifies

used for the experiments are Hoeffding Tree, Naïve Bayes, J48 and lazy IBk.

35

4.1.1 Hoeffding Tree

In the figure n. the results from the classification of the original dataset are shown.

Figure 7. WEKA classification: Hoeffding Tree in original dataset

Following, the results from the classification of the altered dataset are shown.

Figure 8. WEKA classification: Hoeffding Tree in dataset after the use of the IQR filter

36

To summarize the results, in order to compare them the table below is provided. It presents the

general characteristics and the results in different metrics displayed in the figures. After the table

the two confusion matrices of the results are also provided.

 Original Dataset Filtered Dataset

Classifier Hoeffding Tree Hoeffding Tree

Test Mode Type 10 fold Cross-Validation 10 fold Cross-Validation

Time Needed to Build

Model

4.5 seconds 3.82 seconds

Correctly Classified

Instances

98.8498% 98.8656%

TP Rate (normal) 0.993 0.994

FP Rate (normal) 0.017 0.017

Precision 0.985 0.985

ROC Area 0.994 0.994

Table 3. Hoeffding Tree results comparison

Figure 9. Confusion Matrix of the original dataset Figure 10. Confusion Matrix of the filtered dataset

From the above results it is clear that the accuracy of the classifier in the filtered dataset is better

that the accuracy of the original dataset. Also there is a slight improvement in the true positive

rate of the filtered dataset. One important detail is that the time taken for the first classification to

be done in the original dataset lasted 4.5 seconds but in the filtered dataset the system adapted

fasted and built the model in 3.82 seconds. The rest of the results remain the same due to the

37

small size of the datasets. Last, as it is displayed, there is no difference in the confusion matrices

of the two datasets.

4.1.2 Naïve Bayes

In the figure n. the results from the classification of the original dataset are shown.

Figure 11. WEKA classification: Naïve Bayes in original dataset

Following, the results from the classification of the altered dataset are shown.

Figure 12. WEKA classification: Naïve Bayes in dataset after the use of the IQR filter

38

The following table summarizes the results above.

 Original Dataset Filtered Dataset

Classifier Naïve Bayes Naïve Bayes

Test Mode Type 10 fold Cross-Validation 10 fold Cross-Validation

Time Needed to Build

Model

1.6 seconds 1.2 seconds

Correctly Classified

Instances

90.3829% 90.4734%

TP Rate (normal) 0.936 0.939

FP Rate (normal) 0.134 0.135

Precision 0.890 0.889

ROC Area 0.967 0.966

Table 4. Naïve Bayes results comparison

Figure 13. Confusion Matrix of the original dataset Figure 14. Confusion Matrix of the filtered dataset

By observing the above results, there are several conclusions conducted. First, the time taken to

build the filtered model has improved from 1.6 seconds needed for the original model, to 1.2

seconds. Second, the accuracy of the classifier has improved 0.0905 seconds. Third, the true

positive rate, the false positive rate and the precision have also improved. The ROC Area rate

though is not improving from the original to the filtered model. Last, the confusion matrix of the

filtered model provides better results that the confusion matrix of the original model.

39

4.1.3 J48

In the figure n. the results from the classification of the original dataset are shown.

Figure 15. WEKA classification: J48 in original dataset

Following, the results from the classification of the filtered dataset are shown.

Figure 16. WEKA classification: J48 in dataset after the use of the IQR filter

40

The following table summarizes the results above.

 Original Dataset Filtered Dataset

Classifier J48 J48

Test Mode Type 10 fold Cross-Validation 10 fold Cross-Validation

Time Needed to Build

Model

30.88 seconds 33.55 seconds

Correctly Classified

Instances

99.7817% 99.7825%

TP Rate (normal) 0.998 0.998

FP Rate (normal) 0.002 0.002

Precision 0.998 0.998

ROC Area 0.999 0.999

Table 5. J48 results comparison

Figure 17. Confusion Matrix of the original dataset Figure 18. Confusion Matrix of the filtered dataset

In the case of J48 the results in the two models do not differentiate in matters of true positive

rate, false positive rate, precision and ROC Area. That is because the accuracy of the J48

classifier is so high that the difference is not visible in such a small dataset. Although, by looking

at the percentage of accuracy, again the filtered dataset has higher accuracy than the original

one. The odd thing in this case is that the classifier needed more time to build the filtered model

compared to the original one. In the confusion matrices though, in the second model the results

are better that the original one.

41

4.1.3 lazy IBk

In the figure n. the results from the classification of the original dataset are shown.

Figure 19. WEKA classification: lazy IBk in original dataset

Following, the results from the classification of the filtered dataset are shown.

Figure 20. WEKA classification: lazy IBk in dataset after the use of the IQR filter

42

The following table summarizes the results above.

 Original Dataset Filtered Dataset

Classifier Lazy IBk Lazy IBk

Test Mode Type 10 fold Cross-Validation 10 fold Cross-Validation

Time Needed to Build

Model

0.08 seconds 0.03 seconds

Correctly Classified

Instances

99.7452% 99.7555%

TP Rate (normal) 0.998 0.998

FP Rate (normal) 0.003 0.002

Precision 0.998 0.997

ROC Area 0.998 0.998

Table 5. lazy IBk results comparison

Figure 21. Confusion Matrix of the original dataset Figure 22. Confusion Matrix of the filtered dataset

By observing the above results, it is clearly declared that with the filtered dataset the classifier

needs less time to build the new model and the accuracy also improves. The remaining metrics

are the same in the two datasets except the precision, which in this case has a minor decrease.

The confusion matrix of the filter dataset again provides better results that the confusion matrix

of the original dataset.

43

4.3 RESULTS IN MOA ENVIRONMENT

MOA framework has a special option for concept drift. It allows the evaluation of a dataset that

contains drift concepts. In the following two figures, the evaluation of the original and the filtered

dataset is made, accordingly.

By observing this first figure, the first thing that is stated are the black lines in the plot. Those

black lines are representing the concept drift in the dataset. In this case, the evaluator has found

many points of drift among the instances and as it is obvious in the plot the lines exist every time

the red line does a gradual or sudden change.

Figure 23. MOA environment: Original Dataset

By observing the second figure, an instant difference from the first one is appeared. After the

point of 750 in the x axis the black lines that represent concept drift are becoming dense. This is

happening, due to the fact, that with the new filtered dataset the evaluator is more confident

compared to the previous case and it detects the points of concept drift easier than before.

44

Figure 24. MOA environment: Filtered Dataset

As all the results have been presented there is one conclusion that can be derived. With the use

of the Interquartile Range filter on the KDD-99 dataset the classifiers become more accurate and

they adapt faster during the classification process. Also, the rate of the true positives increase in

general. The time taken to build the model in most cases decreases and that means that the

classifier is getting faster. Last but not least, the concept drift evaluator after the application of

the filter becomes more confident and find the drifting concepts easier.

45

CHAPTER 5

CONCLUSIONS

In this dissertation, the world of data mining and machine learning applications combined with

intrusion detection systems was explored. Based on this examination, the connection with the

phenomenon of concept drift became more than obvious along with the problems that are

generated. In pursuance of a solution to this problem, a new method was proposed, tested and

evaluated.

Based on the new method, the application of filters in the preprocessing part of machine learning

before training the new model, proved to be more efficient, effective and helped the system to

adapt quicker according to the results acquired.

The new method using the Interquartile Range filter, rearranges the dataset in a way that helps

the machine learning algorithms to detect concept drift faster and improve the accuracy of the

new model, although it not always eliminate it. Those optimal results were obtained in all the

algorithms that were tested.

Naturally, in the development of the new method, limitations existed as well. The fact that WEKA

could not support a bigger dataset narrowed down the analysis of the data experiencing concept

drift. As a result, in the evaluation of the experiments the deviation before the application of the

new method and after the application is not so large but it is, no matter those limitations,

improved.

One challenge that will be worth tested in the future is the combination of the new method with

the process of feature selection in order to find out if the concept drift phenomenon is related in

a higher degree with specific features. This suggestion could lead to even more optimized results

if it is confirmed that there are specific features that extend the effect of concept drift in the data

explored.

Finally, this dissertation, lead the way to research, both in theory and in practice, a beneficial

way to cope with machine learning problems related to time and also gain new insights and

skills in a developing, but most important promising field of computer science.

46

REFERENCES

[1] Yi Wu. (2014), Network Big Data: A Literature Survey on Stream Data Mining. JOURNAL

OF SOFTWARE, VOL. 9, NO. 9

[2] Gama, J., Zliobait˙e, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A. (2013), A Survey on

Concept Drift Adaptation. ACM Comput. Surv. 1, 1, Article 1, 35 pages

[3] Zliobaite I. and Pechenizkiy M., Handling Concept Drift in Information Systems

[4] Zliobaite, I., Pechenizkiy, M., Gama, J., (2015), An overview of concept drift applications

[5] Sumeet Dua and Xian Du, (2011) Data Mining and Machine Learning in Cybersecurity

[6] Jiawei Han, Micheline Kamber, Jian Pei, (2012), Data Mining Concepts and Techniques, 3rd

edition

[7] G.V. Nadiammai, Hemalatha, M., (2014), Effective approach toward Intrusion Detection

System using data mining techniques

[8] Paul Dokas, Levent Ertoz, Vipin Kumar, Aleksandar Lazarevic, Jaideep Srivastava, Pang-

Ning Tan, (2002), Data Mining for Network Intrusion Detection, Computer Science Department,

University of Minessota

[9] Dariusz Brzezinski, (2013), Reacting to different types of concept drift: The accuracy

updated ensemble algorithm, Poznan University of Technology, Poland

[10] Brown, M. (2012), https://www.ibm.com/developerworks/library/ba-data-mining-

techniques/index.html

[11] Oracle,

https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/classify.htm#DMCON004, Oracle

Data Mining Concepts, Classification

[12] Oracle,

https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/regress.htm#CHDBHBDI, Oracle

Data Mining Concepts, Regression

[13] Oracle,

https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/market_basket.htm#DMCON009,

Oracle Data Mining Concepts, Association

[14] Oracle,

https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/clustering.htm#DMCON008,

Oracle Data Mining Concepts, Clustering

[15] Berkhin, P., (2002), Survey of Clustering Data Mining techniques, Accrue Software, Inc.

https://www.ibm.com/developerworks/library/ba-data-mining-techniques/index.html
https://www.ibm.com/developerworks/library/ba-data-mining-techniques/index.html
https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/classify.htm#DMCON004
https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/regress.htm#CHDBHBDI
https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/market_basket.htm#DMCON009
https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/clustering.htm#DMCON008

47

[16] Yihua Liao, V. Rao Vemuri, (2002), Use of K-Nearest Neighbor classifier for intrusion

detection, Department of Computer Science University of California

[17] Witten, I., Frank, E., Hall, M., (2011), Data Mining: Practical Machine Learning Tools and

Techniques, 3rd Edition

[18] Oracle,

https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/algo_nb.htm#BABIIDDE, Oracle

Data Mining Concepts, Naïve Bayes

[19] Rish, I., (2001), An empirical study of the naive Bayes classifier, T.J. Watson Research

Center

[20] Lior Rokach, Oded Maimon, (2014), Data Mining with Decision Trees: Theory and

Applications, 2nd Edition, Department of Industrial Engineering Tel-Aviv University

[21] Oracle,

https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/algo_decisiontree.htm#DMCON0

19, Oracle Data Mining Concepts, Decision Tree

 [22] Mohammad M. Masud1, Jing Gao2,Latifur Khan1, Jiawei Han2, and Bhavani

Thuraisingham, (2009), Integrating Novel Class Detection with Classification for Concept-

Drifting Data Streams, University of Texas, Dallas, University of Illinois

[23] Baena-Garcia, M., del Campo-Avila, J., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno

R., (2006), Early Drift Detection Method, Universidad de Malaga, Universitat Politecnica de

Catalunya

[24] Kolter, J., Mallof, M., (2007), Dynamic Weighted Majority: An Ensemble Method for Drifting

Concepts, Department of Computer Science Stanford Univeristy, Department of Computer

Science Georgetown University

[25] Ortiz, D.A., (2015), Fast adapting ensemble: a new algorithm for mining data streams with

concept drift

[26] WEKA framework, https://www.cs.waikato.ac.nz/ml/weka/, University of Waikato

[27] MOA framework, https://moa.cms.waikato.ac.nz/, University of Waikato

[28] Eclipse, http://www.eclipse.org/

[29] KDD-99, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/algo_nb.htm#BABIIDDE
https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/algo_decisiontree.htm#DMCON019
https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/algo_decisiontree.htm#DMCON019
https://www.cs.waikato.ac.nz/ml/weka/
https://moa.cms.waikato.ac.nz/
http://www.eclipse.org/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

48

APPENDIX

Source Code for WEKA for saving and loading the dataset.

package weka.api;

import weka.core.Instances;

import weka.core.converters.ArffSaver;

import java.io.File;

import weka.core.converters.ConverterUtils.DataSource;

public class KddLoadSave{

 public static void main(String args[]) throws Exception{

 DataSource kddsrc = new DataSource("/Desktop/kdd99.arff");

 Instances kdddtst = kddsrc.getDataSet();

 System.out.println(kdddtst.toSummaryString());

 ArffSaver kddsvr = new ArffSaver();

 kddsvr.setInstances(kdddtst);

 kddsvr.setFile(new File("/Desktop/newkdd99.arff"));

 kddsvr.writeBatch();

 }

}

