
 -i-

Evolution Analysis of
Technical Debt: Monitor-
ing the Breaking Point
Alexandros Michailidis

SID: 3306160006

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Mobile and Web computing

DECEMBER 2017

THESSALONIKI – GREECE

 -ii-

Evolution Analysis of
Technical Debt: Monitor-
ing the Breaking Point

Alexandros Michailidis

SID: 3306160006

Supervisor: Dr. Apostolos Ampatzoglou

Supervising Committee Mem-

bers:

Assoc. Prof. Name Surname

Assist. Prof. Name Surname

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Mobile and Web computing

DECEMBER 2017

THESSALONIKI – GREECE

 -iii-

Abstract

Technical Debt (TD) is a metaphor to financial debt, used both by management and

technical stakeholders, which denotes that the development of poor code quality

software can be perceived as a debt, that will be repaid in the future as higher mainte-

nance effort. In this paper we build upon the FITTED framework, which proposes a

methodology for monitoring the point, that the company has spent the whole amount

of funds on maintenance activities, the breaking point. To achieve this goal, we have

created a desktop application, which incarnates the FITTED theory, and illustrate its

applicability through a case study on open-source software projects.

Keywords: software quality, technical debt, principal, interest, breaking point

Alexandros Michailidis

29/12/2017

 -iv-

Contents

ABSTRACT .. III

CONTENTS .. IV

TABLE OF PICTURES .. VI

TABLE OF TABLES ... VIII

1 INTRODUCTION .. 9

2 BACKGROUND INFORMATION .. 12

2.1 LITERATURE REVIEW ON TECHNICAL DEBT .. 12

2.2 FINANCIAL APPROACH ON TECHNICAL DEBT .. 14

2.2.1 Interest Theory in Economics .. 15

3 PROPOSED INTEREST THEORY ... 20

3.1 TECHNICAL DEBT SUSTAINABILITY APPROACH ... 20

3.2 APPLICATION OF FITTED INTEREST THEORY .. 22

3.3 ESTIMATION OF PRINCIPAL .. 24

3.4 ESTIMATION OF INTEREST ... 25

3.5 BREAKING POINT ... 27

4 CONTRIBUTION .. 28

4.1 TECHNOLOGIES USED ... 28

4.1.1 Java ... 28

4.1.2 Perl .. 29

4.1.3 MySQL .. 31

4.1.4 JDBC & DBI ... 32

4.1.5 SonarQube ... 32

 -v-

4.2 BREAKING POINT TOOL ... 38

4.2.1 Analysis Phase .. 38

4.2.2 Computation Phase .. 44

4.2.3 Presentation Phase... 47

5 CASE STUDY ... 50

5.1 GOAL AND RESEARCH QUESTIONS ... 50

5.2 CASE SELECTION ... 51

5.3 DATA COLLECTION ... 52

5.3.1 Collected Data ... 52

5.3.2 Collection Process .. 52

6 RESULTS .. 54

6.1 RQ1 BREAKING POINT SELECTION .. 54

6.2 RQ2 EVOLUTION OF PRINCIPAL AND INTEREST.. 59

6.3 RQ3 EVOLUTION OF PRINCIPAL AND INTEREST.. 66

7 CONCLUSIONS ... 73

8 FUTURE WORK .. 74

BIBLIOGRAPHY .. 75

APPENDIX .. 78

 -vi-

Table of Pictures

Picture 2.1: Loanable Funds Theory ... 17

Picture 2.2: Liquidity Preference Theory .. 18

Picture 3.1: FITTED framework ... 21

Picture 3.2: Increased maintenance effort for technical debt item 23

Picture 3.3: Principal in dollars ... 24

Picture 3.4: Maintenance effort .. 25

Picture 3.5: Calculation of interest ... 26

Picture 3.6: Interest in dollars ... 27

Picture 3.7: Breaking point in versions ... 27

Picture 4.1: Structure of the relational model... 31

Picture 4.2: SonarQube structure .. 35

Picture 4.3: SonarQube results .. 36

Picture 4.4: SonarQube violations ... 36

Picture 4.5: Analysis Screen... 39

Picture 4.6: Metrics Calculator Analysis ... 42

Picture 4.7: Similarity function .. 45

Picture 4.8: Fitness value function... 46

Picture 4.9: Presentation phase ... 48

Picture 6.1: Principal and interest evolution for Commons-cli 60

Picture 6.2: Principal and interest evolution for Commons-lang 61

Picture 6.3: Principal and interest evolution for Commons-wro4j 62

Picture 6.4: Principal and interest evolution for Joda time 63

Picture 6.5: Principal and interest evolution for x-stream 64

Picture 6.6: Increasing breaking point... 67

 -vii-

Picture 6.7: Decreasing interest ... 67

Picture 6.8: Decreasing breaking point ... 68

Picture 6.9: Increasing interest... 68

Picture 6.10: Breaking point for Commons-cli ... 69

Picture 6.11: Breaking point for Commons-cli ... 69

Picture 6.12: Breaking point for Joda-time ... 70

Picture 6.13: Breaking point for Wro4j .. 70

Picture 6.14: Breaking point for Xstream .. 71

 -viii-

Table of tables

Table 4.1: Similarity Metrics ... 40

Table 4.2: Quality Metrics ... 43

Table 5.1: Analyzed projects .. 52

Table 6.1: Sqale Index fitness value approach ... 55

Table 6.2: Metrics fitness value approach .. 57

Table 6.3: Principal evolution overview .. 65

Table 6.4: Interest evolution overview .. 65

Table 6.5: Breking point evolution overview .. 72

 -9-

1 Introduction

The concept of “cost of poor quality” or “poor quality costs” has been popularized

in quality management literature by Harrington, and refers to costs derived by the

production of low quality or defective products. Cost of poor quality includes both

the cost of bringing the product to optimum quality level and the cost to repair any

defects in delivered products. Respectively to the term of poor quality costs, the soft-

ware engineering community has adopted the concept of technical debt, which refers

to the aforementioned cost in software development. The term Technical Debt (TD)

was introduced by Ward Cunningham in 1992, as a metaphor to financial debt, in the

sense that the development of not-quite-right code can be perceived as a debt that will

have to be repaid in the future as higher maintenance effort. Technical debt can be de-

fined as “...a collection of design or implementation constructs that are expedient in

the short term, but set up a technical context that can make future changes more cost-

ly or impossible...” [1].

Technical debt and its management have gained increasing interest by the commu-

nity during the last years, as 90% of papers on this subject have been published after

2010. According to Li et al [2]. 43% of this research is performed in academia, 40%

in industry and 17% in both fields. Research is focusing on issues related to cost and

benefit analysis of software quality management. Although research on TDM has

been intense in the last years, the community still faces major challenges, such as: (a)

the estimation of the amount of TD (i.e., the quantification of principal and interest)

[4], and (b) the methodologies that can be applied for managing the increase in TD

amount (due to the accumulation of interest) [5].

To address these challenges, at their previous work, Ampatzoglou et al. [4] [5]

have defined a theoretical framework (FITTED – Framework for managing Interest in

 -10-

Technical Debt) that can be used for the long-term management of Technical Debt.

According to FITTED, as interest accumulates during software evolution, it can po-

tentially reach an amount larger than the amount required for repaying the principal

of technical debt at earlier phases of the development. Therefore, it is critical for pro-

ject managers to be able to estimate the instance at which the accumulated interest

will reach the amount of technical debt principal. The time point at which the accu-

mulated interest equals the amount of principal is called the ‘breaking point’, in the

sense that any benefit deriving from the decision to take on technical debt is being

neutralized by the need for extra maintenance effort as software evolves [5]. Another

interesting point in the evolution of software (inflection point) is the time at which

maintenance effort exceeds effort of implementing new functionality.

In this study we build upon the FITTED framework [5] to explore the sustainabil-

ity of industrial software applications. In particular, we investigate if the technical

debt breaking point is shifted to the future or comes closer to present, as the software

evolves. To achieve this goal, we study the full evolution of five industrial applica-

tions and we estimate: (a) the amount of technical debt, (b) the interest to incur in fu-

ture maintenance activities, and (c) the breaking point for all versions of the system.

Using this information, we assess the trend in the cornerstones of technical debt man-

agements (i.e., principal and interest). As analyzed by Ampatzoglou et al. [4], the

breaking point can be calculated by the ratio of technical debt principal over the aver-

age interest per software version. More specifically, for any software system, a set of

refactoring suggestions, which can be applied in order to increase quality, can be ex-

tracted. Applying these refactorings will lead to an optimal design, as defined by a

fitness function. The difference in effort between the optimum and the actual system

can be used as an indicator of the technical debt principal. The ratio of the optimum

system’s quality over the actual system’s quality is perceived as an estimator of the

ratio of increased effort over the original effort (interest) for maintenance purposes.

Finally, in order to assess the reliability of the proposed approach we perform the

aforementioned analysis using four different fitness functions, and explore to what

 -11-

extent the outcome of instantiating FITTED is influenced by the subjective selection

of metrics.

The study is organized as follows: In Section 2 we provide some background in-

formation for technical debt along with the definition of interest in economics. In sec-

tion three we present in detail, the FITTED framework, as it is defined by Am-

patzoglou et. al. Next, in section 4, we analyze in depth the functionality of the soft-

ware created for validating the FITTED framework, along with the technologies used.

In section 5 we present the case study of our research, whereas in section 6 we dis-

cuss the results and answer on the research questions. Finally, the conclusions of our

work and our future plans on the topic are presented in sections 7 and 8 respectively.

 -12-

2 Background Information

This chapter provides the reader with the basic knowledge required to compre-

hend the topic and the terminology behind the main idea of this dissertation, the man-

agement of the technical debt.

2.1 Literature Review on Technical Debt

Software companies often decide to rush the development of a software product

rather than implementing with top quality along all the development phases. This

shift-towards approach might be a time saving solution, however it results into poorly

specified, designed and implemented software, with increased future maintenance

costs. This kind of financial consequence, in software engineering, is defined as the

technical debt.

Due to its multidisciplinary nature, technical debt combines elements from both

economics and information technology scientific sectors, which could result into a

communicational gap between the stakeholders involved in the development of a

software product. Consider a development team which consists of project managers

and technical staff such as designers, developers and testers. On the one hand the

managers are not directly associated with the implementation of the product during

the various software lifecycles. Contrariwise they are mostly occupied with time

management and financial tasks, as they are primarily interested in increasing the

benefit of the company along with decreasing the production costs by publishing the

product into the market the soonest possible. On the other hand, the hands-on stake-

holders are keen on making extra effort on designing and implementing the artifact,

as the enhanced quality will ease post-production activities such and reusability and

maintenance. Moreover, identical or similar projects will reach the market with less

 -13-

effort needed, therefore increased profit for the organization. Nevertheless, the final

decisions are always taken by the project managers, thus the technical staff should be

able to argument on the importance of the architectural quality of the product. In case

that a decision of emerging the development process of the software is taken, the pos-

sibility of skipping important steps of the software lifecycle increases. Consequently,

the terminology of the technical debt is a “bridge” that connects the two clashing sci-

entific sectors.

In their previous work Li et al. [7] classified technical debt into ten major types,

based on the reason that occurred its appearance:

1. Requirements TD: Represents the gap between the optimal (probably de-

sired by the client) requirements and those implemented at the release of

the artifact.

2. Architectural TD: Caused by immature or hurried architectural decisions

which result into quality defects and reduces maintainability and sustaina-

bility of the product.

3. Design TD: Refers to the shortcuts that are taken in detailed design.

4. Code TD: Refers to the poorly written code that violates best coding prac-

tices and rules.

5. Test TD: Refers to the shortcuts or even to the lack of testing.

6. Build TD: Flaws in the build system, or in the build process of the software

that makes the build procedure overly complex and difficult.

7. Documentation TD: Insufficient, incomplete, or outdated documentation

in any aspect of software development.

8. Infrastructure TD: Refers to a sub-optimal configuration of development-

related processes technologies, supporting tools, etc.

9. Versioning TD: Problems in source code versioning, such as unnecessary

code forks.

10. Defect TD: Refers to defects, bugs, or failures found in software systems.

 -14-

2.2 Financial Approach on Technical Debt

In the following paragraphs we are going to analyze the financial aspects of tech-

nical debt, trying to familiarize people with a software engineering background with

terms, definitions and approaches which belong to the economics sector, but are fun-

damental for the measurement of technical debt. The term debt describes an amount

of money that has been lent by one individual/team to another individual/team tempo-

rarily. The debtor, the person that was borrowed the money, is obliged to repay a

larger sum which accrues as the aggregation of principal and interest. The principal

denotes the original amount of money lent while the interest represents the additional

fee that the debtor must pay to the lender, as a “compensation” for the undertaken risk

of their agreement (the risk includes either the loss of money due to a non-repayment

or the loss of benefit from a possible investment). The interest is calculated as a per-

centage, interest rate, over the principal and it can be classified as:

• Simple or Compound: When calculated by multiplying the interest rate with

principal for each period of loan it is characterized as simple, however when

adding the previously accumulated interest it is called compound. Simple inter-

est increases linearly, while compound on an exponential factor.

• Fixed or Floating: Fixed interest is stable over period, whereas floating is

characterized by fluctuations from period to period.

 Interest is the term that mostly concerns us, in the estimation of the breaking point,

thus it is worth foreseeing a bit. We should mention that, in technical debt, interest

rate is not directly defined, so we are unable to apply the classification between fixed

and floating. However, we can surely assume that technical debt is compound, since

the effort to repay the technical debt when maintaining or expanding a non-optimal

version of the software increases as the artifact evolves.

 Based on the aforementioned statement, that technical debt is a multidisciplinary

domain, Ampatzoglou et al. [8] conducted a research trying, to identify which per-

 -15-

spective of research is the most overwhelming and concluded on the following classi-

fication depending on the aspect chosen:

1. Emphasis on the software engineering: Studies based solely on software en-

gineering terms, such as code smells, to calculate the debt, setting aside any fi-

nancial approach.

2. Emphasis on the finance model: Studies that touched only the surface of

software engineering but deeply adopted financial methods such as Cost-

Benefit analysis, Portfolio Management and Real Options which will be cov-

ered on the next sections.

3. Emphasis on both aspects: Studies that combine elements from both scientific

fields in order to reach a rational and robust result.

Actually, a fourth category does exist, which includes studies that refer only on

the basic financial aspect without occupying with software engineering. However, at

this point of research we are not further interested in taking those into account, be-

cause mostly they argue with the existence of technical debt on systems which were

built using agile technologies. Finally, the approach we adopted follows the 3rd model

as we are using software evaluation metrics as well as financial standards to calculate

the technical debt, but this methodology will be discussed in the following sections.

2.2.1 Interest Theory in Economics

In economics theory, different schools of economics have suggested different

models on the definition of interest rate in the market. The Loanable Funds Theory,

proposed by the Neoclassical School, and the Liquidity Preference Theory, intro-

duced by the Keynesian theory, are the mainstream theories on the issue [11].

Interest rate can be considered as the price of money, in the sense that it is the

price paid for borrowing money, or, on the other hand, the payment received when

lending money. As any other price in economics, interest rate can be defined in the

market by the equilibrium point, where market supply equals market demand. Loana-

ble Funds Theory suggests that interest rate is defined in the market of loanable

 -16-

funds. On the one hand, demand for loanable funds is formed by individuals or enter-

prises that are eager to invest and ask for loans in order to fund their investments. In

this case, the higher the interest rate gets, the more expensive borrowing money be-

comes. Consequently, as interest rate rises, demand for loanable funds falls. On the

other hand, supply of loanable funds is generated by individuals or enterprises who

want to save their money, using the loanable funds market. In order to save their

money for later, instead of spending their entire income, they decide to put part of it

into the loanable funds market. Consequently, as interest rate gets higher, return on

savings also rises. As a result, supply of loanable funds increases as interest rate in-

creases.

Picture 2.1 presents the equilibrium in loanable funds market; with the mention

that, in economic theory, in supply – demand diagrams, the dependent variable is rep-

resented on the horizontal axis, whereas the independent variable on the vertical axis.

Accordingly, in the diagram of picture 2.1, interest rate (r) is depicted on the vertical

axis, whereas supply and demand for loanable funds are denoted on the horizontal ax-

is. Line S is the supply curve of loanable funds, which represents the quantity of

loanable funds supplied in the market at any interest rate. The positive correlation be-

tween interest rate and loanable funds supply is indicated by the positive slope of line

S. Besides, line I is the demand curve for loanable funds and it represents the quantity

of loanable funds demanded in the market at any level of interest rate. The negative

slope of line I shows the negative correlation between loanable funds demand and the

level of interest rate.

For interest rate levels higher than r*, quantity supplied is greater than quantity

demanded because lending money is more profitable than borrowing, due to the high

interest rate. On the contrary, for interest rate levels lower than r*, quantity supplied

is less than quantity demanded because, due to the high interest rate, borrowing mon-

ey is more profitable than lending, i.e., investing is more profitable. At interest rate

level r=r*, loanable funds supply is equal to loanable funds demand. Consequently,

 -17-

neither the investors nor the savers have any motivation to alter their position in the

market, thus equilibrium is achieved, and interest rate is specified at the level of r=r*.

Picture 2.1: Loanable Funds Theory

The equilibrium point does not change, when any other variable in the market,

that could influence savings or investment, stays constant. In economics, this situa-

tion is described by the Latin phrase ceteris paribus, meaning that all other factors are

stable. Ceteris paribus is set as a condition in order to investigate the relationship be-

tween two variables. Therefore, interest rate r* is the equilibrium interest rate only

when any other factor is stable. It can move upwards or downwards if savings or in-

vestments alter due to an exogenous factor, i.e., income. If income increases, the

amount of savings would also increase. As a result, in picture 2.1, the savings curve

(S) would move to the right and the new loanable funds supply curve would be repre-

sented by the new line S1. Accordingly, a new equilibrium would be achieved in the

market, depicted by the point E1, and the new equilibrium interest rate would be de-

fined lower than r*, at the level of r1.

According to the Liquidity Preference Theory, interest rate level is determined in

the money market, through the mechanism of supply and demand for money (i.e.,

cash). Under this perspective, it is assumed that, the quantity of money (cash) that

people choose to hold for causes of transactions, precaution or speculation consist the

 -18-

demand for money (L). If interest rate increases, people find investing more appealing

(profitable) than holding their money (because interest rate is considered as the cost

of holding cash against to investing). Hence, there is a negative relationship between

interest rate level and demand for money; as interest rate increases, demand for mon-

ey decreases and vice versa. On the other hand, supply of money (M) is determined

by the central bank, depending on the requirements of the economy. Thus, supply of

money does not depend on the level of interest rate; it is given at any point of time

(this hypothesis expresses the main contradiction with the Loanable Funds Theory).

Correspondingly to the Loanable Funds Theory, the point where supply equals de-

mand is the equilibrium point and determines the level of the interest rate in the mar-

ket.

Picture 2.2: Liquidity Preference Theory

The equilibrium in the market of money is shown in the diagram of picture 2.2.

The vertical axis depicts the interest rate, while the horizontal axis represents money

supply and demand. As mentioned above, money supply is independent of the interest

rate and it is determined by the central bank. Therefore, money supply curve is repre-

sented as line M, vertical to the horizontal axis. Besides, the negative correlation be-

tween demand for money and interest rate is depicted by the negative slope of line L

 -19-

which represents the money demand curve. Line L shows the quantity of money that

people demand at any level of interest rate. The point where the two curves (M and L)

intersect is regarded as the equilibrium of the market and determines r* as the equilib-

rium interest rate, ceteris paribus.

In case another determining factor (e.g. income) causes demand for money to

change, or in case the central bank decides to increase or decrease money supply in

the economy, equilibrium point will shift, and interest rate will change. For example,

if monetary authorities decide to increase the quantity of money supplied, then the

supply curve will move to the right, to the new line M1. As a result, E1 will be the

new equilibrium point and interest rate will be now determined at the level of r1,

lower than r*.

 -20-

3 Proposed Interest Theory

In this section we present the rationale of FITTED framework, as imposed by Am-

patzoglou et Al. [4] [5], the framework upon which we based our calculations. We al-

so provide our methodology for converting those theoretical ideas, into functions and

calculations which will be performed by the tool that we are going to present on the

following chapters.

3.1 Technical debt sustainability approach

Based on the rationale of the existing economic interest theories, described on

section 2.2.1, Ampatzoglou et al. [10] developed a theory for managing technical debt

interest Specifically, they adopted the Liquidity Preference Theory. The reason for se-

lecting this concept in favor of the Loanable Funds Theory is that, in technical debt,

the amount of money that is available to the software development company for man-

aging the technical debt is stable, i.e., the principal. Under this perspective the money

supply is paired to the principal, since principal represents the amount of money that

the company can manage, after technical debt occurs., while the money demand is

paired to the accumulated interest, in the sense that interest embodies the extra

amount of money that will be necessary for future maintenance actions, caused by the

incurring technical debt. As long as accumulated interest is lower than the principal,

the benefit derived by the initial decision to save effort is more than the cost generat-

ed by the extra effort to maintain the software. On the other hand, when the accumu-

lation of interest overcomes the principal, then the cost needed for the system’s

maintenance becomes more than the money saved when technical debt incurred. Con-

sequently, the point where the accumulated interest is equal to the principal (breaking

 -21-

point) is very critical in technical debt management and can help project managers in

their decision making.

Picture 3.1 represents the FITTED Interest Theory. The horizontal axis depicts

time, while the vertical axis stands for money amount. The blue curve Σ(Ι) denotes

the increasing cumulative interest, as the software develops. We consider cumulative

interest as continuously increasing, because it consists of the accumulation of interest

in every successive version of the project and because technical debt interest is com-

pound [8]. Principal, on the other hand, is represented by the green line P and is also

considered as increasing, in the sense that the introduction of new functionality to the

software generates new technical debt items.

As described by the figure, until time stamp t0, interest is lower than the principal

and taking on technical debt can be perceived as beneficial for the project. After time

point t0, interest accumulates and becomes larger than the principal and extra mainte-

nance costs exceed the initial money saving. Therefore, the equilibrium point E0 de-

notes the time stamp, at which the company has spent the complete amount of money,

hence the principal, in maintenance actions because of the technical debt.

Picture 3.1: FITTED framework

 -22-

If the development team proceeds with some repayment activity, e.g. at

timestamp tr, accumulated interest increases, because of the addition of the repayment

effort, and line Σ(I) shifts upwards to Σ(I)΄. However, the slope of the line decreases,

since lower maintenance activities are expected in the future due to the repayment.

On the other hand, principal decreases at time stamp tr, because of the repayment ac-

tivity, and then follows the course of line P΄. Consequently, the equilibrium point

moves to the right (E’), and the benefit period increases to time stamp t0’ [5]. Hence,

in the case that no repayment is made, if the life cycle of the software is expected to

be shorter than time stamp t0, then technical debt is beneficial for the company. If the

software’s lifespan expands after t0, then taking on technical debt is harmful decision.

It has to be mentioned that we define the equilibrium point based only on the es-

timation of effort, i.e., the effort saved when technical debt occurs, and the effort re-

quired for extra maintenance due to technical debt accumulation. For the shake of

simplicity, our analysis excludes other costs or benefits caused by undertaking tech-

nical debt, for example any financial benefits gained due to early product release. The

proposed interest theory can help practitioners in their decision making by:

• Identifying the timestamp in which incurring TD, becomes harmful for the

company. Thus, they can decide if they should undertake the debt.

• Supporting the continuous monitoring of the interest that has been paid so far.

• Evaluating the repayment activity, based on the time-shift of the equilibrium

point that it offers.

3.2 Application of FITTED Interest Theory

As an illustrative example of how the FITTED interest theory can be applied,

Chatzigeorgiou et al. [10] proposed an empirical methodology for calculating the ex-

pected time when the equilibrium point will be reached. Based on this study, the time

point at which the equilibrium is reached has been termed as the breaking point of

technical debt. To formulate principal and interest, Chatzigeorgiou et al. used the ra-

 -23-

tionale depicted in picture 3.2. In particular, it is assumed that for each object-

oriented software an optimum design does exits, or at least it can be assumed that it

exists. The quality of every system can be calculated with the use of a fitness function

which actually denotes the “distance” between the current system and the optimal

one. Also, using search-based optimization a design that optimizes the value of this

function can be obtained. The effort needed to transform the actual system to the op-

timal one can be defined as the principal. Furthermore, it is reasonable to assume that

extra effort needs to be performed in order to add a new feature on the actual system,

rather than adding the same feature to the optimal system. This difference in effort

represents the interest.

Maintenance Effort

R
ep

ay
m

e
n

t
Ef

fo
rt

Actual

Optimum Optimum

Actual

Effortm(optimum)

Feature A

Effortm(actual)

Feature A

Effortr

interest

principal

Picture 3.2: Increased maintenance effort for technical debt item

To instantiate this approach with a specific implementation, the following ac-

tions/assumptions can be made:

• Fitness value: Ratio between coupling and cohesion, two well-known software

quality metrics.

 -24-

• Principal: Number of simple refactorings needed to transform the actual design

to the optimal one.

• Interest: The ratio of the levels of design quality (fitness function) is correlated

to the ratio of the two models (the actual and the optimum).

3.3 Estimation of Principal

Technical debt principal can be calculated as a function of three variables. The

first variable is the number of problems that must be fixed, the second one is the time

required to fix each one of these problems, and the third one is the cost for fixing

each problem. Regarding the number of must-fix problems, Ampatzoglou et al. [10]

have presumed that for any object-oriented software an optimal design quality does

exist, which can be estimated by a proper fitness function. Under this perspective, a

measure of coupling and cohesion have been selected to serve as a fitness function,

whose role is to assess the allocation of a system’s entities (methods and attributes) to

the classes. Then, local search optimization algorithms can be applied, in order to de-

fine the optimum design that consists of the same entities that optimize the aforemen-

tioned fitness function. Therefore, the ‘spread’ between the optimal and the actual de-

sign, as it can be derived by the difference in their fitness function values, can be

mapped to the principal, i.e. the effort needed to convert the actual system to the cor-

respondent optimum one. This notion of “distance” is depicted in picture 3.2, as Ef-

fortr. For this study, we have decided to base our estimation of principal on the com-

putation of a widely used platform, SonarQube. SonarQube extracts a metric called

Sqale Index, which represent the time (in minutes) needed for the average developer

to fix all the maintenance problems of the analyzed artifact. Therefore, by taking into

account this metric and that the hourly rate of the average developer is 45.81$ [16] we

can calculate the value of principal in dollars as:

Picture 3.3: Principal in dollars

 -25-

3.4 Estimation of Interest

Assuming the optimal and actual systems of picture 3.2, under normal circum-

stances, maintaining the optimum system requires less effort than maintaining the ac-

tual system. As shown in the figure, adding a new feature A to the optimal system

needs a certain effort, noted as Effortm (optimal), whereas adding the same feature to

the actual system necessitates a larger effort, noted as Effortm (actual). The difference

between these two efforts represents the interest that is accumulated during this

maintenance activity, i.e., the addition of feature A. However, since the evolution of

the software cannot be predicted, it is not possible to foresee what kind of modifica-

tions will be made in a software system during future releases. Hence, we found our

assessment of future maintenance effort on historic data, by considering effort spend-

ing on maintenance activities.

More specifically, although many measures can be used for the calculation of past

effort, we have selected to use the average number of lines of code added between se-

quential releases. Added lines of code indicate the amount of effort required for the

addition of new functionality and in a way the effort needed for the change of existing

modules. Supposing that an average of k lines of code is added in the transition from

one version to another, it is reasonable to assume that adding k lines to a high design

quality system (expressed by the value of the employed fitness function) is easier than

making the same addition to a lower design quality system. At this point we suppose

that maintenance effort is dependent on the design quality, as in picture 3.4, where c

represents an arbitrary constant.

ueFitnessValcEffortm

Picture 3.4: Maintenance effort

 -26-

Based on the abovementioned approach, the fitness value for both the optimum

and the actual systems can be calculated and therefore we can capture the proportion

of the theoretical over the actual effort, as in:

Hence, if past maintenance effort (i.e., the number (k) of added lines) is used to

define the actual maintenance effort, then the optimum effort can be directly obtained.

Consequently, the amount of interest accumulated between any two sequential ver-

sions can be calculated as the distance between the optimum and the actual effort and

is given by picture 3.6.

Picture 3.5: Calculation of interest

Given the fact that interest is closely related to the system’s maintainability, our

analysis concentrates on the estimation of interest, based on design time quality at-

tributes, such as inheritance, cohesion, coupling, complexity and size. So, in order to

define the fitness value used for the estimation of the interest, we use a set of source-

code level metrics which will be presented in the following chapters. More specifical-

ly, in order to define the optimum design, our analysis consists of the following steps.

Firstly, classes of high similarity level with the investigated class are found. Second-

ly, the optimum value for each one of the aforementioned metrics is identified and the

difference between the actual and the optimum fitness values is calculated and the av-

erage distance between the actual and optimum design is assessed. Finally, by taking

 -27-

into account that the average developer adds 25 lines of code per hour [17] and the

developer’s hourly rate [16], we can produce interest in dollars by calculating k in

picture 3.7 as:

Picture 3.6: Interest in dollars

3.5 Breaking Point

By having formulated both the principal needed to perform all the code refactorings

for maintenance, as well as the interest that is being accumulated from version to ver-

sion, we are able to calculate the number of versions when the breaking point occurs

by the following function:

Picture 3.7: Breaking point in versions

 -28-

4 Contribution

It follows from the previous chapters, basically from the literature review, that for

generating the results, to successfully monitor the evaluation of the breaking point, it

would need plenty of recursive mathematical calculations. Thus, we automated this

procedure, in order to produce accurate results, by developing a desktop Java applica-

tion, called Breaking Point Tool. Essentially, this chapter represents the “incarnation”

of the aforementioned methodology. The upcoming sections, represent an in-depth

analysis of the steps we followed, for transforming the theoretical ideas into practical

actions, through the Breaking Point Tool.

4.1 Technologies Used

4.1.1 Java

Java was developed by Sun Microsystems, and in particular by James Gosling in

1995. It is a high-level and general-purpose programming language with plenty of li-

braries that support the implementation of applications of any technology. It is based

on classes and interfaces, characterized for its object-oriented nature and supports any

programming paradigm. The fact that Java is a complied programming language, in-

creases the execution speed of applications and is one of its main advantages com-

pared to interpretable script languages.

It is relatively easy to be learned for beginners or developers who are knowledgea-

ble of C++, as Java has borrowed many of its features. Characterized for the clean

and readable code, which consists of reserved keywords of English terminology. It

has an extra-management system, automatic garbage collector and supports multi-

threading and multiprocessing. It is extendable and scalable, which facilitates the

maintenance of its programs. However, it is particularly sensitive to error handling,

 -29-

although it provides users with sufficient information to find and correct them. An

additional key disadvantage is that it can bind multiple memory resources.

Basic uses of Java:

• Desktop Applications

• Android Development

• Web Services

• Web applications

• Video Games

• Network Applications

In recent years there has been a rapid increase in the use of Java on web applica-

tions industry, larger than in other scripting and programming languages. This is due

to the turning of large corporations (Oracle, Yahoo, Microsoft and Apple) and devel-

opers to its use, given its multiple benefits. In order to implement web applications

and web services, several frameworks do exist, with the most common of those being,

Spring MVC, Spark, Struts and JSF. There are also several Integrated Development

Environments (IDEs) for developing Java applications. Finally, it has programming

communities that provide information and help for new developers.

4.1.2 Perl

Perl was originally written by Larry Wall at NASA's workshops. Perl's original

purpose was to function as a glue programming language for him and his colleagues.

By "glue", we refer to a programming language specifically designed for creating ap-

plications that link different software components to each other. Perl incorporated the

advantages from many programming languages. For example, he incorporated func-

tions for regular expressions from sed (stream editor to UNIX), the awk template

scanning function and many characteristics from other programming languages. Its

syntax is derived from C, Pascal, Basic, UNIX shell languages and definitely the

English language.

 -30-

The first edition of Perl (Perl 1), appeared on December 18, 1987, and gradually

evolves until nowadays with the contribution of countless people. The second version

(Perl 2) extended the operation of regular expressions, while the third version (Perl 3)

gave to the language, the ability to be able to handle binary data. Up to that time, no

official documentation has been created for it, except for a simple man page. The

fourth version (Perl 4) was released along with the book written about language man-

agement, which is called the "Camel book", without adding any significant function-

ality to that version. The substantial change in Perl was made with the release of the

fifth edition (Perl 5), which had many changes to the syntax compared to the previous

versions, but also fantastic extensions to its functionality. Up to now, upgrades have

been made to the specific language and the latest version is Perl 5.26 released on

2017. It is worth noting that alongside Perl 5, Perl 6 was created. Perl 6 started to ex-

pand Perl 5, but ended up in a different language. Now there are different groups

dealing with Perl 5 and Perl 6, by exchanging ideas with each other.

Perl was developed to be easy for people to write. The syntax of the language is

almost like the speech of people, and not like other languages with a strange and rig-

orous syntax. Perl is pretty portable. The term portable as understood implies the abil-

ity to transfer a program written in Perl from one operating system to another and to

be executed with absolute success. Perl is available in a variety of operating systems,

resulting in the code being executed everywhere without any change to it. Perl can

think of words or sentences, while other languages handle one character at a time. It

is also characterized for the tremendous regular expression management system, as it

can detect a template in a text in many ways, very easily and very quickly. Perl is a

high-level, general purpose and dynamic language. Its most popular use is on CGI

(Common Gateway Interface) scheduling. It is the main power of the well-known

websites such as Amazon, Deja, and Slashdot. Finally, it is naturally used by many

people for the original purpose it was created, to extract data from a source and trans-

late them into another form.

 -31-

4.1.3 MySQL

MySQL is a relational database management system. Its name is a combination of

the name of its founder, (Michael Widenius) and the Structured Query Languages

(SQL) abbreviation. Its first version was launched on 1995. MySQL supports a client-

server architecture which means that a single database can serve multiple remote cli-

ents (applications). It organizes the data based on the relational model which is illus-

trated on picture 4.1.

Picture 4.1: Structure of the relational model

The major features of MySQL are:

• Open source software

• Can handle huge amounts of data without adversely affecting its functionality

• SQL syntax format

 -32-

• Can be used on many operating systems (AIX, BSDi, FreeBSD, HP-UX,

eComStation, i5 / OS, IRIX, Linux, macOS, Microsoft Windows, etc.)

• Can be combined with many programming languages (PHP, Perl, Java, C,

C++, etc.).

• Supports large volumes of data (up to 50 million lines in a table). The default

size for a table is 4GB, however the capabilities of the operating system can

extend this up to terabytes (TB).

4.1.4 JDBC & DBI

As presented in the previous sections, MySQL can be combined with many lan-

guages. On our server-side implementation we used a script written in Perl, while the

Breaking Point Tool has been developed in Java. In order to communicate with our

MySQL database for the addition and retrieval of data, we used the corresponding li-

braries for each language, which are JDBC for Java, and DBI for Perl.

4.1.5 SonarQube

SonarQube is an open source platform for continuously monitoring the quality of

the source code, which is of critical importance, for the developers. SonarQube was

formerly known as Sonar, meaning that both terms are used to describe the same plat-

form. It collects and analyzes information, relevant to the source code, measuring its

quality and extracting conclusive data for it. It combines statistical and dynamic anal-

ysis tools, while it allows constant quality measurement. Every element that might

have a negative effect on the source code (from minor user interface details to critical

design flaws), are monitored and evaluated by SonarQube. As a result, the developers

can view the source code analysis and have access to any debugging errors recorded

by the platform. Sonar analyzes the source code from different angles, while checking

in detail every single of its levels (project level, package level, class level). For every

one of those levels, metrics and statistics are produced, revealing problematic points,

in the code, that will need further improvement.

 -33-

SonarQube, also, provides momentary perception of the code and finds spots either

in which the code is relatively inferior or that may prove to be a fuss in a later stage.

An indicator, that is able of tracking future problems, is Coverage. Coverage is used

to measure the percentage of successful test scripts, which were applied in the code.

For example, the Coverage indicator provided by Sonar is 50%, which does not seem

that satisfying at first. However, what actually should be measured is the Coverage

indicator of the former version. If the older percentage was 35%, then sufficient im-

provement was implemented in the code and therefore its quality. On the other hand,

if the older percentage was 70%, then the changes applied in the code negatively af-

fected its quality, which means that even more work is required to upgrade it. The

platform does not simply note what is wrong in the code. It, also, offers quality man-

agement tools, that suggest how these flaws can be fixed. These tools are:

• IDE integration

• Integration for Jenskins

• Continuous Integration server

• Code-review tools

At this point, it is worth mentioning, that SonarQube is not the only software that

provides information regarding the quality of the code, but any other software is fo-

cused in error finding, sonar has focused to what its creators call “seven axes of quali-

ty”. These axes represent bugs and potential bugs, coding standards breach, duplica-

tions, lack of unit tests, bad distribution of complexity, spaghetti design and not

enough or too many comments. Some software that function in the same way as So-

nar does, do not just focus on bugs and potential bugs, but, also, on lack of unit tests

and API documentation. So, as said, the reason Sonar is chosen among others, for the

thesis, is the fact that it focuses on all seven axes.

SonarQube does not only help developers, but, also, testers, managers and busi-

nessmen as well. Regarding testers, the platform can indicate any spots in which the

testing was too superficial or non-existent at all. Naturally, the gain for the developers

is that it helps them pinpoint their mistakes in the code. Regarding businessmen and

http://docs.sonarqube.org/display/SONAR/Bugs+and+Potential+Bugs
http://docs.sonarqube.org/display/SONAR/Coding+Standards+Breach
http://docs.sonarqube.org/display/SONAR/Duplications
http://docs.sonarqube.org/display/SONAR/Duplications
http://docs.sonarqube.org/display/SONAR/Lack+of+Unit+Tests
http://docs.sonarqube.org/display/SONAR/Bad+Distribution+of+Complexity
http://docs.sonarqube.org/display/SONAR/Spaghetti+Design
http://docs.sonarqube.org/display/SONAR/Not+Enough+or+Too+Many+Comments
http://docs.sonarqube.org/display/SONAR/Not+Enough+or+Too+Many+Comments
http://docs.sonarqube.org/display/SONAR/Bugs+and+Potential+Bugs
http://docs.sonarqube.org/display/SONAR/Lack+of+Unit+Tests

 -34-

managers, statistics and metrics provided by the platform, with diagrams for the code

which help them make any kind of necessary change or investments. SonarQube is

written in Java and was initiated as a tool for analyzing Java programs. However, be-

cause of its vast development over the last few years, it can analyze even more pro-

gramming languages including:

• C

• C++

• Javascript

• C#

• Java

• COBOL

• PL/SQL

• PL/I

• PHP

• ABAP

• VB.NET

• V86

• Python

• RPG

• Flex

• Objective-C

• Swift

• Web

• XML

As mentioned, a very important element of the platform is the creation of metrics

and graphs based on the code. Available metrics exceed 140 in number and are stored

in a database that has been modified accordingly. Picture 4.2 presents the structure of

SonarQube. The first level depicts the source code to be analyzed, by using the rele-

 -35-

vant software (sonar-scanner or sonar-runner). The results of this analysis are then

stored in the database and graphs are presented in the server by using a browser.

Picture 4.2: SonarQube structure

As seen in picture 4.2, the last level provides the information about the metrics in

the browser, depicted by typing http://localhost:port_number. The default value for

the port number is 9000, but this value can be updated manually. In picture 4.3, the

analysis results of a project are presented. Initially, we can observe an overview of the

project, which comprises of 2.192 lines of code on 59 classes, all includes in 9 pack-

ages, along with a coverage on the number of comments. A very important value is

the complexity which is calculated on a method and a class level, as well as the suc-

cess or failure of the tests written for the project.

 -36-

Picture 4.3: SonarQube results

It is already highlighted, that the platform is capable of bug tracking. This func-

tionality is depicted in picture 4.4, as all issues and their origin are presented along

with a severity indicator for each error. For instance, 6 issues were detected as “Criti-

cal”, 3 of them of the category “Performance” and 3 on the category “Correctness”.

The “Rule” board gives a detailed description on the violations and pinpoints the

package or class, in which these flaws were detected.

Picture 4.4: SonarQube violations

 -37-

In conclusion, apart from the provision of metrics and statistics for the analyzed

code, the most important feature of Sonar, is that it transforms these metrics into ac-

tual business values like technical debt and risk, which is the most intriguing part of

this study.

 -38-

4.2 Breaking Point Tool

Breaking Point Tool (BPT) is a portable desktop application we created along

with Christos Sarikiriakidis from University of Central Macedonia. As its name im-

plies, the goal of this tool, is to effectively monitor the existence of technical debt and

the evolution of breaking point, as the software matures in time.

The devastating majority of scientific software, accepts a specific input, processes

the extracted data and produces an output, likewise BPT. Specifically, the unit of re-

search is a single Git repository. The processing of the data, is performed into two

major phases, the analysis phase and the computation phase, while the interpretation

of results, thus the presentation phase can be done either from the user interface of

the tool or by generating an extensive report into a .csv file. These three phases are

presented through two separate screens as user interface.

4.2.1 Analysis Phase

In order to better interpret and increase the accuracy of the results, we needed a

pool of several projects, each of them to be comprised of a large number of versions

(ideally more than 20). To fulfil this precondition, we used GitHub, the well-known

software platform, which hosts a vast number of open source projects available to the

public. We should mention that our research will solely include with Java projects,

which were developed using either Maven or Gradle as build tool. Picture 4.5 depicts

the analysis screen of the tool.

 -39-

Picture 4.5: Analysis Screen

The primary action is to provide our software with a GitHub URL and select the

build tool upon which the project was developed. The tool checks for the validity of

the repository and in case it exists, it executes two asynchronous processes. This pro-

cedure takes place, for us to retrieve metrics needed for the calculation of the results.

The first process in asynchronous and it concerns the analysis of the repository by

SonarQube, while the second process takes place within the BTP by interacting with

the user. The completion of both processes signals the completion of the analysis

phase. However, this procedure may take sever hours, even days, so the computation

of the results is not direct.

Analyzing a project with SonarQube

As already mentioned, SonarQube is an open source platform, dedicated on the

analysis and quality measurement of software artifacts. It requires the installation and

setup of an additional plugin, sonar-scanner, to inspect the code quality, detect code

smells and bugs, and record quality. SonarQube, offers three different levels of analy-

 -40-

sis, project level, package level and class level, however currently, we are only inter-

ested in the last two scopes as shown in picture 4.6. SonarQube provides us with 5

metrics which we are using as a factor for similarity. Table 4.1 depicts these metrics,

along with the description for each metric and the software quality attribute the repre-

sent.

Table 4.1: Similarity Metrics

Metric Description Quality Attribute

Classes

Number of classes (including nested

classes, interfaces, enums and annota-

tions).

General

Complexity
The complexity calculated based on the

number of paths through the code.
Complexity

Functions Number of functions. General

NCLOC

Number of physical lines that contain at

least one character which is neither a

whitespace nor a tabulation nor part of a

comment.

General

Sqale Index
Effort needed to fix all maintainability

issues.
Maintainability

Statements Number of statements. General

The software analysis by Sonar is a time-consuming procedure with the need for

extended computational power, as it can last for several hours. Hence, this tool re-

sides in our server on University of Macedonia and the communication between the

BPT and Sonar is achieved by a mediator script, written in Perl.

By the time the user presses the analysis button, BPT connects to the server via

SSH and executes the script, passing the URL of the repository as a runtime argu-

 -41-

ment. The script communicates with the GitHub API to retrieve the history of the se-

lected project. Specifically, the response contains a list with all the commits that the

developer has “tagged” as releases, along with the release name and the commit hash

for each version. Once the project’s history is retrieved successfully, the script clones

the repository into the root directory of SonarQube’s installation. At that point the

script acts as a manipulator of SonarQube. For each version retrieved, it uses the

checkout command, to copy files from the history to the current working directory,

hence the directory where the project is cloned and finally, it commands SonarQube

to perform the analysis. The results of the analysis are stored in the database provided

by SonarQube itself and can be accessed anytime.

 Analyzing each version with Metrics Calculator

SonarQube does not produce all the metrics required to efficiently calculate the

breaking point. Hence, we rely on a second tool in order to retrieve the remaining

metrics. Metrics Calculator is an application which accepts .JAR file, analyzes the

.class files that it includes and produces a .CSV file. The rows of the output file repre-

sent the analyzed classes, while each column a different metric for the analyzed arti-

facts.

The Metrics Calculator analysis takes places, instantly after the BPT has termi-

nated the connection with the UOM server. The first action is to communicate with

the GitHub API to retrieve the history of the project, likewise the Perl script, with the

difference that BTP clones each version in a separate folder instead of checking out

each version of the same directory. We have chosen this approach, in order to auto-

matically package each version depending on the build tool that each project is built

upon. The generated .JAR files are used as input from Metrics Calculator and the

.CSV outcome is parsed from the BPT to retrieve and store the generated metrics into

our database.

 -42-

Picture 4.6: Metrics Calculator Analysis

At this point we should mention a disadvantage of the BTP. Both Maven and

Gradle specify the name of the .JAR file that will be generated in their configuration

files, pom.xml and build.gradle respectively. In order to retrieve the name of each

version, we had to parse those files and extract this specific variable. Not to fall be-

hind with our research, we created a Dialog Popup as an alternative, for the user to

manually add the .JAR of each version. Nevertheless, this is a feature that must be

implemented in the near future as it will automate the whole procedure of analysis.

The Dialog appears in picture 4.6 and by selecting the “Yes” option, the user is redi-

rected to the root directory of each version and attaches the .JAR to be analyzed by

the Metrics Calculator. It is obvious that the user will have to repeat this action as

many times as the versions of the project, however he preserves the whole control of

analysis as he gets notified about the number of classes that were analyzed along with

their specific names.

 As mentioned earlier we are interested in package and class analysis. Metrics

calculator provides class level analysis, so in case a package level computation is se-

lected, we have to aggregate the metrics for all classes that are contained in the same

 -43-

package. However, this issue will concern us in the following sections. Regarding

Metrics Calculator we are interested in ten different metrics that we are using on the

computation phase as quality indicators. Those metrics are presented on Table 4.2

along with a description, the quality attribute which they represent and the optimal

value for each metric.

Table 4.2: Quality Metrics

Metric Description
Quality

Attribute
Best value

DIT

Depth of Inheritance Tree: Inher-

itance level number, 0 for the root

class.

Inheritance Highest

NOCC

Number of Children Classes: Num-

ber of direct sub-classes that the

class has.

Inheritance Highest

MPC

Message Passing Coupling: Number

of send statements defined in the

class.

Coupling Lowest

RFC

Response for a Class: Number of lo-

cal methods plus the number of

methods called by local methods in

the class.

Coupling Lowest

DAC

Lack of Cohesion of Methods:

Number of disjoint sets of methods

(number of sets of methods that do

not interact with each other), in the

class.

Coupling Lowest

LCOM
Data Abstraction Coupling: Number

of abstract types defined in the class.
Cohesion Lowest

 -44-

WMP

Weighted Method per Class: Aver-

age cyclomatic complexity of all

methods in the class.

Complexity Lowest

NOM
Number of Methods: Number of

methods in the class.
Size Lowest

Size1
Lines of Code: Number of semico-

lons in the class
Size Lowest

Size2
Number of Properties: Number of at-

tributes and methods in the class
Size Lowest

4.2.2 Computation Phase

Once the analysis phase has completed, we can proceed on computing the break-

ing point and producing the results. Primarily the user must select an already ana-

lyzed project from the dropdown menu, as well as a computation scope, either pack-

age or class. In order to provide a more abstract perspective of the methodology used,

we define packages and classes as artifacts. Moreover, it is worth noting that the same

algorithms are used independently of the computation scope that was selected by the

user. The period of time that the computation phase lasts depends on two factors, the

number of versions of the project history and the number of artifacts that each version

consists of. Before analyzing in depth, the procedure, from the collection of the data

to the extraction of the results, we provide a small overview of the basic steps:

1. Retrieval of versions and artifacts of each version based on the computation

scope selected.

2. Retrieval of metrics both from SonarQube and Metrics Calculator databases.

3. Calculation of the resemblance for each artifact, between itself and the rest of

the artifacts of its version.

4. Calculation of the optimal artifact based on the five most similar from the pre-

vious step.

 -45-

5. Calculation of the Fitness Value, Principal and Interest based on the FITTED

framework.

6. Calculation of the Breaking Point.

The first step of the computation phase is the retrieval of all the artifacts for each

version of the project, both from SonarQube and from Metrics Calculator, from our

database. However, we are processing those data in order to discard those artifacts,

which have not been analyzed from both tools. Then, we are reaching anew our data-

bases in order to retrieve the metrics needed in order to proceed. The metrics re-

trieved from SonarQube will be used on the third step, whereas the metrics from Met-

rics Calculator on the fourth step of the computation. The procedure, from step three

to step six, takes place for each artifact of each version separately.

In order to calculate the interest for each artifact we must calculate the fitness

value the function as described on section 3.2. The fitness value denotes the “dis-

tance” of the investigated artifact from the optimal artifact. Thus, we have to calculate

the optimal values for each artifact investigated. To perform those calculations, we

have to process the metrics retrieved on the second step.

Initially, we compute the five artifacts that mostly resemble the investigated arti-

fact. To calculate this similarity, we are using the similarity metrics retrieved from

SonarQube and described on table 4.1. More precisely, we compare each artifact with

every artifact included in the same version of the product. We apply the function at

picture 4.7 for the six metrics from SonarQube and then we calculate the similarity as

the average value of those calculations.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 % =
𝑎𝑏𝑠 (𝑀𝑒𝑡𝑟𝑖𝑐𝑣𝑎𝑙𝑢 𝑒𝑐𝑙𝑎𝑠𝑠 1−𝑀𝑒𝑡𝑟𝑖𝑐𝑣𝑎𝑙𝑢 𝑒𝑐𝑙𝑎𝑠𝑠 2)

max (𝑀𝑒𝑡𝑟𝑖𝑐𝑣𝑎𝑙𝑢 𝑒𝑐𝑙𝑎𝑠𝑠 1 ,𝑀𝑒𝑡𝑟𝑖𝑐𝑣𝑎𝑙𝑢 𝑒𝑐𝑙𝑎𝑠𝑠 2)

∗ 100

Picture 4.7: Similarity function

Once we have concluded with the calculation of similarity we must generate the op-

timal class. The optimal class is the result that accrues from selecting the best values

 -46-

of the ten-metrics described on table 4.2, among the investigated artifact and the most

similar to it. At this point we are capable of calculating the fitness value from the fol-

lowing function:

Picture 4.8: Fitness value function

The fitness function is applied on each one of the quality metrics which are aggre-

gated, and the fitness value derives as the average of this calculation. At this point we

should mention that we came up with an alternative approach for calculating the fit-

ness value. The metric sqale index of SonarQube is described as “the cost for fixing

all the maintainability issues”. The alternative way is to find the optimal Sqale Index

among the investigated artifact and the five most resembling ones and apply the fit-

ness function solely to this metric. Consequently, these calculations lead into two dif-

ferent values for the interest imetrics and isqale, therefore two separate values for the

breaking point.

The next step is the calculation of principal and interest by applying the functions

that we have been described on section 3.3 and 3.4 respectively. The principal ema-

nates from the sqale index, which is described in the previous paragraph and the value

of which is described in minutes. Therefore, we convert those minutes to hours and

we multiply it by the average hourly salary of a developer. Both of the abovemen-

tioned types of interest are calculated by multiplying the average lines of code added

per version with the fitness value.

 At this point we should present an alternative rationale for calculating the breaking

point. As the product evolves from version to version, some of the interest is being

repaid. This accumulated interest must be subtracted from the total principal of the

version that we are investigating in order to add more realism into our results. Hence,

we conclude our calculations by producing four different types of breaking point, the

effectiveness of which will be discussed at the results section. Those types are:

 -47-

• Breaking Point(metrics): The breaking point in versions, which derives from the

function at picture 3.6, with the fitness value being calculated based on the

quality metrics presented on table 4.2.

• Breaking Point(metrics_minus_sum_interest): The breaking point in versions, which de-

rives from the function at picture 3.6, by subtracting from the principal, the in-

terest that has been repayed on the previous versions of the software. The fit-

ness value for both interest and past interest is calculated by the quality metrics.

• Breaking Point(sqale): The breaking point in versions, which derives from the

function at picture 3.6, with the fitness value being calculated based only on

Sqale Index which is presented on table 4.1

• Breaking Point(sqale_minus_sum_interest): The breaking point in versions, which de-

rives from the function at picture 3.6, by subtracting from the principal, the in-

terest that has been repayed on the previous versions of the software. The fit-

ness value for both interest and past interest is calculated based on Sqale Index.

4.2.3 Presentation Phase

The final phase of the breaking point tool is the presentation phase which is

shown at picture 4.9. We should mention that this screenshot was taken after we

concluded with the results of our case study, this it presents the final version of the

product. At this screen the user can select any artifact from any version. For each

artifact the user can observe the following results:

• The top 5 similar artifacts, along with the values for the similarity met-

rics, as well as the value of similarity between the investigated artifact

and the most similar ones

• The values of the quality metrics, for the most similar artifacts and the

investigated one

• The values of the quality metrics for the optimal class

• The principal of the investigated artifact in dollars

• The interest of the investigated artifact in dollars

 -48-

• The breaking point of the investigated artifact in version

Picture 4.9: Presentation phase

Moreover, we provide the user with the ability to produce reports for the project

that has been analyzed in order to get a more comprehensive picture of it. The buttons

on the bottom right corner of the user interface on picture 4.9 produce .csv reports

which can be further filtered by being converted into spreadsheets. The first button

“Generate Detailed Report” produces a .csv file with the following details for each ar-

tifact, on each version of the project:

• Artifact name: The absolute path of the investigated artifact.

• Artifact type: Whether the selected unit is a concrete class or package

• Version ID: The version of the artifact to which the selected unit belongs

• Principal: The calculated principal

• AverageK: The average lines of code added in each version.

• RealK: The real numbers of lines of code added in the artifact from its pre-

vious version to the current.

• Fitness Value (metrics): The fitness value calculated by using the quality

metrics

• Fitness Value (sqale): The fitness value calculated by using sqale index

 -49-

• Interest (metrics): The value of the accumulated interest for the artifact cal-

culated using the metrics approach

• Interest (sqale): The value of the accumulated interest for the artifact calcu-

lated using the sqale index approach

• The 4 kinds of breaking point that have been described on subsection 4.2.2

With this kind of report, we can observe the evolution of each artifact individually

and we can investigate distinct kinds of behavior during the successive versions of the

software. The “Generate Overview” button produces statistics regarding with the

evolutionary factor of principal, interest and breaking point, by defining this behavior

as “Incremental”, “Decremental” and “Stable”. Finally, the third button “Generate

Project Report” created an output file with the value of breaking point generally for

each version of the product.

 -50-

5 Case Study

In order to evaluate and validate the FITTED framework, we performed a case

study on open source software projects. The main purpose for selecting open source

artifacts, is the vast amount of data available on those repositories, as well as the con-

venience on accessing successive versions of the software.

5.1 Goal and Research Questions

The goal of the case study, is to analyze the FITTED approach for the purpose of

evaluation, concerning its ability to (a) accurately estimate occurrence of breaking

point, and (b) predict the effect of repayment activities on breaking point move in

time. According to the aforementioned goal we have derived three research questions

(RQ) that will guide the case study design and the reporting of the results:

RQ1: Which breaking point calculation approach produces the most reliable re-

sults?

This research question aims at identifying, which of the four breaking point calcu-

lation approaches, better depicts the evolution of the breaking point among successive

software versions. We will empirically evaluate the results, to find out which approach

produces the most stable and accurate results and therefore will be used as the basic

breaking point calculation method on the following research questions, as well as in

future research.

RQ2: How do TD principal and interest evolve during successive software ver-

sions?

Research question 2 aims at monitoring technical debt, as a part of technical debt

management. The evolution of principal and interest during the development and

maintenance of software is of crucial importance in FITTED framework, as it can lead

 -51-

to the identification of the breaking point. Regarding interest, we expect it to grow ex-

ponentially, due to system’s increasing size and complexity. Concerning principal, we

have to point out that although in our analysis of the FITTED framework, we have de-

fined it as an amount of effort saved once while taking on technical debt and consid-

ered it as increasing through software evolution, in this study we have the ability to

estimate principal as software grows and therefore reach a more accurate assessment of

the version where breaking point occurs.

RQ3: What is the sustainability of software assets along evolution and which factor

(principal or interest) is more important?

This research question is going to investigate whether software development and

maintenance affect the version in which the breaking point occurs and, therefore, to

evaluate the software’s sustainability. The fundamental aim is to examine if the break-

ing point moves backwards or forward in time as the software project develops. More

specifically, research question 3 will evaluate the effect of principal and interest evolu-

tion on the progress of the breaking point and examine if one of the two factors is more

important for the system’s sustainability.

5.2 Case Selection

To collect data for our case study, we retrieved and analyzed sets of successive

versions of 5 open source projects. In particular, we selected projects for which de-

velopment data for many releases were available, in order to better monitor the evolu-

tion of breaking point. Table 5.1 depicts these projects and the number of releases of

which they constitute.

 -52-

Table 5.1: Analyzed projects

Project Name Number of Versions

Commons-cli 20

Commons-lang 32

Joda-time 54

Wro4j 50

Xstream 29

5.3 Data Collection

5.3.1 Collected Data

To answer the research questions mentioned in section 5.1, we performed analysis

on each one of the aforementioned projects by generating the reports that have been

described on subsection of 4.2.3 at the presentation phase of the tool.

5.3.2 Collection Process

To collect the data required for our study, we used the Breaking Point Tool with a

class level computation for all projects. After extensive discussion upon the method-

ology that we should follow for collecting the required information, we separated the

process into three phases.

• Analysis Phase: As already mentioned, in order to gather the data required for

our study, we had to combine statistics accrued from a couple of analysis tools.

This time-consuming and asynchronous task, prompted us on completing the

analysis phase for the selected artifacts before proceeding further. The analysis

phase was completed, upon collecting both the similarity and maintenance met-

rics, from Sonar and Metrics Calculator respectively, for every successive ver-

sion, for each project listed on table 5.1.

 -53-

• Unit Selection Phase: Each project is comprised of a plethora of artifacts (clas-

ses or packages) which we could choose, to monitor the breaking point. In order

to provide accurate results, we had to choose between units that had a core role

in the functionality of each project. Thus, we excluded classes or packages that

consist the model layer of a project such as POJOs (Plain Old Java Object) or

DAOs (Data Access Object), because mostly the maintenance effort required is

trivial. For instance, a POJO is nothing more than a Class constituted of fields

and accessor methods. The effort of adding or deleting code on those units is

considered minimal. Hence, we tried to monitor units that consist the core of

each project, such as units whose contents were being modified from version to

version in order to be improved in terms of performance, or extend their func-

tionality in order to support new features.

• Evaluation Phase: This phase concerns the interpretation of the results, as those

are retrieved from the breaking point tool. The evaluation is done either empiri-

cally or practically regarding the nature of the research question to be answered

and the results are examined both on project and artifact level. In order to illus-

trate the results and cite the outcome of our research we are using tables and

charts such as pies and diagrams.

 -54-

6 Results

In this section we present the answers to the Research Questions stated earlier, as a

synthesis of the results emanated from the breaking point tool.

In this section we are going to present the answers to the Research Questions stated

earlier, as a synthesis of the results produced from the breaking point tool.

6.1 RQ1 Breaking Point Selection

In order to answer to this research question, we observed the evolution of the

breaking point during successive version of the software. We investigated several

classes from each project, so that we could produce safe assumptions.

Initially, we discarded both the approaches which were using sqale index as the factor

for calculating the Fitness Function. In case that the investigated artifact is the opti-

mal one (in terms of sqale index) the Fitness Function (picture XX) produces a value

of 0. Moreover, the interest is 0 and the division between principal and interest for the

calculation of the breaking point produces and infinite result. As the software evolves

and the maintenance issues are being fixed, the investigated artifact might become the

optimal one between itself and the five most similar to it. Consequently, we are una-

ble to monitor the evolution of technical debt as the infinite results might interfere the

sequence of the evolution of the breaking point.

This scenario is verified on table 6.1 which represents the evolution of the breaking

point during the successive versions of class StrTokenizer.java from project Com-

mons-Lang. If we take a closer look at the fitness value, we observe fluctuation of the

fitness value among the versions which obviously affects the breaking point. From

version 3_1 to 3_2_RC1 some modification of the class increased its distance from

the optimal one from 0.28 to 0.7. Consequently, the breaking point will appear from 3

 -55-

version to 1 version of the product. Some versions later from 3_4 to 3_5_RC1 the in-

vestigated class reaches the optimal as its fitness value decreases from 0.7 to 0.26 and

the breaking point moved further in time from 2 versions to 5.5. However, in the next

version we detect the downside of this approach. At version 3_6_RC1 StrTokeniz-

er.java becomes the class with the lowest sqale index among its competitor classes.

Probably this occurs because of the modifications that take place on the project as a

whole and not only on the investigated artifact. At this point we are unable to further

monitor the evolution of the breaking point which is critical for our research and ac-

tually this is the main reason for rejecting this approach.

The downside of this approach, comparing to the metrics one, is that, as sqale in-

dex is the only factor of calculating the Fitness Function, the possibility for the inves-

tigated artifact to be the optimal one reaches 16.6% (1 out of 6). In the alternative ap-

proach, the metrics one, the optimal artifact is calculated based on 10 different met-

rics, thus it is quite impossible for an artifact to be dominant on all those metrics. This

actually happens because the metrics we have selected are a mixture of coupling, co-

hesion and size, so an artifact with high low coupling might lack on cohesion and the

opposite. We should note that in our results we have not investigated such an artifact,

dominant on all metrics.

Table 6.1: Sqale Index fitness value approach

Version Fitness Value

(Sqale)

Breaking Point

(Sqale)

Breaking Point minus

Sum Interest (Sqale)

3_7 0 Infinity -Infinity

3_6 0 Infinity -Infinity

3_6_RC3 0 Infinity -Infinity

3_6_RC2 0 Infinity -Infinity

3_6_RC1 0 Infinity -Infinity

3_5 0,266055046 5,424891805 -39,63338621

 -56-

3_5_RC1 0,266055046 5,249895295 -38,35488988

3_4 0,703703704 1,918708715 -14,01777699

3_4_RC2 0,703703704 1,852546346 -13,53440537

3_4_RC1 0,703703704 1,786383976 -13,05103375

3_3_2 0,703703704 1,720221607 -12,56766213

3_3_2_RC1 0,703703704 1,654059237 -12,08429051

3_3_1 0,703703704 1,587896868 -11,60091889

3_3_1_RC1 0,703703704 1,521734498 -11,11754727

3_3 0,703703704 1,455572129 -10,63417565

3_3_RC1 0,703703704 1,389409759 -10,15080403

3_2_1 0,703703704 1,32324739 -9,667432409

3_2_1_RC1 0,703703704 1,25708502 -9,184060789

3_2 0,703703704 1,190922651 -8,700689168

3_2_RC2 0,703703704 1,124760281 -8,217317548

3_2_RC1 0,703703704 1,058597912 -7,705756081

3_1 0,28057554 3,236787023 -17,53922011

3_1_RC1 0,28057554 3,021001221 -16,36993877

3_0_2_RC1 0,287769784 2,75045068 -14,80527535

3_0_1 0,287769784 2,538877551 -13,66640801

3_0_1_RC2 0,287769784 2,327304422 -12,52754068

3_0_1_RC1 0,287769784 2,115731293 -11,37419473

3_0 0,467625899 1,337631298 -6,145930406

3_0_RC4 0,467625899 1,189005598 -5,46304925

3_0_RC3 0,467625899 1,040379898 -4,780168093

3_0_RC2 0,369127517 1,129710845 -5,187885353

3_0_RC1 0,375838926 Infinity Infinity

 -57-

By discarding the sqale index factor, we have been left with the two metrics ap-

proaches, but a declination on the results that we wanted to present, had us reject the

approach of subtracting the already re-payed effort. Before getting into the assump-

tions we should add a reminder for our approach. In this approach we have been sub-

tracting from the principal, the amount of money that was re-payed in the previous

version on the artifact. However, what we observed is that in many cases the repay-

ment effort that has been done was higher than the principal of the current version.

The result was a negative principal and consequently a misleading breaking point.

This behavior is observed on versions that many lines of code have been added from

one version to its successive.

Table 6.2: Metrics fitness value approach

Version Fitness Value

(Metrics)

Breaking Point

(Metrics)

Breaking Point minus

Sum Interest (Met-

rics)

3_7 0,651073394 3,687710343 -279,8506024

3_6 0,649886681 3,594726768 -272,7943243

3_6_RC3 0,649886681 3,492020289 -265,0002008

3_6_RC2 0,649886681 3,38931381 -257,2060772

3_6_RC1 0,669442237 3,190599895 -242,1110186

3_5 0,719442237 2,006165005 -219,293533

3_5_RC1 0,719442237 1,941450005 -212,2195481

3_4 0,852468838 1,583873063 -173,1328774

3_4_RC2 0,852468838 1,52925675 -167,1627782

3_4_RC1 0,852468838 1,474640438 -161,192679

3_3_2 0,87128394 1,389359151 -151,870597

3_3_2_RC1 0,87128394 1,335922261 -146,0294202

3_3_1 0,87128394 1,282485371 -140,1882434

 -58-

3_3_1_RC1 0,87128394 1,22904848 -134,3470666

3_3 0,87128394 1,17561159 -128,5058898

3_3_RC1 0,87128394 1,122174699 -122,664713

3_2_1 0,851146954 1,094022701 -119,5874231

3_2_1_RC1 0,851146954 1,039321566 -113,6080519

3_2 0,851146954 0,984620431 -107,6286808

3_2_RC2 0,851146954 0,929919296 -101,6493096

3_2_RC1 0,851146954 0,87521816 -95,61023812

3_1 0,718701783 1,263616268 -106,7354068

3_1_RC1 0,718701783 1,179375183 -99,619713

3_0_2_RC1 0,718701783 1,101286538 -92,49786678

3_0_1 0,718701783 1,016572189 -85,38264626

3_0_1_RC2 0,718701783 0,93185784 -78,26742573

3_0_1_RC1 0,718701783 0,84714349 -71,14367975

3_0 0,687690525 0,909582167 -66,91466199

3_0_RC4 0,687690525 0,808517482 -59,47969954

3_0_RC3 0,688798197 0,706315127 -51,96104284

3_0_RC2 0,683920148 0,609731063 -44,85302616

3_0_RC1 0,683920148 Infinity Infinity

 -59-

6.2 RQ2 Evolution of principal and interest

To answer in this research question, we have gathered data for each one of the in-

vestigated projects which depict the evolution of principal and interest from the first

to the last version of the project. The behavior observed on evolution of those values

is either incremental, decremental or stable. The stable result is basically observed on

artifacts that are never modified on the evolution of the software. An example of such

artifacts are classes that represent exceptions which probably will not be modified

further by the time that they are created.

Concerning the evolution of principal, for Commons-cli and Commons-lang we

observe a balance as all types are represented by percentages around 30%, at pictures

6.1 and 6.2, however the incremental behavior is the most dominant. The pie charts

for Wro4j and Xstream, at pictures 6.3 and 6.4, clearly illustrate an incremental be-

havior on the principal while for Joda-Time the principal declines as the project

evolves, picture 6.5. Aggregated on an artifact level, at table 6.3, 48% of the artifacts

are hardly maintained, 36% present an improvement on their code quality while the

rest of the artifact remain untouched. We can assume that only for one out of five pro-

jects the maintainability issues are fixed along the evolution, however as the sample

of investigated projects increased this percentage will sure be declining.

Regarding the evolution of interest, we reached our goal as our calculations show

an exponential increase. All the investigated project has an incremental behavior in

terms of interest, while on an artifact level 71.8% of the artifacts adopt the same be-

havior, table 6.4. A fact that is worth to be discussed is that none of the artifacts pro-

duces a decremental behavior on two of the open source projects, Commons-cli and

Xstream.

 -60-

Picture 6.1: Principal and interest evolution for Commons-cli

 -61-

Picture 6.2: Principal and interest evolution for Commons-lang

 -62-

Picture 6.3: Principal and interest evolution for Commons-wro4j

 -63-

Picture 6.4: Principal and interest evolution for Joda time

 -64-

Picture 6.5: Principal and interest evolution for x-stream

 -65-

Table 6.3: Principal evolution overview

 Incremental Decremental Stable Behavior

Commons-

Cli

36% 32% 36% INCREMENTAL

Commons-

Lang

38% 36% 26% INCREMENTAL

Joda-Time 41% 55% 4% DEREMENTAL

Wro4j 52% 35% 13% INCREMENTAL

Xstream 75% 22% 3% INCREMENTAL

 48% 36% 16%

Table 6.4: Interest evolution overview

 Incremental Decremental Stable Behavior

Commons-

Cli

86% 0% 14% INCREMENTAL

Commons-

Lang

36% 34% 30% INCREMENTAL

Joda-Time 71% 29% 0% INCREMENTAL

Wro4j 73% 10% 17% INCREMENTAL

Xstream 93% 0% 7% INCREMENTAL

 71.8% 14.6% 13.6

 -66-

6.3 RQ3 Evolution of principal and interest

To answer research question three, we followed the same strategy. We have creat-

ed pie charts which represent the behavior of the artifacts for each one of the investi-

gated projects. Moreover, we present graphs which monitor the evolution of the

breaking point, as a factor of principal and interest, and depict the importance of in-

terest for its calculation.

Pictures 6.6 and 6.7 represent the behavior of StrTokenizer.java from Commons-

lang project of Apache Foundation. This class is a typical example of an artifact,

whose breaking point moves to the future because the interest decreases. A better in-

terpretation of our model denotes that StrTokenizer.java reaches the values of the op-

timal class during the evolution of the project. More specifically, from version

LANG_3_0_RC to LANG_3_1 the interest decreases from 300$ to 120$, thus the

breaking point moves from 0.5 versions, which actually denotes the next version of

the software, to 1.2 versions. However, the addition of code on version LANG_3_1

generates new technical debt items, the interest slightly grows and the breaking point

returns to its previous levels. At this point we observe a continuous improvement on

the quality of the artifact until the last investigated version of the artifact. The interest

drops to about 40$ and the breaking point will appear at 3.6 versions. We should also

mention that the principal of this class remains almost stable as it ranges from 150$ to

155$.

 -67-

Picture 6.6: Increasing breaking point

Picture 6.7: Decreasing interest

ImmutablePair.java is an almost optimal class as the representing graphs at pictures

X and Z present. This can be confirmed by the values of both breaking point and in-

terest. The first one reaches its peek at 500 on LANG_3_6_RC1 while the interest is

almost zero. The fact that we want to prove by presenting this example, is the direct

dependence of breaking point to the respective interest. The addition of code on ver-

sion LANG_3_6_RC_2 causes interest to grow on almost 0.5$, and as the principal

remains almost stable, the breaking point reduces from 500 versions to 20.

 -68-

Picture 6.8: Decreasing breaking point

Picture 6.9: Increasing interest

Regarding the combination of interest and principal in the breaking point, we can

observe that the examined cases are divided, some of the producing incremental

breaking point (which is a sign of good quality), whereas others decremental break-

ing point, which suggests systems with worse quality.

Commons-cli on picture 6.10 and Commons-Lang on picture 6.11 are the two pro-

jects with an overall incremental behavior in terms of breaking point. Specifically, for

commons-cli, the aggregation of incremental and stable items reaches the 87% of

the artifacts, whereas only 13% produce a loss of quality over the versions. Those

 -69-

percentages for commons-lang reach 78% and 22% respectively. Given the fact that

those two systems are part of the Apache ecosystem, which is famous for the great

quality of products they deliver, the result can be considered intuitive.

Picture 6.10: Breaking point for Commons-cli

Picture 6.11: Breaking point for Commons-cli

The rest of the projects produce negative results which can be depicted on pictures

6.12, 6.13 and 6.14. Xstream can be characterized for its medium quality as positive

 -70-

and negative values share the same percentage on 50%. However, Joda-time and

Wro4j produce defective results, as the decremental behavior is overwhelming, as it

reaches 74% and 63% respectively. It is worth mentioning that on Joda-time, no item

with a stable breaking point does exist. This fact means that all the classes that repre-

sent the project are being modified from version to version. Each modification gener-

ates new technical debt costs, which are not re-payed on their majority. This fact re-

sults into poor quality and increased maintenance costs.

Picture 6.12: Breaking point for Joda-time

Picture 6.13: Breaking point for Wro4j

 -71-

Picture 6.14: Breaking point for Xstream

Concluding on this research question, we can assume that the most important fac-

tor between principal and interest in the calculation of the breaking point is the sec-

ond value. Interest represents the distance from the optimal, evolves or diminishes

each time that a code modification takes place on the artifact and actually it leverag-

es the final result. Regarding the sustainability of the artifacts, as table 6.5 depicts,

the three values are sharing almost the same percentages. However, those values de-

pend on the quality of the projects examined as we have already mentioned. Hence,

we can conclude to the fact that the breaking point, apart from a metric that denotes

the beginning of the financial loss for the software company, could effectively be a

metric for characterizing the quality of the project.

 -72-

Table 6.5: Breking point evolution overview

 Incremental Decremental Stable Behavior

Commons-Cli 73% 13% 14% INCREMENTAL

Commons-

Lang

42% 22% 36% INCREMENTAL

Joda-Time 26% 74% 0% DECREMENTAL

Wro4j 19% 63% 18% DECREMENTAL

Xstream 50% 50% 9% DECREMENTAL

 36% 37% 27%

 -73-

7 Conclusions

Nowadays, technical debt is receiving increasing interest by both academia and

practitioners, leading to an explosion of studies in this field. The purpose of this study

was (a), to evaluate FITTED, a framework for managing interest in technical debt, and

(b) to monitor the evolution of the breaking point during successive versions of soft-

ware, by applying FITTED on open-source Java projects.

We can assume that our case study, confirmed the FITTED framework theory. Pri-

marily we observed an incremental behavior for the principal which confirms that as

software evolves artifacts generate technical debt items. However, the decremental be-

havior concentrated a considerable amount which must be taken into account for our

future work, as it indicated the repayment effort. Moreover, concerning interest, the

assessment that interest accumulates exponentially was also confirmed overwhelming-

ly. Another important conclusion is that as principal fluctuates very close to its initial

value, interest is the variable that leverages the breaking point. The decrease of interest

causes the breaking point to move towards the distant future, whereas its increase de-

notes that the loss period will begin sooner.

Finally, we can characterize the breaking point, as variable with multidisciplinary

nature such as technical debt itself. It can be interpreted as a variable which (a), indi-

cates the quality of the software it describes and (b) denotes the number of future ver-

sions when the loss period will begin for the company. Thus, it can be used by soft-

ware developers and project managers respectively.

 -74-

8 Future Work

Regarding our future work, initially we plan on analyze more open source projects

in order to further validate the breaking point tool and evaluate the results that our

current study produced. Moreover, we plan on extending our research field into in-

dustry. We will approach companies which are willing to share their Java projects, or

mobile Android applications in order to analyze software on a more realistic factor. In

particular, we will ask from the developers to list a number of artifacts which, are dif-

ficult to be maintained or extended, thus will produce technical debt, and we will

compare those with our findings. Finally, in the distant future, we plan on releasing

the breaking point tool as an open source project, for use by both researchers and

practitioners.

 -75-

Bibliography

[1] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman, “Man-

aging Technical Debt in Software Engineering”: Dagstuhl Seminar April 17–

22, 2016.

[2] Zengyang Li, “Managing Technical Debt in Software Architecture”, Institute

of Mathematics and Computing Science, University of Groningen, June 2015.

[3] Zengyang Li, Paris Avgeriou, and Peng Liang. “A Systematic Mapping Study

on Technical Debt and Its Management”, Journal of Systems and Software,

101(3):193–220, 2015.

[4] Areti Ampatzoglou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and

Paris Avgeriou, “The financial aspect of managing technical debt: A systematic

literature review,” Information and Software Technology, Elsevier, vol. 64, pp.

52–73, Aug. 2015.

[5] Areti Ampatzoglou, Apostolos Ampatzoglou, Paris Avgeriou, and Alexander

Chatzigeorgiou. “Establishing a framework for managing interest in technical

debt”. In 5th International Symposium on Business Modeling and Software

Design (BMSD). SciTePress, 2015.

[6] A. Chatzigeorgiou, A. Ampatzoglou, A. Ampatzoglou, and T. Amanatidis, “Es-

timating the Breaking Point for Technical Debt”, 7th International Workshop on

Managing Technical Debt (MTD ‘15), IEEE Computer Society, 2015.

[7] Zengyang Li, Paris Avgeriou, and Peng Liang, “A Systematic Mapping Study

on Technical Debt and Its Management. Journal of Systems and Software”,

101(3):193–220, 2015.

[8] Areti Ampatzoglou, Apostolos Ampatzoglou, Paris Avgeriou, and Alexander

Chatzigeorgiou. “A Financial Approach for Managing Interest in Technical

 -76-

Debt”. In Lecture Notes in Business Information Processing, pages 117–133.

Springer, 2016.

[9] N. S. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola, F. Shull, and C.

Seaman, “Identification and management of technical debt: A systematic map-

ping study,” Information and Software Technology, vol. 70, pp.100–121, 2016.

[10] Ampatzoglou, A. Ampatzoglou, P. Avgeriou, and A. Chatzigeorgiou, “A

Financial Approach for Managing Interest in Technical Debt”, LNBIP, Spring-

er, vol. 257, pp. 117-133, 2016.

[11] Mishkin F., Eakins S., “Financial Markets and Institutions”, 7th edn. Pren-

tice Hall, Upper Saddle River (2012)

[12] V. R. Basili, G. Caldiera, and H. D. Rombach, “Goal Question Metric Par-

adigm”, Encyclopedia of Software Engineering, John Wiley, 1994.

[13] Wake, W.C.: Refactoring Workbook, 1st edn. Addison-Wesley Profession-

al, Boston (2003).

[14] Z. Codabux and B. Williams, “Managing technical debt: An industrial case

study,” 4th International Workshop on Managing Technical Debt (MTD’ 13),

2013, pp. 8–15.

[15] W. Cunningham, “The WyCash Portfolio Management System,” Proceed-

ings on Object-oriented Programming Systems, Languages, and Applications

(Addendum), New York, NY, USA, 1992, pp. 29–30.

[16] U.S. Bureau of Labor Statistics, “National Occupational Employment and

Wage Estimates,” United States, Mar. 2015

[17] L. Prechelt, “An Empirical Comparison of Seven Programming Lan-

guages,” Computer, vol. 33, no. 10, pp. 23–29, Oct. 2000.

[18] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure It?

Manage It? Ignore It? Software Practitioners and Technical Debt,” 10th Joint

Meeting on Foundations of Software Engineering, New York, NY, USA, 2015,

pp. 50–60, 2015.

 -77-

[19] D. Feitosa, A. Ampatzoglou, P. Avgeriou, and E. Y. Nakagawa, “Investi-

gating Quality Trade-offs in Open Source Critical Embedded Systems”, Quali-

ty of Software Architectures (QoSA’ 15), 2015.

[20] B. Kitchenham and S. L. Pfleeger, “Principles of Survey Research Part 2:

Designing a survey”, Special Interest Group on Software, ACM, 27 (1), pp. 18-

20, January 2002.

[21] P. Kruchten, R. L. Nord, I. Ozkaya, "Technical Debt: From Metaphor to

Theory and Practice", Software, IEEE Computer Society, vol. 29, no. 6, pp. 18-

21, November-December 2012

[22] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical

debt and its management,” Journal of Systems and Software, Elsevier, vol. 101,

pp. 193–220, March 2015.

[23] E. Lim, N. Taksande, and C. Seaman, “A Balancing Act: What Software

Practitioners Have to Say About Technical Debt,” Software, IEEE Computer

Society, vol. 29, no. 6, pp. 22–27, Nov. 2012.

[24] A. Martini and J. Bosch, “Towards prioritizing Architecture Technical

Debt: information needs of architects and product owners,” 41st Euromicro

SEAA Conference, Funchal, Madeira, August 2015.

[25] A. Martini, J. Bosch, and M. Chaudron, “Investigating Architectural Tech-

nical Debt Accumulation and Refactoring over Time: a MultipleCase Study,”

Information and Software Technology, July 2015.

[26] www. sonarqube .org (official site of sonarqube)

[27] blog.sonarsource.com (official forum of sonarqube)

[28] P. Deitel, H. Deitel: Programming in Java, 8th edition

[29] L. James: Beginning Perl

[30] Modern Perl, 4th edition

[31] Ramakrishnan, Gehrke: Relational Database Managerment Systems, 3rd

edition

 -78-

Appendix

Analysis Phase Functions

1. private void sonarAnalysisActionPerformed(java.awt.event.ActionEvent evt) {
2.
3. mProjectUrl = mGitRepoInputTxt.getText();
4.
5. //check if git repository is valid
6. if (!mProjectUrl.contains(".git")) {
7. String infoMessage = "Please enter a valid .git repository";
8. JOptionPane.showMessageDialog(null,
9. infoMessage,
10. "",
11. JOptionPane.INFORMATION_MESSAGE);
12. return;
13. }
14.
15. String[] repoDetails = mProjectUrl.split("/");
16.
17. mProjectOwner = repoDetails[3];
18. mProject-

Name = mProjectUrl.substring(mProjectUrl.lastIndexOf("/") + 1,
19. mProjectUrl.indexOf(".git")).trim();
20.
21.
22. boole-

an projectExists = mSonarDao.isProjectAlreadyAnalyzed(mProjectName);

23. //check if project already exists
24. if(projectExists){
25. String infoMessage = "This project already exists in the database";

26. JOptionPane.showMessageDialog(null,
27. infoMessage,
28. "" ,
29. JOptionPane.INFORMATION_MESSAGE);
30. return;
31. }
32.
33. //analyze project with sonarqube
34. String command = "./sonarAnalyzeProj.pl " + mProjectUrl +" > analysisO

utput.log"
35. SSHConnection sshConnection = new SSHConnection(command);
36. sshConnection.executeCommand();
37.
38. //analyze project with metrics calculator
39. Versions versions = null;
40. VersionsFetcher fetcher = new VersionsFetcher(
41. mProjectUrl,
42. mProjectName,
43. mProjectOwner,
44. mBuildToolFlag);
45. try {
46. versions = fetcher.fetchVersion();
47. } catch (GitAPIException) {

 -79-

48. Log-
ger.getLogger(AnalysisForm.class.getName()).log(Level.SEVERE, null, ex);

49. }
50.
51. //add .jar for each version for analysis
52. if (versions != null && versions.getVersions() != null && !versions.ge

tVersions().isEmpty()) {
53. for (Version version : versions.getVersions()) {
54. boolean addMoreJars = true;
55. while (addMoreJars) {
56. int result = JOptionPane.showConfirmDialog(null,
57. "Add the jar file for version:" + version.getVersi

on(),
58. "ADD .JAR",
59. JOptionPane.YES_NO_OPTION);
60. if (result == JOptionPane.YES_OPTION) {
61. JFileChooser chooser = new JFileChooser("/gitTest");
62. chooser.showOpenDialog(null);
63. File file = chooser.getSelectedFile();
64. if (file != null) {
65. String path = file.getAbsolutePath();
66. storeMetricsIntoData-

base(path, version.getVersionCommit().getCommitId(), version.getVersion());
67. addMoreJars = addMoreForVersion();
68. }
69. }else{
70. addMoreJars = false;
71. }
72. }
73. }
74. } else {
75. String infoMessage = "No version available for this project";
76. JOption-

Pane.showMessageDialog(null, infoMessage, "", JOptionPane.INFORMATION_MESSAGE)
;

77. }
78. }

 -80-

Computation Phase Functions

1. public Results(String computationScope, String selectedProject) {
2. initComponents();
3.
4. Dimension dim = Toolkit.getDefaultToolkit().getScreenSize();
5. this.setLocation(dim.width / 2 -

 this.getSize().width / 2, dim.height / 2 - this.getSize().height / 2);
6.
7. // Configuration from analysis form
8. mProjectName = selectedProject;
9. mComputationScope = computationScope;
10.
11. // Initializaton of dao classes
12. mMetricsDao = new MetricsDaoImpl();
13. mSonarDao = new SonarDaoImpl();
14.
15. getProjectHistory();
16. getSonarSnapshotIdForVersion();
17. getArtifactsForVersion();
18. getArtifactsFromMetrics();
19. getMetrics();
20. preparePerArtifactHash();
21. calculateSimilarityForVersion();
22. calculateSumInterest();
23. initVersionsComboBox();
24. }
25.
26. private void initVersionsComboBox() {
27. mProjectVersions.forEach(projectVersion -> {
28. mVersionsComboBox.addItem(projectVersion.getVersionName());
29. });
30. mSelectedVersionIndex = 0;
31. mProjectVer-

sions.get(0).getVersionArtifacts().forEach(versionArtifact -> {
32. mArtifactsComboBox.addItem(versionArtifact.getArtifactName());
33. });
34. mSelectedArtifactIndex = 0;
35. }
36.
37. private void getProjectHistory() {
38. // Retrieve project history from metrics.
39. mProjectHistory = mMetricsDao.getProjectHistory(mProjectName);
40. mProjectVersions = mProjectHistory.getProjectVersions();
41. Sys-

tem.out.println("Finished retrieving project history from metrics");
42. }
43.
44. private void getSonarSnapshotIdForVersion() {
45. // Add snapshot_id from sonar as field on each project version to help

 us retrieve the metrics from sonar.
46. Ar-

rayList<SonarVersion> sonarVersions = mSonarDao.getSonarIdsForVersions(mProjec
tName, mProjectHistory.getCommitHashesForVersions());

47. //discardVersionsNotAnalyzedFromBothTools(sonarVersions);
48. if (mProjectVersions.size() == sonarVersions.size()) {
49. for (int i = 0; i < mProjectVersions.size(); i++) {
50. for (int j = 0; j < sonarVersions.size(); j++) {
51. if (mProjectVersions.get(i).getCommitHash() != null
52. && sonarVersions.get(j).getCommitHash() != null
53. && mProjectVersions.get(i).getCommitHash().equals(

sonarVersions.get(j).getCommitHash())) {
54. mProjectVer-

sions.get(i).setSonarSnapshotId(sonarVersions.get(j).getSnapshotId());
55. }

 -81-

56. }
57. }
58. Sys-

tem.out.println("Finished retrieving project history from sonar");
59. } else {
60. Sys-

tem.out.println("Error on sonar analysis!Sonar hasn't analyzed all the require
d version for us to present the results!");

61. }
62. }
63.
64. private void getArtifactsForVersion() {
65. for (int i = 0; i < mProjectVersions.size(); i++) {
66. Ar-

rayList<VersionArtifact> versionArtifacts = mSonarDao.getArtifactsForVersion(m
ComputationScope, mProjectVersions.get(i).getSonarSnapshotId());

67. if (!versionArtifacts.isEmpty()) {
68. mProjectVer-

sions.get(i).setVersionArtifacts(versionArtifacts);
69. } else {
70. mProjectVersions.remove(i);
71. i -= 1;
72. }
73. }
74. System.out.println("Finished retrieving artifacts from sonar");
75. }
76.
77. private void getArtifactsFromMetrics() {
78. for (int i = 0; i < mProjectVersions.size(); i++) {
79. Ar-

rayList<String> metricsArtifacts = mMetricsDao.getClassesAnalyzedForProject(mP
rojectVersions.get(i).getCommitHash());

80. mProjectVersions.get(i).setMetricsArtifacts(metricsArtifacts);
81. mProjectVer-

sions.get(i).discardNonAnalyzedClasses(mComputationScope);
82. }
83. System.out.println("Finished retrieving artifacts from metrics");
84. }
85.
86. private void getMetrics() {
87. for (int j = 0; j < mProjectVersions.size(); j++) {
88. List<VersionArtifact> versionArtifacts = mProjectVersions.get(j).g

etVersionArtifacts();
89. for (int i = 0; i < versionArtifacts.size(); i++) {
90. VersionArtifact versionArtfact = versionArtifacts.get(i);
91. getMetricsFromSonar(versionArtfact);
92. String commitHash = mProjectVersions.get(j).getCommitHash();
93. getMetricsFromMetricsCalculator(commitHash, versionArtfact);
94. }
95. }
96. System.out.println("Finished retrieving metrics from both tools");
97. }
98.
99. private void getMetricsFromSonar(VersionArtifact versionArtfact) {
100. HashMap<Integer, Integer> metricsForClass = mSonarDao.getSpecificM

et-
rics(versionArtfact.getSnapshotId(), mComputationScope, versionArtfact.getArti
factName());

101. ver-
sionArtfact.setNcloc(metricsForClass.containsKey(MetricId.NCLOC.id())

102. ? metricsForClass.get(MetricId.NCLOC.id())
103. : 0);
104. ver-

sionArtfact.setClasses(metricsForClass.containsKey(MetricId.CLASSES.id())
105. ? metricsForClass.get(MetricId.CLASSES.id())
106. : 0);

 -82-

107. ver-
sionArtfact.setFunctions(metricsForClass.containsKey(MetricId.FUNCTIONS.id())

108. ? metricsForClass.get(MetricId.FUNCTIONS.id())
109. : 0);
110. ver-

sionArtfact.setStatements(metricsForClass.containsKey(MetricId.STATEMENTS.id()
)

111. ? metricsForClass.get(MetricId.STATEMENTS.id())
112. : 0);
113. ver-

sionArtfact.setComplexity(metricsForClass.containsKey(MetricId.COMPLEXITY.id()
)

114. ? metricsForClass.get(MetricId.COMPLEXITY.id())
115. : 0);
116. ver-

sionArtfact.setSqaleIndex(metricsForClass.containsKey(MetricId.SQALE_INDEX.id(
))

117. ? metricsForClass.get(MetricId.SQALE_INDEX.id())
118. : 0);
119. }
120.
121. pri-

vate void getMetricsFromMetricsCalculator(String commitHash, VersionArtifact v
ersionArtfact) {

122. String className = versionArtfact.getShortNameForMetrics();
123. MetricsClass metricsClass = ("DIR").equals(mComputationScope)
124. ? mMet-

ricsDao.getMetricsForPackage(commitHash, mProjectName, versionArtfact.getArtif
actName())

125. : mMetricsDao.getMetricsForClass(commitHash, mProjectName,
 className);

126. versionArtfact.setDac(metricsClass.getDac());
127. versionArtfact.setDit(metricsClass.getDit());
128. versionArtfact.setLcom(metricsClass.getDac());
129. versionArtfact.setMpc(metricsClass.getMpc());
130. versionArtfact.setNocc(metricsClass.getNocc());
131. versionArtfact.setNom(metricsClass.getNom());
132. versionArtfact.setRfc(metricsClass.getRfc());
133. versionArtfact.setWmpc(metricsClass.getWmpc());
134. versionArtfact.setSize1(metricsClass.getSize1());
135. versionArtfact.setSize2(metricsClass.getSize2());
136. }
137.
138. private void calculateSimilarityForVersion() {
139. for (int i = 0; i < mProjectVersions.size(); i++) {
140. List<VersionArtifact> versionArtifacts = mProjectVersions.get(

i).getVersionArtifacts();
141. calculateSimilarityForArtifacts(i, versionArtifacts);
142. }
143. System.out.println("Finished calculating similarity");
144. }
145.
146. pri-

vate void calculateSimilarityForArtifacts(int versionIndex, List<VersionArtifa
ct> versionArtifacts) {

147. for (int i = 0; i < versionArtifacts.size(); i++) {
148. VersionArti-

fact investigatedArtifact = versionArtifacts.get(i);
149. for (int j = 0; j < versionArtifacts.size(); j++) {
150. if (i != j) {
151. VersionArti-

fact secondArtifact = versionArtifacts.get(j);
152. dou-

ble classesSimilarity = calculateCoupling(investigatedArtifact.getClasses(), s
econdArtifact.getClasses());

 -83-

153. dou-
ble complexitySimilarity = calculateCoupling(investigatedArtifact.getComplexit
y(), secondArtifact.getComplexity());

154. dou-
ble functionsSimilarity = calculateCoupling(investigatedArtifact.getFunctions(
), secondArtifact.getFunctions());

155. dou-
ble nclocSimilarity = calculateCoupling(investigatedArtifact.getNcloc(), secon
dArtifact.getNcloc());

156. dou-
ble sqaleSimilarity = calculateCoupling(investigatedArtifact.getSqaleIndex(),
secondArtifact.getSqaleIndex());

157. dou-
ble statementsSimilarity = calculateCoupling(investigatedArtifact.getStatement
s(), secondArtifact.getStatements());

158. double similarity = (classesSimilarity
159. + complexitySimilarity
160. + functionsSimilarity
161. + nclocSimilarity
162. + sqaleSimilarity
163. + statementsSimilarity) / 6;
164. investigatedArtifact.addTopArtifact(secondArtifact, si

milarity);
165. }
166. }
167. investigatedArtifact.calculateOptimalValues();
168. investigatedArtifact.calculateFitnessValue();
169. investigatedArtifact.calculateFitnessValueSqale();
170. Ar-

rayList<Integer> nclocForPastCommits = getNclocForPastVersions(versionIndex, i
nvestigatedArtifact.getArtifactShortName());

171. investigatedArtifact.calculateAverageK(nclocForPastCommits);
172. investigatedArtifact.calculateBreakingPoint();
173. }
174. }
175.
176. private double calculateCoupling(int metric1, int metric2) {
177. double similarity = 0;
178. if (metric1 != 0 && metric2 != 0) {
179. similarity = 100 - (Math.abs(metric1 -

 metric2) / (double) Math.max(metric1, metric2) * 100);
180. }
181. return similarity;
182. }
183.
184. private void preparePerArtifactHash() {
185. mPerArtifactHash = new HashMap<>();
186. mProjectVersions.forEach((version) -> {
187. version.getVersionArtifacts().forEach((artifact) -> {
188. if (mPerArtifactHash.containsKey(artifact.getArtifactShort

Name())) {
189. mPerArtifac-

tHash.get(artifact.getArtifactShortName()).add(artifact);
190. } else {
191. Ar-

rayList<VersionArtifact> artifacts = new ArrayList<>();
192. artifacts.add(artifact);
193. mPerArtifac-

tHash.put(artifact.getArtifactShortName(), artifacts);
194. }
195. });
196. });
197. }
198.

 -84-

199. pri-
vate ArrayList<Integer> getNclocForPastVersions(int versionIndex, String artif
actName) {

200. ArrayList<Integer> nclocForPastVersions = new ArrayList<>();
201. Ar-

rayList<VersionArtifact> artifacts = mPerArtifactHash.get(artifactName);
202. for (int i = versionIndex; i < artifacts.size(); i++) {
203. nclocForPastVersions.add(artifacts.get(i).getNcloc());
204. }
205. return nclocForPastVersions;
206. }
207.
208. private void calculateSumInterest() {
209. Itera-

tor<ArrayList<VersionArtifact>> iterator = mPerArtifactHash.values().iterator(
);

210. while (iterator.hasNext()) {
211. produceSumInterest(iterator.next());
212. }
213. System.out.println("Finished calculating sum interest");
214. }
215.
216. pri-

vate void produceSumInterest(ArrayList<VersionArtifact> artifacts) {
217. for (int i = 0; i < artifacts.size(); i++) {
218. VersionArtifact artifact = artifacts.get(i);
219. double sumInterestRealK = 0;
220. double sumInterestSqaleRealK = 0;
221. if (i < artifacts.size() - 1) { // if not the first version
222. for (int j = i + 1; j < artifacts.size(); j++) { // for ea

ch version priot to the investigated
223. if (j + 1 < artifacts.size()) {
224. sumIn-

terestRealK += artifacts.get(j).getRealK() * artifacts.get(j + 1).getFitnessVa
lue();

225. sumInterestSqale-
RealK += artifacts.get(j).getRealK() * artifacts.get(j + 1).getFitnessValueSqa
le();

226. }
227. }
228. }
229. artifact.setSumInterest(sumInterestRealK);
230. artifact.setSumInterestSqale(sumInterestSqaleRealK);
231. artifact.calculateBreakingPointSumInterest();
232. }
233. }

 -85-

Presentation Phase Functions

1. pri-
vate void mVersionsComboBoxActionPerformed(java.awt.event.ActionEvent evt) {

2.
3. int selectedVersion = mVersionsComboBox.getSelectedIndex();
4. if (mSelectedVersionIndex == selectedVersion) {
5. return;
6. }
7.
8. mArtifactsComboBox.removeAll();
9. mSelectedVersionIndex = selectedVersion;
10. mSelectedArtifactIndex = 0;
11.
12. mProjectVer-

si-
ons.get(mSelectedVersionIndex).getVersionArtifacts().forEach(versionArtifact -
> {

13. mArtifactsComboBox.addItem(versionArtifact.getArtifactName());
14. });
15. }
16.
17. pri-

vate void mArtifactsComboBoxActionPerformed(java.awt.event.ActionEvent evt) {

18.
19. int selectedArtifactIndex = mArtifactsComboBox.getSelectedIndex();
20. if (mSelectedArtifactIndex == selectedArtifactIndex) {
21. return;
22. }
23.
24. mSelectedArtifactIndex = selectedArtifactIndex;
25. mSimilarityTable.removeAll();
26. mMetricsTable.removeAll();
27.
28. VersionArti-

fact selectedArtifact = mProjectVersions.get(mSelectedVersionIndex).getVersion
Artifacts().get(mSelectedArtifactIndex);

29.
30. SimilarityMod-

el similarityModel = new SimilarityModel(selectedArtifact.getTopSimilar(), sel
ectedArtifact);

31. mSimilarityTable.setModel(similarityModel);
32. Metrics-

Mod-
el metricsModel = new MetricsModel(selectedArtifact.getTopSimilar(), selectedA
rtifact);

33. mMetricsTable.setModel(metricsModel);
34.
35. mPrincipalLa-

bel.setText("Principal: "+selectedArtifact.getPrincipal());
36. mInter-

estLabel.setText("Interest: "+selectedArtifact.getInterestAvgK());
37. mBreaking-

PointLabel.setText("Breaking Point: "+selectedArtifact.getBreakingPoint());
38. }
39.
40. pri-

vate void reportButtonActionPerformed(java.awt.event.ActionEvent evt) {
41. try {
42. String fileName = mProjectName + ".csv";
43. PrintWriter writer = new PrintWriter(fileName, "UTF-8");
44. writer.println("Version;"
45. + "Scope;"
46. + "Name;"

 -86-

47. + "Principal;"
48. + "Avg K;"
49. + "Real K;"
50. + "Fitness Value (Metrics);"
51. + "Fitness Value (Sqale);"
52. + "Interest in AvgK (Metrics);"
53. + "Interest in RealK (Metrics);"
54. + "Interest in AvgK (Sqale);"
55. + "Interest in RealK (Sqale);"
56. + "Breaking Point (Metrics);"
57. + "Breaking Point (Sqale);"
58. + "Breaking Point minus Sum Interest (Metrics);"
59. + "Breaking Point minus Sum Interest (Sqale);"
60. + "Avg Similarity;");
61. for (ProjectVersion version : mProjectVersions) {
62. for (VersionArtifact artifact : version.getVersionArtifacts())

 {
63. writer.println(version.getVersionName() + ";"
64. + getStringForScope() + ";"
65. + artifact.getArtifactName() + ";"
66. + artifact.getPrincipal() + ";"
67. + artifact.getAvgK() + ";"
68. + artifact.getRealK() + ";"
69. + artifact.getFitnessValue() + ";"
70. + artifact.getFitnessValueSqale() + ";"
71. + artifact.getInterestAvgK() + ";"
72. + artifact.getInterestRealK() + ";"
73. + artifact.getInterestSqaleAvgK() + ";"
74. + artifact.getInterestSqaleRealK() + ";"
75. + artifact.getBreakingPoint() + ";"
76. + artifact.getBreakingPointSqale() + ";"
77. + artifact.getBreakingPointWithSum() + ";"
78. + artifact.getBreakingPointWithSumSqale() + ";"
79. + artifact.getAverageSimilarity() + ";"
80.);
81. }
82. }
83. writer.close();
84. } catch (IOException e) {
85.
86. }
87. }
88.
89. pri-

vate void resultsButtonActionPerformed(java.awt.event.ActionEvent evt) {
90.
91. Iterator<String> iterator = mPerArtifactHash.keySet().iterator();
92. ArrayList<ResultsArtifact> results = new ArrayList<>();
93.
94. while (iterator.hasNext()) {
95. String artifact = iterator.next();
96. Ar-

rayList<VersionArtifact> artifacts = mPerArtifactHash.get(artifact);
97.
98. double principalEvolution = artifacts.size() == 1
99. ? artifacts.get(0).getPrincipal()
100. : artifacts.get(0).getPrincipal() -

 artifacts.get(artifacts.size() - 1).getPrincipal();
101. double interestEvolution = artifacts.size() <= 2
102. ? 0
103. : artifacts.get(0).getInterestAvgK() -

 artifacts.get(artifacts.size() - 2).getInterestAvgK();
104. double bpEvolution = artifacts.size() <= 2
105. ? 0
106. : !Double.isInfinite(artifacts.get(0).getBreakingPoint

())

 -87-

107. ? findLastAppliedBreakingPoint(artifacts)
108. : 0;
109. ResultsAr-

tifact resultsArtifact = new ResultsArtifact(artifact, principalEvolution, int
erestEvolution, bpEvolution);

110. results.add(resultsArtifact);
111. }
112.
113. try {
114. String fileName = mProjectName + "_overview.csv";
115. PrintWriter writer = new PrintWriter(fileName, "UTF-8");
116. writer.println("Name;"
117. + "Principal Evolution;"
118. + "Principal Evolution Type;"
119. + "Interest Evolution (Metrics);"
120. + "Interest Evolution Type;"
121. + "Breaking Point Evolution (Metrics);"
122. + "Breaking Point Evolution Type;");
123. for (ResultsArtifact artifact : results) {
124. writer.println(artifact.getArtifactName() + ";"
125. + artifact.getPrincipalEvolution() + ";"
126. + getStringForEvolution(artifact.getPrincipalEvolu

tion()) + ";"
127. + artifact.getInterestEvolution() + ";"
128. + getStringForEvolution(artifact.getInterestEvolut

ion()) + ";"
129. + artifact.getBpEvolution() + ";"
130. + getStringForEvolution(artifact.getBpEvolution())

 + ";");
131. }
132. writer.close();
133. } catch (IOException e) {
134.
135. }
136. }
137.
138. pri-

vate void mProjectReportButtonActionPerformed(java.awt.event.ActionEvent evt)
{

139. try {
140. String fileName = mProjectName + "_project_overview.csv";
141. PrintWriter writer = new PrintWriter(fileName, "UTF-8");
142. writer.println("Version Name;"
143. + "Principal;"
144. + "Interest;"
145. + "Breaking Point;");
146. for (ProjectVersion projectVersion : mProjectVersions) {
147. double totalPrincpal = 0;
148. double totalInterest = 0;
149. for (VersionArtifact versionArtifact : projectVersion.getV

ersionArtifacts()) {
150. totalPrincpal += versionArtifact.getPrincipal();
151. totalInterest += versionArtifact.getInterestAvgK();
152. }
153. double breakingPoint = totalPrincpal / totalInterest;
154. writer.println(projectVersion.getVersionName() + ";"
155. + totalPrincpal + ";"
156. + totalInterest + ";"
157. + breakingPoint + ";");
158. }
159. writer.close();
160. } catch (IOException e) {
161.
162. }
163. }

