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Abstract 
 

This dissertation was written as a part of the MSc in ICT Systems at the International Hellenic 

University. 

Caching at the network edge is a recently proposed technique for the upcoming mobile 

generation 5G, to reduce the backhaul rates at the peak hours by prefetching popular contents 

and store them into memories at or near to the end users. However, we focus on a new 

revolutionary caching scheme named as coded caching that take advantage of the multicast 

medium of the mobile network to offer a considerable gain through information theory coding 

techniques. In this work, we analyze the performance of two dominant approaches. A 

comparative simulation-based study has been established of uncoded and coded caching under 

various levels of spatial locality of the user contents.   

Our simulation results show that LFU (Least frequently used) uncoded caching scheme 

provides a better performance than coded caching schemes for real-life scenarios which were 

represented in our simulation as non-uniform content popularity. In addition, coded caching 

scheme still needs additional improvements regarding the supported number of users as well 

as the computational complexity imposed on users and server sides.  
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Chapter 1 Introduction 

1.1 Motivation 

In the last few years, smartphones have become an essential part of our daily life. It is not just 

a communications-oriented service anymore as most of our daily tasks can be done through our 

phones, i.e. booking, emails, controling our social media accounts etc. Nowadays, with our 

phones, we can: 1) access popular VoD (video on demand) websites like YouTube, Netflix and 

many others, 2) download high-quality videos up to 4K and 8K, generating massive data traffic 

that travels all the way from the data centers through Content Delivery Networks (CDNs) and 

intermediate network access links to reach our phones.  

The response of the mobile network operators to the capacity demands these trends raise, has 

typically been to increase their subscribers’ bandwidth by upgrading their network to the last 

generation of radio transmission technologies. From one system generation to another, two 

have been the main ways towards more data delivery capacity. On the one hand, the network 

access points are densified: more cells of smaller size emerge closer to the end user. In parallel, 

new radio transmission technologies and access schemes are deployed that can scale up the 

transmission rate over the wireless links and accommodate more bits over the air for given 

spectrum slice. Nevertheless, mobile video content is projected to account for 75% of mobile 

data traffic volumes by 2020, when the total mobile data traffic is predicted to grow by a factor 

ranging from eight to ten by 2020. At the same time, the 5G community is far more aggressive 

targeting a 1000-fold increase in the mobile data volume served by their networks. The support 

of such data volumes over the radio links poses far greater challenges to the radio link 

designers; at the same time, even if these rates are achieved over the radio links, it renders 

backhaul links bottlenecks of the mobile network.  

One of the most promising solutions towards overcoming the challenge for higher data delivery 

capacities in the mobile networks is the use of caching techniques within the mobile cellular 

network and, more precisely, at its edges. Implementing in-network caching by placing CDN 

(content delivery networks) nodes at the gateway nodes of the mobile network will already 

benefit the mobile network by accelerating the data transfer to end users and reducing the transit 

traffic to other networks. Nevertheless, mitigating backhaul and wireless links’ overload 

requires moving beyond the placement of CDN nodes at the network border, and caching 
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content also at the radio network access points (base stations) and even at the users’ mobile 

devices. Those caches will operate in two phases: the content placement phase during off-peak 

hours, where caches are populated with (most popular) content; and the delivery phase during 

peak hours, when users’ requests for content are submitted to and, hopefully, served by these 

caches so that the congestion at the core network and the backhaul links is reduced. 

In the last five years, multiple research efforts have been dedicated to fitting promising 

advanced caching concepts to the reality and constraints of the wireless mobile network. Two 

are the dominant caching techniques that have been proposed to this end: femtocaching [1] and 

coded caching [4]. Femtocaching resembles the common caching technique used in Internet 

for Web content, namely the whole (video) file must be stored at the cache. On the other hand, 

with coded caching, users populate their caches with smaller coded parts of more content items 

and can recover the full content with the help of encoded broadcast transmissions.  

In what follows, a review of the main available results about these two techniques has been 

presented. 

1.2 State-of-the-art Work 

1.2.1 Caching in General 

Caching is currently being revisited in the context of mobile cellular networks and proposed to 

be implemented in 5G Networks. This has motivated a number of papers and articles addressing 

its design and implementation in the wireless network but also the main system features that 

have an impact on its performance and proper ways to model them. Most of these issues are 

more generic and do not concern exclusively the mobile wireless networks. 

Temporal and spatial locality of content demand and their implications: The demand for 

content exhibits variations both across time and space. For example, some TV series’ episodes 

become rapidly popular within a small period of time and then become unpopular again, when 

they are outdated by newer episodes. Moreover, the content requested, say, during working 

hours is often different than the one accessed over evening leisure time. We refer to these 

temporal variations of content demand as time locality. 

Likewise, the demand may differentiate from one geographical area to another. Beyond 

globally popular content, there is much content of more local interest. Indeed, the demand for 

almost all contents available online today may present variability at multiple geographical 
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levels: continental, national, regional, city or even neighborhood level. For a cellular network, 

this implies that different network cells may present different statistical patterns of aggregate 

content demand. We refer to these variations, which coexist with the temporal ones, as the 

spatial locality of content demand. 

 These two fundamental properties of the content demand have also direct implications for (a) 

the modeling work in the area of caching systems since they invalidate basic assumptions of 

de facto popularity models; (b) the actual algorithms that control the content of the cache each 

moment in time. 

Hence, the standard model used in the study of web caching, called independence reference 

model (IRM), is designed for static content popularity and is not a valid choice under rapidly 

changing content popularity [2]. The shot noise model (SNM) proposed in [6] shows more 

accurate results than the IRM with respect to caching performance analysis [6]. Figure 1.1 

shows that fitting real traces of content requests, collected from YouTube, with the SNM offers 

a far better closer match than fitting them with the IRM since the former better captures the 

strong correlations between content popularity and time. 

 
Figure 1.1 Hit probability comparison between best fit of the IRM, SNM, and YouTube traces (extracted from [6]). 

 

The temporal locality properties also call for novel dynamic cache management policies. The 

de-facto policy used in web caching, the LRU (least recently used) caching algorithm, evicts 

the content item with the highest time at the cache without a request every time a request for a 
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new content item is made, which is not in the cache. LRU is proven to be optimal under the 

IRM model, but it is suboptimal when it is applied to time-varying content popularity [2].  

Finally, both types of locality make the actual online detection of demand dynamics a 

particularly challenging task. The spatial locality, in particular, gives rise to a tradeoff between 

prediction accuracy and speed. Matching the cache content to the local demand implies 

learning it out of the local requests only. However, aggregating data at BS level turns out to be 

much slower than doing so at the network level since collecting a statistically significant and 

reliable sample for training the prediction algorithm requires more time. To remedy the 

situation, new caching architectures have been proposed that combine information obtained at 

different aggregation layers [7]. 

User privacy and HTTP encryption: any type of in-network caching, but also in-network 

processing, assumes that network operators can intervene on the information path, extract part 

of the exchanged information (e.g., HTTP headers with information on accessed content) and 

use it intelligently to infer the content demand and accordingly optimize the cache content and 

offer the quality of service (QoS) over their networks. However, the widespread use of end-to-

end encryption mechanisms such as HTTPS prevents the cache system from interrupting and 

serving user requests. Solutions that have been proposed to this problem involve replacing end-

to-end encryption protocols such as HTTPS with new protocols that perform caching on 

encrypted contents while preserving user privacy [8]. 

Memory size constraints: implementing cache nodes on each base station in the network will 

impose additional costs proportional to its capacity. Thus, deciding the optimal size of this 

memories depends on the following parameters [2]: 

● Cost considerations.  

● Skewness of content popularity 

● Local traffic distribution in cells. 

In the following paragraphs we will review the latest state of art progress regarding coded 

caching and uncoded femtocaching.  

1.2.2 Uncoded Femtocaching  

Femtocaching is initially introduced in [1] as a novel way to increase the spectral efficiency of 

the video transmission over the cellular communication system. It involves the deployment and 

use of caching helper nodes that store the most popular video contents and make it available 
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locally to User Terminals when they request it. These nodes operate in parallel to the 

conventional macro base stations, which provide the UTs with the video files that cannot be 

obtained from the helpers. The principle is that if there is enough content reuse, i.e. many users 

are requesting the same few video files, caching can replace backhaul communication. Figure 

1.2 shows a possible distribution of the helper nodes within the coverage area of the Macro BS.  

The question that comes up in such a setting is which content should be stored in each cache - 

we can distinguish between two scenarios: 

a) Each UT (User terminal) is connected to (associated with) only one helper node at each point 

in time. In this case, the solution is trivial as each cache will store the content that is most 

popular over the set of users served by the respective helper node.  

 

Figure 1.2 An example of the single-cell layout. UTs are randomly distributed, while helpers can be optimally placed in the 

coverage region of one BS (extracted from [1]). 

b) Each UT may be simultaneously connected to more than one helper nodes:  in the example 

presented in [1] for simplicity, they assume that each user is connected to two helpers, each of 

capacity M content items. In this case, the first helper will store the most popular files while 

the second helper will store the next most popular files. This will create a distributed cache of 

size 2M for this user. However, the individual objectives of different users may be in conflict 

and determining the optimal file placement when some users are connected to more than one 

helper nodes turns out to be an NP-complete problem [1].  
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In [1], the authors formulate the problem as an instance of maximizing a monotone submodular 

function over matroid constraints and propose a greedy algorithm for its solution: 

● Start with an empty set. 

● At each step, add the content item with the highest marginal value to the set while 

maintaining independence of the solution.  

Drawing on a solid theory behind the use of greedy algorithms in such settings, these results 

suggest that when the objective function of an optimization problem is a submodular function, 

a greedy algorithm achieves a performance that is provably within a factor 1/2 of the optimal 

value [9]. 

Thus, if the user’s requested files are already available in the cache “helper” memory, we 

experience a local caching gain [4], which is proportional to the cache memory size. We have 

a large gain for a large cache as it can store more content likely to be requested; or a small gain, 

when the hit probability (i.e., the fraction of requests served by the cache) is small, which 

results in downloading the content over the backhaul connection.    

1.2.3 Coded Caching 

Authors in [4] proposed a radically different approach to caching content in a network, which 

can be applied both within a cell (caching takes place at user devices) and across cells (caching 

takes place at radio access points, as with the femtocaching helper nodes). What is called coded 

caching deviates from femtocaching in the following ways: 

● Helper nodes cache content files partially rather than fully, i.e., they store file segments 

rather than whole files; 

● These segments may generally be encoded versions of the original files; 

● When a file is actually requested, it is broadcast together with other requested files as 

part of a single coded multicast transmission addressing the file requests from all users 

and caches. 

More specifically, under coded caching, all the popular video content will be coded and split 

to a number of files of a fixed size related to the number of UTs. Moreover, each UT has 

internal storage memory working as a local cache. Thus, during the placement phase in off-

peak hours each user will populate its cache with parts of popular contents. This contents will 

be chosen properly in order to ensure symmetric properties. Then during the request phase, 

each user might request different file. The work in [4] shows that we can minimize the number 
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of transmissions to satisfy all users by applying index coding. Additionally, from the required 

resource blocks equation K (1 – M/N)/(1 + KM/N), it shows that for a fixed cacheable fraction 

of the catalogue size M/N, the required number of resource blocks does not increase with the 

number of users K, as shown in figure 1.3; this is a great advantage over the conventional 

uncoded caching scheme. 

The following toy example illustrates the concept of coded caching [4]. It shows 2 users (K = 

2) connected to the cache memory via a shared link with rate R. The catalog size consists of 

two files A and B (N = 2). For simplicity, we assume that both users have the same memory 

size. We will have three different cases depending on the local cache size. 

Firstly, If the users’ caches can store the 2 files (M = 2), both files can be accessed through the 

local caches so that the broadcast link will not be used (R = 0) and the gain is maximized. 

Figure 1.3 Coded caching can serve an arbitrarily large population of users with a fixed number of resource blocks 

([extracted from [2]). 

In the other extreme case, if M = 0 then no file will be cached in the local memory and the 

number of files that has to be sent over the broadcast link is R=2. Finally, if M = 1, each user 

will store one part of each file; for example, user 1 will store A1, B1 and user 2 will store A2, 

B2. Then during the peak hour, each user will request one of the missing files. If user 1 requests 

A and user 2 requests B, we can apply the bitwise XOR operator on the B1 and A2 file segments 
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and broadcast the coded sequence of bits so that both users can recover the requested file by 

applying bitwise XOR with the corresponding pre-cached file in their local cache. For example, 

user 1 has already the file A1 and it can extract A2 by bitwise XORing the broadcast 

transmission with B1. The required transmission rate, in this case, is R = 1 since one coded 

multicast transmission can satisfy both users’ requests. Figure 1.4 shows the cached content 

and multicast transmissions for all four possible combinations of users’ file requests. 

  

Figure 1.4 Code caching configurations under all four possible combinations of file requests by the two users (M =2, N=2, 

K=2) (extracted from [4]) 

The main savings with coded caching is in what is actually sent over the broadcast link that 

feeds the caches. Using information-theoretic formulations, the technique achieves a global 

caching gain, on top of the local caching gain of conventional schemes, leading to 

multiplicative enhancement of the overall caching efficiency.   

The algorithm that Maddah-Ali and Niesen proposed for the coded caching configuration 

assumes uniform demands, i.e., all users are equally interested in all items, and proceeds in the 

following manner: 

Algorithm 
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Placement phase: 

a. Each one of the N files in the catalogue is split into overlapping subfiles of equal size 

F/t, where t = MK/N; (M: cache size, K: number of users, F: file size) 

b. Each of these subfiles is stored in a subset of caches of size t. Hence, each cache stores 

a total of N subfiles 

Delivery phase: 

a.  Users transmit requests for specific files –in the worst case, for K different files 

b. For each subset of users of size t+1, we XOR t+1 subfiles, each with the property that 

one of the t+1 users is missing it whereas the other t have it in their caches. 

This algorithm is centralized, i.e., the choices of what to store in each cache during the 

placement phase are centrally coordinated.  

In [10] the same group relax the assumption for central coordination during the content 

placement phase. Each user independently stores the same number of (random) bits from each 

of the N files. The transfer/request phase and the assumptions about the popularity of content 

are identical with the original scheme in [4]. The coded rate of this scheme is 

𝑅𝐷(𝑀)  ≃  𝐾. (1 −  𝑀/𝑁). 𝑚𝑖𝑛 {
𝑁

𝐾𝑀
(1 − (1 − 𝑀/𝑁)𝐾),

𝑁

𝐾
}.  

We note that if 𝑁 ≥ 𝐾 or 𝑀 ≥ 1, then the minimum in 𝑅𝐷(𝑀) is achieved by the first term so 

that  

  𝑅𝐷(𝑀)  =  𝐾. (1 −  𝑀/𝑁).
𝑁

𝐾𝑀
(1 − (1 − 𝑀/𝑁)𝐾) . 

In parallel, in [11], researchers from the same research group relax the assumption of uniform 

demand for all items. They consider arbitrary demands but still identical distributions at the 

cache/user level, i.e., there is no differentiation between users. The proposed algorithm steps 

in each phase are as follows: 

Placement phase: 

a. Files are organized into L groups featuring similar demand, that is, after they are sorted 

in order of decreasing popularity, group k includes files with demand popularity ranging 

in [p_k,p_k/2], namely all files with a popularity differing by a factor of 2. 

b. Different amounts of memory are assigned to each group of files. These amounts are 

proportional to their popularity. The amount of memory assigned to each group is the 

same over all caches. Each file in a given group reserves the same portion of the group-

specific memory.  

c. Users store randomly the same number of bits per file within the same group, the space 

occupied by each file depending on the (popularity of) the group it belongs to. 
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Delivery phase: 

a. Users transmit requests for specific files –in the worst case for K different files. These 

requests are now partitioned into L groups, depending on which group the requested 

file belongs to. 

b. The decentralized coded caching scheme is applied separately for each one of the L 

groups, for the number of files N_l, users K_l and memory M_l that correspond to each 

group l. 

The expected coded rate of this scheme was derived to be 

∑ (∏ 𝑃𝑑𝑘

𝐾
𝑘=1 )𝑅𝑑𝑑∈𝑁𝐾 . 

Where (𝑑𝑘: is the request of user K, 𝑅𝑑: the corresponding rate, 𝑃𝑑𝑘
: the probability of user 

request). 

Besides and beyond the theoretical work, in [5] the authors have implemented a fully working 

prototype on CorteXlab that facilitates the wireless multi-user communication scenarios, which 

help them in testing state-of-art of both coded and uncoded schemes in real-world environment. 

The results of their experiments show that the coding overhead does not significantly affect 

the promising performance gains of coded multicasting in small-scale real-world scenarios, 

practically enforcing its potential to become a key next generation 5G technology. 

1.3 Objectives of the Dissertation 

Standard uncoded caching techniques and coded caching have emerged so far as two alternative 

approaches towards the proliferation of edge caching in mobile cellular networks. Both 

concepts have seen much theoretical work that has shed light to fundamental properties, both 

advantages and drawbacks, of the two schemes. 

One persistent element in most of these theoretical studies is the (simplified) assumption about 

the temporal and spatial dynamics of content demand. The original coded caching scheme was 

studied under the assumption of uniform demand for all content items, identical over all caches 

[4]. Although subsequent work [11] allowed for arbitrary distributions of content demand, 

however it preserved the assumption for identical demand distributions over all caches (users). 

Likewise, in the case of the femtocaching work, the reference popularity distribution of content 

is the global one, i.e., the aggregate of all users’ demands under all helper nodes in the network. 

Our intention in this work is to look deeper into the implications of the spatial locality of 

content demand for the two caching schemes. Intuitively, in an extreme setting where each user 

in a cell (cache in a radio network) present completely distinct preferences for content (different 
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than its peers), it might make far more sense to use a scheme like LFU (Least Frequently Used) 

for determining the cache placement, working independently for each cache/user. On the other 

hand, under identical demand for content, coded caching presents a non-negligible gain. The 

question that plausibly emerges is when exactly, i.e., under what characteristics of the content 

popularity, is the one scheme preferable to the other. 

Therefore, the overarching objective of this dissertation is to carry out a systematic 

comparative study of the two techniques through simulations that will thoroughly explore 

the impact of spatial locality in content demand.  

To this end, it will aim to 

● Study and model the spatial locality of content demand over the geographical area of 

some hundreds of network cells. This task will draw on synthetic distributions but may 

benefit from real data that may be become available in the course of the dissertation; 

● Define plausible metrics for quantifying the spatial locality of content demand across 

an area of the network; 

● Determine conditions, e.g., values of the metrics assessing the spatial locality, that 

could indicate when coded caching is more efficient than femtocaching and when the 

opposite holds. 

1.4 Outline of the Dissertation 

The remainder of this report will be organized as follows: 

Chapter 2 presents the system model and assumptions as well as the methodology that is 

adopted in the comparison of the two caching techniques. This chapter also discusses our work 

on spatial locality characterization and the definition of metrics we use for this comparison. In 

chapter 3 we present the results of our simulation study, insisting on the sensitivity of the 

comparison outcome to the different system parameters.  

Chapter 4 summarizes the findings of the experimental study and outline directions for future 

work. 
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Chapter 2  System Model and Methodology 

This chapter includes two subsections. The first one presents the system model for our 

investigation. This includes the assumption about the network layout, the users, and the cache 

placement as well as the model for the content popularity. The second part presents the 

methodology that will be used for carrying out the comparison of the two caching techniques. 

This encompasses a description of the implementation of the caching algorithms and the 

performance metrics that drive the comparison.  

2.1 System Model 

The system model is outlined in Fig. 2.1 and includes: 

2.1 Small cells, caches, and users  

We consider a number K of small cells (small base stations) that serve varying numbers of 

users each. The cells provide coverage to a large area, which may include business districts 

and residence areas.  

The network users issue requests for content. The content catalogue, in its entirety, is stored 

at a powerful content server. Let N be the size of the content catalogue and assume, for 

simplicity, that file sizes in bits are identical and denoted by F.  

The cells are equipped with caches that can store locally content that users may request. The 

normalized capacity of these caches, in terms of number of files, is finite, M, letting them store 

only a small part of the overall content catalogue. These caches are connected to the content 

server through an error-free shared backhaul link, that could generally be wireless or wired.  

Users are at each point in time associated with a single cell. Their association may change over 

time but exactly one cell can serve them content at any particular time instance. 
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Figure 2.1 A sketch of the network model. Users are served by small cache-enabled cells that store locally content of appeal 

to the users. These cells are fed with content from a central server with far more capacity, which can store practically the 

whole catalogue of files that is available to users. A backhaul, which may be realized either through wired or wireless 

technologies feeds the caches of the small cells 

The assumption for the content provision is that it operates in two phases: a placement phase 

and a delivery phase.   

The content placement phase, is carried out periodically during the off-peak hours. It 

determines the content to be stored at the caches of the small cells and places it there. This 

content then remains the same till the next execution of the content placement phase. In the 

time interval between two content placement instances, the content delivery phase, the cache 

serves the requests it receives by users associated with the cell it is attached to. 

What will be stored during the placement phase and what will be delivered during the delivery 

phase changes dramatically according to the implemented edge caching approach, uncoded or 

coded. We discuss this point next. 

2.1.2 Caching Algorithms 

Our comparison considers two main approaches to caching, uncoded and the coded. 

2.1.2.1 Uncoded caching:  Highest-Popularity First (HPF)  

This is one of the simplest and most popular caching strategies, which is used for non-uniform 

content distribution, when the files’ popularity is well-known. This caching strategy is an off-

line equivalent to the online Least Frequently Used (LFU) caching algorithm, hereafter the 
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terms LFU and HPF denote the same things and are used interchangeably, whereby the item 

that is least-frequently used is evicted from the cache. HPF is optimal for a system with a single 

cache [11] when the cache stores the M most popular files. However, HPF can be arbitrarily 

suboptimal in the multi-cache setting (K >1) [11].  

To model the HPF caching algorithm, we sort the files in descending popularity order and 

populate the caches with first M (depending on the cache size) files. The aggregate popularity 

of these M files yields an estimate for the expected cache hit ratio experienced at the cache. 

The aggregated (global) popularity illustrated in the following equation:  

fpopg(i) = 1-product_{k=1:K} (1-fpop({k}(i)) 

Thus, to infer the global demand fpopg(i) of an item i over all K caches out of the individual 

ones, it would be the probability that item i is requested by at least one cache is 1 minus the 

probability that no cache requests it.  

We attach the code that represents our HPF model in appendix A. 

2.1.2.2. Coded caching: Decentralized Coded Caching algorithm for non-uniform demand 

distribution 

The Decentralized coded caching algorithm introduced in [10] generalizes the concept of 

centralized coded caching, as stated earlier in chapter 1, and solves the following restrictions: 

first, under centralized CC, the number of users must be known well in advance of the delivery 

phase. Secondly, there must be tight coordination of the small cell caches as to which file parts 

need to be stored during the placement phase. On the contrary, the DCC algorithm introduced 

in [10] creates a simultaneous coded-multicasting opportunity without coordination in the 

placement phase. In the delivery phase, the small cell caches still need to inform the server 

about their cached contents and the file requests they get. The algorithm efficiently exploits the 

multicasting opportunities created during the placement phase and allows DCC to achieve a 

performance close to the performance of the ideal centralized CC. The decentralized CC 

algorithm is outlined below: 

 

Placement phase:  

Each of K small cells with cache size M, independently caches a subset of 
𝑀 𝐹

𝑁
bits of each file 

𝑛 ∈ [𝑁] that has the size F. those bits are chosen uniformly at random.  

 

Delivery phase: 
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This algorithm provides two delivery procedures, the server chooses the procedure minimizing 

the resulting rate over the shared link out of the two following ones:  

• The first procedure: the servers organizes the caches in all possible groups of sizes 

1,2,…K-1. For each of these groups s, and depending on the file bits that are common 

among the caches in s, the server XORs and multicasts bits, which are requested by a 

user in cache k and are only stored at every cache in s excluding k. 

• The second procedure: for every file 𝑛 ∈ [𝑁], the server sends enough random linear 

combinations of bits from file n for all users requesting it to decode.  

We attached our implementation of the decentralized CC algorithm in appendix B. 

This algorithm assumes the files have a uniform popularity distribution. Therefore, the follow-

up work in [11] proposed a way to deal with Zipf-distributed file popularities by grouping 

together files that have “similar” popularities, as described earlier in section 1.2. 

In our experimental study, we compare this adaptation of the decentralized CC scheme for non-

uniform file demand against the HPF algorithm. 

2.2 Evaluation Methodology 

● Generating local and global content popularity distributions: 

We used power law function as a simple approach that demonstrates content popularity. 

It has the parameter theta that controls the skewness of the popularity with value ranges 

between 0.1 and 2.  

We generated the local popularity for N files, and then we normalize and replicate this 

popularity to k number of users. The output is K cells with N files popularity each. 

Finally, we generate the global popularity by summing the popularity of the file n with 

its corresponding file in all K cells.   

2.2.1 Content Popularity 

In our evaluation, we explicitly distinguish between local popularity (at the level of one cache) 

vs. global popularity, when these local popularity distributions are aggregated over all (or a 

subset of) small cells. This interplay between the popularity distributions at different spatial 

scale is important for assessing the impact of demand’s spatial locality. 

Thus, we consider between two main scenarios regarding the content popularity (a.k.a demand 

distribution): 
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a. Uniform demand 

In this scenario, which serves as the baseline for our comparisons, all N files of the catalogue 

are assumed to be requested with the same probability, i.e., the probability that a request from 

any small cell cache K is for a file n is equal to 1/N. For the coded caching algorithm, this 

implies that each cache stores an equal portion, M/N, of every file in the content catalogue. 

b. Non-uniform file demand 

This is the more realistic scenario, which lies at the focus of our study. The popularity varies 

from one file to another as well as from one cache to the other. We consider a number of models 

for capturing this heterogeneity, all of them drawing one way or another to the Zipf popularity 

distribution. According to it, the content item n can be requested with the rate 𝜆 𝑝𝑛 [2] where 

𝜆 denotes the rate of requests and 𝑝𝑛the power-law distribution (  𝑝𝑛 ≃ 𝑛−𝜃, 𝜃 ≻ 0); 𝜃 is used 

to control the skewness of the popularity. Specifically, large 𝜃 (highly right skewed histogram) 

represents a few files with similar popularity. On the other hand, small 𝜃 (flat histogram) 

represents a lot of files with similar popularity as shown in figure 2.2.  

 

Figure 2.2 Power law distribution for different values of 𝜃. 

The models for the demand heterogeneity across the network are the following: 

• Identical file set ranking of items and skewness parameters across the K caches (POPa):  
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In this scenario, for catalog of size N file. Every user k shares an identical content 

demand with K-1 users. In other words: that the users have identical file distribution 

for every value of theta. 

• Identical file set skewness parameters but different ranking of content items across the 

K caches (POPb): In this model, the assumption is that users have random permutation 

regarding the order of files. 

• Different file set and skewness parameter across the K caches (POPc): 

In this model, the assumption is, for a catalog of size N, each user has an interest in a 

subset of files of size N_S, fixed for all users, each user has an interest in a different 

subset of N. However, there is a partial overlap of size O between subsets of each 

subsequent users.   

2.2.2 Performance metrics 

Two performance metrics are mainly relevant to our comparison, the cache hit ratio and the 

bandwidth savings at the backhaul links that are possible with the two techniques. 

2.2.2.1 Cache hit-ratio 

The effectiveness of cache memory is measured in terms of the cache hit ratio, which is defined 

as the ratio of the number of cache hits (the fraction of requests that can be served by the cache) 

over the number of requests, usually expressed as a percentage. The hit ratio is generally 

influenced by factors such as the cache policy, the number of cacheable objects, the cache 

memory size. Typically, what is sought after is an efficient caching algorithm that maximizes 

the hit ratio and minimizes the cache misses. A cache hit ratio of 90% and higher implies that 

most of the requests are satisfied by the cache. A value below 80% on static files indicates 

inefficient caching due to poor configuration [13].  

2.2.2.2 Backhaul rate 

In the mobile networks, the backhaul link represents the connection between the network edge 

(base station) and the core network. It also comprises the intermediate links between the core 

network. The rate of the backhaul link could be at the order of E1 or ADSL level. Therefore, 

mitigating backhaul rate requires implementing caching algorithms that provide maximum gain 

(law backhaul rate).  

The main promise of coded caching approaches is that they can significantly reduce the rate 

that is required at the backhaul links, yielding gains that are orders of size better than 
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conventional uncoded caching policies.  Below, we summarize the achievable rates under the 

HPF scheme and the coded caching algorithms we have discussed so far (under aggregate 

global demand distributions). 

1- Uncoded caching (HPF). 

𝑅(𝑀; 𝐾, 𝑁)  =  𝐾 (1 −  𝑀/𝑁) 

2- Centralized coded caching.  

𝑅𝐶(𝑀; 𝐾, 𝑁)  =  𝐾. (1 −  𝑀/𝑁)(1/(1 + 𝐾𝑀/𝑁)) 

3-Decentralized coded caching.  

𝑅𝐷(𝑀; 𝐾, 𝑁)  =  𝐾. (1 −  𝑀/𝑁). ((1 − (1 − 𝑀/𝑁)𝐾)/(𝐾𝑀/𝑁)) 

4. Decentralized coded caching with file grouping under non-uniform demand 

𝑅𝐹 = ∑ 𝑅𝐷(𝑀𝑙; 𝐾, 𝑁𝑙)

𝐿

𝑙=1

 

where L is the number of file groups with “similar” demand determined by the scheme, Nl is 

the number of files in each one of these groups and Ml is the amount of storage space allocated 

to each one of these groups in each cache. 

It is obvious that with all caching techniques we can achieve a minimum gain (1 −  𝑀/𝑁), 

which is called “local caching gain”. This gain becomes significant when the local cache size 

M in the order of N. In coded caching, we can also have an additional gain called “Global 

caching gain” (1/(1 + 𝐾𝑀/𝑁), which can be significant when KM is in the order of N. The 

optimality of these rates is a separate research thread within the Information Theory community 

[4].  

The software that we used for carrying out the simulation study is MATLAB. Input to the 

analysis are the synthetic distributions for the popularity of content at local scale, generated in 

line with section 2.2.1 
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Chapter 3  Evaluation 

This chapter presents and discusses the results of the comparative simulation study undertaken 

in the context of the dissertation. As it is mentioned in chapter 2, we used MATLAB software 

to simulate the performance of the three caching schemes under different assumptions and 

scenarios. In the first section, we compare HPF “high popularity first”, Decentralized (DCC), 

and Centralized coded caching (CC) under uniform content popularity assumption. Then, in 

the second section, we test the performance of HPF and DCC schemes under non-uniform 

content popularity.  

3.1 Uniform Content Popularity: HPF vs DCC vs CC 

This section reports the comparison of HPF, DCC, and CC caching algorithms under uniform 

content popularity assumption. These reports show the performance of these caching 

algorithms as a result of changes in the cache size M and the number of files N.    

3.1.1 Impact of the cache size, M 

Figure 3.1 presents the rates of studied algorithms as we increase the cache capacity M, 

for a fixed number of users K=9 and catalog size N=600. 

 

Figure 3.1 Cache Size Vs rate performance comparison of HPF, DCC and Coded caching algorithms for uniform content 

popularity 
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Figure 3.1 demonstrates that the coded caching algorithms provide higher gains; namely, 

smaller rates compared to the HPF and DCC schemes. In addition, it shows that the rates of 

CC and DCC drop more slowly than under HPF (linear decrease) as we increase the memory 

size M. 

3.1.2 The impact of the number of files, N 

While the number of files (N) is the variable in this experiment, the cache size (M) and number 

of users (K) are chosen to be 30 and 9 respectively. Figure 3.2 demonstrates that both HPF and 

DCC data rate go up slowly with the growing value of the file size N, leveling off around 7.5 

at N=200. On the other hand, coded caching algorithm slowly responds to the large increase in 

the catalog size. The CC rate is 4 for catalog sizes ranging from 140 to 200 files. 

 

Figure 3.2 number of files N Vs rate performance comparison of HPF, DCC and CC caching algorithms for uniform content 

popularity 

Remark: we notice from simulations plots in Figures 3.1 and 3.2 that CC algorithms has 

plateau behavior at different values of N and M as they are used to calculate the number of 

segments as well as segment size (section 2.1.2.2.), Thus, those parameters should be selected 

carefully to achieve the optimum performance of the algorithm. 
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3.2 Non-Uniform Content Popularity: HPF vs DCC with file grouping 

In this section, we report the performance of HPF and DCC caching schemes under non-

uniform content popularity assumption. First, we compare the mentioned schemes in response 

to changes in the skewness parameter 𝜃 and cache size M for three different scenarios of 

demand heterogeneity: POPa, POPb and POPc. Second, we report the comparison of those 

schemes with previous file order scenarios for a selected skewness parameter 𝜃 values as a 

function of the cache size M.  

Remark: In the following figures, each point in the DCC curve corresponds to the average of 

10 repetitions for each placement and request phase. Therefore, the resulting DCC curve has 

small deviations with more realistic values. 

3.2.1 Impact of the Zipf skewness parameter 𝜽 

In this section, we focus on the skewness parameter θ, which is let range from 0.1 to 2, for all 

three scenarios of demand heterogeneity.  

a) Identical file set ranking of items and skewness parameters across the K caches 

(POPa):  

For catalog size N=300, users K=9, file size F=2000 bits and three different values of cache 

size M= (10,30,60) the simulation produces the following figure:  

 

Figure 3.3 Backhaul rate vs. Zipf skewness parameter”, performance comparison of HPF and DCC caching algorithms 

under scenario POPa  



22 

Inspecting the previous figure reveals some remarkable trends. In both schemes, the required 

rates decrease as we increase the skewness parameter 𝜃. In addition, it shows the fluctuation 

of the DCC curves as a function of the small variations of theta. However, this is not the case 

for HPF, which has smooth curves without any fluctuation.  

Moreover, with the same previously mentioned parameters as an input, we repeated the same 

experiment for three different values of the cache size M that produced the three curves shown 

in the figure. It can be noticed that in both schemes we have a considerable gain produced when 

the cache size M increases from 10 to 30 and 60. This gain varies with different values of theta.  

Another significant behavior is for a small cache size M=10, HPF demonstrates better 

performance for most values of theta. Moreover, DCC shows better results for theta values 

between 0.1 and 0.45 compared to HPF for M values equal to 30, 60 files. However, this is not 

true for the rest of theta values. The turning point change as we change the cache size. In other 

words, for M=10 the turning point is around 0.3 where the HPF start outperform DCC, 

However, the turning point become around 0.45 when the cache size increase to 60.  

 

b) Identical file set skewness parameters but different ranking of content items 

across the K caches (POPb):  

Figure 3.4 shows the comparison of the HPF and DCC (Niesen-MaddahAli) schemes for K=8 

users, N=200 files, and F=2000 bits. Three curves are produced for each scheme, for cache 

sizes M=10, 30, and 60 files.  

Considering the performance shown in figure 3.5, it can be concluded that the HPF rate drops 

proportionally with theta. On the contrary, this is not the case for DCC, which shows a different 

response for different theta values. Moreover, in the DCC scheme we have a huge gain imposed 

when the cache size increases from 10 to 30 and 60. For example, for theta =0.2 the DCC rate 

drops from 14000 to 5000 bits at M=60. In contrast, HPF shows smooth response without 

deviation with a considerable gain resulted in increasing the cache size to 30 or 60; however, 

this gain decreases as a function of theta. Last but not least, it can be viewed that, in the 3rd 

curve where M=60, the DCC scheme performs better for theta values between 0.1 and 0.6 (this 

range gets smaller for small M values) and has a considerable gain compared to HPF< which 

performs better for theta ranging between 0.6 and 2. 
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Figure 3.4 “Backhaul rate vs. Zipf skewness parameter”, performance comparison of HPF and DCC caching algorithms 

under scenario POPb 

c) Different file set and skewness parameter across the K caches (POPc): 

Figure 3.5 shows the comparison of the HPF and DCC schemes for K=8 users, N=260 files, 

F=2000 bits, subset size N_S=50 and partial overlaps of size O=20 bits. Three curves are 

produce for each scheme for cache sizes M=10,30 and 60 files.  

It can be noticed that HPF outperforms DCC for all theta values. In addition, LFU curves drop 

faster as a function of theta compared to DCC, which drop far more slowly. Moreover, for both 

schemes, there is a huge gain imposed by increasing the cache size from 10 to 30 and 60. 

However, the required rate under HPF decreases to zero for cache size=60 files, which is a 

plausible result since each user can cache all the requested files.  

We measured the running times required for the simulation runs, needed for Fig. 3.6; these are 

recorded in the table below: 
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Figure 3.5 “Backhaul rate vs. Zipf skewness parameter”, performance comparison of HPF and DCC caching algorithms 

under scenario POPc  

We measured that time consumed of running the simulation, skewness parameter 𝜃 Vs rate, a 

performance comparison of HPF and DCC caching algorithms for the three mentioned 

scenarios recorded it in the table below: 

 

Table 1 Simulation run times for deriving the Fig. 3.6 plot, performance comparison of HPF 

and DCC caching algorithms for the three different scenarios 

Scenario  Run Time 

POPa 18 

POPb 64 minutes 

POPc 31 minutes 

 

Viewing the table 3.1, it can be noticed that POPb consume considerable time compared to the 

other two scenarios. In our simulation we consider a system with 8 users. It would be inefficient 

to implement such caching schemes that support a large number of users without improving 

their computational complexity.  
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 3.2.2 Impact of the cache capacity, M 

This section discusses the performance of two studied schemes regarding the change in the 

cache capacity M for selected values of the skewness parameter 𝜃 based on the behavior in 

figures 3.4, 3.5 and 3.6 considering the scenarios discussed earlier in the previous section.  

1- theta 𝜽 =0.3. 

Figure 3.6 shows the comparison of HPF vs DCC caching schemes under scenario POPa. It 

shows that both rates drop proportional to the cash capacity M. However, DCC scheme shows 

better results where its curve drops faster.   

 

Figure 3.6 “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPa (theta = 0.3) 
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Figure 3.7 “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPb (theta = 0.3) 

Figure 3.7 shows the comparison of HPF vs DCC caching schemes under scenario POPb. It 

can be viewed that both rates drop proportional to the cash capacity M. However, DCC curve 

drops faster with multiple fluctuations at multiple cache size values.  
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Figure 3.8 “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPc (theta = 0.3) 

Figure 3.8 shows the comparison of HPF vs DCC caching schemes under scenario POPc. 

Unlike the curves shown in figure 3.8 and 3.7, it can be noticed that LFU show a better 

performance than DCC for skewness parameter 𝜃=0.3. Furthermore, it shows that LFU rate 

drops linearly as a function of the M compared to DCC rate which decreases slowly with M.  

2 - theta 𝜃 =0.4: 

Figure 3.9 shows the comparison of HPF vs DCC caching schemes under scenario POPa. It 

can be noticed that both rates have similar performance for this popularity parameter. It also 

shows that both rates drop linearly proportional to the cash capacity M. Moreover, DCC curve 

shows few fluctuations compared to HPF curve which has a smooth drop proportional to M.   
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Figure 3.9 “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPa (theta = 0.4) 

Figure 3.10 shows the comparison of HPF vs DCC caching under scenario POPb. It can be 

noticed that both rates drop proportionally to the cache capacity M. It also shows that both 

schemes have similar performance for small cache size between 0 and 15 files. However, DCC 

scheme does a better performance for the cache size range 15 to 60 files per cache. Besides, 

DCC curve has small fluctuation compared to HPF which has a smooth curve. 
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Figure 3.10  “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPb (theta = 0.4) 

 

Figure 3.11 “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPc (theta = 0.4) 
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Figure 3.11 shows the comparison of HPF vs DCC caching schemes under scenario POPc. In 

this figure, it can be noticed that both curves show the same performance shown in figure 3.8 

where the popularity parameter=0.3.  

3 - theta 𝜃 =0.5: 

 
Figure 3.12 “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPa (theta = 0.5) 

 

Figure 3.12 shows the comparison of HPF vs DCC caching under scenario POPa. It can be 

noticed that starting from the current value of the popularity parameter 𝜃=0.5, HPF will show 

a better performance as we will show in the next figures. It also shows that both rates drop 

proportionally to the cash capacity M. Moreover, DCC curve shows few fluctuations compared 

to HPF curve which has a smooth drop proportional to M.   
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Figure 3.13 “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPb (theta = 0.5) 

Figure 3.13 shows the comparison of HPF vs DCC caching schemes under scenario POPb. 

Unlike the homogenous scenario, here both schemes still have similar performance. It can be 

viewed that both rate decrease as a function of M. despite the fact DCC curve has fluctuated as 

a function of M.  
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Figure 3.14 “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPc (theta = 0.5) 

Figure 3.14 shows the comparison of HPF vs DCC caching schemes under scenario POPc. In 

this figure, it can be noticed that both curves show the same performance shown in figures 3.9 

and 3.12 where the popularity parameter=0.3. HPF scheme performs better than DCC.  

4 - theta 𝜃 =1: 
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Figure 3.15 “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPa (theta = 1) 

Figure 3.15 shows the comparison of HPF vs DCC caching under scenario POPa. It shows that 

HPF more preferable and has a better performance compared to DCC scheme. While both 

schemes rates decrease proportionally to the cache size M.  
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Figure 3.16 “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPb (theta =1) 

Figure 3.16 shows that HPF scheme become much better than DCC algorithm and it provides 

huge gain for the system compared to DCC scheme. Finally, in both schemes rates drop as we 

increase the cache size M. However, it can be noticed that DCC has small deviations compared 

to HPF curve.  

 

Figure 3.17 shows the comparison of HPF vs DCC caching under scenario POPc for theta=1. 

In this figure, it can be noticed HPF curve started at 9000 bits for small cache size compared 

to HPF curve shown in figure 3.15 where the curve started at 13000 bits. Thus, the HPF rate 

decreased when skewness parameter increased from 0.5 to 1. In contrast, DCC scheme still has 

almost the same performance for the mentioned skewness parameter range 
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Figure 3.17 “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPc (theta = 1) 

5 - theta 𝜃 =2: 

 
Figure 3.18 “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPa (theta = 2) 

Figure 3.18 shows the comparison of HPF vs DCC caching under scenario POPa. For theta = 

2, it can be noticed both schemes rates have an approximately exponential decrease in the rate 
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as the cache size increases. In addition, HPF shows a very good performance with the rate 

started at 2800 bits which keep dropping as a function of M until it becomes very small 

compared to DCC rate which started at 7000 bits for small cache size M and, yet it has a lower 

gain for the rest of M values.  

 

 
Figure 3.19 “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPb (theta = 2) 

Figure 3.19 shows the comparison of HPF vs DCC caching schemes under scenario POPb. 

Moreover, unlike the figure 3.19, it can be noticed the DCC rate drops slowly in approximately 

linear way. Moreover, the DCC rate started at 15000 bits for small cache size for heterogeneous 

scenario compared to 7000 for homogenous one. In contrast, HPF has a huge gain with the 

very small rate close to zero for large values of cache capacity.  
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Figure 3.20 “Backhaul rate vs Cache Capacity M”, performance comparison of HPF and DCC caching algorithms under 

scenario POPc (theta = 2) 

Figure 3.20 shows the comparison of HPF vs DCC caching under scenario POPc. In this figure, 

it can be noticed HPF curve started around 2500 bits for small cache size showing similar 

performance to the heterogeneous scenario. In addition, DCC scheme has similar performance 

with some deviation to heterogeneous case. Moreover, HPF scheme requires a small rate that 

decrease to zero for cache size greater than 30. In contrast, the DCC rate drop linearly as 

function of M. 
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Chapter 4 Conclusions and Discussion 

 

This last chapter concludes the work that has been done during this thesis as well as draws the 

attention about its outcomes and the potential avenues that ought to be explored in the future. 

4.1 Conclusion 

Caching at the network edge is a recently proposed technique for next mobile generation, 5G 

network, in order to reduce the traffic on the backhaul links by caching the content at or near 

the end users. The focus of this thesis has been on analyzing and comparing two dominant 

caching approaches, uncoded and coded caching, under different assumptions about the spatial 

locality of content demand. The comparison has been performed through MATLAB in two 

steps: the first step, compares Decentralized and Centralized coded caching with the Least 

Frequently Used (LFU) caching scheme under uniform content popularity distribution; Thus, 

all the files are equally popular at the small cell cache level. The control parameters for this 

step are the number of users K, the number of files N, and the cache size M. The main outcome 

of this step is: 

● The centralized coded caching provides a huge gain compared to LFU and 

Decentralized coded caching, this gain is proportional to M and K, which confirm the 

theoretical results provided in [4]. 

● LFU and DCC schemes have approximately similar performance and the rates they 

achieve are inversely proportional to K. 

●  DCC, LFU, and CC have a slow response to a huge increase of catalog size N. 

The second step consists in comparing the LFU caching scheme with the Decentralized coded 

caching under three scenarios of non-uniform file popularity distribution. The control 

parameters of this step are the skewness parameter, θ, and cache size, M. The main outcomes 

of this step are: 

● There is a critical value of θcr, a turning point marking a change in how the two schemes 

compare with each other. The decentralized caching scheme provides a considerable 

gain over a small range of skewness parameter values below θcr,. In contrast, the LFU 

scheme provides a very good performance that supports a wider range of θ values.  

● The gain provided by LFU schemes increases proportionally with skewness parameter 

θ.  

● Increasing the cache size M would add a considerable gain to both caching schemes. 
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Moreover, here we provide an additional result that had been noticed in both steps: 

● There is a computational burden on the server and the users imposed by Decentralized 

and Centralized coded caching. This burden increases with K which increases the 

simulation run time. In contrast, LFU scheme doesn’t require any computational 

complexity. 

Implementing caching at the network edge involves a collaboration of three key stakeholders: 

the users, the mobile operator, and the content providers. Each stakeholder will be affected by 

the following: 

The users of the mobile operator would benefit by having a better network performance. 

However, they would share their own resources, for example, the memory and processing for 

coded caching. In addition to the privacy issues resulted from intercepting their transmission 

by the mobile operator.     

The mobile operator would get the most benefit of implementing wireless caching by 

minimizing the load on the backhaul links as well as increase their user satisfaction by 

providing high-speed data rates. Nevertheless, their considerable cost imposed by installing the 

infrastructure of the Big data processing servers. Moreover, providing new protocols that 

would maintain users’ privacy while allowing the mobile operator to intercept their 

transmission. 

The content providers who can also benefit from implementing the wireless caching system by 

providing their content near the end users. This leads to a reduction of content transmission 

costs. Moreover, they will avoid the costs of having large memory units. However, installing 

the caches at the network edge wouldn’t be beneficial if they stick to legacy CDN techniques. 

Our tests of aforementioned coded caching schemes are limited to 8 caches. This restriction is 

due to the computational complexity that consumes considerable time. However, in the 

practical implementation, the system could have many users and caches. Therefore, one 

approach mentioned in [4] to deal with it by using coded caching only among smaller 

subgroups of caches. Nevertheless, this decreases the computational load at the cost of higher 

rates over the shared link.   

In conclusion, our simulation results show that LFU caching scheme provides a better 

performance than coded caching schemes for real-life scenarios which represented it in our 

simulation as non-uniform content popularity. In addition, coded caching schemes still need 

additional improvements regarding the supported number of users as well as the computational 

complexity imposed on the user and server side.  
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4.2 Future work 

Coded caching at the network edge is still new, it is a hot topic of ongoing research for 

exploring and examining implementation feasibility. This project is among the first few that 

have generated a comparative study between coded and uncoded caching techniques under 

conditions of spatial locality for the demanded content. Some of the essential avenues to be 

explored in the future are: 

1. Including machine learning and clustering techniques as a way to group cells of similar 

demand and keep K (the number of users) in the coded caching design small. 

2. Performing more experiments on real data in order to track what is requested from each 

cell.  

3. New Coded Caching designs that can cope with the challenge of K and group 

files/caches/users more intelligently to make CC realistically feasible. 

4. Including online caching updates in the coded caching design. In other words, the 

current design of coded caching technique updates the cache contents only during the 

placement phase. However, in practical use, many caching systems update their caches 

during the delivery phase.   
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Appendix A: MATLAB Code 

 

HPF code: 

In the following code, we model a cache system of K users, N files and M cache size. 

we distinguish between two cases, when the caches rank the files in similar or different way. 

In what follows, we present the code of both cases: 

 

a) the caches rank the files similarly:  

 

1- The main function (trainsim.m ) 

 
% The code start here, the main function 

 
clc; clear all; 

  

% number of files 

N = 100; 

  

% number of caches  

K = 10; 

  

% cache size 

M = 10; 

  

% generate the popularity distribution of the files 

  

counter=1; % for ploting the figures 

  

for theta =0.2:0.1:1 

   [fpop] = generate_localdistr(N, K, theta); %note different 

users will have the same popularity victor  

   

  

% generate the global distribution 

for n=1:N 

    fpopg(n) = 0; 

    for k=1:K 

        fpopg(n) = fpopg(n) + fpop{k}(n);  

    end 

    product=1-fpop{1}(n); 

    for j=2:K 

    product=product*(1-fpop{j}(n)); 

    end 

    fpopg(n) = 1-product; 

 

end 
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fprintf(1,'Generated the local and global content 

distributions \n Press enter to continue\n'); 

%pause; 

  

[hitratio placements] = PopCache(fpop,N,K,M); 

fprintf(1,'Computed the hit ratio and placement under 

popularity-based caching \n'); 

fprintf(1,'The hitratios per cache are: \n'); 

hitratio_array{counter}=hitratio; 

placements_array{counter}=placements; 

counter=counter+1; 

% what needs to be sent over the broadcast link is the portion 

of the 

% requests that cannot be satisfied by the local caches 

R_hpf = sum(1-hitratio); 

fprintf(1,'The rate over the shared link is R_hpf=%f 

\n',R_hpf); 

end 

p=numSubplots(9); % this function to calculate the number of 

columns and rows in subplot 

figure  

title('Hitratio VS theta'); 

  

theta=0.2; 

for i=1:9 

    %%this loop to plot the sub graphs, we note that each 

graph is a point 

    %%becasuse we have one value for theta and one value in 

all hitratio 

    %%vector  

    subplot(p(1),p(2),i) 

        plot(theta,hitratio_array{i},'+') 

        xlim([0 1]) 

        ylim([0 1]) 

        ylabel('Hit-ratio') % y-axis label 

  

        xlabel('Theta') 

        theta=theta+0.1; 

end 

 

% end of the main function  

 

 

 

1-Generating local distribution of the file (generate_localdistr.m) 

 

a) For heterogenous and homogenous scenarios:  
 

function [fpop] = generate_localdistr(N, K, theta,N_S,O, type) 

%  generate_localdistr 
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%   

%  generates the local content popularity distributions 

%  inputs :  N (num files), K (num caches), theta (the 

parameter of local 

%  Zipf distribution), type(homo or hetero) 

%  output :  the KxN cell array fpop, with fpop{i}(j) being 

the probability 

%  that item j is requested from cache i 

  

for i = 1:N 

    f(i) = power(1/i,theta); 

end 

sumf = sum(f); 

f = f/sumf; 

fpop{1}= f; 

t=1; 

 if strcmp(type,'hetero_overlap')  

      

        for i=1:K 

           fpop{i}(1:N)=0.0000000000000001; % the files that 

is not of interest of the users have a very small pop. 

                               % I couldn't make the value 

zero  

                               % the minimum value I can use 

here is 0.01 

                               % otherwise I will get an error  

        end 

        f= f(randperm(N)); 

            fpop{1}(1:N_S)= f(1:N_S); % assign the first 

subset to the first user 

             t=t+N_S-1; 

                t=t-O 

end 

% produce K-1 permutations of the popularity vectors 

for j=2:K 

    if strcmp(type,'hetero') 

       fpop{j}(1:N) = f(randperm(N)); 

    elseif strcmp(type,'homo') % all users are identical  

       fpop{j}(1:N) = fpop{1}(1:N);  

     

end 

  

end 

     

b) For heterogeneous over subset of files with partial 
overlaps  

 

function [fpop] = generate_localdistr2(N,K,theta,N1,O) 

%  generate_localdistr2 

%   

%  generates the local content popularity distributions 
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%  inputs :  N (num files), K (num caches), theta (the 

parameter of local 

%  Zipf distribution 

%  output :  the KxN cell array fpop, with fpop{i}(j) being 

the probability 

%  that item j is requested from cache i 

for i = 1:N1 

    f(i) = power(1/i,theta); 

end 

for i=N1+1:N 

    f(i) = 0; 

end  

sumf = sum(f); 

f = f/sumf; 

fpop{1}= f; 

   

for i=2:K 

    range = [(i-1)*(N1-O)+1:(i-1)*(N1-O)+N1]; 

    fpop{i}(range) = f(1:N1); 

    fpop{i}(setdiff(1:N,range))=0; 

end 

 

  

 

1- Populating cache memories and calculating hit-ratio (PopCache.m) 

 
function [hitratio, placements] = PopCache(fpop,N,K,M); 

% computes the aggregate popularity of the K most popular 

items that are 

% stored in each of the K caches 

% for a caching technique that stores the K most popular items 

(i.e., LFU) 

% this is equal to the hit ratios that are expected to be seen 

in thgese 

% caches 

  

for k =1:K 

    [sorted{k} ind] = sort(fpop{k},'descend'); 

    hitratio(k) = sum(sorted{k}(1:M)); 

    placements{k}= ind(1:M); 

    miss(k) = 1-hitratio(k); 

end 

  

 

b) the caches rank the files differently:  
 

in this case, we only modify the generate_localdistr function on order to randomly 

produce popularity victors  

 

function [fpop] = generate_localdistr(N, K, theta) 
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%  generate_localdistr 

%   

%  generates the local content popularity distributions 

%  inputs :  N (num files), K (num caches), theta (the 

parameter of local 

%  Zipf distribution) 

%  output :  the KxN cell array fpop, with fpop{i}(j) being 

the probability 

%  that item j is requested from cache i 

  

for i = 1:N 

    f(i) = power(1/i,theta); 

end 

sumf = sum(f); 

f = f/sumf; 

fpop{1}= f; 

  

  

% produce random k-1 popularity vectors. 

for j=2:K 

    rand_index=randperm(length(f)); %return random indcies 

from 0 to the  length of (f); 

    rand_f=f( rand_index); %reshuffel the f files to produce 

random k  popularity victors 

    fpop{j}(1:N) = rand_f(1:N);  

    end 

end 
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CC MATLAB Code: 

 

function [bitsCC] = 

NiesenMaddahAliCC(M,N,K,fsize,L,sortedfpopg,sortedfiles,placer

eps,reqreps,localfd) 

% INPUTS 

% reps  : number of rounds of file requests 

% L     : number of groups 

% fsize : file size in bits 

% localf : local distributions of demand 

  

% fragment files into L popularity groups 

maxpop = sortedfpopg(1); 

maxind = 1; 

minind = 0; 

divisor = power(2,1); 

for grpid=1:L 

    if L == 1 

        F{grpid} = sortedfiles; 

        Nl(1) = N; 

    else 

        [a lastgroup] = find( sortedfpopg < maxpop/divisor ); 

        if isempty(lastgroup) 

            F{grpid} = sortedfiles(minind+1:end); 

            Nl(grpid) = length(F{grpid}); 

        else 

            minind = lastgroup(1)-1; 

            F{grpid} = sortedfiles(maxind:minind); 

            Nl(grpid) = length(F{grpid}); 

            %maxpop = sortedfpopg(lastgroup(1)-1) 

            maxind = lastgroup(1); 

            divisor = divisor*2; 

        end  

    end 

end 

fprintf(1,'Finished with the file partitioning \n Press enter 

to continue\n'); 

Nl 

  

% determine the memory assigned to each group  

% baseline : uniform assignment at group level 

for grpid = 1:L 

    Ml(grpid) = M/L; 

end 

  

% Make the original placements of bits from each file 

% returns 2^K possible subsets of users and the bits that are 

common 

% to each one of those per file 

for count = 1:placereps 
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    [cached subsetsizes] = DCCplacementNMA(Ml,Nl,K,F,L,fsize); 

    fprintf(1,'Determined the initial bit placements at user 

caches \n'); 

  

    % now generate one or more file request vectors according 

to  

    % file popularity distribution  

    for iter=1:reqreps 

        for i=1:L 

            requested{i} = ''; 

            Kl{i} = ''; 

        end 

        for j = 1:K 

            [sortedlocal sortedlocalind] = 

sort(localfd{j},'descend'); 

            ecdf = cumsum(sortedlocal); 

            ecdf 

            draw = rand(1,1); 

            draw 

            inds = find(ecdf > draw) 

            request(j) = sortedlocalind(inds(1)); 

            srchind = 1; 

            while ~ismember(request(j),F{srchind}) && ( 

srchind <= L ) 

                srchind = srchind+1 

            end 

            Kl{srchind} = [Kl{srchind} {j}]; 

            requested{srchind} = [requested{srchind} 

{request(j)}]; 

        end 

  

        % At this point I know which files out of each group 

have been requested 

        % and how many users have requested files from each 

group. 

        % The two are not identical since more than one 

user(s) may have 

        % asked the same file 

        fprintf(1,'Finished with the user requests and 

partitioning into file groups -- Users per group: \n');  

        for g=1:L 

            Kl{g} 

        end 

     %   fprintf(1,'Files requested by users :\n');srchind 

         

        for g=1:L 

            requested{g} 

        end 

  

        % now compute the delivery rates 

        for grpid = 1:L 
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            if ~isempty(requested{grpid}) 

                [sentbits_nonunique{grpid} sentbits(grpid) 

subsets subsetbits] = 

DCCdeliveryNMA(Kl{grpid},fsize,cell2mat(requested{grpid}),cach

ed); 

            else 

                sentbits(grpid) = 0; 

            end 

        end 

  

        bitsCC((count-1)*reqreps+iter) = sum(sentbits); 

        %fprintf(1,'\n\nTotal bits that have to be sent with 

%d rounds of CC : %d \n',L,bitsCC((count-1)*reqreps+iter)); 

        %fprintf(1,'Press enter to continue\n'); 

        %pause;   

    end 

end 
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DCC MATLAB Code: 

 

1- Placement Phase Code: 

function [user_cache subset_size] = 

DCCplacementNMA(Ml,Nl,K,filegrps,L,fsize) 

% clear all; clc; close all;  

% N : number of files 

% K : number of users 

% M : cache size 

% F : file size  

% requests : the file choices of users in a call of the function 

% this is different than the script where files are generated within 

the 

% code out of a uniform distribution 

%fidp = fopen('NMAplacement.txt','w'); 

  

N = sum(Nl); % total number of files 

  

for l=1:L 

    % set of bits to store for each file in group l 

    subset_size(l) = min(fsize,fix(Ml(l)*fsize/Nl(l)));  

  %  fprintf(1,'file bits stored per file in group %d = 

%d\n',l,subset_size(l)); 

    for u=1:K 

        for j=1:N 

            if ismember(j,filegrps{l}) 

                

user_cache{u}(j,1:subset_size(l))=(randperm(fsize,subset_size(l))); 

% each user can store a subset of bits from each file      

            end 

        end 

    end 

end 

% the possible number of file parts is equal to the power set of the 

user 

% set --> cardinality : 2^|K| 

file_fragments = power(2,K); 

%fprintf(1,'Each file is effectively split into maximally %d 

segments, each stored at a different subset of caches 

\n',file_fragments); 

 

2- Delivery Phase Code: 

function [totalbits, totalbits_unique, subsets, subsetbits] = 

DCCdeliveryNMA(Kg,fsize,requests,user_cache) 

% K : user ids with file requests within the specific file 

group 

% fsize : file size  

% requests : the file choices of users in a call of the 

function 

% subsets : the different subgroups of users that might emerge 

(and corresponding file 

% fragments) 
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% subsetbits : the common bits at the caches of each subset of 

users per file 

% "requests" number files according to the original indexing 

in [1,N]  

% subtract the min index -1 to scale them down to the range 

[1, Nl] 

fidp = fopen('NMAsubsets.txt','w'); 

%d = requests - min(requests)+1  

fprintf(1,'The requested files are :\n'); 

d = requests 

%indset = length(subsets); 

  

% get all possible subsets : store them in subsets with indset 

enumerating them 

K = length(Kg); 

indset = 0; 

for s = K:-1:1 

   % consider all possible sets of size s 

   msets = combnk(Kg,s); 

   for j=1:size(msets,1) 

       indset = indset+1; 

       subsets{indset} = msets(j,:); 

   end 

end 

indset = indset+1; 

subsets{indset} = ''; % the last subset is the empty set 

fprintf('\n\n Number of subsets = %d\n',indset); 

%subsets 

  

% for each file requested compute all 2^K subsets, i.e., the 

part of the 

% file that is common at the caches of each of the 2^K 

possible subsets of 

% users 

for fileind = 1:length(requests) % for each file 

    indF = requests(fileind); 

    totalsetbits{indF} = []; 

    for j=1:indset-1 % for each of the 2^K subsets of users 

        subset = cell2mat(subsets{j}); 

        subsetbits{indF}{j} = [user_cache{subset(1)}(indF,:)]; 

        %totalset{indF} = union(totalset{indF}, 

user_cache{subset(1)}(indF,:)); 

        for c = 2:length(subset) 

           subsetbits{indF}{j} = 

intersect(subsetbits{indF}{j},user_cache{subset(c)}(indF,:)); 

        end 

        subsetbits{indF}{j} = 

setdiff(subsetbits{indF}{j},totalsetbits{indF}); 

        totalsetbits{indF} = union(totalsetbits{indF}, 

subsetbits{indF}{j}); 

        if indF == 1 
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            fprintf(fidp,'subset j =%d    num bits =%d 

\n',j,length(subsetbits{indF}{j})); 

        end 

    end % end j 

    subsetbits{indF}{indset} = 

setdiff([1:fsize],totalsetbits{indF}); % bits that are not 

stored by any user 

    fprintf(fidp,'\nFile = %d  bits not stored anywhere = %d 

\n',indF,length(subsetbits{indF}{indset})); 

end % end indF 

  

% now try to compute how many bits are sent over the air for 

each of the 

% 2^K-1 transmissions 

totalbits = 0; 

for j=1:indset-1 % the last one is the empty subset 

    subset = cell2mat(subsets{j}); % get the subset 

    if 

isempty(setxor(cell2mat(Kg),union(subset,cell2mat(Kg)))) % 

identical subsets 

        sentbits(j) = 0; % bits to be sent for a specific 

multicast coded transmission 

        for memb = 1:length(subset)  

            reduced = setxor(subset(memb),subset); 

            % in the following if-else I search for the index 

k of the user 

            % subset in the reduced var 

            if isempty(reduced) 

                k = indset; % the empty set 

            else  

                k = 1; 

                % conditions for search success: a) the size 

of reduced should be equal to the that of the subset 

                % we are after and b) the common elements 

should also be equal 

                % in number with the size of reduced 

                while ( length(subsets{k}) ~= length(reduced) 

) || ( length(reduced) ~= sum(cell2mat(subsets{k}) == reduced) 

) 

                   k = k+1; 

                end 

            end 

            % get the file requested by the user subset(memb) 

            ind2filerequests = find(cell2mat(Kg) == 

subset(memb)); 

            %fprintf(1,'In delivery part: userid =%d fileid in 

requested files= %d  subset ind =%d 

\n',subset(memb),d(ind2filerequests),k); 

            bits =  subsetbits{d(ind2filerequests)}{k}; % bits 

to be sent from file user memb requested 
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            if length(bits) > sentbits(j) % padd the smaller 

files in XOR 

                sentbits(j) = length(bits); 

            end 

        end % here I have computed how many bits do I need to 

send for TX no j 

    totalbits = totalbits+sentbits(j); 

    end 

end 

%fprintf(1,'Total bits that have to be sent WITHOUT accounting 

for similar file choices by users: %d \n',totalbits); 

  

% subtract bits that are common when two or more users choose 

the same 

% file, savings are in terms of the bit set A_0 (i.e. bits not 

stored in 

% any cache for a specific file) 

uniqued = unique(d); 

for n=1:length(uniqued) 

    repeats(n) = length(find(d == uniqued(n))); 

    totalbits_unique = totalbits - (repeats(n)-

1)*length(subsetbits{uniqued(n)}{indset}); 

end 

if ~exist('totalbits_unique') 

    totalbits_unique = totalbits; 

end 

%fprintf(1,'Total bits that have to be sent, accounting for 

similar file choices by users: %d \n',totalbits_unique); 

  

fclose(fidp); 
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Main code for running all Schemes: 
tstart = tic; 

  

fid =fopen('CCvsHPF.txt','w'); 

%theta_v = [0.1:0.05:2]; 

% it must be K*N1-(K-1)*O = N 

N = 260; K = 8;  fsize = 2000; Mt = [3:3:60] 

 

N_S = 50; 

O = 20; 

  

theta_v = 0.5; 

  

% number of placement iterations 

placereps = 10; 

% number of request vectors that is input to the code for each 

placement 

reqreps = 10;  

  

for th=1:length(Mt) 

    M=Mt(th) 

    theta = theta_v; 

    % original file distributions - hetero means heterogeneous 

    [fpop] = generate_localdistr2(N, K, theta, N_S, O); 

     % generate the global distribution 

    for n=1:N 

        sump = 0; 

        for k = 1:K 

           sump = sump+ fpop{k}(n); 

        end 

        fpopg(n) = sump; 

%       prod = 1; 

%       for k = 1:K 

%           prod = prod*(1-fpop{k}(n)); 

%       end 

%       fpopg(n) = 1-prod; 

    end 

    % requires normalization 

    sumd = sum(fpopg); 

    fpopg = fpopg/sumd; 

%    fprintf(1,'Generated the local and global content 

distributions\n Press enter to continue\n'); 

%   pause; 

  

    % partition the files into sets of similar popularity 

    [sortedfpopg sortedfiles] = sort(fpopg,'descend'); 

     

    % compute the number of groups 

    L(th) = ceil(log2(sortedfpopg(1)/sortedfpopg(N))) 
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    %[bitsCC bitsHPF Nl Kl] = 

NonUniformDemandCCfun(M,N,K,Fsize,L,sortedfpopg,sortedfiles); 

    [bitsCC] = 

NiesenMaddahAliCC(M,N,K,fsize,L(th),sortedfpopg,sortedfiles,pl

acereps,reqreps,fpop); 

     

    rateNMA(th) = mean(bitsCC); 

     

    fprintf(1,'theta = %f  average number of bits sent over 

the %d file request iterations with Niesen-MaddahAli algorithm 

=%d\n',theta,placereps*reqreps,rateNMA(th)); 

   % fprintf(1,'\nPress enter to continue\n'); 

   % pause; 

     

    bitsHPF(th) = 0; 

    for k=1:K 

        [sortedfpopl] = sort(fpop{k},'descend');     

        bitsHPF(th) = 

bitsHPF(th)+fsize*sum(sortedfpopl(M+1:N)); 

    end 

   % fprintf(1,'\n For comparison, the bits I would send with 

an uncoded caching scheme HPF is : %d\n',bitsHPF(th)); 

   % pause;  

end 

  

fclose(fid); 

figure; 

plot(Mt, rateNMA,'k--',Mt,bitsHPF,'r-','LineWidth',1.5); 

xlabel('Cache capacity M,'); 

ylabel('Rate, R'); 

legend('Niesen-MaddahAli','LFU','Location','NorthWest'); 

  

toc(tstart) 
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