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Abstract 

Objective: Octacalcium phosphate (OCP) and collagen (col) composite (OCPcol) 

demonstrated superior bone regeneration properties, and its commercialization appears to 

be forthcoming. As a practical medical material for new combination products, we 

developed a freeze-dried composite with OCPcol and teriparatide (TPTD) (OCPcolTPTDf), 

and investigated its bone regenerative properties. 

Materials and Methods: A disk of OCPcol was made by mixing OCP granules and 

atelocollagen for medical use. Then, OCPcolTPTDf was prepared by impregnation of the 

OCPcol disc with 1.0 µg or 0.1 µg of TPTD solution (OCPcolTPTDf 1.0 and 

OCPcolTPTDf 0.1, respectively) followed by lyophilization. In vitro release profiles of 

TPTD from OCPcolTPTDf were determined using an enzyme-linked immunosorbent assay. 

Implantation of OCPcolTPTDf or OCPcol was carried out for a rat critical-sized calvarial 

defect. And five defects in each group were collected after 12 weeks of implantation. 

Results: The retention–release profiles of TPTD from OCPcolTPTDf supported a higher 

degree of retention of TPTD. Radiographic, histologic, and histomorphometric 

examinations indicated that regenerated bone was filled in most of the defects of the 

OCPcolTPTDf. Additionally, the OCPcolTPTDf groups showed significantly enhanced 

bone regeneration compared with the OCPcol group. 

Conclusions: These results suggested that this newly developed bone regenerative composite 

could be a practical medical material. 

 

Keywords: Bone tissue engineering, Calcium phosphate, Collagen, Parathyroid hormone 

 

Running title: Freeze-dried composite of OCPcol and teriparatide  
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Introduction 

Hydroxyapatite (HA: Ca10(PO4)6(OH)2) or β-tricalcium phosphate (β-TCP: Ca3(PO4)2) is 

one of calcium phosphates (CaPs), and their synthetic type have already been developed and 

widely applied for bone substitutes of clinical cases (Habraken et al., 2016, Kokubo et al., 

2003). Octacalcium phosphate (OCP: Ca8H2(PO4)6 • 5H2O) is one of CaPs and a synthetic 

bioresorbable material as well as β-TCP. OCP has been suggested to be a precursor of 

biological apatite in bones (Brown et al., 1962, Crane et al., 2006), and it has demonstrated 

significant bone formation abilities compared with other bone replacement materials 

(Kamakura et al., 2002). Although OCP has limitation of moldability and handling 

performance, development of OCP and collagen (col) composite (OCPcol) enabled to 

overcome its limitations (Kamakura et al., 2006). In preclinical studies, OCPcol demonstrated 

significant bone formation to OCP granules and other commercialized bone replacement 

materials in critical sized bone defects (Kamakura et al., 2007a, Kamakura et al., 2006, 

Tanuma et al., 2013). Additionally, OCPcol has achieved stable bone regeneration without cell 

transplantation, and the improvement of physiological bone remodeling is expected 

(Kamakura et al., 2006, Tanuma et al., 2013, Matsui et al., 2014). Moreover, OCPcol has good 

usability and cost performance (Iibuchi et al., 2010). After preclinical studies, a 

physician-initiated clinical study was carried out for extraction sockets of teeth and cyst holes, 

which demonstrated the safety and efficacy of OCPcol (Kawai et al., 2014, Kawai et al., 2017, 

Kawai et al., 2016). Recently, a sponsor-initiated clinical trial on OCPcol was completed, 

which was registered with the International Clinical Trials Registry in World Health 

Organization (JPRN-UMIN000018192), and commercialization on bone defects of oral region 

including sinus floor elevation and alveolar clefts is expected in 2018. However, independent 

use of OCPcol has limited bone regeneration, thus, the development of more trustworthy bone 

regenerative materials is awaited (Miura et al., 2012). 
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Metabolism and functions of calcium and phosphate is fundamentally regulated by 

parathyroid hormone (PTH) (Sibai et al., 2011). And teriparatide (TPTD) which is a 

recombinant form of PTH consisting of bioactive portion of N-terminal fragment comprising 

34 amino acids (Niall et al., 1974). TPTD has a unique mechanism, and its continuous 

administration led to a decrease in bone volume, whereas its intermittent administration 

conducted to increase trabecular bone (Jilka et al., 1999, Tam et al., 1982). Furthermore, TPTD 

is the only authorized anabolic drug for the treatment of osteoporosis by the U.S. Food and 

Drug Administration (Morimoto et al., 2014).  

Several preclinical studies were performed to repair the critical sized bone defects by 

applying scaffolds, such as an absorbable collagen sponge (Stancoven et al., 2013), 

demineralized bone matrix (Pensak et al., 2015, Stancoven et al., 2013), β-TCP (Yun et al., 

2010), or poly-lactic acid (Jacobson et al., 2011) with intermittent subcutaneous administration 

of TPTD. Although high amounts of TPTD compared with that for the treatment for 

osteoporosis in clinical situations, were administrated in these studies, some researchers 

reported a significant effect (Jacobson et al., 2011, Yun et al., 2010), whereas others failed to 

find any effect (Pensak et al., 2015, Stancoven et al., 2013). 

Recently, it was reported that the local single administration of TPTD (20 µg) with a 

collagen sponge is effective for repair of a rat calvarial defect (Auersvald et al., 2017). It was 

revealed that OCPcol with a local single administration of TPTD (1 or 0.1 µg) which is a low 

dosage similar to that for the treatment for osteoporosis, enhanced bone repair of the 

critical-sized bone defect (Kajii et al., 2017), and its modality might be practical for improving 

effective bone regeneration safely. However, it would be more versatile as a medical material if 

a freeze-dried composite with OCPcol and TPTD (OCPcolTPTDf) was created. Also, β-TCP is 

a synthetic bioresorbable material which has been a commonly used in maxillofacial lesion 

(Trombelli et al., 2014). Although OCP is a synthetic bioresorbable material as well as β-TCP, 
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OCP has unique features unlike β-TCP. It stimulated osteogenesis by osteoblastic cells and/or 

committed osteoprogenitors (Anada et al., 2008). And the implanted OCP is more resorbable 

than the implanted β-TCP (Kamakura et al., 2002), and it can serve as a core for initiating bone 

regeneration if implanted in a bone defect (Kamakura et al., 2001). Therefore, β-TCP is applied 

as a control of OCP, and the difference of bone regeneration with freeze-dried composite 

TPTD with OCPcol or β-TCP was investigated if implanted in a rat calvarial critical-sized bone 

defect. 

 

Materials and Methods  

1. Preparation of OCPcol and β-TCPcol 

The preparation of OCPcol and β-TCPcol was described previously (Kamakura et al., 

2007a). Briefly, OCP was prepared by direct precipitation (Suzuki et al., 1991), and sieved 

granules (particle sizes of 300 - 500 µm) of OCP were produced. Commercially available 

sintered β-TCP (Osferion, Olympus Terumo Biomaterials Corp., Tokyo, Japan) was purchased 

and sieved granules (particle sizes of 300–500 µm) of β-TCP were prepared for the fabrication 

of β-TCPcol. And, it was purchased the powder of lyophilized atelocollagen (NMP collagen 

PS; Nippon Meat Packers, Tsukuba, Ibaraki, Japan) which was digested by pepsin from the 

porcine dermis. After OCP granules were mixed with concentrated collagen, and it was 

completed 77% of the weight percentage of OCP in OCPcol. Likewise, the same volume of 

β-TCP granules as well as OCP granules were added to concentrated collagen and mixed. The 

OCPcol or β-TCPcol mixture was then lyophilized, and a disk was molded (9 mm diameter, 1.5 

mm thickness). The OCPcol or β-TCPcol disks were prepared by a dehydrothermal treatment 

(150°C, 24 h) in a vacuum drying oven.  
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2. Preparation of OCPcolTPTD composite and β-TCPcolTPTD composite 

Firstly, TPTD solution was prepared. Chemically-synthesized lyophilized teriparatide 

acetate (TERIBONETM Inj. 56.5 µg; Asahi Kasei Pharma Corp., Tokyo, Japan) was 

reconstituted and made a solution of 56.5 µg/ml. The process for the preparation of OCPcol 

disks combined with 1.0 µg of TPTD (OCPcolTPTDf 1.0) was as follows: an OCPcol disk was 

placed in 48 well plate, and 17.7 µl of TPTD solution (56.5 µg/ml) was impregnated into the 

OCPcol disk. The OCPcolTPTDf 1.0 disks were then lyophilized, followed by sterilization 

using electron beam irradiation (22 kGy). Likewise, 17.7 µl of TPTD solution (5.65 µg/ml) 

was transferred onto an OCPcol disk to prepare OCPcol disks combined with 0.1 µg of TPTD 

(OCPcolTPTDf 0.1). OCPcol disks without TPTD (OCPcol) were also sterilized by electron 

beam irradiation (22 kGy). And the same procedures were performed for β-TCPcol disks, and 

β-TCPcol disks combined with 1.0 µg or 0.1 µg of TPTD (β-TCPcolTPTDf 1.0, 

β-TCPcolTPTDf 0.1, respectively) or β-TCPcol without TPTD (β-TCPcol) were prepared.  

 

3. Retention/release of TPTD from OCPcolTPTDf or β-TCPcolTPTDf 

To examine the pattern of retention/release from OCPcolTPTDf or β-TCPcolTPTDf, 

each disk of OCPcolTPTDf 1.0, OCPcolTPTDf 0.1, β-TCPcolTPTDf 1.0, or β-TCPcolTPTDf 

0.1 was placed into a 12-well plate (SUMILON, SUMITOMO BAKELITE Co., LTD, Tokyo, 

Japan) and soaked with 2.0 ml of saline containing 0.05% benzalkonium chloride, which was 

used to suppress the adsorption of TPTD onto the plate surface. The plates were placed in an 

incubator at 37°C. The supernatants were collected, and the plates were replenished with fresh 

saline containing 0.05% benzalkonium chloride at 1, 3, 7, 14, and 28 days. The concentration 

of TPTD released into the saline at each time point was determined by analyzing the 

supernatant using an enzyme-linked immunosorbent assay (ELISA) with a TPTD Assay Kit 
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(PTH 1-34 Teriparatide PK ELISA, Somru Bioscience, Charlottetown, Canada) and TPTD 

standards. Two specimens were used per group. 

 

4. Implantation procedure 

Twelve-week-old of male Wistar strain rats (SLC Corp.; Hamamatsu, Shizuoka, Japan) 

were used in this study. All procedures (2013-Biomedical Engineering Animal -003) were 

permitted by the Animal Research Committee of Tohoku University, which followed the 

principles of laboratory animal care and national laws. Body weight of rats were measured and 

they were anesthetized by dexmedetomidine hydrochloride (0.15–0.4 mg/kg), butorphanol 

tartrate (2.5–5 mg/kg), and midazolam (2 mg/kg) through intraperitoneal injection. After a 

parietal skin incision and ablation of the periosteum of the calvarium, 9 mm in diameter of 

standardized critical-sized defect was trephined in the calvarium (Kajii et al., 2018).  

Randomly selected thirty experimental rats were separated into six groups (1. 

OCPcolTPTDf 1.0, 2. OCPcolTPTDf 0.1, 3. OCPcol, 4. β-TCPcolTPTDf 1.0, 5. 

β-TCPcolTPTDf 0.1, and 6. β-TCPcol) and five defects were treated in each group. Each type 

of a disk was implanted into the trephine defect after saline irrigation of the trephine defect. 

Finally, the treated periosteum and skin were relocated and sutured, and subcutaneous injection 

of cephalexin (15 mg/kg) was made to prevent infection. These experimental animals were 

euthanized 12 weeks after implantation. The total amounts of TPTD in this study were 3.93 ± 

0.08 µg/kg in the OCPcolTPTDf 1.0 group, 0.38 ± 0.01 µg/kg in the OCPcolTPTDf 0.1 group, 

3.84 ± 0.14 µg/kg in the β-TCPcolTPTDf 1.0 group, and 0.38 ± 0.02 µg/kg in the 

β-TCPcolTPTDf 0.1 group, when adapted to the average weight of each group at implantation. 
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5. Micro-computed tomography (micro-CT) examination 

At 4 and 12 weeks after implantation, examination of rat calvarium was made by using an 

in vivo micro-CT system (Latheta LCT-200; Hitachi Aloka Medical, Tokyo, Japan) during 

intraperitoneal injection of sodium pentobarbital (50 mg/kg) (Kajii et al., 2017b). After 

measuring body weight, the treated defects were scanned in 120 µm thickness for slices and 60 

µm pixel size. The images of micro-CT were acquired in standardized conditions (50 kVp, 500 

μA, 3.6 ms). After finishing the CT analysis of 12 weeks, the experimental animals were 

euthanized by intraperitoneal injection of overdosed sodium pentobarbital. Then, the samples 

were resected with the surrounding bone, and the tissue were immersed with 4% 

paraformaldehyde in 0.1 M phosphate-buffered saline (PBS), pH 7.4. 

 

6. Radiographic analysis 

Radiography of the skulls were taken by a microradiography unit (Softex M-60, Softex 

Co., Ltd., Ebina, Kanagawa, Japan) with X-ray film (FR; Fuji photo film, Tokyo, Japan) in 

standardized conditions (45 kV, 1.5 mA, 2 min.), in which the OCPcol disks before 

implantation showed no radiopacity 

 

7. Tissue preparation and a quantitative micrograph analysis   

After the radiographs had been taken, the samples were decalcified in 10% EDTA in 0.01 

M phosphate buffer, pH 7.4 at 4°C for 2–4 weeks. After embedding in paraffin, coronal section 

of the center of the defect was prepared. Hematoxylin and eosin (HE) staining was made and 

taken photographs by a photomicroscope (Leica DM2500; Leica Microsystems Japan, Tokyo, 

Japan). The histomorphometric analysis used in this study have been previously described 

(Kamakura et al., 2007a, Kamakura et al., 2002). The percentage of newly formed bone in the 
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defect (n-Bone%) was calculated as the area of newly formed bone/area of the original defect × 

100. n-Bone% was computed by public-domain software (ImageJ 1.43). 

 

8. Statistical analysis 

Statistical analysis of n-Bone% was performed by using software (Excel v. X.; Microsoft 

Co., Redmond, WA), and the values of means ± standard deviation (SD) are reported. The 

chi-squared test and Bartlett’s test were used to examine whether each group had a normal 

distribution and the homogeneity of variance across samples. To compare means among 

groups, one-way analysis of variance (ANOVA) was used and p < 0.05 was accepted 

significance. If the mean values were significantly different, a post-hoc test was performed by 

Tukey–Kramer multiple comparison analysis. 

 

Results 

1. Retention/release of TPTD from OCPcolTPTDf or β-TCPcolTPTDf 

The release profiles of TPTD from OCPcolTPTDf or β-TCPcolTPTDf are shown in 

Figure 1. The release pattern of TPTD from OCPcolTPTDf 1.0 or β-TCPcolTPTDf 1.0 resulted 

in approximately 40% initial release within 1 day, followed by the release of smaller amounts 

over 7 days. Then, the release of TPTD then plateaued until 28 days, with a total of 46–49% of 

TPTD released. In the cases of OCPcolTPTDf 0.1 or β-TCPcolTPTDf 0.1, about 20% initial 

release was observed within 1 day, followed by smaller amounts over 7 days. The release of 

TPTD then plateaued until 28 days, with a total 24–25% of TPTD released. 

 

2. Micro-CT analysis and radiographic examinations  

Figure 2 indicates the central part of the defect of coronal sections. Although OCPcol 

disks had negligible radiopacity (Kamakura et al., 2007b), implanted OCPcol was radiopaque 
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because of conversion of the apatitic phase or regenerating bone (Iibuchi et al., 2010). In the 

OCPcolTPTDf 1.0 and OCPcolTPTDf 0.1 groups, radiopaque figures were observed in most 

of the defect including the central part at 4 weeks (Fig. 2). The uniform plate-like radiopacity 

was continuous with the original bone. The level of radiopacity increased with time, indicating 

repair of the defects. The boundary between the margin of the defect and the pre-existing bone 

became indistinguishable, and the radiopacity was comparable to that of the pre-existing bone 

(Fig. 2 and 3). 

In the OCPcol group, most of the defect was occupied by scattered small radiopaque 

masses at 4 weeks after implantation (Fig. 2). These became uniform, small scattered 

radiopaque masses, which were intermingled in the defect at 12 weeks after implantation. The 

radiopacity was comparable to that of the pre-existing bone (Fig. 2 and 3). In the 

β-TCPcolTPTDf 1.0 group, granulous radiopacity was predominant in the defect at 4 weeks. 

Although this pattern increased with plate-like radiopacity, which extended from the defect 

margin at 12 weeks, the central part of the defect seemed to remain radiolucent with granules of 

β-TCP (Fig. 2 and 3). In the β-TCPcolTPTDf 0.1 group, granulous radiopacity was 

predominant in the defects at 4 and 12 weeks (Fig. 2 and 3). In the β-TCPcol group, granulous 

and cluster-like radiopacity were intermingled at 4 weeks, and the radiopacity increased at 12 

weeks (Fig. 2 and 3). 

 

3. Histological results of implants  

Figures 4 and 5 indicates the side of the skin is upper and side of the dura mater is lower. In 

the OCPcolTPTDf 1.0 and OCPcolTPTDf 0.1 groups, newly formed bone was occupied in 

most of the defect, and the thickness of the new bone was similar to that of the pre-existing 

bone (Fig. 4). In addition, the boundary between the margin of the defect and the pre-existing 

bone was indistinguishable, and the implanted OCPcol was almost resorbed (Fig. 4 and 5). A 
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cortical bone-like structure was associate with some part of regenerated bone, and invasion of 

blood vessels and the formation of bone marrow was observed. In the OCPcol group, newly 

formed bone was filled in a large part of the defect, and most of the implanted OCPcol was 

resorbed. Some of the new bone which had united with implanted OCPcol, indicated a mosaic 

pattern (Fig. 4 and 5). In the β-TCPcolTPTDf 1.0, β-TCPcolTPTDf 0.1, and β-TCPcol groups, 

newly formed bone was filled in a large part of the defect, although most of the regenerated 

bone originated from the margin of the defect. A part of the implanted β-TCP granules was 

surrounded and replaced by newly formed bone. In addition, the implanted β-TCP granules, 

which were surrounded by fibrous connective tissue, were abundant in the bone defect (Fig. 4 

and 5). 

 

4. Histomorphometric examination 

The n-Bone% in the OCPcolTPTDf 1.0, OCPcolTPTDf 0.1, and OCPcol groups were 

58.6 ± 2.7%, 56.1 ± 3.0%, and 42.3 ± 4.3%, respectively. Furthermore, those of the 

β-TCPcolTPTDf 1.0, β-TCPcolTPTDf 0.1, and β-TCPcol groups were 36.8 ± 4.3%, 27.5 ± 

10.0%, and 32.4 ± 9.1%, respectively. The mean values of n-Bone% indicated significant 

differences (ANOVA, P = 6.3 × 10-8), and Tukey–Kramer multiple comparison analysis 

showed significant differences between the OCPcolTPTDf 1.0 group and the other four groups 

(OCPcol, β-TCPcolTPTDf 1.0, β-TCPcolTPTDf 0.1, and β-TCPcol), between the 

OCPcolTPTDf 0.1 group and the other four groups (OCPcol, β-TCPcolTPTDf 1.0, 

β-TCPcolTPTDf 0.1, and β-TCPcol), and between the OCPcol and β-TCPcolTPTDf 0.1 

groups (Fig. 6). 
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Discussion 

Radiographic analyses including micro-CT, histologic, and histomorphometric analysis 

indicated that OCPcolTPTDf significantly enhanced bone regeneration more than OCPcol 

alone. In the OCPcolTPTDf groups, radiopaque figures were observed in most of the defect at 

4 weeks, which increased and extended throughout the whole defect with time. New bone had 

the same thickness as the original bone, and it extended over the central part of the defect. In 

addition, some of the bone showed a cortical bone-like structure after maturation. In the 

OCPcol group, the newly formed bone was smaller than in the OCPcolTPTD groups, although 

it had integrated with implanted OCPcol. OCP stimulated bone regeneration by osteoblastic 

cells and/or committed osteoprogenitors (Anada et al., 2008) and TPTD enhanced osteogenic 

and osteoclastic activities (Morimoto et al., 2014). Therefore, OCPcol combined with TPTD 

through lyophilization could exhibit a synergistic effect with OCPcol and TPTD by increasing 

bone regeneration. 

The β-TCPcolTPTDf groups (β-TCPcolTPTDf 1.0, β-TCPcolTPTDf 0.1) showed 

insufficient bone regeneration compared with the OCPcolTPTDf groups, suggesting that 

OCPcolTPTDf could enhance bone regeneration more than β-TCPcolTPTDf. Bone 

regeneration with OCPcolTPTDf originated from the OCPcolTPTDf itself and the margin of 

the defect, whereas that with β-TCPcolTPTDf was predominantly from the margin of the 

defect. This could be related to OCPcol nucleated bone regeneration if implanted into rodent 

critical sized calvarial defects (Kamakura et al., 2007a, Kamakura et al., 2006). Moreover, no 

significant differences in the newly formed bone were observed between the β-TCPcolTPTDf 

groups and β-TCPcol group. In these groups, the implanted β-TCP regenerated bone was 

intermingled with regenerated bone and fibrous connective tissue in the created defect, 

although granulous radiopacity changed to plate-like radiopacity with time. In addition, newly 

formed bone predominantly developed from the margin of the defect. It was considered that 
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β-TCP have not actively involved in the differentiation of osteoblasts, and the degradation of 

β-TCPcol which might be released TPTD was slower than OCPcol. Hence, it might be difficult 

to regenerate bone by β-TCPcol if TPTD was released around β-TCPcol, because there were 

few osteoprogenitor cells around β-TCPcol. It was correlated the histological finding that most 

of the regenerated bone originated from the margin of the defect in three β-TCPcol groups. 

This indicated that the synergistic effect could be restricted by the combination with β-TCPcol 

and TPTD. Consequently, a combination with OCPcol and TPTD could be specific for the 

synergistic effect of bone regeneration. 

The release profiles of TPTD from OCPcolTPTDf 1.0 or β-TCPcolTPTDf 1.0 indicated 

that half of the TPTD was released within 7 days, and the other half remained at 28 days. In 

addition, that of OCPcolTPTDf 0.1 or β-TCPcolTPTDf 0.1 demonstrated about one-quarter of 

the TPTD was released within 7 days, and three-quarters remained at 28 days. These results 

resembled the release profile of bone morphogenic protein-2 (BMP-2) from Zein 

polydopamine TiO2 BMP-2, which could have triggered early differentiation markers and 

activated the expression of late osteogenic markers (Babitha et al., 2017). The release pattern of 

OCPcolTPTDf or β-TCPcolTPTDf suggested that TPTD was retained in OCPcol or β-TCPcol 

after initial release. It indicated that secondary release of TPTD from implant would be 

depended on the degradation of OCPcol or β-TCPcol. Because OCPcol was more resorbable 

than β-TCPcol (Kamakura et al., 2007a), the retained TPTD in OCPcol might be released more 

than that in β-TCPcol. Consequently, these procedures might enhance bone regeneration of 

OCPcolTPTDf more than β-TCPcolTPTD. In addition, this study demonstrated that bone 

regeneration was enhanced more with OCPcolTPTDf than with OCPcol. There could be a 

similar synergistic effect of OCPcol impregnated with TPTD, as reported recently (Kajii et al., 

2017). However, bone regeneration with β-TCPcolTPTDf showed no significant differences 

compared with β-TCPcol, suggesting that there may be no synergistic effect of β-TCPcol and 
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TPTD. It was reported that OCP is capable of inducing the differentiation of osteoblastic cell 

lineages (Anada et al., 2008), and OCP incubated in rat serum proteins adsorbed bone 

formation-related proteins (Kaneko et al., 2011). In addition, it was observed a decrease in the 

concentration of Ca2+ and increase in inorganic phosphate during apatitic conversion from 

OCP (Anada et al., 2008). Therefore, it might be related to the difference in bone regenerative 

properties between OCPcol and β-TCPcol, and the behavior of osteogenic markers with 

OCPcolTPTDf should be investigated further. 

In this study, no significant difference was observed between bone regeneration with 

OCPcolTPTDf 1.0 and that with OCPcolTPTDf 0.1 as well as bone regeneration with OCPcol 

with the local single administration of TPTD solution (1.0 µg or 0.1 µg) (Kajii et al., 2017). It 

could be considered that OCPcol combined with TPTD could not enhance bone regeneration in 

a dose-dependent manner. It suggested that the dose of 0.1 µg of TPTD in this defect might be 

sufficient to regenerate bone by OCPcolTPTDf. It is well known that usually administered 

doses of TPTD to patients with osteoporosis is about 1 μg/kg/week (TeriboneTM) or 0.2–0.5 

μg/kg/day (Forteo®). And osteosarcoma might be occurred, if TPTD was subcutaneously 

given at 13.6 µg/kg/day for 2 years (total amount of about 10,000 µg/kg) (Watanabe et al., 

2012). Because TPTD administered in this study (total amount of approximately 0.38–3.93 

µg/kg) was distinctly lower dose than other previous studies as a single or total amount, 

OCPcolTPTDf should be a safe material for practical use with excellent bone regeneration. In 

order to be acceptable for clinical applications as OCPcolTPTDf, the influence of the dose of 

TPTD should be further investigated in larger animal studies. 

In this study, it was confirmed that an OCPcol and TPTD composite (OCPcolTPTDf) 

could enhance bone regeneration as well as OCPcol with the single local administration of 

TPTD (OCPcolTPTDd) (Kajii et al., 2017), and these two materials significantly enhanced 

bone regeneration more than OCPcol alone. Compared with OCPcolTPTDd, OCPcolTPTDf 
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has several advantages. Because there is no need to prepare a solution of TPTD during the 

implantation procedure, the operation will be simpler and more reliable. In addition, 

OCPcolTPTDf has a good storage stability and high versatility. This newly developed OCPcol 

and TPTD composite (OCPcolTPTDf) could be a readily usable medical material and a 

therapeutic alternative for difficult bone defects or urgent surgery. 

 

 

Acknowledgments 

This study was supported in part by JSPS KAKENHI Grant Numbers 16H03159, 

16K11741, and 16K20530.  

 

Conflict of Interest 

Some of the authors (S.K. and K. S.) have obtained a patent on OCPcol in Japan 

(#5046511). And some of the authors (A. I., F. K., H. T., K. S., and S. K.) have obtained a 

patent on OCPcolTPTDf. 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

References 

Anada, T, Kumagai, T, Honda, Y, Masuda, T, Kamijo, R, Kamakura, S, Yoshihara, N, 

Kuriyagawa, T, Shimauchi, H. Suzuki, O (2008). Dose-dependent osteogenic effect of 

octacalcium phosphate on mouse bone marrow stromal cells. Tissue Eng Part A 14: 

965-78. doi:10.1089/tea.2007.0339  

Auersvald, CM, Santos, FR, Nakano, MM, Leoni, GB, de Sousa Neto, MD, Scariot, R, 

Giovanini, AF. Deliberador, TM (2017). The local administration of parathyroid 

hormone encourages the healing of bone defects in the rat calvaria: Micro-computed 

tomography, histological and histomorphometric evaluation. Archives of oral biology 79: 

14-19. doi:10.1016/j.archoralbio.2017.02.016  

Babitha, S, Annamalai, M, Dykas, MM, Saha, S, Poddar, K, Venugopal, JR, Ramakrishna, S, 

Venkatesan, T. Korrapati, PS (2017). Fabrication of a biomimetic ZeinPDA nanofibrous 

scaffold impregnated with BMP-2 peptide conjugated TiO2 nanoparticle for bone tissue 

engineering. Journal of tissue engineering and regenerative medicine. 

doi:10.1002/term.2563  

Brown, WE, Smith, JP, Frazier, AW & Lehr, JR (1962). Crystallographic and Chemical 

Relations between Octacalcium Phosphate and Hydroxyapatite. Nature 196: 1050-+. 

doi:DOI 10.1038/1961050a0  

Crane, NJ, Popescu, V, Morris, MD, Steenhuis, P & Ignelzi, MA, Jr. (2006). Raman 

spectroscopic evidence for octacalcium phosphate and other transient mineral species 

deposited during intramembranous mineralization. Bone 39: 434-42. 

doi:10.1016/j.bone.2006.02.059  

Habraken, W, Habibovic, P, Epple, M & Bohner, M (2016). Calcium phosphates in biomedical 

applications: materials for the future? Materials Today 19: 69-87. 

doi:10.1016/j.mattod.2015.10.008  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Iibuchi, S, Matsui, K, Kawai, T, Sasaki, K, Suzuki, O, Kamakura, S & Echigo, S (2010). 

Octacalcium phosphate (OCP) collagen composites enhance bone healing in a dog tooth 

extraction socket model. International journal of oral and maxillofacial surgery 39: 

161-8. doi:10.1016/j.ijom.2009.12.006  

Jacobson, JA, Yanoso-Scholl, L, Reynolds, DG, Dadali, T, Bradica, G, Bukata, S, Puzas, EJ, 

Zuscik, MJ, Rosier, R, O'Keefe, RJ, Schwarz, EM. Awad, HA (2011). Teriparatide 

therapy and beta-tricalcium phosphate enhance scaffold reconstruction of mouse femoral 

defects. Tissue Eng Part A 17: 389-98. doi:10.1089/ten.TEA.2010.0115  

Jilka, RL, Weinstein, RS, Bellido, T, Roberson, P, Parfitt, AM & Manolagas, SC (1999). 

Increased bone formation by prevention of osteoblast apoptosis with parathyroid 

hormone. J Clin Invest 104: 439-46. doi:10.1172/JCI6610  

Kajii, F, Iwai, A, Tanaka, H, Matsui, K, Kawai, T & Kamakura, S (2018). Single-dose local 

administration of teriparatide with a octacalcium phosphate collagen composite enhances 

bone regeneration in a rodent critical-sized calvarial defect. J Biomed Mater Res B Appl 

Biomater 106: 1851-7. doi:10.1002/jbm.b.33993  

Kajii, F, Iwai, A, Tanaka, H, Matsui, K, Kawai, T & Kamakura, S (2018). Influence of electron 

beam irradiation doses on bone regeneration by octacalcium phosphate collagen 

composites. Journal of tissue engineering and regenerative medicine 12: e1186-e1194. 

doi:10.1002/term.2505  

Kamakura, S, Sasaki, K, Homma, T, Honda, Y, Anada, T, Echigo, S & Suzuki, O (2007a). The 

primacy of octacalcium phosphate collagen composites in bone regeneration. J Biomed 

Mater Res A 83: 725-33. doi:10.1002/jbm.a.31332  

Kamakura, S, Sasaki, K, Honda, Y, Anada, T, Matsui, K, Echigo, S & Suzuki, O (2007b). 

Dehydrothermal treatment of collagen influences on bone regeneration by octacalcium 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

phosphate (OCP) collagen composites. Journal of tissue engineering and regenerative 

medicine 1: 450-6. doi:10.1002/term.58  

Kamakura, S, Sasaki, K, Honda, Y, Anada, T & Suzuki, O (2006). Octacalcium phosphate 

combined with collagen orthotopically enhances bone regeneration. J Biomed Mater Res 

B Appl Biomater 79: 210-7. doi:10.1002/jbm.b.30531  

Kamakura, S, Sasano, Y, Homma, H, Suzuki, O, Kagayama, M & Motegi, K (2001). 

Implantation of octacalcium phosphate nucleates isolated bone formation in rat skull 

defects. Oral diseases 7: 259-65.  

Kamakura, S, Sasano, Y, Shimizu, T, Hatori, K, Suzuki, O, Kagayama, M & Motegi, K (2002). 

Implanted octacalcium phosphate is more resorbable than beta-tricalcium phosphate and 

hydroxyapatite. J Biomed Mater Res 59: 29-34. doi:DOI 10.1002/jbm.1213  

Kaneko, H, Kamiie, J, Kawakami, H, Anada, T, Honda, Y, Shiraishi, N, Kamakura, S, Terasaki, 

T, Shimauchi, H. Suzuki, O (2011). Proteome analysis of rat serum proteins adsorbed 

onto synthetic octacalcium phosphate crystals. Analytical biochemistry 418: 276-85. 

doi:10.1016/j.ab.2011.07.022  

Kawai, T, Echigo, S, Matsui, K, Tanuma, Y, Takahashi, T, Suzuki, O & Kamakura, S (2014). 

First clinical application of octacalcium phosphate collagen composite in human bone 

defect. Tissue Eng Part A 20: 1336-41. doi:10.1089/ten.TEA.2013.0508  

Kawai, T, Suzuki, O, Matsui, K, Tanuma, Y, Takahashi, T & Kamakura, S (2017). 

Octacalcium phosphate collagen composite facilitates bone regeneration of large 

mandibular bone defect in humans. Journal of tissue engineering and regenerative 

medicine 11: 1641-1647. doi:10.1002/term.2110  

Kawai, T, Tanuma, Y, Matsui, K, Suzuki, O, Takahashi, T & Kamakura, S (2016). Clinical 

safety and efficacy of implantation of octacalcium phosphate collagen composites in 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

tooth extraction sockets and cyst holes. Journal of tissue engineering 7: 

2041731416670770. doi:10.1177/2041731416670770  

Kokubo, T, Kim, HM & Kawashita, M (2003). Novel bioactive materials with different 

mechanical properties. Biomaterials 24: 2161-75.  

Matsui, A, Matsui, K, Handa, T, Tanuma, Y, Miura, K, Kato, Y, Kawai, T, Suzuki, O, 

Kamakura, S. Echigo, S (2014). The regenerated bone quality by implantation of 

octacalcium phosphate collagen composites in a canine alveolar cleft model. The Cleft 

palate-craniofacial journal : official publication of the American Cleft 

Palate-Craniofacial Association 51: 420-30. doi:10.1597/12-096  

Miura, K, Matsui, K, Kawai, T, Kato, Y, Matsui, A, Suzuki, O, Kamakura, S. Echigo, S (2012). 

Octacalcium phosphate collagen composites with titanium mesh facilitate alveolar 

augmentation in canine mandibular bone defects. International journal of oral and 

maxillofacial surgery 41: 1161-9. doi:10.1016/j.ijom.2012.05.020  

Morimoto, T, Kaito, T, Kashii, M, Matsuo, Y, Sugiura, T, Iwasaki, M & Yoshikawa, H (2014). 

Effect of Intermittent Administration of Teriparatide (Parathyroid Hormone 1-34) on 

Bone Morphogenetic Protein-Induced Bone Formation in a Rat Model of Spinal Fusion. 

The Journal of bone and joint surgery. American volume 96: e107. 

doi:10.2106/JBJS.M.01097  

Niall, HD, Sauer, RT, Jacobs, JW, Keutmann, HT, Segre, GV, O'Riordan, JL, Aurbach, GD. 

Potts, JT, Jr. (1974). The amino-acid sequence of the amino-terminal 37 residues of 

human parathyroid hormone. Proceedings of the National Academy of Sciences of the 

United States of America 71: 384-8.  

Pensak, M, Hong, SH, Dukas, A, Bayron, J, Tinsley, B, Jain, A, Tang, A, Rowe, D. Lieberman, 

JR (2015). Combination therapy with PTH and DBM cannot heal a critical sized murine 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

femoral defect. Journal of orthopaedic research : official publication of the Orthopaedic 

Research Society 33: 1242-9. doi:10.1002/jor.22896  

Sibai, T, Morgan, EF & Einhorn, TA (2011). Anabolic agents and bone quality. Clin Orthop 

Relat Res 469: 2215-24. doi:10.1007/s11999-010-1722-9  

Stancoven, BW, Lee, J, Dixon, DR, McPherson, JC, 3rd, Bisch, FC, Wikesjo, UM & Susin, C 

(2013). Effect of bone morphogenetic protein-2, demineralized bone matrix and systemic 

parathyroid hormone (1-34) on local bone formation in a rat calvaria critical-size defect 

model. J Periodontal Res 48: 243-51. doi:10.1111/jre.12001  

Suzuki, O, Nakamura, M, Miyasaka, Y, Kagayama, M & Sakurai, M (1991). Bone formation 

on synthetic precursors of hydroxyapatite. Tohoku J Exp Med 164: 37-50.  

Tam, CS, Heersche, JN, Murray, TM & Parsons, JA (1982). Parathyroid hormone stimulates 

the bone apposition rate independently of its resorptive action: differential effects of 

intermittent and continuous administration. Endocrinology 110: 506-12. 

doi:10.1210/endo-110-2-506  

Tanuma, Y, Matsui, K, Kawai, T, Matsui, A, Suzuki, O, Kamakura, S & Echigo, S (2013). 

Comparison of bone regeneration between octacalcium phosphate/collagen composite 

and beta-tricalcium phosphate in canine calvarial defect. Oral surgery, oral medicine, 

oral pathology and oral radiology 115: 9-17. doi:10.1016/j.oooo.2011.12.029  

Trombelli, L, Franceschetti, G, Stacchi, C, Minenna, L, Riccardi, O, Di Raimondo, R, Rizzi, A. 

Farina, R (2014). Minimally invasive transcrestal sinus floor elevation with 

deproteinized bovine bone or beta-tricalcium phosphate: a multicenter, double-blind, 

randomized, controlled clinical trial. J Clin Periodontol 41: 311-9. 

doi:10.1111/jcpe.12210  

Watanabe, A, Yoneyama, S, Nakajima, M, Sato, N, Takao-Kawabata, R, Isogai, Y, 

Sakurai-Tanikawa, A, Higuchi, K, Shimoi, A, Yamatoya, H, Yoshida, K. Kohira, T 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

(2012). Osteosarcoma in Sprague-Dawley rats after long-term treatment with teriparatide 

(human parathyroid hormone (1-34)). J Toxicol Sci 37: 617-29.  

Yun, JI, Wikesjo, UM, Borke, JL, Bisch, FC, Lewis, JE, Herold, RW, Swiec, GD, Wood, JC. 

McPherson, JC, 3rd (2010). Effect of systemic parathyroid hormone (1-34) and a 

beta-tricalcium phosphate biomaterial on local bone formation in a critical-size rat 

calvarial defect model. J Clin Periodontol 37: 419-26. 

doi:10.1111/j.1600-051X.2010.01547.x  

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Figure legends 

 

Figure 1: Release profile of TPTD from OCPcol orβ-TCPcol: 

The release of TPTD from OCPcolTPTDf 1.0 or β-TCPcolTPTDf 1.0 resulted in an 

initial release of approximately 40% within 1 day, and a total 46–49% of TPTD was 

released within 28 days. In the case of OCPcolTPTDf 0.1 or β-TCPcolTPTDf 0.1, the 

initial release was approximately 20% within 1 day, and a total 24–25% of TPTD was 

released within 28 days. 

 

Figure 2: Coronal sections examined using micro-computed tomography at the center of 

the created defects: 

In the OCPcolTPTDf 1.0 and OCPcolTPTDf 0.1 groups, most of the defect was occupied 

by radiopaque figures with a thickness similar to that of the pre-existing bone. This 

radiopacity increased with time and repaired the defects. In the OCPcol group, most of 

the defect was occupied by scattered small radiopaque masses at 4 weeks after 

implantation. These masses enlarged and fused with each other over time. In the 

β-TCPcolTPTDf 1.0, β-TCPcolTPTDf 0.1, and β-TCPcol groups, granulous radiopacity 

was predominantly detected in the defect at 4 weeks. This pattern expanded to form a 

plate-like radiopacity, which extended from the margin of the defect at 12 weeks. Arrow 

heads: Defect margin, Bars: 3 mm 
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Figure 3: Radiographic examination:  

In the OCPcolTPTDf 1.0 and OCPcolTPTDf 0.1 groups, most of the defect was occupied by 

uniform radiopacity. The boundary between the margin of the defect and the pre-existing 

bone became indistinguishable. In the OCPcol group, uniform and small scattered 

radiopaque masses intermingled in the created defect. In the β-TCPcolTPTDf 1.0, 

β-TCPcolTPTDf 0.1, and β-TCPcol groups, plate-like and granulous radiopacity 

intermingled in the created defect. Bars: 4 mm 

 

Figure 4: Histological overview of implants:  

In the OCPcolTPTDf 1.0 and OCPcolTPTDf 0.1 groups, newly formed bone was 

occupied in most of the defect, and the thickness of the new bone was similar to that of 

the pre-existing bone.  

In addition, the boundary between the margin of the defect and the pre-existing bone was 

indistinguishable. In the OCPcol group, newly formed bone was filled in a large part of 

the defect. In the β-TCPcolTPTDf 1.0, β-TCPcolTPTDf 0.1, and β-TCPcol groups, most 

of the defect was filled with regenerated bone, whereas the most of the regenerated bone 

originated from the margin of the defect. Hematoxylin eosin stain, Arrow heads: Defect 

margin, Bars: 3 mm 
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Figure 5: Histological findings of implants:  

In the OCPcolTPTDf 1.0 and OCPcolTPTDf 0.1 groups, most of the defect was filled 

with newly formed bone, and most of the implanted OCPcol was resorbed. In the OCPcol 

group, most of the implanted OCPcol was resorbed, and some of the new bone which had 

united with implanted OCPcol, indicated a mosaic pattern In the β-TCPcolTPTDf 1.0, 

β-TCPcolTPTDf 0.1, and β-TCPcol groups, part of the implanted β-TCP granules was 

surrounded and replaced by the newly formed bone. In addition, the implanted β-TCP 

granules were surrounded by abundant fibrous connective tissue is in the bone defect. 

Hematoxylin eosin stain, Asterisks: Implanted OCP or β–TCP, Bars: 200 µm  

 

Figure 6: Quantitative analysis of newly formed bone in defects:  

The percentage of newly formed bone in defects (n-Bone%) ± standard deviation (SD) is 

shown for the OCPcolTPTDf 1.0, OCPcolTPTDf 0.1, OCPcol, β-TCPcolTPTDf 1.0, 

β-TCPcolTPTDf 0.1, and β-TCPcol groups. A significant difference was observed in 

mean values between the OCPcolTPTDf 1.0 group and the other four groups (OCPcol, 

β-TCPcolTPTDf 1.0, β-TCPcolTPTDf 0.1, and β-TCPcol), between the OCPcolTPTDf 

0.1 group and the other four groups (OCPcol, β-TCPcolTPTDf 1.0, β-TCPcolTPTDf 0.1, 

and β-TCPcol), and between the OCPcol and β-TCPcolTPTDf 0.1 groups. Data are 

shown as the means ± SD of five specimens. Asterisks: p < 0.05 
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