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The fusion-by-diffusion model proposed by Swiatecki et al. [Phys. Rev. C 71, 014602 (2005)] has provided
a simple and convenient tool to estimate evaporation residue cross sections for superheavy nuclei. I extend this
model by taking into account deformation of the target nucleus, and discuss the role of orientation of a deformed
target in hot fusion reactions at energies around the Coulomb barrier. To this end, I introduce an injection point
for the diffusion process over an inner barrier which depends on the orientation angle. I apply this model to the
48Ca + 248Cm reaction and show that the maximum of evaporation residue cross section appears at an energy
slightly above the height of the capture barrier for the side collision, for which the effective inner barrier is
considerably lower than that for the tip collision, thus enhancing the diffusion probability. I also discuss the
energy dependence of the injection point, and show that a large part of the energy dependence found in the
previous analyses can be attributed to the deformation effect of a target nucleus.
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I. INTRODUCTION

An investigation of superheavy elements has been one
of the most important topics in nuclear physics [1–3]. It is
not only related to a fundamental question, “How heavy an
element can one define as a nucleus?”, but also relevant to
many areas of science, including nuclear structure, nuclear
reaction, chemistry, and nuclear astrophysics [3]. That is, the
stability of superheavy elements is intimately related to the
shell structure of superheavy nuclei, and an understanding
the reaction dynamics is extremely important for a formation
of superheavy nuclei. Furthermore, a good understanding of
electronic structure as well as chemical properties is necessary
to locate superheavy elements at appropriate positions in a
periodic table. Fission of heavy and superheavy elements in
r-process nucleosynthesis is also an important topic in nuclear
astrophysics in order to investigate the origin of elements found
in nature [4].

The heaviest element synthesized so far is the element
118 [5], which was recently named oganesson (Og), together
with three other superheavy elements, that is, nihonium (Nh,
Z = 113) [6,7], moscovium (Mc, Z = 115) [7], and tennessine
(Ts, Z = 117) [8]. These superheavy elements, as well as
elements heavier than mendelevium (Z = 101), have been syn-
thesized using heavy-ion fusion reactions at energies around
the Coulomb barrier [1–3].

It is important to notice here that fusion reactions for
superheavy elements are considerably different from fusion in
medium-heavy systems [9–14]. Whereas a compound nucleus
is formed almost automatically in medium-heavy systems once
projectile and target nuclei touch each other [15–19], the strong
Coulomb repulsion in the superheavy region makes a touching
configuration undergo a reseparation process with a huge
probability. This process is referred to as quasifission [20–30],

and has been recognized as a primary cause of fusion inhibition
in heavy systems [22,26,31–34]. Since quasifission charac-
teristics often overlap with fission of the compound nucleus
(that is, fusion-fission), formation of superheavy elements is
usually identified by measuring evaporation residues of the
compound nucleus, formation of which is extremely rare in
the superheavy region. This makes it extremely challenging to
model the formation process of superheavy nuclei and make
reliable theoretical predictions for evaporation residue cross
sections.

Qualitatively, the significance of quasifission in the different
mass regions can be understood in terms of the relative position
between the touching configuration and the saddle of the
fission barrier. In medium-heavy systems, the saddle appears
well outside the touching configuration in deformation space,
and thus the compound nucleus is formed with a negligibly
small probability of quasifission. On the other hand, in the
superheavy region, the strong Coulomb repulsion leads to a
lower fission barrier at a smaller deformation as compared to a
fission potential in the medium-heavy region (see, e.g., Fig. 7
in Ref. [35]). The touching configuration appears outside the
saddle configuration, and thus a compound nucleus is formed
only after the fission barrier is overcome, whereas most events
lead to quasifission.

Based on this idea, as well as on the timescale of each
process, the formation process of evaporation residues can be
conceptually divided into a sequence of the following three
processes. The first is a process in which two separate nuclei
form a touching configuration after overcoming the Coulomb
barrier. Here, the channel coupling effects, that is, couplings
of the relative motion to several nuclear collective excitations
in colliding nuclei as well as several transfer processes, play
an important role [15–19]. After two nuclei touch each other, a
huge number of nuclear intrinsic motions are activated and the
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relative energy is quickly dissipated to internal energies, land-
ing on the right-hand side of the fission barrier for a mononu-
clear system. The second stage for the formation of evaporation
residues is then a diffusion over this inner barrier to form a com-
pound nucleus, with a severe competition with the quasifission
process. The third process is a statistical decay of the compound
nucleus, with strong competitions between evaporation and
fission.

In order to describe such a complicated process, Swiatecki
et al. have proposed a simple one-dimensional model, that is,
the fusion-by-diffusion model [35–37]. In this model, classical
fusion cross sections with a Gaussian barrier distribution
are employed for the first stage, while the second stage is
modeled as a diffusion of a one-dimensional parabolic barrier.
Despite model’s simplicity, it accounts for experimental cross
sections reasonably well for Pb- and Bi-based cold fusion
reactions by introducing one adjustable parameter, that is, the
injection point for the second stage, or equivalently the height
of the fission barrier relative to the touching configuration
[35–38].

Subsequently, the fusion-by-diffusion model has been ap-
plied also to 48Ca-based hot fusion reactions [39,40]. One of the
characteristic features of the 48Ca-based hot fusion reactions
[41] is that the corresponding target nuclei are in the actinide
region, in which nuclei have a large deformation in the ground
state. In the fusion-by-diffusion model, the effect of target
deformation has been taken into account only through the
Gaussian width for the barrier distribution for the first stage,
even though the deformation effect may have been implicitly
taken into account by a phenomenological adjustment of the
injection point.

In this paper, I extend the fusion-by-diffusion model by
taking into account the deformation effect both in the first
and the second stages of the evaporation residue formation
process. To this end, I introduce the orientation dependence to
the injection point. Notice that hot fusion reactions have been,
or will be, employed in order to synthesize elements beyond
Og, that is, the elements 119 and 120 [42]. The extension
discussed in this paper will increase the reliability of the
fusion-by-diffusion model and will provide good guidance
for future experiments. It will also help in understanding the
reaction dynamics of fusion reactions of a deformed nucleus
to synthesize superheavy elements. See also Refs. [43–45] for
earlier publications which discussed the role of orientation of
a deformed target in synthesis of superheavy elements based
on a different theoretical model, that is, the dinuclear system
model.

The paper is organized as follows. In Sec. II, I summarize
the conventional fusion-by-diffusion model of Swiatecki et al.
in order to clarify the modifications introduced in this paper.
In Sec. III, I introduce the extended version of the fusion-
by-diffusion model, which takes into account the deformation
of a target nucleus. In Sec. IV, I apply the extended ver-
sion of the model to the 48Ca + 248Cm system and discuss
the role of orientation of the deformed 248Cm nucleus. In
Sec. V, I discuss the energy dependence of the injection point,
and show that the deformation effect leads to a relatively
strong energy dependence. I then summarize the paper in
Sec. VI.

II. FUSION-BY-DIFFUSION MODEL

Before I discuss the extensions of the fusion-by-diffusion
model, I here summarize the current version of the model.
To this end, I closely follow Ref. [37], in which the angular
momentum dependence of the diffusion and the survival proba-
bilities has been introduced to the original version of the model
[35,36]. In this l-dependent version of the fusion-by-diffusion
model, evaporation residue cross sections σER are evaluated as

σER(E) = π

k2

∑
l

(2l + 1)Tl(E)Pfus(E,l)Psur(E
∗,l), (1)

where E is the incident energy in the center-of-mass frame
and k =

√
2μE/h̄2 is the corresponding wave number, with

μ being the reduced mass in the entrance channel. Tl(E),
Pfus(E,l), and Psur(E∗,l) are the probabilities for the first,
the second, and the third stages, respectively, where E∗ is
the excitation energy of the compound nucleus. These are the
capture probability, that is, the penetrability of the Coulomb
barrier, the diffusion probability of the inner fission barrier,
and the survival probability of the compound nucleus against
fission, respectively. I summarize each probability in the
following subsections.

A. Capture probability

In the original version of the fusion-by-diffusion model,
capture cross sections,

σcap(E) = π

k2

∑
l

(2l + 1)Tl(E), (2)

are computed as [35,36,46]

σcap(E) =
∫ ∞

−∞
dB f (B; B0) σcl(E; B), (3)

where

f (B; B0) = 1√
2πw

exp

[
− (B − B0)2

2w2

]
(4)

represents the weight factor for a barrier distribution [47]
around a mean barrier height B0, while

σcl(E; B) = πR2
b

(
1 − B

E

)
θ (E − B) (5)

is the classical fusion cross section for the barrier height B and
the barrier position Rb. Here, θ (E − B) is the step function.
With the Gaussian function for f (B; B0), the integral in Eq. (3)
can be evaluated analytically as [35,36,46]

σcap(E) = πR2
b

w√
2πE

[
√

πx[1 + erf(x)] + e−x2
], (6)

with x ≡ (E − B0)/(
√

2w), where

erf(x) = 2√
π

∫ x

0
e−t2

dt (7)

is the error function.
In the l-dependent version of the fusion-by-diffusion model,

the capture probability Tl(E) is taken to be the classical one,
that is, Tl(E) = 1 for l � lmax and 0 for l > lmax. The maximum
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angular momentum, lmax, is determined so that the capture
cross section so obtained,

σcap(E) = π

k2

lmax∑
l=0

(2l + 1) = π

k2
(lmax + 1)2, (8)

coincides approximately with Eq. (6) for given Rb and B0 [37].

B. Diffusion probability

After two nuclei touch with each other by overcoming the
Coulomb barrier, there is an additional inner barrier, which
has to be overcome in order to form a superheavy element. In
the fusion-by-diffusion model, this process is described as a
diffusion of an inverted parabolic potential barrier,

Vl(s) = Vfiss(s) + l(l + 1)h̄2

2J (s)
∼ V0l − Cl(s − ssd)2, (9)

where s is the coordinate for diffusion, that is, the surface
separation between the two spheres [37], Vfiss(s) is the inner
(fission) barrier, and J (s) is the moment of inertia for the
mono-nuclear system. The last term in Eq. (9) is due to
the parabolic approximation to the potential barrier around the
saddle point configuration, ssd.

For a diffusion from an initial configuration sinj at rest, the
barrier passing probability at temperature T is given by [48]

Pfus(E,l) = 1

2

[
1 − erf

(
�Vl

T

)]
, (10)

in the overdamped limit, where �Vl is the effective barrier
height for the second process given by �Vl = Vl(ssd) − Vl(sinj)
(in the fusion-by-diffusion model, the l dependence in each
of ssd and sinj is neglected). Notice that the probability is
independent of the friction coefficient and the mass parameter
in the overdamped limit [48].

For given s and angular momentum l, the temperature T is
estimated as

T (l,s) =
√

E∗ − Vl(s) − Epair

a(s)
, (11)

where Epair is the pairing energy and a(s) is the level den-
sity parameter. The excitation energy E∗ is given by E∗ =
E − MCNc2 + MP c2 + MT c2, where MCN, MP , and MT are
the masses of the compound nucleus, the projectile nucleus,
and the target nucleus, respectively. Following Ref. [37], the
pairing energy, Epair, is taken to be 21/

√
A MeV for even-even

nuclei, where A is the mass number, 10.5/
√

A MeV for
odd-mass nuclei, and 0 for odd-odd nuclei. Following again
Ref. [37], I take the geometrical mean between the temperature
at the saddle configuration and that at the injection point, that is,
T = √

T (l,ssd)T (l,sinj), for the temperature used in Eq. (10).
See Refs. [35–37] for the parametrization of the inner

barrier, Vfiss(s), the moment of inertia, J (s), and the level
density parameter, a(s), used in the fusion-by-diffusion model.

C. Survival probability

In the superheavy region, a compound nucleus formed
in a heavy-ion fusion reaction decays primarily by fission.

In the fusion-by-diffusion model, the survival probability
against fission is calculated using a simplified statistical model.
Assuming that fission competes only with neutron emissions,
the survival probability for the N -neutron emission channel is
estimated as [37,38,49]

Psur(E
∗,l) =

N−1∏
k=1

(
�(k)

n (E∗
k )

�
(k)
n (E∗

k ) + �
(k)
f (E∗

k )

(
1 − P (k)

< (E∗
k )

))

× �(N)
n (E∗

N )

�
(N)
n (E∗

N ) + �
(N)
f (E∗

N )
P (N)

< (E∗
N ), (12)

where �(k)
n and �

(k)
f are the neutron and the fission widths at

an excitation energy E∗
k after emission of (k − 1) neutrons,

and 1 − P (k)
< is the probability of finding the residual nucleus

at excitation energies above the threshold of the next chance
fission or neutron evaporation. Notice that �(k)

n , �
(k)
f , and P (k)

<

depend on the angular momentum l, but this is not expressed
explicitly in Eq. (12) for simplicity of the notation.

The decay widths, �(k)
n and �

(k)
f , as well as the proba-

bility P (k)
< are expressed in terms of the level density, the

fission barrier, and the one-neutron separation energy. See
Refs. [37,38,49] for their explicit forms.

III. EXTENSION TO DEFORMED SYSTEMS

I now discuss the extension of the fusion-by-diffusion model
to deformed systems. In the original version of the model
discussed in the previous section, the effect of deformation
is taken into account only through the Gaussian width, w, in
Eq. (4) as [35,37]

w ∝
√

R2
P β2

2P

4π
+ R2

T β2
2T

4π
+ w2

0, (13)

where w0 is a constant and β2P and β2T are the quadrupole
deformation parameters of the projectile and the target, respec-
tively. The deformation effect may also be included implicitly
when the injection point, sinj, is adjusted phenomenologically.

In this paper, I introduce the deformation effect more
explicitly to the model. To this end, I write the evaporation
residue cross sections as [17]

σER(E) =
∫ 1

0
d(cos θ ) σER(E; θ ), (14)

where θ is the orientation angle of a deformed target with
respect to the beam direction, and σER(E; θ ) is the evaporation
residue cross section for a fixed value of θ given by

σER(E; θ ) = π

k2

∑
l

(2l + 1)Tl(E,θ )Pfus(E,l,θ )Psur(E
∗,l).

(15)

This formula is based on the isocentrifugal approximation to
the angular momentum coupling [17] and on an assumption
that the moment of inertia for the rotational motion is so large
(therefore the energy of the first 2+ state is so small) that
the orientation angle of the deformed target nucleus is fixed
during fusion [17], which is well fulfilled in the actinide region.
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Notice that the survival probability, Psur, remains the same
as in the original version of the model, since it is related to
properties of the compound nucleus, for which the memory
of the entrance channel is assumed to be lost. On the other
hand, the deformation effect modifies the capture probability,
Tl , as well as the diffusion probably, Pfus. I will discuss below
how the orientation effect can be taken into account in these
probabilities.

A. Capture probability

In order to take into account the deformation effect on the
capture probability, Tl , I introduce a deformed nuclear potential
of the Woods-Saxon type for the relative motion between the
target and the projectile nuclei,

VN (r,θ ) = − V0

1 + exp[{r − R0 − RT

∑
λ βλT Yλ0(θ )}/a]

,

(16)

where V0, R0, and a are the depth, the radius, and the dif-
fuseness parameters, respectively, and βλT are the deformation
parameters of the target nucleus. The Coulomb part of the
potential is also deformed as [17,50]

VC(r,θ ) = ZP ZT e2

r

+ 3ZP ZT e2

5

R2
T

r3

(
β2T + 2

7

√
5

π
β2

2T

)
Y20(θ )

+ 3ZP ZT e2

9

R4
T

r5

(
β4T + 9

7
√

π
β2

2T

)
Y40(θ )

+ 3ZP ZT e2

13

R6
T

r7
β6T Y60(θ ), (17)

to the second order in the quadrupole deformation parameter,
β2T , and the first order in the hexadecapole and the hexacon-
tatetrapole deformation parameters, β4T and β6T , respectively.
The total potential for angular momentum l reads

V (r,θ ) = VN (r,θ ) + VC(r,θ ) + l(l + 1)h̄2

2μr2
, (18)

where the last term is the centrifugal potential.
I use the parabolic approximation to the potential, V (r,θ ),

that is, I expand the potential as

V (r,θ ) ∼ Vb(l,θ ) − 1
2μ	(l,θ )2[r − Rb(l,θ )]2 (19)

around the position of the Coulomb barrier, Rb(l,θ ), for a fixed
value of θ . The penetrability of this potential is then computed
as [17]

Tl(E,θ ) = 1

1 + exp
[

2π
h̄	(l,θ) [Vb(l,θ ) − E]

] . (20)

B. Diffusion probability

The deformation effect implies that one would have to
consider a diffusion in a multidimensional inner barrier, Vfiss,
with deformation and orientation degrees of freedom, for the
second stage of the evaporation residue formation process.

FIG. 1. A schematic illustration of the angular dependence of the
injection distance, sinj(θ ). The upper and the lower figures show
the configuration with θ = 0 and θ = π/2, respectively, where θ is
the orientation angle for a prolately deformed nucleus.

Even though this is certainly an interesting future work, I prefer
to retain here the simplicity of the fusion-by-diffusion model
and thus use a one-dimensional potential. Instead, I introduce
the orientation dependence to the injection point based on the
notion of compactness for quasifission [26,51–55].

Suppose that the target and the projectile nuclei are sepa-
rated with the distance L at the injection point. For a spherical
target, the separation distance is then given by

L = RP + RT + s
(0)
inj . (21)

When the target nucleus is deformed, the radius RT is replaced
by RT (θ ) = RT [1 + ∑

λ βλT Yλ0(θ )]. Substituting this expres-
sion in Eq. (21), one obtains

L(θ ) = RP + RT (θ ) + s
(0)
inj , (22)

= RP + RT + s
(0)
inj + RT

∑
λ

βλT Yλ0(θ ). (23)

This implies that the orientation dependent injection parameter
is given by

sinj(θ ) = L(θ ) − RP − RT = s
(0)
inj + RT

∑
λ

βλT Yλ0(θ ). (24)

This is schematically illustrated in Fig. 1. The diffusion
probability is then given by

Pfus(E,l,θ ) = 1

2

[
1 − erf

(
�Vl(θ )

T (θ )

)]
, (25)

where both the effective barrier height, �Vl , and the temper-
ature, T , depend on the angle θ through the angle dependent
injection point, sinj(θ ). A similar idea was employed also in
Ref. [56] in more realistic Langevin calculations.

IV. APPLICATION TO THE 48Ca + 248Cm REACTION

Let us now apply the extended fusion-by-diffusion model
discussed in the previous section to the 48Ca + 248Cm reaction.
I choose this system as a representative example for hot fusion
reactions, and also because the barrier distribution for the
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FIG. 2. The evaporation residue cross sections for the 48Ca +
248Cm system as a function of the incident energy in the center-of-
mass frame obtained with the extended fusion-by-diffusion model
with deformations of the target nucleus. Eq. (26) is used for the
energy dependence of the injection point. The dotted and the dashed
lines show the cross sections for the orientation angles of θ = 0 and
θ = π/2, respectively, while the solid lines are obtained by taking an
average over all the angles θ . The experimental data are taken from
Refs. [64,65].

capture process has recently been measured for this system [57]
using quasielastic scattering [58,59]. The theoretical analysis
for the measured barrier distribution has clearly shown that
the maximum of the evaporation residue cross sections for this
system appears at an energy slightly above the barrier height
for the side collision, in good agreement with the notion of
compactness [26,51–55]. The aim of this section is to gain a
deeper insight into the effect of orientation of the deformed
248Cm nucleus by reanalyzing the evaporation residue cross
sections using the extended fusion-by-diffusion model.

In the calculation presented below, I use the deformation
parameters of β2T = 0.297, β4T = 0.039, and β6T = −0.035
together with the radius of RT = 1.2A

1/3
T fm for the entrance

channel. The value of β2T is estimated from the measured elec-
tric transition probability [60], while the values of β4T and β6T

are taken from Ref. [61]. For the Woods-Saxon potential, I use
the parameters V0 = 70 MeV, R0 = 1.18 × (481/3 + 2481/3)
fm, and a = 0.69 fm, which are similar to the ones used in
Ref. [57] for the coupled-channels analysis for the quasielastic
barrier distribution for this system, with a slight readjustment
in order to reproduce the measured capture cross sections [62].
The deformation parameters and the shell correction energies,
both at the ground state and at the saddle point, as well as
the ground state masses and the fission barrier heights, are
all taken from Ref. [63]. This mass table lists the values only
for even-even nuclei, and thus for odd-mass nuclei I take an
average of the values for the neighboring nuclei. I assume that
the shell correction energy is negligible at the injection point.
Following Refs. [37,39], I introduce a liner energy dependence
to the injection point, s(0)

inj , in Eq. (24), which is specified below.
The solid lines in Fig. 2 show the evaporation residue cross

sections obtained with

s
(0)
inj = 4.698fm − 0.16(E − B0) fm/MeV, (26)

where the reference barrier height, B0, is given by [37]

B0 = 0.853315z + 0.0011695z2 − 0.000001544z3 MeV,

(27)

with z = ZP ZT /(A1/3
P + A

1/3
T ). In order to compare with the

experimental data [64,65], I smear the calculated cross sections
as

σ̄ER(E) = 1

�E

∫ E+�E/2

E−�E/2
σER(E′)dE′, (28)

in order to take into account a loss of the beam energy in
the target material with a finite thickness [37]. According to
Refs. [64,65], I take �E = 5.4 and 3.4 MeV for the 3n and
4n evaporation channels, respectively, even though different
values for �E should be used for different experimental
runs. The figure also shows the cross section for θ = 0 and
θ = π/2 by the dotted and the dashed lines, respectively [see
Eq. (15)]. One can see that the 4n channel is mainly due
to the side collision with θ = π/2, while the 3n channel
is mainly due to the tip collision with θ = 0. The former
result is consistent with the earlier experimental conclusions in
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FIG. 3. The dependence of (a) the capture barrier height, (b) the
injection distance, and (c) the height of the diffusion barrier on the
orientation angle of the deformed target nucleus for the 48Ca + 248Cm
reaction. The injection distance and the height of the diffusion barrier
are evaluated at energy E = 215 MeV in Eq. (26).
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Refs. [26,51–54,57]. In order to demonstrate the validity of
the present model, I also show the result for the 48Ca + 238U
system in the Appendix.

The energy dependence of the relative contribution for the
side and the tip collisions can be understood in terms of the
angle dependence of the capture and the diffusion barriers.
The top panel of Fig. 3 shows the height of the capture
barrier as a function of the orientation angle. For nuclei with
prolate deformation, the barrier is lower for the tip collision
(θ = 0) and increases with θ (the figure shows a nonmonotonic
behavior due to the finite value of β6 deformation). Therefore,
the side collision is suppressed at low energies. The middle and
the bottom panels show the injection distance and the barrier
height for the diffusion process, respectively, at E = 215 MeV.
The injection distance is small for the side collision, and thus
the diffusion barrier is low. This leads to an enhancement
of the diffusion probability for the side collision as compared
to that for the tip collision. The side collision then becomes
dominant at high energies, where the suppression due to the
capture process is small.

In order to demonstrate this more explicitly, Figs. 4 and
5 show the capture, the diffusion, and the compound nu-
cleus formation probabilities for l = 0 as a function of the
orientation angle, θ , at E = 200 and 211 MeV, respectively.
Here, the compound nucleus formation probability is defined
as a product of the capture and the diffusion probabilities.
For E = 200 MeV shown in Fig. 4, the capture barrier is
higher than the incident energy for θ > 43 deg [see Fig. 3(a)],
and the capture probability drops off abruptly in this range
of orientation angle. The contribution of the side collision is

0
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T
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deformed target nucleus for the s-wave 48Ca + 248Cm reaction at E =
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defined as a product of Tl=0 and Pfus, is also shown by the solid line.
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FIG. 5. Same as Fig. 4, but at E = 211 MeV.

then negligible even though the diffusion probability itself is
relatively large, as shown in the lower panel of Fig. 4. On
the other hand, for E = 211 MeV shown in Fig. 5, the capture
probability is close to unity except for the angles around θ ∼ 70
deg (again, the nonmonotonic behavior is due to the finite
value of β6), and the side collision competes well with the tip
collision in the capture stage of the reaction. The side collision
then gives the largest contribution to the compound nucleus
formation, since the diffusion probability is large due to a small
injection distance. A qualitatively similar conclusion has been
obtained also with the dinuclear system model [45].

V. ENERGY DEPENDENCE OF THE
INJECTION DISTANCE

The evaporation residue cross sections for the 48Ca +
248Cm system obtained with the original version of the
fusion-by-diffusion model are shown in Fig. 2(d) in Ref. [39].
In order to draw this figure, the authors of Ref. [39] used the
parametrization of the injection distance given by

sinj = 4.09fm − 0.192(E − B0) fm/MeV. (29)

Notice that this energy dependence of the injection distance is
much stronger than the one used for cold fusion reactions, that
is, sinj = 2.30fm − 0.062(E − B0) fm/MeV [37].

A similar quality of the result to the one obtained with the
original version of the model can be obtained with the extended
version of the model discussed in this paper using

s
(0)
inj = 3.457fm − 0.062(E − B0) fm/MeV, (30)

as shown by the solid lines in the upper panel of Fig. 6. Notice
that this has the same energy dependence of sinj as the one
for cold fusion reactions discussed in Ref. [37]. If the angle
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FIG. 6. Upper panel: The evaporation residue cross sections
for the 48Ca + 248Cm system obtained with the extended version
of the fusion-by-diffusion model with Eq. (30) (the solid lines),
in comparison with the results obtained by neglecting the angle
dependence of the injection distance (the dotted lines). Lower panel:
The energy dependence of the injection distance. The dashed line
shows the energy dependence given by Eq. (30), while the solid line
takes into account the deformation effect with Eq. (32). The dotted
line shows the energy dependence for the angle independent model,
which corresponds to the dotted lines in the upper panel.

dependence of sinj(θ ) is disregarded in the present model,
similar results are obtained with a stronger dependence, that is,

sinj(θ ) = 4.613fm − 0.16(E − B0) fm/MeV, (31)

as shown by the dotted lines in the figure. Therefore, the energy
dependence of the injection distance is indeed weakened if
the deformation effect is explicitly taken into account.

In order to discuss this point more clearly, I take an average
of sinj(θ ) with the total evaporation residue cross sections for
each angle θ , σER(θ ), as a weight factor. That is, I define the
average injection distance as

s̄inj(E) ≡
∫ 1

0 d(cos θ )sinj(θ )σER(E; θ )∫ 1
0 d(cos θ )σER(E; θ )

. (32)

This quantity is shown by the solid line in the lower panel of
Fig. 6. For a comparison, the figure also shows the energy de-
pendences given by Eqs. (30) and (31) with the dashed and the
dotted lines, respectively. One can clearly see from the figure
that the angle dependence of the injection distance provides a
strong energy dependence of an effective injection distance,
which is compatible with the energy dependence obtained
with the angle-independent model shown by the dotted line.

Evidently, the strong energy dependence found in Ref. [39]
for hot fusion reactions mocks up the deformation effect of the
target nuclei to a large extent, which is not included explicitly
in the original version of the fusion-by-diffusion model.

VI. SUMMARY

By taking into account the effects of deformation of the
target nucleus, I have extended the fusion-by-diffusion model
of Swiatecki et al. for heavy-ion fusion reactions to synthesize
superheavy elements. To this end, I have introduced the angle
dependence to the injection distance, based on the notion
of compactness for quasifission. I have also used a barrier
distribution for the capture process that is consistent with the
rotational coupling of a deformed nucleus. I have applied the
extended version of the fusion-by-diffusion model to the hot
fusion reaction 48Ca + 248Cm as a representative example and
found that the maximum of evaporation residue cross sections
appears at an energy slightly above the Coulomb barrier for the
side collision. At this energy, the capture probability is close
to unity, while the diffusion probability is large for the side
collision due to a compactness of the touching configuration.
At lower energies, the side collision is largely suppressed
because of a high capture barrier, and the tip collision gives
an important contribution.

I have also discussed the energy dependence of the injection
distance. I have argued that a strong energy dependence shows
up when the deformation effect is converted to an effective
energy dependence. This observation is consistent with the
strong energy dependence found in the previous analyses for
hot fusion reactions with the original version of the fusion-by-
diffusion model.

In this paper, following the philosophy of the fusion-by-
diffusion model, I considered a diffusion of a simple one-
dimensional inner barrier, for which the deformation effect
is taken into account only through the injection point for
diffusion. In reality, however, it is not obvious at all how
the diffusion path is evolved in a multidimensional energy
surface with deformation and orientation degrees of freedom.
In particular, as the nuclear deformation is a quantal effect,
it is expected that the deformation will be reduced or even
disappears during the heat-up process after the contact of two
colliding nuclei. It would remain a theoretical challenge to
model the shape evolution of the dinuclear system towards a
compound nucleus by taking into account the gradual change
of the deformation in a hot target-like nucleus. To address
this question, one would need to develop a quantum theory
of friction, such as the ones discussed in Ref. [66]. Obviously,
much more work is necessary towards this goal and to gain
a deep insight into the reaction dynamics of heavy-ion fusion
reactions for the synthesis of superheavy nuclei.
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APPENDIX: APPLICATION OF THE EXTENDED
FUSION-BY-DIFFUSION MODEL TO THE

48Ca + 238U REACTION

In order to demonstrate the validity of the extended fusion-
by-diffusion model proposed in this paper, in this Appendix I
apply it to another system besides the 48Ca + 248Cm system
discussed in Sec. IV, that is, the 48Ca + 238U reaction. To
this end, I use the deformation parameters β2T = 0.289,
β4T = 0.098, and β6T = −0.021 [61] together with the radius
RT = 1.2A

1/3
T fm. For the Woods-Saxon potential, I use the

parameters V0 = 400 MeV, R0 = 0.95 × (481/3 + 2381/3) fm,
and a = 1.0 fm in order to reproduce the measured capture
cross sections for this system [62].

Figure 7 shows the evaporation residue cross sections thus
obtained. To this end, I used Eq. (30) for the injection distance,
s

(0)
inj . As can be seen, the present model yields a fair agreement

with the experimental data, indicating the validity of the present
approach. Moreover, the 3n and the 4n evaporation channels
are dominated by the tip and the side collisions, respectively,
which is similar to the conclusion for the 48Ca + 248Cm system
shown in Sec. IV.

One would obtain a better agreement with the experimental
data by adjusting the injection distance. Notice that this
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FIG. 7. Same as Fig. 2, but for the 48Ca + 238U reaction. The
experimental data are taken from Ref. [65].

is related to a question of whether one can find a global
parametrization for the injection distance that works for all
hot fusion reactions. Apparently, this requires a systematic
study, and this is beyond the scope of the present paper. The
results of such a systematic study will be reported in a separate
publication.
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