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We numerically investigate the electronic properties of magnetic domain walls formed in a Weyl semimetal.
Electric charge distribution is computed from the electron wave functions, by numerically diagonalizing the
Hamiltonian under several types of domain walls. We find a certain amount of electric charge localized around
the domain wall, depending on the texture of the domain wall. This localized charge stems from the degeneracy of
Landau states under the axial magnetic field, which corresponds to the curl in the magnetic texture. The localized
charge enables one to drive the domain wall motion by applying an external electric field without injecting an
electric current, which is distinct from the ordinary spin-transfer torque and is free from Joule heating.
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I. INTRODUCTION

As a new class of three-dimensional (3D) topological mate-
rials, Weyl semimetals (WSMs) have recently been attracting a
great interest [1–3]. The electrons in a WSM are characterized
by the conical band structure, namely the “Weyl cone” struc-
ture, around the band-touching points called “Weyl points”
in momentum space. The Weyl cone structure is realized by
band inversion from strong atomic spin-orbit coupling, which
results in the spin-momentum locking feature around the Weyl
points. While the band-touching points in Dirac semimetals are
doubly degenerate due to time-reversal and spatial inversion
symmetry [4], the Weyl points in WSMs are isolated from
each other in momentum space by breaking either of these two
symmetries. The “Fermi arc” surface state, which crosses the
Fermi level by an open line in momentum space, is one of the
typical features of WSMs, which connects the pair of Weyl
points projected onto the surface Brillouin zone. Using the
angle-resolved photoemission spectroscopy (ARPES), Weyl
cones and surface Fermi arcs have recently been observed
in WSMs with broken inversion symmetry, such as in TaAs
(Refs. [5–7]) and NbAs (Ref. [8]).

One of the important challenges in the context of WSM is to
realize the WSM phase in a magnetic material. Several classes
of magnetic materials have been proposed as candidates for
WSM, such as ferromagnetic Heusler alloys (e.g. Co3Sn2S2;
see Refs. [9–11]) and chiral antiferromagnetic compounds
(e.g., Mn3Sn; see Refs. [12–14]). It was also suggested by
a self-consistent calculation that the magnetic WSM phase
can be realized by introducing magnetic impurities to 3D
topological insulators, such as Bi2Se3 (Ref. [15]). In a magnetic
WSM, time-reversal symmetry is broken and the Weyl points
are split in momentum space, corresponding to its magnetic
order. Requiring cubic symmetry to the system, the low-energy
Weyl Hamiltonian in the presence of a ferromagnetic order in
the continuum limit takes the simplified form

H = vFησ · p − Jσ · M(r), (1)

where σ is the Pauli matrix for the electron spin. M(r) de-
notes the background magnetization macroscopically averaged

around position r , which is formed by the localized magnetic
moments of the constituent magnetic elements. The first term in
Eq. (1) accounts for the spin-momentum locking feature of the
Weyl electrons, with Fermi velocity vF, momentum operator
p = −i∇, and chirality η = ±1 that labels each valley. The
exchange coupling between the localized magnetic moment
and the electron spin is imprinted in the second term, with a
coupling constant J .

Rewriting Eq. (1), we can regard the exchange coupling
to the magnetic texture M(r) as an “axial vector potential”
A5(r) = (J/evF)M(r), which couples to each valley with
opposite sign η = ± as

H = vFησ · [ p − ηeA5(r)]. (2)

The analogy between M(r) and A5(r) implies that a mag-
netic texture, namely a nonuniform pattern in M(r), can
yield a significant effect on the Weyl electrons. The curl
in A5(r) gives the axial magnetic fieldB5(r) = ∇ × A5(r).
Noncollinear magnetic textures, such as domain walls (DWs),
skyrmions, helices, etc., accompany such an axial magnetic
flux. The axial electromagnetic fields alter the electronic states
and transport in a similar manner to the normal electromagnetic
fields, except for the chirality dependence [16–18]. Based on
the idea of the axial electromagnetic fields, it was shown
that the dynamics of magnetic textures in a WSM pumps a
certain amount of electric charge [19]. It should be noted that
such an analogy between magnetic textures and the effective
electromagnetic fields also applies to 2D Dirac electrons at
topological insulator surfaces, which accounts for the charge
localization at a magnetic texture [20].

Among various types of topological magnetic textures,
magnetic DWs have long been studied intensively in many
kinds of systems to make use of them as carriers of information
in spintronics devices (see Ref. [21] for review). Information
storage with an array of magnetic DWs, namely a magnetic
racetrack memory, was successfully tested by manipulating
the DW motion in magnetic wires [22]. While the DW motion
can be directly induced by an external magnetic field, a spin-
polarized electric current can also drive the DW motion via the
spin-transfer torque, namely the angular momentum exchange
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between the electron spins and the local magnetic moments
[23–26]. In the presence of spin-orbit coupling, the torque
induced by an electric current gets enhanced, which is known
as the spin-orbit torque [27–33]. However, energy loss from
Joule heating is inevitable in those current-induced torques,
hence we need to find a more efficient method to control DWs
electrically with smaller conduction current.

In the present paper, we numerically investigate the elec-
tronic properties in a magnetic WSM in the presence of a
DW. The authors showed analytically in the previous paper
[34] that a certain amount of electric charge is localized at a
DW in a magnetic WSM, which implies that the DW can be
manipulated by an external electric field. However, this result
relies on the simplified collinear texture of DW to make the
Hamiltonian [Eq. (1)] analytically solvable. In this work, we
focus on the electronic properties under more realistic DW
textures, by numerically diagonalizing the Hamiltonian on the
hypothetical cubic lattice. Looking at the band structure for
each DW, we observe the “Fermi arc” structure coming from
the bound states at the DW. Such bound states give rise to the
localized charge around each DW, which is directly calculated
from the electron eigenfunctions. We find that the amount and
the distribution of the localized charge depends on the type of
the DW, which can be traced back to the degeneracy of the
Landau states under the axial magnetic field corresponding to
the DW. On the other hand, the amount of the localized charge
depends proportionally on the electron chemical potential for
any type of DW, which makes it easy to tune and estimate the
efficiency of electric manipulation of the DW. We estimate the
typical velocity of the DW driven by an electric field from our
calculation result.

This paper is organized as follows. In Sec. II, we define
the model Hamiltonian and the DW magnetic textures on a
cubic lattice, and calculate the band structure by numerically
diagonalizing the Hamiltonian. We focus on the behavior of
zero modes and observe the “Fermi arc” structure arising
at each DW. In Sec. III, we calculate the excitation energy
of a single DW, and compare the results among the three
configurations of DWs. In Sec. IV, we observe the charge
distribution in the presence of a single DW, and focus on
the electric charge localized around the DW. We discuss the
relationship between the localized charge (localized modes)
and the axial magnetic field corresponding to the magnetic
texture. Finally, in Sec. V, we conclude our discussion and
propose some future problems. In this paper, we take h̄ = 1
and restore it in the final numerical result.

II. MODEL

In this section, we define the model Weyl Hamiltonian on a
hypothetical cubic lattice, and introduce three realistic textures
of magnetic DWs. Using this model, we calculate the band
structure numerically and deal with the “Fermi arc” states
arising from the DW.

A. Lattice Hamiltonian

In this paper, we treat Weyl electrons coupled with localized
magnetic moments via the exchange interaction. We here

construct the model Hamiltonian on a hypothetical cubic lattice
with the lattice spacing a,

H = H0 + Hexc, (3)

H0 =
∑
i,j

c
†
i hij cj + H.c., (4)

hij = 1

2

∑
μ

(−itαμ + rβ)δi+μ̂,j + 3r

2
βδij , (5)

Hexc = −J
∑

i

M i · c
†
i �ci, (6)

where we have required cubic symmetry of the Weyl Hamil-
tonian for simplicity. The Hamiltonian H consists of the non-
interacting Wilson-Dirac Hamiltonian H0 (see Refs. [35,36])
and the exchange interaction term Hexc. The four-component
fermionic operator ci = (cR↑

i ,c
R↓
i ,c

L↑
i ,c

L↓
i ) (c†i ) annihilates

(creates) an electron on the lattice site i, with R/L and ↑ / ↓
denoting the electron chirality (valley) and spin, respectively.
The parameters t and r characterize the hopping in the Wilson-
Dirac Hamiltonian, defined between neighboring lattice sites i

and j , with μ = x,y,z. The 4 × 4 Dirac matrices α and β are
defined by

α =
(

σ 0
0 −σ

)
, β =

(
0 I

I 0

)
, (7)

with the Pauli matrices σ and the identity matrix I . The
exchange interaction J couples the electron spin c

†
i �ci with

the localized magnetic moment M i , where � = σ ⊗ I is the
spin operator of the electrons.

This model can be diagonalized analytically under the
uniform magnetization M i = M0ex . Here the Hamiltonian
under the periodic boundary condition can be rewritten by the
Fourier transformation:

H =
∑

k

c
†
k[h0(k) + hexc]ck, (8)

h0(k) =
∑

μ

(t sin kμa)αμ + m(k)β, (9)

m(k) = r
∑

μ

(1 − cos kμa), (10)

hexc = JM0�x. (11)

Thus the eigenvalues are given by

Eη(k) = ±
√ ∑

μ=y,z

t2 sin2 kμa + [ξ (k) + ηJM0]2, (12)

ξ (k)2 = t2 sin2 kxa + m(k)2 (13)

for each k in the Brillouin zone BZ = [−π/a,π/a)3, with η =
±1 the label for chirality R/L. In case r = t , the valence and
conduction bands touch at two Weyl points, K± = (±k	,0,0),
where

k	 = 2

a
arcsin

(
JM0

2t

)
. (14)

The separation of the Weyl points is determined by the
magnitude and the direction of the background magnetization.
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FIG. 1. Schematic pictures of DW configurations employed in
this paper. Red arrows denote the directions of localized magnetic
moments. DWs are set up around the xy plane (z = 0). (a), (b), and
(c) correspond to the coplanar (Neél), spiral (Bloch), and head-to-head
DWs, respectively.

If the exchange energy is sufficiently small compared with
the bandwidth, i.e., JM0/t � 1, this form can be simplified
as k	 � JM0/ta = JM0/vF , which is consistent with the
continuum model at low energy shown by Eq. (1). In the
numerical calculations shown below, we take all the physical
quantities dimensionless; we set the lattice spacing a to unity,
and fix the parameters t = 2, r = 2, and J |M| = 2.

B. Band structure under magnetic textures

Now we are interested in the case where the local magne-
tization M i forms a certain texture. Here, we introduce three
types of textures, and calculate the eigenvalues and eigenstates
by numerically diagonalizing the lattice Hamiltonian. Taking
the magnetic texture patterned in z direction, x and y directions
can be diagonalized analytically by the Fourier transformation,
while z direction is no longer translationally invariant and
hence it is treated numerically. Thus, we treat the system
as a series of slabs stacked in z direction. We introduce
three types of DW configurations. There are two ways to
twist the magnetization from M = −M0ex on the one end to
M = M0ex on the other, as shown in Figs. 1(a) and 1(b). In
case (a), the magnetization points perpendicular to the DW at
the center of the DW, which is called “Neél DW” or “coplanar
DW.” In case (b), the magnetization is always in the DW plane,
which is called “Bloch DW” or “spiral DW”. On the other
hand, a twisting pattern of the magnetization from M = M0ez

to M = −M0ez can be uniquely constructed due to cubic
symmetry, as shown in Fig. 1(c), which we refer to as the
“head-to-head DW.”

We first focus on the band structure under these textures.
In order to exclude the surface Fermi arcs from the calculated
band structure, we here set the periodic boundary condition
for all directions. Thus the magnetic texture employed here
is no longer a single DW but can rather be considered as
a magnetic spiral. The size of the system in z direction is
given by Lz = Nza, where the number of slabs Nz is fixed

4
2
0

-2
-4

2
3

1
0 -3 -2 -1 0 21 3

ε/t

kya
kxa

4
2
0
-2
-4

FIG. 2. Band structure under the uniform magnetization M =
M0ex , picking up the two bands crossing at zero energy. The region
in the vicinity of zero energy is shown in green. Only half of the
Brillouin zone (ky > 0) is shown to clarify the crossing points of the
Weyl cones.

to 32 here. The x and y directions are Fourier transformed due
to the translational invariance, with the wave vector (kx,ky).
Therefore the eigenstates and the eigenvalues can be labeled as
ψkx,ky ,n(z) and εkx,ky ,n, where n is the label for the energy level.
The wave function ψkx,ky ,n(z) consists of four components in
the spin and pseudospin (chirality) spaces.

Under the periodic boundary conditions, the coplanar and
spiral DWs now reduce to the sinusoidal textures defined as

Mc(z) = M0

(
cos 2π

z

Lz

, 0, sin 2π
z

Lz

)
, (15)

Ms(z) = M0

(
cos 2π

z

Lz

, sin 2π
z

Lz

, 0

)
, (16)

respectively. Since the coplanar and the head-to-head con-
figurations are equivalent by a translation by Lz/4 in the z

direction in this case, we do not take into account the band
structure under the head-to-head configuration explicitly. We
also take the uniform magnetization as a reference, where all
the localized magnetic moments are pointing in x direction
(M = M0ex).

By numerically diagonalizing the lattice Hamiltonian, we
straightforwardly obtain the band structure as a function of the
in-plane wave vector (kx,ky) for each configuration. Among all
the bands calculated by the numerical diagonalization, we here
extract and draw two bands crossing at zero energy under each
configuration. Due to particle-hole symmetry, there emerge
electron (orange) and hole (blue) bands touching at zero energy,
as shown in Figs. 2 and 3. Under the uniform magnetization
M = M0ex , time-reversal symmetry is broken and the two
Weyl points are separated in kx direction, as estimated in
Eq. (14) (see Fig. 2).

On the other hand, in the presence of an inhomogeneous
magnetic texture, the electron and hole bands touch by a line
at zero energy, namely the “Fermi arc,” instead of the isolated
Weyl points. As can be seen in Fig. 3, the coplanar texture gives
a linear Fermi arc, while the spiral texture yields a circular arc
(closed loop). The “Fermi arc” observed here can be regarded
as the trajectory of the Weyl points; Eq. (2) states that, under
a (locally) uniform magnetization M, the location of the Weyl
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FIG. 3. Band structures under the coplanar and spiral magnetiza-
tion textures, with two bands picked up as in Fig. 2. (a) The electronic
spectrum under the coplanar texture shows the straight “Fermi arc”
between two Weyl points. (b) The Fermi arc for the spiral texture
shows the circular structure, following the trajectory of the Weyl
points.

point for each valley η is determined straightforwardly by M,
as K η = ηA5 = ηJ M/vF. As long as the spatial variation of
M(z) is sufficiently slow, the positions of the Weyl points in
the (kx,ky) plane can well be regarded as a function of z. By
following the magnetization from z = 0 to Lz, the Weyl points
draw a linear trajectory for the coplanar texture and a circular
trajectory for the spiral texture.

Since the Fermi arc found here emerges in the bulk, it
cannot be measured directly, e.g., by ARPES. However, it alters
the electron energy and the charge distribution of the system,
which we shall discuss in the following sections.

III. EXCITATION ENERGY OF DOMAIN WALL

In this section, we estimate the excitation energy of a DW,
to find out which DW configuration is the most stable. We first
calculate the excitation energy numerically by comparing the
total electron energy with that under a uniform magnetization.
We also compare our results with the free energy that was
analytically derived in the continuum limit in the previous work
[37].

A. Numerical calculation

Here we investigate the effect of a single DW fixed around
z = 0, with z ∈ [−Lz/2,Lz/2]. The number of slabs Nz =
Lz/a is fixed to 32 here. The sizes of the system in x and y

 0.00

 0.01

 0.02

 0.03

 0.04

 0.03  0.06  0.09  0.12

coplanar
spiral

head-to-head

W / Lz

E
D

W
 /

 L
xL

yt

FIG. 4. The excitation energy of DW at μ = 0 as a function of
the DW thickness W , which is obtained from Eq. (20). The excitation
energy of the spiral DW is the largest among all the three DW textures.

direction are given by Lx = Nxa and Ly = Nya, and we take
here Nx = Ny � 1000; note that Nx and Ny only determine
the mesh in (kx,ky) plane and have no physical significance.
We employ the open boundary condition at z = ±Lz/2 (i.e.,
exposed to vacuum), while x- and y-directions are set periodic.
The DW configuration for each type is defined by

Mc(z) = M0

(
tanh

z

W
, 0, sech

z

W

)
, (17)

Ms(z) = M0

(
tanh

z

W
, sech

z

W
, 0

)
, (18)

Mh(z) = M0

(
sech

z

W
, 0, − tanh

z

W

)
, (19)

with W the thickness of the DW. The subscripts c, s, and h
represent the coplanar, spiral, and head-to-head DWs, respec-
tively, which we shall use in the results below.

The excitation energy of a DW is given by evaluating the
energy of the electrons in the occupied states. Taking the
electron chemical potential μ fixed to charge neutrality,
the energy per unit area to excite a DW from the uniform
magnetization is defined by

EDW = 1

LxLy

∑
ε�0

ε
(DW)
kx ,ky ,n

− 1

LxLy

∑
ε�0

ε
(uniform)
kx ,ky ,n

, (20)

where ε
(DW)
kx ,ky ,n

is the single-particle energy for each eigenstate

under the DW, while ε
(uniform)
kx ,ky ,n

is the energy under the uniform
magnetization. The reference uniform magnetization is taken
M = M0ex for the coplanar and spiral DWs, and M = M0ez

for the head-to-head DW. (It should be noted that the uniform
magnetization in x direction and that in z direction are not
energetically degenerate in the geometry employed here due
to the presence or absence of the surface Fermi arcs at the open
boundaries.) Figure 4 shows EDW for each DW configuration
as a function of the DW size W ; we can see that the spiral DW
requires the largest excitation energy among the three types,
while the head-to-head DW the smallest. It can be qualitatively
understood in terms of the number of zero modes. We have
seen that there evolves a new “Fermi arc” state connecting the
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two Weyl points by introducing a DW to the magnetic texture,
which means that a DW excites a bulk electron on the Weyl
cone in the Fermi sea onto the Fermi arc at zero energy. Since
the Fermi arc under the spiral DW is longer than that under the
coplanar DW, we can assume that the imbalance in the number
of zero modes may lead to the difference in the DW excitation
energies. This conjecture should be verified by counting the
number of zero modes in the calculated band structure, which
we shall check in terms of the “localized charge” in the next
section.

B. Comparison with gradient expansion

If the DW size W is large enough, we can estimate the
DW energy analytically in terms of the gradient expansion
as well. Starting from the continuum Hamiltonian [Eq. (1)]
and integrating out the fermionic degrees of freedom, the free
energy functional F [M] for the magnetic texture M(r) was
obtained in Ref. [37] as

F [M] = F0[M] + F1[M], (21)

F1[M] =
∫

d3r(Ji[∇M]2 + Ja[∇ × M]2), (22)

with shorthand notations [∇M]2 = ∑
i,j (∂iMj )2 and

[∇ × M]2 = ∑
i (∇ × M)2

i . The coefficients Ji and Ja

are given as

Ji = J 2

48π2v3
F

1

10
, Ja = J 2

48π2v3
F

(
ln

kC

kF
− 11

15

)
, (23)

where kF = μ/vF is the Fermi momentum and kC is the
momentum cutoff that characterizes the size of the Brillouin
zone. The gradient expansion is justified for a moderately
varying magnetic texture at a length scale larger than the Fermi
wavelength 1/kF.

F0[M] is the homogeneous part of the free energy, which
is determined only by the magnitude of the local magne-
tization (i.e., |M(r)|2) and makes no difference among the
DW configurations employed here. On the other hand, the
inhomogeneous part F1[M] depends on the spatial texture,
and is minimized under the uniform magnetization. This part
consists of two terms: the first term with the coefficient Ji

comes from the Fermi surface. This term has the same form as
the conventional Heisenberg-like RKKY interaction, namely
the effective interaction between localized spins mediated
by the spin of conduction electrons. The second term with
Ja originates from the interband transition process between
the electron and hole bands induced by the scattering by a
localized magnetic moment, which is known as the Van Vleck
mechanism. Spin mixing by spin-orbit coupling is essential
in the Van Vleck mechanism, hence strong spin-momentum
locking around the Weyl points in this system largely enhances
this term, which is captured as the logarithmic divergence in Ja

for kF → 0. Therefore, in the vicinity of the Weyl points (i.e.,
μ ∼ 0), the Ja term is dominant and the Ji term can be safely
neglected.

Using Eq. (22) and neglecting the Ji term, the free energy
per unit area f1 = F1/A for each DW configuration is literally

given by

f1[Mc] = 4Ja

3W
, f1[Ms] = 2Ja

W
, f1[Mh] = 2Ja

3W
, (24)

with A the area of the DW. This simple analysis implies that
the spiral DW requires the largest excitation energy and the
head-to-head the smallest. Although the gradient expansion
cannot be applied to finite-size magnetic textures at charge
neutrality (i.e., vanishing Fermi momentum), we can see here
that the gradient expansion and our numerical diagonalization
give complementary understanding about the DW excitation
energy at a qualitative level.

IV. LOCALIZED CHARGE

In this section, we focus on the electric charge distribu-
tion altered by the DW, using the eigenstate wave functions
obtained by the numerical diagonalization. In a WSM with
a uniform magnetization, all the eigenstates are composed
of plane waves and consequently the charge distribution is
uniform in the bulk. On the other hand, a magnetic DW in
a WSM hosts a linearly dispersed Fermi arc mode, which
may contribute to the localized charge. Here, we numerically
calculate the deviation of the charge distribution under the
DWs from that in the uniform system. We show that a certain
amount of charge gets localized around the DW, and calculate
the amount of the localized charge for each DW configuration.
We shall employ the same DW configuration as in the previous
section for our numerical calculation.

A. Charge distribution

Taking the summation over the wave function distributions
over all the occupied eigenstates, we can estimate the charge
distribution induced by the DW as

δρ(z) = e

LxLya

∑
kx ,ky

∑
ε�μ

[∣∣ψ (DW)
kx ,ky ,n

(z)
∣∣2 − ∣∣ψ (uniform)

kx ,ky ,n
(z)

∣∣2]
,

(25)

with e an elementary charge, for each DW configuration. Here,
ψ

(DW)
kx ,ky ,n

(z) and ψ
(uniform)
kx ,ky ,n

(z) denote the eigenfunction under
the DW texture and that under the uniform magnetization,
respectively. Figure 5 shows our calculation result for a
chemical potential μ = 0.1t and a DW size W = 0.1Lz. We
can see here that charge is accumulated around the DW for
all three DW configurations. We should note that the coplanar
and the spiral DWs give a single peak at the center of the DW,
while the head-to-head type gives two peaks separated by a
small cusp at the center.

The charge localization found here can be traced back to the
Landau quantization under the axial magnetic field. As we have
seen in Eq. (2), the local magnetization M(r) couples to the
electron spin as an axial gauge field A5(r) = (J/evF )M(r)
at low energy. The magnetic DW texture bears a vorticity
inside the DW, which corresponds to the axial magnetic
field,

B5(r) = ∇ × A5(r). (26)
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FIG. 5. The charge distribution calculated by Eq. (25), with
μ/t = 0.1 and W/Lz = 0.1. The coplanar and the spiral DWs give a
single large peak, while the head-to-head DW gives two small peaks.

Using the formulations in Eqs. (17)–(19), the axial magnetic
field distribution for each DW configuration is given by

B5c(z) = JM0

evF

(
0, sech2 z

W
, 0

)
, (27)

B5s(z) = JM0

evF

(
tanh

z

W
sech

z

W
, sech2 z

W
, 0

)
, (28)

B5h(z) = JM0

evF

(
0, − tanh

z

W
sech

z

W
, 0

)
. (29)

It should be noted that the direction of the axial magnetic field,
i.e., B̂5(z) ≡ B5(z)/|B5(z)|, is unidirectional (y direction) for
the coplanar DW, while it spatially varies for the spiral and
head-to-head cases. B5h(z) suddenly flips its direction at the
DW center, while B5s(z) gradually changes its direction inside
the DW.

The axial magnetic field induces the Landau quantization in
the electronic spectrum, just like a normal (realistic) magnetic
field [16]. In the presence of a uniform axial magnetic field
B5 = B5ey , for instance, the Landau level (LL) spectrum for
the nth LL (n = 0, ± 1, ± 2, · · · ) is given by

En�=0(ky) = vFsgn(n)
√

2|n|eB5 + k2
y, (30)

En=0(ky) = vFky, (31)

where the zeroth LL is unidirectionally dispersed along the
axial magnetic field [16,38]. Figure 6 shows the band structure
in the presence of coplanar DWs calculated by the numerical di-
agonalization [39]; it shows the Landau-like spectrum around
zero energy, which comes from the axial magnetic field arising
from the DW texture.

Here we should note that the Landau states localize at the
magnetic flux, with a degeneracy ρ = B5/φ0 per unit area,
where φ0 = e/2π is the flux quantum. This implies that, in
the presence of a spatial variation in B5, the charge density
becomes larger in the region where the amplitude of B5 is
strong. Figure 7 shows the spatial distribution of |B5(z)| for
each DW texture, all of which show strong |B5| around the
center of the DW. Comparing the charge distribution in Fig. 5
and the axial magnetic field distribution in Fig. 7, we can regard

(a)

(ky = 0)

kxa

E/
t

(b)

E/
t

(kx = 0)

kya

n = 0
n = 1
n = 2

FIG. 6. The band structure in the presence of two opposite
coplanar DWs under the periodic boundary condition, with (a) ky = 0
and (b) kx = 0. The bands show the Landau-like spectrum around zero
energy, with the zeroth LL (n = 0) unidirectionally dispersed in ky

direction.

the charge localization as the result of the Landau quantization
and degeneracy by the axial magnetic field at the DW. For
instance, the spiral DW gives the strongest axial magnetic field
among the three DW configurations, which leads to the largest
localized charge, as seen in the calculation. The two-peak
structure in the charge distribution in the presence of the
head-to-head DW can also be traced back to the strength of the
corresponding axial magnetic field. Since the wave function of
each Landau state has a tail at a scale of the cyclotron radius,
the charge density at z = 0 becomes finite even though the
axial magnetic field reaches zero there.

If the Fermi level is fixed at zero energy, the contribution
from the occupied LLs is negligible; while the charge density
coming from the bulk states is proportional to the volume of
the Brillouin zone, namely, k3

C, that from the Landau states is
proportional to the length of the Brillouin zone, namely, ρkC.
Therefore, at charge neutrality, the charge distribution becomes
completely flat in the continuum limit (i.e., kC → ∞), except
for the surface of the sample. On the other hand, when the Fermi
level is set slightly above or below zero energy, the deviation
of the charge distribution from charge neutrality mainly comes
from the zeroth LL; the density of states in the zeroth LL is
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FIG. 7. The strength of the axial magnetic field B5 for each DW
configuration. |B5| for the head-to-head DW has two peaks and
vanishes at z = 0, which accounts for the cusp structure in the charge
distribution seen in Fig. 5.

constant around μ = 0, while that for Weyl cones is quadratic
in μ. From this discussion, we can conclude that the localized
charge at low μ found here originates from the zeroth LL under
the axial magnetic field B5, whose wave functions are bound
around the DW. The relation between the localized charge and
the chemical potential shall be discussed further in the next
subsection.

Since the zeroth LL is the only LL that crosses zero energy,
we can regard the Fermi arc structure found in the band
calculation in Sec. II as the Fermi contour of the zeroth LL
at zero energy. As the localized charge comes from this zeroth
LL, it can be seen from our calculation result that the spiral
DW possesses more localized states in its DW Fermi arc, in
comparison with the coplanar DW. This discussion verifies our
conjecture raised in Sec. III about the relationship between the
Fermi arc structure and the DW excitation energy.

B. Total localized charge

The net charge q localized at the DW is obtained by
integrating the charge distribution over the whole system,

q =
∑

z

δρ(z)a

= e

N

∑
kx ,ky ,z

∑
ε�μ

[∣∣ψ (DW)
kx ,ky ,n

(z)
∣∣2 − ∣∣ψ (uniform)

kx ,ky ,n
(z)

∣∣2]
, (32)

per unit area of the DW. Figure 8 shows the behavior of the
total charge as a function of the chemical potential μ for each
DW configuration, with the DW thickness W fixed to 0.1Lz.
We can see that the spiral DW bears the largest charge and
the head-to-head DW the smallest, as we have seen in the
charge distribution calculation. It should be noted that the total
charge is almost proportional to the chemical potential μ for
any DW configuration, since the number of the occupied states
in the lowest LL is proportional to μ due to its constant density
of states around μ = 0. When the chemical potential μ goes
beyond the energy scale ∼0.1t , which is not shown in Fig. 8,
the total charge q becomes no longer proportional to μ, since
not only the zeroth LL but the higher LLs also gets occupied
and contributes to the localized charge.

coplanar
spiral

head-to-head
collinear

(analytical result)

0.00 0.05 0.10-0.05-0.10

0.0

-0.5

-1.0

-1.5
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1.5

qa
2  

/ 
10

-2
e

μ / t

FIG. 8. The net localized charge q as a function of the chemical
potential μ for each DW, with the DW size W = 0.1Lz. The net
localized charge at the collinear DW, which was analytically obtained
in Ref. [34] [Eq. (34)], is shown by the red solid line for comparison.

Under a certain DW configuration, the Weyl equation under
the continuum Hamiltonian [Eq. (1)] can be analytically solved
to estimate the amount of the localized charge. In Ref. [34], the
authors employed the simplified collinear DW configuration,
which is described by the magnetic texture

Mcoll(z) = M0

(
tanh

z

W
, 0, 0

)
, (33)

and derived the net localized charge

qcoll = e

π2

k	

vF
μ (34)

by using the distribution of the analytically obtained wave
functions in the zeroth LL. Since the axial magnetic field
structure of the collinear DW is identical to that of the coplanar
DW, this analytical form applies to the coplanar DW as well.
In Fig. 8, we also show this analytical form in the solid red
line. It is in good agreement with the numerically obtained q

for the coplanar DW, from which we can ensure that the charge
localization around the DW is dominated by the zeroth LL, as
assumed in Ref. [34].

The localized charge confirmed here implies that, when the
DW is moving adiabatically (e.g., by an external magnetic
field), it carries the localized charge, resulting in a current
pulse. Based on this charge pumping picture, the localized
charge was conversely estimated in Ref. [19], as

q = e

2π2

Jμ

v2
F

∫
dz|∂z M⊥(z)| = e2

2π2

μ

vF

∫
dz|B5⊥(z)|,

(35)

where the subscript ⊥ denotes vector components transverse to
the z axis. This relation was derived by assuming the quantum
limit of the Landau quantization, requiring the Fermi level
μ to be low enough so that it should be between the zeroth
and first LLs under the axial magnetic field B5(z) throughout
the whole system. Under this assumption, Eq. (35) gives the
localized charge per unit area of the coplanar (c), spiral (s), and
head-to-head (h) DWs as

qc = qh = e

π2

JM0

v2
F

μ, qs = e

2π

JM0

vF
μ. (36)
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For the coplanar DW, this relation is consistent with that from
the analytical diagonalization given in Eq. (34), namely, the
solid red line in Fig. 8. Comparing these relations with our
numerical results in the present work, we find that Eq. (36)
overestimates the localized charge for the head-to-head DW.
Such a discrepancy can presumably be traced back to the
breakdown of the quantum limit assumption; since the axial
magnetic field drops sharply to zero at the center of the
head-to-head DW, the quantum limit assumption is no longer
reliable about the center of the DW. On the other hand, Eq. (36)
well describes our numerical results for the coplanar and spiral
DWs, since the axial magnetic field for these DWs is strong
enough to apply the quantum limit assumption within the
region of the DW. Since the size of the system is finite in
our numerical calculation, we loose the “tail” of the localized
charge beyond the boundary, which slightly reduces the net
charge q from its analytically obtained value in the infinite
system.

C. Physical implications

Let us now discuss how the localized charge at the DW can
be captured experimentally. Regarding the system as Cr-doped
Bi2Se3 (Ref. [15]), we can estimate the amount of the localized
charge with Eq. (34) for the coplanar DW. We take the Fermi
velocity (within the quintuple layer) as vF = 3.55 eV Å, which
was observed by the ARPES measurement [40]. From the first-
principles calculation [41], the exchange coupling between
the localized magnetic moment of Cr and the p electron was
estimated as JM0 = 2.7 eV. In the present system, since Cr
is doped by partially substituting Bi to a concentration x, we
use xJM0 instead of JM0 in our calculation, by taking the
local average of the exchange energy around each site; here
we use x = 0.05, which was suggested by Ref. [15]. By using
the parameters given above, and tuning the chemical potential
μ to 100 meV, the localized charge on the coplanar DW is
obtained as

q = 1.1e × 1011 cm−2. (37)

Therefore, for a DW with its size W = 10 nm, the average
charge density inside the DW is given as q/W = 1.1e ×
1018 cm−3. This value is comparable to the typical charge
density in GaAs, which implies that the localized charge may
be directly measured by the scanning tunneling microscope
(STM) in a thin-film geometry [42].

Moreover, since the DW behaves as a charged object, we
can expect that an external electric field applied to this system
can drive the motion of the DW. Here we should note that
the electron transmission beyond the DW is suppressed if the
chirality-flipping scattering process is negligible, since the DW
drastically exchanges the positions of the valleys in momentum
space [43]. Therefore the DW in our magnetic WSM is driven
only by the electrostatic force, which is distinct from the
well-known spin-transfer and spin-orbit torques invoked by
the conduction electron. Since the charge carried by the DW in
our system is much smaller than that by the conduction current
in normal magnetic metals, the electric driving of the DW
proposed above will reduce the energy loss by Joule heating
to a large extent, compared with the conventional spin-transfer
and spin-orbit torques.

The dynamics of the DW can be obtained by solving the
equation of motion, namely the Landau-Lifshitz-Gilbert (LLG)
equation, for each localized spin that forms the magnetic
texture. If the dynamics of the DW is regarded adiabatic so
that one can neglect the dynamics in its internal structure, we
can rely on the macroscopic equation of motion for a DW that
was derived from microscopic LLG equations [44]. It takes the
form of a simple Newtonian equation:

MWẌ + MW

τW

Ẋ = qE, (38)

for a DW per unit area under the electric field E, where
X denotes the center of mass of the DW in the collective
coordinate representation. The “inertial mass” (per unit area)
MW = NW/KW 2 comes from the moment of inertia of each
localized spin against the external torque, while the “friction
factor” τ−1

W = αK/h̄ arises from the Gilbert damping; here,
NW = 2xW/a3 is the number of localized spins in a unit
area of the DW, a is the lattice constant, K is the magnetic
anisotropy energy, and α is the Gilbert damping constant. If
the Gilbert damping is sufficiently large, the driving force here
leads to an adiabatic motion of the DW. The DW velocity
V eventually reaches a constant value, namely the creep
velocity,

VC = τW

MW

qE = a3W

2αx
qE. (39)

We should note that this creep velocity becomes independent
of the Cr concentration x (as long as the localized charge q

comes only from the zeroth LL), since q is proportional to
the (averaged) exchange energy xJM0 in this regime, as we
have seen in the discussion above. Using the lattice constant
a = 9.84Å employed for the first-principles calculation on
Bi2Se3 (Ref. [45]) and fixing the Gilbert damping constant
to the typical value α = 0.01, the localized charge q obtained
in Eq. (37) for the coplanar DW yields a creep velocity VC =
81 m/s under an electric field E = 100 V/cm. This velocity
is not as fast as the typical DW velocity driven by spin-orbit
torques, which can reach up to 300–400 m/s (see Refs. [31,32]).
However, our method using WSMs is still advantageous in the
viewpoint of energetic efficiency, i.e., the reduction of Joule
heating.

V. CONCLUSION

In this paper, we have investigated the electronic properties
of a magnetic WSM in the presence of magnetic DWs. Using
the energy eigenvalues and eigenstates obtained from the
numerical diagonalization of the magnetic Weyl Hamiltonian,
we have calculated the DW excitation energy and the charge
distribution for three types of DWs: coplanar, spiral, and
head-to-head. The main finding in this paper is that a DW
in a magnetic WSM induces a localized charge at the DW,
the amount of which linearly depends on the Fermi level
for any type of DW at low energy. We can understand this
behavior by regarding the magnetic texture as an emergent
axial magnetic field for the electrons: as the magnetic DW
texture is equivalent to the axial magnetic field around the
center of the DW, it yields Landau quantized states at the DW,
and the zeroth LL among them contributes to the localized
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charge at low energy. Since the zeroth LL in 3D is unidirec-
tionally dispersed and shows a constant density of states at
low energy, the localized charge, namely, the number of the
occupied states, becomes proportional to the Fermi energy.
The charge distribution around the DW qualitatively agrees
with the spatial profile of the axial magnetic field for each DW
configuration, which also supports our “Landau quantization”
hypothesis.

The DW properties observed here in 3D WSMs may be
contrasted with those in lower dimensional systems. Fixing
one or two momentum components transverse to z in the Weyl
Hamilotnian in Eq. (1), it reduces to the 2D or 1D massive
Dirac (Weyl) Hamiltonian with a DW structure in the Dirac
mass. Such low-dimensional DWs have been discussed in the
context of several physical systems, such as a magnetic DW on
the surface of topological insulator [20] and a charge-density-
wave DW (soliton) in the 1D polyacetylene chain [46–48].
The emergence of DW zero modes observed in our calculation
with a lattice Weyl Hamiltonian can be traced back to these
low-dimensional counterparts. On the other hand, the physical
properties, such as the excitation energy and the dynamics,
of the DW in 3D WSM are significantly different from those
in the lower dimensional systems, since the WSM is gapless
throughout the whole system. For instance, the localized charge
at the DWs in lower dimensional systems is quantized, while it
depends on the electron chemical potential μ in 3D WSM, as
we have seen in Fig. 8 and Eq. (34). This implies that the charge
of the DW in WSM can be tuned via the gate voltage (in thin
film geometry), which would be advantageous in spintronic
applications.

While we have neglected the Coulomb interaction in our
analysis, it usually has a significant effect on the charge
distribution: when an electric charge is put inside a conductor,
a charge with the opposite sign gets accumulated around the
original charge due to the Coulomb interaction, which is known
as the electrostatic screening. Although the localized charge in
a WSM should also be subject to the screening in the presence
of the Coulomb interaction, we expect that it would be less
significant than that in normal metals. The screening effect in
general can be neglected if the system size is smaller than the

screening length: this is more likely to occur in WSMs than
in normal metals, since the screening length in WSMs at low
energy tends to be longer than that in normal metals due to the
vanishing density of states at the Weyl points.

Making use of this localized charge, we have semiclassi-
cally demonstrated that a DW in a magnetic WSM can be
driven by the electrostatic force from an external electric field.
This effect can be regarded as the inverse effect of the charge
pumping conveyed by the dynamics of a magnetic texture in
a WSM, which was proposed in a recent paper by the authors
[19]. It should be noted that the DW in this system almost
totally suppresses the conduction current [43] and thus will
reduce the energy loss by Joule heating to a large extent,
which is quite advantageous in making use of such DWs for
spintronics. Recent transport and ARPES measurements found
that the Heusler alloy Co3Sn2S2 shows a ferromagnetic WSM
phase [9–11], which may serve as a good playground for
magnetic DWs treated in our work. On the other hand, our
hypothetical lattice model cannot be straightforwardly applied
to antiferromagnetic WSMs, such as Mn3Sn (Refs. [12–14]),
since noncollinear antiferromagnetic order on the kagome
lattice is expected in those materials, which cannot be simply
described by a single order parameter. In antiferromagnetic
Mn3Sn, for instance, the tight-binding model calculation [13]
showed that its chiral antiferromagnetic order is related to
the separation of the Weyl points, namely A5 in Eq. (2),
and the anomalous Hall conductivity. Therefore we can make
a rough qualitative assumption that a spatial modulation of
the antiferromagnetic order becomes equivalent to the axial
magnetic field, which implies that an antiferromagnetic DW
may host the localized charge in a similar manner to the
ferromagnetic DWs observed here.
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