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Identifying Topic-based Communities by Combining Social

Network Data and User Generated Content

Abstract

This study proposes a model for identifying communities by combining two types of

data: social network data and user-generated-content (UGC). The existing models for

detecting the community structure of a network employ only network information. How-

ever, not all people connected in a network share the same interests. For instance, even if

students belong to the same community of “school,” they may have various hobbies such

as music, books, or sports. Hence, targeting various networks to identify communities

according to their interests uncovered by their communications on social media is more

realistic and beneficial for companies. In addition, people may belong to multiple commu-

nities such as family, work, and online friends. Our model explores multiple overlapping

communities according to their topics identified using two types of data jointly. By way

of validating the main features of the proposed model, our simulation study shows that

the model correctly identifies the community structure that could not be found without

considering both network data and UGC. Furthermore, an empirical analysis using Twit-

ter data clarifies that our model can find realistic and meaningful community structures

from large social networks and has a good predictive performance.

Keyword: Social network analysis, Community detection, User-generated-content, Topic

modeling, Bayesian inference
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1 Introduction

The product or information diffusion is affected by not only the communication between

companies and consumers but also by interactions between consumers such as word-of-mouth

on social media or product reviews on e-commerce sites; the impact of the latter is stronger

in the modern social media development. Companies are required to implement various

marketing activities considering such relationships between consumers. A significant first

step towards learning about the relationship between customers is to grasp the community

structure of their social networks. If nodes of a network can be divided into some (potentially

overlapping) groups such that nodes are densely connected internally, the network is said to

have a community structure. Furthermore, researchers know that social network structures

with closely connected nodes, or consumers, can bring some benefits to companies such as

sharing contents (Peng et al, 2018), achieving long-term popularity (Ansari et al, 2018), and

accelerating product innovation (Peres, 2014). Therefore, grasping the community structure

of the customers’ social networks may prove to be useful for companies when planning their

marketing activities.

A lot of attention has been paid to identifying community structures for a long time,

and many methods have been proposed (e.g., Newman, 2006; Ng, Jordan, & Weiss, 2002;

Nowicki & Snijders, 2001; Handcock, Raftery, & Tantrum, 2007). In addition to social network

analysis, these methods are used in many other fields, including analysis of protein-protein

interaction networks (Jeong et al, 2001), terrorists networks (Krebs, 2002), and co-author

networks (Liu et al, 2005).

However, these methods focus only on network information, while more meaningful com-

munities could be identified if other social network information was considered. For example,

students belonging to the same community of “school” are thought to be connected to each

other via some types of relationships to form social networks. Such networks are regarded as

one community when considering only network information. At the same time, the students

may be involved in various hobbies such as music, books, or sports. More meaningful segmen-

tation can be achieved if researchers regard networks whose members have different properties

(or interests) as multiple communities rather than one. To do so, text information on social
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media representing user-generated-content (UGC) and uncovering members’ interests can be

used. Employing both the network and text information can allow researchers to recognize

the community structure from two viewpoints: the density of the network connections and

similarity of interests derived from text information.

To understand the community structure of a social network, the problem of people be-

longing to multiple communities such as family, work, and online friends should be considered

in addition to network data and UGC. This problem is called community overlapping. The

estimated network structure in this case can have a large deviation from that of the real

network when applying methods such as hard clustering, where each node in considered to

belong to a single community. The mixed membership stochastic block model (MMSB) pro-

posed by Airoldi, Fienberg, & Xing (2008) is one of the most popular statistical generative

models investing the community overlapping problem. In this study, we extend MMSB and

propose a model, called the mixed membership stochastic topic block model (MMSTB), for

identifying communities by combining social network data and UGC.

The rest of this paper is organized as follows: related work is discussed in Section 2. The

proposed model, MMSTB, and its inference algorithm are introduced in Section 3. Section

4 examines the simulation studies conducted to validate the main features of MMSTB and

choose numbers of communities and topics. Section 5 presents an application of the proposed

model to a real-world network, namely, Twitter. Finally, Section 6 provides some concluding

remarks.

2 Literature review

2.1 Social networks and consumer behavior

Many studies have focused on the impact of the structure of a social network on consumer

behavior (see Muller & Peres, 2018, for a comprehensive review). As a remarkable achievement

of these studies, researchers know that consumers belonging to the same community positively

influence each other’s consumption behavior. For example, Peng et al (2018) used the content

shared on Twitter and found that a receiver is more likely to share content from a sender with

whom they have more common followers, common followees, and common mutual followers.
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Peres (2014) demonstrated that the higher the average degree a network has, the faster the

product innovation progresses; that is, consumption behaviors are more active in the network.

People belonging to the same community tend to have many common acquaintances because

of the high density of connections; hence, they are likely to be more intimate. Based on these

results, it is sensible for companies to grasp the groups (or communities) of customers who

have positive influences on each other’s consumption behavior.

2.2 Identifying communities using network information

A number of models have been proposed in the literature to identify the community

structure of a network. They can be divided into approaches using deterministic algorithm

and statistical models. One of the approaches using a deterministic algorithm is based on the

modularity score introduced by Newman (2006), where modularity is a measure of the strength

of connections within a network divided into modules; a network with high modularity forms

dense connections between the nodes within modules but sparse connections between nodes

in different modules. The algorithm proposed by Newman (2006) detects communities by

maximizing modularity, and this algorithm is one of the most widely used methods due

to its simplicity. Another approach using a deterministic algorithm is spectral clustering

(Ng, Jordan, & Weiss, 2002), which is based on the eigenvalue decomposition of the graph

Laplacian. The graph Laplacian is a matrix obtained by transforming the adjacency matrix,

and the community structure can be clarified by applying some clustering methods such as

k-means for the eigenvectors of the graph Laplacian.

The community detection methods using statistical models have been well developed in

past decades, with the representative one being the stochastic block model (SBM) proposed

by Wang & Wong (1987) and formulated by Snijders & Nowicki (1997) and Nowicki & Sni-

jders (2001). The SBM assumes that when the cluster membership of each node is given, the

relationship between nodes is generated according to some probability distribution such as the

Bernoulli distribution. Many researchers have studied the statistical properties of the SBM

(e.g., Sussman et al, 2012; Abbe, 2018) and proposed extended models (e.g., Karrer & New-

man, 2011). Another statistical model for detecting community is the latent position cluster

model (LPCM, Handcock, Raftery, & Tantrum, 2007) that extends the latent space model
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(LSM, Hoff, Raftery, & Handcock, 2002). While the LSM models the edge probability using

a parameter representing the latent position of a node, the LPCM introduces the hierarchical

structure of the spherical Gaussian mixture model for the latent position parameter. The

spherical Gaussian distribution corresponds to the latent position of the community to which

nodes belong on their social network, and hence, the LPCM allows identifying the community

structures.

Recently, some models have been proposed to accommodate community overlapping (Gorm-

ley & Murphy, 2010; Latouche, Birmele, & Ambroisé, 2011; McDaid & Hurley, 2010). In

particular, the MMSB (Airoldi et al, 2008) allows each node to belong to multiple clusters by

extending the SBM, which imposes the constraint that nodes can belong to only one cluster.

2.3 Simultaneous modeling of network Data and user-generated-content

The models introduced in Section 2.2 consider only network information (i.e., the con-

nections between nodes). Conversely, simultaneously modeling network data and UGC for a

deep understanding of modern social networks such as Twitter and Facebook would be useful,

because the pieces of information allows researchers to recognize a social network structure

that is more valuable for companies by accommodating the detection of heterogeneous rela-

tionships and interests across a specific community that are hidden in social network data.

For instance, it is possible that there is a group of music lovers in a community of school.

Several studies on the community identification considering network data and UGC (par-

ticularly text) have been developed recently. In an earlier study, Zhou et al (2006) proposed

the community user topic model (CUT). The CUT extends the latent Dirichlet allocation

(LDA, Blei, Ng, & Jordan, 2003) model for natural language processing to accommodate

the phenomenon that users with the same interests, that is, those who create texts with the

same topic, tend to belong to the same community. However, people who belong to the same

community do not necessarily create texts with the same topic, and the CUT can only clarify

a limited community structure of a social network.

Pathak et al (2006) proposed the community author recipient topic (CART) model that

incorporates both network and text information to extract well-connected and topically mean-

ingful communities. Furthermore, CART allows the nodes to belong to multiple communities.
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Conversely, the CART assumes textual edges, where text information appertains to edges,

which is the case in e-mail networks and co-authorship networks of papers and is different

from the focus of this research. In addition, unlike the CART designed only for directed

graphs, our model can handle both directed and undirected graphs.

Liu et al (2009) proposed the topic-link LDA (TL-LDA) method that detects the commu-

nity structure by considering information in a situation with textual nodes, which is similar

to our research; however, this method assumes that each node has a single community mem-

bership. In addition, the probability of creating an edge between nodes is defined by the

similarity of the community and topic proportion of the nodes. Hence, the probability is

constant regardless of the direction of the edge and can be applied to undirected graphs only.

In a recent study, Bouveyron, Latouche, & Zreik (2018) proposed the stochastic block

topic model (STBM) that extends the SBM by incorporating text information into the model

and is suitable for both undirected and directed graphs. If a node belongs to community A

and another node belongs to community B, the SBM handles any graph regardless of whether

it is directed or not by estimating the probability separately for the cases of generating edges

from A to B and from B to A. While our proposed method can handle the two types of graphs

similar to the STBM, our method also overcomes the limitation of the STBM, where nodes

can have only a single community membership.

Finally, we clarify the characteristics of our model. Table 1 summarizes the discussed

models compared by five characteristics. When comparing to the models that consider either

network or text information only (such as LDA, SBM, and MMSB), our model has an ad-

vantage of being able to extract well-connected topically meaningful communities by taking

both types of information into account. When comparing to the models that consider both

types of information, our model can be distinguished from the existing models according to

the following three properties: nodes can have multiple community memberships; graphs can

be both directed and undirected; text information appertains to nodes, which is the situation,

where people send their own tweets to all users on their Twitter timeline. Considering these

features, we call our model the MMSTB.
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Table 1: Comparison between the proposed model and existing models

Network Text
Mixed Direction Situation

membership of graph of text

LDA × © © - -
(Blei, Ng, & Jordan 2003)

SBM © × × Both -
(Nowichi & Snijders, 2001)

MMSB © × © Both -
(Airoldi et al., 2008)

CUT © © © Only Textual
(Zhou et al., 2006) directed edges

CART © © © Only Textual
(Pathak et al., 2006) directed edges

TL-LDA © © × Only Textual
(Liu et al., 2009) undirected nodes

STBM © © × Both
Textual

(Bouveyron et al., 2018) edges

MMSTB © © © Both
Textual

(This study) nodes

3 Model

This section describes the proposed model MMSTB for community identification. Our

observed data consist of the adjacency matrix A as a network information and bag-of-words

collection W as a text information. In the following, we explain the process of generating

these data and inference procedure employed in MMSTB.

3.1 Model specification

First, we consider a directed network with D nodes. D×D adjacency matrix A represents

the relationships between the nodes with their elements being aij = 0 (not connected) or 1

(connected). We assume that the network has no self-loops and therefore aii = 0, ∀i. For the
relationship from node i to node j, we consider that sender i belongs to latent community sij ∈
{1, . . . ,K} (K is the number of communities), while recipient j belongs to latent community

rji ∈ {1, . . . ,K}. D×D matrix representations of latent communities are denoted as S = (sij)

and R = (rji), respectively. These sender and recipient communities are assumed to follow
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a categorical distribution, sij |ηi ∼ Categorical(ηi), rji|ηj ∼ Categorical(ηj), where ηi =

(ηi1, . . . , ηiK)T is a community distribution which represents node i’s community proportion,

and
∑K

k=1 ηik = 1, ∀i. The matrix representation of community proportions are denoted as

H = (η1, . . . , ηD). The prior distribution of H is assumed to follow a Dirichlet distribution,

ηi|γ ∼ Dirichlet(γ) (i = 1, . . . , D), where γ = (γ1, . . . , γK) is a hyperparameter.

We assume that the connection variable aij between node i to j, when sij and rji are

given, follows the Bernoulli distribution that depends on the community of the nodes. That

is, aij |sij , rji,Ψ ∼ Bernoulli
(
ψsij ,rji

)
, where ψkk′ is a probability that an edge is generated

when a sender node belongs to community k and a recipient node belongs to community k′.

Let K ×K matrix, Ψ = (ψkk′) be the matrix representation of edge probabilities. Each edge

probability is assumed to follow a Beta distribution, ψkk′ |δkk′ , εkk′ ∼ Beta(δkk′ , εkk′) (k, k
′ =

1, . . . ,K), where δ, ε are hyperparameters of the K ×K matrix.

Then, the conditional joint likelihood of the network information for parameters and latent

variables, when the community distribution, H, is given, is

p(A,S,R,Ψ|H) = p(A|S,R,Ψ)p(S|H)p(R|H)p(Ψ|δ, ε)
D∏
i=1

⎧⎨
⎩

D∏
j=1,j �=i

{p(aij |sij , rji,Ψ)p(sij |ηi)p(rji|ηj)}
⎫⎬
⎭×

K∏
k=1

K∏
k′=1

p(ψkk′ |δkk′ , εkk′), (1)

where δ and ε are hyperparameters for Ψ and fixed to some values.

For UGC, this study considers text data such as contents created by people on social

media or blogs. However, other types of UGC (e.g., images, movies, or music) can also be

handled by MMSTB after appropriate modeling.

Next, we consider modeling text content. Node i creates some texts that are vectorized as

Mi words ignoring the order, i.e., “bag-of-words”. Node i’s mth word wim (m = 1, . . . ,Mi)

is assumed to have latent community xim ∈ {1, . . . ,K} and latent topic zim ∈ {1, . . . , L}
(L is the number of topics), as in the case of the conventional LDA model. The array

representations of words, word communities, and word topics are denoted as W , X, and Z,
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respectively, and each component of the arrays is a Mi-dimensional vector. We assume that

word community xim follows a categorical distribution, xim|ηi ∼ Categorical(ηi). We note

that ηi is a parameter for generating not only word community xim but also node communities

sij and rij as mentioned before, that is, ηi is a common parameter for modeling networks and

texts that connects the two types of information.

A word topic zim is assumed to follow a categorical distribution, zim|xim,Θ ∼ Categorical(θxim),

where θk = (θk1, . . . , θkL)
T is the topic distribution representing community k’s topic propor-

tion, and
∑L

l=1 θkl = 1, ∀k. The matrix representations of topic proportions are denoted

as Θ = (θ1, . . . , θK). Each topic distribution is assumed to follow a Dirichlet distribution,

θk|α ∼ Dirichlet(α) (k = 1, . . . ,K), where α = (α1, . . . , αL) is a hyperparameter.

When a word topic zim is given, the corresponding word wim ∈ {1, . . . , V } is assumed to

follow a categorical distribution that depends on word topic, i.e., wim|zim,Φ ∼ Categorical(φzim),

where φl = (φl1, . . . , φlV )
T (V is the number of unique words in the corpus) is the word dis-

tribution representing the word generation probability, and
∑V

v=1 φlv = 1, ∀l. The matrix

representation of word distributions is denoted as Φ = (φ1, . . . , φL). Each word distribution

is assumed to follow a Dirichlet distribution, φl|β ∼ Dirichlet(β) (l = 1, . . . , L), where β is a

hyperparameter.

Then, the conditional joint likelihood of text information, when H is given, is

p(W,X,Z,Θ,Φ|H) = p(W |Z,Φ)p(Z|X,Θ)p(X|H)p(Θ|α)p(Φ|β)
D∏
i=1

{
Mi∏
m=1

{p(wim|zim,Φ)p(zim|xim,Θ)p(xim|ηi)}
}
×

K∏
k=1

p(θk|α)
L∏
l=1

p(φl|β), (2)

where α and β are hyperparameters for Θ and Φ, respectively, and these are fixed to some

values. Under the assumption of conditional independence of Equations (1) and (2), when

nodes’ community distribution, H, is given, the full joint likelihood of MMSTB is obtained
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by the product of Equations (1) and (2) multiplied by the density of H, p(H|γ),

p(A,W,S,R,X,Z,H,Ψ,Θ,Φ)

=
D∏
i=1

⎧⎨
⎩

D∏
j=1,j �=i

{p(aij |sij , rji,Ψ)p(sij |ηi)p(rji|ηj)} ×

Mi∏
m=1

{p(wim|zim,Φ)P (zim|xim,Θ)p(xim|ηi)}
}
×

D∏
i=1

p(ηi|γ)
K∏
k=1

{
p(θk|α)

K∏
k′=1

p(ψkk′ |δkk′ , εkk′)
}

×
L∏
l=1

p(φl|β). (3)

The corresponding graphical model is provided in the left panel of Figure 1, while the

right panel shows the model overview when K = 3 and L = 3. This illustrates the generative

process of the relationship between node i and j, aij , and the mth word of the text created

by node i, wim. A sender community sij (orange) and a recipient community rji (blue) are

generated according to their community distributions with parameters ηi and ηj , respectively.

Then the link probability, p(aij = 1|sij , rji,Ψ), is denoted as ψsij ,rji , which is an (sij , rji)

element of the edge probability matrix Ψ. Conversely, a word community xim (orange) is

also generated according to the same distribution with parameter ηi. Then, a word topic zim

(yellow) is generated according to topic distribution with θ2 corresponding to xim. Finally, a

word wim is generated according to word distribution φ1 because zim equals to 1 (yellow).

3.2 Conditional posterior distributions and parameter estimation

Many methods for estimating topic models have been proposed (e.g., the variational

Bayesian method and sequential learning method). Among them, the most widely used

method is the collapsed Gibbs sampler (CGS) proposed by Griffiths & Steyvers (2004), which

samples only latent variables by integrating out parameters. CGS can estimate topic models

more efficiently compared to the Gibbs sampler that directly samples all parameters. This

study uses CGS for estimating MMSTB’s parameters.

MMSTB has four types of model parameters: namely, community distributions H, edge

probabilities Ψ, topic distributions Θ, and word distributions Φ. First, we derive the con-

ditional posterior distributions from the full joint distribution according to Equation (3) by
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Figure 1: Graphical representation of the mixed membership stochastic block model (left)
and the model overview when the number of community (K) is 3 and the number of topics
(L) is 3 (right)

using the conjugacy, Dirichlet-Categorical relationship for H, Θ, and Φ and Beta-Bernoulli

relationship for Ψ. Then, the full conditional posterior distributions, when data (A, W ), the

state of latent variables (S, R, X, Z), and hyperparameters are given, can be easily derived

as follows:

P (ηi|S,R,X, γ) = Γ (
∑

kNik +Mik + γk)∏
k Γ(Nik +Mik + γk)

K∏
k=1

ηNik+Mik+γk
ik (4)

P (ψkk′ |A,S,R, δ, ε) =
Γ(n

(+)
kk′ + n

(−)
kk′ + δkk′ + εkk′)

Γ(n
(+)
kk′ + δkk′)Γ(n

(−)
kk′ + εkk′)

ψ
I(aij=1)
kk′ (1− ψkk′)

I(aij=0) (5)

P (θk|X,Z, α) = Γ (
∑

lMkl + αl)

ΠlΓ(Mkl + αl)

L∏
l=1

θMkl+αl
kl (6)

P (φl|W,Z, β) = Γ (
∑

vMlv + βv)

ΠvΓ(Mlv + βv)

V∏
v=1

φMlv+βv
lv , (7)

where Nik is the count number of when node i is assigned community k on the edges from

node i to other nodes and from other nodes to node i. Mik is the count number of when

words in node i’s document are assigned to community k. n
(+)
kk′ (n

(−)
kk′ ) is the number of links
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(non-links) from nodes in community k to nodes in community k′. Mkl is the count number

of when words are assigned to community k and topic l. Mlv is the count number of when

word v is assigned to topic l. Γ is the gamma function, and I is the indicator function that

returns 1, if the condition is satisfied, and 0 otherwise.

MMSTB has four types of latent variables: two latent variables for a relationship between

node i and j, sij (sender community) and rji (recipient community), and two latent variables

for a mth word of node i, xim (word community) and zim (word topic). The conditional

posterior distributions of these four latent variables are derived by integrating out parameters

(H, Ψ, Θ, Φ) as follows:

P (sij = k, rji = k′|aij , A\ij , S\ij , R\ji, X, γ, δ, ε)

∝
∫
ηi

∫
ηj

P (sij = k|ηi)P (rji = k′|ηj)P (xi|ηi)P (xj |ηj)

P (ηi|S\ij , R\ji, X, γ)P (ηj |S\ij , R\ji, X, γ)dηidηj×∫
ψkk′

P (aij |ψkk′)P (ψkk′ |A\ij , S\ij , R\ji, δ, ε)dψkk′

=
Nik\ij +Mik + γk∑
t

(
Nit\ij +Mit + γt

) × Njk′\ji +Mjk′ + γk′∑
t

(
Njt\ji +Mjt + γt

)×
(
n
(+)
kk′\ij + δkk′

)I(aij=1) (
n
(−)
kk′\ij + εkk′

)I(aij=0)

n
(+)
kk′\ij + n

(−)
kk′\ij + δkk′ + εkk′

(8)

P (xim = k, zim = l|wim = v,W\im, S,R,X\im, Z\im, α, β, γ)

∝
∫
ηi

P (si|ηi)P (ri|ηi)P (xim = k|ηi)P (ηi|S,R,X\im, γ)dηi×∫
θk

P (zim = l|θk)P (θk|X\im, Z\,im, α)dθk×∫
φl

P (wim = v|φl)P (φl|W\im, Z\im, β)dφl

=
Mlv\im + βv∑
u

(
Mlu\im + βu

) × Mkl\im + αl∑
q

(
Mkq\im + αq

) × Nik +Mik\im + γk∑
t

(
Nit +Mit\im + γt

) , (9)

where the symbol \ represents the exclusion of an edge or a word from the count number.

The algorithm of CGS for MMSTB is provided in the Appendix 1. In CGS, according to
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Equations (8) and (9), the latent community and topic for each edge and word are sampled G

times. Finally, using the samples of the latent variables excluding the burn-in samples before

b, model parameters are estimated as follows;

η̂ik =
1

G

G∑
g=b+1

N
(g)
ik +M

(g)
ik + γk∑

t

(
N

(g)
it +M

(g)
it + γt

) (10)

ψ̂kk′ =
1

G

G∑
g=b+1

n
(+,g)
kk′ + δkk′

n
(+,g)
kk′ + n

(−,g)
kk′ + δkk′ + εkk′

(11)

θ̂kl =
1

G

G∑
g=b+1

M
(g)
kl + αl∑

q

(
M

(g)
kl + αq

) (12)

φ̂lv =
1

G

G∑
g=b+1

M
(g)
lv + βv∑

u

(
M

(g)
lu + βu

) . (13)

4 Numerical experiments

This section described the numerical experiments we conducted to highlight the main

features of the proposed approach and provide the validity of our inference algorithm.

4.1 Experimental settings

The main features of our modeling are the mixed membership of nodes and simultane-

ous modeling of network data and text content. The characteristic of a mixed membership

captures the situation of people belonging to multiple communities on a social network and

building relationships with other members of these communities. Furthermore, extracting

more meaningful segments from social networks by considering both network data and text

content is possible.

To highlight these two properties of MMSTB, we have designed three different scenar-

ios. Table 2 provides the settings of each scenario, while Figure 2 depicts an example of

the generated adjacency matrix, where black (white) cells mean the presence (absence) of a

relationship between two nodes. We set some values for the community distribution, edge

probability, and topic distribution but did not set any values for the word distribution. In-

stead, for all scenarios, 150 words are sampled per node according to their word topics from
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the BBC news document dataset (Greene & Cunningham 2006) as virtual text contents; this

dataset contains three topics: namely, business, entertainment, and sports.

Scenario A

The network and text content are composed of K = 3 communities and L = 2 topics.

Each node belongs to only one community (Node 1-20, 41-60, 81-100) or two commu-

nities (Node 21-40, 61-80); that is, these communities are overlapping. But the edge

probabilities across the communities are lower (ψkk′ = 0.1) than within the communi-

ties (ψkk = 0.5), and each community has a unique topic proportion (θ1 �= θ2 �= θ3).

Therefore, both MMSTB and other models using only one source of information such

as LDA and MMSB can be expected to detect these communities accurately.

Scenario B

Similar to scenario A, each node belongs to one or two communities, and K = 4 com-

munities are overlapping. Unlike scenario A, the community 1 and 4 have the same

topic proportions (θ1 = θ4). Therefore, the models using only text content information

cannot distinguish between the nodes that belong to only community 1 (Node 1-20) or

community 4 (Node 91-100). Conversely, the edge probabilities across the communities

are low; hence, both MMSTB and models using only network information should be

able to distinguish all communities.

Scenario C

The community 1 and 4 have the same topic proportion, and the text content-based

models cannot distinguish between these two communities. Furthermore, the edge prob-

abilities between communities 3 and 4 (ψ34, ψ43) are high; that is, people in these com-

munities are well-connected even if they have different interests (topics). Therefore, the

network-based models cannot identify these two communities. Only MMSTB can detect

all communities and recover the community structure properly.

We note that nodes are divided into some clusters where they belong to the same commu-

nity (communities) with the same proportion and generate virtual texts of the same topic(s).

Each row of H in Table 2 corresponds to each cluster, and, for example, in scenario A, nodes

1-20 are classified into the same cluster. Whether models can recover these cluster structures
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Table 2: The settings of three simulation scenarios (see text for details)
Scenario A B C

D (nodes) 100 100 100
K (communities) 3 4 4
L (topics) 2 2 3

{η1, . . . , η20} : (1, 0, 0) {η1, . . . , η20} : (1, 0, 0, 0) {η1, . . . , η20} : (1, 0, 0, 0)
{η21, . . . , η40} : (.5, .5, 0) {η21, . . . , η40} : (.5, .5, 0, 0) {η21, . . . , η40} : (.5, .5, 0, 0)

Community dist. {η41, . . . , η60} : (0, 1, 0) {η41, . . . , η60} : (0, 1, 0, 0) {η41, . . . , η60} : (0, 1, 0, 0)
H {η61, . . . , η80} : (0, .5, .5) {η61, . . . , η80} : (0, .5, .5, 0) {η61, . . . , η80} : (0, .5, .5, 0)

{η81, . . . , η100} : (0, 0, 1) {η81, . . . , η90} : (0, 0, 1, 0) {η81, . . . , η90} : (0, 0, 1, 0)
{η91, . . . , η100} : (0, 0, 0, 1) {η91, . . . , η100} : (0, 0, 0, 1)

θ1 = (1, 0) θ1 = (1, 0) θ1 = (.5, 0, .5)
Topic dist. θ2 = (.5, .5) θ2 = (.5, .5) θ2 = (.5, .5, 0)
Θ θ3 = (0, 1) θ3 = (0, 1) θ3 = (0, 1, 0)

θ4 = (1, 0) θ4 = (.5, 0, .5)

Edge prob. ψ11, ψ22, ψ33 = .5 ψ11, ψ22, ψ33, ψ44 = .5 ψ11, ψ22, ψ33, ψ34, ψ43, ψ44 = .5
Ψ otherwise .1 otherwise .1 otherwise .1

Dimensions: 100 x 100
Recipient
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Scenario A
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Scenario C

Figure 2: Adjacency matrix for each scenario; the black cells represent the link presence,
whereas the white cells represent the link absence

depends on the situation of each scenario as described above. In the next section, we validate

whether our model and the models that are popular in the literature, namely, LDA as a text-

based model and MMSB as a network-based model, are able to correctly estimate parameters

and identify true cluster structures.

4.2 Reproducibility of parameters and recovery of cluster structures

This section presents the experiments we conducted to verify whether the considered

models (LDA, MMSB, and MMSTB) can reproduce parameters and recover cluster structures

as described in the previous section. The modeling assumptions for LDA and MMSB are
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taken from the original papers (Blei, Ng, & Jordan, 2003 and Airoldi et al, 2008), while the

generative process of these models is outlined in the Appendix 2. As LDA is a model for text

content and MMSB is a model for network data, we provide only text data of the simulated

dataset for LDA, only network data for MMSB, and the entire dataset for MMSTB. Similar to

MMSTB, we use CGS to estimate parameters of LDA and MMSB. The number of iterations

is set to 5,000, and the first 2,000 samples are excluded as burn-in samples. The values of the

hyperparameters for the respective prior distributions are listed in Table 3.

First, we carry out an experiment to verify the reproducibility of parameters. Figure 3

and Table 4 show the results of scenario C estimating MMSTB. The three panels in Figure

3 show the estimated parameters, community distribution (left), edge probability (top-right),

and topic distribution (right-bottom). The results show that MMSTB reproduces the values

provided in Table 2 with high accuracy. Table 4 lists the top 10 words for each topic in

descending order of the estimated word distribution values. From left to right, words related

to business, entertainment, and sports are lined up, which implies that MMSTB extracts all

topics correctly. Therefore, MMSTB behaves appropriately when detecting more meaningful

communities by allowing nodes to have mixed memberships and considering network data and

text content simultaneously. The results of the other scenarios and models are provided in

the Appendix 2.

Next, we conducted an experiment to demonstrate the recovery of cluster structures from

the simulated dataset. These cluster structures can be found using the estimated node-specific

parameters. In particular, MMSB and MMSTB have a node-specific community distribution,

whereas LDA has a node-specific topic distribution. For example, MMSTB’s community

distribution affects the generation of both the network and text data as explained in Section

3, while the nodes having similar values for the node-specific parameter (e.g., nodes 1-20 in

scenario A have the same value for community distribution) should generate similar network

and text data. Therefore, it is natural that these nodes are classified into the same cluster.

In this experiment, we apply a clustering method, spectral clustering (Ng, Jordan, & Weiss,

2002), to the estimated node-specific parameter of each model and compare the clustering

results with the true labels listed in Table 2.

The process of the experiment is as follows. First, we simulate datasets for each scenario
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according to Table 2. Second, we estimate the model parameters while providing text data for

LDA, network data for MMSB, and both datasets for MMSTB. The number of iterations and

hyperparameter values are the same as described above. Next, we classify nodes according

to the estimated node-specific parameters using spectral clustering (Ng, Jordan, & Weiss,

2002) 1. Then, we calculate the adjusted Rand index (ARI, Hubert & Arabie, 1985) between

the cluster and true labels, with higher ARIs representing higher similarity between these

labels (when the labels perfectly match, ARI is 1). Because spectral clustering employs the

k-means method, its result depends on the initial value of the number of clusters. Hence, we

independently calculate ARIs for 20 different initial values of the the number of clusters and

set the latter according to the obtained maximum ARI value. Finally, we repeat this process

50 times with the different seed value when generating datasets but the same parameter

settings (Table 2).

Table 5 lists the medians of 50 ARIs calculated for the three models and three scenarios.

According to the result of scenario A (first column), all medians of ARIs are 1.0; that is, all

models can recover the true clusters. This result can be explained by the fact that the links

within (between) communities are dense (sparse) while the topics of texts within a community

are distinct from that of other communities. Even if only network data or text information

are employed, differences between clusters can be identified.

According to the result of scenario B (second column), ARIs of MMSB and MMSTB are

1.0, whereas LDA’s ARI is lower than before. In scenario B, community 1, to which nodes

1-20 (cluster 1) belong, and community 4, to which nodes 91-100 (cluster 6) belong, have the

same value of the topic proportion; therefore, these clusters cannot be distinguished when

looking at text data only. Conversely, non-diagonal elements of the edge probability are low;

that is, the difference between these clusters is clear when considering network data. This is

the reason why MMSB and MMSTB are able to recover the true clusters.

Finally, according to the result of scenario C, ARI is 1.0 only for MMSTB, whereas the

ARI values of LDA and MMSB are far less than 1.0; that is, the latter models are unable to

correctly cluster nodes. The reason for this result is that the text data in scenario C have

the same topic structures as that of scenario B (topic distributions of communities 1 and 4

1The algorithm for spectral clustering we use is implemented as a function “specc” in R-package “‘kernlab”.
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Table 3: The setting of hyperparameters for the simulation experiments
Hyperparameters γ δ ε α β

Prior distributions ηi ∼ Dir(γ) ψkk′ ∼ Beta(δkk′ , εkk′) θk ∼ Dir(α) φl ∼ Dir(β)

Value
γk = 1.0, δkk′ = 0.1, εkk′ = 0.1, αl = 0.1, βv = 0.1,

∀k ∀k, k′ ∀k, k′ ∀l ∀v

Table 4: Top 10 words in descending order of the word distribution for each topic
Topic 1 Topic 2 Topic 3

(Business) (Entertainment) (Sports)

bank film champion
growth award cup
oil actor coach

profit album rugbi
euro nomin ireland
stock band season
yuko song injuri

investor oscar olymp
award chart championship
deficit actress goal

are the same). Furthermore, the edge probabilities between communities 3 and 4 are equal

to the probabilities within these communities; that is, both communities completely overlap

in the network. Therefore, these communities cannot be identified when considering network

data only. On the other hand, MMSTB takes both network and text data into account and

hence is able to recover the true cluster structures. This numerical experiment reveals that

our proposed model can correctly identify structures of communities and topics even if these

structures overlap, which is one of the most notable features of our model.

Table 5: Medians of the adjusted Rand indices for the clustering result using the estimated
node-specific parameters of the three models (LDA, MMSB, and proposed model) in the three
scenarios

Scenario A Scenario B Scenario C

LDA 1.0 0.85 0.85
MMSB 1.0 1.0 0.93
MMSTB 1.0 1.0 1.0
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Figure 3: The estimation results of scenario C (see text for details)
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4.3 Choosing the number of communities and the number of topics

The numbers of communities K and topics L need to be fixed before applying SBM or

one of its extended models (DCSB, MMSB, MMSTB, etc.). A variety of approaches has

been proposed in the literature for choosing these numbers, including information criteria

such as BIC (Handcock, Raftery, & Tantrum, 2007; Saldana, Yu, & Feng, 2017), integrated

completed likelihood (Daubin, Picard, & Robin, 2008; Bouveyron, Latouche, & Zreik, 2018),

cross-validation (Chen & Lei, 2018), and Bayesian inference (Latouche, Birmele, & Ambroise,

2012; McDaid et al., 2013).

In this study, the numbers of communities and topics are determined using an informa-

tion criteria based on its solid theoretical ground and convenience of calculating from the

outputs of CGS. However, the topic models (including MMSTB), which have latent variables,

are known as singular models, and information criteria for regular models such as AIC and

BIC are not appropriate. Therefore, we employ the widely applicable information criterion

(WAIC, Watanabe 2010) because it can be applied to both regular and singular models.

WAIC estimates the expected pointwise predictive density for a new dataset. It is defined

as −2(lppd− pwaic), where lppd denotes the log pointwise predictive density representing the

predictive accuracy of the fitted model to data, and pwaic denotes a term to correct for bias

due to overfitting2. The definition of WAIC for MMSTB is provided in the Appendix 3.

In addition to the reproducibility of MMSTB parameters of described above, we confirm

that the numbers of communities and topics can be correctly estimated by the model selection

using WAIC. The procedure of the model selection simulation is as follows. For each scenario,

we generate simulation data according to the values listed in Table 2. We estimate the models

within the range of numbers of communities and topics from 2 to 6, and the model with the

smallest WAIC is selected. The results of repeating these procedures 50 times are shown in

Table 6. In all three scenarios, the model selection using WAIC succeeds in identifying the

correct combination of the numbers of communities and topics. These experiments allow us

to validate WAIC as a model selection criterion for MMSTB.

2In this study, we use the Gelman et al (2013)’s scale with −2n times Watanabe’s original definition (n is
the number of data). This scale enables us to compare with other information criterion such as AIC and DIC
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Table 6: The number of times WAIC selects each MMSTB model (K, L) in 50 simulations of
each of the three scenarios

Scenario A (K = 3, L = 2) Scenario B (K = 4, L = 2) Scenario C (K = 4, L = 3)

Topics (L) Topics (L) Topics (L)
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

C
o
m
m
u
n
it
ie
s 2 0 0 0 0 0

C
o
m
m
u
n
it
ie
s 2 0 0 0 0 0

C
o
m
m
u
n
it
ie
s 2 0 0 0 0 0

3 46 2 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0

(K
) 4 2 0 0 0 0

(K
) 4 38 1 0 0 0

(K
) 4 0 46 1 1 0

5 0 0 0 0 0 5 11 0 0 0 0 5 0 2 0 0 0
6 0 0 0 0 0 6 0 0 0 0 0 6 0 0 0 0 0

5 Empirical analysis

5.1 Dataset

In this section, we apply our model to empirical data to demonstrate the usefulness of

MMSTB for actual social networks. In particular, we employ the Twitter platform and user-

generated text data collected by the authors. We focus on a Twitter ego network centered on

the official account (@NintendoAmerica) operated by a subsidiary company of Nintendo Co.,

Ltd. in U.S., Nintendo of America Inc. We created a dataset for analysis according to the

following procedure.

First, users were randomly sampled from the users who follow the official account of

Nintendo of America based on the following-followed relationship on May 1, 2018. Next,

additional users were randomly sampled from the users who follow the users following the

Nintendo account. The users whose average of the numbers of followers and followees is

less than 3 in this network were excluded as outliers (note that the numbers of followers and

followees are the numbers in the dataset and not the actual numbers). As a result, the number

of selected users is 3,500, the number of total link edges are 68,949 (i.e., each user has 19.7

edges on average), and their directed relationships are used as network information.

Next, we collected the tweets posted by the selected users on their timelines from Septem-

ber 1, 2017 to February 28, 2018 3. These tweet data were preprocessed as follows: decompos-

ing into word sets for each user, changing to lowercase letters, excluding numbers, symbols,

3We confirmed that the majority of users posted about the presentation of a new game software, called
Nintendo Direct, in March 2018. Hence, in this study, to avoid the effect of such text information commonly
posted by many users, we decided to limit the period of data to be until February 28, 2018.
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Table 7: WAIC of each model of MMSTB estimated for the Twitter dataset (bold represents
the smallest value)

Topics (L)
5 6 7 8 9 10

C
o
m
m
u
n
it
ie
s

(K
)

5 4, 601, 682 4, 591, 215 4, 547, 102 4, 651, 380 4, 651, 888 4, 521, 875
6 4, 633, 828 4, 580, 391 4, 564, 193 4, 568, 752 4, 629, 114 5, 563, 824
7 4, 607, 615 4, 588, 504 4, 627, 986 4, 564, 135 4, 596, 299 4, 553, 339
8 4, 613, 074 4, 637, 185 4, 623, 877 4, 517, 891 4, 564, 046 4, 537, 160
9 4, 612, 382 4, 626, 961 4, 557, 745 4, 540, 766 4, 500, 094 4, 571, 307
10 4, 598, 036 4, 580, 622 4, 580, 856 4, 544, 071 4, 534, 666 6, 629, 801

and some popular stop-words (a, the, I, etc.) and reducing inflected words to their word

stem. Among the preprocessed words, we excluded those with low frequencies (words having

the number of occurrences in the corpus less than 20 or used by less than 20 users) or high

frequencies (words used by more than 50 users) because these words may adversely affect the

topic extraction. Then, the users whose number of words is less than five are also excluded.

As a result, the number of unique words in the corpus is 9,001, and the average number of

words per node is 98.2 (the average unique word number is 59.3). Next, we applied MMSTB

to this Twitter dataset. The model selected by WAIC was (K,L) = (9, 9) as shown in Table

7.

5.2 Empirical results

Because the considered dataset is a large-scale network, unlike the simulation network

described in the previous section, understanding the results of the model estimation is difficult

even if we showed the community distributions of all nodes and the entire network image.

Therefore, we focus only on a certain node when discussing the results of this experiment.

Figure 5 illustrates a sub-network consisting of a specific node (node 95), its neighbors, and

the partial results of the estimated parameters related to them. Furthermore, Figure 4 shows

the top 10 words for each topic.

First, interpreting the meaning of each topic from the top 10 words is necessary to un-

derstand what kind of interest people in the community display. The meaning of topics and

their related words are as follows:
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Topic 1

animation (e.g., blackclover, hunter×hunter, and jojos bizarre adventure are the titles

of animations);

Topic 2

game (e.g., steinsgate, xenovers, and acnl, Animal Crossing: New Leaf, are the titles of

game software);

Topic 3

e-sports (e.g., hori and mkleosaga are words related to fighting-games, while wnf and

mdva are e-sports specific words);

Topic 4

music (e.g., vevo, spinrilla, and wshh are websites for music);

Topic 5

everyday life (e.g., people post texts and images of their everyday life with the hashtags

of dogsoftwitter and momlife);

Topic 6 and 7

business (e.g., digitalmarket, socialmediamarket, and contentmarket are the hashtags

which are sometimes used in a business-related tweet);

Topic 8

streaming and broadcasting (e.g., teamemmmmsi, twitchkitten, roku, and wizebot are

words related to streaming or broadcasting);

Topic 9

sports (e.g., orton and sdlive, oiler, horford, and herewego are wrestling, ice hockey,

basketball, and american football specific words, respectively).

Based on the interpretation of the topics provided above, obtaining some interesting in-

sights from the sub-network of node 95 is possible. In Figure 5, the pie-charts show the values

of the node’s community distribution, ηi; bar plots are the values of the community’s topic

distribution, θk; and arrows represent that there is a following relationship between the nodes,
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where the start node of the arrow is a sender of the following, the end node of the arrow is a

recipient of the following, while the bidirected arrow means the mutual-following relationship.

The interpretation of a huge network, such as these Twitter data, is hardly achievable

even if we looked at the entire network image. However, the local sub-network and the esti-

mated parameters corresponding to them provide useful insights on not only the relationship

between nodes but also overlapping communities, their proportions of belonging communities,

and characteristic topics within each community. For instance, nodes 95 and 336 belong to

community 5, in which people often post sports-related tweets (Topic 9). Node 95 belongs to

not only community 5 but also community 1 related to music (Topic 4) together with other

nodes (804, 2241, 3476). Thus, the communities detected by our model represent a subset

of nodes with not only dense links on the network but also similar topics in their texts. In

the field of consumer behavior analysis, researchers know that product or information dif-

fusion tends to become faster among people located in a well-connected area of their social

network (i.e., they belong to the same community) as discussed in Muller & Peres (2018). In

addition to the network effect, people in the community identified by our model share their

interests owing to the same topic of texts posted on Twitter. Therefore, our model can help

companies to detect some useful community structures that positively affect the consumption

behaviors. By analyzing the relationship between a company’s followers and its created text

content using our model, marketing managers can understand community structures and the

interests of the customers connected through these communities. The managers can then use

the obtained knowledge to update their marketing strategies accordingly.

5.3 Predicting on holdout samples

In this section, we demonstrate the predictive performance of our model on some test data

generated by holding out a part of the dataset described in Section 5.1. Unlike the experiment

outlined in the previous section, where the entire dataset was used for the model estimation,

90% of edges of each node with D−1 edges are selected randomly in this experiment and used

as training data, while the remaining 10% of edges are used as test data. For the text data,

all words of each node are selected as training data. The settings of the hyperparameters

are the same as listed in Table 3, and the numbers of communities and topics are fixed at
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Figure 4: Top 10 words in descending order of the word distribution for each topic of Twitter
data

the same values as memtioned in the previous section, (K,L) = (9, 9). Using these settings,

we estimate the model parameters using the training dataset. Let the estimated community

distributions and edge probabilities be Ĥ and Ψ̂. Then, the predicted probabilities for the

test data aij ∈ Atest can be calculated as follows:

P (aij = 1) =

K∑
k=1

K∑
k′=1

η̂ikη̂jk′ψ̂kk′ . (14)

First, to see the predictive performance of our model, we use the receiver operating char-

acteristic (ROC) curve shown in Table 6. The ROC curve connects plots of the true positive

rate as the y-axis against the false positive rate as the x-axis when the cutoff value varies. If

the ROC curve overlaps the line at 45 degrees, the model randomly predicts the test data.

When the ROC curve is above this line, the model splits two groups (link or non-link) more

clearly. Therefore, the area under the curve (AUC) shows the predictive performance. The

AUC of Figure 6 is 0.93, which means that MMSTB has a good predictive performance.

Next, we search the best cutoff value based on the predictive performance of our model.

By determining some cutoff value, we can predict labels of test edges (link or non-link). Our

network data are imbalanced having many non-link edges (about 99.4% of edges are non-link).
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Figure 5: Sub-network consisting of a specific node (node 95) and its neighbors, and the results
estimated by MMSTB. Circles represent nodes (numbers in circles are node indicators); arrows
represent that there is a following relationship between the nodes; pie-charts represent the
estimated community distributions and surrounding bar-graphs represent the estimateed topic
distributions.
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Figure 6: Receiver operating characteristic curve for test edge samples

Table 8: Confusion matrix when cutoff is set to 0.088, where the Matthews correlation coef-
ficient is the highest

Prediction
Link Non-link

Data
Link 2,041 4,786

Non-link 7,079 1,211,094

Therefore, we employ the Matthews correlation coefficient (MCC) to imply the correlation

coefficient between the true class labels and predicted labels. Using the obtained predicted

probabilities as described above, the cutoff value with the highest MCC of 0.254 is determined

to be 0.088. Table 8 represents the confusion matrix for the test data computed using this

cutoff value. According to this confusion matrix, our model predicts not only non-link edges

with high accuracy but also link edges with more than 40% accuracy despite the difficulty of

predicting correctly due to the imbalanced nature of the data (the class size of the link data

is much smaller than that of the non-link data). This result demonstrates that our model

performs well as a predictive model.
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6 Conclusion

This study proposed a model, called MMSTB, for identifying realistic and beneficial com-

munities based on not only the relationships within a social network but also interests of its

members reflected by UGC. The main features of MMSTB are (1) extracting communities

and topics considering network information, which represents the relationships between net-

work nodes, and text information posted on social media, which uncovers people interests,

(2) allowing each node to belong to multiple communities, which is called mixed membership,

and (3) being applicable to both directed and undirected graphs.

The CGS was used for the model inference, and the numbers of communities and topics

were chosen according to WAIC. Numerical experiments using simulated data confirmed the

above-mentioned model features and showed that the procedures of the model inference and

model selection work properly. As an empirical application, we analyzed Twitter data and

found realistic and beneficial community structures that could not be obtained unless both

network and text information were considered. Furthermore, the proposed model demon-

strated a good predictive performance on holdout samples.

Further work may include the problem of node heterogeneity. SBM and other extended

models assume that all nodes belonging to the same community are homogeneous and edges

within or between communities are generated according to the corresponding community’s

edge probability. However, in general social networks, a few hub nodes tend to have many

edges, while many other nodes tend to have a few edges, even if they belong to the same

community. This property is called scale-free. Ignoring this node heterogeneity may lead to a

deviation of model results from the real network structure. Krivitsky et al (2009) introduced

a parameter representing node heterogeneity for the edge generating part of the LSM. Karrer

& Newman (2011) proposed an extended SBM that corrects the probability of generating an

edge between a pair of nodes considering the node degrees to address the problem of node

heterogeneity. This problem cannot be avoided in social network analysis; hence, our model

also needs to be extended to solve the problem.
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Appendix

Appendix 1: Algorithm of the collapsed Gibbs sampler (CGS) for the pro-

posed model (MMSTB)

In Section 3.2, we derived the posterior distributions of latent variables. CGS repeats

sampling according to Equations (8) and (9) and updates the allocation counters of latent

communities and topics. The pseudo algorithm of CGS for MMSTB is provided in algorithm

1.

Algorithm 1 collapsed Gibbs sampler for MMSTB

1: Assign randomly communities and topics to S,R,X,Z
2: for g = 1, . . . , G do
3: for i = 1, . . . , D do
4: for j = 1, . . . , D do

5: Set Nik\ij , Njk′\ji, n
(+)
kk′\ij , n

(−)
kk′\ij

6: Sample edge communities, s
(g)
ij , r

(g)
ji , from (8)

7: Update Nik, Njk′ , n
(+)
kk′ , n

(−)
kk′

8: end for
9: for m = 1, . . . ,Mi do

10: Set Mik\im,Mkl\im,Mlv\im
11: Sample word community and word topic, x

(g)
im , z

(g)
im , from (9)

12: Update Mik,Mkl,Mlv

13: end for
14: end for
15: end for

Appendix 2: Supplementary results of numerical experiments

In this Appendix, we show the remaining results of the numerical experiments that could

not be explained in the Section 4.2 due to the limited space. Before listing the results, we

briefly introduce two statistical models widely used in the literature: namely, latent Dirichlet

allocation (LDA) and mixed membership stochastic block model (MMSB).
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The generative model for LDA is as follows:

word topic zim|θi ∼ Categorical(θi), i = 1, . . . , D, m = 1, . . . ,Mi

word wim|zim,Φ ∼ Categorical(φzim), i = 1, . . . , D, m = 1, . . . ,Mi

topic distribution θi|α ∼ Dirichlet(α), i = 1, . . . , D

word distribution φl|β ∼ Dirichlet(β), l = 1, . . . , L.

The generative model for MMSB is as follows:

sender community sij |ηi ∼ Categorical(ηi), i, j = 1, . . . , D

recipient community rji|ηj ∼ Categorical(ηj), i, j = 1, . . . , D

edge aij |sij , rji,Ψ ∼ Bernoulli(ψsijrji), i, j = 1, . . . , D

community distribution ηi|γ ∼ Dirichlet(γ), i = 1, . . . , D

edge probability ψkk′ |δ, ε ∼ Beta(δkk′ , εkk
′), k, k′ = 1, . . . ,K.

The parameters estimated by LDA, MMSB, and MMSTB for the dataset of the considered

three scenarios are shown in Figures 8-14 (the result of MMSTB for scenario C is described

in Section 4.2).

31



91 92 93 94 95 96 97 98 99 100

81 82 83 84 85 86 87 88 89 90

71 72 73 74 75 76 77 78 79 80

61 62 63 64 65 66 67 68 69 70

51 52 53 54 55 56 57 58 59 60

41 42 43 44 45 46 47 48 49 50

31 32 33 34 35 36 37 38 39 40

21 22 23 24 25 26 27 28 29 30

11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10

123 123 123 123 123 123 123 123 123 123

Community

V
al

ue

Community distribution

0.52

0

0

0

0.49

0.01

0

0

0.56

1

2

3

1 2 3

Recipient community

S
en

de
r 

co
m

m
un

ity

0.1

0.2

0.3

0.4

0.5

value

Edge probability

1

0.5

0

0

0.5

1

1

2

3

0.5 1.0 1.5 2.0 2.5

Topic

C
om

m
un

ity

0.25

0.50

0.75

value

Topic distribution

Figure 7: Estimation results of scenario A by MMSTB
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Figure 8: Estimation results of scenario A by LDA
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Figure 9: Estimation results of scenario A by MMSB
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Figure 10: Estimation results of scenario B by MMSTB

35



91 92 93 94 95 96 97 98 99 100

81 82 83 84 85 86 87 88 89 90

71 72 73 74 75 76 77 78 79 80

61 62 63 64 65 66 67 68 69 70

51 52 53 54 55 56 57 58 59 60

41 42 43 44 45 46 47 48 49 50

31 32 33 34 35 36 37 38 39 40

21 22 23 24 25 26 27 28 29 30

11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Community

V
al

ue

Community distribution

Figure 11: Estimation results of scenario B by LDA
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Figure 12: The estimation results of scenario B by MMSB
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Figure 13: Estimation results of scenario C by LDA
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Figure 14: Estimation results of scenario C by MMSB
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Appendix 3: Definition of WAIC for MMSTB

The definition of WAIC for MMSTB is as follows:

lpd =

D∑
i=1

⎛
⎝log

⎛
⎝ 1

G

G∑
g=b+1

D∏
j=1

P
(
aij |H(g),Ψ(g)

) Mi∏
m=1

P
(
wim|H(g),Θ(g),Φ(g)

)⎞⎠
⎞
⎠ (15)

Pwaic =
D∑
i=1

⎛
⎝ G

G− 1

⎛
⎝ 1

G

G∑
g=b+1

⎛
⎝ D∑
j=1

logP
(
aij |H(g),Ψ(g)

)2
+

Mi∑
m=1

logP
(
wim|H(g),Θ(g),Φ(g)

)2

⎞
⎠

−
⎛
⎝ 1

G

G∑
g=b+1

⎛
⎝ D∑
j=1

logP
(
aij |H(g),Ψ(g)

)
+

Mi∑
m=1

logP
(
wim|H(g),Θ(g),Φ(g)

)⎞⎠
⎞
⎠

2⎞
⎠
⎞
⎠

(16)

WAIC = −2 (lpd− Pwaic) , (17)

where P
(
aij |H(g),Ψ(g)

)
and P

(
wim|H(g),Θ(g),Φ(g)

)
are the model likelihood conditioned

with the parameters estimated using samples at sth iteration

P
(
aij |H(g),Ψ(g)

)
=

K∑
k=1

K∑
k′=1

ηik · η(g)jk′ · ψ
(g)I(aij=1)
kk′ · (1− ψkk′)

(g)I(aij=0) (18)

P
(
wim|H(g),Θ(g),Φ(g)

)
=

K∑
k=1

L∑
l=1

η
(g)
ik · θ(g)kl · φ(g)lwim

. (19)
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