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1 Introduction 

 

1.1 Phosphorus resources and high-P iron ores 

Because phosphorus (P) is essential for the growth of animals and plants, it is considered an 

important element, playing a great role in the agricultural and industrial development. P, 

together with nitrogen and potassium, are the three major elements present in fertilizers. P 

supply is a major constraint on the quantity and quality of food production. The main raw 

material for industrial phosphorus is phosphate rock. Approximately 242 million tons of 

phosphate ores was mined in the world during 2015. China (120 million tons), Morocco (29.0 

million tons), and the United States (27.4 million tons) are the leading producing countries, 

accounting for 73% of the world total production [1]. However, in Japan, there are no deposits 

of phosphate ore, and all phosphate ore is imported. Figure 1.1 shows the amounts of P 

resources imported into Japan, mainly in the form of phosphate rock, fertilizers, and 

concentrated superphosphate [2]. 

Phosphate fertilizer is generally produced from phosphate rock, in which the main mineral is 

fluorapatite (Ca10(PO4)6F2). In this form, P is not readily available for plants and requires further 

industrial processing to make it accessible for them. The processes used for this transformation 

include: the thermal route and the wet route. In the thermal route, fluorapatite’s crystalline 

structure is modified by a thermal action, producing a soluble phosphate compound known as 

fused magnesium phosphate. In the wet route, the phosphate rock is digested by sulfuric acid 

yielding single superphosphate or phosphoric acid as main products, an intermediate used for 

the manufacturing of triple superphosphate and ammonium phosphates [3]. 

With the increase in world population, the demand for food and biofuel has been increasing. As 

a result, a large amount of phosphate fertilizer is needed to increase the growth and production 
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of crop and sugarcane. However, the phosphate rock is a non-renewable resource and current 

global reserves may be depleted in 50-100 years [4]. The fertilizer industry recognizes that the 

quality of reserves is declining and the cost of extraction and processing is increasing [5]. 

Consequently, the price of phosphate ores and phosphate fertilizer has been increasing, as 

shown in Fig. 1.1. With the depletion of high-grade phosphate ore, utilization of low-grade 

phosphate ores is gaining considerable attention; however, some heavy and radioactive metals 

exist in the low-grade phosphate ores [6]. There are currently no commercial measures of 

removing these pollutants completely during fertilizer manufacturing process. To secure a 

sustainable supply of phosphate, it is urgent to find and develop an alternative source of P. 

Therefore, recycling of P from waste materials by chemical or thermal processes is becoming 

increasingly important. A lot of efforts have been made to evaluate the effectiveness of recycled 

P products from sewage sludge and animal wastes as phosphate fertilizer [7]. 

 

 

Fig. 1.1 Trends in the amounts and the prices of P resources imported into Japan 
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Iron ores are essential raw materials for the production of iron and steel, and they contain some 

P.  In contrast to its nature as a strategic resource, described above, P is one of the most 

detrimental impurities in steels as it reduces the low-temperature toughness of steel products. 

Most of the P that contained in iron ore or hot metal should be removed during ironmaking and 

steelmaking process. Therefore, it is desirable to have a low P level in iron ore. Market 

specifications for P in iron ore exported from Australia are around 0.075 mass% P [8]. Over the 

past decade, the crude steel production in the world increased significantly, reaching 1.6 billion 

tones in 2016 [9]. In particular, China is the largest producer of steel product, which accounts 

for nearly half of the whole world production. Such huge steel production consumed a large 

amount of high-grade iron ore that mainly imported from Australia and Brazil. With the gradual 

decrease of the reserves of high-grade iron ore around the world, the price of high-grade iron 

ores consistently increases, and its supply has become the bottleneck to restrict the development 

of iron and steel industry. 

To solve the crisis of resources, utilization of the low-grade iron ore is in an urgent need, such 

as high-P iron ore. High-P iron ore is a typical complex resource, which contains a high content 

of iron, but it is hard to be used due to the presence of a large amount of P [10]. Table 1.1 shows 

high-P and low-P deposits in Brockman mine in Brazil; low-grade and high-P layer contiguous 

with high-grade and low-P layer [11]. As the high-grade layer has already mined, the mining of 

low-grade layer has started from 2000. The reserves of high-P iron ore are large all over the 

world. For instance, more than 80% of Western Australian iron ores contains an average of 0.15 

mass% P [8]; China has a large deposit of high-P iron ore with existing reserves of 10 billion 

tones which is unexploited in any large scale [12]. Therefore, exploring an efficient way of 

dephosphorizaiton to fully utilize high-P iron ore could be a possible way to alleviate the 

shortage of high-grade iron ore. From another perspective, the P separated from iron and steel 
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industry is considered as a great potential P source because of the huge reserves and 

consumption of high-P iron ore [13]. Overall, the utilization of high-P iron ore would have a 

significant effect on the sustainable development of iron and steel industry and phosphate 

industry. 

 

Table 1.1 High-P and low-P deposits in Brockman mine 

 

 

Although methods for removing P from molten iron exist, a number of factors such as financial 

penalties and market access make it attractive to ensure that P is removed from the iron ore prior 

to its use in smelting [14]. Considerable attention has been focused on developing methods for 

the dephosphorization of high-P iron ore. Two different approaches are generally used for 

decreasing the P content of iron ore. The first approach is suitable if the iron ore is used as 

pellets. In this route, the ore is extensively ground until the P bearing mineral (apatite) is 

completely liberated from the iron minerals. The separation is then carried out using physical 

methods, such as magnetic separation and flotation [15, 16]. The second approach is a wet 

chemical method and is suitable for the treatment of iron ore sinters. In this treatment, iron ore 

is leached with a suitable solution (mineral acid) for removal of the P by the dissolution of 

apatite [17-19]. 
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Recently, some other approaches were proposed to remove P with respect to various kinds of 

high-P iron ore. Fisher-White et al. [14] studied the effects of a heat treatment with sodium 

hydroxide followed by leaching with water and a caustic leach on the removal of P from 

goethitic iron ores. Guo et al. [20] proposed a process with acid leaching followed by 

hydrogen-based fluidized reduction and melt separation to recover DRI (direct reduced iron) 

from high-P oolitic hematite. Matinde and Hino [21, 22] investigated the possibility of 

dephosphorization by using pre-reduction and screening methods combined with mechanical 

crushing or air jet milling. However, due to the large amount of iron ores, enormous processing 

capacity is required and the treatment cost was considered to be huge. 

 

1.2 Hot metal dephosphorization 

During ironmaking process, the P was reduced and concentrated in hot metal. In the case of 

utilization of high-P iron ore, hot metal with high P content will be generated. In India, iron ore 

containing 0.1% or more P has already been mined and used, and the P content in hot metal has 

been 0.25% or more [23]. To meet the demand for low P steel and to ease the environmental 

burden, a highly efficient dephosphorization process with less slag is necessary to remove P 

from hot metal as much as possible. Hot metal dephosphorization is well developed in Japan 

[24]. Since the 1990 s, most of the companies in Japan have improved and restructured the hot 

metal treatment facilities, aiming at not only improvement of refining efficiency so as to achieve 

a higher degree of purity steel with higher productivity at lower cost, but also reduction in slag 

volume with the environmental problems taken into consideration [25]. Figure 1.2 shows a 

method of hot metal pretreatment using converters developed by Nippon Steel Corporation [26]: 

the multi-refining converter process, whereby hot metal is dephosphorized and decarburized 

sequentially in the same converter vessel with de-slagging in between. The advantages of this 
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process, besides those of the converter-type pretreatment, are that the loss of time and heat due 

to vessel change is avoided, and that decarburization slag can be left in the vessel and used for 

the following charge, which lowers lime consumption. 

 

 

Fig. 1.2 Hot metal dephosphorization process (multi-refining converter) 

 

[P]metal +
3

2
(O2-) +

5

2
[O] = (PO4

3-
)slag                     (1.1) 

In the hot metal dephosphorization reaction, as described in Eq. (1.1), the P in hot metal is 

oxidized to P2O5, which is then transferred into slag and reacts with CaO to form tricalcium 

phosphate (3CaO·P2O5, C3P). To improve the efficiency of dephosphorization, the distribution 

ratio of P between different slag systems and hot metal have been investigated by many 

researchers. Suito et al. [27] studied the P distribution between liquid iron and the 

CaO-SiO2-FetO slag equilibrated in a magnesia crucible in the temperature range 1823 K to 

1923 K. The P distribution ratio (P2O5)slag/[P]metal increased with increasing CaO content and 

decreasing temperature. The maximum value of the distribution ratio was found to be present 

near the slag composition saturated with the tricalcium silicate and magnesio wustite phases. Im 
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et al. [28] assessed the possibility of hot metal dephosphorization by CaO-SiO2-FetO slags of 

low CaO content. They found that P distribution ratio strongly depended on CaO content but not 

so much on FetO content of the slag. It increased with an increase in CaO content when FetO 

content was kept constant, while it slightly decreased when total Fe content was increased at the 

(%CaO)/(%SiO2) ratio of around unity. Muraki et al. [29] measured the P partition ratio for the 

CaO-Na2O-SiO2-CaF2 slag doubly saturated with CaO and 3CaO·SiO2 at 1573 K. They found 

that the distribution ratio of P between slag and C-saturated iron increased significantly with a 

small Na2O addition. Pak et al. [30] reported that Na2O addition to CaO-SiO2 slags significantly 

increased the P distribution ratio and phosphate capacity. In steelmaking slag containing 40 

mass% of FetO, the addition of 6 mass% Na2O increased the P distribution ratio by a factor of 5. 

Kunisada et al. [31] investigated the dephosphorization of liquid iron by CaO-FeO-SiO2 slag 

and that containing Na2O. The effect of Na2O on P distribution was evaluated as a 

CaO-equivalence, and the following Eq. (1.2) was obtained. 

log {
(%P)slag

[%P]metal
} = 0.071{(%CaO)+0.1(%MgO)+[1.5(%Na2O)+4.4]}+2.5log(%T.Fe)+

8260

𝑇
-8.56  

(1.2) 

In the hot metal dephosphorization with multi-phase slag, the slag is normally consisted in the 

CaO-SiO2-FetO-P2O5-MgO system, and the industrial operation is mainly carried out in the 

dicalcium silicate (2CaO·SiO2, C2S) saturated region. It is well known that 2CaO·SiO2 forms a 

solid solution with the dephosphorization product (3CaO·P2O5) at the treatment temperature 

over a wide composition range [32, 33]. Consequently, a 2CaO·SiO2-3CaO·P2O5 solid solution 

(C2S-C3P) forms and it coexists with the liquid slag in the dephosphorization process. This 

implies that the product of the dephosphorization reaction can be dissolved into the solid phase 

in slag. Inoue et al. [34] studied the P transfer behavior from P2O5-containing CaO-SiO2-FetO 

slag to 2CaO·SiO2 particles homogeneously dispersed in slag. The transfer rate of P from slag to 
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a 2CaO·SiO2 particle was considerably fast and a 2CaO·SiO2 particle changed to the particle 

with the composition of 2CaO·SiO2-3CaO·P2O5 solid solution within 5 s. Hamano et al. [35] 

and Yang et al. [36, 37] systematically investigated the formation reaction of phosphate 

compound in multi-phase flux and the mass transfer processes between CaO or 2CaO·SiO2 

particles and molten slag. Measurements of the equilibrium distribution ratio of P2O5 between 

the solid solution and liquid phase revealed that P2O5 is concentrated in the solid solution with a 

high distribution ratio [38]. On the basis of these results, the solid solution plays an important 

role in efficient dephosphorization-by acting as a sink for phosphorus and lowering the 

phosphorus content in the liquid phase-as pointed out by Kitamura et al. [39]. 

In order to increase the efficiency of dephosphorization and to use the P-condensed C2S-C3P 

solid solution as an alternative source of phosphate ores, many researches have been conducted 

to investigate the distribution ratio of P2O5 between the solid solution and liquid phase. Ito et al. 

[38] determined the equilibrium distribution ratio of P2O5 (LP2O5) between solid 2CaO·SiO2 and 

molten CaO-SiO2-Fe2O3 and CaO-SiO2-FeO slags. It was found that LP2O5 increased with 

increasing total Fe content, regardless of the valency of Fe. No dependence of LP2O5 on 

temperature and (%CaO)/(%SiO2) ratio in slags was observed. 

Pahlevani et al. [40] investigated the influences of MgO, MnO, and Al2O3 on the distribution of 

P2O5 between C2S-C3P solid solution and liquid phase in the case of FeO or Fe2O3 as the iron 

oxide. They found that the distribution ratio of P2O5 decreased with the addition of MgO and 

MnO, but it did not change with the addition of Al2O3. They also reported that the CaO content 

in the liquid phase and the activity coefficient of P2O5 in the solid solution are the ruling factors 

on distribution ratio of P2O5. 

Lin et al. [41, 42] systematically studied the effects of Na2O and SiO2 modification on P2O5 

enrichment and existence form in steelmaking slag. Their results showed that the melting point 
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of slag decreased obviously with the increasing of Na2O content in slag, and high-P2O5 solid 

solution (Ca2SiO4-Ca3(PO4)2 and Na2Ca4(PO4)2SiO4) are generated. Ca2SiO4 in the solid 

solution reduced with increasing SiO2; hence, the P2O5 content in the solid solution increased. If 

the addition of SiO2 was excessive, the amount of Ca2SiO4 precipitation in the slag decreased 

remarkably (and even disappeared), and the generation of C2S-C3P solid solution reduced, 

which was not favorable for P2O5 enrichment. 

Xie et al. [43] investigated the effects of Na2O and B2O3 on the distribution ratio of P2O5 and 

morphologies of corresponding solid solutions in CaO-SiO2-Fe2O3-P2O5 slag system. It was 

found that the distribution ratio of P2O5 would be improved with the increase of Na2O content 

due to the formation of Na2O-containing solid solution with a similar morphology as that of 

C2S-C3P solid solution. However, B2O3 played an opposite role, and it would reduce the P2O5 

distribution ratio. 

Jiang et al. [44] investigated the effect of Al2O3 modification on the P2O5 enrichment behavior 

in dephosphorization slag. The results showed that P2O5 was mainly existed in C2S–C3P solid 

solution and Al2O3 modification was beneficial to the P2O5 enrichment. Al2O3 could react with 

the initially precipitated solid solution with low P2O5 content and decomposed to high-P2O5 

containing C2S-C3P solid solution and Ca2Al2SiO7. 

With the deterioration of iron ore quality caused by the increased utilization of high-P iron ores, 

the P content in hot metal is gradually increasing. Kitamura et al. [45] studied the 

dephosphorization treatment of hot metal with high P content on the basis of a simulation model 

developed by the ISIJ research group-“Process Simulation for Dephosphorization of Pig Iron by 

Multi-Phases”. It showed that when the P content in steel decreased to 0.015% from 0.3% by 

hot metal pretreatment process, P2O5 content in slag increased to about 12 mass%. These results 

indicated the high potential of the hot metal dephosphorization process for the treatment of hot 
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metal with high P content. Through efficient dephosphorization, most of the P in hot metal was 

eliminated and concentrated in slag, and a slag with high P2O5 content will generate. 

 

 

Fig. 1.3 Influence of slag composition on P2O5 content in the C2S-C3P solid solution 

 

Figure 1.3 shows the relationship between the P2O5 content in slag and in the solid solution [46]. 

It shows that the P2O5 content in the solid solution increased with the P2O5 content in slag. 

When the P2O5 content in slag reached 18 mass%, the precipitated solid solution was found be 

nearly pure 3CaO·P2O5. Therefore, in the case of slag with high P2O5 content, P2O5 was still 

concentrated in the solid solution, and a solid solution with high P2O5 content will precipitate. 

 

1.3 P recovery from steelmaking slag 

The recycling of industrial by-product has attracted widespread attention because of resource 

exhaustion and environment protection. Steelmaking slag, including dephosphorization slag, is 

produced in an enormous quantity annually. Although steelmaking slag contains many valuable 

components, such as FetO, MnO, and P2O5, it mainly used as roadbed and civil engineering 

materials [47]; the value of some useful elements in slag has not been exploited well. One of the 
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desired methods is to recycle the steelmaking slag inside ironmaking and steelmaking process, 

and to recover some valuable elements. However, the existence of P2O5 restricts the recycling of 

slag, because it will result in a high P content in hot metal and increase dephosphorization 

burden. Therefore, the key point of the effective utilization of steelmaking slag depends on how 

to separate and remove P2O5 from slag efficiently. Because the supply of phosphate ore is 

currently becoming very tight, and Japan has no domestic P resources, the P separated from 

steelmaking slag, especially slag with high P2O5 content, was considered to be a potential 

phosphate source to produce phosphate fertilizer [48]. 

 

 

Fig. 1.4 Domestic material flows of P in Japan (kt-P) 

 

Based on the statistical data for the material flow of P in Japan [48], as shown in Fig. 1.4, the P 

quantity in steelmaking slag is almost equal to that in imported phosphate ore. It means that the 

efficient recovery of P from steelmaking slag not only maintains a sustainable supply of P, but 

also lowers production costs of steelmaking and save resources. Therefore, it is urgent to 

develop an effective method to recover P from steelmaking slag. On the basis of the difference 
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in properties between the P2O5 or the P-condensed solid solution and other components, a great 

deal of efforts has been made to separate and recover P from slag by physical or chemical 

separation. 

Ono et al. [49] proposed removal of P from steelmaking slag by floating of the P-concentrated 

dicalcium silicate during solidification. Dicalcium silicate is crystallized primarily and floats up 

owing to the difference of density between dicalcium silicate and residual liquid. As a result of 

slow cooling, CaO, SiO2, and P2O5 were enriched in the top layer; FetO and MnO were 

concentrated in the bottom layer. Dicalcium silicate was found to be apt to separate more 

efficiently with higher total Fe content in slag, and at higher start temperature of cooling. 

 

 

Fig. 1.5 Outline of the slag regeneration process 

 

A waste-free steelmaking process, in which slags are recycled inside the steelmaking process 

itself by using a so-called slag regenerator, has been proposed by Li and Suito [50], and its 
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possibility was investigated by means of computer simulations. Ishikawa [51] studied the 

reduction behavior of dephosphorization slag on the iron bath in the reduction furnace of the 

slag regeneration process by test converter experiments. Figure 1.5 illustrates the slag 

regeneration process. Hot metal dephosphorization slag is charged to the slag regenerator to be 

reduced with carbon from coke and with hot metal. P2O5, MnO and FetO in the 

dephosphorization slag are recovered in the hot metal. The reduced dephosphorization slag can 

be used for high grade applications or be used as a recycled slag in a dephosphorization furnace. 

The hot metal in the slag regenerator can be used several times repeatedly as P and Mn contents 

in the metal bath gradually increased by the reduction of the dephosphorization slag. 

Yokoyama et al. [52] and Kubo et al. [53] studied the separation of the P-condensed solid 

solution from steelmaking slag with the aid of a strong magnetic field. P exists mainly in the 

form of C2S-C3P solid solution rather than the FetO-rich liquid phase in slag and exhibits 

remarkable segregation in the solidified slag. Through measurements of magnetic properties of 

these phases, different behaviors in a magnetic field have been found. By their experiment, 

about 65% of the P enriched phase can be recovered with less than 10% of FetO matrix phase 

contamination. To further promote the magnetic separation of the P-condensed phase from 

dephosphorization slag, Diao et al. [54] and Lin et al. [55] investigated the effect of slag 

modification on the P recovery ratio. It was found that the addition of SiO2, Al2O3 and TiO2 had 

a positive influence on the P recovery ratio. However, the P recovery ratio and the concentration 

of P2O5 in unmagnetized slag showed a reciprocal relationship with increasing SiO2 and Al2O3 

content. The P recovery ratio was little affected by the addition of FetO and MnO. 

Miki et al. [56] studied the recoverability of FeO and P from steelmaking slag using a novel 

mechanical approach involving capillary action. To improve the efficiency of the separation of 

the solid 2CaO·SiO2 phase and the FeO-rich liquid phase in steelmaking slag, capillary action 
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was used to facilitate penetration into sintered CaO. Once the liquid phase had penetrated the 

CaO sinter, it was found that that the solid 2CaO·SiO2 phase and the FeO-rich phase could be 

effectively separated. It was possible to recover 87% of the P2O5 and 90% of the FeO from 

steelmaking slag. 

Morita et al. [57] investigated the carbothermal reduction behavior of steelmaking slag in 

microwave irradiation. The slags were mixed with graphite powder and heated to 1873 K to 

precipitate a lump of Fe-C alloy. An increase in the SiO2 content of slag led to a considerable 

improvement in the reduction for both Fe and P because of the improvement in the fluidity of 

the slags and an increase in the activity coefficient of P2O5 in the slags. The extraction behavior 

of P from Fe-P-Csatd alloy was also investigated at 1473 K by Na2CO3 treatment. The P2O5 in the 

fluxes could be concentrated to more than 9 mass% showing that it could be used as a P 

resource. 

Li et al. [58] studied the enrichment of P-concentrating phase from CaO-SiO2-FeO-MgO-P2O5 

melt with super gravity. The results show that there was an obvious stratification appearing in 

the sample after centrifugal enrichment. The upper part of the sample was loose and porous, 

while the lower part was smooth and compact. It was found that the P-concentrating phase 

gathered in the upper part, while it was hard to find any P-concentrating phase in the lower part 

of the sample. In this case, the recovery ratio of P2O5 in the concentrate reached 72.6%. 

These methods were possible to separate P2O5 or C2S-C3P solid solution from steelmaking slag. 

However, these trials on P recovery had not been successfully applied to steelmaking industry. 

 

1.4 Selective leaching of P-condensed solid solution from slag 

Compared with the above methods, leaching has an advantage in recovering P from steelmaking 

slag, because it is effective, energy-saving, and easily controlled [59]. Some attempts have been 
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made to dissolve dephosphorization slag to form aqueous phosphate, which can be used as a 

raw material for various phosphate-containing compounds. Sugiyama et al. [60] investigated the 

elution of aqueous phosphate from dephosphorization slag using nitric acid (HNO3). It was 

found that 82% of the dephosphorization slag could be dissolved, but all components contained 

in the slag were unselectively dissolved. To remove the Fe-species in the aqueous solution, 

which has been referred to as the “slag solution”, calcium hydroxyapatite was added, and then a 

P-concentrating and Fe-free solution was obtained. 

The solubility of slag in 2% citric acid is an important index to evaluate the applicability of 

dephosphorization slag to phosphate fertilizer. Diao et al. [61] studied the effect of slag 

composition on P2O5 solubility of dephosphorization slag in the citric solution. It was shown 

that more than 80% of P2O5 was dissolved. The P2O5 solubility increased with the increase of 

(%CaO)/(%SiO2) ratio, and decreased with the increase of both FetO and P2O5 content. Lin et al. 

[62] found the addition of CaF2 into dephosphorization slag deteriorated the P2O5 solubility of 

slag in the citric solution because of the formation of fluorapatite (Ca5(PO4)2F). The P2O5 

solubility could increase to 96% when Na2CO3 was added during slag synthesis, which resulted 

from the formation of Na2Ca4(PO4)2SiO4 and Na3PO4. However, dissolution behaviors of other 

elements, especially Fe, from the slag were not investigated in their studies. 

The majority of the P2O5 in dephosphorization slag was concentrated in the C2S-C3P solid 

solution. If the solid solution was selectively dissolved in the aqueous solution, the soluble P in 

the leachate would be a suitable raw material for phosphate fertilizer production because it is 

similar with that in the production of phosphate fertilizer in a wet process [63]; the remaining 

P-poor mineralogical phase (Fe-rich phase) could be recycled for further use in the steelmaking 

process. 
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Previously, a series of etch tests have demonstrated that dicalcium silicates can be selectively 

removed from iron ore sinter using weak acids [64]. On the basis of different solubility between 

the solid solution and other phases in aqueous solutions, Kitamura et al. [65] proposed selective 

leaching of the P-concentrated solid solution from steelmaking slag. It was shown that at a 

constant pH, the solubility of elements from the matrix phase, in the HNO3 solution, was lower 

than that from the solid solution. It was possible to dissolve a solid solution containing P 

without dissolving the matrix phase [65]. Figure 1.6 shows the surface of steelmaking slag after 

leaching [66]. Many holes were observed on the slag surface. The composition of the plateau 

area was almost the same as the matrix phase before leaching. There were no solid solution 

particles. This result confirmed that the solid solution in steelmaking slag was selectively 

dissolved. 

 

 

Fig. 1.6 Surface of steelmaking slag (quenched) after leaching in the nitric solution at pH 3 

 

Some studies on selective leaching of P have been conducted in our laboratory. Teratoko et al. 

[65] investigated the dissolution behavior of a solid solution with various compositions in the 

aqueous solution, as shown in Fig. 1.7. They clarified that the dissolution ratio of Ca is close to 
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1.0 in the case of pure C2S, but it decreased greatly as the C3P content in the solid solution 

increased. However, the dissolution ratio of P was about 0.1 and did not change with the C3P 

content. It means that in the case of slag with high P2O5 content, the solid solution with high 

P2O5 content is difficult to be dissolved. In addition, the dissolution ratio of P increased for 30 

min, but after it reached the maximum value, it began to decrease owing to precipitation of 

hydroxyapatite (Ca10(PO4)6(OH)2, HAP). In this experiment, the dissolution behavior of a solid 

solution with a matrix phase in the CaO-SiO2-P2O5-FetO slag system was also investigated. It 

was found that when FeO was used as an iron oxide, the dissolution ratio of P was much lower 

than when Fe2O3 was used. In the case of Fe2O3-containing slag, the dissolution ratios of each 

element in the matrix phase were lower than that in the solid solution at various pH conditions. 

 

 

Fig. 1.7 Change in the maximum dissolution ratio of each element with the composition of the solid 

solution 

 

Numuta et al. [66] clarified the possibility of selective extraction of the solid solution from the 

quenched steelmaking slag. Figure 1.8 shows the dissolution ratios of each element from slag in 
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the nitric solution. For both conditions, a selective dissolution of the solid solution occurred 

since the dissolution ratio of Fe was small. The dissolution ratios of each element from slag 

were much greater at pH 3 than at pH 7. At pH 3, most of the Ca and Si in the solid solution 

dissolved after 120 min; however, the dissolution ratio of P was approximately 65% smaller 

than that of Ca. XRD analysis revealed that the peak corresponding to the solid solution 

disappeared in the residue. The mass ratio of the residue to the dissolved slag was close to the 

ratio of the matrix to the solid solution before leaching. These results confirmed that the solid 

solution of the initial slag was selectively dissolved in the aqueous solution. However, the 

dissolution ratio of P from slag was not high because of phosphate precipitation in these cases. 

 

 

Fig. 1.8 Dissolution ratios of each element from steelmaking slag in the nitric solution 

 

Qiao et al. [67] investigated the dephosphorization of steelmaking slag by leaching with acidic 

aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and 

ion-exchanged water. Their results showed that temperature had no obvious effect on the 

dissolution ratio of P. However, it had a significant effect on the dissolution ratio of Fe. The 
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dephosphorization rate increased with the decrease of slag particle size and the pH value of the 

solution. More than 90% of the P can be dissolved in the solution while the dissolution ratio of 

Fe was only 30% below the optimal condition. Because of a higher dissolution ratio of Fe in this 

case, a better selective leaching of P from slag did not achieve. 

 

1.5 Purposes and contents of the present study 

The steelmaking slag with high P2O5 content generated from the utilization of high-P iron ore is 

considered as a great potential source of P. Because the majority of the P2O5 in slag was 

concentrated in the solid solution, selective leaching of C2S-C3P solid solution was adopted to 

recover P from slag with high P2O5 content as a phosphate fertilizer and recycle the undissolved 

slag inside steelmaking process. The previous studies [65] revealed that the C2S-C3P solid 

solution with high P2O5 content was difficult to be dissolved and the dissolution ratio of P was 

very low because of phosphate precipitation. Therefore, the first purpose of the present study 

was to suppress phosphate precipitation in the aqueous solution and promote P dissolution from 

the solid solution with high P2O5 content. Although a large amount of P could dissolve from 

steelmaking slag in some case, the significant dissolution of Fe occurred simultaneously [66, 

67]. Therefore, the second purpose of the present study was to suppress dissolution of 

Fe-containing phases and achieve an excellent selective leaching of P from slag with high P2O5 

content. Following leaching of steelmaking slag, a leachate containing soluble P was obtained, 

and there were no studies on P recovery from such solution. The third purpose of the present 

study was to explore an effective method to extract a phosphate product from the leachate. 

To achieve these goals, some innovations were proposed in the present study: 

(1) Organic acid (oxalic acid and citric acid) was selected as the leaching agent: 
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Leaching agents (acid) have a significant effect in metal extraction from mineral ores 

because of their different properties and dissolution mechanism [68, 69]. For selective 

leaching of P from slag by nitric acid, the dissolved phosphate ions in the aqueous solution 

was easy to react with Ca
2+

 and precipitate in the form of hydroxyapatite (Ca10(PO4)6(OH)2), 

resulting in a lower dissolution ratio of P [66]. In the oxalic acid (H2C2O4) solution, Ca
2+

 

and C2O4
2-

 ions can form CaC2O4 sediment [70]. In the citric acid (H3C6H5O7) solution, 

C6H5O7
3-

 species have a strong capacity to react with Ca
2+

 and form a CaC6H5O7
-
 complex 

[71]. In these cases, the Ca
2+

 was “fixed” by organic ions, and then its effect on P 

precipitation may be weakened. Therefore, oxalic acid and citric acid were selected as 

leaching agents and their effects on P dissolution from the C2S-C3P solid solution were 

investigated. 

(2) Na2O (and K2O) modification of slag with high P2O5 content: 

The Rhenania phosphate fertilizer with an ammonium citrate solubility of 98% was 

produced by the reaction of fluorine apatite (Ca10(PO4)6F2), soda, and quartz sand at high 

temperatures, as shown in Reaction (1.3) [72]. An alkali-dicalcium phosphate is formed and 

calcium is displaced by alkali, and the excess lime is bound by silica as orthosilicate. The 

stable existence of 2CaO·Na2O·P2O5 has been confirmed by the phase diagram of 

Ca3(PO4)-CaNaPO4 [73]. Because 2CaO·Na2O·P2O5 shows a higher solubility than 

3CaO·P2O5 in the 2% citric acid solution [74], if Na2O could be introduced into 

2CaO·SiO2-3CaO·P2O5 solid solution to substitute for CaO, the solubility of solid solution 

would be significantly improved, and the dissolution of P from slag would be promoted. 

Therefore, modification of C2S-C3P with Na2SiO3 at high temperatures was proposed. The 

effect of Na2O (and K2O) modification on dissolution behavior of slag was investigated. 

Ca10(PO4)6F2 + 4Na2CO3 + 2SiO2 = 3(2CaO∙Na2O∙P2O5) + 2Ca2SiO4 + 4CO2 + 2NaF (1.3) 
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(3) Slow cooling of the molten slag: 

Cooling rate of the molten slag significantly affects not only the size of the crystals but also 

the fraction of each mineralogical phase. Slow cooling promoted the formation of dicalcium 

silicate with high P2O5 content in steelmaking slag, and some phases could be crystallized 

from the matrix phase (glassy phase) [75]. For the silicate glassy phase, decreasing cooling 

could also change its structure [76]. In addition, some studies have clarified that some 

elements were easier to dissolve from amorphous slag than from crystalline slag [77, 78]. 

Consequently, it is concluded that decreasing cooling rate of the molten slag would affect 

the dissolution behavior of each phase in the aqueous solution, and then the effect of the 

cooling rate on slag dissolution was investigated. 

(4) P precipitation by adding alkaline solution 

The process of P recovery from the leachate was similar with the P removal technologies in 

wastewater treatment which have been widely investigated [79]. Chemical precipitation 

comprises the addition of a divalent or trivalent metal salt to wastewater. It caused the 

precipitation of an insoluble metal phosphate that is settled out by sedimentation. Calcium 

phosphates are the major component of phosphate fertilizer, and can precipitate at high pH 

condition [80]. To offer a more valuable and consistent product for recycling P to 

agriculture, Ca is considered the most suitable metal to precipitate phosphate. In addition, 

alkaline solution can adjust the pH of the leachate easily to control the formation of 

phosphate precipitate. Therefore, Ca(OH)2 solution was selected, and the effect of pH on P 

precipitation by Ca(OH)2 addition was investigated.  

The contents of this thesis are as follows: 

 Chapter 1 presents the background and purposes of this thesis; 
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 Chapter 2 presents the dissolution behavior of the P-concentrated C2S-C3P solid solution. 

The effects of leaching agent (acid), Na2O modification, and pH on the dissolution of P 

from the solid solution were investigated. 

 Chapter 3 presents the dissolution behavior of P from modified steelmaking slag with Na2O 

addition. The effects of the cooling rate of molten slag, Na2O content, pH, and the valency 

of Fe in slag on the dissolution of P from slag were investigated. 

 Chapter 4 presents the dissolution behavior of P from modified steelmaking slag with K2O 

addition. The effects of K2O content and pH on the dissolution of P from slag were 

investigated. 

 Chapter 5 presents the distribution of P2O5 and Na2O between the solid solution and liquid 

phase in slag with high P2O5 content. The effects of slag composition on the distribution 

ratio of P2O5 and mass fraction of the solid solution were investigated. 

 Chapter 6 represents P recovery from the leachate by precipitation. The effects of alkaline 

solution and pH on the P precipitation in the leachate were investigated. A process for the 

comprehensive utilization of slag with high P2O5 content was proposed. 

 Chapter 7 represents the conclusions of the present thesis. 
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2 Dissolution behavior of P from the C2S-C3P solid solution with high 

P2O5 content 

 

The key to selective leaching of P from slag was to promote the dissolution of P from the 

P-condensed solid solution. In this chapter, the dissolution behavior of P from the C2S-C3P solid 

solution with high P2O5 content was studied. To suppress precipitation of the dissolved P during 

leaching, oxalic acid (H2C2O4) and citric acid (H3C6H5O7) were selected as leaching agents. This is 

because the dissolved Ca
2+

 ions can form precipitation or complex in the oxalic and citric solutions 

[1, 2], respectively, and then the effect of Ca
2+

 ions on phosphate precipitation is possible to be 

weakened. To improve the solubility of C2S-C3P solid solution, modification of C2S-C3P with 

Na2SiO3 at high temperatures was proposed. It has been reported that the addition of Na2O to slag 

promoted the dissolution of P from dephosphorization slag in 2% citric acid solution, which resulted 

from the formation of Na2Ca4(PO4)2SiO4 (However, the dissolution behavior of Fe from slag were 

not investigated) [3]. Because 2CaO·Na2O·P2O5 shows a higher solubility than 3CaO·P2O5 in 2% 

citric acid solution [4], if Na2O could be introduced into the C2S-C3P solid solution, its solubility 

would increase, and a higher dissolution ratio of P may achieve. Consequently, the effect of Na2O 

addition on the dissolution of solid solution was investigated at various pH conditions controlled by 

the addition of either oxalic acid or citric acid. 

 

2.1 Experimental method 

2.1.1 Synthesis of solid solution and Na2O modification 

Reagent-grade SiO2 and Ca3(PO4)2 as well as synthetic CaO were utilized to synthesize C2S-C3P 

solid solution. Synthetic CaO was prepared by heating reagent-grade CaCO3 at 1273 K for at least 

12 h under air atmosphere. For the preparation of C2S, a mixture of CaO and SiO2 with a target 
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composition of CaO-34.9 mass% SiO2 was pressed to form a disc of 13 mm in diameter, and then 

heated at 1773 K for 24 h. After cooling, γ-C2S powder was obtained, since the disc disintegrated 

due to the volume expansion caused by phase transformation. The formation of dicalcium silicate 

was confirmed using X-ray diffraction analysis (XRD). To prepare C2S-C3P solid solution, the 

synthesized C2S powder was fully mixed with Ca3(PO4)2 powder, pressed into a disc of 13 mm in 

diameter, and annealed in a Pt boat at 1773 K for 48 h under air atmosphere. After cooling, the phase 

of the solid solution was determined by XRD. 

 

Table 2.1 Compositions of the solid solution samples before and after Na2SiO3 addition (mass%) 

Sample 
before modification after Na2SiO3 addition 

CaO SiO2 P2O5 CaO SiO2 P2O5 Na2SiO3 

0% Na2SiO3 60.4 19.6 20.0 60.4 19.6 20.0 0 

10% Na2SiO3 59.8 18.0 22.2 53.9 16.2 20.0 9.8 

20% Na2SiO3 59.2 15.9 24.9 47.5 12.8 20.0 19.7 

30% Na2SiO3 58.4 13.3 28.4 41.1 9.4 20.0 29.5 

 

For the Na2O modification procedure, Na2SiO3 was selected as the modifier because it was more 

stable than Na2CO3. Reagent-grade Na2SiO3 powder was mixed with the synthesized C2S-C3P 

powder at a target mass ratio, pressed into tablets, and annealed in a Pt boat at 1773 K under air 

atmosphere. To promote this reaction which occurs between solid and liquid phase, the holding time 

at 1773 K was set as 2 h. In each case, the pellets were crashed into powder after being cooled down 

in air to confirm their crystalline structure using XRD and electron probe microanalysis (EPMA). 

Steelmaking slag generally contains about 3 mass% of P2O5. In the case of utilization of high-P 

iron ores, P2O5 content in steelmaking slag can increase to about 8 mass%. Assuming that the 

mass fraction of solid solution in slag is about 0.3 and the distribution ratio of P2O5 between 

solid solution and liquid phase is 5, P2O5 content in the solid solution can reach about 20 mass%. 

Therefore, P2O5 content in the samples were fixed at 20 mass% in all cases. Table 2.1 shows the 
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compositions of the solid solution samples before and after Na2SiO3 addition. For the solid 

solution samples, the 3CaO∙P2O5 content was the same because of the same P2O5 content. When 

different mass ratios of Na2SiO3 were added, the 2CaO∙SiO2 content would be changed 

correspondingly, and thus the ratio between C2S and C3P was different in each sample. For the 

modified sample containing 19.7 mass% of Na2SiO3, the molar ratio of P2O5 to Na2O was equal 

to approximately 1:1. In this study, the solid solution samples containing 9.8, 19.7, and 29.5 

mass% of Na2SiO3 are named as 10% Na2SiO3, 20% Na2SiO3, and 30% Na2SiO3, respectively. 

2.1.2 Leaching experiment 

The prepared C2S-C3P samples and that after Na2SiO3 addition were ground into fine particles 

with sizes smaller than 53 μm (270 mesh). The schematic of the leaching apparatus is shown in 

Figure 2.1. One gram of the powdered sample was added to 400 mL of deionized water. A 

Teflon container with a 500 mL capacity was used as a vessel, and the temperature was kept 

constant at 298 K using an isothermal water bath. The aqueous solution was agitated using a 

semicircular-shaped rotating stirrer of 60 mm in width at 200 rpm. Because the dissolution of 

Ca from solid solution increased the pH of the aqueous solution, to keep the pH at a constant 

value, a pH meter was attached to the system, and an acid was automatically supplied into the 

solution by a PC-controlled system. In this study, nitric acid (HNO3, 0.1 mol/L), oxalic acid 

(H2C2O4, 0.1 mol/L) and citric acid (H3C6H5O7, 0.1 mol/L) were used as leaching agents, 

respectively. According to the previous studies [5, 6], the dissolution of each element from slag 

was difficult at a higher pH (pH ≥ 9), while a large amount of slag, including Fe, was dissolved 

at a lower pH (pH ≤ 5). Consequently, to achieve selective leaching of P, the pH was set within 

this range (5 ≤ pH ≤ 9). About 5 mL of the aqueous solution was periodically sampled at certain 
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intervals (1, 3, 5, 10, 20, 30, 60, 120 min) followed by filtration using syringe filters (< 0.45 

μm). The leaching time was set as 120 min. 

 

 

Fig. 2.1 Schematic of leaching apparatus 

 

After leaching, the remaining aqueous solution was filtered, and the residue was collected from 

the filter. The concentrations of each element in the sampled aqueous solution were determined 

using inductively coupled plasma emission spectroscopy (ICP-AES). The residue was analyzed 

using XRD and EPMA. In order to investigate the effects of leaching agent and Na2SiO3 

modification at different pH values, 16 sets of leaching experiments were conducted (shown in 

Table 2.2). 

 

Table 2.2 Leaching experiments at various pH conditions (pH) 

      Sample 

Acid 

0% 

Na2SiO3 

10% 

Na2SiO3 

20% 

Na2SiO3 

30% 

Na2SiO3 

Nitric acid 7 - 5, 7, 9 - 

Oxalic acid 7 7 5, 7, 9 7 

Citric acid 7 7 5, 7, 9 7 

 

2.2 Experimental results 
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2.2.1 Effect of leaching agent on the dissolution of C2S-C3P solid solution 
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Fig 2.2 Change in the Ca and P concentrations in different acid solutions at pH 7 

 

To investigate the effect of the leaching agent, unmodified C2S-C3P sample was leached by nitric 

acid, oxalic acid, and citric acid at pH 7. Figure 2.2 shows the change in the concentrations of Ca, Si, 

and P with leaching time in different leaching agents. In the beginning, the C2S-C3P dissolution was 

fast due to low ion concentrations in the aqueous solution, and the concentrations of each element 

increased rapidly. In the nitric solution, the Ca and Si concentrations increased continuously, 

reaching 252.9 mg/L and 84.2 mg/L, respectively, after 120 min. The dissolved P was not stable; its 

concentration first increased, and then decreased to 4.5 mg/L after 120 min. When oxalic acid was 

used as a leaching agent, the Ca concentration in the aqueous solution was very low, and the P 

concentration significantly increased compared to that in the nitric solution, although it slightly 

decreased after the maximum value. In the citric solution, the Ca concentration was as high as that in 

the nitric solution, and the P concentration increased continuously, reaching 41.3 mg/L after 120 

min. 
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Fig 2.3 Dissolution ratios of each element from C2S-C3P in different acid solutions at pH 7 

 

From the obtained concentrations of each element in the aqueous solution, the dissolution ratios 

were calculated for Ca, Si, and P using Eq. (2.1), where RM is the dissolution ratio of element M; CM 

is the concentration of element M in the aqueous solution after 120 min (mg/L); V is the final 

volume of the aqueous solution (L); and mM is the original mass of element M in 1 g of the C2S-C3P 

sample (mg).  

𝑅M =
𝐶M∙𝑉

𝑚M
                                  (2.1) 

The dissolution ratios of Ca, Si, and P from the C2S-C3P solid solution in different leaching 

agents at pH 7 are shown in Fig. 2.3. The dissolution ratio of Ca exceeded 22% in the nitric and 

citric solutions, but was very low in the oxalic solution. The dissolution ratio of Si was higher 

than that of other elements in each case. Approximately 43% of Si was dissolved from C2S-C3P 

in the oxalic solution. In the nitric solution, the dissolution of P was difficult; only a small 

fraction of the P was dissolved. However, the dissolution ratio of P in the oxalic and citric 
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solutions significantly increased reaching 14.3% and 17.8%, respectively. Therefore, organic 

acid (oxalic acid and citric acid) were more efficient than nitric acid at extracting P from the 

C2S-C3P solid solution in the aqueous solution at pH 7. 

2.2.2 Modification of C2S-C3P by Na2SiO3 

 

 

Fig 2.4 Cross section of the solid solution samples with different mass fractions of Na2SiO3 

 

Table 2.3 Compositions of each phase in the solid solution samples with different mass fractions of 

Na2SiO3 (mass%) 

Sample CaO SiO2 P2O5 Na2O Phase 

0% Na2SiO3 1 59.7 18.5 21.9 - Solid solution 

10% Na2SiO3 
1 54.8 17.2 23.6 4.5 Solid solution 

2 47.3 43.3 6.1 3.3 CS phase 

20% Na2SiO3 
1 49.9 15.5 25.7 8.9 Solid solution 

2 41.1 45.9 4.9 8.1 CS phase 

30% Na2SiO3 
1 45.5 12.8 30.1 11.6 Solid solution 

2 30.7 51.7 4.8 12.8 CS phase 
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Figure 2.4 and Table 2.3 show the cross section and compositions of the samples with different 

mass fractions of Na2SiO3. After Na2SiO3 modification, the obtained samples consist of two 

phases. The major phase was considered the solid solution modified with Na2O. The other phase, 

mainly contains CaO and SiO2, was considered the CaO·SiO2 (CS) phase. The P2O5 content in 

the new CS phase was far lower than that in the modified solid solution. The Na2O content in 

the modified solid solution was almost the same as that in the CS phase. The compositions of 

each phase in the samples with and without modification were plotted in a 

(CaO+Na2O)-SiO2-P2O5 pseudo-phase diagram, as shown in Fig. 2.5. The Na2O content in the 

solid solution was taken into consideration. The compositions of solid solution in this study are 

nearly located on the line between 2(CaO, Na2O)∙SiO2 and 3(CaO, Na2O)∙P2O5. This would 

indicate that a part of CaO in the C2S-C3P solid solution was replaced by Na2O in the newly 

formed solid solution. The observed compositions of the other phase were located near the 

composition of CS phase. It illustrates that the replaced CaO would be combined with SiO2 and 

formed CaO·SiO2 phase. 

Compared with the compositions of C2S-C3P, the SiO2 and P2O5 contents in the modified solid 

solution changed little, but the CaO content decreased since it was replaced by Na2O. As shown 

in Fig 2.6, with an increase in Na2SiO3 content, the Na2O content in the modified solid solution 

increased, but the CaO content decreased. In the case of sample with about 20 mass% of 

Na2SiO3, the Na2O content in the modified solid solution reached 11.6 mass%. 

To estimate the mass ratio of each element distributed to the solid solution, the phase fraction 

was calculated. The mass balance of each oxide can be represented using Eqs. (2.2) and (2.3): 

NMOn
 = αNMOn

α  + βNMOn

β
                           (2.2) 

𝛼 +  𝛽 = 1                                (2.3) 
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where α and β are the mass fractions of the solid solution and the other phase, respectively, 

𝑁MOn
 is the MOn content in slag, and 𝑁MOn

𝛼  is the MOn content in the solid solution. The mass 

fraction of solid solution was defined as the average of the calculated mass fractions using the 

mass balance of CaO, SiO2 and P2O5. The results, shown in Fig. 2.7, indicated that most of the 

added Na2O and P2O5 were distributed in the modified solid solution. With an increase in the 

Na2SiO3 content, the mass ratio of Na2O distributed in the modified solid solution decreased, 

but the distribution of P2O5 had a little change. When about 20 mass% of Na2SiO3 was added, 

about 94% of the P and 76% of the Na were distributed in the modified solid solution. 

 

 

Fig. 2.5 Compositions of each phase in the (CaO+Na2O)-SiO2-P2O5 pseudo-phase diagram 

 

Figure 2.8 shows the XRD patterns of the solid solution samples with different mass ratios of 

Na2SiO3. Without the Na2SiO3 modification, the main phase corresponds to C2S-C3P. If more 

than 20 mass% of Na2SiO3 was added to the C2S-C3P sample, a new solid solution phase was 
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observed, which can be characterized as 2CaO·SiO2-2CaO·Na2O·P2O5 (C2S-C2NP). This newly 

formed 2CaO·Na2O·P2O5 compound was previously confirmed to exist in the phase diagram of 

a Ca3(PO4)3-CaNaPO4 system [7]. 

2CaO · SiO2‐ 3CaO · P2O5 + Na2SiO3 = 2CaO · SiO2‐ 2CaO · Na2O · P2O5 + CaO · SiO2   (2.4) 

According to the EPMA and XRD results, the reaction between the C2S-C3P solid solution and 

Na2SiO3 at high temperatures can be described by Eq. (2.4). As a result of the Na2SiO3 

modification, C2S-C2NP solid solution and a CaO·SiO2 phase were formed. The P-condensed 

phase changed from the original C2S-C3P to C2S-C2NP. 

 

 

Fig. 2.6 Change in CaO and Na2O contents in the modified solid solution with Na2SiO3 addition 
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Fig. 2.7 Mass ratios of each element distributed in the modified solid solution 

 

 

Fig. 2.8 XRD patterns of the solid solution samples with different mass ratios of Na2SiO3 

 

2.2.3 Dissolution behavior of the modified solid solution 

To examine the effect of the Na2SiO3 modification on the dissolution of P, the samples with 

different mass fractions of Na2SiO3 were leached by oxalic acid and citric acid at pH 7. Figure 
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2.9 shows the change in the Ca and P concentrations in the oxalic solution at pH 7. The Ca 

concentration in the aqueous solution further decreased with an increase in the Na2SiO3 content 

in the sample. When the Na2SiO3 content exceeded 19.7 mass%, the Ca concentration was less 

than 10 mg/L after 120 min. Without modification, the P concentration had a little decrease after 

20 min, reaching 31.6 mg/L. After Na2SiO3 modification, the P concentration in the aqueous 

solution increased significantly, with a larger addition of Na2SiO3 leading to better P dissolution. 

For the sample containing about 20 mass% of Na2SiO3, the P concentration increased almost 

three times compared with the unmodified C2S-C3P. It indicates that Na2SiO3 modification 

could promote the dissolution of P from solid solution by oxalic acid. 

The dissolution ratios of each element from the samples with different mass fractions of 

Na2SiO3 were calculated using Eq. 2.1, as shown in Fig. 2.10. The dissolution ratio of Ca was 

very low in each case, less than 3%. The differences between the dissolution ratios of Si and Na 

from each sample were small. Na2SiO3 modification caused a significant improvement in P 

dissolution. Compared with the C2S-C3P solid solution, in the case of the solid solution 

containing about 20 mass% of Na2SiO3, the dissolution ratio of P increased from 14.1% to 

43.9%. However, further increase in the Na2SiO3 content did not result in a significant 

improvement in the P dissolution. 

Figure 2.11 shows the changes in the Ca and P concentrations in the citric solution at pH 7. The 

Ca and P concentrations increased continuously with leaching time. In the beginning, the 

dissolution rate of solid solution was high, resulting in higher Ca and P concentrations after 20 

min. Contrary to the dissolution behavior in the oxalic solution, the Ca concentration in the 

citric solution increases with an increase in the Na2SiO3 content. Although the Ca concentration 

was high, the P concentration in the citric solution was also high. With the increase in the 
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Na2SiO3 content, the P concentration increased as well. For the sample containing about 30 

mass% of Na2SiO3, the P concentration almost doubled, reaching 76.2 mg/L. 

The dissolution ratios of each element from solid solution with different mass fractions of 

Na2SiO3 in the citric solution are shown in Figure 2.12. With an increase in the Na2SiO3 content, 

the dissolution ratios of Ca, P, and Na in the citric solution increased at pH 7. In the case of 

solid solution containing about 10 mass% of Na2SiO3, the dissolution ratio of P increased 

slightly, however, a further addition of Na2SiO3 resulted in a significant improvement in P 

dissolution. For the solid solution containing about 30 mass% of Na2SiO3, the dissolution ratio 

of P increased to 33.8%. Overall, Na2SiO3 modification promoted the dissolution of P from 

solid solution, but the dissolution ratio of P was lower in the citric solution than in the oxalic 

solution at pH 7.  
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Fig. 2.9 Change in the Ca and P concentrations in the oxalic solution at pH 7 

 

 

Fig. 2.10 Dissolution ratios of each element from the solid solution samples in the oxalic solution at 

pH 7 
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Fig. 2.11 Change in the Ca and P concentrations in the citric solution at pH 7 
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Fig. 2.12 Dissolution ratios of each element from the solid solution samples in the citric solution at 

pH 7 

 

2.2.4 Dissolution behavior of the modified solid solution at various pH 

In order to obtain the optimum leaching condition, the dissolution behavior of the solid solution 

containing about 20 mass% of Na2SiO3 was investigated at various pH. Figure 2.13 shows the 

change in the Ca, P, and Na concentrations in different acid solutions at pH 5. The Ca 

concentration in the nitric and citric solutions was relatively high (508.3 mg/L and 729.9 mg/L, 

respectively), while the Ca concentration in the oxalic solution was very low, only several mg/L. 

As the leaching progressed, the P concentration increased in each case, but after 60 min, they 

exhibited a little change. The P concentration in the nitric solution was almost equal to that in 

the oxalic solution (over 100 mg/L). In the citric solution, the P concentration was far higher 

than that in the nitric and oxalic solutions, reaching 178.2 mg/L. The Na concentration in the 
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citric solution was the highest, reaching 168.4 mg/L. Compared with Ca concentration, Na 

concentration was far lower in the citric and nitric solutions. 
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Fig. 2.13 Change in the Ca, P, and Na concentrations in different acid solutions at pH 5 

 

 

Fig. 2.14 Dissolution ratios of each element from the solid solution containing about 20 mass% of 

Na2SiO3 at pH 5 
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The dissolution ratios of each element in different acid solutions at pH 5 are shown in Fig. 2.14. 

In the nitric solution, approximately 66.7% of the Ca and 51.5% of the P was dissolved from the 

modified solid solution. In the oxalic solution, Ca did not dissolve and the dissolution ratio of P 

was 50.7%. In the citric solution, almost all of the Ca and P were dissolved; the dissolution ratio 

of P reached 85.7%. The dissolution ratio of Si had a little difference in different acid solutions. 

 

 

Fig. 2.15 Relationship between the dissolution ratio of P from the modified solid solution and pH in 

different acid solutions 

 

The relationship between the dissolution ratio of P from the modified solid solution and pH in 

different acid solutions is shown in Figure 2.15. The dissolution ratio of P increased with a 

decrease in the pH regardless of the leaching agent, but the observed trends varied depending on 

the pH range. In the nitric solution, the dissolution ratio of P was very low at higher pH (pH ≥ 7), 

but when the pH decreased to 5, it increased to 51.5%. At higher pH, the dissolution ratio of P 

in the oxalic solution was the highest; however, it was difficult to further improve it by 
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decreasing the pH. At higher pH, the dissolution ratio of P was lower in the citric solution than 

in the oxalic solution. When the pH decreased to 5, a significant improvement in the P 

dissolution was observed: 85.7% of the total P could be dissolved in the citric solution. In 

summary, oxalic acid was beneficial for the dissolution of P in the aqueous solution at pH 7, but 

the dissolution ratio was far lower than unity; citric acid was the optimum leaching agent for 

extracting soluble P from the modified solid solution at pH 5. 

 

2.3 Discussion 

2.3.1 Effect of acid (leaching agent) 

When Ca
2+

 and phosphate ions coexist in the aqueous solution, hydroxyapatite (HAP: 

Ca10(PO4)6(OH)2) is easily formed at higher pH [8]. Therefore, there is a high possibility that P 

concentration in the aqueous solution is controlled by the presence of HAP. At pH 7, the 

predominant phosphate specie in the aqueous solution is H2PO4
- 
[9, 10]. The dissolution reaction 

of HAP and its equilibrium constant are described by Eq. (2.5). The thermodynamic data of 

each species are listed in Table 2.4 [11, 12]. The activity coefficients of dissolved substances 

were estimated using Debye-Hückel theory (described in Eq. (2.6)) [11], where A and B are 

constants which depends on temperature and solvent, z is valency of dissolved substances, α
0
 is 

ion-size parameter, and I is ionic strength of the solvent. The values of A, B, and I applied in the 

present work were 0.509, 0.329, and 0.676, respectively [13, 14]. The values for ion-size 

parameter reported by Klotz [15] were used in the present work. Because the solution system 

was simple and the highest ionic strength was only 0.031 (when the modified solid solution was 

dissolved in the citric solution at pH 5), the ionic strength has little effect on the activity 

coefficient and the activity coefficient of all ions can be assumed as 1 in this study. 

Ca10(PO4)6(OH)2+14H+=10Ca2++6H2PO4
-
+2H2O   log K=52.86         (2.5) 
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𝑙𝑜𝑔 𝛾𝑖 = −
𝐴𝑧𝑖

2√𝐼

1+𝐵𝛼0√𝐼
                               (2.6) 

 

Table 2.4 Thermodynamic data of each species in the aqueous solution 

Species H
+
 Ca

2+
 H2PO4

-
 HPO4

2-
 PO4

3-
 Ca10(PO4)6(OH)2 H2O 

△G J/mol 0 -553067 -1135173 -1094168 -1025547 -12514370 -237141 

 

During C2S-C3P dissolution in the nitric solution, both Ca and P species dissolved 

simultaneously, but the Ca concentration was higher due to a higher CaO content in the C2S-C3P 

sample. With a continuous increase in the Ca concentration, the P concentration in the aqueous 

solution was near the saturation level determined by Eq. (2.5); as a result, the dissolved P 

precipitated in the form of HAP by the further increase in Ca concentration. Then, P 

concentration eventually decreased as the increase in Ca concentration. As shown in Fig. 2.16 

and Table 2.5, the residue surface was mainly composed of Ca, P, and O elements after leaching 

in the nitric solution, which corresponds to precipitated phosphates. The relationship between 

the Ca and P concentrations in the aqueous solution was calculated using Eq. (2.5) at pH 7, as 

shown in Fig. 2.17. With the decrease in the Ca concentration, the P concentration in the 

aqueous solution increased. The observed point for the Ca and P concentrations in the nitric 

solution was located near the HAP solubility line indicating that the P concentration in the nitric 

solution reached saturation, and the high Ca concentration prevented the dissolution of P. 

According to Eq. (2.7) [1], the dissolved Ca
2+

 in the oxalic solution easily reacts with C2O4
2-

 

ions resulting in a CaC2O4 sediment. In Fig. 2.16 and Table 2.5, the residue surface mainly 

contained Ca, C, and O elements, but the P content was low indicating that the obtained residue 

was wrapped by the precipitated CaC2O4 after leaching. Due to the decrease in Ca concentration 

resulting from the formation of CaC2O4, a precipitation of phosphates was suppressed, and the P 

concentration increased dramatically. In Fig. 2.17, the observed Ca and P concentrations in the 
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oxalic solution was located below the HAP solubility line, which showed that such a low Ca 

concentration would not affect the dissolution of P. 

Ca2+ + C2O4
2‐ = CaC2O4   𝑙𝑜𝑔 𝐾𝑠𝑝 = 𝐶𝐶𝑎2+ ∙ 𝐶𝐶2𝑂4

2− = −8.52              (2.7) 

Ca2+ + C6H5O7
3‐ = CaC6H5O7

‐     𝑙𝑜𝑔𝐾 =
𝐶

𝐶𝑎2+∙𝐶
𝐶6𝐻5𝑂7

3−

𝐶𝐶𝑎𝐶6𝐻5𝑂7
−

= −3.22           (2.8) 

𝐶𝐶𝑎2+ =
√4𝐾∙𝐶𝑇∙𝐶𝑎+(𝐶𝑇∙𝐶𝑖𝑡−𝐶𝑇∙𝐶𝑎+𝐾)2−𝐶𝑇∙𝐶𝑖𝑡+𝐶𝑇∙𝐶𝑎−𝐾

2
                   (2.9) 

In the citric solution, C6H5O7
3-

 species have a strong capacity to react with Ca
2+

 and form a 

CaC6H5O7
-
 complex, as shown by Eq. (2.8) [2]. The Ca

2+
 and CaC6H5O7

-
 concentrations in Eq. 

(2.8) can be calculated using Eq. (2.9) [16], where CT.Ca and CT.Cit (mol/L) are the total Ca
2+

 and 

C6H5O7
3-

 concentrations in the aqueous solution, respectively. The C6H5O7
3-

 concentration was 

determined by the final volume of the aqueous solution and the mass of the added citric acid. 

The remaining Ca
2+

 species, which did not react with the C6H5O7
3-

 ions, were identified as free 

Ca
2+

 in the aqueous solution. The calculated free Ca
2+

 concentrations are listed in Table 2.8. 

Although the total Ca
2+

 concentration was high, more than half of the Ca
2+

 existed in the form of 

CaC6H5O7
-
 complex, and the free Ca

2+
 concentration was only 3.09 mmol/L (123.6 mg/L). In 

Fig. 2.17, the concentration of free Ca
2+

 and P was located above the HAP solubility line. 

Allowing for the complexity of CaC6H5O7
- 
formation, it was considered that the P concentration 

reached saturation in the citric solution. In Table 2.5, the residue surface was mainly composed 

of Ca and P elements confirming the HAP formation. These results indicate that in the case of 

citric acid, the concentration of Ca
2+

 ions decreased by the formation of C6H5O7
3-

 complex and 

the P concentration in the aqueous solution increased which controlled by the solubility product 

of HAP. In summary, using oxalic acid or citric acid as the leaching agent could weaken the 

effect of dissolved Ca
2+

 on P precipitation thus improving the dissolution of P from the 

C2S-C3P. 
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Fig. 2.16 Surface of the residues (×1000) after leaching in different acid solutions at pH 7. 

 

Table 2.5 Compositions of residue surface after leaching in different acid solutions at pH 7 (mass%) 

Sample C Ca Si O P 

Nitric acid 1.4 34.0 4.8 43.5 13.0 

Oxalic acid 6.1 36.7 0.5 39.8 2.1 

Citric acid 0.8 28.0 6.2 42.8 10.8 
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Fig. 2.17 HAP solubility line and leaching results for the C2S-C3P at pH 7 

 

2.3.2 Effect of Na2SiO3 modification 

In silicate or phosphate minerals, silicon and phosphorus form a tetrahedral unit with four 

oxygen atoms, SiO4
4-

 and PO4
3-

. Metal cations share the oxygen atoms on the corners of the 

tetrahedral structure [17]. Metal cations and silicon or phosphorus are combined by the bonds of 

Metal-O-Si or Metal-O-P. The electrical charge and cation size determines the bond strength 

of Cation-O. Shorter bond lengths and higher electric charges of the metal ion result in higher 

bond strengths [18]. To consider both the electric charge and the ionic radius simultaneously, 

the ionization potential (Z/r
2
) is often utilized, as presented in Table 2.6 [19]. It shows that 

silicon and phosphorus can form strong bonds of Si-O and P-O. In the C2S-C3P sample, 

Ca-O-P bond exists. By Na2SiO3 modification, a part of Na2O entered into the solid solution 

and combined with P2O5, and thus Na-O-P bond formed. 
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Table 2.6 Effective ionic radius for cations and anions and their coordination number and ionization 

potential 

Ion Coordination number Ionic radius (nm) Z/r
2
 (nm

-2
) 

Na
+
 6 0.102 96.1 

Ca
2+

 6 0.100 200.0 

Si
4+

 4 0.026 5917. 1 

P
5+

 4 0.017 17301.0 

O
2-

 - 0.140 102.0 

 

The dissolution of silicate or phosphate minerals in acid solutions depends on the breaking of 

the weaker bond in structure. Because the bond strength of P-O is significantly higher than that 

of Metal-O, dissolution would favor the breaking of the Metal-O bond. Thus, the metal 

dissolves to form metal cations and the phosphorus dissolves to form phosphate, PO4
3-

 [17]. As 

listed in Table 2.6, the bond strength of Na-O is lower than that of Ca-O. Therefore, for the 

modified solid solution, Na-O-P bond is easier to be broken during leaching compared to 

Ca-O-P bond in the C2S-C3P, which promotes the dissolution of PO4
3-

. This is the reason that 

2CaO·Na2O·P2O5 shows a higher solubility than Ca3(PO4)2 in 2% citric acid solution. 

The breaking of mineral structure and dissolution of metal cations requires the H
+
 cations from 

the added acid. Therefore, the acid consumption can reflect the dissolution behavior of the solid 

solution samples. Table 2.7 lists the amount of acid consumption during leaching. In both cases 

of oxalic and citric acid, with the increase in the additional amount of Na2SiO3, the acid 

consumption increased. This result demonstrates that the dissolution of solid solution was 

enhanced by Na2SiO3 modification. 

For the modified solid solution, not only Ca but also Na was dissolved as cations in the aqueous 

solution. However, Na
+
 and phosphate ions are difficult to form phosphate precipitation in this 

condition [20], and the Na
+
 concentration was much lower than the Ca

2+
 concentration in each 

case. Therefore, the effect of the dissolved Na
+
 ions on phosphate precipitation is negligible. 
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Figure 2.18 shows the concentrations of (free) Ca and P for the modified solid solution 

comparing with the solubility of HAP. In the case of oxalic acid, the observed concentrations 

were located below the HAP solubility line indicating that the most of the dissolved Ca was 

precipitated as CaC2O4 and the effect on the dissolution of P can be ignored. After the Na2SiO3 

modification, the dissolution ratio of P from the modified sample in the oxalic solution 

significantly increased due to a transformation from the C2S-C3P to C2S-C2NP with higher water 

solubility [4]. However, with an increase in the Na2SiO3 content, the dissolution ratio of P was 

difficult to improve further. The precipitated Ca2C2O4 wrapped the unreacted solid solution 

particles, as shown in Fig. 2.16, and thus prevented continuous dissolution of the modified 

sample. 

In the case of citric acid, the dissolution of the modified solid solution at pH 7 was also 

promoted, and the dissolution of Ca increased. Using Eq. (2.9), free Ca
2+

 concentrations were 

calculated (see Table 2.8). Most of the dissolved Ca
2+

 reacts with the citrate ions. With the 

increase in the Na2SiO3 content in the modified sample, the total Ca concentration in the 

aqueous solution increased, but the free Ca
2+

 concentration decreased. In Fig. 2.18, the 

calculated concentration of the free Ca
2+

 and the observed concentration of P were located near 

the solubility line of HAP. This result indicates that although the solubility of the modified solid 

solution increased, the P concentration at pH 7 was still determined by the solubility of HAP. 

Higher concentration of the free Ca
2+

 suppressed the P dissolution. Therefore, the dissolution 

ratio of P from the modified solid solution was lower in the citric solution than in the oxalic 

solution at pH 7. 
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Table 2.7 Consumptions of oxalic acid and citric acid during leaching at pH 7 (mL) 

      Sample 

Acid 

0% 

Na2SiO3 

10% 

Na2SiO3 

20% 

Na2SiO3 

30% 

Na2SiO3 

Oxalic acid (0.1mol/L) 34.8 48.7 52.5 47.9 

Citric acid (0.1 mol/L) 14.8 17.1 21.8 26.8 

 

Table 2.8 Concentrations of free Ca
2+

 and complex in the citric solution (mmol/L) 

Sample pH T. Cit T. Ca CaC6H5O7
-
 free Ca

2+
 

0% Na2SiO3 

7 

3.75 6.23 3.14 3.09 

10% Na2SiO3 4.28 6.74 3.59 3.15 

20% Na2SiO3 5.46 7.46 4.53 2.93 

30% Na2SiO3 6.67 7.87 5.37 2.50 

20% Na2SiO3 5 15.96 18.24 13.99 4.25 

 

 

Fig. 2.18 HAP solubility line and leaching results for the modified solid solution at pH 7 

 

2.3.3 Effect of pH  



Chapter 2 

55 

The solubility of HAP in the aqueous solution is greatly influenced by pH. Figure 2.19 shows 

the solubility line of HAP at pH 5 and 7, respectively. Compared with the conditions at pH 7, 

the solubility of HAP increased, and P and Ca can be dissolved in the higher concentration 

region at pH 5. The concentrations of Ca and P observed by the experiments at pH 5 are shown 

in Fig. 2.19. In the case of oxalic acid, as mentioned above, the precipitated CaC2O4 prevented 

the further dissolution of the solid solution. Therefore, it was difficult to further promote the 

dissolution of P in the oxalic solution by decreasing the pH. 

In the nitric and citric solutions, the observed concentrations of P and Ca were located below the 

solubility line of HAP at pH 5. It indicates that the dissolution of P was not influenced by the Ca 

concentration at pH 5. However, higher Ca and P concentrations were obtained in the citric 

solution, showing that the dissolution of the modified solid solution was promoted. This is 

because the dissolution mechanism of minerals by citric acid is different from those by 

inorganic acid (nitric acid) [21]. Although citric acid is a weak acid, it is an excellent chelating 

agent and metal binder. Ligands or chelating agents aid mineral dissolution by specifically 

adsorbing on mineral surfaces and forming highly soluble complexes with metal cations. The 

formation of ligand–metal complexes at the mineral surface shifts the electron density toward 

the metal cations, which destabilizes the Metal–O lattice bonds and facilitates detachment of 

Metal-O-P bond into the aqueous solution [22]. In addition, ligands also enhance the 

dissolution of minerals by forming complexes with leached cations in the aqueous solution, 

thereby lowering the apparent solubilization of the mineral [23]. In summary, citric acid can 

dissolve minerals via two possible mechanisms: displacement of metal cations from the mineral 

matrix by H
+
 ions, and the formation of soluble metal complexes and chelates. These beneficial 

mechanisms led to the effectiveness of citric acid in dissolving the modified solid solution. 
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Fig. 2.19 HAP solubility line and leaching results for the modified solid solution (20% Na2SiO3) at 

pH 5 

 

2.4 Summary 

The effects of acid (leaching agent), Na2SiO3 modification, and pH on the dissolution behavior 

of the solid solution were investigated. The obtained results are summarized as follows: 

(1) When nitric acid was used as leaching agent, the dissolution ratio of P was not high at pH 7 

because of phosphate precipitation. When oxalic acid or citric acid was used as leaching 

agent, Ca
2+

 ions were removed by the formation of CaC2O4 precipitate or CaC6H5O7
-
 

complex, respectively. Phosphate precipitation in the aqueous solution was suppressed, and 

thus the dissolution ratio of P from the C2S-C3P sample increased significantly. 

(2) When the C2S-C3P sample was modified by adding Na2SiO3 at high temperatures, the solid 

solution containing Na2O was formed. The composition located on the line between 2(CaO, 
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Na2O)·SiO2 and 3(CaO, Na2O)·P2O5. By XRD analysis, 2CaO·SiO2-2CaO·Na2O·P2O5 

phase was detected, which indicated that Na2O substituted for the CaO in C3P. 

(3) By Na2SiO3 modification, the dissolution of P in the oxalic and citric solutions was 

promoted. With an increase in the Na2SiO3 content, the dissolution ratio of P increased. As 

the acid consumption to keep pH was increased by the Na2SiO3 modification, the solid 

solution of 2CaO·SiO2-2CaO·Na2O·P2O5 would have better water solubility than C2S-C3P. 

However, at pH 7, the dissolution ratio of P from the modified solid solution containing 

about 20 mass% of Na2SiO3 reached only 43.9% in the oxalic solution. 

(4) As the pH decreased, the dissolution ratio of P significantly increased in the citric solution. 

At pH 5, the dissolution ratio of P from the modified solid solution containing about 20 

mass% of Na2SiO3 reached 85.7%. However, in the oxalic solution, the precipitated CaC2O4 

prevented the further dissolution of P by decreasing the pH. Therefore, citric acid was an 

optimal leaching agent for extracting soluble P from solid solution at pH 5.  
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3 Dissolution behavior of P from modified steelmaking slag with 

Na2O addition 

 

In the previous chapter, we determined that Na2O modification and using citric acid as the 

leaching agent promoted the dissolution of P from the C2S-C3P solid solution. On the basis of 

these results, the dissolution behavior of the synthesized steelmaking slag was studied in this 

chapter. The slag with high P2O5 content was modified by Na2SiO3 addition, and then leached 

by citric acid. To obtain the optimum conditions for selective leaching of P, the effects of Na2O 

content and pH on the dissolution behavior of the modified slag were investigated. 

Cooling rate of the molten slag significantly affects not only the size of the crystals but also the 

fraction of each mineralogical phase. Slow cooling promoted the formation of dicalcium silicate 

with high P2O5 content in steelmaking slag, and some phases could be crystallized from the 

glassy phase [1]. It was clarified that some elements were easier to dissolve from amorphous 

slag than from crystalline slag [2, 3]. Consequently, it is expected that decreasing cooling rate of 

the molten slag would affect the dissolution behavior of each phase in the aqueous solution, and 

then the effect of the cooling rate on the dissolution behavior of the modified slag was 

investigated. 

The practical steelmaking slag mainly consists of CaO-SiO2-FetO system, and some of the iron 

oxide exists in the form of FeO. It has been reported that when FeO was used as iron oxide, the 

dissolution ratio of P from slag in the aqueous solution was much lower than when Fe2O3 was 

used [4]. However, in the case of Na2O modification, the dissolution behavior of the modified 

slag containing FeO was not clear. Therefore, the effect of the valency of Fe on the dissolution 

behavior of the modified slag was also investigated. 
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3.1 Experimental method 

3.1.1 Synthesis of slags 

To prepare the slag of CaO-SiO2-FetO system, reagent-grade CaCO3, SiO2, Ca3(PO)4, Fe2O3, Fe, 

MgO, and Na2SiO3 were used. CaO was produced by calcining CaCO3 in an Al2O3 crucible at 

1273 K for at least 10 h. To synthesis FeO, electrolytic Fe powder and Fe2O3 was fully mixed in 

the molar ratio of 1: 1, and then heated to 1723 K in a Fe crucible under Ar atmosphere. After 

melting, the sample was taken out of furnace and quenched by water. The sample was crushed 

and the Fe particles were removed by magnetic separation. Table 3.1 lists the initial 

compositions of different slags. In the case of utilization of high-P iron ore, the P content in hot 

metal will increase, and a slag with high P2O5 content will be generated by efficient 

dephosphorization [5]. Therefore, the P2O5 content in each slag was fixed as 8.0 mass%. To 

increase dephosphorization efficiency and fluidity of slag, a relatively lower basicity slag 

saturated with 2CaO·SiO2 is generally used in dephosphorization process [6]. Consequently, the 

basicity of the synthesized slag (masss% CaO)/(mass% SiO2) was set as about 1.6. Because the 

total Fe content in the practical steelmaking slag was about 20 mass%, the Fe2O3 content in 

these synthesized slags was fixed about 30 mass%. Slag F and Slag G contain the different 

valency of Fe, but the total Fe content is same. The existence of MgO in slag was also taken into 

consideration because steelmaking slag contains MgO which mainly originates from the added 

flux and refractory corrosion. 

According to slag composition, 10 g of the reagents were thoroughly mixed and first heated to 

form a homogeneous liquid phase. The heating pattern for synthesizing slag is shown in Fig. 3.1. 

In the case of slag contains Fe2O3, the mixed reagents was put in a Pt crucible and heated to 

1823 K under air atmosphere. In the case of slag containing FeO, the mixed reagents was put in 

a Fe crucible and heated to 1723 K under Ar atmosphere. Then, the sample was cooled to 1623 
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K at a cooling rate of 3 K/min and held at this temperature for 20 min to precipitate solid 

solution. After heating, Slag A was cooled quickly by water; other slags were cooled in the 

furnace at a cooling rate of 5 K/min and withdrawn from the furnace at 1323 K, because the 

change in the mineralogical structural at temperatures below 1373 K is negligible [1]. Finally, 

the mineralogical composition of slag sample was analyzed by electron probe microanalysis 

(EPMA) and X-ray diffraction (XRD) analysis. 

3.1.2 Leaching of slags 

 

Table 3.1 Compositions of the synthesized slags and cooling method 

Sample CaO SiO2 Fe2O3 FeO P2O5 MgO Na2O Cooling method 

Slag A 34.5 21.5 29.0 - 8.0 3.0 4.0 Quenching 

Slag B 34.5 21.5 29.0 - 8.0 3.0 4.0 

Furnace 

cooling 

Slag C 37.0 23.0 29.0 - 8.0 3.0 0 

Slag D 35.7 22.2 30.0 - 8.0 3.1 1.0 

Slag E 32.1 19.9 29.0 - 8.0 3.0 8.0 

Slag F 33.5 22.3 32.2 - 8.0 - 4.0 

Slag G 35.4 23.6 - 29.0 8.0 - 4.0 

 

The leaching apparatus is the same as that used in Chapter 2 (Fig. 2.1). The synthesized slag 

was ground into particles smaller than 53 μm (270 mesh). One gram of slag was added to 400 

mL of distilled water which was agitated using a rotating stirrer at 200 rpm. The temperature of 

the aqueous solution was maintained at 298 K using an isothermal water bath. During slag 

dissolution, Ca
2+

 ions dissolved into the aqueous solution, which increased the pH. To keep the 

pH at a constant value, citric acid (0.1 mol/L) was used as the leaching agent and automatically 

added to the aqueous solution using a PC control system. In the previous studies [7], the 

concentrations of each element had little change after 120 min. Therefore, the leaching time was 

set as 120 min. About 5 mL of aqueous solution was sampled at adequate intervals and filtered 
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using a syringe filter (< 0.45 μm). The concentrations of each element in filtered water were 

analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). After 

leaching, the dissolved slag was collected by filtering all the aqueous solution. The dried residue 

was weighed and analyzed by XRD and EPMA. The conducted leaching experiments are 

summarized in Table 3.2. 

 

 

Fig. 3.1 Experimental condition for synthesizing slag 

 

Table 3.2 Leaching condition of the synthesized slags 

Sample 
Leaching condition 

pH Leaching agent 

Slag A 5, 6 

Citric acid 

(0.1 mol/L) 

Slag B 4, 5, 6, 7 

Slag C 

6 

Slag D 

Slag E 

Slag F 

Slag G 

 

3.1.3 Chemical analysis of slag and residue 
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The concentrations of Ca, Fe, P, Mg, and Na were analyzed using ICP-AES. Deionized water 

was used throughput for sample preparation. The reagent-grade HCl, HNO3, HF, HClO4, and 

H2O2 were used as acid solutions. About 0.15 g of slag or residue powder (270 mesh) for 

ICP-AES analysis was prepared by grinding samples. Slag sample was placed in 100 mL Teflon 

beaker. After adding the H2O (10 mL), HCl (3 mL), and HNO3 (1 mL) to the Teflon beaker, the 

sample was heated at 423 K for 5 h. Si in the solution was eliminated by adding HF (1 mL), and 

then the excessive HF in the solution was removed by HClO4 (1 mL). After the solution to 

dissolve the slag sample was dried thoroughly, residues in the Teflon beaker were re-dissolved 

by adding H2O, HCl, and HNO3 (10:3:1). Finally, the dissolution of metallic ions in the solution 

was conducted by the addition of H2O (1 mL). Assuming that CaO, FetO, MgO, P2O5, and Na2O 

are the oxide components, the SiO2 content was calculated by subtracting the sum of these 

components from 100 mass%.  

 

3.2 Results and discussion 

3.2.1 Effect of the cooling rate on the dissolution behavior of slag 

3.2.1.1 Mineralogical composition of slags with different cooling rates 

Typical cross sections of the modified slags which were cooled at different cooling rates are 

shown in Fig. 3.2. Table 3.3 lists the average compositions of each phase in different slags. The 

quenched slag consisted mainly of two phases. The black phase, which contains about 26 

mass% of P2O5, was the solid solution. The other phase of the CaO-SiO2-Fe2O3 system was 

considered the matrix phase. The Na2O content in the solid solution was nearly twice as much 

as that in the matrix phase. The high distribution ratio of P2O5 between the solid solution and the 

matrix phase indicated that most of the P was concentrated in the solid solution. In addition to 

some large solid solution particles, many fine solid solution particles were also precipitated and 
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distributed in the matrix phases. In the case of furnace cooling, another phase formed, and the 

slag consisted mainly of three phases. The white phase that was rich in Fe2O3 and MgO was 

considered the magnesioferrite phase. Because the composition of the solid solution differed 

little from that observed in the quenched slag, the magnesioferrite phase was thought to be 

formed by decomposition of the matrix phase, which resulted in a decrease in the Fe2O3 content 

in the matrix phase. No fine solid solution particles were observed in the furnace-cooled slag, 

indicating that slow cooling was beneficial for the aggregation of solid solution. The results 

obtained by Numata et al. [7] also demonstrated this point:  a coarsening of the precipitated 

solid solution occurred during slow cooling and holding at 1673 K for a long time period. For 

the furnace-cooled slag, the P2O5 content in the matrix phase was lower than that in the 

quenched slag. 

 

Table 3.3 Compositions of each phase in the modified slags with different cooling rates (mass%) 

Sample Phase CaO SiO2 Fe2O3 P2O5 MgO Na2O 

Slag A 

(Quenching) 

1. Matrix phase 29.6 21.6 38.3 3.0 3.4 3.5 

2. Solid solution 50.9 14.3 0.9 25.9 1.1 6.8 

Slag B 

(Furnace cooling) 

1. Matrix phase 34.4 33.1 25.9 1.1 1.5 3.9 

2. Solid solution 51.4 15.6 0.9 25.4 0.3 6.4 

3. Magnesioferrite 1.8 0 86.8 0 11.1 0.3 
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Fig. 3.2 Cross sections (×500) of the modified slags with different cooling rates 

 

On the basis of the above EPMA results, the mass fractions of each phase in the slags with 

different cooling rates were estimated using Eqs. (3.1) and (3.2): 

∑(mass% MO)𝑖 × 𝑋𝑖 = (mass% MO)𝑆𝑙𝑎𝑔                  (3.1) 

 ∑X𝑖 = 1                                 (3.2) 

Equation (3.1) describes that the sum of oxide content in each phase was equal to the oxide 

content in slag, where 𝑋𝑖  is the mass fraction of phase i, (mass% MO)𝑖 is the content of oxide 

MO in phase i measured by EPMA (shown in Table 3.3), and (mass% MO)𝑆𝑙𝑎𝑔 is the content 

of oxide MO in slag. The contents of major oxides (CaO, SiO2, Fe2O3, and P2O5) were used for 
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calculation, and the average of these calculations was defined as the mass fraction of each phase 

in slag. The calculated mass fractions of each phase are shown in Fig. 3.3. The mass fraction of 

solid solution in the quenched slag was approximately 25%. Decreasing cooling rate increased 

the mass fraction of solid solution, while that of matrix phase decreased due to the precipitation 

of magnesioferrite phase from the matrix phase. In the furnace-cooled slag, the mass fractions of 

solid solution and matrix phase were approximately 29% and 52%, respectively. Because of the 

similar composition of solid solution in these slags, it shows that slow cooling facilitated the 

enrichment of P2O5 in the solid solution. 

 

 

Fig. 3.3 Mass fractions of each phase in slags with different cooling rates 

 

Using the above results, the mass fractions of each oxide distributed in each phase were 

evaluated as:  
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𝑌𝑀𝑂
𝑖 =

𝑋𝑖∙(mass% MO)i

(mass% MO)𝑆𝑙𝑎𝑔
                           (3.3) 

where 𝑌MO
𝑖  is the mass fraction of oxide MO distributed in phase i. The calculated results are 

shown in Fig. 3.4. Although the mass fraction of solid solution was not high, most of the P2O5 

was concentrated in the solid solution because of its high P2O5 content. The majority of the CaO 

and SiO2 were distributed in the matrix phase. As the cooling rate decreased, the mass fractions 

of CaO, SiO2, and P2O5 distributed in the solid solution increased, especially P2O5. In the case of 

furnace cooling, more than 90% of the P2O5 was concentrated in the solid solution; the mass 

fractions of CaO and SiO2 distributed in the solid solution were 45.5% and 21.2%, respectively. 

 

 

Fig. 3.4 Mass fractions of each oxide distributed in each phase 

 

3.2.1.2 Dissolution behavior of slags with different cooling rates 

The change in the concentrations of each element in the aqueous solution at pH 5 and 6 is 

shown in Fig. 3.5. For all the elements, the concentrations increased with leaching time. The 
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dissolution rates were initially fast, but after 60 min, the concentrations exhibited little change.  

According to Fick’s First Law, the concentration gradient between the reaction interface and the 

aqueous solution decreased with the leaching time, resulting in a decrease in the diffusion flux. 

Therefore, the dissolution rate decreased. The Ca concentration was the highest among the 

dissolved elements. At pH 6, the Ca concentration of the furnace-cooled slag was a little higher 

than that of the quenched slag, reaching 320.8 mg/L after 120 min. The quenched slag showed 

higher Si and Fe concentrations. For each slag, the Fe concentration was far lower than those of 

other elements at pH 6. In the case of quenching, the Fe concentration was only 12.5 mg/L after 

120 min. The P concentration of the furnace-cooled slag was higher than that of the quenched 

slag. It increased to 67.3 mg/L after 120 min. When the pH decreased to 5, the dissolution rate 

of slag increased, leading to higher concentrations of each element in a shorter time. In addition, 

the concentrations of each element were higher than those at pH 6. As the pH decreased, the 

dissolution of the quenched slag was significantly promoted compared to the furnace-cooled 

slag. The Ca concentration of the quenched slag increased from 296.2 mg/L to 456.6 mg/L. At 

pH 5, the Si and Fe concentrations of the quenched slag were 156.5 mg/L and 64.2 mg/L, 

respectively, after 120 min, which were far higher than those of the furnace-cooled slag. In the 

case of furnace cooling, the Fe concentration was still at a low level, but the P concentration 

was higher, reaching 74.2 mg/L. 
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Fig. 3.5 Change in the concentrations of each element in the citric solution at pH 5 and 6 
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Fig. 3.6 Dissolution ratios of Ca, P, and Fe from slags with different cooling rates at pH 5 and 6 

 

Table 3.4 Acid consumption during leaching of different slags at pH 5 and 6 (g) 

Sample 

pH 
Slag A (quenching) Slag B (furnace cooling) 

6 20.9 19.7 

5 42.4 27.0 

 

Table 3.4 lists acid consumption during leaching of different slags at pH 5 and 6. For the 

furnace-cooled slag, it consumed less citric acid during leaching compared to the quenched slag 

in each case. At pH 5, more citric acid was required to keep a constant pH value. In the case of 

the quenched slag, about 42.4 g of acid was consumed because of a large dissolution of slag. 

On the basis of leachate composition, the dissolution ratios of each element from slag were 

calculated using Eq. (3.4): 

𝑅𝑀 =
𝐶𝑀∙𝑉

𝑚𝑀
                                 (3.4) 
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where RM is the dissolution ratio of element M from slag, CM is the concentration of M after 120 

min (mg/L), V is the final volume of the aqueous solution (L), and mM is the mass of M in 1 g of 

the initial slag (mg). Figure 3.6 shows the calculated dissolution ratios of Ca, P, and Fe from 

slags with different cooling rates at pH 5 and 6. At pH 6, the dissolution ratios of Ca and Fe 

from each slag were almost the same, reaching 47.4%. The dissolution of Fe was difficult 

regardless of the cooling rate. A lower dissolution ratio of Fe indicated that the matrix phase 

was not dissolved. The dissolution ratio of P from the furnace-cooled slag was 76.9 %, which 

was higher than that from the quenched slag. When the pH decreased to 5, the dissolution of the 

quenched slag was promoted, resulting in higher dissolution ratios of Ca and Fe. The dissolution 

ratio of Fe was more than 10%, indicating that the dissolution of Fe-condensed phase occurred. 

In the case of furnace cooling, the dissolution ratios of each element increased slightly as the pH 

decreased. Only 3% of the Fe was dissolved from slag at pH 5. The dissolution ratio of P 

reached 85.9%, which was similar with that from the quenched slag. In summary, the 

furnace-cooled slag exhibited a higher dissolution ratio of P and a lower dissolution ratio of Fe 

than the quenched slag in each case. A decrease in the cooling rate was beneficial for the 

modified slag to achieve better selective leaching of P. 

3.2.1.3 Discussion on the effect of cooling rate 

As described in previous studies, Ca
2+

 and phosphate ions react easily and form 

Ca10(PO4)6(OH)2 (hydroxyapatite, HAP) at higher pH condition (expressed in Eq. (3.5)), which 

determines the P concentration in the aqueous solution [8, 9].  

Ca10(PO4)6(OH)2 + 14H+ = 10Ca2+ + 6H2PO4
-

+ 2H2O   log K=52.86    (3.5) 
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Fig. 3.7 Solubility lines of HAP and experimental results at various pH conditions 

 

When the pH decreased to a lower level, the H
+
 concentration increased, which facilitated 

dissolution of the solid solution. Figure 3.7 shows the solubility lines of HAP and experimental 

results at pH 5 and 6. Compared to that at pH 7, the solubility line of HAP at pH 6 moved to the 

region with higher Ca and P concentrations. The observed points of the present study (without 

considering the formation of CaC6H5O7
-
 complex) were located below this solubility line, 

indicating that P concentration did not reach saturation and HAP precipitate did not form in this 

case. Therefore, we did not consider phosphate precipitation in the following discussion. 

To evaluate the dissolution behavior of solid solution, the presumed dissolution ratios of Ca and 

P from the solid solution were calculated using Eq. (3.6): 

 𝑅𝑀
𝑆𝑆 =

𝐶𝑀∙𝑉

𝑚𝑀
𝑆𝑆                                  (3.6) 

where 𝑅𝑀
𝑆𝑆 is the presumed dissolution ratio of element M from the solid solution, and 𝑚𝑀

𝑆𝑆 is 

the original M mass in the solid solution (mg). Because most of the P was concentrated in the 
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solid solution, it was assumed that P dissolved only from the solid solution. On the basis of the 

above discussion, it was considered that the dissolved P from slag was measured in the aqueous 

solution without precipitates. Therefore, the presumed dissolution ratio of P from the solid 

solution (𝑅𝑃
𝑆𝑆) could represent the dissolution ratio of solid solution. For Ca, if the presumed 

dissolution ratio (𝑅𝐶𝑎
𝑆𝑆) exceeded unity, it indicated that the dissolution of Ca occurred not only 

from the solid solution but also from the matrix phase, because magnesioferrite was difficult to 

dissolve compared with other phases in the aqueous solution [10]. This value reflects the 

dissolution behavior of matrix phase. The larger this value, the more matrix phase was 

dissolved. 

Figure 3.8 shows the presumed dissolution ratios of Ca and P from the solid solution under 

different cooling rates. In the case of furnace cooling, the presumed dissolution ratio of P 

(dissolution ratio of solid solution) was more than 85%, and that of Ca did not exceed unity 

largely at pH 5 and 6. It illustrates that almost all of the solid solution was dissolved from slag, 

and the matrix phase was barely dissolved. In the case of quenching, the presumed dissolution 

ratios of Ca and P were close to unit at pH 6, indicating that selective leaching of solid solution 

occurred. The practical dissolution ratio of P from the quenched slag was lower than that from 

the furnace-cooled slag. This was because the solid solution particles in the furnace-cooled slag 

aggregated and fine solid solution particles were not distributed in the matrix phase, which 

facilitated leaching of the solid solution. At pH 5, the presumed dissolution ratio of Ca was far 

greater than unity, indicating that a part of the matrix phase in the quenched slag was dissolved. 

The reason is explained as follows: 
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Fig. 3.8 Presumed dissolution ratios of Ca and P from the solid solution under different cooling rates 

 

Matrix phase is a silicate glass of CaO-Fe2O3-SiO2 system. As shown in Fig. 3.9, silicon forms a 

tetrahedral unit (SiO4
4-

) with four oxygen atoms, and complex network exists in silicate glass 

[11]. Shorter bond lengths and higher electric charges of the cation result in higher bond 

strengths [12]. The bond strength of Si-O is significantly higher than that of Metal-O. The 

dissolution of silicate minerals in acid solutions depends on the breaking of the weaker bond in 

structure [11]. In silicate glass, Fe
3+

 ions occupied both octahedral and tetrahedral sites [13, 14], 

as shown in Fig. 3.9. In the case of octahedrally coordinated, the Fe
3+

 ions, similar with Ca
2+

 

ions, act as network modifier. In the case of tetrahedrally coordinated, Fe
3+

 ions act as network 

former, similar with SiO4
4-

. Because the bond length of Fe-O in the tetrahedral site is shorter 

than that in the octahedral site, it is considered that the bond strength of Fe-O in the tetrahedral 

site is higher. It has been reported that the fraction of Fe
3+

 ions in tetrahedral symmetry to the 

total Fe
3+

 ions decreased with increasing temperature [14]. The relative number of octahedral 

Fe
3+

 increased with increasing total ion content in the oxidized silicate glass [15]. Compared 
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with the matrix phase in the quenched slag, the matrix phase in the furnace-cooled slag was 

obtained at a lower temperature and the Fe2O3 content in it was lower because of the 

precipitation of magnesioferrite. Therefore, in the case of slow cooling, the fraction of Fe
3+

 ions 

in tetrahedral sites to total Fe
3+

 ions in the matrix phase was larger. The bond strength of 

Fe-O-Si in this matrix phase was higher, and thus the dissolution of matrix phase became 

difficult. 

In summary, decreasing cooling rate could promote the dissolution of solid solution and 

suppress the dissolution of matrix phase. A better selective leaching of P from slag was 

performed in the case of slow cooling. 

 

 

Fig. 3.9 Schematic illustration of the structure of silicate glass 

 

3.2.2 Effect of Na2O content on the dissolution behavior of slag 

3.2.2.1 Mineralogical composition of slags with different Na2O contents 
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Fig. 3.10 Typical cross section of the slags with different Na2O contents 
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Table 3.5 Compositions of each phase in slags with different Na2O contents (mass%) 

Phase Sample CaO SiO2 P2O5 Fe2O3 MgO Na2O 

1. 

Matrix phase 

Slag C (0% Na2O) 39.1 35.9 1.8 21.5 1.7 0 

Slag D (1% Na2O) 40.1 34.0 2.3 20.8 1.0 1.7 

Slag B (4% Na2O) 34.4 33.1 1.2 25.9 1.5 3.9 

Slag E (8% Na2O) 24.5 29.3 0.5 34.6 1.2 9.9 

2. Solid 

solution 

Slag C (0% Na2O) 54.2 12.6 31.7 0.8 0.7 0 

Slag D (1% Na2O) 56.2 12.0 29.3 0.6 0.2 1.6 

Slag B (4% Na2O) 51.4 15.6 25.4 0.9 0.3 6.4 

Slag E (8% Na2O) 48.6 16.6 24.5 0.7 0.3 9.4 

3. 

Magnesioferrite 

Slag C (0% Na2O) 1.2 0.1 0.0 88.1 10.6 0.0 

Slag D (1% Na2O) 1.3 0.0 0.0 87.4 11.2 0.0 

Slag B (4% Na2O) 1.8 0.0 0.0 86.8 11.1 0.3 

Slag E (8% Na2O) 2.0 0.0 0.0 84.1 12.7 1.2 

 

Figure 3.10 shows the typical cross section of the slags with different Na2O contents. The 

average compositions of each phase in different slags are listed in Table 3.5. Three phases were 

clearly identified in each slag. The gray phase that consists of the CaO-SiO2-Fe2O3 system was 

the matrix phase. The black phase containing a high P2O5 content was the solid solution. The 

white phase that was rich in iron oxide and magnesia was the magnesioferrite phase. The added 

Na2O was distributed into the solid solution, and its content in the solid solution increased with 

an increase in Na2O content in slag. For the slag with 8 mass% of Na2O content, the Na2O 

content in the solid solution reached 9.4 mass%; however, the distribution ratio of Na2O 

between the solid solution and the matrix phase was lower than that in the slag containing 4 

mass% of Na2O. Na2O addition led to a decrease in the P2O5 content in the matrix phase and in 

the solid solution. When the Na2O content increased from 0 to 8 mass%, the P2O5 content in the 

solid solution decreased from 31.7 mass% to 24.5 mass%. For the matrix phase, the Fe2O3 
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content increased with an increase in the Na2O content. The effect of the Na2O content on the 

composition of magnesioferrite phase was not significant. 

Using Eqs. (3.1) and (3.2), the mass fractions of each phase in slags with different Na2O 

contents were calculated and shown in Fig. 3.11. With an increase in the Na2O content in slag, 

the mass fraction of the solid solution increased, while that of the matrix phase decreased. The 

mass fraction of the magnesioferrite phase was about 20% in each slag. Without the Na2O 

addition, the mass fraction of the solid solution in slag was 24.2%. When 8 mass% of Na2O was 

added, the mass fraction of the solid solution increased to 34.0%, and that of the matrix phase 

was 49.1%. 

 

 

Fig. 3.11 Mass fractions of each phase in slags with different Na2O contents 
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Fig. 3.12 Mass fractions of each oxide distributed in the solid solution 

 

The mass fractions of each oxide distributed in the solid solution were calculated using Eq. (3.3), 

as shown in Fig. 3.12. After Na2O addition, the mass fractions of CaO and SiO2 distributed in 

the solid solution significantly increased because of the enlargement of solid solution. Although 

the P2O5 content in the solid solution was decreased by Na2O addition, almost all of the P2O5 

was concentrated in the solid solution. For the slag with 8 mass% of Na2O, about 40% of the 

added Na2O was distributed in the solid solution. 

3.2.2.2 Dissolution behavior of slags with different Na2O contents 

The effect of Na2O content on the change in the concentrations of each element in the citric 

solution is shown in Fig. 3.13. The concentration of each element increased with leaching time. 

The dissolution rate of slag gradually decreased owing to increased concentrations of each 

element in the aqueous solution. The Ca concentration was the highest among the dissolved 

elements, and it increased significantly with the increase in the Na2O content in slag. For the 
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slag containing 8 mass% of Na2O, the Ca concentration reached 386.2 mg/L after 120 min, 

which was about one time higher than that of the unmodified slag. Na2O addition also resulted 

in higher Si and P concentrations. When the Na2O content changed from 0 to 8 mass%, the Si 

concentration almost tripled, and the P concentration increased from 54.1 mg/L to 70.6 mg/L. 

The Fe concentration was the lowest in the aqueous solution: less than 10 mg/L in each case. 

The Na concentration increased with the Na2O content in slag. It reached 63.4 mg/L in the case 

of slag containing 8 mass% of Na2O. 

Figure 3.14 shows the acid consumption during leaching of slags with different Na2O contents. 

In the beginning, a large amount of acid was added to keep the pH at a constant value because 

the dissolution rate of slag was high. The change in the acid consumption was in good 

agreement with that in the Ca and Si concentrations during leaching. With the increase in the 

Na2O content in slag, acid consumption increased. When 8 mass% of Na2O was added, about 

25.7 g of citric acid was consumed during leaching, which was two times higher than the 

unmodified slag.  
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Fig. 3.13 Change in the concentrations of each element in the citric solution at pH 6 
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Fig. 3.14 Change in the acid consumption with leaching time under different Na2O contents 

 

 

Fig. 3.15 Dissolution ratios of each element from slags with different Na2O contents at pH 6 
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As discussed in the above studies, the dissolution ratios of each element from slag were 

calculated using Eq. (3.4). Figure 3.15 shows the calculated dissolution ratios of each element at 

pH 6. There were significant differences between the dissolution ratios of the elements. The 

dissolution ratio of P was the highest in each case. Fe was difficult to dissolve, and its 

dissolution ratio from different slags was negligible. With the increase in the Na2O content, the 

dissolution ratios of Ca, Si, and P increased. Without Na2O addition, only 58.2% of the P was 

dissolved from slag; the dissolution ratios of Ca and Si were 30.2% and 10.7%. When the Na2O 

content in slag reached 8 mass%, the dissolution ratio of P increased to 82.3%, approximately 

62.1% of the Ca and 38.1% of the Si were dissolved simultaneously. The dissolution ratio of 

Mg was lower compared to other elements in each case, less than 7%. For the slags containing 

more than 4 mass% of Na2O, less than half of the Na was dissolved from slag. These results 

indicated that Na2O addition promoted dissolution of the P-condensed solid solution without 

largely dissolving phases containing Fe and Mg. To obtain a higher dissolution ratio of P in the 

citric solution at pH 6, sufficient Na2O addition to the slag was necessary.  

3.2.2.3 Residue composition 

The average compositions of residues after leaching were determined by ICP-AES analysis, as 

listed in Table 3.6. Due to selective leaching of solid solution, the P2O5 content in the residue 

reduced significantly compared with the original slags (listed in Table 3.1), and the Fe2O3 

content increased. With the increase in the Na2O content in the original slags, the CaO, SiO2, 

and P2O5 contents in the residue decreased after leaching at pH 6; the Fe2O3 and MgO contents 

correspondingly increased. For the unmodified slag, its residue still contains 3.36 mass% of 

P2O5 because the dissolution of solid solution was poor. For the slag with 8 mass% of Na2O, the 

P2O5 content in the residue decreased to 1.49 mass%, and the Fe2O3 content reached 50.70 
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mass%. In addition, some of the added Na2O still remained in the residue. Overall, through 

selective leaching, a residue with a lower P2O5 content and a higher Fe2O3 content was obtained, 

which had the potential for recycling within the ironmaking and steelmaking process. 

 

Table 3.6 Average compositions of residues of different slags (mass%) 

Residue pH CaO SiO2 Fe2O3 P2O5 MgO Na2O 

Slag C (0% Na2O) 6 34.22 22.37 36.29 3.36 3.75 0.00 

Slag D (1% Na2O) 6 30.71 21.37 39.93 2.79 4.19 1.01 

Slag B (4% Na2O) 6 26.17 19.20 44.85 2.09 4.59 3.10 

Slag E (8% Na2O) 6 18.32 16.30 50.70 1.49 5.14 8.06 

 

 

Fig. 3.16 XRD patterns of slags with and without Na2O addition and their residues at pH 6 
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Figure 3.16 shows the XRD patterns of slags with and without Na2O addition and their residues 

at pH 6. In each slag, the precipitated solid solution and magnesioferrite phase were observed. 

The crystal form of the solid solution was changed because of Na2O modification. For the 

unmodified slag, the peaks associated with solid solution existed after leaching. However, for 

the slag with 8 mass% of Na2O, the peaks associated with solid solution almost disappeared, 

and the intensity of the peaks associated with magnesioferrite phase increased. From the above 

findings, it demonstrated that the dissolution and separation of the solid solution from slag were 

enhanced by Na2O addition.  

 

3.2.2.4 Discussion on effect of Na2O content 

To estimate the dissolution behavior of solid solution and matrix phase, the presumed 

dissolution ratios of Ca and P from the solid solution were calculated using Eq. (3.6). As shown 

in Fig. 3.17, with the increase in the Na2O content in slag, the presumed dissolution ratio of P 

(dissolution ratio of solid solution) increased. Without the Na2O addition, only 68.0% of solid 

solution was dissolved from slag. When 4 mass% of Na2O was added, the dissolution ratio of 

solid solution increased to 83.6%. However, a further Na2O addition did not result in a 

significant improvement in the dissolution of solid solution. As discussed in the previous 

chapter, the dissolution of phosphate minerals in acid solutions depends on the breaking of the 

weaker bond in its structure. Because the bond strength of P-O is significantly higher than that 

of Metal-O, dissolution would favor the breaking of the Metal-O bond. Thus, the metal 

dissolves to form metal cations and the phosphorus dissolves to form phosphate, PO4
3-

 [11]. 

When the Na2O was distributed into the solid solution, some of the Ca-O-P bonds transformed 

into the Na-O-P bonds. Because the bond strength of Na-O was lower, the Na-O-P bond was 

easier to be broken during acid leaching [16]. Therefore, the solid solution containing Na2O 
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shows good water solubility, and a higher dissolution ratio of P can be obtained. It has been 

reported that more than 0.2 mol of Na2O addition to 1 mol P2O5 of calcium phosphate favored 

the formation of soluble phosphate [17]. In this study, for the slag containing 4 mass% of Na2O, 

the molar ratio of Na2O of P2O5 in the solid solution exceeded 0.5, and thus the dissolution of 

solid solution was promoted significantly. 

The presumed dissolution ratio of Ca also increased with the Na2O content in slag. When the 

Na2O content was less than 4 mass%, this value was lower than unity. It also illustrated that the 

dissolution of solid solution was insufficient. When the Na2O content was more than 4 mass%, 

this value exceeded unity, but not largely, indicating that the dissolution of matrix phase was not 

significant. A better selective leaching of solid solution was performed.  

 

 

Fig. 3.17 Presumed dissolution ratios of Ca and P from the solid solution under different Na2O 

contents 
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Fig. 3.18 Mass ratios of residue and dissolved part at pH 6, compared with the phase fractions of 

each slag 

 

The phase fraction of slags with different Na2O contents was compared with the mass ratios of 

the dissolved part and residue to estimate the dissolution behavior of each phase at pH 6. Figure 

3.18 shows that with the increase in the Na2O content, the mass fraction of the solid solution 

increased while that of the matrix phase decreased. In the case of unmodified slag, the mass 

ratio of the dissolved portion was lower than that of the solid solution, indicating that a part of 

the solid solution remained in the residue and did not dissolve. Because Na2O addition 

promoted dissolution of Ca, Si, and P, the mass ratio of the dissolved part also increased by the 

increase in the Na2O content. It was almost similar to the mass fraction of the solid solution 

when the Na2O content was 4 mass%. The Fe-concentrated matrix phase and magnesioferrite 

were not dissolved because of the lower dissolution ratio of Fe. This result indicated that most 

of the solid solution was dissolved from slag. A further increase in the Na2O content resulted in 

an increase in the dissolution of slag together with the mass fraction of the solid solution. The 
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mass ratio of the dissolved part was a little higher than that of the solid solution. It illustrated 

that solid solution could be dissolved and separated from slag by optimum Na2O addition, 

without dissolving large amounts of other phases. 

 

3.2.3 Effect of pH on the dissolution behavior of the modified slag 

3.2.3.1 Dissolution behavior of slag under various pH values 

Figure 3.19 shows the change in the concentrations of each element in the citric solution under 

various pH values for slag B (4% Na2O). The concentrations of each element increased with 

leaching time in each case. Decreasing the pH increased the dissolution rate of each element, 

leading to higher concentrations in a shorter time. The Ca concentration increased from 227.8 

mg/L to 550.9 mg/L as the pH decreased. When the pH decreased from 6 to 5, the Si and P 

concentrations increased slightly. However, when the pH decreased from 5 to 4, they increased 

many times. For example, the Si concentration increased from 85.5 mg/L to 212.4 mg/L. At pH 

5, the Fe concentration was the lowest among these elements, only 15.3 mg/L. It sharply 

increased to 156.9 mg/L at pH 4, which was caused by significant dissolution of the 

Fe-containing phase. When the pH decreased from 7 to 6, there was a significant increase in the 

P concentration, and it reached 67.3 mg/L; however, further decrease in the pH changed the P 

concentration slightly. At pH 4, the P concentration was 75.6 mg/L, which was far lower than 

the Ca, Si, and Fe concentrations. These results also indicated that the P-concentrated phase 

dissolved preferentially compared to the Fe-containing phase.  

Table 3.7 lists the acid consumption during leaching of the modified slag at various pH 

conditions. As the pH decreased, acid consumption increased because the dissolution of each 

element was promoted. A large amount of citric acid was consumed at pH 4, which was much 

more than the consumption at pH 5. 
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The dissolution ratios of each element from the modified slag at various pH values were 

calculated using Eq. (3.4), as shown in Fig. 3.20. Slag dissolution was promoted when the pH 

decreased, resulting in higher dissolution ratios of each element. The dissolution ratios of Fe 

and Mg were lower than those of other elements in each case, indicating that the phases rich in 

Fe and Mg were difficult to dissolve. The dissolution ratio of P increased from 49.7% to 76.9% 

when the pH varied from 7 to 6. A further decrease in the pH had little effect in promoting P 

dissolution. At pH 5 and 6, the dissolution ratio of P was far higher than those of Ca and Si, and 

the dissolution of Fe was little, showing a better selective leaching of P. There was a huge 

difference in the dissolution ratios of other elements between pH 5 and 4. Almost all of the Ca, 

Si, P, and Na were dissolved from slag at pH 4, and the dissolution ratio of Fe reached 31.6%. 

Large amounts of Fe and Mg dissolution deteriorated selective leaching, which was not 

beneficial for P recovery in the following processes. The pH of the aqueous solution should be 

controlled between 5 and 6 to achieve better selective leaching of P from slag. 
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Fig. 3.19 Change in the concentrations of each element under various pH conditions 

 

Table 3.7 Acid consumption during leaching at various pH conditions (g) 

 pH=4 pH=5 pH=6 pH=7 

Mass 45.0 (0.2mol/L) 27.0 19.7 13.2 
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Fig. 3.20 Dissolution ratios of each element from the modified slag at various pH conditions 

 

3.2.3.2 Residue composition 

For the slag containing 4 mass% of Na2O, the average compositions of residues after leaching 

under various pH conditions were listed in Table 3.8. As the pH decreased, the CaO and P2O5 

contents in the residue decreased, while the Fe2O3 and MgO contents increased correspondingly. 

Because of a lower dissolution ratio of P at pH 7, the P2O5 content in the residue was 4.62 

mass%. When the pH decreased to 5, the residue contained 0.93 mass% of P2O5 and 48.46 

mass% of Fe2O3, which can be used as flux or raw material in ironmaking and steelmaking 

process. The residue obtained by leaching at pH 4 mainly consisted of Fe2O3 and MgO, similar 

with the composition of magnesioferrite phase. 

Figure 3.21 shows the XRD patterns of the modified slag and its residues under different pH 

conditions. The peaks associated with solid solution and magnesioferrite were observed in the 

original slag. After leaching, intensities of the peaks associated with solid solution weakened; in 
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contrast, the peaks associated with magnesioferrite intensified. When slag was leached at pH 7, 

the peaks associated with solid solution still existed, indicating that some of the solid solution 

did not dissolve. After leaching at pH 5 or 6, the peaks associated with solid solution almost 

disappeared, and only the peaks of the magnesioferrite phase were observed. These results 

indicated that the P-condensed solid solution was completely separated from slag. 

 

Table 3.8 Average compositions of residues after leaching various pH conditions (mass%) 

Residue pH CaO SiO2 Fe2O3 P2O5 MgO Na2O 

Slag B (4% Na2O) 

7 30.71 20.97 36.77 4.62 3.79 3.13 

6 26.17 19.20 44.85 2.09 4.59 3.10 

5 22.94 20.45 48.46 0.93 4.47 2.75 

4 8.93 2.01 78.39 0.21 9.44 1.02 

 

 

Fig. 3.21 XRD patterns of the modified slag and its residues under different pH conditions 

 

After leaching of the modified slag at pH 5, the EPMA image and surface composition of the 

residue were shown in Fig. 3.22 and Table 3.9. Two main phases were identified in each residue. 
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The white area, rich in Fe2O3 and MgO, was considered the magnesioferrite phase. The grey 

phase, consisting of a CaO-SiO2-Fe2O3 system, was considered the matrix phase. Compared 

with the results in Table 3.5, the compositions of these phases in the residue were almost 

identical to those in the slag prior to leaching. In the residue, it was difficult to detect the solid 

solution, indicating that the solid solution that contacted with the aqueous solution had 

dissolved. Selective leaching of the P-concentrated solid solution from slag was performed in 

this case.  

 

 

Fig. 3.22 EPMA images of the residue surface after leaching at pH 5 

 

Table 3.9 Compositions of some phases on the residue surface after leaching at pH 5 (mass%) 

Phase CaO SiO2 Fe2O3 P2O5 MgO Na2O 

1 1.4 0.3 85.1 0.1 12.8 0.4 

2 38.1 26.2 27.3 1.1 2 5.3 

 

3.2.3.3 Discussion on the effect of pH 
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Fig. 3.23 Calculated dissolution ratios of some elements when each phase was dissolved, and the 

experimental results at various pH conditions 

 

Assuming that each phase was individually dissolved from slag, the dissolution ratios of each 

element from slag could be calculated using the mass fraction of each phase (shown in Fig. 

3.11) and phase composition (listed in Table 3.5). For example, when only solid solution was 

dissolved, the calculated dissolution ratio of element M from slag was equal to the mass fraction 

of MO distributing in solid solution (described in Eq. (3.3)). Figure 3.23 shows the calculated 

dissolution ratios of Ca, P, and Fe, and experimental results of slag with 4 mass% of Na2O at 

various pH conditions. The dissolution ratios of P and Ca from slag reached 92% and 45.5%, 

respectively, when the solid solution was totally dissolved. At pH 7, the dissolution ratio of P 

was lower than the calculated value, indicating that the dissolution of solid solution was 

insufficient. When the pH was between 6 and 5, the dissolution ratio of P increased and 

approached the calculated value. The dissolution ratio of Ca was a little higher than the values 

calculated from solid solution. It illustrated that most of the solid solution was dissolved and the 
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dissolution of other phases was insignificant. When the pH decreased to 4, the dissolution ratio 

of Ca was higher than the value calculated from solid solution and lower when the solid solution 

and matrix phase were both dissolved. This result indicated that a portion of the dissolved Ca 

was from the matrix phase. The dissolution of Fe also went through similar conditions: when 

the pH varied from 5 to 4, the dissolution ratio of Fe gradually approached the value calculated 

from matrix phase. There was significant variation in the dissolution of matrix phase between 

pH 5 and 4. 

 

 

Fig. 3.24 Mass ratios of residue and dissolved part at various pH conditions, compared with phase 

fraction 

 

Figure 3.24 shows the mass ratios of the dissolved portion and residue at various pH conditions, 

compared with phase fraction in the original slag. At pH 7, the mass ratio of the dissolved 

portion was lower than that of the solid solution. With the decrease in pH, the mass ratio of the 

dissolved portion increased and exceeded that of the solid solution at pH 6, indicating that a 
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majority of the solid solution was dissolved. When the pH decreased to 4, approximately 70% 

of slag was dissolved, which was almost equal to the mass fractions of the solid solution and a 

large proportion of the matrix phase. These results were consistent with the above discussion. 

To avoid dissolution of matrix phase and achieve selective leaching of solid solution, the pH 

should be controlled between 5 and 6. 

3.2.4 Effect of the valency of Fe on the dissolution behavior of slag 

3.2.4.1 Mineralogical composition of slags with different valency of Fe 

Figure 3.25 shows the typical cross section of slags with different valency of Fe. The average 

compositions of each phase in these slags are listed in Table 3.10. In each slag, three domains 

corresponding to three phases are clearly identified. The white phase almost consists of Fe oxide. 

The grey phase was considered the matrix phase, because it mainly consisted of the 

CaO-SiO2-FetO system. The black phase rich in P2O5 was the solid solution. It shows that in the 

slag containing FeO, the size of solid solution particles was larger than that in the slag 

containing Fe2O3, while the size of Fe oxide was smaller. For the slag containing FeO, the P2O5 

content in the solid solution was only 19.4 mass%, and far lower than that in the slag containing 

Fe2O3. In addition, the FeO content in the solid solution was a little high, reaching 7.0 mass%. 

The P2O5 content in the matrix phase was lower regardless of the valency of Fe in slag. The slag 

containing Fe2O3 had a higher CaO content and a lower FetO content in the matrix phase 

compared to the slag containing FeO. The Na2O content was higher in the solid solution than in 

the matrix phase in each case. 
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Fig. 3.25 Typical cross section of the slags with different valency of Fe 

 

Table 3.10 Average compositions of each phase in slags with different valency of Fe (mass%) 

Phase Sample CaO SiO2 FetO P2O5 Na2O 

1. 

Fe oxide 

Slag F (Fe2O3) 0.2 0 99.8 0 0 

Slag G (FeO) 0.5 0.1 99.4 0 0.1 

2. 

Solid Solution 

Slag F (Fe2O3) 48.0 10.1 0.7 33.4 7.7 

Slag G (FeO) 47.4 20.7 7.0 19.4 5.6 

3. 

Matrix phase 

Slag F (Fe2O3) 36.2 36.8 21.2 1.5 4.3 

Slag G (FeO) 27.9 36.0 30.7 1.6 3.9 

 

3.2.4.2 Dissolution behavior of slags with different valency of Fe 



Chapter 3 

101 

The change in the concentrations of each element with leaching time at pH 6 is shown in Fig. 

3.26. The concentrations of each element in the citric solution continuously increased with 

leaching time, but the dissolution rate gradually decreased. The Ca concentration was the 

highest among the dissolved elements. The Ca concentration of each slag was almost the same 

in each case, reaching approximately 280 mg/L after 120 min. When the Fe2O3 in slag changed 

to FeO, the Si concentration almost doubled. There was no decrease in the P concentration 

during leaching. The P concentration of the slag containing Fe2O3 was higher, reaching 71.7 

mg/L. In the case of slag containing FeO, the P concentration was only 14.9 mg/L after 120 min, 

but the Fe concentration increased to 121.0 mg/L, which was far higher than that of the slag 

containing Fe2O3. Overall, the dissolution behavior of Fe and P reversed when the Fe2O3 in the 

slag changed to FeO. The consumptions of citric acid during leaching of slag containing Fe2O3 

and slag containing FeO were 18.2 mg/L and 26.1 mg/L, respectively. 
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Fig. 3.26 Change in the concentrations of each element under different valency of Fe 

 

 

Fig. 3.27 Dissolution ratios of each element from different slags with different valency of Fe 
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The dissolution ratios of each element from slags with different valency of Fe at pH 6 were 

calculated using Eq. (3.4), as shown in Fig. 3.27. The dissolution ratio of Ca from these slags 

was almost the same, reaching 44%. About half of the Na was dissolved from each slag. For the 

slag containing Fe2O3, the dissolution ratio of P was approximately 80%, which was higher than 

that of other elements. In this case, about one fifth of the Si was dissolved and the dissolution of 

Fe from slag was negligible. A better selective leaching of P from slag was performed. When 

the Fe2O3 in the slag changed to FeO, only 16.7% of the P was dissolved from slag, which was 

far lower than that from the slag containing Fe2O3. However, the dissolution of Si and Fe was 

significantly promoted. The dissolution ratio of Si almost doubled, and that of Fe increased 

from 1.2% to 21.4%, which deteriorated selective leaching of P from slag. 

3.2.4.3 Residue composition 

The average compositions of residues after leaching at pH 6 are listed in Table 3.11. Compared 

with the original slag (listed in Table 3.1), in the case of slag containing Fe2O3, the P2O5 content 

in the residue decreased to 1.71 mass% and the Fe2O3 content increased significantly due to 

selective leaching of P; however, in the case of slag containing FeO, the P2O5 content in the 

residue increased, reaching 9.91 mass%. Figure 3.28 shows the XRD patterns of slags with 

different valency of Fe and their residues after leaching at pH 6. The peaks associated with solid 

solution and Fe oxide were observed in each slag sample. The crystal form of Fe oxide changed 

slightly because of the difference in the valency of Fe. In the case of slag containing Fe2O3, the 

peaks of solid solution almost disappeared after leaching, while that of Fe oxide remained and 

its intensity increased. It shows that the solid solution was dissolved and separated from slag 

after leaching. However, in the case of slag containing FeO, the peaks associated with solid 

solution still remained after leaching, indicating that the solid solution did not dissolve totally. 
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There were no peaks associated with phosphate precipitate in this residue. These results were in 

agreement with the above compositions of residues.  

 

Table 3.11 Average compositions of residues after leaching at pH 6 (mass%) 

Residue CaO SiO2 Fe2O3 FeO P2O5 Na2O 

Slag F 24.73 22.35 48.51 - 1.71 2.70 

Slag G 30.84 20.05 - 36.18 9.91 3.03 

 

 

Fig. 3.28 XRD patterns of slags with different valency of Fe and their residues after leaching at pH 6 

 

Figure 3.29 shows the EPMA images of the residue surface after leaching at pH 6. The 

compositions of the identified domains on the residue surface were listed in Table 3.12. Two 

phases which have the similar composition with matrix phase and Fe-rich phase were observed 
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on the residue surface of slag containing Fe2O3. In this residue, it was difficult to detect the solid 

solution particles, indicating that the solid solution which contacted with the aqueous solution 

had dissolved selectively. In the case of slag containing FeO, besides Fe-rich phase and matrix 

phase, a domain with high P2O5 content was also observed. Its composition was similar with 

that of solid solution, demonstrating that solid solution did not dissolve sufficiently. 

 

 

Fig. 3.29 EPMA images of the residue surface after leaching in the citric solution at pH 6 

 

Table 3.12 Average compositions of some phases on the residue surface after leaching (mass%) 

 
CaO SiO2 FetO P2O5 Na2O 

Residue (Slag F) 
1 36.7 38.6 19.9 1.7 3.2 

2 0.5 0.3 99.1 0.0 0.0 

Residue (Slag G) 

1 41.6 26.7 12.8 16.2 2.7 

2 19.4 42.6 33.3 4.1 0.5 

3 0.7 0.4 98.7 0.1 0.1 

 

3.2.4.4 Discussion on the effect of the valency of Fe in slag 

 

For the slag containing Fe2O3, as the matrix phase was difficult to dissolve, the Fe concentration 

in the aqueous solution was very low. However, for the slag containing FeO, the Fe 

concentration was comparable with that of Si. Therefore, the possibility to precipitate iron 
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phosphate is discussed. As discussed in the previous studies, the predominant phosphate species 

in the aqueous solution are H2PO4
-
 at pH 6 [18, 19]. When Fe

2+
 and H2PO4

-
 exist in the aqueous 

solution, vivianite (Fe3(PO4)2·8H2O) is possible to precipitate [20]. The dissolution reaction of 

vavianite and its equilibrium constant is described by Eqs. (3.7) [8, 20]. Based on these results, 

the relationship between the Fe
2+

 and P concentrations in the aqueous solution was calculated at 

pH 6, as shown in Fig. 3.30. In the citric solution, citrate ions (C6H5O7
3-

) can form complexes 

with Fe
2+

. The formation reaction of FeC6H5O7
-
 complex is described by Eqs. (3.8) [20]. The 

remaining Fe
2+

, which did not react with the citrate ions, were identified as free Fe
2+

 in the 

aqueous solution. Because Ca
2+

 can also form complex, as shown in Eq. (3.9) [21], the existence 

of CaC6H5O7
-
 was taken into consideration. The C6H5O7

3-
 concentration was determined by the 

final volume of the aqueous solution and the mass of the added citric acid. Using these 

equations, the concentration of free Fe
2+

 in the citric solution was calculated. The result is 

shown in Fig. 3.30. Although the total Fe concentration was high, the free Fe
2+

 concentration 

was very low, only 0.29 mg/L. The points for the concentration of P and free Fe
2+

 was located 

nearly the solubility line of vavianite. It shows that the dissolved P is possible to be restricted by 

the solubility of vavianite. Because the free Fe
2+

 concentration is too low, the amount of 

phosphate precipitate is negligible. As mentioned in the XRD results (Fig. 3.28), there were no 

peaks associated with phosphate precipitate in the residue. Therefore, most of the dissolved P 

could stably exist in the citric solution and did not precipitate in the case of slag containing FeO. 

Fe3(PO4)2 ∙ 8H2O + 4H+ = 3Fe2+ + 2H2PO4
-

+ 8H2O  log K=3.12         (3.7) 

Fe2+ + C6H5O7
3-

= FeC6H5O7
-
  log K=5.86                  (3.8) 

Ca2+ + C6H5O7
3-

= CaC6H5O7
-
  log K=3.22                 (3.9) 

 



Chapter 3 

107 

 

Fig. 3.30 Solubility line of phosphate precipitate and leaching results 

 

Assuming that solid solution or matrix phase was individually dissolved, the dissolution ratios 

of P and Fe from slags with different valency of Fe were calculated using the mass fraction and 

composition of each phase. The calculated dissolution ratios were compared with the 

experimental results, as shown in Fig. 3.31. The calculated dissolution ratio of P from the slag 

containing Fe2O3 and slag containing FeO reached 91.1% and 95.0%, respectively, when the 

solid solution was totally dissolved. For the slag containing Fe2O3, the practical dissolution ratio 

of P was close to the calculated value. The dissolution ratio of Fe was very low, same as that 

calculated from solid solution. It indicates that the majority of the solid solution was dissolved 

and the dissolution of other phases was insignificant. A better selective leaching of solid 

solution was performed.  

In the case of slag containing FeO, the practical dissolution ratio of P was far lower than the 

calculated value, indicating that the dissolution of solid solution was poor. However, the 

dissolution ratio of Fe was higher than the value calculated from solid solution and lower when 



Chapter 3 

108 

the solid solution and matrix phase were both dissolved. It indicates that some of the dissolved 

Fe was supplied from the matrix phase. Gao et al. [10] has proved that Fe was easier to be 

dissolved in the aqueous solution from the CaO-FeO-SiO2 phase than from the CaO-Fe2O3-SiO2 

phase. In summary, when FeO exists in slag, the dissolution of solid solution became difficult 

and the dissolution of matrix phase occurred obviously. 

 

 

Fig. 3.31 Calculated dissolution ratios of P and Fe, and experimental results 

 

The different dissolution behavior of these slags was attributed to the difference in their mineral 

structure and bond strength. As pointed by Hume-Rothery rule [22], if the radius of two 

different ions is near and they have the same ionic valence, these ions can be replaced with each 

other in the solid solution. As listed in Table 3.13 [12, 23], compared to Fe
3+

, Fe
2+

 has the same 

ionic valence as Ca
2+

, and the radius of Fe
2+

 is closer to that of Ca
2+

. Therefore, Fe
2+

 ions can 

replace with Ca
2+

 and are easier to enter into the C2S-C3P solid solution. This is the reason that 

some FeO existed in the solid solution in the slag containing FeO. For the solid solution 
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containing FeO, some Fe-O-P bonds are possible to exist, besides Ca-O-P bond. Because the 

ionization potential of Fe
2+

 is larger than that of Ca
2+

, the bond strength of Fe-O is higher than 

that of Ca-O [12]. The Fe-O-P bond is difficult to be broken than Ca-O-P bond during leaching. 

Therefore, for the slag containing FeO, the dissolution ratio of the solid solution containing FeO 

was lower. 

 

Table 3.13 Effective ionic radius for cations and anions and their coordination number and 

ionization potential 

Ion Coordination number Ionic radius (nm) Z/r
2
 (nm

-2
) 

Na
+
 6 0.102 96.1 

Ca
2+

 6 0.100 200.0 

Fe
2+

 6 0.061 537.5 

Fe
3+

 6 0.055 991.7 

Si
4+

 4 0.026 5917. 1 

P
5+

 4 0.017 17301.0 

O
2-

 - 0.140 102.0 

 

Matrix phase in these slags is the silicate glass of CaO-FetO-SiO2 system. As discussed in 

Section 3.2.1.3, it has been reported commonly that Fe
2+

 ions in silicate glass act as network 

modifier, resulting in octahedral coordination [24], as shown in Fig. 3.32. However, in the case 

of CaO-Fe2O3-SiO2 glass, Fe
3+

 ions are tetrahedrally and octahedrally coordinated [13, 14]. In 

tetrahedral site, Fe
3+

 ions act as network former, similar with SiO4
4-

. As listed in Table 3.13, the 

ionization potential of Fe
3+

 is larger than that of Fe
2+

, and thus the bond strength of Fe(ferric)-O 

is higher. In addition, because the bond length of Fe-O in the tetrahedral site is shorter than that 

in the octahedral site, the strong Fe(ferric)-O bond exists in the tetrahedral site. It is concluded 

that the Fe(ferric)-O-Si bond is more stable than the Fe(ferrous)-O-Si bond in the silicate glass. 

Therefore, the dissolution of CaO-Fe2O3-SiO2 phase in the aqueous solution was difficult 

compared with CaO-FeO-SiO2 phase. 
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Fig. 3.32 Schematic illustration of the structure of CaO-FeO-SiO2 and CaO-Fe2O3-SiO2 phases 

 

On the basis of mass balance, the phase fractions in slags with different valency of Fe were 

calculated and compared with the mass fractions of the dissolved part and residue in Fig. 3.33. 

When the Fe2O3 in slag changed to FeO, the mass fraction of the solid solution increased 

significantly, and those of the matrix phase and Fe oxide decreased correspondingly. For the 

slag containing Fe2O3, the mass fraction of the dissolved part was almost the same as that of the 

solid solution, showing that a better selective leaching of solid solution. For the slag containing 

FeO, the mass fraction of the solid solution was about 45%. Although the mass fraction of the 

dissolved part increased compared to the slag containing Fe2O3, it was lower than that of the 

solid solution. Considering that the dissolution of matrix phase occurred as mentioned above, 

this result also shows that the dissolution of solid solution was insufficient. This is because the 
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existence of FeO suppressed the dissolution of solid solution. Therefore, to promote the 

dissolution of solid solution and suppress the dissolution of matrix phase, the steelmaking slag 

should be oxidized to transform into the Fe2O3-containing slag. 

 

 

Fig. 3.33 Mass fractions of the dissolved part and residue, compared with phase fractions of slags 

with different valency of Fe 

 

3.3 Summary 

In order to achieve selective leaching of P from slag with high P2O5 content, the effects of the 

cooling rate of molten slag, Na2O content, pH, and the valency of Fe in slag on the dissolution 

behavior of the modified slag were investigated. The results obtained are summarized below: 

(1) Decreasing cooling rate promoted the enrichment of P2O5 in the solid solution and the 

formation of magnesioferrite phase. Compared to the quenched slag, the furnace-cooled slag 

exhibited a higher dissolution ratio of P and a lower dissolution ratio of Fe, indicating that 

slow cooling was beneficial for selective leaching of solid solution from the modified slag. 
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(2) Na2O addition resulted in a higher mass fraction of the solid solution in slag. With the 

increase in the Na2O content, the dissolution ratios of Ca, Si, and P from slag increased at 

pH 6, while Fe was barely dissolved. When the Na2O content was 4 mass%, the majority of 

the solid solution was dissolved, showing a better selective leaching of P. Further increase 

in the Na2O content did not increase P dissolution largely.   

(3) As the pH decreased, the dissolution of the modified slag was promoted, resulting in higher 

dissolution ratios of each element. The dissolution ratio of P increased significantly when 

the pH decreased from 7 to 5. Further decrease in the pH caused little improvement in P 

dissolution, and resulted in dissolution of large amounts of Fe. When the pH was controlled 

between 5 and 6, most of the solid solution was dissolved without a large dissolution of 

other phases. 

(4) The P2O5 content in the solid solution of the slag containing Fe2O3 was higher compared to 

that of the slag containing FeO, while the mass fraction of solid solution was lower. When 

the FeO in the slag changed to Fe2O3, the dissolution ratio of P increased significantly at pH 

6, and the dissolution of Si and Fe was suppressed. Oxidizing slag was necessary to achieve 

selective leaching of P from the modified slag. 

(5) Through selective leaching, the P2O5 content in the residue decreased compared to the 

original slag, and the Fe2O3 content increased correspondingly. Increasing the Na2O content 

in the slag and decreasing the pH could further decrease the P2O5 content in the residue. 

Due to the dissolution and separation of the P-concentrated phase from slag, the residue had 

the potential for recycling within the ironmaking and steelmaking process.  
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4 Dissolution behavior of P from modified steelmaking slag with K2O 

addition 

 

K2O has the similar chemical property with Na2O, and is also an important fertilizer constituent. 

It was necessary to investigate the effect of K2O addition on selective leaching of P from slag. 

In this study, the slag with high P2O5 content was modified by adding K2O, and then leached in 

the citric solution at different pH conditions. 

 

4.1 Experimental method 

The method for synthesis of slag was similar with that described in Chapter 3. To prepare the 

steelmaking slag for a CaO-SiO2-Fe2O3 system, reagent-grade SiO2, Fe2O3, Ca3(PO4)2, MgO and 

K2CO3, along with CaO (obtained by calcining CaCO3 at 1273 K) , were fully mixed and heated 

in a Pt crucible under air atmosphere. On the basis of the above results, Fe2O3 was used as the 

iron oxide because the dissolution ratio of P from this slag was higher than that from the 

CaO-SiO2-FeO system slag [1]. The initial compositions of slags with different K2O contents 

are shown in Table 4.1. Assuming that K2CO3 can decompose to K2O, the target mass ratio of 

K2CO3 was added. In preliminary experiments, we confirmed that the vaporization of K2O was 

negligible during slag synthesis. The P2O5 content in each slag was fixed as 8 mass%. Cooling 

method of these slags is furnace cooling. The heating pattern is the same as that shown in Fig. 

3.1. These slags were first heated at 1823 K for 1 h to form a homogeneous liquid phase. Then, 

it was cooled to 1623 K at a cooling rate of 3 K/min and held at this temperature for 20 min to 

precipitate solid solution. Finally, the slag was cooled in furnace at a cooling rate of 5 K/min, 

and withdrew from the furnace at 1323 K. The composition of each phase in slag was measured 
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using electron probe microanalysis (EPMA). In addition, the precipitated phases were 

determined using X-ray diffraction (XRD) analysis. 

The experimental procedure of leaching was the same as that used in the above studies. In this 

chapter, the synthesized slags with different K2O contents were leached by citric acid (0.1 

mol/L) at pH 5, 6, and 7, respectively. The concentrations of each element in the filtered 

aqueous solution were analyzed using inductively coupled plasma-atomic emission 

spectroscopy (ICP-AES), and the residue was weighted, and then analyzed by EPMA and XRD. 

The analysis method of residue composition is the same method described in Chapter 3. 

 

Table 4.1 Compositions of slags with different K2O contents (mass%) 

Sample CaO SiO2 Fe2O3 P2O5 MgO K2O 

Slag A 37.0 23.0 29.0 8.0 3.0 0 

Slag B 34.5 21.5 29.0 8.0 3.0 4.0 

Slag C 32.1 19.9 29.0 8.0 3.0 8.0 

 

4.2 Experimental results 

4.2.1 Mineralogical composition of slags 

Typical mineralogical structure for each slag with different K2O contents and the compositions 

of each phase analyzed by EPMA are shown in Fig. 4.1 and Table 4.2. In the slag without K2O 

addition, three phases were observed. In addition to solid solution, magnesioferrite phase were 

precipitated from the matrix phase during slow cooling. There was a high distribution ratio of P 

between the solid solution and other phases. In contrast, Fe was mainly distributed in the matrix 

phase and magnesioferrite phase. Similar condition was also found in the slags with K2O 

addition. Moreover, in these slags, some small solid solution particles, which had a lower P2O5 

content than the large solid solution particles, surrounded magnesioferrite phase were observed. 

The added K2O was distributed to the solid solution, but its content was lower than that in the 
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matrix phase. With the increase in the K2O content in slag, the K2O content in the solid solution 

increased, but the P2O5 content decreased. When 8 mass% of K2O was added, the K2O content 

in the solid solution reached 8.2 mass%, and the P2O5 content decreased from 31.3 mass% to 

20.1 mass%. For the matrix phase, K2O addition resulted in a decrease in the CaO and SiO2 

contents, corresponding to an increase in the Fe2O3 content. 

 

Table 4.2 Average compositions of each phase in slags with different K2O contents (mass%) 

Sample CaO SiO2 Fe2O3 P2O5 MgO K2O Phase 

Slag A 

(0% K2O) 

1 1.3 0.1 88.1 0.0 10.5 0.0 Magnesioferrite 

2 40.0 34.8 21.5 1.8 1.9 0.0 Matrix phase 

3 54.9 11.8 1.1 31.3 0.9 0.0 Solid solution 

Slag B 

(4% K2O) 

1 2.0 0.2 86.2 0.1 11.3 0.1 Magnesioferrite 

2 32.1 33.5 25.6 1.8 1.6 5.4 Matrix phase 

3 54.6 17.4 1.3 23.3 0.5 2.9 
Solid solution 

4 54.0 27.0 3.2 10.9 1.1 3.9 

Slag C 

(8% K2O) 

1 1.6 0.2 85.4 0.0 12.4 0.3 Magnesioferrite 

2 23.0 31.4 32.8 0.6 1.2 11.0 Matrix phase 

3 51.6 18.8 1.1 20.1 0.3 8.2 
Solid solution 

4 55.5 25.4 2.6 10.8 0.5 5.3 
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Fig. 4.1 Cross sections (×1000) of slags with different K2O contents 

 

The compositions of solid solution in slags with different K2O contents were plotted in a 

(CaO+K2O)-SiO2-P2O5 pseudo-phase diagram, as shown in Fig. 4.2. The K2O content in the 

solid solution was taken into consideration. The compositions of solid solution in this study are 

nearly located on the line between 2(CaO, K2O)∙SiO2 and 3(CaO, K2O)∙P2O5. This would 

indicate that a part of CaO in the C2S-C3P solid solution was replaced by K2O in the newly 

formed solid solution. The similar condition was also observed in the modified slag by Na2O 

addition. A higher K2O content in slag led to a lower P2O5 content in the solid solution. In 
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addition, the compositions of small solid solution particles with lower P2O5 content are also 

located on this line. 

 

 

Fig. 4.2 Compositions of solid solution in the (CaO+K2O)-SiO2-P2O5 pseudo-phase diagram 

 

 

Fig. 4.3 Mass fractions of each phase in slags with different K2O contents 
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The mass fractions of each phase in different slags were estimated using above EPMA results. 

To simplify calculation, we disregarded a small portion of the small solid solution particles with 

low P2O5 content. The mass balance of each oxide can be represented using Eq. (4.1) 

𝑁MOn
= 𝛼𝑁MOn

𝛼 + 𝛽𝑁MOn

𝛽
+ 𝛾𝑁MOn

𝛾
                        (4.1) 

𝛼 + 𝛽 + 𝛾 = 1                                  (4.2) 

where α, β, and γ are the mass fractions of the magnesioferrite phase, matrix phase, and solid 

solution, respectively, 𝑁MOn
 is the MOn content in slag, and 𝑁MOn

𝛼  is the MOn content in 

phase α. The contents of major oxides (CaO, SiO2, Fe2O3, and P2O5) were used for calculation, 

and the average of these calculations was defined as the mass fraction of each phase in slag. The 

calculated mass fractions of each phase are shown in Fig. 4.3. There was little change in the 

mass fraction of the magnesioferrite phase in different slags. With the increase in the K2O 

content in slag, the mass fraction of the solid solution increased, and that of the matrix phase 

decreased correspondingly. When 8 mass% of K2O was added, the mass fraction of the solid 

solution increased from 24.1% to 40.2%. As a result of the increase in mass fraction of the solid 

solution, the P2O5 condensed in the solid solution was “diluted”, and its content decreased; 

meanwhile, a part of CaO and SiO2 in the matrix phase were used to enlarge the fraction of solid 

solution, which caused the decrease in their contents of the matrix phase. 

On the basis of the above results, the mass fractions of each oxide distributed in the solid 

solution were evaluated as:  

𝑌MOn

𝛾
=

𝛾∙𝑁MOn

𝛾

𝑁MOn

                              (4.3) 

where 𝑌MOn

𝛾
is the mass fraction of MOn distributed in the solid solution. Figure 4.4 shows the 

calculated values of CaO, SiO2, and P2O5. For the slag without K2O addition, a small portion of 

the CaO and SiO2 was distributed in the solid solution; most of the P2O5 was concentrated in the 
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solid solution. K2O addition increased the mass fractions of CaO, SiO2, and P2O5 distributed in 

the solid solution, because of an increase in the mass fraction of the solid solution in slag. In the 

case of slag with 8 mass% of K2O, although the P2O5 content in the solid solution decreased, 

more than 95% of the P2O5 was concentrated in the solid solution. Approximately 67.7% of the 

Ca and 36.9% of the Si was also distributed in this solid solution. Overall, K2O addition was 

beneficial for the enlargement of solid solution and the enrichment of P2O5 in the solid solution. 

 

 

Fig. 4.4 Mass fractions of each element distributed in the solid solution 

 

4.2.2 Dissolution behavior of slags at different pH conditions 

Figure 4.5 shows the concentrations of each element as a function of leaching time in the citric 

solution at pH 7. As the leaching progressed, the concentrations of Ca, Si, and P increased, but 

after 60 min they exhibited a little change, showing that the dissolution rate of slag decreased. 

The Ca concentration was the highest among the dissolved elements. Fe was difficult to dissolve, 
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and its concentration was less 2.0 mg/L in each case. For the slag without K2O addition, the 

concentrations of each element were lower. The Si and P concentrations reached 13.6 mg/L and 

24.3 mg/L, respectively, after 120 min. When 4 mass% of K2O was added to slag, the 

concentrations of each element increased significantly except Fe. The Ca concentration almost 

doubled, reaching 225.7 mg/L. The Si and P concentrations increased to 49.8 mg/L and 37.0 

mg/L, respectively. However, further increase in the K2O content had a little effect in increasing 

the Ca and Si concentrations. The P concentration of the slag with 8 mass% of K2O was almost 

the same as that of the slag with 4 mass% of K2O. 
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Fig. 4.5 Change in the concentrations of each element in the citric solution at pH 7 

 

The dissolution ratios of each element from slags with different K2O contents were calculated 

as: 

𝑅M =
𝐶𝑀∙𝑉

𝑚M
                                (4.4) 

where RM is the dissolution ratio of element M, CM is the concentration of element M after 120 

min (mg/L), V is the final volume of the aqueous solution (L), and mM is the mass of element M 

in the initial slag (mg). The calculated dissolution ratios at pH 7 are shown in Fig. 4.6. P was 

easier to be dissolved from each slag compared to other elements, showing the highest 

dissolution ratio. The Fe dissolution was negligible in this case. Without K2O addition, the 

dissolution of slag was difficult. The dissolution ratio of Ca was only 12.8%, and approximately 

25.8% of the P was dissolved. K2O addition promoted the dissolution of slag, resulting in higher 

dissolution ratios of each element. For the slag with 4 mass% of K2O, the dissolution ratio of Ca 

increased to 31.5% and that of Si almost tripled compared to the slag without K2O addition. 
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There was a significant improvement in the P dissolution. However, the improvement in P 

dissolution was little with a larger addition of K2O at pH 7. The dissolution ratio of P from the 

slag with 8 mass% of K2O was 43.0%. The dissolution ratio of Mg was lower, less than 5.5%. 

With the increase in the K2O content in slag, the dissolution ratio of K increased. For the slag 

with 8 mass% of K2O, it reached 30.4%. In summary, K2O addition promoted the dissolution of 

P from slag, which had the same effect as the Na2O addition. 

 

 

Fig. 4.6 Dissolution ratios of each element from slags with different K2O contents at pH 7 

 

The change in the concentrations of each element in the citric solution at pH 6 is shown in Fig. 

4.7. Compared to the leaching results at pH 7, the concentrations of each element were higher; 

however, the difference among the slags exhibited almost the same trend. The concentrations of 

Ca, Si, and P increased rapidly in 20 min; however, following 60 min, the dissolution rate of 

slag decreased. The Fe and Mg concentrations were far lower than those of other elements, only 

several mg/L in each case. The Ca and Si concentrations of the slag without K2O addition were 
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211.9 mg/L and 30.6 mg/L, respectively, after 120 min. When 4 mass% of K2O was added, the 

concentrations of Ca and Si significantly increased, but a larger addition of K2O resulted in a 

little increase in their concentrations. For the slag with 8 mass% of K2O, the Ca concentration 

almost doubled compared to the slag without K2O addition, and the Si concentration almost 

tripled. When 4 mass% of K2O was added, the P concentration increased from 54.1 mg/L to 

67.9 mg/L. If the K2O content in slag increased continuously, it further increased, reaching 73.3 

mg/L. The K concentration also increased with the K2O content in slag. In the case of slag 

containing 8 mass% of K2O, it reached 73.6 mg/L. 
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Fig. 4.7 Change in the concentrations of each element in the citric solution at pH 6 

 

The dissolution ratios of each element from slags with different K2O contents at pH 6 were 

calculated using Eq. (4.4), and are shown in Fig. 4.8. In each case, the dissolution ratio of P was 
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the highest, followed by those of Ca and Si, and the dissolution ratios of Fe and Mg were very 

low. Because Fe was mainly distributed in the magnesioferrite phase and matrix phase, it 

indicated that these two phases were difficult to be dissolved. In the case of the slag without 

K2O addition, a selective leaching of P from slag was performed, but the dissolution ratio of P 

was insufficient, only 59.3%. With the increase in the K2O content in slag, the dissolution of Ca, 

Si, and P was significantly promoted. For the slag with 8 mass% of K2O, 72.0% of the Ca and 

84.6% of the P were dissolved, while the Fe was hardly dissolved. The dissolution ratios of the 

added K and Mg were approximately 50% and 8%, respectively. In this case, a higher 

dissolution ratio of P and lower dissolution ratios of other elements demonstrated the superior 

selective leaching of P from slag. 

 

 

Fig. 4.8 Dissolution ratios of each element from slags with different K2O contents at pH 6 

 

The dissolution ratios of each element from slag at pH 5 were calculated using Eq. (4.4), and are 

shown in Fig. 4.9. A comparison with the results in Fig. 4.6 shows the significant increase in the 
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dissolution ratios of each element by the decrease in the pH. The dissolution of the slag without 

K2O addition was large at pH 5, leading to higher dissolution ratios of each element. The 

dissolution ratio of P reached 82.2%, and approximately 20.4% of the Fe was also dissolved, 

which deteriorated selective leaching of P. When K2O was added, the dissolution ratio of P had 

little change; however, the dissolution of other elements was significantly suppressed. In 

particular, the dissolution ratio of Fe decreased greatly, only 2.2%. Further increase in the K2O 

content promoted dissolution of Ca, Si, and P, but did not affect dissolution of Fe and Mg. For 

the slag with 8 mass% of K2O, the dissolution ratio of P reached 90.8%, which was far higher 

than those of Fe and Mg. These results show that the P-concentrated phase was preferentially 

dissolved compared with other phases. In summary, the modified slag with K2O addition 

exhibited a better selective leaching of P at pH 5, because of a lower dissolution ratio of Fe. 

 

 

Fig. 4.9 Dissolution ratios of each element from slags with different K2O contents at pH 5 
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Table 4.3 lists the acid consumption during leaching of slags with different K2O contents at 

various pH conditions. With the increase in the K2O content in slag, the consumption of citric 

acid increased at pH 6 and 7. For example, when 4 mass% of K2O was added, acid consumption 

almost doubled. Decreasing pH also increased acid consumption because a larger portion of slag 

was dissolved. At pH 5, the slag without K2O addition consumed the largest amount of acid. For 

the slags with K2O addition, the consumption of citric acid decreased sharply. The change in the 

acid consumption was in good agreement with that in the Ca and Si concentrations during 

leaching. 

 

 

Table 4.3 Acid consumption during leaching of slags with different K2O contents (mL) 

 Slag A (0% K2O) Slag B (4% K2O) Slag C (8% K2O) 

pH=7 4.6 12.1 15.5 

pH=6 10.1 21.4 27.0 

pH=5 39.9 28.1 33.8 

 

 

Fig. 4.10 Relationship between the dissolution ratios of P and Fe and the pH 
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According to the distribution of P and Fe in each phase, the dissolution ratios of P and Fe could 

represent the dissolution behavior of the solid solution and other phases, respectively. To 

determine the optimum conditions for selective leaching, these values at different pH conditions 

were summarized in Fig. 4.10. This figure shows that the dissolution ratio of P was far higher 

than that of Fe in each case. As the pH decreased, the dissolution ratios of P and Fe both 

increased; however, the associated trend differed for each slag. At pH 7, with a K2O addition of 

4 mass%, the dissolution ratio of P increased from 25.8% to 40.1%. However, a further increase 

in the K2O content did not significantly promote the dissolution of P. When the pH decreased to 

6, the concentration of H
+
 ions increased, which facilitated dissolution of the solid solution. In 

addition, as discussed in Chapter 3, higher concentrations of Ca and P could coexist in the 

aqueous solution and HAP precipitate was difficult to form at pH 6. Therefore, the dissolution 

ratio of P from each slag increased significantly. A larger addition of K2O resulted in a higher 

dissolution ratio of P. In the case of the unmodified slag, the dissolution ratio of P exhibited a 

significant improvement when the pH decreased to 5; however, the dissolution ratio of Fe also 

increased sharply, reaching 20.4%. This illustrates that a part of the matrix phase also dissolved. 

In the case of the modified slags, the dissolution ratio of P increased slightly when the pH 

varied from 6 to 5, and the dissolution of Fe kept at low level; this indicates that the dissolution 

of matrix phase was suppressed. An excellent selective leaching of P from slag was performed. 

4.2.3 Residue composition 

The average composition of the residue obtained after leaching was determined, as shown in 

Table 4.4. Compared with the initial slag prior to leaching (listed in Table 4.1), the CaO, SiO2, 

and P2O5 contents in each residue reduced; however, the Fe2O3 and MgO contents increased. 

With the increase in the K2O content in slag, the P2O5 content in the residue after leaching 
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decreased because of an increase in the dissolution ratio of P at pH 6. K2O addition also resulted 

in lower CaO and SiO2 contents in the residue. The undissolved Fe remained in the residue, and 

its content correspondingly increased. When the pH decreased to 5, the P2O5 and Fe2O3 contents 

in the residue further decreased and increased, respectively. When the slag with 8 mass% of 

K2O was leached at pH 5, a residue containing 55.37 mass% of Fe2O3 and 0.66 mass% of P2O5 

was obtained, which had the potential to be reused inside steelmaking process.  

 

Table 4.4 Average compositions of residues obtained after leaching (mass%) 

Residue CaO SiO2 Fe2O3 P2O5 MgO K2O 

Slag A (pH=6) 34.22 22.37 36.29 3.36 3.75 0.00 

Slag B (pH=6) 24.01 18.15 46.37 2.05 4.67 4.75 

Slag C (pH=6) 16.12 17.99 51.06 1.47 5.16 8.21 

Slag A (pH=5) 20.63 18.24 54.54 1.05 5.55 0.00 

Slag B (pH=5) 21.98 18.35 48.84 1.29 4.87 4.68 

Slag C (pH=5) 13.85 16.20 55.37 0.66 5.58 8.36 
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Fig. 4.11 EPMA images of residue surface after leaching of slags with different K2O contents 

 

Table 4.5 Compositions of each phase in the residue after leaching (mass%) 

 CaO SiO2 Fe2O3 P2O5 MgO K2O 

Residue 

(Slag A, pH=6) 

1 40.1 35.6 20.1 2.2 1.9 0.0 

2 1.3 0.3 87.6 0.0 10.8 0.0 

Residue 

(Slag B, pH=6) 

1 31.8 35.5 23.5 2.0 1.8 5.3 

2 1.7 0.7 85.3 0.1 12.1 0.1 

Residue 

(Slag B, pH=6) 

1 23.2 32.0 31.6 0.9 1.5 10.8 

2 0.9 2.8 83.0 0.1 13.0 0.2 

 

The microstructure and compositions of the residue obtained after leaching at pH 6 are shown in 

Fig. 4.11 and Table 4.5. Two main phases were identified in each residue. The white area, rich 

in Fe2O3 and MgO, was the magnesioferrite phase. The grey phase, consisting of a 

CaO-SiO2-Fe2O3 slag system, was considered the matrix phase. Compared with the results in 

Table 4.2, the compositions of these phases in the residue were almost identical to those in the 

slag prior to leaching. There were no solid solution particles in each residue. It indicates that the 

solid solution that had contacted with the aqueous solution had dissolved. For the residue of the 

slags with K2O addition, some holes could be observed near the magnesioferrite phase. These 

areas are considered to be the small solid solution particles that were observed prior to leaching. 
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Fig. 4.12 XRD patterns of slags with different K2O contents and their residue after leaching at pH 6 

 

Figure 4.12 shows the XRD patterns of the slags and their residues after leaching at pH 6. In 

each slag, the precipitated solid solution and magnesioferrite phase were observed. The crystal 

form of the solid solution was changed because of K2O addition. After leaching, the intensity of 

the peaks associated with solid solution weakened, and that of the magnesioferrite phase 

increased. In the case of the residue of the slag without K2O addition, peaks associated with the 

solid solution still existed. However, for the slags with K2O addition, the peaks associated with 

the solid solution almost disappeared, indicating that the dissolution of the solid solution was 

enhanced by K2O addition. From the above findings, it can be determined that the P-condensed 



Chapter 4 

134 

solid solution was easily dissolved compared with other phases in the aqueous solution, and 

could be separated from slag via selective leaching. 

 

4.3 Discussion on K2O addition 

First, the effect of K2O addition on the mineralogical composition of slag was compared with 

that of Na2O addition (shown in chapter 3). Na2O and K2O addition both enlarged the mass 

fraction of the solid solution and caused the decrease in the P2O5 content in the solid solution. 

When the same content of alkaline oxide was added, the P2O5 content in the solid solution of the 

slag with Na2O addition was higher, but the mass fraction of the solid solution was lower. In the 

slag containing 4 mass% of K2O, the distribution ratio of P2O5 between solid solution and 

matrix phase was about 13.0, lower than that in the slag containing Na2O. Na2O was easier to be 

distributed into the solid solution, and its content in the solid solution was higher. This is 

because the radius of Na
+
 ion (0.102 nm) is smaller than that of K

+
 ion (0.138 nm), and closer to 

the radius of Ca
2+

 (0.100 nm) [2]. The replacement between Na
+
 and Ca

2+
 in the solid solution 

occurs easily [3]. In the case of Na2O addition, there was a higher distribution ratio of alkaline 

oxide between solid solution and matrix phase. 
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Fig. 4.13 Solubility line of the HAP precipitate and leaching results at pH 7 

 

As discussed in the above Chapter, hydroxyapatite (HAP: Ca10(PO4)6(OH)2) is easily formed at 

pH 7 [4]. Therefore, there is a high possibility that P concentration in the aqueous solution is 

controlled by the presence of HAP. The dissolution reaction of HAP and its equilibrium 

constant are described by Eq. (4.5) [5, 6]. 

Ca10(PO4)6(OH)2+14H+=10Ca2++6H2PO4
-
+2H2O   log K=52.86         (4.5) 

Ca2+ + C6H5O7
3-

= CaC6H5O7
-
  log K=3.22                  (4.6) 

Figure 4.13 shows the relationship between the Ca and P concentrations in the aqueous solution 

at pH 7 determined by Eq. (4.5). The leaching results of different slags at pH 7 were also plotted 

in this Figure. Because of the existence of citrate ions (C6H5O7
3-

), the formation of CaC6H5O7
-
 

complex was taken into consideration. The concentration of C6H5O7
3-

 ions in the aqueous 

solution was determined by the final volume of the aqueous solution and the mass of the added 

citric acid. The free Ca
2+

 concentration, which did not react with the citrate ions, was calculated 

using Eq. (4.6) [7]. The observed point for the free Ca
2+

 and P concentration of the slag without 
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K2O addition was located below the HAP solubility line; this indicates that the P concentration 

did not reach saturation because of a lower Ca concentration, so the dissolved P did not 

precipitate. For the slags with K2O addition, higher concentrations of Ca and P were obtained. 

The possible reason was that the newly formed solid solution containing K2O had a high 

solubility. The observed points were located above the HAP solubility line, showing that the P 

concentration reached saturation and P dissolution was hindered by phosphate precipitation. 

Therefore, it was difficult to increase the dissolution ratio of P by further increasing the K2O 

content in slag at pH 7. 

 

 

Fig. 4.14 Presumed dissolution ratios of Ca, Si, and P from the solid solution at pH 6 

 

When the pH decreased to 6, higher concentrations of Ca and P could coexist in the aqueous 

solution, and the precipitates of calcium phosphate did not form in this case. To evaluate the 

dissolution behavior of each phase, the presumed dissolution ratios of element M (𝑅𝑀
𝑆𝑆) from the 

solid solution were calculated using Eq. (4.7): 
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𝑅𝑀
𝑆𝑆 =

𝐶𝑀∙𝑉

𝑚𝑀
𝑆𝑆                                  (4.7) 

where 𝑚𝑀
𝑆𝑆 is the original mass of element M in the solid solution (mg). Because most of the P 

was concentrated in the solid solution, it was assumed that P dissolved only from the solid 

solution. The presumed dissolution ratio of P from the solid solution (𝑅𝑃
𝑆𝑆) could represent the 

dissolution ratio of solid solution. For Ca and Si, if the presumed dissolution ratio is more than 

unity, it indicates that the dissolution of Ca and Si occurs not only from the solid solution but 

also from the matrix phase, because magnesioferrite was difficult to be dissolved compared with 

other phases in the aqueous solution [8]. The values of Ca and Si reflect the dissolution behavior 

of matrix phase. The larger these values, the more matrix phase are dissolved. 

Figure 4.14 shows the presumed dissolution ratios of Ca, Si, and P from the solid solution at pH 

6. In the case of slag without K2O addition, the presumed dissolution ratio of P was only 67.3, 

indicating that the dissolution of solid solution was insufficient. With the increase in the K2O 

content in slag, the presumed dissolution ratio of P increased. This shows that the dissolution of 

solid solution was promoted. In the previous chapter, it has been confirmed that the solid 

solution containing Na2O shows higher water solubility than the C2S-C3P solid solution. 

Consequently, the introduction of K2O is considered to enhance the solubility of solid solution. 

About 90% of the solid solution was dissolved from the slag containing 8 mass% of K2O.  

For the slag without K2O addition, the presumed dissolution ratios of Ca and Si were both lower 

than unity. It also illustrated that the solid solution did not dissolve totally. However, these 

values were higher than that of P. This is because a small part of the dissolved Ca and Si was 

dissolved from the matrix phase. In the aqueous solution, phosphate and Fe
3+

 ions can easily 

form a precipitate of strengite (FePO4∙2H2O) [9]. Another possible reason is that a small 

amount of P precipitated with the dissolved Fe
3+

 from the matrix phase. Because the dissolution 

of matrix phase was little and Fe concentration was very low, we generally ignored the 
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precipitation of iron phosphate in our discussion. A further addition of K2O did not increase the 

presumed dissolution ratios of Ca and Si. These values exceeded unity, but not largely, 

indicating that the dissolution of matrix phase was not significant. The lower dissolution ratio of 

Fe would support this point. 

 

 

Fig. 4.15 Mass fractions of the residue and dissolved part at pH 6, compared with the phase fractions 

of different slags 

 

After leaching, the mass of the residue and the dissolved portion, calculated using the 

dissolution ratio, were compared with the phase fractions of the initial slag in Fig. 4.15. In the 

case of the slag without K2O addition, the dissolved mass was lower than the mass fraction of 

the solid solution, indicating that a portion of the solid solution remained in the residue. With 

the increase in the K2O addition, the dissolved mass increased, and its value was almost 

identical to the mass fraction of the solid solution. Combined with above analysis, it could be 

concluded that the majority of the solid solution had dissolved, and little dissolution of other 
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phases occurred. Enhanced selective leaching of the P-condensed solid solution was achieved 

by K2O addition. 

Figure 4.16 shows the presumed dissolution ratios of Ca, Si, and P from the solid solution at pH 

5. The presumed dissolution ratio of P was close to unity regardless of the K2O content; this 

means that almost all of the solid solution was dissolved at pH 5. Nevertheless, K2O addition 

had a significant influence on the dissolution of the matrix phase. For the slag without K2O 

addition, the presumed dissolution ratios of Ca and Si were far greater than unity, indicating that 

a large amount of the matrix phase was dissolved. By K2O addition, these values were reduced 

significantly, which shows that the dissolution of the matrix phase was suppressed. Because 

these values did not exceed unity largely, it is believed that the dissolution of the matrix phase 

from the modified slag was not significant at pH 5. 

 

 

Fig. 4.16 Presumed dissolution ratios of Ca, Si, and P from the solid solution at pH 5 
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Fig. 4.17 Mass fractions of the residue and dissolved part at pH 5, compared with the phase fractions 

of different slags 

 

The mass fractions of the residue and dissolved part at pH 5 were compared with the phase 

fractions of slags with different K2O contents, as shown in Fig. 4.17. The dissolution ratio of the 

slag without K2O addition was the highest, reaching 51%. This value was approximately equal 

to the sum of the total mass of the solid solution and half of the matrix phase, indicating that the 

matrix phase was easily dissolved in this case. When K2O was added, the dissolution of slag 

became difficult. The mass fraction of the dissolved part reduced, and was slightly higher than 

that of the solid solution. This demonstrated that the dissolution of the matrix phase was little, 

which was consistent with the above analysis. 

The mechanism to suppress the dissolution of glassy matrix phase by the addition of alkaline 

oxide (Na2O or K2O) was explained from the point of silicate structure. As discussed in Chapter 

3, Fe
3+

 ions occupied both octahedral and tetrahedral sites in the silicate glass of 

CaO-Fe2O3-SiO2 system [11, 12]. Pargamin et al. [13] reported that in the alkaline silicate glass, 
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Na2O-Fe2O3-SiO2, all of the Fe
3+

 cations was found to be tetrahedrally coordinated 

(network-former). Hayashi et al. [14] reported that the fraction of Fe
3+

 in tetrahedral sites is 

larger for the CaO-Na2O-Fe2O3-SiO2 system than that for the CaO-Fe2O3-SiO2 system. Because 

alkaline oxides (Na2O and K2O) have the similar chemical properties, it is considered that the 

fraction of Fe
3+

 ions in tetrahedral sites to total Fe
3+

 ions in the matrix phase was increased by 

the addition of K2O. As mentioned in the above chapter, the bond strength of Fe-O in 

tetrahedral site is higher than that in octahedral site. Consequently, for the modified slag with 

K2O addition, the K2O-containing matrix phase was more stable and its dissolution became 

difficult during leaching. 

Finally, the effect of K2O addition on the dissolution of slag was compared with that of Na2O 

addition (shown in Chapter 3). In both cases, due to the formation of the solid solution 

containing Na2O or K2O, most of the solid solution was dissolved from the modified slag at pH 

5. The dissolution ratio of P from the slag containing 4 mass% of alkaline oxide was almost the 

same, over 80%. In addition, the dissolution of the Fe-concentrated matrix phase was 

significantly suppressed by K2O or Na2O addition at pH 5. In summary, the addition of alkaline 

oxide has the same effect on the dissolution of slag with high P2O5 content. A better selective 

leaching of P from slag could be achieved. 

 

4.4 Summary 

To promote the dissolution of the P-concentrated solid solution and achieve selective leaching 

of P from slag, the effects of K2O addition and pH on the dissolution behavior of steelmaking 

slag with high P2O5 content were investigated. The following results were obtained: 
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(1) By K2O addition, a portion of the K2O was distributed into the P-concentrated solid solution, 

and the mass fraction of the solid solution in slag increased; however, the P2O5 content in 

the solid solution decreased.  

(2) K2O addition promoted the dissolution of solid solution in the aqueous solution, resulting in 

higher dissolution ratios of Ca, Si, and P. However, at pH 7, further increase in the K2O 

content in slag did not significantly increase the P dissolution ratio because of phosphate 

precipitation. 

(3) As the pH decreased, the dissolution of slag was promoted. With the increase in the K2O 

content, the dissolution ratio of P increased at pH 6. The majority of the solid solution in the 

slag with 8 mass% of K2O could be dissolved, and other phases remained in the residue, 

showing a better selective leaching of P from slag. 

(4) When the pH decreased to 5, more than 80% of the P was dissolved from each slag. For the 

slags with K2O addition, the dissolution of the matrix phase was significantly suppressed, 

resulting in a lower Fe dissolution ratio. A residue with a higher Fe2O3 content and a lower 

P2O5 content was obtained after leaching, which had the potential to be reused inside 

steelmaking process. 
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5 Distribution of P2O5 and Na2O between the solid solution and liquid 

phase in slag with high P2O5 content 

 

Na2O addition to slag is considered an effective method for increasing dephosphorization 

efficiency [1-4]. In addition, Na2O modification also facilitates dissolution of the solid solution 

from slag via selective leaching [5]. Therefore, it is necessary to investigate the distribution 

ratios of P2O5 and Na2O between the solid solution and liquid phase in the slag of 

CaO-SiO2-Fe2O3-P2O5-Na2O system. 

 

5.1 Experimental method 

 

 

Fig. 5.1 Projection of slag composition in the CaO-SiO2-Fe2O3 ternary phase diagram 

 

Reagent-grade CaCO3, SiO2, Fe2O3, Ca3(PO4)2, and Na2SiO3 were used to produce the 

CaO-SiO2-Fe2O3 system slag. To reduce the vaporization of Na2O at high temperatures, 
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Na2SiO3 was used in this study [6]. Fe2O3 was used as iron oxide, although in the steelmaking 

process, most of the iron oxide is in the form of FeO. This is because a better selective leaching 

of P from slag can be achieved in the case of slag containing Fe2O3 (shown in Chapter 3). In 

addition, the distribution of P2O5 between the solid solution and liquid phase underwent little 

change when the iron oxide was changed from FeO to Fe2O3 [7]; in the case of Fe2O3, a Pt 

crucible can be used to avoid contamination by the crucible. CaCO3 was calcined at 1273 K for 

10 h in an Al2O3 crucible to prepare CaO. Each reagent was thoroughly mixed according to the 

slag composition (listed in Table 5.1). The slags with different P2O5, Na2O, Fe2O3 contents, and 

basicity were synthesized. The P2O5 content in slag varied from 7 mass% to 16 mass%; the 

Na2O content varied from 2 mass% to 15 mass%. From the phase diagram of the 

CaO-SiO2-Fe2O3 system [8], as shown in Fig. 5.1, it is determined that the compositions of these 

slags were located in a liquid region at 1823 K, and a 2CaO∙SiO2 precipitated during cooling to 

1673 K. The heating pattern is shown in Fig. 5.2. First, 3 g of the mixed reagents was placed in 

a Pt crucible and heated to 1823 K in an electric resistance furnace under air. After holding at 

this temperature for 1 h, the sample was cooled to 1673 K and kept for 1 h. Based on the 

previous study [9, 10] and preliminary experiments, we considered the distribution of P2O5 and 

Na2O between the solid solution and liquid phase reached equilibrium by this treatment. In the 

preliminary experiment, the Na2O content in the synthesized slag was determined using 

chemical analysis (same method as the chemical analysis of slag and residue in Chapter 3). We 

confirmed that the vaporization of Na2O was negligible when the Na2O content was not high. 

After heating, the sample was quenched with water. Finally, the obtained slag sample was 

mounted and polished. The composition of many positions of each phase was analyzed with an 

electron probe micro analyzer (EPMA) and average compositions were calculated. The 

precipitated solid solution in slag was confirmed using X-ray diffraction (XRD) analysis. 
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Table 5.1 Mixing compositions of slags (mass%) 

Sample CaO SiO2 Fe2O3 P2O5 Na2O 

A-1 (2% Na2O) 42.9 26.7 21.4 7.0 2.0 

A-2 (2% Na2O) 41.5 25.8 20.7 10.0 2.0 

A-3 (2% Na2O) 40.0 25.0 20.0 13.0 2.0 

A-4 (2% Na2O) 38.6 24.1 19.3 16.0 2.0 

A-1 (5% Na2O) 41.5 25.8 20.7 7.0 5.0 

A-2 (5% Na2O) 40.0 25.0 20.0 10.0 5.0 

A-3 (5% Na2O) 38.6 24.1 19.3 13.0 5.0 

A-4 (5% Na2O) 37.2 23.2 18.6 16.0 5.0 

A-2 (10% Na2O) 37.7 23.5 18.8 10.0 10.0 

A-3 (10% Na2O) 36.2 22.6 18.2 13.0 10.0 

A-3 (13% Na2O) 34.8 21.7 17.5 13.0 13.0 

A-2 (15% Na2O) 35.4 22.0 17.6 10.0 15.0 

B-2 (5% Na2O) 43.1 26.9 15.0 10.0 5.0 

C-2 (5% Na2O) 37.0 23.0 25.0 10.0 5.0 

D-2 (5% Na2O) 30.8 19.2 35.0 10.0 5.0 

E-2 (5% Na2O) 37.9 27.1 20.0 10.0 5.0 

F-2 (5% Na2O) 41.8 23.2 20.0 10.0 5.0 

G-2 (5% Na2O) 43.3 21.7 20.0 10.0 5.0 

 

 

Fig. 5.2 Experimental condition for precipitation of solid solution 

 

5.2 Experimental results 
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Fig. 5.3 Cross section (500×) of the typical slag (A-2 (5% Na2O)) 

 

Precipitated solid solution particles and liquid phase were clearly observed in each slag, as 

shown in Fig. 5.3. The distribution ratios of P2O5 and Na2O between the solid solution and 

liquid phase were calculated using Eqs. (5.1) and (5.2), respectively: 

LP2O5=
(%P2O5)

SS

(%P2O5)
L

                                (5.1) 

LNa2O=
(%Na2O)

SS

(%Na2O)
L

                                (5.2) 

where (%P2O5) and (%Na2O) represent the P2O5 and Na2O contents in each phase in mass%, 

and the subscripts SS and L denote the solid solution and liquid phase, respectively. The average 

compositions of the solid solution and liquid phase in each slag are listed in Table 5.2. This 

table also presents the calculated distribution ratios of P2O5 (LP2O5) and Na2O (LNa2O).  
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Table 5.2 Average compositions of the solid solution and liquid phase in each slag (mass%) 

Sample Phase CaO SiO2 Fe2O3 P2O5 Na2O LP2O5 LNa2O 

A-1 (2% Na2O) 
solid solution 57.7 21.0 1.2 17.4 2.6 

4.70 1.73 
liquid phase 37.7 28.8 28.3 3.7 1.5 

A-2 (2% Na2O) 
solid solution 54.3 14.6 1.2 26.8 3.0 

4.79 1.58 
liquid phase 37.2 29.1 26.2 5.6 1.9 

A-3 (2% Na2O) 
solid solution 52.4 7.9 1.0 35.8 2.9 

5.19 1.61 
liquid phase 35.1 31.6 24.7 6.9 1.8 

A-4 (2% Na2O) 
solid solution 52.0 4.3 0.9 39.8 3.0 

4.68 1.76 
liquid phase 33.7 32.0 24.2 8.5 1.7 

A-1 (5% Na2O) 
solid solution 55.0 22.5 1.1 16.0 5.3 

6.67 1.08 
liquid phase 33.6 28.3 30.8 2.4 4.9 

A-2 (5% Na2O) 
solid solution 51.9 15.2 1.1 25.0 6.7 

5.10 1.49 
liquid phase 35.5 28.0 27.1 4.9 4.5 

A-3 (5% Na2O) 
solid solution 49.6 10.1 1.0 32.1 7.2 

5.73 1.71 
liquid phase 34.2 29.1 26.9 5.6 4.2 

A-4 (5% Na2O) 
solid solution 48.0 5.8 0.9 38.4 6.9 

5.49 1.57 
liquid phase 32.4 30.4 25.8 7.0 4.4 

A-2 (10% Na2O) 
solid solution 50.3 17.2 0.8 22.6 9.1 

7.79 0.88 
liquid phase 27.5 26.1 33.3 2.9 10.3 

A-3 (10% Na2O) 
solid solution 47.0 12.8 0.8 29.2 10.1 

9.13 1.10 
liquid phase 26.5 29.0 32.1 3.2 9.2 

A-3 (13% Na2O) 
solid solution 46.8 14.1 0.6 27.0 11.5 

10.80 1.03 
liquid phase 19.3 26.8 40.2 2.5 11.2 

A-2 (15% Na2O) 
solid solution 51.5 19.0 0.5 20.1 9.0 

11.17 0.56 
liquid phase 16.2 22.2 43.7 1.8 16.0 

B-2 (5% Na2O) 
solid solution 52.8 19.1 1.1 21.0 6.0 

4.20 1.30 
liquid phase 36.2 29.7 24.5 5.0 4.6 

C-2 (5% Na2O) 
solid solution 48.0 12.6 1.1 30.5 7.7 

6.49 1.71 
liquid phase 31.8 26.0 32.9 4.7 4.5 

D-2 (5% Na2O) 
solid solution 45.0 7.4 0.9 37.4 9.3 

7.19 1.94 
liquid phase 27.3 21.0 41.6 5.2 4.8 

E-2 (5% Na2O) 
solid solution 50.7 12.0 1.1 29.3 6.9 

4.37 1.57 
liquid phase 35.9 30.6 22.4 6.7 4.4 

F-2 (5% Na2O) 
solid solution 53.6 18.7 1.1 20.8 5.8 

7.43 1.38 
liquid phase 33.0 26.4 33.7 2.8 4.2 

G-2 (5% Na2O) 
solid solution 55.9 19.8 1.0 17.7 5.7 

10.41 1.06 
liquid phase 29.6 22.5 40.8 1.7 5.4 

 

5.2.1 Effect of P2O5 and Na2O contents 
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Figure 5.4 shows the relationship between the P2O5 and Na2O contents in slag and the 

distribution ratio of P2O5. The distribution ratio of P2O5 between the solid solution and liquid 

phase was high in each case, indicating that P2O5 was mainly distributed in the solid solution. A 

linear relationship was found between the distribution ratio of P2O5 and the Na2O content in slag, 

independent of the P2O5 content. When the Na2O content increased from 2 to 10 mass%, the 

value of LP2O5 approximately doubled, even in a slag with high P2O5 content. In the case of high 

Na2O content, the distribution ratio of P2O5 exceeded 10, meaning that most of the P2O5 was 

concentrated in the solid solution. 

 

 

Fig. 5.4 Relationship between the Na2O and P2O5 contents in slag and the distribution ratio of P2O5 

 

The change in the distribution ratio of Na2O with slag compositions is shown in Fig. 5.5. 

Compared with the distribution ratio of P2O5, the distribution ratio of Na2O was lower in each 

slag. With increase in the Na2O content in slag, the distribution ratio of Na2O decreased. In the 

low Na2O content range, the Na2O content in the solid solution was higher than that in the liquid 
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phase. In the high Na2O content range, this value was less than unity, indicating that Na2O was 

difficult to continue entering into the solid solution and mainly distributed in the liquid phase. 

The significant influence of the P2O5 content on the distribution ratio of Na2O was not observed. 

These results show that Na2O addition to a slag with high P2O5 content facilitated the 

enrichment of P2O5 in the solid solution, while it had the opposite effect on the distribution of 

Na2O.  

 

 

Fig. 5.5 Relationship between the Na2O and P2O5 contents in slag and the distribution ratio of Na2O 

 

Figure 5.6 shows the change of the P2O5 and Na2O contents in the solid solution with the P2O5 

and Na2O contents in slag. In the slag with 7 mass% of P2O5, the P2O5 content in the solid 

solution was approximately 16 mass%. With an increase in the P2O5 content in slag, the P2O5 

content in the solid solution increased, as reported by Shimauchi et al.[9]. In the case of the slag 

with 16 mass% P2O5, the P2O5 content in the solid solution reached about 39 mass%. It shows 

that the majority of the solid solution consisted of 3CaO·P2O5. Na2O addition resulted in a 
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decrease in the P2O5 content in the solid solution. When the Na2O content in slag (containing 10 

mass% of P2O5) increased from 2 to 10 mass%, the P2O5 content decreased from 26.8 to 22.6 

mass%. The Na2O content in the solid solution showed a slight increase with the increase of 

P2O5 content in slag. A larger addition of Na2O in slag led to a high Na2O content in the solid 

solution. 

The compositions of the solid solution in slag with different Na2O contents are plotted in a 

(CaO+Na2O)-SiO2-P2O5 pseudo-phase diagram, as shown in Fig. 5.7. The Na2O content in the 

solid solution was taken into consideration. The tie-line between 2(CaO, Na2O)∙SiO2 and 3(CaO, 

Na2O)∙P2O5 indicates the composition of C2S-C3P solid solution without considering Na2O. The 

compositions of these solid solutions lay nearly on the composition line of pure C2S-C3P, 

indicating that the added Na2O substituted CaO in the solid solution and a new solid solution 

similar to C2S-C3P was formed. 

 

 

Fig. 5.6 Change in the P2O5 and Na2O contents in the solid solution with the P2O5 and Na2O content 

in slag 
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Fig. 5.7 Projections of the solid solution in the (CaO+Na2O)-SiO2-P2O5 pseudo-phase diagram under 

different Na2O contents 

 

 

Fig. 5.8 Mass fraction of the solid solution in slags with different P2O5 and Na2O contents 
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On the basis of mass balance, the mass fractions of the solid solution and liquid phase were 

estimated using the slag composition shown in Table 5.1 and the EPMA results in Table 5.2. 

The mass balance of each oxide can be represented using Eqs. (5.3) and (5.4): 

NMOn
 = αNMOn

α  + βNMOn

β
                           (5.3) 

𝛼 +  𝛽 = 1                                  (5.4) 

where α and β are the mass fractions of the solid solution and matrix phase, respectively, 𝑁MOn
 

is the MOn content in slag, and 𝑁MOn

𝛼  is the MOn content in the solid solution. The mass 

fraction of the solid solution was defined as the average of the calculated mass fractions using 

the different combination of CaO, SiO2 and Fe2O3. Figure 5.8 shows the calculated mass 

fraction of the solid solution in slags with different P2O5 and Na2O contents. With an increase in 

the Na2O content in slag, the mass fraction of the solid solution increased. The reason is that 

slag basicity increased when Na2O (basic oxide, has similar property with CaO) was added. 

According to the CaO-SiO2-Fe2O3 phase diagram, increasing slag basicity results in a higher 

mass fraction of the solid solution. When the Na2O content was the same, the slag with a higher 

P2O5 content showed a higher mass fraction of the solid solution. In the case of high Na2O 

content, the mass fraction of the solid solution exceeded 40%. Enlargement of the solid solution 

mass and increase in the distribution ratio of P2O5 mean that the majority of the P2O5 in slag was 

concentrated in the solid solution. 

Using the mass fraction of the solid solution, the mass fractions of P2O5 and Na2O distributed in 

the solid solution were calculated using Eq. (5.5): 

𝑌MOn

𝛼 =
𝛼∙𝑁MOn

𝛼

𝑁MOn

                              (5.5) 

Figure 5.9 shows the calculated results for the slag with 10 mass% of P2O5. With an increase in 

the Na2O content in slag, although the P2O5 content in the solid solution decreased, the mass 

fraction of P2O5 distributed in the solid solution increased. Therefore, Na2O addition facilitated 
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P2O5 enrichment. When the Na2O content exceeded 10 mass%, more than 85% of the P2O5 was 

concentrated in the solid solution. However, the mass fraction of Na2O distributed in the solid 

solution had little change with the Na2O content in slag. Approximately 33% of the Na2O was 

distributed in the solid solution. This result indicates that the increase of the Na2O content in 

slag did not enrich the Na2O in the solid solution, but a large amount of the Na2O was 

distributed in the liquid phase. 

 

 

Fig. 5.9 Mass fractions of P2O5 and Na2O distributed in the solid solution 

 

5.2.2 Effect of Fe2O3 content 

Figure 5.10 shows the relationship between the distribution ratio of P2O5 and the total Fe 

content (T.Fe) in the liquid phase for the slag containing 5 mass% of Na2O. With increasing the 

T.Fe content in the liquid phase, the distribution ratio of P2O5 between the solid solution and 

liquid phase increased. The distribution ratio of P2O5 showed no dependence on the P2O5 
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content in slag. These results have the same trend as the results obtained by Ito et al. [7] (plotted 

in Fig. 5.10); however, the values of this study were higher. The difference was explained by 

the addition of Na2O in slag, which resulted in a higher distribution ratio of P2O5. The change in 

the distribution ratio of Na2O with the Fe2O3 content in slag is shown in Fig. 5.11. With the 

increase in the Fe2O3 content in slag, the distribution ratio of Na2O increased. In the case of slag 

containing 35 mass% of Fe2O3, the value of LNa2O reached about 2.0, indicating that a large 

amount of Na2O was concentrated in the solid solution. 

 

 

Fig. 5.10 Relationship between the distribution ratio of P2O5 and the T.Fe content in the liquid phase 

 

The compositions of the solid solution in slags with different Fe2O3 contents are plotted in a 

(CaO+Na2O)-SiO2-P2O5 pseudo-phase diagram (Fig. 5.12). The tie-line between 2(CaO, 

Na2O)∙SiO2 and 3(CaO, Na2O)∙P2O5 indicates the composition of C2S-C3P solid solution without 

considering Na2O. The compositions of this study lay nearly on the composition line of pure 
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C2S-C3P, indicating that the added Na2O substituted CaO in the solid solution and a new solid 

solution similar to C2S-C3P was formed. An increase in the Fe2O3 content in slag brought a 

significant increase in the P2O5 content in the solid solution. In the case of high Fe2O3 content, 

the composition of solid solution was closer to the 3(CaO,Na2O)∙P2O5 point, indicating that 

increasing the Fe2O3 content in slag facilitated P2O5 enrichment in the solid solution. 

 

 

Fig. 5.11 Change in the distribution ratio of Na2O with the Fe2O3 content in slag 
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Fig. 5.12 Projections of the solid solution in the (CaO+Na2O)-SiO2-P2O5 pseudo-phase diagram 

under different Fe2O3 contents 

 

 

Fig. 5.13 Mass fraction of the solid solution in slags with different Fe2O3 contents 
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As mentioned above, the mass fraction of the solid solution in slags at different Fe2O3 contents 

were calculated using Eqs. (5.3) and (5.4), and shown in Fig. 5.13. The mass faction of the solid 

solution decreased with an increase in the Fe2O3 content in slag. When the Fe2O3 content 

increased from 15 to 35 mass%, the mass fraction of the solid solution decreased from 34.9% to 

16.1%. 

 

5.2.3 Effect of slag basicity (CaO/SiO2) 

The relationship between slag basicity and the distribution ratios of P2O5 and Na2O are shown in 

Fig. 5.14 for the slags containing 10 mass% of P2O5 and 5 mass% of Na2O. In this study, slag 

basicity is defined as the mass ratio of CaO to SiO2 in slag (R=mass% CaO/mass% SiO2). With 

the increase in slag basicity, the distribution ratio of P2O5 increased significantly. When the 

basicity changed from 1.6 to 2.0, the value of LP2O5 approximately doubled. However, the 

distribution ratio of Na2O showed the reverse trend; higher slag basicity resulted in a lower 

distribution ratio of Na2O. 

Figure 5.15 shows the compositions of solid solution in the (CaO+Na2O)-SiO2-P2O5 

pseudo-phase diagram under different slag basicity. Although Na2O existed in the solid solution, 

the composition of solid solution was close to the pseudo-binary relation of 2(CaO, Na2O)∙SiO2 

and 3(CaO, Na2O)∙P2O5. With the increase in slag basicity, the P2O5 content in the solid solution 

decreased. 
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Fig. 5.14 Relationship between slag basicity and the distribution ratios of P2O5 and Na2O 

 

 

Fig. 5.15 Projections of the solid solution in the (CaO+Na2O)-SiO2-P2O5 pseudo-phase diagram 

under different slag basicity 
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Figure 5.16 shows the calculated mass fraction of solid solution in slags with different basicity. 

At low basicity, only a small amount of solid solution was formed. The mass fraction of the 

solid solution increased with increasing slag basicity. When the basicity increased to 2.0, about 

half of the slag consisted of solid solution. 

 

 

 

Fig. 5.16 Mass fraction of the solid solution in slags with different basicity 

 

5.3 Discussion 

5.3.1 Na2O in the solid solution 
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Fig. 5.17 Molar ratios of Na2O to P2O5 in the solid solution and in the liquid phase 

 

P2O5 is mainly concentrated in the solid solution with a certain molar ratio of CaO to P2O5. A 

part of the Na2O was distributed in the solid solution. Previous studies [11, 12] clarified that 

Na2O could substitute for CaO in the solid solution and combine with P2O5. To investigate the 

structure of the solid solution containing Na2O, the molar ratio of Na2O to P2O5 in the solid 

solution was calculated under various Na2O contents. This value was also compared with that in 

the liquid phase to evaluate the distribution of Na2O. Figure 5.17 shows that the molar ratios of 

Na2O to P2O5 in the solid solution and in the liquid phase both increased with the increase in the 

Na2O content in slag; however, they exhibited a different behavior. In the low Na2O content 

range, the rate of increase of the molar ratio of Na2O to P2O5 in the solid solution was higher 

than that in the liquid phase, indicating that the added Na2O was preferentially distributed into 

the solid solution. When the Na2O content in slag was further increased, the increasing rate of 

molar ratio of Na2O to P2O5 in the solid solution became small, while that in the liquid phase 

increased sharply. This result indicates that the added Na2O is difficult to continue entering the 
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solid solution, and the majority is distributed in the liquid phase. In the case of slag containing 

15 mass% of Na2O, the molar ratio of Na2O to P2O5 in the solid solution was close to 1. It is 

considered that the Na2O content in the solid solution approached saturation when the Na2O 

content in slag increased to 10 mass% or more. 

 

 

Fig. 5.18 XRD patterns of slags with various Na2O contents 

 

Figure 5.18 shows XRD patterns of slags with various Na2O contents. The intensity of peaks 

associated with solid solution enhanced as the Na2O content increased, which was consistent 

with the increase in the mass fraction of solid solution mentioned above. In addition to the 

C2S-C3P solid solution, a new 2CaO·SiO2-2CaO·Na2O·P2O5 (C2S-C2NP) solid solution was 

observed in each slag. In the slag containing 10 mass% of Na2O, the majority of the solid 

solution consisted of C2S-C2NP. According to the Hume-Rothery rule [13], when the radii of 

two different ions in the solute are similar, both ions in the molten system could be substituted 
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with each other to form solid solution. Because the ionic radius of Na
+
 (0.102 nm) is very close 

to that of Ca
2+

 (0.100 nm), the Ca
2+

 and Na
+
 ions can replace each other in the molten slag 

system [14]. In addition, because the electrostatic field of (PO4
3-

) is larger than that of (SiO4
4-

), 

the Na
+
 cations prefer combining with (PO4

3-
) in Na2O-containing slags [15]. Therefore, it is 

concluded that the added Na2O can substitute CaO in the solid solution, and combine with P2O5 

to form a C2S-C2NP solid solution. As more Na2O was added, a larger amount of C2S-C2NP was 

formed. The replaced CaO was distributed in the liquid phase. This reaction is described by Eq. 

(5.6).  

2CaO∙SiO2-3CaO∙P2O5+Na2O = 2CaO∙SiO2-2CaO∙Na2O∙P2O5+CaO       (5.6) 

5.3.2 Activity coefficient of P2O5 

To better understand the distribution ratio of P2O5 between the solid solution and liquid phase, 

the activity coefficients of P2O5 in the solid solution and in the liquid phase were evaluated. As 

the liquid phase and the precipitated solid solution are in equilibrium, the activities of P2O5 in 

both phases are the same. The distribution ratio of P2O5 is proportional to the activity coefficient 

of P2O5 in each phase, as described in Eq. (5.7), where α is the activity; γ, the activity 

coefficient; and k, the coefficient for the conversion of mass percentage to mol fraction.  

LP2O5=
(%P2O5)

SS

(%P2O5)
L

= 𝑘
𝛼P2O5(SS)×𝛾P2O5(L)

𝛼P2O5(L)×𝛾P2O5(SS)
= 𝑘

𝛾P2O5(L)

𝛾P2O5(SS)
               (5.7) 

The activity of P2O5 in the liquid phase was calculated using a regular solution model because it 

considers the interaction energies between the oxides in slag [16]. In a multi-component regular 

solution, the activity coefficient of component i is expressed by the following equation: 

𝑅𝑇ln 𝛾𝑖 = ∑ 𝛼𝑖𝑗𝑗 𝑋𝑗
2 + ∑ ∑ (𝛼𝑖𝑗 + 𝛼𝑖𝑘𝑘𝑗 − 𝛼𝑗𝑘)𝑋𝑗𝑋𝑘            (5.8) 

where Xi is the molar fraction, and αij is the interaction energy between cations i and j. The 

reference state of the activity in this case is the hypothetical pure liquid that has a regular nature. 
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On the basis of the interaction energy between cations obtained by Ban-ya [17, 18] (listed in 

Table 5.3), the activity coefficient of PO2.5 in regular solution was calculated in the 

CaO-SiO2-Fe2O3-P2O5-Na2O slag system using Eq. (5.9). The conversion from the activity of 

PO2.5 in regular solution to that of P2O5 in the liquid slag is shown in Eqs. (5.10) and (5.11) [17]. 

 

Table 5.3 Interaction energy between cations of major components in steelmaking slag, αij (J) 

      j 

i 
Fe

3+
 Ca

2+
 Si

4+
 P

5+
 Na

+
 

Fe
3+

 - -95810 32640 14640 -74890 

Ca
2+

 -95810 - -133890 -251040 15100 

Si
4+

 32640 -133890 - 83680 -111290 

P
5+

 14640 -251040 83680 - -50210 

Na
+
 -74890 15100 -111290 -50210 - 

 

𝑅𝑇ln 𝛾PO2.5(R.S.) = −251040𝑋CaO
2 + 83680𝑋SiO2

2 + 14640𝑋FeO1.5

2 − 50210𝑋NaO0.5

2 − 33470𝑋CaO ∙

𝑋SiO2
− 140590𝑋CaO ∙ 𝑋FeO1.5

− 301250𝑋CaO ∙ 𝑋NaO0.5
+ 65680𝑋SiO2

∙ 𝑋FeO1.5
+ 144760𝑋SiO2

∙

𝑋NaO0.5
+ 39320𝑋FeO1.5

∙ 𝑋NaO0.5
                                                   (5.9) 

 P2O5 (L) = 2PO2.5 (R.S.)                           (5.10) 

RTln αP2O5(L) = 2RTln αPO2.5(R.S.)+52720-230.706T              (5.11) 

Figure 5.19 shows the change in the activity coefficient of P2O5 in the liquid phase with the 

basicity of the liquid phase. A higher basicity ((mass% CaO)/(mass% SiO2)) of the liquid phase 

led to a lower activity coefficient of P2O5 in the liquid phase. As mentioned above, the mass 

fraction of solid solution increased with the Na2O content in slag, causing a decrease in the CaO 

content in the liquid phase. In the case of high Na2O content, as shown in Fig. 5.19, the basicity 

of the liquid phase was lower, and a higher activity coefficient of P2O5 in the liquid phase was 

performed. Figure 5.20 shows the change in the activity coefficient of P2O5 with the Fe2O3 

content in the liquid phase. The activity coefficient of P2O5 had no dependence on the Fe2O3 
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content in the liquid phase. For the slags with high Na2O content, the Fe2O3 content in the liquid 

phase and the activity coefficient of P2O5 were both higher. 

 

 

Fig. 5.19 Change in the activity coefficient of P2O5 with the basicity of the liquid phase 

 



Chapter 5 

166 

Fig. 5.20 Change in the activity coefficient of P2O5 with the Fe2O3 content in the liquid phase 

 

 

Fig. 5.21 Effect of P2O5 content on the activity coefficient of P2O5 in the solid solution 

 

Because the activities of P2O5 in both phases are the same, the activity coefficient of P2O5 in the 

solid solution was calculated using the activity of P2O5 in the liquid phase obtained by the 

regular solution model. Figure 5.21 shows the change in the activity coefficient of P2O5 in the 

solid solution. The activity coefficient of P2O5 in the solid solution increased with the P2O5 

content in the solid solution. The Na2O content in slag had little influence on the activity 

coefficient of P2O5 in the solid solution. Because the distribution ratio of P2O5 was proportional 

to the activity coefficient of P2O5 in each phase, in the case of high Na2O content, the higher 

activity coefficient of P2O5 in the liquid slag resulted in a higher distribution ratio of P2O5. 

The calculated activity coefficient of P2O5 in the present study was compared with the results 

obtained by other researchers, as shown in Fig. 5.21. Shimauchi et al. [9] and Pahlevani et al. 
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[10] estimated the activity coefficients of P2O5 in the solid solution in the CaO-SiO2-Fe2O3-P2O5 

slag system at 1673 K and in the CaO-SiO2-FeO-P2O5 slag system at 1573 K, respectively. They 

also adopted a regular solution model to calculate the activity of P2O5 via the equilibrium 

between the solid solution and liquid phase. Zhong et al. [19] measured the activity coefficients 

of P2O5 by applying the equilibrium between liquid iron and C2S-C3P solid solution at 1873 K. 

Equation (5.12) [20] was used to calculate the activity of P2O5, and the oxygen partial pressure 

was controlled with a CO-CO2 gas atmosphere. Hasegawa et al. [21, 22] measured the activity 

of P2O5 in slag when slags containing CaO∙SiO2 and C2S-C3P solid solution were equilibrium 

with a Cu-Fe-P liquid alloy. By measuring the equilibrium oxygen partial pressures with the aid 

of a zirconia electrolyte cell, the activities of P2O5 were obtained at 1573 K and 1593 K. Their 

results also show that the activity coefficient of P2O5 in the solid solution increased with the 

P2O5 content; however, the values were different. When applying a regular solution model, the 

calculated activity coefficient of P2O5 was almost of the same order of magnitude. The current 

values were approximately five orders of magnitude greater than those reported by Zhong et al. 

[19] and Hasegawa et al. [22]. 

2[P] + 5[O] = P2O5(l)      ∆𝐺° = −1655480 + 571.0𝑇  J/mol        (5.12) 

 

5.4 Summary 

To increase the efficiency of dephosphorization and to recover P from dephosphorization slag 

by selective leaching, it is necessary to determine the distribution ratios of Na2O and P2O5 

between the solid solution and liquid phase in slags with high P2O5 content. In this study, the 

change in composition and mass fraction of the solid solution with slag composition were 

investigated. The results obtained are summarized below: 
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(1) A linear relationship was found between the distribution ratio of P2O5 and the Na2O content 

in slag; the relationship was independent of P2O5 content. Further addition of Na2O did not 

enrich Na2O in the solid solution, because the Na2O content in the solid solution became 

constant, and a new 2CaO∙SiO2-2CaO∙Na2O∙P2O5 solid solution formed. 

(2) With the increase in P2O5 content in slag, the P2O5 content in the solid solution also 

increased. Na2O addition decreased the P2O5 content in the solid solution, while it increased 

the mass fraction of solid solution in slag, which facilitated P2O5 enrichment.  

(3) The distribution ratios of P2O5 and Na2O both increased with increasing the Fe2O3 content 

in the liquid phase. In the case of high Fe2O3 content, a P2O5-condensed solid solution was 

formed. 

(4) With the increase in slag basicity, the distribution ratio of P2O5 increased significantly, 

while that of Na2O decreased. A higher basicity resulted in a larger mass fraction of the 

solid solution in slag. 

(5) The activity coefficient of P2O5 in the solid solution increased with the P2O5 content in the 

solid solution, which was independent of the Na2O content in slag.  
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6 P recovery from the leachate by precipitation 

 

Chemical precipitation is a widespread approach for phosphate fertilizer production and P 

recovery from wastewater [1, 2]. To recover the dissolved P in the leachate, a process for 

extracting phosphate product by phosphate precipitation was explored. The effects of alkaline 

solution and pH on the P precipitation and the composition of the obtained phosphate product 

were investigated. 

 

6.1 Experimental method 

Based on the above studies, we determined the optimum conditions for selective leaching of P 

from slag. The leachate obtained under the optimum conditions was used to recover P. Table 6.1 

lists the compositions of slags which were leached. These slags were modified by adding 4 

mass% of alkaline oxide (Na2O or K2O) and were cooled in furnace. Then, these slags were 

leached by citric acid (0.1 mol/L) at pH 6 for 120 min. After leaching, the residue was filtered, 

and then the leachate was collected and stored in a beaker with a 2000 mL capacity. The 

concentration of each element was analyzed using inductively coupled plasma atomic emission 

spectroscopy (ICP-AES). 

 

Table 6.1 Compositions of slags which were leached for P recovery (mass%) 

Sample CaO SiO2 Fe2O3 P2O5 MgO K2O Na2O Cooling method 

Slag A 34.5 21.5 29.0 8.0 3.0 4.0 - Furnace 

cooling Slag B 34.5 21.5 29.0 8.0 3.0 - 4.0 

 

Calcium phosphate compounds have little solubility at higher pH [3], and this made it possible 

to precipitate the dissolved P in the leachate via the addition of the Ca(OH)2 or NaOH solution. 

The leachate was treated, via the following procedure, to recover P, as shown in Fig. 6.1. To 
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investigate the effect of alkaline solution, the Ca(OH)2 saturated solution and NaOH solution 

(1.0 mol/L) were added to the leachate to adjust the pH to approximately 11, respectively. To 

investigate the effect of pH, the pH of the leachate were adjusted to 9, 10, 11, and 12, 

respectively, by adding Ca(OH)2 saturated solution. The leachate became muddy with the 

increase in the pH, and some flocculent precipitate formed. Because this precipitate is difficult 

to be separated from the aqueous solution by the conventional filtration, gravity separation was 

adopted in this study. The muddy solution was settled for 24 h at room temperature to make the 

solution separate into two layers. After removal of the upper solution, the flocculent precipitate 

coexisting with a small amount of solution was obtained. Then, the flocculent precipitate with 

little water was dried at 373 K until solid precipitate formed. To remove crystal water and 

obtain a crystalline substance, the obtained precipitate was put in a Pt crucible and further 

calcined at 873 K for 2 h to produce phosphate product. The obtained phosphate product was 

weighted and its composition was analyzed using X-ray diffraction (XRD). To determine the 

contents of each component, a method, as the same as chemical analysis of residue (shown in 

Chapter 3), was adopted. 
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Fig. 6.1 Experimental procedure of abstracting phosphate product from leachate 

 

To determine whether this phosphate product is used as a phosphate fertilizer, the available P 

content of phosphate product was evaluated by solubility tests. The laboratory evaluation of the 

available P content is generally made by determining either water-soluble or citrate-soluble 

P2O5 [4]. Slow-release phosphate fertilizers are often comparatively insoluble in water, but are 

soluble in citrate solutions. We used 2% citric acid as an extractant, a method first employed by 

Wagner [4]. The phosphate product was ground to pass 100 mesh sieves. One gram of sample 

was extracted with 100 mL of 2% citric acid or distilled water in a beaker, and the solution was 

stirred for 30 min at 291 K [5]. After filtration, the concentrations of each element in the 

aqueous solution were analyzed using ICP-AES. 

 

6.2 Experimental results and discussion 

6.2.1 Effect of alkaline solution on P precipitation 
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Fig. 6.2 Image of the leachate after adding Ca(OH)2 solution and settlement 

 

The leachate A obtained by leaching of Slag A was used for the experiment of P recovery. The 

compositions of each element in the leachate are shown in Table 6.1 Owing to selective 

leaching of P from slag, the major ions in the leachate were those of Ca, Si, and P, which were 

the same elements consist of solid solution. The Ca concentration was the highest, reaching 

328.4 mg/L. The P concentration was 65.2 mg/L, which was a little lower than the Si 

concentration. The Fe and Mg concentrations in the leachate were very low compared to other 

elements. The leachate also contains 25.1 mg/L of K. After adding alkaline solution and 

precipitation, the leachate was separated into two layers, as shown in Fig. 6.2. The flocculent 

precipitate was concentrated in the lower layer, and the upper solution became limpid. 
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The concentrations of each element in the upper solution were compared with those in the 

original leachate in Table 6.2. This shows that the concentrations of each element all decreased 

in each case, especially P. Adding Ca(OH)2 solution could decrease the P, Si, and K 

concentrations in the upper solution to lower values. It indicates that P and Si were easily 

precipitated in this case. After precipitation, almost all of the P in the upper solution was 

removed; the P concentration was only 0.24 mg/L. The Ca concentration changed slightly 

because of the addition of Ca(OH)2. In the case of NaOH addition, the P concentration in the 

upper solution decreased to 2.62 mg/L, and the Ca concentration decreased to half because of 

the precipitation of calcium phosphate. This upper solution contains a large amount of Na. 

 

Table 6.2 Concentrations of each element in the leachate and in the upper solution after precipitation 

(mg/L) 

 
Ca Si P Fe Mg Na K 

Leachate A 328.37 73.49 65.16 5.02 4.05 0.78 25.12 

Upper Solution  

(adding Ca(OH)2) 
307.50 49.20 0.24 0.10 1.38 0 19.60 

Upper Solution  

(adding NaOH) 
155.66 61.6 2.62 0.16 0.56 422.72 21.36 

 

Ca2++HPO4
2-

+2H2O=CaHPO4∙2H2O  log K=6.52                   (6.1) 

8Ca2++6PO4
3-

+2H++5H2O=Ca8H2(PO4)
6
∙5H2O  log K=87.59             (6.2) 

3Ca2++2PO4
3-

=Ca3(PO4)
2
  log K=24.58                      (6.3) 

10Ca2++6PO4
3-

+2H2O=Ca10(PO4)
6
(OH)

2
+2H+  log K=62.42             (6.4) 

It is well known that in solutions containing Ca
2+

 and phosphate ions, a number of calcium 

phosphate precipitate such as dicalcium phosphate dihydrate (DCPD, CaHPO4∙2H2O), 

octacalcium phosphate (OCP, Ca8H2(PO4)6∙5H2O), tricalcium phosphate (TCP, Ca3(PO4)2), and 

HAP (Ca10(PO4)3(OH)2), may form depending on the pH and solution composition [6]. At 
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higher pH condition, the predominant phosphate species in the aqueous solution are PO4
3-

 and 

HPO4
2-

 [7]. The precipitation reactions of these calcium phosphates are described in Eqs. 

(6.1)-(6.4). On the basis of thermodynamic data of each species [8-10], as listed in Table 6.3, 

the equilibrium constants of precipitation reactions were calculated. The solubility curves of 

these calcium phosphates in the aqueous solution were calculated at pH 11 using these 

equilibrium constants, as shown in Fig. 6.3. The compositions of the original leachate and upper 

solutions after precipitation were also plotted in this Figure. The observed point for the original 

leachate was located above these solubility curves, indicating that the P concentration in the 

solution would reach saturation when the pH increased to 11. In the case of NaOH addition, the 

observed point for the upper solution was located near the solubility curve of DCPD; in the case 

of Ca(OH)2 addition, it was located between the solubility curves of DCPD and OCP. This 

shows that the precipitated calcium phosphate may consist of DCPD or OCP. Considering the 

thermodynamics, HAP is determined to be the most stable calcium phosphate, and the P 

concentration in the solution can be reduced to a much lower value. However, the precipitation 

of unstable compounds, as precursors, is commonly observed owing to the differences in the 

kinetic condition of nucleation [6]. In many natural environments, DCPD, along with OCP and 

TCP, plays a crucial role as a precursor or intermediate to HAP [11]. Therefore, the P 

concentration in the upper solution is considered to be determined by the solubility of DCPD 

and OCP. 

Table 6.3 Thermodynamic data of each species in the aqueous solution (kJ/mol) 

Species Ca10(PO4)6(OH)2 Ca3(PO4)2 CaHPO4·2H2O Ca8H2(PO4)6·5H2O 

ΔG
0
 -12514.37 -3850.53 -2158.7 -12263.3 

Species (CaO)5(SiO2)6(H2O)5.5 H2O H
+
 Ca

2+
 

ΔG
0
 -9880.31 -237.1 0 -553.07 

Species HSiO3
-
 PO4

3-
 HPO4

2-
 H2PO4

-
 

ΔG
0
 -1015.6 -1025.55 -1094.17 -1135.17 
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Fig. 6.3 Solubility curves for some calcium phosphates and the experimental results at pH 11 

 

Figure 6.4 (A) shows an image of the precipitate when Ca(OH)2 was added. A white powder 

was obtained in this process. Table 6.4 shows the chemical composition of the obtained 

precipitates. These two precipitates mainly consist of CaO and P2O5 but K2O content is very low. 

The precipitate also has SiO2 and Fe2O3 contents of 3−5 mass% and 1.0% mass%, respectively. 

The CaO content in these precipitates are almost the same, reaching approximately 43 mass%. 

In the case of NaOH addition, the obtained precipitate had a higher P2O5 content and lower SiO2 

content. The P2O5 content in this precipitate was about 25 mass%, which was similar with that 

in the solid solution prior to leaching. According to the mass balance calculation, approximately 

25 mass% of the precipitate was determined to be unknown. This constituent was considered to 

be crystal water and organic substance (calcium citrate). 
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Fig. 6.4 Image of the precipitate and phosphate product when Ca(OH)2 was added 

 

Table 6.4 Chemical composition of the obtained precipitates and phosphate products (mass%) 

Sample CaO SiO2 P2O5 Fe2O3 Na2O MgO K2O Others 

Precipitate 
adding Ca(OH)2 41.94 5.42 23.30 1.10 0.03 0.63 0.06 27.52 

adding NaOH 41.87 3.29 24.97 1.17 1.96 0.97 0.11 25.66 

Phosphate 

product 

adding Ca(OH)2 53.53 5.86 28.52 1.40 0.01 0.80 0.10 9.78 

adding NaOH 52.59 3.47 30.38 1.49 2.59 1.22 0.16 8.10 

 

Figure 6.5 shows the XRD patterns of the obtained precipitate when different alkaline solutions 

were added. In the case of Ca(OH)2 addition, no obvious peaks were observed, indicating that 

crystalline substance did not form and this precipitate mainly consists of amorphous phases. In 

the case of NaOH addition, some peaks which were similar with those of silicon−substituted 

calcium hydroxyapatite (Ca5(PO4)2.85(SiO4)0.15(OH)) and HAP (Ca10(PO4)6(OH)2) were observed, 

but not obviously. Amorphous phases still existed. 
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Fig. 6.5 XRD patterns of the obtained precipitates at pH 11 

 

 

Fig. 6.6 XRD patterns of the phosphate products obtained by calcination 

 

After calcination, the white precipitate transformed into a grey phosphate product, as shown in 

Fig. 6.4 (B). The compositions of these phosphate products are also listed in Table 6.4. 

Compared with those of the precipitate, the contents of each constituent all increased because of 
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the removal of the crystal water and the decomposition of the organic substance. The CaO 

content in these phosphate products was more than 50 mass%. The Fe2O3 content was about 1.4 

mass%. About 8 mass% of these products were still unknown. It is considered that this part 

consists of the hydroxyl (OH) which did not remove during heating and the carbide which came 

from the decomposition of the organic substance. In the case of NaOH addition, the P2O5 

content in the phosphate product reached 30.4 mass%, and the SiO2 content was lower. 

Figure 6.6 shows the XRD patterns of the phosphate products obtained by calcination. Obvious 

peaks were observed in each case. The main peaks of these two products are almost identical. 

The peaks were consistent with those of silicon−substituted calcium hydroxyapatite and HAP. 

This shows that, following calcination, the phosphate that was precipitated from the leachate 

finally existed in the form of HAP. As shown in Fig. 6.3, the most stable calcium phosphate is 

HAP. There is also evidence to show that ultimately, any calcium phosphate that is precipitated 

will probably transform into the thermodynamically more stable HAP [12]. 

In summary, the addition of Ca(OH)2 or NaOH solution into the leachate had similar effects on 

phosphate precipitation, and a HAP product was obtained. Adding NaOH solution could 

produce a higher quality of phosphate product (a higher P2O5 content and lower SiO2 content); 

however, some P still existed in the upper solution, indicating that the precipitation of phosphate 

in the leachate was insufficient. The addition of Ca(OH)2 solution not only increased the pH but 

also supplied some Ca
2+

 ions which are involved in the precipitation of calcium phosphate. As 

shown in 6.3, the P concentration in the aqueous solution decreased with the increase in the Ca 

concentration. As a result, almost all of the P was precipitated in this case, which was beneficial 

for the P recovery. In this process, the obtained precipitate or phosphate product has the 

potential to be used as a fertilizer, because they have the same components (CaO and P2O5) as 

phosphate fertilizer and a high enough P2O5 content [13]. 
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6.2.2 Effect of pH on P precipitation 

 

Table 6.5 Concentration of the leachate and the upper solution after precipitation (mg/L) 

Solution Ca Si Fe P Mg Na 

Leachate B 301.01 69.60 6.25 63.03 2.51 35.54 

Upper Solution (pH=9) 230.61 64.33 2.38 4.14 2.00 30.09 

Upper Solution (pH=10) 233.49 56.25 0.32 0.91 1.86 28.99 

Upper Solution (pH=11) 247.13 51.44 0.04 0.24 1.50 28.38 

Upper Solution (pH=12) 295.52 37.69 0.03 0.20 0.37 24.69 

 

The leachate B obtained by leaching of Slag B (shown in Table 6.1) was used to investigate the 

effect of pH on P precipitation. As shown in Table 6.5, the concentrations of each element in 

this leachate were similar with those in the leachate A. The Ca concentration was the highest, 

reaching 301 mg/L. The P and Si concentration were almost the same, more than 60 mg/L. The 

concentrations of other element were lower because of selective leaching of P. Following the 

addition of Ca(OH)2 solution to adjust the pH, the leachate was separated into two layers via 

settling: the upper solution and the precipitate. Table 6.5 lists the compositions of the upper 

solution at various pH conditions. The concentration of each element in the upper solution 

decreased relative to the original leachate. With the increase in the pH of the leachate, the 

concentrations of Si, Fe, and P further decreased because of the precipitation of some substances. 

The Ca concentration in the upper solution increased because of Ca(OH)2 addition. When the 

pH was adjusted to 10, the P concentration varied from 63 mg/L to less than 1 mg/L. The Si 

concentration reduced by approximately half when the pH increased to 12. 
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Fig. 6.7 Solubility curves of calcium phosphates and the experimental results at various pH 

conditions 

 

The solubility curves of calcium phosphates (DCPD, OCP, TCP, and HAP) were calculated 

using Eqs.(6.1)−(6.4) at various pH conditions. Figure 6.7 shows the solubility curves of 

calcium phosphates (the solubility of OCP and HAP was influenced by the pH) and the 

experimental results. With the increase in the Ca concentration, the saturated concentration of P 

in the aqueous solution decreased in each case. In the present study, the solubility of calcium 

phosphate decreases in the order of DCPD, OCP, TCP, and HAP. The Ca and P concentrations 

in the original leachate were lower than those required for HAP precipitation at pH 6, but were 

higher than the saturated concentration of calcium phosphates at higher pH conditions. It was 

thus possible to precipitate P in the leachate via adjusting the pH. After precipitation, the 

observed points for the upper solution were located around the solubility curves of DCPD. At 

pH 11 and 12, they lay between the solubility curves of DCPD and OCP. Therefore, DCPD was 
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considered the major constituent of the precipitate and its solubility determined the Ca and P 

concentrations in the upper solution. 

In the solution rich in Ca
2+

 and silicate ions, CaO-SiO2-H2O gel in the form of 

(CaO)5(SiO2)6(H2O)5.5 generally precipitates in alkaline conditions [14]. The reaction for the 

formation of calcium silicate hydrogel is given by Eq. (6.5) [10]. Its equilibrium constant was 

calculated using the thermodynamic data in Table 6.3.  

 (CaO)
5
(SiO2)

6
(H2O)

5.5
+4H+=5Ca2++6HSiO3

-
+4.5H2O    log K=8.7         (6.5) 

 

 

Fig. 6.8 Solubility curves of calcium silicate hydrogel and the experimental results under different 

pH conditions 

 

Figure 6.8 shows the solubility curves of calcium silicate hydrogel and the experimental results 

under various pH conditions. With the increase in the Ca concentration, the Si concentration in 

the aqueous solution decreased. High pH suppressed dissolution of this gel. The observed point 

for Ca and Si concentrations at pH 9 was located near the solubility line at pH 9, indicating that 
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the solubility of calcium silicate hydrogel determined the Si concentration. As the pH decreased, 

the observed points moved to the solubility line at pH 12. However, the experimental values 

were far higher than the values determined by the solubility of the gel at pH 12. The reason is 

not clear. 

 

Table 6.6 Chemical compositions of the precipitates under various pH conditions (mass%) 

 
CaO SiO2 Fe2O3 P2O5 MgO Na2O Others 

Precipitate (pH=9) 41.39 0.30 1.21 27.29 0.15 0.13 29.52 

Precipitate (pH=10) 40.59 1.58 1.48 25.02 0.17 0.10 31.06 

Precipitate (pH=11) 41.06 3.16 1.51 23.84 0.25 0.10 30.07 

Precipitate (pH=12) 40.15 5.34 1.25 19.68 0.48 0.09 33.02 

 

Table 6.7 Chemical compositions of the phosphate products under various pH conditions (mass%) 

 
CaO SiO2 Fe2O3 P2O5 MgO Na2O Others 

Phosphate product (pH=9) 54.28 0.51 1.65 34.48 0.21 0.26 8.61 

Phosphate product (pH=10) 53.12 2.25 1.95 31.27 0.22 0.26 10.95 

Phosphate product (pH=11) 53.71 3.91 2.00 30.18 0.35 0.24 9.61 

Phosphate product (pH=12) 54.94 5.71 1.73 26.05 0.72 0.15 10.70 

 

A white precipitate was obtained through separation and drying. The chemical compositions of 

the precipitates under various pH conditions were listed in Table 6.6. CaO and P2O5 are the 

major components in these precipitates. The P2O5 content in these precipitates exceed 20 mass%, 

and it increased further with a decrease in the pH. Approximately 30 mass% of the precipitate 

was unknown, which maybe consist of crystal water and organic substances. After calcination, 

the white precipitate changed into a gray phosphate product. Table 6.7 lists the chemical 

compositions of the phosphate products under various pH conditions. Compared with 

precipitate composition in Table 6.6, the contents of each constituent in the phosphate product 

increased. The CaO content was almost identical in each product, approximately 54 mass%. The 

P2O5 content in the product obtained at pH 12 was 26.05 mass%. When the pH decreased to 9, a 
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product containing 34.48 mass% of P2O5 was obtained. With the increase in the pH, the SiO2 

content in the phosphate product increased because of the precipitation of calcium silicate 

hydrogel. At pH 12, the obtained product contains 5.71 mass% of SiO2. The Fe2O3 content in 

each product was less than 2.0 mass%. 

 

 

Fig. 6.9 XRD patterns of the phosphate products under various pH conditions 

 

Figure 6.9 shows the XRD patterns of the phosphate products under various pH conditions. 

Similar peaks associated with hydroxylapatite (HAP) and silicon substituted calcium 

hydroxylapatite were observed in each product, indicating that the same substance was formed 

after calcination of the precipitates. As discussed above, HAP was the most stable calcium 

phosphate. The precipitation of phosphate from leachate depended on nucleation and growth [6]. 

The precipitation kinetics of DCPD was fast and DCPD precipitated instead of HAP, which 
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determined the P concentration in the upper solution. Through calcination, DCPD contained in 

the precipitate was transformed to thermodynamically stable HAP [12].  

In the solubility test, as shown in Table 6.8, the phosphate product obtained at pH 11 was 

difficult to dissolve in water. The dissolution ratio of P was only 0.004, indicating that these P 

was poorly water-soluble. In the 2% citric acid solution, almost all of the phosphate product was 

dissolved. The dissolution ratio of P reached 0.971, indicating that these P was citrate-soluble 

and available in the soil. Therefore, the phosphate product obtained had a high content of 

citrate-soluble P2O5 and could be used as a fertilizer. 

 

Table 6.8 Dissolution ratio of each element from the phosphate product obtained at pH 11 in 

different solutions 

Element 

Solvent  
Ca P Si Fe Mg Na 

Distilled water 0.045 0.004 0.225 0 0.170 0.158 

2% citric acid 0.994 0.971 1.000 0.904 0.947 0.917 

 

Table 6.9 Precipitation ratio of P from leachate and total recovery ratio of P from slag in this process 

 Precipitation at various pH condition 

pH=9 pH=10 pH=11 pH=12 

Dissolution Ratio (pH=6) 0.769 

Precipitation Ratio 0.879 0.950 0.972 0.988 

Total Recovery Ratio 0.676 0.731 0.748 0.760 

 

The precipitation ratio of P in the leachate (𝑅precipitation), and the total recovery ratio of P from 

the modified steelmaking slag (𝑅total) via selective leaching and precipitation were calculated 

using Eqs. (6.6) and (6.7), where m is the mass of precipitate obtained (g), 𝑤P2O5
 is the mass 

ratio of P2O5 in the precipitate, M is the molar mass (g/mol), V is the volume of the original 

leachate (L), CP is the P concentration in the original leachate (g/L), and 𝑅dissolution
P  is the 

dissolution ratio of P from slag. As shown in Table 6.9, most of the P in the leachate was 
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concentrated in the precipitate after precipitation. The precipitation ratio of P in the leachate 

increased from 87.9% to 98.8% when the pH changed from 9 to 12. Figure 6.10 shows the 

change in the composition of phosphate product and the precipitation ratio of P with pH. With 

the increase in the pH, the precipitation ratio of P in the leachate increased, while the quality of 

the obtained phosphate product decreased because the P2O5 content in it decreased and the SiO2 

content increased. The dissolution ratio of P from the slag with 4 mass% of Na2O was 76.9% in 

this case. Most of the P in the steelmaking slag was thus recovered in the form of phosphate 

product. The total recovery ratio of P from slag exceeded 73% when the pH exceeded 10.  

𝑅precipitation =
𝑚∙𝑤P2O5 ∙2MP

𝑉∙𝐶P∙MP2O5

                           (6.6) 

𝑅total = 𝑅dissolution
P ∙ 𝑅precipitation                        (6.7) 

 

 

Fig. 6.10 Change in the composition of phosphate product and the precipitation ratio of P with pH 

 

6.3 Overall process outline 



Chapter 6 

187 

 

Fig. 6.11 A process for the comprehensive utilization of slag with high P2O5 content 

 

In this study, a process for the comprehensive utilization of slag with high P2O5 content and 

waste-free steelmaking was proposed, which is outlined in Fig. 6.11. During a conventional 

ironmaking process, hot metal with high P content will be generated because of the reduction of 

high-P iron ores. First, it is dephosphorized in a converter. During this process, alkaline oxide 

(Na2O or K2O) is added as a flux to increase the phosphate capacity of slag [15]. Following 
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dephosphorization, the hot metal is decarburized with a smaller amount of slag, and molten steel 

is produced. The slag with high P2O5 content is oxidized to transform into a Fe2O3-containing 

slag. Then, this slag was cooled slowly, and treated via selective leaching. The P in steelmaking 

slag is dissolved and concentrated in the leachate. The leaching residue and decarburization slag, 

with a lower P2O5 content and higher Fe2O3 content can be returned to the dephosphorization 

process. The soluble phosphate in the leachate is precipitated in the form of calcium phosphate, 

which can be used as a fertilizer. No extra slag is discharged during this steelmaking process. 

 

6.4 Summary 

Following selective leaching of P from slag, to recover the dissolved P in the leachate, a process 

for extracting phosphate product by phosphate precipitation was explored. The effects of 

alkaline solution and pH on the P precipitation and the composition of the obtained product 

were investigated. The results obtained are summarized below: 

(1) When the pH of the leachate increased by the addition of Ca(OH)2 or NaOH solution, the 

dissolved P in the leachate precipitated, and the P concentration in the upper solution 

decreased to a low value. Through separation and calcination, a HAP product, which mainly 

consists of CaO and P2O5, was obtained. 

(2) Adding Ca(OH)2 or NaOH solution into the leachate had similar effects on phosphate 

precipitation. The P2O5 content in these phosphate products exceeded 28.0 mass%. 

(3) With the increase in the pH of the leachate, the precipitation ratio of P in the leachate 

increased, while the P2O5 content in the obtained phosphate product decreased and the SiO2 

content increased. Through selective leaching and precipitation, approximately 70% of the P 

in steelmaking slag was recovered in the form of the phosphate product in this process.  



Chapter 6 

189 

(4) Most of the P in the obtained phosphate product was citrate-soluble and available in the soil, 

indicating that this phosphate product has the potential to be used as a phosphate fertilizer. 

On the basis of this study, a process for the comprehensive utilization of high-P iron ores, 

and waste-free steelmaking, was proposed. 
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7 Conclusions and future works 

 

7.1 Conclusions 

In order to separate and recover P from steelmaking slag with high P2O5 content, selective 

leaching of P from slag and P precipitation in the leachate was adopted in this study. The 

dissolution behavior of the P-condensed solid solution and the modified slags with Na2O or K2O 

addition, the distribution of P2O5 and Na2O between the solid solution and liquid phase in slag, 

and P recovery from the leachate via precipitation were investigated in this thesis. The 

conclusions of this study are as follows: 

7.1.1 Conclusions of the dissolution of solid solution 

To promote the dissolution of P, the effects of acid (leaching agent), Na2SiO3 modification, and 

pH on the dissolution behavior of the C2S-C3P sample in the aqueous solution were 

investigated. 

Firstly, it was determined that when nitric acid was used as leaching agent, the dissolution ratio 

of P was not high at pH 7 because of phosphate precipitation. When oxalic acid or citric acid 

was used as leaching agent, Ca
2+

 ions were removed by the formation of CaC2O4 precipitate or 

CaC6H5O7
-
 complex, respectively. Phosphate precipitation in the aqueous solution was 

suppressed, and thus the dissolution ratio of P from the C2S-C3P sample increased significantly. 

Secondly, when the C2S-C3P sample was modified by adding Na2SiO3 at high temperatures, the 

solid solution containing Na2O was formed. A 2CaO·SiO2-2CaO·Na2O·P2O5 phase was 

detected by XRD analysis, which indicated that Na2O substituted for the CaO in C3P. By 

Na2SiO3 modification, the dissolution of P in the oxalic and citric solutions was promoted. With 

an increase in the Na2SiO3 content, the dissolution ratio of P increased. As the acid consumption 

to keep pH was increased by the Na2SiO3 modification, the solid solution of 
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2CaO·SiO2-2CaO·Na2O·P2O5 would have better water solubility than C2S-C3P. However, at pH 

7, the dissolution ratio of P from the modified solid solution containing about 20 mass% of 

Na2SiO3 reached only 43.9% in the oxalic solution. 

Finally, we found that as the pH decreased, the dissolution ratio of P significantly increased in 

the citric solution. At pH 5, the dissolution ratio of P from the modified solid solution 

containing about 20 mass% of Na2SiO3 reached 85.7%. However, in the oxalic solution, the 

precipitated CaC2O4 prevented the further dissolution of P by decreasing the pH; the dissolution 

ratio was not high enough to extract P from slag. Therefore, citric acid was an optimal leaching 

agent for extracting P from solid solution at pH 5. 

7.1.2 Conclusions of the dissolution of slag with high P2O5 content 

To achieve selective leaching of P from slag with high P2O5 content, the effects of the cooling 

rate of molten slag, Na2O or K2O content, pH, and the valency of Fe in slag on the dissolution 

behavior of the modified slag were investigated. 

Firstly, it was found that decreasing cooling rate promoted the enrichment of P2O5 in the solid 

solution and the formation of magnesioferrite phase. Compared to the quenched slag, the 

furnace-cooled slag exhibited a higher dissolution ratio of P and a lower dissolution ratio of Fe, 

indicating that slow cooling was beneficial for selective leaching of solid solution from the 

modified slag. 

Secondly, with the increase in the Na2O or K2O content in slag, the mass fraction of the solid 

solution in slag increased. Na2O and K2O addition had the same effect on promoting dissolution 

of the solid solution from slag, and thus higher dissolution ratios of Ca, Si, and P was obtained. 

A further addition of Na2O or K2O resulted in a higher dissolution ratio of P at pH 6. When the 
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Na2O or K2O content in slag exceeded 4 mass%, the majority of the solid solution was dissolved, 

and other phases remained in the residue, showing a better selective leaching of P.  

As the pH decreased, the dissolution of the modified slag was promoted, resulting in higher 

dissolution ratios of each element. At pH 7, further increase in the K2O content in slag did not 

significantly increase the dissolution ratio of P because of phosphate precipitation. The 

dissolution ratio of P increased significantly when the pH decreased from 7 to 5. Further 

decrease in the pH caused little improvement in P dissolution, and resulted in dissolution of 

large amounts of Fe. When the pH was controlled between 5 and 6, most of the solid solution 

was dissolved without a large dissolution of other phases. 

The P2O5 content in the solid solution of the slag containing Fe2O3 was higher compared to that 

of the slag containing FeO, while the mass fraction of solid solution was lower. When the FeO 

in the slag changed to Fe2O3, the dissolution ratio of P increased significantly at pH 6, and the 

dissolution of Si and Fe was suppressed. Oxidizing slag was necessary to achieve selective 

leaching of P from the modified slag. 

Finally, after leaching, the P2O5 content in the residue decreased compared to the original slag, 

and the Fe2O3 content increased correspondingly. Increasing the Na2O or K2O content in the 

slag and decreasing the pH could further decrease the P2O5 content in the residue. Due to the 

dissolution and separation of the P-concentrated phase from slag, the residue had the potential 

for recycling within the ironmaking and steelmaking process. 

7.1.3 Conclusions of the distribution of P2O5 and Na2O 

To increase the efficiency of dephosphorization and to recover P from dephosphorization slag 

by selective leaching, it is necessary to determine the distribution ratios of Na2O and P2O5 

between the solid solution and liquid phase in slags with high P2O5 content. In this study, the 
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change in composition and mass fraction of the solid solution with slag composition were 

investigated.  

Firstly, a linear relationship was found between the distribution ratio of P2O5 and the Na2O 

content in slag; the relationship was independent of P2O5 content. Further addition of Na2O did 

not enrich Na2O in the solid solution, because the Na2O content in the solid solution became 

constant, and a new 2CaO∙SiO2-2CaO∙Na2O∙P2O5 solid solution formed. With the increase in 

P2O5 content in slag, the P2O5 content in the solid solution also increased. Na2O addition 

decreased the P2O5 content in the solid solution, while it increased the mass fraction of solid 

solution in slag, which facilitated P2O5 enrichment.  

Secondly, it was determined that the distribution ratios of P2O5 and Na2O both increased with 

increasing the Fe2O3 content in the liquid phase. In the case of high Fe2O3 content, a 

P2O5-condensed solid solution was formed. With the increase in slag basicity, the distribution 

ratio of P2O5 increased significantly, while that of Na2O decreased. A higher basicity resulted in 

a larger mass fraction of the solid solution in slag. 

Finally, the activity coefficient of P2O5 in the liquid phase was calculated using regular solution 

model. It was determined that the activity coefficient of P2O5 in the solid solution increased with 

the P2O5 content in the solid solution, which was independent of the Na2O content in slag. 

7.1.4 Conclusions of P recovery from the leachate 

Following selective leaching of P from slag, a process for extracting phosphate product in the 

leachate by phosphate precipitation was explored. The effects of alkaline solution and pH on the 

P precipitation and the composition of the obtained product were investigated. 

Firstly, it was found that when the pH of the leachate increased by the addition of Ca(OH)2 or 

NaOH solution, the dissolved P in the leachate precipitated, and the P concentration in the upper 
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solution decreased to a low value. Through separation and calcination, a HAP product, which 

mainly consists of CaO and P2O5, was obtained. 

Secondly, adding Ca(OH)2 or NaOH solution into the leachate had similar effects on phosphate 

precipitation. The P2O5 content in these phosphate products exceeded 28.0 mass%. With the 

increase in the pH of the leachate, the precipitation ratio of P in the leachate increased, while the 

P2O5 content in the obtained phosphate product decreased and the SiO2 content increased.  

Finally, it was determined that through selective leaching and precipitation, approximately 70% 

of the P in steelmaking slag was recovered in the form of the phosphate product in this process. 

Most of the P in the obtained phosphate product was citrate-soluble and available in the soil, 

indicating that this phosphate product has the potential to be used as a phosphate fertilizer. On 

the basis of this study, a process for the comprehensive utilization of high-P iron ores, and 

waste-free steelmaking, was proposed. 

 

7.2 Future works 

(1) Efficient dephosphorization of hot metal with high P content 

In the case of the hot metal with high P content, a highly efficient dephosphorization 

process with less slag was essential to meet the demand for low P steel and to ease the 

environmental burden. This is also the key point of utilization of high-P iron ore. It has been 

reported Na2O addition to steelmaking slag significantly increased the distribution ratio of P 

between the slag and hot metal and the phosphate capacity of slag. However, they did not 

consider the existence of C2S-C3P solid solution in steelmaking slag. Therefore, in the case 

of Na2O addition, it was necessary to investigate the distribution ratio of P between hot 

metal, liquid phase, and solid solution in steelmaking slag. Meanwhile, we also need to 
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promote the enrichment of P2O5 in the solid solution, which was beneficial for the selective 

leaching of P from slag. 

(2) Effect of slag composition on dissolution of P from slag 

In this thesis, we had determined that effects of treatment condition of slag, leaching 

condition, and modification on the dissolution behavior of P from steelmaking slag. To 

determine whether selective leaching can be achieved in a wide range of slag composition, 

it was necessary to study the effect of slag composition on the dissolution behavior of P 

under the above mentioned conditions. It is well known that the FetO content and slag 

basicity has a significant influence on the dephosphorization of hot metal; the P2O5 content 

in slag varied with the dephosphorization process and the P content in hot metal. 

Consequently, the effects of the P2O5 content, the Fe2O3 content, and slag basicity on the 

dissolution behavior of the modified slag should be further investigated. 

In addition, we will also investigate the saturation concentration of P in the aqueous 

solution and obtain the optimum mass ratio of slag to water during leaching. 

(3) Dissolution kinetics of slag 

To enhance productivity, the dissolution kinetics of slag is necessary to be investigated 

systematically. The effects of particle size, temperature, and stirring intensity on the 

dissolution behavior of slag will be studied. 

(4) Treatment of the leachate after P separation and Re-produce of acid 

To recover P by precipitation, the pH of the leachate was increased to a high level. After P 

precipitation and separation, how to deal with these upper solutions with high pH will be a 

problem. In addition, organic acid (citric acid) was used as a leaching agent in this process. 

Because its price is high, we should consider how to re-produce and recycle them to reduce 

production cost. The upper solution mainly consists of Ca, Si, Na, and citrate ions. Sulfuric 
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acid (H2SO4) is an important by-product in industry. If sulfuric acid is added to the upper 

solution, the following reactions (7.1) are possible to occur: 

CaC6H5O7
-

+ HSiO3
-

+ H2SO4 = H+ + C6H5O7
3-

+ H2SiO3
0 + CaSO4        (7.1) 

The added H
+
 from sulfuric acid will substitute for the Ca in the citrate complex 

(CaC6H5O7
-
), and the insoluble CaSO4 will precipitate. After filtration, this solution is 

condensed by using the exhaust heat in iron and steel industry, and thus a citric acid 

solution is produced and it can be used as the leaching agent to dissolve slag. Therefore, it is 

necessary to explore this kind of process to recycle organic acid during P recovery from 

steelmaking slag.
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