

Development of Serial Magnetic Tunnel Junction Sensors for High Signal-to-Noise Ratio in Nondestructive Eddy Current Testing

著者	JIN ZHE NHU
学位授与機関	Tohoku University
学位授与番号	甲第18096号
URL	http://hdl.handle.net/10097/00125214

ジン ジャンフ	
全 · 珍虎	
東北大学大学院工学研究科(博士課程)応用物理 専攻	
骨電流非破壊探傷試験における高信号ノイズ比のための直列強	磁性
昇発	
È查 東北大学教授 安藤 康夫 東北大学教授 佐久間 昭J	E
東北大学教授 水上 成美 東北大学准教授 大兼 幹彦	T.
シ会 戸 泊 閉 三	ジン ジャンフ 金 珍虎 東北大学大学院工学研究科(博士課程)応用物理 専攻 渦電流非破壊探傷試験における高信号ノイズ比のための直列強 開発 主査 東北大学教授 安藤 康夫 東北大学教授 佐久間 昭正 東北大学教授 水上 成美 東北大学准教授 大兼 幹彦

論文内容要約

Development of serial magnetic tunnel junction sensors for high signal-to-noise ratio in nondestructive eddy current testing

[Introduction and purpose]

Magnetic tunnel junctions (MTJs) are used as innovative spintronic devices such as highly sensitive magnetic sensors. MTJ-based magnetic sensors enable us to detect small defects by nondestructive eddy current testing (ECT) owing to their frequency independent sensitivity and small size of the devices. In particular, a serial MTJs sensor can provide excellent detectivity for detecting a weak variation in magnetic field from sub-millimeter sized surface cracks. In this study, I aimed to show that the MTJ sensors are greatly useful for the ECT by carrying out the following research contents.

- 1. Fabrication of a single MTJ device with excellent resistance response to external field
- 2. Design of MTJ sensors and excitation coils to realize effective sensing and high spatial resolution
- 3. Characterization and optimization of serial MTJ sensors to obtain high signal-to-noise ratio
- 4. Estimation of the size of surface cracks by developed serial MTJ sensors

[Experimental results]

Optimization of a single MTJ for ECT application (Chapter 3)

In order to realize the ECT with high sensitivity and high reliability, a single MTJ device with high sensitivity and small nonlinearity is required. I fabricated single MTJ elements with various aspect ratios and areas and investigated their magneto-resistive properties. A single MTJ with an area of 15 μ m ×60 μ m was the most suitable MTJ element due to its high sensitivity (2.4 %/Oe) and small nonlinearity (4.3% FS) in a wide range of magnetic field (±33 Oe).

Characterization of serial MTJ sensors with various configurations (Chapter 4)

By analyzing finite element method (FEM) simulation, I found by the simulation that a serial MTJ sensor can effectively detect a variation of a perpendicular component of magnetic field from surface cracks with high spatial resolution, when it is patterned into a compact area (100 μ m width; 300 μ m height). Furthermore, I fabricated five types of serial MTJ sensors with various numbers of MTJs (*N*=4, 16, 28, 40, and 52) arranged in 1, 4, 7, 10, and 13 rows. I found that high sensitivity can be obtained by increasing number of serial MTJ element *N* due to accumulated effect. I also determined an applied current of 0.1 mA to obtain a high sensitivity in serial MTJ sensors.

Detection of surface cracks by probes with fabricated MTJ sensors (Chapter 5)

I investigated the performance of fabricated serial MTJ sensors for the ECT. Although all of the sensors detected sub-millimeter sized surface cracks, a sensor with 28 serial MTJs in 7 rows exhibited the highest signal to noise ratio (SNR). By using this sensor, the high SNR of 116 dB was obtained in an inspection of a small crack with 0.1 mm width and 0.1 mm depth.

Estimation of surface crack dimensional characteristics by an ECT probe with a developed serial MTJs sensor (Chapter 6)

I measured magnetic field from small surface cracks with various dimensions by a developed serial MTJ sensor (N = 28) to determine the size of cracks. The width and depth of cracks were successfully estimated by analysis of the ECT signals.

[Achievement]

This study demonstrated that the developed serial MTJ sensors can detect sub-millimeter sized surface clacks of metallic specimens with high SNRs and high spatial resolution in the ECT. This technology will be used as a safety inspection method in the construction and airplane manufacturing industries. In addition, the knowledge obtained in this study can greatly contribute to the progress of applied physics field.