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Abstract 
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Abstract 

Alzheimer’s disease (AD) is the most common form of dementia, with histopathological 

hallmarks of amyloid plaques and neurofibrillary tangles. The number of dementia cases is 

increasing every year worldwide, leading to an increasing cost of care for dementia patients. Early 

detection of the disease will increase the success rate of treating dementia or slow down the rate 

of dementia. Although many institutions have tried to develop amyloid and tau-targeting PET 

radiotracers to assist diagnosis of AD, FDA has only approved three amyloid radiotracers and no 

tau radiotracer thus far. Conventional radiotracer development process relies on in vitro data and 

preclinical results may not translate well to clinical performance, due to the lack of consideration 

to the possible in vivo kinetics of the radiotracers. Thus, we proposed to develop a screening 

methodology based on biomathematical modelling with mostly in silico inputs to support high-

throughput screening of amyloid and tau radiotracers in the early phases of tracer development. 

A biomathematical model was developed for predicting the in vivo standardised uptake values 

ratios (SUVRs) of amyloid radiotracers using kinetic modelling. A simplified one-tissue-

compartment model was chosen to describe the in vivo behaviour of a PET radiotracer. The key 

physicochemical and pharmacological parameters that are linked to the in vivo uptake, washout 

and specific binding of the radiotracers are identified and determined. An in silico model was 

proposed to predict the free fractions in tissue and plasma to support high-throughput screening 

of compounds by reducing the number of long, tedious experiments. The final amyloid 

biomathematical model was validated using clinically-applied amyloid radiotracers. The 

predicted kinetic parameters correlated well with clinically-observed values, hence showing the 

feasibility of the model in predicting SUVR of amyloid radiotracers. For comparison and decision-

making in moving candidate radiotracers to clinical applications, a screening methodology was 

proposed based on the model with noise simulation and population variation, and a common index 

– clinical usefulness index (CUI). The CUI ranking of clinically-applied radiotracers coincided 

with clinical comparison results, hence supporting the use of the screening methodology. 

The feasibility of extending the amyloid biomathematical screening methodology for screening 

tau radiotracers was evaluated by comparing predicted kinetic parameters and CUI results of tau 

radiotracers with clinical results. Despite the greater complexity of tau radiotracers, the screening 

methodology showed potential in evaluating the clinical usefulness of tau radiotracers. 
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compartment 

M 

KD.NS Dissociation constant of radiotracer in NSB compartment M 

KD.τ Dissociation constant of radiotracer in specific tau binding 

compartment 

M 

koff Dissociation rate constant min-1 

Kon Association rate constant M.min-1  

LogD Logarithmic of Distribution coefficient (D) unitless 

LogP Logarithmic of Partition coefficient (P) unitless 

LogP+S / 

LogD+S 
LogP calculated with Simulations Plus unitless 

MiLogP Molinspiration LogP unitless 

MLogP Moriguchi LogP unitless 

NPV Negative predictive value unitless 

P Partition coefficient unitless 

P  Permeability cm/min 

PPV Positive Predictive Value unitless 

PS Permeability-surface area product cm3/min/g 

r1 Association rate constant for non-specific binding in brain 

tissue 

M-1min-1 

R2 Coefficient of determination unitless 

r2 Dissociation rate constant for non-specific binding in brain 

tissue 

min-1 

r3 Association rate constant for specific binding to Aβ lesions M-1min-1 

r4 Dissociation rate constant for specific binding to Aβ lesions min-1 

r5 Association rate constant for specific binding to τ lesions M-1min-1 

r6 Dissociation rate constant for specific binding to τ lesions min-1 



 Nomenclature 
 

xvi 

 

Rtran Rate constant mediating transfer across the blood–brain barrier mL.min-1cm-3 

S Capillary surface area cm2/g of brain 

SE Standard Error unitless 

Sn Standard deviation of the distribution of errors unitless 

Sr SUVR ratio unitless 

SUV Standardised uptake value varies  

SUVR Standardised uptake values ratio unitless 

TPSA Topological surface area Å2 

Vaq_P Apparent aqueous volume in plasma solvent/mL of 

plasma 

Vaq_T Apparent aqueous volume in tissue solvent/mL of tissue 

VT Volume of distribution mL.cm-3 

Vx McGowan volume cm3/mol/100 or 

Å3/molecule 

α Significant Level % 

μ Linear attenuation coefficient cm-1 

σpooled Pooled standard deviation varies 

 

*Molar (M) = moles per liter (mol/L), due to small amount used in measurements, nano-Molar (nM) is 

commonly applied.  
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Chapter 1  

Introduction 

Biomedical imaging techniques such as positron emission tomography (PET) and single photon 

emission computed tomography (SPECT) have been applied in drug development, diagnosis and 

treatment of various diseases. However, the diagnosis of diseases using PET or SPECT is limited 

by the availability of radiopharmaceutical agents or radiotracers. 

 

This chapter provides an overview of molecular imaging and radiotracer development in the 

diagnosis of dementia, particularly Alzheimer’s disease (AD). The motivation and focus of this 

PhD project will be explained, as well as the structure of this thesis. 

1.1 Molecular Imaging 

Since the 1960s, biomedical imaging has been applied to provide structural/anatomical or 

physiological/molecular information in animals and human in vivo. These imaging techniques 

rely on the detection of electromagnetic waves, such as X-rays in computed tomography (CT), 

radio-waves in magnetic resonance imaging (MRI), visible light in optical imaging and gamma 

rays in PET and SPECT, and the detection of mechanical waves such as sound waves in ultrasound 

(US). CT, structural MRI (sMRI) and ultrasound have high spatial resolution and are commonly 

used to provide in vivo structural information. Molecular imaging, on the other hand, provides 

non-invasive, in vivo images of the biochemical or functional processes in the living body at the 

molecular and cellular level. Molecular imaging technologies include optical imaging, functional 

MRI (fMRI), ultrasound with microbubbles, PET and SPECT. Molecular imaging modalities have 

poorer spatial resolution and hence are often used with structural imaging techniques in 

complementary to each other (Figure 1.1). For example, sMRI provides structural information at 

high resolution, while PET provides biological information with a radiolabeled chemical 

compound in a hybrid PET-MR scanner.  

 

Molecular imaging can measure the temporal and spatial distributions of a molecular probe, which 

can reflect a biological process or target of interest. PET and SPECT rely on the use of a 
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radiopharmaceutical probe or radiotracer. A radiotracer is a chemical compound in which one or 

more atoms are replaced with a radioisotope and the detection of its decaying radionuclide allows 

the tracking of its location. During PET imaging, the radiotracer is injected intravenously into the 

subject and gamma rays emitted from the radiotracer within the body are detected by dedicated 

gamma detectors in a PET or SPECT scanner. The ability to detect the radiotracer has allowed 

the use of PET or SPECT in drug development and the diagnosis of various diseases. During drug 

development, the candidate drugs are radiolabeled with an isotope, with little or no change in the 

basic structure of the drug. Biochemical changes in the drugs, in terms of absorption, distribution, 

metabolism and excretion can be observed and evaluated quantitatively from the dynamic or static 

PET/SPECT images.  

 
Figure 1.1: Molecular sensitivity and spatial resolution of various imaging modalities: computed 

tomography (CT), magnetic resonance imaging (MRI), ultrasound, single-photon emission computed 

tomography (SPECT), positron emission tomography (PET) and optical imaging.  

 

Diagnostic radiotracers are radiolabeled chemical compounds developed to measure a biological 

function within the body (e.g. blood flow, metabolism) or to measure the concentration and 

distribution of certain proteins or receptors of interest (e.g. cancer cells, brain receptors). 

[18F]FDG (fluorodeoxyglucose), a radiolabeled analogue of glucose, is an example of a 

commonly-applied diagnostic radiotracer that is used to measure glucose metabolism or uptake 

of glucose within the body. However, unlike glucose, [18F]FDG is missing a hydroxyl group, 

which prevented it from being further metabolised in the cells. Therefore, it accumulates in tissues 
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with energy requirement. For example, malignant tumour cells have higher energy consumption 

compared to normal tissues, and hence [18F]FDG can be used in the diagnosis of cancer. Another 

example of a diagnostic radiotracer developed to bind to a specific target is [11C]PIB (Pittsburgh 

compound B), which binds to fibrillary amyloid plaques. Amyloid plaque is a pathological 

hallmark of Alzheimer’s disease (AD) and hence, [11C]PIB can be used to diagnose subjects, who 

can benefit from anti-Amyloid-beta (Aβ) treatment.  

1.2 Radiotracer Development 

The development of a new drug or novel radiotracer is a long, tedious and expensive process, 

typically taking about 10-15 years [Sharma et al., 2010] and 8-10 years [Agdeppa et al., 2009], 

and cost approximately USD800 million and USD150 million respectively (Figure 1.2). 

Thousands of chemical compounds may be screened, but only a few get selected for clinical trials, 

with only one compound making all the way through regulatory approval (Figure 1.2).  

 
Figure 1.2: Conventional radiotracer development process.  

 

The conventional process of developing a radiotracer (Figure 1.2) starts with identifying the target 

of interest, after which a large database of chemicals compounds are screened to determine 

potential chemical structures that can bind to the target of interest. The synthesis and radiolabeling 

of the candidate chemical compounds are designed and optimized to obtain high chemical yield 

while minimizing synthesis time and effort, and radioactive exposure to the radiochemists. In 

vitro assessments are performed iteratively to determine the important parameters of the candidate 
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radiotracers. Preclinical or animal testing are then followed through to determine the 

pharmacokinetics and pharmacodynamics of the radiotracer or drug in animals. Typically, in vitro 

results are first assessed, from which candidate compounds showing good results get selected for 

preclinical studies to minimize time and animal sacrifices. 

 

Pharmacokinetics (PK) is the study of what the body does to the drug or radiotracer in terms of 

absorption, distribution, metabolism and excretion (ADME) as well as the toxicity and efficacy 

of the drug/radiotracer. Pharmacodynamics (PD) is the study of what the drug does to the body 

in terms of dose and effect. Biodistribution studies of the drug or radiotracer are important for 

evaluating the specific and non-specific binding of the drug or radiotracer to the target and non-

target sites. In vitro assessments and preclinical testing are carried out iteratively until a few lead 

compounds are identified for further evaluation. In the case of developing a radiotracer, the 

feasibility and ease of radiolabeling and synthesising the compound are also considered during 

the development process (Figure 1.2). The procedures of radiolabeling and synthesising are 

optimized to reduce unnecessary radioactive exposure to radiochemist and to increase the yield 

of the radiotracer. 

 

Lead compounds showing successful in vitro and/or preclinical results are selected and filed for 

approval for clinical studies. In drug development, phase I is conducted with a small group of 

healthy subjects (20~100) to evaluate safety and dosage and to identify any side effects. Phase II 

is carried out in a larger group of subjects (100~300), including patients to determine the efficacy 

of the drug and to further evaluate the safety of the drug or radiotracer. Phase III is carried in a 

large group of subjects (300~3000), including both healthy subjects and patients to evaluate the 

safety, efficacy and effectiveness of the drug or radiotracer. The use of PET and SPECT for 

evaluating the uptake and binding of the drug/radiotracer in vivo has allowed smaller subject 

groups to be evaluated in each phase, hence speeding up the development process. 

 

However, poor bench-to-bedside translation often results due to the differences between in vitro 

and in vivo conditions. Similarly, animal models, especially rodents, are often poor predictors of 

human physiology and treatment response and have been reported to be incorrect in 

approximately one out of three cases [Garner et al., 2006]. Although larger animals (e.g. pigs and 

primates) showed closer physiology to that of human, they are still in-prefect human models and 

are more costly for high-throughput screening compared to rodents. These issues lead to high 

attrition rates in drug and radiotracer development. 
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To address these issue, the Food and Drug Administration (FDA, USA) had initiated a concept 

known as “Microdosing” using PET or SPECT imaging in 2006. In microdosing, a small group 

of healthy subjects (<10) is given a dose of no greater than 100 μg (for small molecules) or 1/100 

of the No Observed Adverse Effect Level (NOAEL), whichever is the lower [Burt et al., 2016]. 

Preclinical testing is still required but the number of animals required for clinical approval is 

reduced, hence reducing the cost. Due to the low exposure of the drug or radiotracer, no gross 

effect, therapeutic effect, toxic effect or high radiation are expected in the subjects. However, 

microdosing cannot be used for therapeutic or diagnostic decision making or for safety or efficacy 

studies as the results may not be linearly related to full dose studies [Burt et al., 2016]. 

Nevertheless, the results can still be used to support candidate selection and dosage identification 

in Phase I studies. 

 

The introduction of microdosing has helped to speed up the clinical Phase I studies but phases 

from compound screening to lead optimisation (Figure 1.2) still continue in the same laborious 

fashion. Development guides, such as the Rule of Five (Ro5) [Lipinski et al., 2004] provide a list 

of physicochemical parameters and their associated range of values for increasing the chances of 

developing successful drugs (e.g. molecular weight < 500 kDa, lipophilicity < 5). However, a 

compound that meets all the criteria of Ro5 does not guarantee that the compound will be 

successful [Lipinski et al., 2004]. Computational models have been introduced using different 

databases of chemical compounds to assist the development of new compounds (section 3.4). 

However, no standards have been established and only models of known targets are available. 

1.3 Motivation 

Dementia is a group of brain diseases, with 100 different conditions involving impairments of 

cognition, function & memory. Dementia patients show clinical symptoms such as memory loss, 

confusion in time and place etc., and subsequent decline in functional capabilities, such as the 

ability to eat by themselves or to change their clothes. Among the various types of dementia, 

Alzheimer’s disease (AD) is the most common, accounting for 60~70% of all dementia cases 

worldwide. The number of dementia cases is increasing every year, which leads to an increasing 

cost of care for dementia patients. Early detection of the disease will increase the success rate of 

treating AD or slow down the rate of dementia. Since 2000, many institutions have tried to 

develop amyloid and tau-targeting radiotracers to assist diagnosis of AD and support AD drug 



 Chapter 1: Introduction 
 

6 

 

development. However, up to date, only three amyloid radiotracers and no tau radiotracers had 

been approved by FDA (section 2.2.3). 

 

The development of a successful diagnostic radiotracer is hampered by the limitations of the 

conventional radiotracers development process. Firstly, it is a long and iterative process of 

identifying the right chemical compounds, followed by lead optimisation via iterative processes 

of conducting multiple in vitro experiments and preclinical testing before the radiotracer can be 

applied clinically. Secondly, in vitro and preclinical results may not translate well to clinical 

performance, due to the lack of consideration to the possible in vivo kinetics of the radiotracers. 

Radiotracers with poor kinetics may not show much differences in the in vivo uptake under 

different subject conditions. Thirdly, the conventional process focuses on a few physicochemical 

or pharmacological properties (e.g. lipophilicity, selectivity to target sites) to evaluate radiotracer. 

These properties are often evaluated separately, without considering their interaction effect. Lastly, 

the noise level of the imaging modality and target variation are either not considered or evaluated 

separately during radiotracer development.   

 

Biomathematical simulation can complement high-throughput screening by allowing 

simultaneous and rapid evaluation of many candidate radiotracers. Moreover, the radiotracers can 

be evaluated by using both physicochemical and pharmacological parameters to simulate their 

possible in vivo kinetics at variable conditions. The statistical evaluation of the radiotracers can 

also be increased by simulating with noise and population variation. To further support decision-

making in moving candidate radiotracers for clinical evaluation, the use of a common index can 

support comparison of different radiotracers from within and across institutions. As such, 

biomathematical simulation can help to identify potential compounds from a large number of 

compounds during the early phrase of drug development, especially before radiolabeling of 

candidate radiotracers (Figure 1.2). This will help to reduce the number of in vitro experiments 

and radiolabeling procedures and hence speed up the radiotracer development process and reduce 

radioactive exposures to the radiochemists. 

 

At cyclotron and radioisotope center (CYRIC) in Tohoku University, we are actively developing 

amyloid and tau radiotracers in hope to support the diagnosis of AD and to assist AD drug 

treatment. As such, we would like to develop a screening methodology using biomathematical 

simulations to support the screening process of chemical compounds during the development of 

amyloid and tau radiotracers, especially during the design of new candidate compounds before 
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the synthesis and radiolabeling of the candidate compounds (section 1.2). This will help to reduce 

the radioactive exposure to radiochemists while supporting the screening of thousands of 

compounds more efficiently with the consideration of the possible in vivo kinetics of the 

radiotracers leading to higher success rate. Thus far, few models for amyloid and tau radiotracers 

were developed and they were developed using one or a few radiotracers due to the unavailability 

of many radiotracers. Moreover, the existing amyloid and tau models were not focused on 

supporting radiotracer development.  

 

We proposed to use the reported clinical data of amyloid radiotracers for the development of an 

amyloid biomathematical model to predict the in vivo kinetic behaviour of candidate amyloid 

radiotracers in HC and AD. A screening methodology based on the proposed biomathematical 

model will then be developed to support decision making in moving the candidate radiotracer to 

clinical application. We then investigate if the screening methodology can be extended to support 

the development of tau radiotracer.  

1.4 Structure of Thesis 

Chapter 1 introduces the basics of molecular imaging and the development and uses of 

radiotracers in drug development and diagnosis of various diseases. The motivation and structure 

of this thesis are explained. Relevant conferences attended and journal papers submitted during 

the course of PhD are listed. 

 

Chapters 2 and 3 provide the background in the development of the amyloid biomathematical 

model. Chapter 2 explains the details of Alzheimer’s disease, in particular, the two pathological 

hallmarks of AD: amyloid and tau proteins. Existing issues in amyloid and tau imaging are 

discussed, as they are important in supporting the feasibility of the proposed model. Chapter 3 

explains the fundamentals of positron emission tomography (PET) and quantitative analysis of 

PET images. Two existing biomathematical models are then described and the feasibility of 

extending the model for our model is debated. 

 

Chapters 4 to 6 describe the development of the screening methodology in details. Chapter 4 

focuses on determining the physicochemical and pharmacological properties of the radiotracers 

required in the biomathematical model. The development and evaluation of the amyloid 

biomathematical model are described in chapter 5. A screening methodology based on the 
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proposed amyloid biomathematical model is developed in chapter 6. A program written for 

screening amyloid radiotracers based on the proposed methodology is presented. 

 

In chapter 7, we explore the feasibility of extending the proposed amyloid biomathematical 

screening methodology for screening tau radiotracers. We then conclude the project and my work 

done for this PhD project in chapter 8. 
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Chapter 2  

Pathology & Diagnosis of Alzheimer’s 

Disease  

Amyloid and tau PET imaging can show the distribution and concentration of amyloid and tau in 

the subject brain. However, the amyloid and tau proteins have many different structural forms and 

undergo many post-translational processes, some of which lead to neurotoxic degeneration 

causing AD, while some do not. In this chapter, the different forms of amyloid and tau proteins 

are described in details to ensure that the right information is selected for model development. 

The diagnosis of AD using other biomarkers and classification of subjects based on various 

diagnostic criteria standards and neuropsychological tests are briefly described followed by two 

staging methods of AD based on concentration and spatial distribution of amyloid and tau in the 

brain. Clinically-applied amyloid and tau radiotracers are presented and the existing issues faced 

in clinical amyloid and tau PET imaging are discussed.  

2.1 Alzheimer’s disease  

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder defined by 

histopathological features such as senile plaques (SP) and neurofibrillary tangles (NFT) [Perrin 

et al., 2009] and clinical symptoms such as loss of memory, reduced executive functions etc. AD 

was discovered and named after Alois Alzheimer, a German physician in 1906, who examined a 

patient exhibiting memory loss, language difficulty and confusion. When the patient died at the 

age of 51, he carried out post-mortem brain autopsy and observed SP and NFT in her brain tissues. 

[Stelzmann et al., 1995]. These subsequently became the pathological hallmarks of AD. 

 

In this section, the structure and biological development of SP and NFT from Aβ and tau proteins 

are described in details, in particular, the in vitro method of identifying Aβ and tau proteins. The 

spatial and temporal distributions of Aβ and tau proteins in 2 staging methods with AD 

progression are also explained.  
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2.1.1 Amyloid-Beta Protein 

The component of senile plaques was unknown at the time of discovery by Dr Alzheimer. It was 

only in 1984 that Aβ was discovered when it was successfully purified from the senile plaques 

[O’Brien et al., 2011]. Aβ peptide is cleaved from the amyloid precursor protein (APP), which is 

a transmembrane protein of ~100-130 kDa (kilo-Dalton), with a maximum of 770 amino acids 

(Figure 2.1A). The APP is located on the plasma membrane, trans-Golgi network, endoplasmic 

reticulum and endosomal, lysosomal and mitochondrial membrane. As such, Aβ peptide can be 

found intracellularly and extracellularly. The physiological functions of APP are still unconfirmed 

but are proposed to relate to cell growth and neuronal plasticity.  

 
Figure 2.1: (A) Amyloid precursor protein (APP) [O’Brien et al., 2011] and (B) formation of Aβ plaques 

[Morgan et al., 2004]. 

 

Three main proteases are involved in the proteolytic cleavage of APP, namely α-secretase, β-

secretase (or BACE) and γ-secretase. They act in pairs to form the amyloidogenic and non-

amyloidogenic peptides. Non-amyloidogenic peptides are first cleaved by the α-secretase at the 

N-terminal, followed by γ-secretase at the C-terminal of APP (Figure 2.1A). The amyloidogenic 

peptides or Aβ peptide are first cleaved by the β-secretase at the N-terminal, followed by γ-
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secretase at the C-terminal (Figure 2.1A). 

 

Aβ is a small peptide of about 4.2 kDa and consists of 37 to 43 amino acids (Figure 2.1B) [O’Brien 

et al., 2011]. Aβ1-37 to Aβ1-40 are known as the benign forms, while Aβ1-42/43 are known as 

the toxic forms [Karran et al., 2011]. The most common forms of Aβ peptides are Aβ1-40/42, of 

which Aβ1-42 was reported to polymerise more readily than Aβ1-40. The different types of Aβ 

proteins exist in varying degree in different cellular compartments, namely intracellular, 

extracellular and membrane surface) [Steinerman et al., 2008]. 

 

A single Aβ peptide, also known as a monomer, can join together to form longer and more toxic 

peptides such as dimer, trimer, and tetramer. These peptides undergo oligomerization to form a 

soluble oligomer or insoluble fibrillary Aβ (Figure 2.1B). Soluble forms are soluble in aqueous 

solution and remain soluble even after high-speed centrifugation. The concentrations of soluble 

Aβ and insoluble Aβ peptides are about 6 and at least 100 times respectively higher in AD brains 

than in normal brains [Morgan et al., 2004]. These oligomers undergo further post-translation 

modifications (e.g. truncation, racemization, oxidation, polymerization) to form large Aβ deposits. 

 

Three types of amyloid-beta (Aβ) deposits can be found in the human brain, namely senile/neuritic 

plaques, diffuse plaques and cerebrovascular amyloid (Figure 2.1B) [Morgan et al., 2004]. Senile 

plaques are large extracellular aggregates of Aβ consisting of a dense central fibrillary Aβ core 

filled with inflammatory cells and dystrophic neurites or dendrites, containing tau in its periphery 

[O’Brien et al., 2011]. They are known as the cause of AD. Senile plaques have high 

concentrations of Aβ1–42, which are subjected to post-translational modifications including 

oxidation, oligomerization and polymerization. They have pleated β-sheet structure, which is 

strengthened by hydrogen bonds formed between the Aβ peptides. Senile plaques can be identified 

by fluorescent dyes, such as Thioflavin-S/T and Congo-Red. 

 

Diffuse plaques are amorphous and non-neuritic amyloid deposits, which are commonly found in 

the brains of cognitively intact elderly people. They do not β-sheet structure, thus they can only 

be identified by modified silver methenamine methods. Cerebrovascular amyloid consists of Aβ 

peptides, mainly Aβ1-39/40/42, deposited in cerebral blood vessels and are spared from post-

translational modifications (Figure 2.1B). It forms the main component of cerebral amyloid 

angiopathy (CAA). The soluble oligomer is said to be the cause of neurotoxic instead of fibrillary 

senile plaques: the prefibrillar soluble Aβ oligomer may induce toxic effect leading to cell death 
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or the diffuse plaques may unfold and reorganise into senile plaques, during which toxic is release 

leading to cell death (Figure 2.1B). 

2.1.2 Tau Protein 

Tau proteins belong to the microtubule-associated proteins (MAP) family. They are normally 

present in the axon and plays a part in axonal transportation and stabilisation of the microtubules 

[Buĕe et al., 2000]. The tau structure consists of two domains – projection and microtubule-

binding domains (Figure 2.2A) [Buĕe et al., 2000]. The projection domain consists of the acidic 

and basic regions, with the N-terminal (amino terminal). The microtubule-binding region consists 

of the repeat-domain and neutral regions, with the C-terminal (carboxy-terminal). A total of six 

isoforms of tau proteins exist. They differ in the number of exons (0, 1, 2) on the acidic region 

and the number of repeats (3 repeats (3R) or 4R) in the repeat-domain regions (Figure 2.2A). The 

R1-R2 region exists only in 4R tau (Figure 2.2A) and is the main cause for the 40 times difference 

in binding affinities to microtubules between 4R and 3R tau [Buĕe et al., 2000]. They are made 

up of about 352~441 amino acids, with a molecular weight ranging from 45 to 65 kDa [Buĕe et 

al., 2000]. The shortest isoform, known as the fetal isoform, is found only in the fetal brain. The 

rest of the isoforms are known as the adult isoforms. In normal adults, the proportion of 3R and 

4R tau is nearly equal, but in AD, the proportion of 4R is much higher than 3R. 

 

Tau proteins undergo many post-translational modifications, of which phosphorylation plays the 

key role in determining the binding with microtubules (Figure 2.2B). Tau protein undergoes 

phosphorylation under normal ageing, forming highly soluble phosphorylated tau that does not 

form filamentous inclusion. However, under abnormal conditions, hyperphosphorylation occurs, 

yielding intraneuronal filamentous, insoluble inclusions called paired-helical filament (PHF) tau, 

which consists of a pleated β-sheet structure. A small amount of tau may form other types of ultra-

structures, such as straight-like filaments, twisted filaments, randomly coiled filaments or hybrid 

filament, which has a sharp change from straight to helical structure [Serrano-Pozo et al., 2011]. 

 

Further aggregation of PHF-tau results in neurofibrillary tangles (NFT), which consists of 3 

morphological stages (Figure 2.2B): (1) Pre-NFT, with a more diffuse structure, (2) Intraneuronal 

NFT (iNFT), with matured or fibrillary structure, and (3) extraneuronal NFT (eNFT) [Serrano-

Pozo et al., 2011]. eNFT is also known as “ghost” tangle, as it results from the death of tangles-

containing neurones. It can be identified by the lack of a nucleus and the presence of a stainable 
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cytoplasm due to the breakdown of the cell membrane [Serrano-Pozo et al., 2011]. Although NFT 

is said to be toxic, the tau form that leads to neurotoxicity is still being debated. Some have 

proposed that the soluble tau, which is formed before hyperphosphorylation to form PHF-tau 

under abnormal conditions, is toxic or both NFT and soluble tau lead to cell death via different 

routes [Kopeikina et al., 2012]. 

 

 
Figure 2.2: Various forms of tau protein: (A) 6 isoforms of tau protein [Ariza et al., 2015], (B) Aggregation 

of tau protein to neurofibrillary tangles. 

 

NFT are argyrophilic (readily stained by silver salts) and can be identified in vitro by silver 

staining methods (e.g. Gallyas technique) or fluorescent staining or immunostaining using anti-

tau antibodies (e.g. AT8 and PHF1 for i/eNFT, MC1 and Alz50 for Pre-NFTs) [Serrano-Pozo et 

al., 2011]. Fluorescent dyes, such as Thioflavin-S/T and Congo-Red, bind to structures with β-

sheet conformation and hence can be used to detect PHF-tau. Apart from NFT in cell bodies, 

phosphorylated tau can exist as neuropil threads in dystrophic neurites or in the neuropil.  
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Synthetic heparin-induced tau polymer (HITP) generated in vitro composed of 3R and/or 4R tau 

and does not undergo the same phosphorylation process under in vitro conditions [Ariza et al., 

2015]. Moreover, synthetic tau phosphorylates to form homogeneous or granular structure instead 

of fibrillary structure found in human [Buĕe et al., 2000; Declercq et al., 2016]. In transgenic 

mouse model expressing human recombinant tau, only 4R tau isoforms are expressed, but in 

human AD brains, both 3R and 4R are expressed [Declercq et al., 2016]. As such, in vitro and 

pre-clinical results of tau radiotracers do not translate well into clinical results. 

2.1.3 Distributions of Amyloid & Tau 

The spatial distributions of amyloid and tau proteins in postmortem brains of healthy and AD 

subjects have been extensively studied since 1990 especially by Braak and Braak [Braak et al., 

1991] and Delacourte [1999]. Both groups have tried to study the spatial and temporal 

distributions, and changes in the concentrations of amyloid and tau proteins to stage the 

pathological progression of AD. 

 

Braak et al. staged AD progression based on the histopathological distributions of amyloid and 

tau proteins separately using 2661 normal and AD brains from 1991 to 1997 [Braak et al., 1997]. 

Amyloid and tau proteins were identified using silver-pyridine and silver-iodide staining 

respectively. Braak et al. [1991] managed to stage the amyloid and tau accumulation and 

distributions into 3 (A-C) and 6 (I-VI) stages accordingly (Table 2.1). 

 
Table 2.1: Braak and Braak staging of amyloid and tau 

Amyloid Stages A-C 

Stage A: Lingual and fusiform gyri (medial and lateral occipito-
temporal gyri = basal temporal neocortex) 

Stage B Basal Cortex 

Stage C: Upper portions of the cortex & the primary neocortical areas 
+ Cerebellum 

Tau Stages I-VI 
Stage I Transentrohinal region (Temporal Lobe) 
Stage II + Entorhinal region 
Stage III +Hippocampal & Temporal preneocortex 
Stage IV + Adjoining neocortex 
Stage V Spread Superolaterally 
Stage VI Primary Neocortex 

 

Delacourte et al., [1999] on the other hand, staged the disease progression based on the tau 
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distribution and severity of cognitive impairment evaluated using 2 clinical assessments: Mini-

mental state examination (MMSE) and clinical dementia rating (CDR). Aβ was identified using 

thioflavin-S and antibodies against Aβ. Tau proteins were identified using silver staining 

(Bielchowski) and antibodies against tau. Delacourte et al [1999] managed to stage AD 

progression based on tau distribution in ten stages using 130 brains (Table 2.2). However, there 

was a rare case where an elderly brain with severe cognitive impairment had low concentrations 

of tau distributed throughout the brain. 

 
Table 2.2: The Delacourte staging of tau distribution 

Stages Regions No of 
Subjects 

Age 
(Mean ± Stdev) 

Aβ Density 
(pmol/mg) 
(Subj No) 

Cognitive Status & notes 

I Trans-entorhinal 3 71~83 (77 ± 6) 0 All were Non-Demented 

II +Entorhinal 4 72~95 (86 ± 10) Low (2) 2 without dementia (incl 
95-years-old) 

III +Hippocampus 16 73~95 (84 ± 7) 10 (2),  
20 (3) 

6 vascular demented, 4 
ND 

IV +Anterior 
temporal cortex 10 69~98 (88 ± 9) 11 (max) 5 ND, 4 MCI; 2pmol/mg 

Aβ in 98-years-old 

V +Inferior temporal 12 76~98 (89 ± 7) 0 (2), 20 (3), 
30 (1) 

3 ND, 3 vascular 
demented 

VI +Mid-temporal 11 71~93 (86 ± 7) 0 (1),  
54 (1) 

1 ND (88-years-old), rest 
with moderate Aβ load 

VII 
+Anterior frontal, 
superior temporal, 

inferior parietal 
15 84~106 (96 ± 6) High 

1 ND (84-years-old, with 
low tau conc.), 4 (ND or 
MCI, low tau conc.) 

VIII +Broca area 5 77~91 (87 ± 6) 88 (2), 
low~high All demented 

IX +Motor cortex 19 65~100 (81 ± 8) 10~200 All demented 

X +Occipital areas 27 37~90 (74 ± 13) - Highest tau conc. in 
temporal cortex 

 

From the results of both Braak and Braak [1991 and 1997] and Delacourte [1999], tau was found 

in the brains of young subjects and in the absence of Aβ. In addition, the hippocampal region was 

shown to be a vulnerable region to tau degeneration. The deposition of Aβ was more widespread 

with no consistent pattern except for increasing densities in various regions, while tau deposition 

is progressive and ordered, following along precise anatomic networks. Although Aβ and tau 

coexist in late stages of AD, they do not correlate well with each other. Although tau 

concentrations correlated well with cognitive impairment, there were a few subjects that differed 

from expectations in Delacourte’s results. Moreover, based on Delacourte’s staging, all subjects 

investigated had cognitive impairment only after the late tau stages of VII (Table 2.2). This 
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showed that tau imaging can also be used as a biomarker for early diagnosis of possible AD 

conversion apart from amyloid imaging. 

2.2 Diagnosis of AD 

Early detection of possible AD conversion will help patients benefit from early AD intervention 

and treatment. As the clinical symptoms of AD overlap with other dementia symptoms, it is 

important to discriminate the type of dementia in order to treat the patients correctly. AD diagnosis 

is carried out using clinical assessments and various biomarkers of AD. This section explains the 

various subject groups based on clinical or other assessments, as well as the biomarkers of AD, 

in particular, amyloid and tau imaging. 

2.2.1 Clinical Diagnosis 

Up to date, the only definitive diagnosis of AD is post-mortem autopsy, even then there had been 

conflicting results with the lack of senile plaques or low concentrations of NFT in subjects 

showing clinical AD symptoms. Clinical symptoms of dementia can be assessed via 

neuropsychological assessment, such as mini-mental state examination (MMSE) [Folstein et al., 

1975], Montreal cognitive assessment (MoCA) [Nasreddine et al., 2005] and clinical dementia 

rating (CDR). These assessments evaluate the various cognitive domains, such as attention, 

memory, language, visuospatial function, and executive function. Risk factors for AD such as 

family history of dementia, ApoE-4 genotype and female gender are also identified during the 

clinical assessment.  

 

To standardise the diagnosis of clinical conditions, diagnostic criteria have been established by 

different working groups. The most commonly used criteria are established by the National 

Institute of Neurological and Communicative Disorders and Stroke (NINCDS) and the 

Alzheimer’s Disease and Related Disorders Association (ADRDA) (NINCDS-ADRDA) to 

classify the various conditions, including AD [McKhann et al., 2011], preclinical AD [Sperling et 

al., 2011] and MCI [Albert et al., 2011]. Other working groups include the Diagnostic and 

Statistical Manual of Mental Disorders (DSM-5), International Working Group (IWG) and 

National Institute on Aging–Alzheimer's Association (NIA-AA). Subjects are classified into 

various groups based on the criteria-stated neuropsychological assessment, risk factors and/or 

other biomarkers. However, different diagnostic criteria defined and termed the various conditions 

differently (Table 2.3).  
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Two common clinical conditions are healthy control (HC), where the subject has no memory or 

cognitive impairment and AD, where the subject had memory, cognitive and functional 

impairments. With new information from clinical studies, the terms and criteria used to describe 

and classify the various subject conditions or states have changed over time. For example, the 

terms “probable/possible AD dementia” or “dementia due to AD” or “dementia of Alzheimer type 

(DAT)” are introduced to replace “AD” condition. This is because AD clinical conditions overlap 

with other dementia conditions and definitive diagnosis of AD can only be confirmed via post-

mortem autopsy. 

 
Table 2.3: Diagnosis of clinical conditions based on diagnostic criteria 

Clinical Symptoms NINCDS-ADRDA DSM-5 IWG NIA-AA 

No / Subtle 
complaints Preclinical AD - 

Asymptomatic AD 
/ Presymptomatic 

AD 
Preclinical AD 

Cognitive 
impairment but 
functionally 
independence 

MCI due to AD MCI due to 
AD Prodromal AD MCI due to AD 

Dementia Dementia due to 
AD 

Probable 
AD AD dementia 

Dementia due to AD / 
Possible AD / 
Probable AD 

 

The purpose of clinical assessment is to identify subjects that are probably AD to provide correct 

treatment and those who are likely to convert to AD for early disease intervention. The earlier the 

intervention, the more effective the treatment and the faster the recovery. As such, the critical 

diagnosis period between pre-clinical AD and mild cognitive impairment (MCI) are very 

important for early diagnosis of AD.  

 

Pre-clinical or pre-symptomatic AD condition is the state between HC and MCI, where no clinical 

symptoms can be observed. Mild cognitive impairment (MCI) is the clinical condition in which 

memory or other cognitive functions are lower than HC but the daily functioning is not hindered 

or not severe enough to be classified as AD. MCI can be further classified based on memory 

impairment (amnestic vs. non-amnestic) and the number of cognitive domains involved (single 

or multiple domains). Amnestic MCI have memory impairment while non-amnestic MCI do not 

have memory impairment but suffers from other cognitive impairment (e.g. decision-making, 

visual perception). As MCI is an evolving diagnostic condition, it has been further classified into 
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“MCI due to AD”, “mild AD” or “mild to moderate AD” and “prodromal AD”. Subjects classified 

as MCI due to AD condition have a high likelihood of converting to AD, with positive Aβ results 

and/or neuronal injury [Albert et al., 2011].  

 

In our study, mild AD is considered under AD, stage I based on the results by Peterson et al. 

[1999] (Figure 2.3). Mild AD condition has similar memory performance as MCI conditions but 

other cognitive domains are more impaired than MCI [Petersen et al., 1999]. Even though some 

groups have classified prodromal AD as an individual state occurring before MCI, some termed 

it as clinical assessment of MCI, confirmed with a biomarker such as PET imaging (Table 2.3). 

Therefore, prodromal AD and MCI are considered under the same clinical diagnosis of MCI in 

our study. 

2.2.2 Biomarkers of AD 

Neuropsychological assessments may be limited in discriminating the various subject conditions 

or types of dementia due to overlapping clinical symptoms and subjective interpretation of 

assessment questions. Some tests like CDR have small scale range (0-3), while some tests like 

MMSE have large scale range (0-30). The test differed in sensitivity and specificity, as the cutoff 

thresholds differ for each group at different centers. Moreover, normal ageing also contributes to 

poorer test scores and varies with the individual, age and other factors. As such, clinical 

assessments are often carried out with other biological tests or imaging for more evident 

classification. 

 

Existing biomarkers for AD either target Aβ deposition, tau deposition or neuronal injury (Figure 

2.3). Biomarkers of Aβ deposition includes amyloid PET imaging and decrease Aβ1-42 in 

cerebrospinal fluid (CSF). Similarly, the biomarkers of tau deposition include tau PET imaging 

and increase tau in CSF (Figure 2.3). Little or no changes in CSF measurements were obtained 

during the progression of MCI to AD and the clinical phase of AD. Hence, unlike PET imaging 

CSF measurements cannot be used for staging of AD or tracking disease progression. This may 

be due to the sensitivity of measurement methods or due to pathology, where the discharge of 

amyloid and tau into CSF becomes stable. The extraction of CSF for evaluation requires invasive 

lumbar puncture and hence is not preferred for diagnosis especially in patient subjects. Moreover, 

such assessments only measure the concentrations of amyloid and tau but do not provide any 

spatial information of the amyloid and tau distribution in the brain. Biomarkers of neuronal injury 

include reduced hippocampal volume or increased rate of brain atrophy measured using MRI or 
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CT, decreased metabolism with [18F]FDG-PET imaging, and reduced blood flow via fMRI or 

[15O]H2O-PET imaging etc. (Figure 2.3). Structural changes in the diseased brain can be evaluated 

via MRI or CT but changes can be subtle until clinical symptoms set in (Figure 2.3).  

 

 
Figure 2.3: Changes in the magnitude of various biomarkers with AD progression. 

Aβ = amyloid-beta, NFT = neurofibrillary tangles, CSF = Cerebrospinal fluid, ADL = Activities 

of daily living, Mod. = Moderate, Sev. = Severe, CDR = Clinical dementia rating.  

 

As Aβ and tau proteins can be found in other types of dementia, amyloid and tau PET imaging 

can be used for differential diagnosis (Figure 2.4). Differential diagnosis is the process of 

differentiating two or more diseases or conditions having identical or similar symptoms or target 

pathologies. A group of neurodegenerative diseases, which pathologically involves tau are called 

“tauopathies”. AD is histopathologically defined by both amyloid and tau proteins only (Figure 

2.4). All the other forms of dementia either consists of tau in specific brain regions (e.g. 

corticobasal degeneration (CBD)) or is also histopathologically defined together with other 

proteins (Figure 2.4). 

 

Amyloid and tau PET imaging are non-invasive and allows one to measure the in vivo spatial 

distribution of Aβ and tau in the brain quantitatively. As amyloid load shows greater changes in 

the early stages of AD (Figure 2.3) [Perrin et al., 2009], amyloid imaging allows for early 
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diagnosis of possible AD conversion and differential diagnosis of various neurodegenerative 

diseases (Figure 2.4) [Catafau et al., 2015]. However, neuropsychological assessments and 

amyloid and tau imaging may result in different diagnosis results. Some subjects diagnosed as 

HC because of the absence of clinical symptoms of dementia may show amyloid uptake similar 

to that of MCI or AD. As such, in amyloid imaging, the subjects are normally classified into Aβ-

positive or Aβ-negative, while subject conditions of HC, MCI and AD are based on 

neuropsychological assessments.  

 

 
Figure 2.4: Various dementia diseases involving Aβ and/or Tau. 

AD = Alzheimer’s disease, CAA = Cerebral Amyloid Angiopathy, TD = Tangle-only Dementia, CBD = 

Cortico-Basal Degeneration, PDD = Parkinson’s disease Dementia, DLB = Dementia with Lewy Bodies, 

PSP = Progressive Supranuclear Palsy, PD = Pick’s disease. 

 
For tau imaging, classification of subjects is normally diagnosed together with Aβ-

positive/negative results from amyloid imaging. This is because tau was shown to accumulate in 

the young and in the elderly with normal ageing (section 2.1.3). Using amyloid and tau PET 

imaging, the concentrations and distributions of Aβ and tau in the brain can be compared with the 

histopathological staging of AD progression of Braak and Braak or Delacourte (section 2.1.3). 

This would help to further support diagnosis and progression of clinical conditions especially in 

the preclinical AD and MCI states.  

2.2.3 Clinically-Applied Amyloid & Tau PET radiotracers 

Up to date, there are quite a number of amyloid and tau radiotracers that have been developed and 
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made their way to clinical studies. Yet, only three amyloid radiotracers have been approved by 

FDA, namely [18F]florbetapir ([18F]AV-45, Amyvid, Eli Lilly & Avid Radiopharmaceuticals, US) 

[Carpenter et al., 2009], [18F]flutemetamol (GE-067/Vizamyl, GE Healthcare, UK) [Nelissen et 

al., 2009] and [18F]florbetaben ([18F]AV-1/Neuraceq, Piramal Imaging, Germany) [Rowe et al., 

2008], approved in 2012, 2013, 2014 respectively. This section lists some amyloid and tau 

radiotracers that are applied in human studies.  

 

Amyloid Radiotracers 

The first amyloid-targeting radiotracer was [18F]FDDNP developed in 2000. However, it was 

subsequently found to show binding affinity to PHF-tau, with clinical results showing better 

correlation to cognitive impairment, similar to that of other tau radiotracers, compared to other 

amyloid radiotracers. The most well-known amyloid radiotracer was Pittsburg Compound B 

([11C]PIB) [Klunk et al., 2004], which is developed by University of Pittsburgh and have been 

used in research since 2002. However, due to its short half-life of C-11 of 20.4mins, [11C]PIB was 

only available in hospitals or research centers where there is on-site cyclotron. Thus, the 

development of 18F-labelled amyloid radiotracers was important to increase the accessibility of 

PET amyloid imaging for AD diagnosis [Hatashita et al., 2014].  

 

Tohoku university has developed two amyloid-targeting radiotracers, [11C]BF227 [Kikuchi et al., 

2010] and [18F]FACT [Furumoto et al., 2013], which had been applied clinically. Other clinically 

applied amyloid radiotracers included [11C]SB13 [Verhoeff et al., 2004], [11C]AZD2184 [Nyberg 

et al, 2009], [18F]AV138 [Carpenter et al., 2009], [11C]AZD2995 [Forsberg et al., 2012], 

[18F]flutafuranol (also known as AZD4694) [Csele´nyi et al., 2012], and [18F]FIBT [Yousefi et al., 

2015b]. Radiotracers like [11C]AZD2995 and [18F]AV138 had been applied clinically but were 

rejected as they were deemed inferior to their respective family radiotracers, [11C]AZD2184, and 

[18F]florbetapir respectively. There are also other amyloid radiotracers like [18F]MK3328 that 

have been applied clinically but the results and chemical structures were not reported in the 

literature.  

 

Tau Radiotracers 

Tau radiotracers are developed and applied in clinical studies much later after amyloid 

radiotracers. The first few tau radiotracers that are applied clinically included a series of THK 

compounds from Tohoku University: [18F]THK523 [Villemagne et al., 2014], [18F]THK5105 

[Okamura et al., 2014], [18F]THK5117 [Harada et al., 2015], [18F]THK5317 [Chiotis et al., 2016] 
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and [18F]THK5351 [Harada et al., 2016]. Apart from THK compounds, there are three other tau 

radiotracers that are applied clinically with results reported in literature including [18F]flortaucipir 

([18F]T807/[18F]AV-1451, Eli Lilly, US) [Chien et al., 2013] and [18F]T808 (also known as 

[18F]AV-680) [Chien et al., 2014] developed by Siemens Healthcare (Germany) and [11C]PBB3 

developed by National Institute of Radiological Sciences (Japan) [Maruyama et al., 2013]. The 
18F-labelled PBB3, [18F]PM-PBB3 (Aprinoia, Japan) has just completed its first in-human studies 

but the results have yet been reported in the literature. Although there are other tau radiotracers 

like [18F]MK6420 (Merck, US) that have been applied clinically, the results and chemical 

structures were not reported in the literature thus far. 

2.3 Current Issues in Amyloid & Tau PET imaging 

Amyloid and tau PET imaging provides in vivo information of the spatial distribution and 

quantitative concentration of the amyloid and tau load in subjects. However, there are several 

issues that need to be addressed due to the complex physiology and pathology of amyloid and tau 

proteins, as well as issues observed in current clinical studies with amyloid and tau radiotracers. 

In developing a screening methodology for amyloid radiotracers, the availability of in vitro data 

and clinical data need to be considered for model development and validation. In this sub-section, 

key issues that need to be considered in developing the biomathematical model are discussed. 

 

Different Binding Sites 

Amyloid and tau proteins have a few independent binding sites (Figure 2.5), to which different 

radiotracers bind with different binding affinities. In general, all the evaluated amyloid and tau 

radiotracers showed high binding affinities to one binding site and low or no binding affinity to 

others. However, the concentrations of these binding sites on the amyloid and tau proteins are 

different. High binding affinity to low concentration binding sites will compromise the diagnostic 

capability of the radiotracer [Lockhart et al., 2005]. Thus far, studies determining the binding 

affinities of different amyloid radiotracers showed binding to three different binding sites (BS) to 

both Aβ1-40 and Aβ1-42 proteins (Figure 2.5) [Lockhart et al., 2005; Ni et al., 2013].  

 

BS1 and BS2 are present at high concentrations but BS3 are present at very low concentration

(Figure 2.5). Amyloid radiotracers such as [18F]florbetapir, [18F]florbetaben and [11C]BTA-1 

showed high binding affinity to BS1 and low binding affinity to BS2, while [11C]BF227 showed 

high binding affinity to BS3 and low binding affinity to BS1 [Ni et al., 2013]. [18F]FDDNP 
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showed only binding affinity to BS2. As such, [11C]BF227 might not show high diagnostic 

capability compared to [18F]florbetapir or [18F]florbetaben due to high binding preference to BS 

of low concentration. The binding affinities of other amyloid radiotracers to the three different

binding sites were not evaluated or reported.  

 

 
Figure 2.5: Different binding sites (BS) on Aβ protein. [Lockhart et al., 2005] 

 

Tau proteins also showed three possible binding sites [Lemoine et al., 2015] but the concentrations 

of all binding sites have yet been evaluated. Thus far, only [18F]THK5117 have been evaluated to 

bind with high binding affinity to one BS and low binding affinity to the second BS, with a 

possibility of binding to the third BS [Lemoine et al., 2015]. Consideration to the binding 

preference of the radiotracers to high and low concentration binding sites are preferred but such 

information is not normally available from the literature. However, the binding affinities of the 

radiotracers to the types (e.g. Aβ1-40 vs. Aβ1-42) and forms (soluble vs. fibrillary) of amyloid, 

Aβ) and tau are more important as they are more reflective of the total binding signal in PET 

measurements. As such, the binding preference of tau radiotracer to Aβ is also important due to 

the lower concentrations of NFT compared to Aβ plaques. 

	

Differential Binding 

 In general, the highest concentration of amyloid plaques deposits is found in the frontal cortex 

[Villemagne et al., 2015]. However, as shown in Braak and Braak’s and Delacourte’s stagings of 

AD, amyloid deposition does not follow a consistent spatial pattern (section 2.1.3). In addition, 

amyloid radiotracers have different affinities (Ki2/Ki1 > 10, [Ni et al., 2013]) to different binding 

sites on both amyloid and tau proteins [Harada et al., 2013].  

 

The highest concentration of PHF-tau deposits is found in temporoparietal cortices [Villemagne 

et al., 2015]. Although PHF-tau deposition followed a consistent pattern, the tau concentration 

may vary greatly in subjects regardless of disease severity. Moreover, tau undergoes different 

post-translational processes in different tauopathies and are present only in certain regions in 
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different tauopathies (e.g. tau is present in the brainstem in PSP and CBD but not AD) [Villemagne 

et al., 2015]. The binding of tau radiotracers to non-AD tauopathies have only been evaluated in 

a few clinically-applied tau radiotracers such as [18F]T807, [18F]THK523 and [11C]PBB3 (Chapter 

7). Although [18F]THK523 does not bind to some non-AD tauopathies [Fodero-Tavoletti et al., 

2014], and [11C]PBB3 showed distinct selectivity to different tauopathies [Ono et al., 2017], 

[18F]T807 showed great variation in binding in non-AD tauopathies [Lowe et al., 2016].  

 

PET imaging is unable to discriminate binding to different binding sites on amyloid and tau 

proteins as it measures all the radioactive signal from the radiolabeled isotope. As such, direct 

comparison of radiotracers using the same region in the PET image of the same subject is limited. 

In vitro binding information to different binding sites is also limited and measured values vary 

greatly for low-affinity binding sites. Comparison of radiotracers using measured in vitro binding 

affinity to the highest affinity binding sites might lead to more consistent results than the inclusion 

of binding affinity to all binding sites. 

 

Binding to Other Proteins 

The currently-developed amyloid radiotracers target only fibrillary amyloid plaques, which have 

β-sheet structures (Figure 2.1B). Likewise, neurofibrillary tangles (Figure 2.2B) and α-synuclein 

proteins also have β-sheet conformation. As such, specific binding to other targets having similar 

conformation might arise. Amyloid proteins are much smaller than tau proteins (37~43 vs. 

352~441 amino acids), they are present at much higher concentrations of 4~20 times that of tau 

proteins [Villemagne et al., 2015]. Moreover, amyloid proteins exist in both intracellular and 

extracellular spaces, in particularly fibrillary amyloid plaques are present in extracellular space, 

while PHF-tau and α-synuclein proteins are present only in intracellular space. Thus, the 

quantitative evaluation of amyloid PET images is less affected by specific-binding or NSB to 

other proteins.  

 

Tau radiotracers, on the other hand, needs to be able to cross the blood-brain-barrier (BBB) and 

the cell membrane in order to reach the target. On reaching its target, tau radiotracers may bind 

to amyloid plaques present in the extracellular space. Hence, tau radiotracers require high 

selectivity of tau over amyloid. A simulation study showed that the selectivity of tau over amyloid 

needs to be over 20 times in order to accurately discriminate the specific binding to tau from that 

of amyloid [Schafer et al., 2012]. 

 



 Chapter 2: Pathology & Diagnosis of Alzheimer’s Disease 
 
 

25 

 

Off-Target Binding 

Candidate radiotracers may bind non-selectively to off-targets [Bittner et al., 2017]. Off-target 

refers to receptors or enzymes that the radiotracers binds specifically to but are not the target of 

interest. These off-target sites can be observed if the radiotracer shows uptake in brain regions 

that are devoid of the target of interest. For example, although tau radiotracers also show binding 

to amyloid proteins due to similar structural conformation, tau radiotracers also show binding or 

high uptake in regions devoid of tau and amyloid. These regions are known as off-targets. 

[18F]T807 was reported to show off-target binding in the midbrain, vessels, iron-associated 

regions (e.g. basal ganglia), substantia nigra, calcifications in the choroid plexus, and 

leptomeningeal melanin [Lowe et al., 2016]. Similarly, [11C]PBB3 was reported to accumulate in 

the venous sinuses [Maruyama et al., 2013] and [18F]THK5351 was reported to accumulate in the 

basal ganglia [Harada et al., 2016].  

 

Depending on the region of off-target binding, the effects of off-target binding may not limit PET 

quantification due to little or no anatomical overlap of off-target regions with the target regions 

of interest (ROIs). Accurate PET quantification is also less affected if the radiotracer has high 

target selectivity or if the concentrations of off-target binding sites are much lower compared to 

that of the target [Bittner et al., 2017]. Possible binding to off-targets are difficult to predict and 

systematic screening is required to determine the binding of the candidate compound to a wide 

range of proteins. This will increase the time and cost of compound screening.   

 

Cerebellar Binding 

Standardised uptake values ratio (SUVR) is a semi-quantitative method of PET images and is 

commonly used for evaluation in amyloid and tau imaging (section 3.2.1). The cerebellum is often 

used as a reference region using SUVR in amyloid PET quantification, due to the low 

concentration of amyloid in the cerebellum. However, amyloid may accumulate in the cerebellum 

in the late stages of AD and this may lead to small changes in SUVR values in quantitative 

longitudinal studies. White matter region was reported to lead to more accurate SUVR 

quantification than cerebellum [Landau et al., 2015; Chen et al., 2015], whereby longitudinal 

increase in SUVR was observed using white matter as reference region but not with cerebellum, 

in MCI and AD [Chen et al., 2015]. The method used for PET quantification is thus important in 

evaluating the diagnostic capability of the radiotracers. 
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Reduced Cerebral Blood Flow 

Cerebral blood flow (CBF) measurement was proposed as a biomarker for AD in the 1990s as 

reduced CBF were consistently observed in the temporoparietal regions in AD subjects [Jagust et 

al., 1997]. However, great variations were observed both within subjects, across the different brain 

regions, and across different subjects. There were also complications that reduced CBF was due 

to reduced glucose consumption in the brain. This was later shown to be due to the underlying 

AD pathological changes, which led to increased oxygen extraction fraction to maintain the 

cerebral metabolic needs for the brain processes [Nagata et al., 1997]. Yet at the same time, CBF 

was reported to be preserved despite changes in blood pressure in AD population [van Beek et al., 

2012]. Thus far, conflicting changes in CBF and oxygen consumption in early reports and later 

reports have been reported [Jagust et al., 1997]. 

 

Changes in blood flow were reported to affect PET quantification in terms of SUVR in longitudinal 

studies in AD, as the target and reference regions may have different rates of change in CBF 

[canBerck et al., 2013; Cselenyi et al., 2015]. As such, distribution volume ratio (DVR) (section 

3.2.3) was proposed as a more consistent method of quantification of PET images than SUVR. 

However, simulation studies showed that the CBF-dependent component in SUVR quantification 

was small and could only explain about 1.5% reduction in longitudinal SUVR measurements 

[Cselenyi et al., 2015]. In these studies, the cerebellum was chosen as the reference region, which 

might be subjected to changes in amyloid load in dementia subjects. The use of white matter 

region as the reference region yielded an increase in SUVR quantification while cerebellum 

resulted in a decrease in SUVR values in longitudinal studies [Chen et al., 2015]. As such, changes 

in CBF will not significantly affect PET quantification using SUVR.  

 

Non-Specific White Matter Retention 

White matter retention led to inaccuracies in cortical SUVR measurements [Landau et al., 2014; 

Villemagne et al., 2012]. The retention was said to occur due to slower white matter clearance 

compared to gray matter regions [Vandenberghe et al., 2010; Heurling et al., 2015; Villemagne et 

al., 2012]. Slower washout may be due to the lipophilicity of the radiotracers or due to non-

specific binding to myelin sheath [Vandenberghe et al., 2010; Furumoto et al., 2013]. White matter 

retention was also said to be affected by the spill-over of higher gray matter uptake on 

neighbouring white matter regions [Landau et al., 2014]. Although some reported higher white 

matter retention using 18F-labelled radiotracers [Landau et al., 2014; Vandenberghe et al., 2010], 

others reported no difference in white matter retention from their 11C-equivalent compounds 
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[Shidahara et al., 2015]. However, some studies have showed that the amount of white matter 

retention was independent on the amount of amyloid load present in the subjects as supported by 

the lack of differences in white matter retention between HC and AD [Vandenberghe et al., 2010; 

Furumoto et al., 2013; Cselenyi et al., 2012; Villemagne et al., 2012].  

 

Studies have also reported that white matter retention did not limit the quantification of cortical 

uptake of some amyloid PET radiotracer [Vandenberghe et al., 2010; Barthel et al., 2011; 

Villemagne et al., 2012]. The SUVR measurements in the white matter do not correlate with 

cortical SUVR measurements and white matter modifications may be due to normal ageing or 

other diseases [Nemmi et al., 2014]. Similarly, although PHF-tau is also found in high 

concentrations in subcortical white matter region in AD [Villemagne et al., 2012], quantification 

of tau PET images was not shown to be limited. 

 

Metabolites Crossing BBB 

The parent radiotracer is metabolised in the body and its resulting metabolites may cross the BBB. 

In such cases, the presence of metabolites will affect PET quantification if the radioisotope is 

attached on the metabolite, as the measured PET signal comes from both the parent and the 

metabolites. Moreover, the binding selectivity and affinity of the metabolite to the target binding 

sites may be different from that of the parent. Metabolites analysis is thus important for any new 

radiotracers to ensure accurate quantification of PET signal. Thus far, only the metabolite of one 

clinically-applied amyloid PET radiotracer, [18F]FDDNP was reported to cross the BBB [Yaqub 

et al., 2009]. For tau radiotracer, radiolabeled metabolites of [11C]PBB3 [Kimura et al., 2015] was 

reported to cross the BBB. Although metabolite analysis is important, reliable methods of 

predicting possible metabolites crossing the BBB has yet been identified or proposed.  

2.4 Summary 

In this chapter, the basic physiology and pathology of amyloid and tau proteins are explained, 

followed by spatial distribution of both amyloid and tau proteins with AD progression. The 

various biomarkers and existing clinical diagnosis of AD conditions are described to discriminate 

the terms used to define the various subject conditions. Lastly, existing clinically-applied amyloid 

and tau PET radiotracers are described with a discussion on the key issues observed in clinically-

applied amyloid and tau imaging to understand the possible complications in model development. 

Although overcoming these issues during model development is ideal, there are difficulties in 
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overcoming some of these issues, especially in predicting metabolites crossing the BBB. To 

develop an accuracy and precise model in predicting the in vivo performance of the radiotracers, 

careful consideration into the use of various types of in vitro and in silico parameters is important.
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Chapter 3  

Quantification of PET Images & 

Biomathematical Models 

Quantification of amyloid and tau PET images is affected by the methods of image processing 

and analysis. The basics of PET and some methods of quantification of PET images in amyloid 

and tau imaging are described. A brief description of some properties of successful PET 

radiotracers that are commonly evaluated during in vitro assay and preclinical phase of radiotracer 

development process is provided. Various biomathematical models exist but few were developed 

for the purpose of predicting the in vivo pharmacokinetic behaviour of diagnostic radiotracers. 

Although there are a few existing biomathematical models related to amyloid radiotracers, they 

were focused on predicting the changes in amyloid load with AD progression. Two such existing 

biomathematical models are discussed and compared in this chapter. 

3.1 Positron Emission Tomography (PET) 

In this section, the fundamentals of PET physics are described in the following order: starting 

from the physical basis of PET, data acquisition on the PET scanner, correcting the PET data and 

finally PET image reconstruction. 

3.1.1 Physical Basis of PET  

A positron (β+) is a positively-charged electron that is emitted from the nucleus of an unstable 

radioisotope due to the presence of excessive protons and a positive charge. After positron 

emission, the unstable radioisotope becomes stable by converting the proton to a neutron, hence 

removing the positive charge. The positron emitted from a radionuclide collides with a nearby 

electron to produce two photons or gamma rays of 511 keV (kilo-electro-voltage). This process 

is called annihilation (Figure 3.1). The gamma rays are emitted at approximately 180° to each 

other and the path that they travelled is called the coincidence line (Figure 3.1). It is the detection 

of the coincidence events that provide the unique scheme for forming tomographic images using 

the PET scanner.  
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Figure 3.1: Image of a PET scan with details of positron-emission annihilation. 

 

After the positron is emitted from the radionuclide, it travels some distance before colliding with 

an electron. The distance travelled is known as the positron range (Figure 3.1) and contributes to 

the uncertainty of the localisation of the decaying radionuclide. The higher the energy of the 

positron emitted, the larger the positron range. The list of commonly-applied radioisotopes in PET 

and their respective mean positron ranges and the half-lives of their isotopes are shown in table 

3.1. After annihilation, the emitted gamma rays may not travel at exactly 180° to each other. These 

two factors thus lead to lower spatial resolution of the PET scanner.  

 
Table 3.1: Commonly-applied positron emitting isotopes in PET studies [Valk et al., 2004] 

Isotopes t1/2 Mean Positron Range (mm) 
18F 109.8 min 0.6 
11C 20.4 min 1.1 
15O 2.04 min 2.5 
13N 9.97 min 1.5 

64Cu 12.7 hours 0.56 
68Ga 68.1 min 2.9 
124I 4.2 days 3.4 
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3.1.2 Data Acquisition  

In a PET scan, the radiolabeled compound is injected intravenously into the subject (radiolabeled 

syringe in Figure 3.1). The radiolabeled compound then travels throughout the human body into 

the various organs and undergoes various processes such as metabolism, absorption and excretion. 

The position of the radioisotope in the body reflects the distribution of the radioisotopes. It can 

be determined by detecting the photons emitted during the annihilation of positron emitted from 

radionuclide with a nearby electron in a PET scanner (Figure 3.1).  

 

Each 511 keV gamma-ray emitted is detected by the gamma detectors (Figure 3.1), which then 

converts the gamma rays into light photons. The light photon is converted into electrons, which 

then pass through a photon-multiplier tube (PMT) or semiconductor-based photodiodes, where 

the signal gets amplified and converted into electrical signals. The electrical signals from each 

detected event are recorded by the PET scanners, in terms of time of acquisition, the energy of 

each detected photons and the angular and linear positions of detecting an event. A time window 

is set on the PET scanner to identify coincidence events. 

 

All the coincidence events detected by the PET scanner are stored in either list-mode data format 

or sinogram data format. The list-mode format stores all coincidence events, while the sinogram 

format stores the averaged counts within a predefined time window or PET frame. List-mode data 

are rebinned into sinogram data after the PET scan with the user-defined time window.  

3.1.3 Data Correction 

Before the sinogram data is reconstructed into PET image, the data needs to be corrected for 

radioactive decay and effects of attenuation, scatter and random on photons (Figure 3.2). As the 

correction of the PET data is not the focus of this project, only the sources of error are described.  

 

Radioactive Decay 

All radioisotopes will undergo decay and the rate of decay is dependent on the half-life of the 

radioisotope (Table 3.1). The shorter the half-life, the faster the rate of radioactive decay, where 

the activity of the radionuclide, with a half-life of t1/2, after a time period, t is: 

𝐴𝑡 =   𝐴0𝑒
−𝜆𝑡, (1) 

where A0 is the initial radioactivity and λ = ln(2)/t1/2 
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Figure 3.2: Effects of attenuation, scatter and random. 

 

Photon Attenuation 

As the emitted gamma rays or photons travel through a medium to reach the detectors, the photons 

are either absorbed or scattered (Figure 3.2). This leads to a reduction in the number of 

coincidence photons detected by the PET detectors. The magnitude of photon attenuation is 

expressed as:  

 ∅ =   ∅0𝑒
−∫ 𝜇(𝑥,𝑦)𝑑𝑠

𝑠 , (2) 

where Ø0 and Ø are the numbers of incident and transmitted photons per unit area and ds is the 

differential thickness of the medium through which the annihilated photons travel along the path 

S. μ is the linear attenuation coefficient (cm-1), which is the probability that a photon will undergo 

an interaction when it passes through a unit thickness of tissue. The probability of photon 

attenuation is dependent on the photon energy, and the density and size of the object or medium 

through which the photons transverse. Therefore, a medium with a higher density or a greater size 

will result in a greater amount of photon attenuation. 

 

The attenuation correction (AC) of the PET data involves determining a μ-map, which consists of 

the spatial information of the μ-values of the object within the field of view (FOV) of the PET 

scanner [Zaidi et al., 2003]. AC methods can be classified into transmissionless and transmission 

methods. Transmissionless methods involve the application of a μ-map (1) containing a uniform 

distribution of specified μ-values within a known volume or (2) determined by the segmentation 

of the PET emission data [Zaidi et al., 2003]. Transmission methods require transmission imaging 

with (1) a single-photon source (e.g., 137Cs, 57Co), (2) a coincidence-photon source (e.g., 68Ge-
68Ga) or (3) X-ray CT, to determine the μ-map. The attenuation correction of a PET image is 

normally carried out using a CT image in clinical studies in a hybrid PET-CT scanner. MRI images 
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have also been used to correct for attenuation of PET images in a hybrid PET-MRI scanner. 

 

Photon Scattering 

Apart from attenuation, photons also undergo scattering as they travel through a medium (Figure 

3.2). The photons are scattered by Compton scattering, which is the interaction between an 

incoming photon with a loosely-bound outer shell electron, which resulted in a change in direction 

of the incoming photon and the ejection of the collided electron from the atom. The photon lost 

some of its energy to the electron, resulting in energy lower than 511 keV. This effect occurs in 

the energy range of 100 keV and 2 MeV.  

 

Random Coincidence 

The random effect occurs when two events from two different annihilation events are detected by 

the PET scanner as a coincidence event (Figure 3.2). This effect arises when the coincidence 

defined timing window is too large such that two temporally close events are detected as 

coincidence events. This leads to a false coincidence events and normally adds to background 

counts, hence reducing the signal-to-noise ratio (SNR) of the PET data. The random coincidence 

is commonly corrected using delayed time window or single count rate methods. 

3.1.4 Image Reconstruction 

The raw data from the list-mode data or, more commonly from the sinogram data, is reconstructed 

to form 3D/4D PET images. There are many reconstruction methods, of which filtered-back-

projection (FBP) is most commonly applied and is often used as a standard reconstruction method 

for PET scanner evaluation. Essentially, all the measured activities along each line-of-response 

(LOR) are back-projected through the image to obtain an approximation of the “true” image. LOR 

is the straight line connecting the centers of two gamma detectors. The use of back-projection 

results in star artefacts, which can be reduced by means of a high-pass filter, such as ramp, 

Hamming, Hanning etc. However, the use of a filter may also introduce additional degradation of 

the spatial resolution of the scanner (e.g. a filter with a too high cutoff value introduces noise).  

 

Although FBP is commonly applied and results in reliable quantitative PET image, the image is 

noisy and has poor SNR and hence poor image contrast for quantification of small regions of 

interest (ROIs). Other reconstruction methods exist, which relies on iterative algorithms such as 

Order-Subset Expectation Maximization (OSEM) and Maximum Likelihood Expectation 

Maximisation (MLEM). These reconstruction methods result in images of higher SNR due to 
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lower noise in the background but can be computationally intensive and time-consuming due to 

a large number of iterations required until an optimised solution can be obtained. 

 

There are no optimal reconstruction methods and some methods may be preferred over others 

depending on the SNR, consistency of the evaluated data across subjects, the processing time 

required, available reconstruction methods on the PET scanner etc. However, it is important to 

ensure all PET images analysed within a study are reconstructed using the same image 

reconstruction algorithm for accurate comparison. 

3.2 Quantitative Analysis of PET 

Quantitative analysis of PET images can be divided into two categories: (1) with plasma input 

function and (2) without plasma input function. In amyloid and tau imaging, standardised uptake 

values ratio (SUVR) is commonly employed as it does not require any plasma input function. In 

this section, SUVR, arterial blood sampling and analysis with plasma input function using one 

tissue and two tissues compartmental models are described. The derivation of distribution 

volumes ratio (DVR) and BPND are also explained.  

3.2.1 Standardised Uptake Values Ratio (SUVR) 

After image reconstruction on the PET scanner, images are transferred from the scanner to other 

computers for further image processing (Figure 3.3). This includes correcting for patient motion 

in dynamic 4D PET images, reducing noise and/or partial volume effect (PVE). The PET images 

are often co-registered to other images for anatomical information (e.g. MRI or CT image). Image 

processing can be carried out using available software, commercialised (e.g. PMOD), free (e.g. 

Statistical Parametric Mapping (SPM)) or in-house developed programs.  

 

Regions of interest (ROIs) are then drawn on a 3D or summed 4D PET images, or on anatomical 

images (e.g. MRI or CT images). ROIs are then applied to the static PET image to obtain the 

radioactivity concentrations in each ROI, or to the dynamic PET images to generate time activity 

curves (TACs) for each ROI (Figure 3.3). For PET brain imaging, important brain regions may 

be small and hence, high spatial resolution MRI images are acquired together with PET imaging 

to clearly delineate ROIs. ROIs can be generated in three ways: (1) manually drawn by an 

experienced operator, (2) semi-automatically using predefined small ROIs placed manually by an 

experienced operator, or (3) automatically using standardised atlas templates normalised to the 



Chapter 3: Quantification of PET Images & Biomathematical Models 
 

35 

 

subject’s MRI image. 

 

 
Figure 3.3: Process flow of acquisition, reconstruction and processing of PET Data, with arterial blood 

sampling to obtain plasma input function for full quantitative PET analysis. 

 

Standardised uptake value (SUV) is a semi-quantitative index reflecting the radioactivity uptake 

in a region or volume of tissues. It is calculated using the measured radioactivity concentration 

(Ct) in the ROI of the PET image, corrected for injected dose (ID, Bq) and normalised by the 

distribution volume of the tracer, using either body weight (BW) or body surface area (BSA) 

[Adams et al., 2010]: 

𝑆𝑈𝑉𝐵𝑊 =  
𝐶𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑
𝐼𝐷 / 𝐵𝑊 

 (3) 

 

As SUV is subjected to many factors, standardised uptake value ratio (SUVR) is often employed 

by taking the ratio of the SUV measured in the target to that of a reference region in a 3D PET 

image. In a dynamic PET scan, the radioactivity concentrations in an ROI is measured over time 

to generate the tissue time activity curves (TACs) (Figure 3.3). For some radiotracers, certain 

brain regions show only non-specific binding or low uptake due to the lack of target expression. 

These regions can be used as a reference region in SUVR evaluation. For example, in amyloid 

imaging, the cerebellum is often chosen due to the low amount of amyloid found in this region. 

SUVR is determined as the ratio of the area under the TAC curve of the target region to that of the 

reference region within a specified time window for dynamic 4D PET images.  
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𝑆𝑈𝑉𝑅 =  
𝑆𝑈𝑉𝑇𝑎𝑟𝑔𝑒𝑡

𝑆𝑈𝑉𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
=  

𝐴𝑈𝐶𝑇𝑎𝑟𝑔𝑒𝑡

𝐴𝑈𝐶𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
 (4) 

 

SUVR is a semi-quantitative method and is dependent on many factors such as the choice of time 

window and reference region. However, it does not require any arterial blood sampling, which it 

is invasive and painful to subjects. It can also be quantified using PET data acquired within a short 

period of time, thus reducing the burden on the subject to lie still. Moreover, it can be applied 

easily, which renders its application popular among physicians for the diagnosis of their patients. 

3.2.2 Arterial Blood Sampling 

Arterial blood samples are required to determine the input function for compartmental analysis of 

the PET images (Figure 3.3). An input function describes the concentration of the unchanged 

radiotracer in the arterial plasma or blood as a function of time. Arterial blood samples are 

collected either continuously using a blood pump and a gamma counter or discretely using 

manually drawn samples with a syringe (syringe filled in red colour in Figure 3.1). Continuous 

arterial blood sampling provides the full whole blood curve with time, while discrete blood sample 

provides only time-point measurements of the radioactivity concentrations in the blood.  

 

In a PET imaging study that requires arterial blood sampling, both PET data acquisition and 

arterial blood sampling often start instantaneously together after the intravenous injection of the 

radiolabeled compound into the subject. Continuous arterial blood sampling is generally preferred 

to capture the peak of the input function curve. If continuous sampling is not possible, many 

discrete samples are taken within short time interval at the beginning of the PET scan to capture 

the peak of the input function curve and few discrete samples are taken with longer time interval 

afterwards. A combination of both continuous sampling at the beginning of the PET scan and 

discrete blood sampling can also be applied to reduce the burden on subjects. 

 

A few discrete blood samples are still required to determine the plasma to whole-blood fraction 

and the parent-metabolite fraction. The plasma is separated from the whole blood from the 

discrete blood samples by centrifugation. The radioactivity concentration in the plasma is then 

measured with a gamma counter. The parent-metabolite fraction is then measured by 

chromatographic methods using the plasma samples. The whole blood radioactivity concentration 

curve is converted to the plasma radioactivity concentration curve (consists of both parent 

compound and its metabolites), which is then corrected for metabolites using the parent-
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metabolite fraction to obtain the plasma input function of the parent radiotracer. 

 

As arterial blood sampling is both painful and invasive to the subject being scanned, alternatives 

have been proposed using venous sampling and image-derived input function. These alternatives 

require correction to match the plasma input function generated using arterial blood sampling. In 

PET quantification where a reference region exists, blood sampling may not be required and 

reference kinetic modelling or semi-quantitative methods such as SUVR may be applied. However, 

for full PET quantification when no reference region exists, arterial blood sampling is required.   

3.2.3 Compartmental Models 

The pharmacokinetics of a radiotracer can be evaluated using compartmental models describing 

the uptake of the radiotracer from the arterial capillaries into the brain tissues, the washout of the 

radiotracer from the brain tissues into venous capillaries and the specific and/or non-specific 

binding to various targets in the brain tissues. Compartments are used to represent a biological 

space such as the plasma or brain tissues. The tissue compartment can be used to represent three 

conditions of the radiotracer in the brain tissues: freely-moving (CF), non-specifically bound (CNS) 

and specifically-bound (CS) (Figure 3.4), where C refers to the radioactivity concentration of the 

radiotracers under these conditions.  

 

  
Figure 3.4: One tissue, two-tissue and three-tissue compartmental models 

 

The radioactivity concentration measured from the PET image is a mixture of signals from the 

radiotracer under these three conditions in the tissue compartment and in the plasma compartment.  

The three behaviors of the radiotracer in tissues can thus be explained using the three-tissue 

compartments (3TCM) (Figure 3.4), whereby the radiotracer moves from the plasma 

compartment (CP) into the free compartment (CF) where it then either binds specifically (CS) or 
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non-specifically (CNS) to various targets in the brain tissues.  

 

In cases where the free and the non-specifically-bound (NSB) compartments equilibrate very 

rapidly, it can be difficult to distinguish these compartments. They act as a single compartment, 

known as the non-displaceable compartment (CND = CNS + CF). In this case, only two tissue 

compartment exist and is termed as 2TCM (Figure 3.4). Similarly, when the non-displaceable and 

specifically-bound compartments equilibrate very quickly, these compartments can be treated as 

a single compartment (CT = CS + CND) in the 1TCM (Figure 3.4). All the compartment models in 

figure 3.4 show reversible binding, whereby the radiotracer goes back to the compartment that it 

came from. In this case, equilibrium is achieved within the PET acquisition time. 

 

The transfer of the radiotracer from one compartment to another is represented by micro-

parameters, known as the rate constants (Figure 3.4). These rate constants describe the rate of 

change of the radiotracer concentration or the proportion of radiotracer moving into or out of one 

compartment per unit time. In PET kinetic models, rate constants are represented by ‘k’ and have 

the units of min-1 in the brain tissues. The rate of uptake of the radiotracer from the plasma (CP) 

is represented by K1 and has a unit of (mL of plasma/cm3 of brain tissues/min) to reflect its relation 

to the plasma compartment and capitalised to discriminate it from other rate constants.  

 

The 3TCM explains all the possible behaviour of a radiotracer in the tissues and is the ideal model 

for use. However, these rate constants can be difficult to estimate accurately due to the noise in 

the PET data. This is particularly so using the 3TCM where there are six rate constants to 

determine (Figure 3.4). Therefore, the 1TCM and 2TCM are generally used for evaluation. The 

respective rate of change of radioactivity concentrations of the CT, CS and CND compartments can 

be described using differential equations and rate constants:  

1TCM: 𝑑𝐶T(𝑡)

𝑑𝑡
=   𝐾1𝐶P(𝑡)− 𝑘2𝐶T(𝑡) 

(5) 

2TCM: 𝑑𝐶S(𝑡)

𝑑𝑡
=   𝑘3𝐶ND(𝑡)− 𝑘4𝐶S(𝑡) 

(6) 

 𝑑𝐶ND(𝑡)

𝑑𝑡
=   𝐾1𝐶P(𝑡)− 𝑘2𝐶ND(𝑡)− 𝑘3𝐶ND(𝑡) + 𝑘4𝐶S(𝑡) 

(7) 

 

The solutions to the above differential equations for 1TCM and 2TCM are as follows: 

1TCM: 𝐶T = 𝐾1 ∙ 𝑒
−𝑘2×𝑡  ⊗ 𝐶P (8) 
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2TCM: 𝐶T = CS +  𝐶ND 
(9) 

 𝐶T =  
𝐾1

(𝛽2 − 𝛽1)
[(𝑘3 + 𝑘4 − 𝛽1)𝑒

−𝛽1×𝑡 + (𝛽2 − 𝑘3 − 𝑘4)𝑒
−𝛽2×𝑡]⊗ 𝐶P + 𝑉B𝐶P 

where 𝛽1/2 =
(𝑘2+𝑘3+𝑘4)∓ √(𝑘2+𝑘3+𝑘4)

2−4𝑘2𝑘4

2
, VB = fractional blood volume 

 

In kinetic modelling, the total radioactivity counts in the tissues from PET image (CT) is fitted 

using an appropriate tissue compartment model (Figure 3.4) with the input function measured 

from arterial blood sampling (CP). The rate constants are then estimated from the solutions of the 

differential equations by minimising the residual sum of squared errors using nonlinear least 

squares. The model that resulted in the best fit to the measured PET data is then determined using 

selection criteria such as Akaike Information Criterion (AIC), Schwarz Criterion (SC), and F-test. 

 

Due to the huge variations in the estimated rate constants, macro-parameters, such as the volumes 

of distribution and binding potentials are often estimated to determine the behaviour of the 

radiotracers. The volume of distribution (VT, mL.cm-3) represents the volume of the radiotracer 

distributed in a tissue compartment (CT) that is equivalent to the volume of radiotracer distributed 

in plasma compartment (CP) at equilibrium. It can be derived from using the rate constants from 

1TCM and 2TCM respectively: 

1TCM: 𝑉T =
𝐾1
𝑘2

 (10) 

2TCM: 𝑉T =  
𝐾1
𝑘2
 (1 +

𝑘3
𝑘4
) (11) 

 

For some radiotracers, reference regions exist when there are certain brain regions that do not 

have the target of interest. The distribution volume ratio (DVR, unitless) can be derived from the 

ratio of the volume of distribution (VT) in the target region to that of the reference region. 

𝐷𝑉𝑅 =  
𝑉T,target

𝑉T,reference
 (12) 

 

Binding potential (BP) represents the radioactivity concentrations of the specifically-bound 

compartment to that of a reference compartment. Three forms of BP exist, namely BPF, BPP and 

BPND, whereby the subscript represents the reference compartments of the free radiotracer in the 

tissue compartment, parent radiotracer in plasma (free and plasma protein bound) and non-

displaceable compartments. Depending on the target of interest and the type of radiotracer, these 
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parameters are determined accordingly. BPND and DVR are macro-parameters that reflect the 

binding to the target and accounts for changes in blood flow unlike SUVR (section 3.2.1). In 

amyloid and tau imaging, BPND is commonly evaluated, which represents the ratio of the 

radioactivity concentration in the specifically-bound compartment to that of the nondisplaceable 

compartment. BPND can also be estimated using DVR, where DVR = VT/VND in 2TCM. 

𝐵𝑃ND =  
𝐶S
𝐶ND

=  
𝑉S
𝑉ND

 =  
𝑉T − 𝑉ND
𝑉ND

= 𝐷𝑉𝑅 − 1 (13) 

3.3 Properties of Successful PET radiotracers 

To predict the in vivo pharmacokinetics performance of a radiotracer, the key physicochemical 

and pharmacological parameters of the radiotracer needs to be identified. Properties of successful 

PET radiotracers commonly evaluated during in vitro testing are described in this section.   

   

A successful PET radiotracer must be able to reach the target sites. For target sites within the brain, 

the radiotracer needs to be able to cross the blood-brain-barrier (BBB). The uptake across the 

BBB is commonly described by the Renkin and Crone model (Figure 3.5). It describes the 

relationship between blood flow or perfusion, f and the amount of substance crossing the BBB, 

as represented by the product of permeability (P) and the capillary surface area (S).  

 

 
Figure 3.5: Renkin and Crone Model 

 

The most common route of transport from the capillary into the brain tissues across the BBB is 

by passive diffusion. However, the hydrophilic phosphate head and the hydrophobic tails of the 

lipid bilayer prevents molecules that are too hydrophobic or too hydrophilic from crossing the 

BBB (Figure 3.6). Moreover, the tight junction between the endothelial cells and tight packing of 

the lipid bilayer prevent large molecules from crossing the BBB (Figure 3.6). Thus, permeability 
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is dependent on the lipophilicity and size of the compound molecule for passive diffusion across 

the BBB. 

 
Figure 3.6: The blood-brain-barrier (BBB). 

 

A PET radiotracer must be able to be administered safely at tracer dose without any toxic or side 

effects. To accurately measure the target of interest, the radiotracer needs to have high selectivity 

for the target of interest and preferably have high specific to nonspecific binding ratio. The 

binding affinity of the radiotracers to target sites are normally represented using the dissociation 

constant, KD, which is the inverse of binding affinity. The binding of the radiotracers to the target 

sites is also dependent on the target binding site concentrations, Bavail. If there is low target binding 

site concentration, high amount of binding to non-specific or other specific binding sites will 

occur. This will lead to inaccurate measurement of the target of interest. 

 

Free fraction in plasma (fP) and free fraction in tissue (fND) are important parameters in drug 

discovery and development since the free drug hypothesis was proposed and accepted. The free 

drug hypothesis states that only the free or unbound drug is available for distributions and 

interactions and hence it is the free drug and not the total drug that is able to exert the 

pharmacological effect at the target region (Figure 3.7) [Wan et al., 2007; Di et al., 2011, Zhang 

et al., 2012].  

 

Within the blood stream, the radiotracer may bind to the plasma proteins and high protein binding 

leads to lower amount of radiotracer crossing the BBB (Figure 3.7). The fraction of free 

radiotracers that can cross the blood-brain-barrier is represented by the free fraction in plasma, fP. 
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Similarly, within the tissues, those that free-moving or binding nonspecifically to non-specific 

sites are represented by the free fraction in tissues, fND (Figure 3.7). At equilibrium, the ratio of 

the free drug concentrations will be the same in both tissues and plasma at equilibrium for 

passively-diffused drugs [Di et al., 2011], which is also equivalent to the rate of uptake to the rate 

of clearance [Guo et al., 2009]. 

 
Figure 3.7: Free drug hypothesis showing that only free or unbound drug/radiotracer is available for 

distributions and interactions, as well as the binding of drug/radiotracers to plasma protein within the blood 

stream and to target sites within the brain tissues. 

 

Although the free fractions in plasma and tissues are deemed important parameters for evaluation, 

they are not as commonly measured during in vitro and preclinical testing phase. This is because 

in vitro measurements of these two parameters via the gold standard, equilibrium dialysis (section 

4.3) are time-consuming and tedious and may be subjected to huge variations in measurements. 

Dissociation constant, binding sites concentrations and lipophilicity are more commonly reported 

in literature, compared to free fractions in plasma and tissues.  

3.4 Biomathematical Models for Radiotracer Development 

The purpose of this project is to develop a biomathematical model to support the development of 

amyloid and tau radiotracers. Although quite a number of biomathematical model exists, most 

were either developed to support other types of radiotracer development (e.g. Central Nervous 

System, CNS) or to predict disease progression. In this section, two biomathematical models are 

described. The first is a biomathematical model developed to predict the in vivo pharmacokinetics 
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performance of CNS radiotracers in terms of BPND, using a simplified 1TCM. The second applies 

4-tissues-compartmental models to simulate the binding selectivity required for tau radiotracers 

such that the measured PET data clearly reflects tau binding and not amyloid binding.  

 

The focus of this section is to compare and determine the backbone of a biomathematical model 

for amyloid radiotracers. Thus, only a brief explanation on the various physicochemical and 

pharmacological parameters of a radiotracer is provided. Details are provided in the next chapter.  

3.4.1 Guo’s CNS Model  

Guo et al. [2009] developed a biomathematical model (Figure 3.8) to predict the in vivo kinetic 

performance of radiotracers targeting the CNS. The model was based on the simplified 1-tissue-

compartment model (1TCM), with a simple uptake and washout from the reference region without 

any binding, while the target region showed binding to targets with similar uptake and washout 

as the reference region (Figure 3.8).  

 

 
Figure 3.8: Overview of Guo’s CNS biomathematical model.  
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Guo’s biomathematical model comprises of three sections starting with the (1) determination of 

important physicochemical and pharmacological parameters of the radiotracer for (2) prediction 

of 1TCM kinetic parameters of K1, k2 and BPND to (3) simulate TACs of the target and reference 

regions using the respective plasma input functions (Figure 3.8). The in vivo performance of each 

radiotracer was assessed using Monte Carlo simulations by varying the predicted K1 and k2 values 

to obtain 1000 estimated BPND values and determining the coefficient of variance (COV) (section 

6.1.1). 

 

The basic assumptions underlying compartmental modelling are applied: (1) the radiotracer 

concentration in the compartment is homogeneous, (2) physiological processes and molecular 

interactions are constant, (3) all compartments equilibrate quickly, and (4) the radiotracers cross 

the BBB by passive diffusion [Guo et al., 2009]. A standard plasma input function was applied 

for simulation, which was shown to have little impact on outcome BPND values.   

3.4.1.1 Inputs of Biomathematical Model 

Guo et al. [2009] identified two in silico and four in vitro physicochemical and pharmacological 

parameters of a radiotracer that would affect its in vivo performance (Figure 3.8) [Guo et al., 

2009]. In silico data refers to data that are determined via computer simulations. In vitro data are 

determined from experiments measured using microorganisms, cells or tissues, while in vivo data 

are measured within the living subjects by means of medical imaging equipment. 

 

Lipophilicity is represented by calculated LogD (CLogD, unitless), which is the in silico logarithm 

of the distribution coefficient of all species (neutral and ionized) of a compound between octanol 

and water at equilibrium (section 4.1). The molecular volume of the radiotracer is represented by 

McGowan Volume (Vx, cm3/mol/100). CLogD and Vx were generated based on the chemical 

structure of the CNS radiotracer using GlaxoSmithKline’s in-house software [Guo et al., 2009]. 

 

Free fraction in plasma (fP, unitless) and free fraction in tissue or in the non-displaceable 

compartment (fND, unitless) were determined via equilibrium dialysis using Yorkshire/Danish 

Landrace pig blood and brain tissues [Guo et al., 2009]. The equilibrium dissociation constant or 

the inverse of binding affinity (KD, nM) was determined from in vitro binding assays measured 

using human or rat brain homogenates. The in vitro target density or receptor site concentration 

(Bmax, nM) was obtained from the literature, measured using human brain homogenates via 

saturation binding assays. 
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The two known physiological parameters, perfusion and capillary surface area, were input as fixed 

values. Perfusion (f = 0.6 mL/cm3/min) is the volume flux per tissue volume [Guo et al., 2009; 

Cumming et al., 2003]. Capillary surface area (S = 150 cm2/g of the brain) is the luminal area of 

the brain vascular space [Guo et al., 2009; Summerfield et al., 2007]. Two correction parameters, 

apparent aqueous volume in plasma (Vaq_P = 0.98 solvent/mL of plasma) and tissue (Vaq_T = 0.9 

solvent/mL of tissue) were included to correct for the differences in volumes of the two chambers 

in equilibrium dialysis, where Vaq_P/Vaq_T = 1.08. 

3.4.1.2 Derivation of 1TCM Parameters 

For each radiotracer, the six in silico and in vitro physicochemical and pharmacological 

parameters were used to derive the 1TCM kinetic parameters (Figure 3.8). These parameters were 

the influx rate constant from arterial capillaries to brain tissue (K1), efflux rate constant from brain 

tissue to venous capillary (k2), and nondisplaceable binding potential of the radiotracer to the 

target molecules (BPND).  

 

Influx rate constant (K1, mL/cm3/ min) was derived using modified Renkin and Crone equation 

(section 3.3), with compound-specific permeability (P, cm/min) and fixed values of f and S [Guo 

et al., 2009].  

𝐾1 = 𝑓 (1 − 𝑒
−
𝑃𝑆
𝑓 )  (14)

 

A scaling factor of 3.43 was included to account for the difference between the predicted and in 

vivo K1 values determined from the PET images of pigs. The permeability (P, cm/min) was then 

derived from the simplified Lanevskij’s permeability model [Lanevskij et al., 2009] using CLogD 

and Vx, with the regression parameters determined using the nonlinear least squares minimization 

algorithm to yield the best fit between the predicted and experimental data [Guo et al., 2009]:  

𝑃 =  10−0.121(C𝐿𝑜𝑔𝐷 −2.298)
2
 −2.544log (𝑉x

1/3)−2.525  (15)

  

The efflux rate constant (k2, min-1) was derived based on the assumption that the ratio of the free 

concentrations of the radiotracer in the plasma and tissue compartments were consistent across 

the BBB at equilibrium. Simplifying the equilibrium model, k2 can be calculated using K1, fp and 

fND [Guo et al., 2009]:  
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𝑘2 =  
𝑓ND
𝑓P

∙ 𝐾1 ∙
𝑉aq_P

𝑉aq_T
  (16)

 

Based on Mintun’s equation [Mintun et al., 1984], the in vivo nondisplaceable binding potential, 

(BPND, unitless) at tracer dose can be derived using Bmax, fND and KD [Guo et al., 2009]. 

𝐵𝑃ND =  𝑓ND  ∙  
𝐵max

𝐾D
   (17) 

3.4.1.3 Simulations of the Tissue Time Activity Curves 

The predicted 1TCM kinetic parameters, K1, k2 and BPND, were used to simulate the time activity 

curves (TACs) in the reference (Cref) and target (Ctarget) regions (Figure 3.8). The metabolite-

corrected, arterial plasma input functions (IF) were measured from pigs injected with the 

respective radiotracers during PET imaging [Guo et al., 2009]. 

C𝑟𝑒𝑓 = 𝐾1 ∙ 𝑒
−𝑘2×𝑡  ⊗  𝐼𝐹  (18) 

C𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐾1 ∙ 𝑒
−

𝑘2
(1+𝐵𝑃ND)

×𝑡
 ⊗  𝐼𝐹  (19) 

 

3.4.2 Schafer & Kim’s Model 

Schafer & Kim et al. [2012] developed a 4TCM model and an input function model to determine 

the selectivity requirements of tau radiotracers to ensure accurate measurements of tau binding. 

The 4TCM consists of a free compartment (FT), a non-specific (NS) binding compartment, two 

specific binding compartments to Aβ and NFT (τ) (Figure 3.9). The models developed were based 

on the assumptions that (1) the radiotracers cross the BBB by passive diffusion, (2) blood flow to 

and from the capillaries is limited and mediated by transfer rate constant Ktran, (3) the radiotracer 

binds reversibly to specific binding sites on Aβ plaques and NFTs, and to non-specific binding 

sites homogeneously, (4) radiotracer binds to each binding sites with 1:1 stoichiometry and (5) 

the occupancy of any given site does not influence binding to others. 

 

Due to the lack of kinetic data for tau radiotracers when the model was being developed in 2012, 

the data used for development was obtained from the clinical study of 1 AD subject injected with 

the amyloid radiotracer, [11C]PIB. The rate constants were determined from simulations by (1) 

fitting the plasma input function with an input function model and (2) fitting the TACs of PET 

images with the proposed 4TCM. 
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Figure 3.9: Overview of Schafer & Kim’s 4TCM biomathematical model. 

3.4.2.1 Input Function Model 

The arterial plasma radioactivity-time curve following a bolus injection was modelled using a 

growth function and a tri-exponential decay function respectively to represent the uptake of the 

radiotracer following bolus injection and washout of the radiotracer from the blood stream 

[Schafer & Kim et al. 2012]: 

𝐶𝑃(𝑡) =  
𝑎

1+  𝑒−[
(𝑡−𝑡𝑖)
𝑏

]
 for t < ҭ (20) 

𝐶𝑃(𝑡) =  𝛼1𝑒
−𝛽1(𝑡−ҭ) + 𝛼2𝑒

−𝛽2(𝑡−ҭ) +  𝛼3𝑒
−3(𝑡−ҭ) for t > ҭ (21) 

where t is the post-injection time (min), ti is the inflection point corresponding to the time of 

maximum growth rate, ҭ is the time to peak activity concentration, a and α1-3 are coefficients and 

b and β1-3 are time coefficients. 

3.4.2.2 4TCM    

The rates of change in radioactivity concentrations of the radiotracer (C, Molar (M)) in the free 

(CFT), NSB (CNS) and specific binding to amyloid (CS.Aβ) and tau (CS.τ) compartments are 

represented by differential equations established based on the receptor-ligands interaction 

[Schafer & Kim et al., 2012]:  
𝑑

𝑑𝑡
(𝐶FT) =  𝑅tran(𝑓P𝐶P − 𝐶FT)−  𝑟1𝐶FT𝐵avail∙NS + 𝑟2𝐶NS  −  𝑟3𝐶FT𝐵avail∙Aβ

+ 𝑟4𝐶S∙Aβ  −  𝑟5𝐶FT𝐵avail∙𝜏 + 𝑟6𝐶S∙𝜏 
(22) 
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𝑑

𝑑𝑡
(𝐶NS) =  𝑟1𝐶FT𝐵avail∙N𝑆 + 𝑟2𝐶NS  (23) 

𝑑

𝑑𝑡
(𝐶S∙A𝛽) =  𝑟3𝐶FT𝐵avail∙A𝛽 − 𝑟4𝐶S∙A𝛽 (24) 

𝑑

𝑑𝑡
(𝐶S∙𝜏) =  𝑟5𝐶FT𝐵avail∙𝜏 − 𝑟6𝐶S∙𝜏 (25) 

 

In addition to determining the rate of change in radioactivity concentrations of the radiotracer in 

the various compartments, the model also included the rates of change in the concentrations of 

available binding sites (B, Molar (M)) of non-specific targets (Bavail.NS), amyloid (Bavail.Aβ) and tau 

(Bavail.τ) [Schafer & Kim et al., 2012]:  
𝑑

𝑑𝑡
(𝐵avail∙NS) =   −  𝑟1𝐶FT𝐵avail∙NS + 𝑟2𝐶NS 

(26) 

𝑑

𝑑𝑡
(𝐵avail∙A𝛽) =   −  𝑟3𝐶FT𝐵avail∙A𝛽 + 𝑟4𝐶S∙A𝛽 

(27) 

𝑑

𝑑𝑡
(𝐵avail∙𝜏) = −𝑟5𝐶FT𝐵avail∙𝜏 + 𝑟6𝐶S∙𝜏 

(28) 

 

r1, r3 and r5 (M-1min-1) are association rate constants of the radiotracer to NSB sites, specific Aβ 

and tau binding sites respectively. r2, r4 and r6 (min-1) are dissociation rate constants of radiotracer 

from NSB sites, specific Aβ and tau binding sites respectively. Rtran (mL/min/cm3) is the transfer 

rate constant for passive bidirectional diffusion of free radiotracer across the blood brain barrier. 

It can be determined simultaneously with the plasma free fraction (fP, unitless) using the modified 

Kety-Rekin-Crone equation with fixed cerebral blood flow rate (F = 0.6 mL/min/cm3) and 

compound-specific permeability-surface area product (PS, cm3/min/g of tissue) [Mandula et al., 

2006]:  

𝑅tran = 𝐹(1 − 𝑒−𝑓P∗𝑃𝑆/𝐹) (29) 

𝐾in ≈ 𝑅tran ∗  𝑓P (30) 

 

Compound-specific permeability-surface area product (PS) was calculated using the relationship 

with lipophilicity (LogP, unitless) and topological surface area (TPSA, Å2) [Liu et al, 2004]: 

𝐿𝑜𝑔𝑃𝑆 = 2.19  − 0.262𝐿𝑜𝑔𝑃  − 0.0089𝑇𝑃𝑆𝐴 (31) 

 

miLogP (Molinspiration lipophilicity, section 4.1.1) was used to represent lipophilicity. Both 

miLogP and TPSA were determined using Molinspiration Property Calculation service (Slovak 
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Republic). The value of F was extracted from literature [Cumming et al., 2003] and was similar 

to that in Guo’s model. Kin is the unidirectional brain uptake constant describing the influx of the 

radiotracer (mL/min/cm3). Its value was obtained from the K1 value reported in the literature 

[Price et al., 2005]. Equation (30) assumes that the association and dissociation of the radiotracer 

from the plasma protein are sufficiently rapid such that the radiotracer is at equilibrium throughout 

the entire arteriole and venous capillary beds. 

3.4.2.3 Data Fitting and Simulation 

Dynamic [11C]PIB PET data of 1 AD subject (AD3: 77 years old, male, MMSE score: 26/30) with 

the respective plasma input function (CP) taken from Price et al., [2005]. PET dynamic data was 

fitted using the 4TCM equations with a local optimisation algorithm simplexSB in Systems 

Biology Toolbox v.2 and Matlab v.R2011b.  

 

The coefficients of a and α1-3 and time coefficients b and β1-3 were determined by fitting the CP 

with the input function model using equations (20) and (21). The initial estimates of Bavail·NS, r1 

and r2 were determined by fitting the TAC of the reference region, cerebellum [Price et al., 2005], 

with r3, r4, Bavail⋅Aβ, r5, r6 and Bavail⋅τ set to 0. 

 

Simulations were carried out by varying the values of Bavail·NS, r1, r2, r3, r5 and r6 to fit the TAC of 

the target region of posterior cingulate gyrus to predict CS.Aβ, CS.τ and CNS and the final values of 

these parameters. The initial estimates of Bavail·NS, r1, r2, Rtran, fp and fixed r4 (0.015 min-1) were 

applied accordingly. The binding affinities to NSB sites and specific Aβ and tau binding sites were 

determined from the predicted values of the association and dissociation rate constants and 

expressed in terms of dissociation constants (KD, M):  

𝐾D.NS = 𝑟2/𝑟1 (31) 

𝐾D∙Aβ = 𝑟4/𝑟3 (32) 

𝐾D∙τ = 𝑟6/𝑟5 (33) 

 

The nondisplaceable binding potential, (BPND, unitless) was determined from the ratio of Cs and 

CND from the TACs of the target (posterior cingulate gyrus) and reference (cerebellum) regions, 

where Cs consists of both Cs.Aβ and Cs.τ, while CND consists of CFT and CNS. 

𝐵𝑃ND = 𝐶S/𝐶ND (34) 
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The quality of the fit was estimated from the errors in fitting the clinical data of plasma, reference 

and target regions using the standard deviation (Sn) of the distribution of errors eK: 

𝑆n =  √
∑ (𝑒K − 𝐸)

2𝑛
𝑘=1

𝑛 − 1
 (35) 

where n is the number of data points within the time period of consideration and E is the empirical 

mean of the distribution of errors. The time period of consideration was not clearly stated but the 

dynamic data of a 90 min PET scan was used. 

3.4.3 Comparison of Biomathematical Models 

Schafer & Kim’s model [2012] included the compartments of NSB and specific binding to both 

Aβ and tau proteins. Their model also included a model to determine the arterial input function 

specific to each radiotracer. However, their model was developed using clinical data from an AD 

subject injected with the amyloid radiotracer, [11C]PIB to simulate the performance of tau 

radiotracer. The behaviour of the amyloid and tau radiotracers might be different and the model 

required the determination of eight parameters in the input function model and seven rate 

constants with other inputs (e.g. fP, Kin, TPSA, miLogP) with known data of plasma input function 

and TACs from dynamic PET images. The rate constants are micro-parameters and thus, are 

subjected to huge variations.  

 

Although the predicted results appeared to be relatively close to reported values for [11C]PIB 

[Schafer et al., 2012], the initial estimates were obtained from reported values [Price et al., 2005]. 

The use of known data of plasma input function and TACs from dynamic PET images limited its 

use for high-throughput screening. Few physicochemical and pharmacological parameters of the 

radiotracer were included to fully evaluate the radiotracer. On the whole, although the model 

considered the various behaviour of the radiotracer, the determination of required parameters is 

tedious and time-consuming and not feasible for high-throughput screening of radiotracers. 

 

Guo’s biomathematical model was focused on using the various key physicochemical and 

pharmacological parameters of the radiotracer to predict its in vivo kinetic performance (section 

3.3). Although the model uses 1TCM, the binding of the radiotracer to one target was considered 

and involved only the prediction of macro-parameters, which were subjected to a less amount of 

variations. The model worked well in predicting the in vivo K1 and k2 parameters of CNS 

radiotracers, even though kinetic evaluation showed that 2TCM yielded better fits to measured 
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clinical PET data. For amyloid radiotracers, 2TCM was reported to better represent the 

pharmacokinetics of radiotracer. Regardless, a simpler model with high precision and reasonable 

accuracy will yield more comparable results. Moreover, there is less concern regarding the 

specific binding to tau due to the much higher concentration of amyloid plaques in AD brain. 

Furthermore, the fibrillary amyloid plaques are present extracellularly while NFT is present 

intracellularly. However, the simplified 1TCM might not accurately predict the in vivo kinetic 

performance of tau radiotracers. 

 

Guo’s model did not include the prediction of plasma input function but used existing known 

input functions of pigs to evaluate the performance of radiotracers. Although Schafer & Kim’s 

model included a model for predicting plasma input function, it also required existing plasma 

input function to determine the parameters of interest. Moreover, there is no suitable or reliable 

model available to predict the in vivo plasma input function of the radiotracers and hence the 

possibilities of metabolites crossing the BBB cannot be determined. On the whole, Guo’s model 

is more suitable to fully predict and evaluate the in vivo pharmacokinetics performance of amyloid 

radiotracers based on its physicochemical and pharmacological parameters. 

 

Computational models exist to predict the physicochemical and pharmacological properties of 

radiotracers and drugs but they were developed using limited compounds with the exclusion of 

amyloid and tau radiotracers. As such, the in silico physicochemical and pharmacological 

parameters predicted from the various models need to be evaluated with in vitro parameters of 

amyloid and tau radiotracers where applicable to ensure accurate and comparable results. Input 

parameters required in Guo’s model, such as fP and fND are not available for clinically-applied 

amyloid radiotracers, while CLogD and Bmax are predicted using in-house software. Other means 

of determining these input parameters are required. Further work is required to employ Guo’s 

model for screening of amyloid and tau radiotracers. 

3.5 Summary 

The basics of PET and common methods of PET quantification in amyloid and tau imaging are 

explained in details, particularly SUVR and the kinetic models. These kinetic models are required 

to develop the biomathematical model for predicting the in vivo kinetic performance of amyloid 

and tau radiotracers. Two existing biomathematical models for simulating the kinetic performance 

of radiotracers were described and compared. On the whole, Guo’s biomathematical model 
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showed good potential with good precision and accuracy. However, more work is required to 

apply the model to the screening of amyloid and tau radiotracers. 
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Chapter 4  

Determination of Physicochemical & 

Pharmacological Parameters 

Guo et al. [2009] used in-house software to determine the values of CLogD and Vx, hence other 

sources to obtain lipophilicity and molecular volume are required. The in vitro fP and fND values 

of amyloid radiotracers are not available, hence an in silico model is required to determine these 

values. In vitro KD values can be obtained from the literature but they are measured using different 

protocols. A selection criterion is thus required to ensure the use of comparable KD values to yield 

consistent results. The measured concentrations of the target sites on Aβ varied within and across 

HC, MCI and AD conditions. Hence, representative concentrations of the target sites on Aβ under 

HC, MCI and AD conditions need to be determined.  

 

This chapter further describes the six physicochemical and pharmacological parameters: 

lipophilicity (LogP), molecular volume (Vx), free fraction in plasma (fP), free fraction in tissue 

(fND), dissociation constant (KD) and the concentrations of the target sites on Aβ under HC, MCI 

and AD conditions (Bavail). In vitro methods applied to measure fP, fND, KD and Bavail are also 

described. An in silico model for predicting fP and fND values is developed and validated using fP 

values measured via ultrafiltration. This chapter focuses on the determination of representative in 

silico lipophilicity (LogP), molecular volume (Vx), free fraction in plasma (fP), free fraction in 

tissue (fND), in vitro KD values from literature with a selection criteria, and representative 

concentrations of the target sites on Aβ under HC, MCI and AD conditions (Bavail) for each 

amyloid radiotracer.  

4.1 Lipophilicity  

Lipophilicity is the ability of a chemical compound to dissolve in fats. It affects the kinetic and 

dynamic behaviour of a radiotracer and/or drug and is commonly evaluated in the conventional 

development process [Mannhold et al., 2009]. Lipophilicity is commonly represented by the 

partition coefficient P, which is the ratio of the concentrations of a neutral compound in the 
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organic and aqueous phases at equilibrium [Mannhold et al., 2009]. However, ionizable 

compounds may be partially ionised at different pH, which will affect its lipophilicity. The 

distribution coefficient, D includes the contributions of both neutral and ionised species of the 

compound and hence is more representative of the lipophilicity of the compound at the desired 

pH environment (e.g. blood pH of 7.4). Both coefficients are applied mostly in the logarithmic 

forms of LogP and LogD. According to Ro5, the lipophilicity of successful compounds typically 

have LogP < 5 or MLogP < 4.15 or 0 < LogD < 3 [Lipinski et al., 2004].  

 

The in vitro measurements of lipophilicity are tedious, time-consuming and may suffer from low 

precision and/or accuracy depending on the measurement methods. Over the years, many in silico 

models have been developed for the cost-effective determination of the lipophilicities of various 

types of radiotracers and drugs during the development process. Regardless of the types of in 

silico models, they were developed by correlating the in silico and in vitro LogP or LogD values, 

using mostly CNS drugs. As such, different models led to different in silico LogP and LogD values, 

which may not be representative of the lipophilicities of the amyloid radiotracers. Some models 

are unable to derive lipophilicity values for certain chemical structures. This is due to the limited 

types of chemical structures included in the model or the limited number of measured lipophilicity 

values used in the development of the model, especially for in silico LogD models. 

 

In this section, 10 different in silico lipophilicities (8 LogP and 2 LogD) from different software 

are described. Their values are then compared with in vitro lipophilicity values from literature to 

determine the representative in silico lipophilicity for amyloid radiotracers. The results are also 

compared to the comprehensive evaluation results of available in silico models by Mannhold et 

al. [2009]. 

4.1.1 In Silico Lipophilicity 

In silico LogP and LogD models were developed based on either substructure or physical 

properties of the compound. Substructure-based methods divide the compounds into atoms or 

fragments and sum up the respective substructure contributions to derive LogP or LogD 

[Mannhold et al., 2009]. Correction factors for possible interactions between the different 

fragments or types of bonds may be included. Property-based methods identify certain physical 

properties of a compound and summed up the contributions of these properties to derive LogP or 

LogD. However, physical properties (e.g. polarizability, Gibbs energy) of compounds need to be 

measured and thus property-based models were developed using a smaller number of compounds. 
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This may lead to lower accuracy compared to substructure-based models with lower feasibility of 

predicting new compounds. As such, substructure-based models are chosen for predicting the 

lipophilicity of amyloid radiotracers. This subsection describes the 10 different in silico 

lipophilicity models (8 LogP and 2 LogD) (Table 4.1).  

 
Table 4.1: Overview of 10 different in silico lipophilicity models (8 LogP and 2 LogD) 

LogP/ 
LogD 

In Silico 
Model Software Substructure  

/ Property Details Software Link 

LogP 

CLogP Biobyte Substructure Fragmental http://www.biobyte.com/index.html 

LogP ChemBioOffice Substructure Atom-based http://www.cambridgesoft.com/servic
es/documentation/sdk/ 

ALogP dproperties Substructure Fragmental http://talete.mi.it/ 
MLogP dproperties Substructure Atom-based http://talete.mi.it/ 

miLogP Molinspiration Substructure Fragmental http://www.molinspiration.com/servi
ces/logp.html 

LogP ACD/ 
ChemSketch  Substructure Fragmental http://www.acdlabs.com/resources/fr

eeware/chemsketch/ 

MLogP MedChem 
Designer Substructure Fragmental 

http://www.simulations-
plus.com/software/medchem-
designer/ 

LogP+S MedChem 
Designer Substructure Fragmental 

http://www.simulations-
plus.com/software/medchem-
designer/ 

LogD 

CLogD ACD/ 
ChemSketch Substructure Fragmental http://www.acdlabs.com/resources/fr

eeware/chemsketch/ 

LogD+S MedChem 
Designer Substructure Fragmental 

http://www.simulations-
plus.com/software/medchem-
designer/ 

 

(1) CLogP (Biobyte, Part of ChemBioOffice, Perkin Elmer, US) 

Calculated LogP (CLogP) is a substructure-based method, which divides a compound into 

fragments, based on the interaction of carbon atoms with other elements and the associated bonds. 

The model was developed using 8162 in-house measured LogP (also known as Starlist). 

 

(2) LogP (ChemBioOffice, Perkin Elmer, US) 

LogP is a substructure-based method, which divides a compound into fragments using three 

methods: 94 atomic contributions evaluated using 830 molecules, 120 atomic contributions 

evaluated using 893 molecules or 222 atomic contributions calculated using 1868 molecules by 

least squares analysis. LogP values derived using the 1st fragmentation was applied in this study. 

 

(3) ALogP (dproperties, Talete, Italy) 

Ghose-Crippen-Viswanadhan Approach (ALogP) is a substructure-based method using the 
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hydrophobicity contributions of 115 atom types, without any correction factors [Ghose and 

Crippen et al., 1986]: 

𝐴𝐿𝑜𝑔𝑃 =  ∑𝑛𝑖𝑎𝑖
𝑖

 (36) 

where n is the number of the atom of type i and ai is the corresponding hydrophobicity constant. 

The model was evaluated using 3,576 molecules with known experimental LogP values from NCI 

Open Database and is only applicable to compounds with C, H, O, N, S, Se, P, B, Si, and halogens 

atoms [Mauri et al., 2006]. 

 

(4) MLogP (dproperties, Talete, Italy) 

Moriguchi LogP is a property-based method using simple topological descriptors developed by 

Moriguchi et al., [1992]. Moriguchi et al. used 1230 compounds and identified lipophilic atoms 

and hydrophilic atoms as key parameters affecting lipophilicity and 11 correction parameters to 

account for the variance [Lipinski et al., 2001]:  

 

(5) miLogP (Molinspiration, Molinspiration Cheminformatics, Slovak Republic) 

miLogP is a substructure-based method using group contributions from 35 small basic fragments 

[Mannhold et al., 2008]. The model was developed by fitting the calculated LogP with 

experimental LogP from a training set containing more than twelve thousand compounds, of 

which most were drug-like molecules. 

 

(6) LogP (ChemSketch, Advanced Chemistry Development (ACD), Canada)  

ACD/LogP is a substructure-based method based on the principle of isolating carbons. LogP is 

derived by summing up the contributions from atoms, structural fragments, and intramolecular 

interactions. The model was developed using 3601 compounds. [Petrauskas et al., 2000] 

 

(7) MLogP (MedChem Designer, Simulation Plus, US) 

This model is the same as that of dproperties, but the resulting MLogP values were slightly 

different for the same compound. This may be due to different variable values applied with the 

use of ions-corrected LogP values.  

 

(8) LogP+S (MedChem Designer, Simulation Plus, US) 

LogP+S is generated using an internal model known as “Simulations Plus”. It is a property-based 

method that included a diverse range of descriptors, including Morguchi’s. The model was 
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developed using 12628 compounds selected from the BioByte’s StarList of measured ion-

corrected LogP values. 

 

(9) CLogD (ChemSketch, Advanced Chemistry Development (ACD), Canada) 

ACD/LogD model was developed based on ACD’s original models for LogP with the acid- 

ionisation constant to account for ionizable species of the compound at different pH values.  

 

(10) LogD+S (MedChem Designer, Simulation Plus, US) 

LogD+S model was developed based on LogP+S by accounting for ionizable species at user-

specified pH (default 7.4). 

4.1.2 In vitro Lipophilicity 

There are a few methods to measure the lipophilicity of a compound but the two most commonly 

applied methods for amyloid radiotracers are the shake-flask and reversed-phase high-

performance liquid chromatography (RP-HPLC). 

 

Shake-flask 

Shake-flask is a classic method for measuring partition coefficient. It uses an organic solvent and 

an aqueous solution (water) to model the lipid bilayer. Different organic solvents have been 

utilised, including octanol (amphiphilic), chloroform (proton donors), cyclohexane or dodecane 

(inert), propylene glycol dipelargonate (PGDP) (proton acceptors) [Rutkowska et al., 2013]. The 

measured LogP values differed with the organic solvent used due to the differences in hydrogen 

bonding with the solvent. The most common solvent applied is octanol as the chemical structure 

of octanol is close to that of molecules in the cell membrane and its amphiphilic properties lead 

to chemical interactions that closely reflects that of the phospholipids.  

 

In the shake-flask procedure, the compound is thoroughly mixed in the organic-aqueous solution 

and allowed to interact until equilibrium is reached. Ultraviolet–visible spectroscopy (UV/VIS) 

is then employed to measure the concentrations of the compound in both the organic and aqueous 

phases [Rutkowska et al., 2013]. The octanol-water partitioning of a compound correlated well 

with the binding of compounds to serum proteins and, hence was said to resemble the interaction 

of compounds with the phospholipids [Rutkowska et al., 2013]. As such, the shake-flask method, 

using octanol-water partitioning, was accepted as a common reference method in measuring the 

lipophilicity of a compound. However, the procedure is labour intensive, time-consuming and the 
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results can be affected by the presence of impurities. This method is also unsuitable for measuring 

partition coefficient of highly lipophilic or hydrophilic compounds [Rutkowska et al., 2013].  

 

RP-HPLC 

RP-HPLC is based on the traditional chromatographic method of separating lipophilic and 

hydrophilic components of the compound into the stationary and mobile phases. The amount of 

organic solvent is varied to vary the retention of the hydrophilic component of the compound out 

of the mobile phase. This method applies an indirect mean of measuring partition coefficient and 

hence, calibration of the equipment is required. This leads to difficulty in ensuring reproducibility 

of results across the different experiment. However, the method is easy to automate and provides 

a fast and accurate mean of measuring partition coefficient within a single experiment [Hartmann 

et al., 2004]. 

4.1.3 Evaluation Methods for Lipophilicity 

To determine the representative in silico lipophilicity of amyloid radiotracers, a list of 41 amyloid 

PET radiotracers (12 clinically-applied, 29 candidates) with either in vitro LogP or LogD values 

reported were compiled (Figures 4.1 and 4.2). The in silico 8 LogP and 2 LogD values (Table 4.2) 

of the list of 41 radiotracers were then compared to their in vitro values extracted from the 

literature (Table 4.3).  

 

The mean, standard deviation (stdev), root-mean-squared-error (RMSE) and normalised RMSE 

(NRMSE) of the in silico LogP and LogD values from their respective in vitro values were 

calculated. RMSE and NRMSE were calculated as follows.  

𝑅𝑀𝑆𝐸 =  √
∑ (𝐿𝑜𝑔𝑃C,𝑖− 𝐿𝑜𝑔𝑃M,𝑖)
𝑛
𝑖

2

𝑛
    (37) 

𝑁𝑅𝑀𝑆𝐸 =  𝑅𝑀𝑆𝐸 / (𝐿𝑜𝑔𝑃C,Max − 𝐿𝑜𝑔𝑃C,Min)  (38) 

where C represents the calculated or in silico values, M represents the measured or in vitro values 

obtained from the literature, n is the total number of radiotracers. 

 

Linear and orthogonal regressions were carried out between the in silico and in vitro LogP and 

LogD values of 30 and 13 compounds respectively depending on the availability of the in vitro 

LogP and LogD values from the literature. Regressions were carried out using Matlab (Ver. 2014b, 

The MathWorks, US) and the results were presented using the coefficient of determination, R2. 

Orthogonal regression was carried out to account for errors in measured LogP and LogD values.  
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Figure 4.1: Chemical structures of 12 clinically-applied amyloid radiotracers. 
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Figure 4.2: Chemical structures of 29 candidate amyloid radiotracers. Radiotracers highlighted within the box are used for further evaluation. 
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Table 4.2: In vitro lipophilicity values of 41 amyloid radiotracers extracted from the literature. 

Radiotracers In vitro lipophilicity measured at pH 7.4 
LogP LogD References 

[11C]PIB 1.30 2.12# 

Mathis et al., 2003, 
Johnson et al., 2009,  
Yousefi et al., 2015a, 
Hostetler et al., 2011 

[18F]FDDNP 3.71* - Okamura et al., 2013 
[11C]SB13 2.36 - Ono et al., 2003 

[18F]florbetaben (Neuraceq) 2.41$ 1.58 Koo et al., 2013 
Yousefi et al., 2015a 

[11C]BF227 2.29$ - Furumoto et al., 2013 
[18F]AV138 3.07 - Chandra et al., 2007 
[18F]flutemetamol (Vizamyl) - 3.20* Juréus et al., 2010 
[18F]florbetapir (Amyvid) 1.70$ - Koo et al., 2013 
[11C]AZD2184 - 1.8* Johnson et al., 2009 
[18F]flutafuranol - 2.80* Juréus et al., 2010 
[18F]FACT 1.99$ - Furumoto et al., 2013 
[18F]FIBT - 1.92 Yousefi et al., 2011b 
[11C]6-Me-BTA-1 3.36 - Klunk et al., 2001 
[11C]BTA-1 2.70 - Mathis et al., 2002 
[18F]FMAPO 2.95 - Zhang et al., 2005 
[18F]FPEG-Stilbenes-12a§ 2.53 - Zhang et al., 2005 
[11C]Benzofuran-8§ 2.36 - Ono et al., 2006 
[18F]FPEGN3-Styrylpyridine-2§ 3.22 - Zhang et al., 2007 
[11C]MeS-IMPY - 4.10$ Seneca et al., 2007 
[18F]Indole-14§ 2.56 - Qu et al., 2008 
[18F]Indoline-8§ 2.95 - Qu et al., 2008 
[11C]Benzothiazole-6a§ 3.18* - Serdons et., 2009a 
[11C]Benzothiazole-6b§ 2.48* - Serdons et., 2009a 
[11C]Benzothiazole-6c§ 2.45* - Serdons et., 2009a 
[18F]F-Benzothiazole-2§ 2.86* - Serdons et., 2009b 
[18F]F-Benzothiazole-5§ 2.52* - Serdons et., 2009c 
[18F]MK3328 - 2.91* Hostetler et al., 2011 
[18F]FIAR 2.45$ - Watanabe et al., 2011 
[18F]F-Benzoxazole-24§ - 3.09 Cui et al., 2012a 
[18F]2-Pyridinylbenzoxazole-32§ - 3.52 Cui et al., 2012b 
[18F]2-Phenylindole-1a§ - 3.61 Fu et al., 2013 
[11C]IBT-5 1.70$ - Yousefi et al., 2011a 
[18F]BF168 1.80 - Okamura et al., 2005 
[18F]FPPIP 2.84 - Zeng et al., 2006 
[18F]FEM-IMPY - 4.41* Cai et al., 2004 
[18F]FPM-IMPY - 4.60* Cai et al., 2004 
[18F]FP-Curcumin-8§ 1.84* - Ryu et al., 2006 
[18F]FP-Curcumin-1§ 2.40* - Lee I. et al., 2011 
[18F]6-FEtO-BTA-1 2.40 - Neumaier et al., 2010 
[18F]3-FEtO-BTA-0 2.10 - Neumaier et al., 2010 
[18F]2-Aryl-6-Fluorobenzothiazole-2§ 3.20* - Lee BC. et al., 2011 
§Simplified name with the compound number or alphabet, as reported in the literature. 
Values were measured by conventional shake-flask methods unless otherwise stated. 
*Measured by HPLC 
#Average of (2.8*, 1.5, 2.23*) 
$Unknown method of measurement 
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Table 4.3: In silico lipophilicity values of 41 amyloid radiotracers generated using 10 lipophilicity models 

Radiotracers BioByte ChemBio dproperties Molin-
spiration ACD MedChem 

CLogP CLogP ALogP MLogP miLogP CLogP CLogD MLogP LogP+S LogD+S 
[11C]PIB 3.99 3.41 3.38 2.40 3.64 3.33 3.19 1.93 3.64 3.64 
[18F]FDDNP 3.42 3.95 3.93 2.89 3.61 4.00 4.13 2.89 3.72 3.72 
[11C]SB13 3.67 3.57 3.36 3.23 3.87 3.67 3.43 3.23 3.83 3.83 
[18F]florbetaben  4.08 3.47 3.75 3.11 4.39 3.63 3.86 3.11 4.22 4.22 
[11C]BF227 3.75 3.85 3.58 2.40 3.89 3.02 2.90 1.51 3.49 3.49 
[18F]AV138 4.02 3.23 3.87 3.11 3.26 3.54 3.71 3.11 4.01 4.01 
[18F]flutemetamol 4.30 3.57 3.59 2.80 3.74 3.50 3.27 2.33 3.98 3.98 
[18F]florbetapir 3.48 2.85 3.14 2.52 3.32 3.07 3.18 2.11 3.40 3.40 
[11C]AZD2184 3.42 2.79 2.77 1.75 2.92 3.23 2.75 1.27 2.99 2.99 
[18F]flutafuranol 3.38 2.49 3.46 2.41 3.09 4.18 3.27 1.93 3.16 3.16 
[18F]FACT 2.81 3.31 3.07 1.87 3.25 2.12 - 0.98 2.78 2.78 
[18F]FIBT 4.82 4.07 4.72 3.04 4.40 4.09 4.18 2.48 4.21 4.21 
[11C]6-Me-BTA-1 4.39 4.29 4.13 3.23 4.57 4.53 4.12 2.76 4.35 4.35 
[11C]BTA-1 3.89 3.80 3.65 2.97 4.15 4.07 3.86 2.50 3.97 3.97 
[18F]FMAPO 3.75 3.40 3.53 3.47 4.45 4.03 3.30 3.47 3.90 3.90 
[18F]FPEG-Stilbenes-12a§ 4.25 3.63 3.88 3.47 4.60 3.98 4.52 3.47 4.35 4.35 
[11C]Benzofuran-8§ 3.63 2.49 3.49 2.66 3.54 3.52 3.31 2.19 3.96 3.96 
[18F]FPEGN3-Styrylpyridine-2§ 4.15 3.64 3.49 3.74 3.56 4.20 4.19 2.33 4.01 4.01 
[11C]MeS-IMPY 4.48 3.72 3.78 3.33 3.46 3.99 3.43 2.58 4.08 4.07 
[18F]Indole-14§ 4.52 3.27 4.36 2.98 3.60 4.09 4.08 2.51 4.60 4.60 
[18F]Indoline-8§ 4.16 3.20 3.95 2.93 3.23 3.57 3.89 2.93 4.19 4.19 
[11C]Benzothiazole-6a§ 3.99 3.41 3.38 2.40 3.88 3.33 2.89 2.44 3.86 3.85 
[11C]Benzothiazole-6b§ 3.99 3.41 3.38 2.40 3.64 3.33 3.12 1.93 3.68 3.67 
[11C]Benzothiazole-6c§ 3.99 3.41 3.38 2.40 3.88 3.33 3.14 1.93 3.76 3.65 
[18F]Benzothiazole-2§ 4.33 4.46 4.04 3.72 4.45 4.48 4.04 3.25 4.28 4.28 
[18F]Benzothiazole-5§ 4.83 4.95 4.53 3.98 4.88 4.94 4.31 3.51 4.69 4.69 
[18F]MK3328 1.79 2.15 2.19 2.63 2.79 3.18 2.39 1.27 2.66 2.66 
[18F]FIAR 5.39 3.99 4.10 3.66 4.65 4.97 4.19 3.53 4.72 4.72 
[18F]Benzoxazole-24§ 3.33 2.19 3.21 2.41 3.52 3.21 2.89 1.53 3.42 3.42 
[18F]Pyridinylbenzoxazole-32§ 3.19 1.88 2.86 2.42 3.11 3.86 2.77 1.53 2.79 2.79 
[18F]Phenylindole-1a§ 4.65 3.78 4.50 3.84 4.23 4.92 4.38 3.37 4.55 4.55 
[11C]IBT-5 4.57 3.88 4.32 2.69 4.10 3.86 4.14 2.31 4.13 4.13 
[18F]BF168 4.15 3.29 3.94 3.16 4.54 4.07 3.70 2.29 3.90 3.90 
[18F]FPPIP 4.61 4.11 4.35 3.66 4.02 4.42 3.03 3.17 4.31 4.30 
[18F]FEM-IMPY 5.17 4.83 4.22 3.93 4.41 4.70 4.03 3.44 4.73 4.73 
[18F]FPM-IMPY 5.39 4.93 4.28 4.16 4.68 5.09 4.44 3.67 5.05 5.05 
[18F]FP-Curcumin-8§ 3.90 2.73 4.07 2.49 3.92 3.97 3.18 3.01 4.02 3.37 
[18F]FP-Curcumin-1§ 4.14 2.88 4.26 2.49 3.96 4.27 3.24 3.01 3.95 3.25 
[18F]6-FEtO-BTA-1 4.44 3.86 4.03 3.03 4.48 4.21 - 2.56 4.08 4.08 
[18F]3-FEtO-BTA-0 3.64 3.56 3.48 2.78 4.06 4.14 - 2.83 3.72 3.72 
[18F]Fluorobenzothiazole-2§ 3.18 1.88 3.85 3.37 4.29 4.12 3.85 2.90 4.26 4.26 
§Simplified name with the compound number or alphabet, as reported in the literature, used when generic name or institute code name (supplied 
by the author) was not available. 
Note: Some software cannot generate lipophilicity values for certain radiotracers 
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The accuracy of the various in silico models in deriving LogP values was shown to (1) decrease 

linearly with increasing number of non-hydrogen atoms, (2) decrease with greater spread of LogP 

values, (3) decrease with increasing RMSE. The optimal LogP or LogD value was about 2 for 

most chemical compounds [Rutkowska et al., 2013]. The rankings of the in silico LogP and LogD 

models were carried out based on the mean value, RMSE and correlations in terms of R2.  

4.1.4 Determination of Representative In silico Lipophilicity 

The ranking of the various in silico lipophilicity models based on R2 of linear and orthogonal 

regressions was different. The R2 values of linear regression were small for all in silico LogP and 

LogD with the highest R2 value of 0.194 obtained using MLogP (dproperties), followed by 

LogD+S (MedChem) and MLogP (MedChem) (Table 4.4). The R2 values of orthogonal regression 

were generally high with the highest R2 of 0.859 obtained using ALogP (dproperties). ALogP 

(dproperties), miLogP (Molinspiration), LogP+S (MedChem), CLogP (BioByte), CLogD (ACD), 

LogD+S (MedChem) and MLogP (dproperties) had R2 values for orthogonal regression of greater 

than 7.0 (Table 4.4). 

 

Based on RMSE and NRMSE, MLogP (MedChem) was ranked 1st, followed by MLogP 

(dproperties) (Table 4.4). Although LogD+S (MedChem) and CLogD (ACD) were ranked 3rd and 

4th based on RMSE, they were ranked 5th and 6th based on NRMSE (Table 4.4). MLogP 

(MedChem) had the smallest mean value of 2.58, hence resulting in smallest RMSE (Table 4.4). 

On the whole, despite conflicting results, MLogP (MedChem), MLogP (dproperties), LogD+S 

(MedChem) and CLogD (ACD) performed generally well. Further evaluation was thus carried 

out with these 4 lipophilicity models using compounds with nearly-similar chemical structures. 

 

Table 4.5 shows the chemical structures of [11C]PIB and its analogs with the in silico LogP values 

from MLogP (dproperties), MLogP (MedChem), CLogD (ACD) and LogD+S (MedChem. These 

four compounds had nearly similar chemical structures and differed only in the positioning of a 

single –OH group. The measured LogP values of the analogues were taken from the same 

literature [Serdons et al., 2009a] and were different from each other. However, the in silico MLogP 

(MedChem), MLogP (dproperties) and CLogD (ACD) showed the same values for [11C]PIB and 

all of its analogues. Only LogD+S (MedChem) resulted in different LogP values. The in silico 

MLogP values from MedChem and dproperties were also different from each other. MLogP 

(MedChem) resulted in a different value of 2.44 for [11C]Benzothiazole-6a, which was closer to 

the MLogP (dproperties) of 2.40, compared to [11C]PIB and other analogues of 1.93 (Table 4.5). 
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Table 4.4: Comparison of 10 in silico lipophilicity models: Mean, standard deviation (Stdev), root-mean-squared-error (RMSE) and normalised RMSE (NRMSE) of in 

silico LogP and LogD of 41 amyloid radiotracers. The coefficient of determination, R2 were determined from the linear and orthogonal correlations of in silico and in 

vitro LogP and LogD using 30 and 13 compounds respectively. The rankings of in silico LogP and LogD were based on RMSE and R2. The ranking in roman numerals 

was taken from Mannhold et al. [2008]. 

 BioByte  ChemBio  Molinspiration  dproperties  ACD  MedChem 

 CLogP  CLogP  miLogP  ALogP MLogP  CLogP CLogD  MLogP LogP+S LogD+S 

RMSE 1.68   1.23  1.62  1.40 0.72  1.49 1.06  0.66 1.57 1.20 

NRMSE 0.47   0.40  0.78  0.55 0.30  0.50 0.50  0.24 0.66 0.50 

Mean 4.02   3.45  3.90  3.74 2.97  3.90 3.59  2.56 3.94 3.90 

Stdev 0.69   0.75  0.54  0.53 0.58  0.61 0.56  0.71 0.54 0.56 

COV 0.17   0.22  0.14  0.14 0.20  0.16 0.16  0.28 0.14 0.14 

R2 (Linear) 0.000   0.026  0.003  0.037 0.194  0.104 0.085  0.149 0.105 0.177 

R2 (Ortho) 0.836   0.310  0.845  0.859 0.714  0.517 0.809  0.421 0.843 0.755 

Rank (RMSE) 10   5  9  6 2  7 3  1 8 4 

Rank (R2, Linear) 10   8  9  7 1  5 6  3 4 2 

Rank (R2, Ortho) 4   10  2  1 7  8 5  9 3 6 
Rank* -   -  Ⅱ  - Ⅲ  Ⅰ -  Ⅱ Ⅰ - 

R2 was determined from the correlations between in silico and in vitro LogP and LogD using 30 and 13 compounds respectively. 
* Ranking based on Mannhold et al, 2008 
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Table 4.5: In silico and in vitro LogP of [11C]PIB and its analogues with the uptake in normal mice. Data were taken from Serdons et al., 2009a, unless otherwise stated. 

The in silico lipophilicity values were predicted using MLogP (dproperties), MLogP (MedChem), CLogD (ACD) and LogD+S (MedChem). %ID/g = % Injected Dose/g 

of cerebrum tissue. LogP is unitless and the in vitro LogP values were measured via RP-HPLC. 

 

Radiotracers Chemical Structures 
From [Serdons et al., 2009a]  In silico 

%ID/g of Cerebrum  LogP  MLogP MLogP CLogD LogD+S 
2 min 60 min  Measured  (dproperties) MedChem ACD MedChem 

[11C]PIB 
 

3.60 0.60 

 

1.30* 

 

2.40 1.93 3.33 3.64 

[11C]Benzothiazole-6a§ 

 

3.80 0.30 

 

3.18 

 

2.40 2.44 3.33 3.85 

[11C]Benzothiazole-6b§ 
 

4.30 0.09 

 

2.48 

 

2.40 1.93 3.33 3.67 

[11C]Benzothiazole-6c§ 

 

2.60 0.16 

 

2.45 

 

2.40 1.93 3.33 3.65 

*Taken from Mathis et al., 2003, measured using the shake-flask method. 
§Simplified name with the compound number or alphabet, as reported in the literature, applied when generic name or institute code name (supplied by 
the author) was not available. 
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4.1.5 Summary 

Measured LogP and LogD were obtained from the literature and suffered from differences in 

procedures across institutions and experimental errors within institutions. Hence, RMSE, NRMSE 

and R2 (Linear) might not be suitable for evaluation. Although R2 (Ortho) was evaluated, the 

ranking results differed from the other evaluation methods and that of Mannhold [2009]. The in 

silico LogP would be more accurate if their mean values were closer to 2.0 [Rutkowska et al., 

2013]. Although MLogP (MedChem) had the smallest mean value, the difference in value for 

only one of [11C]PIB’s analogue led to concern about its reliability. The measured LogP values 

differed for [11C]PIB and its analogues and LogD+S (MedChem) could yield different values. 

However, the in silico LogP values were generally much greater than the measured LogP values. 

Therefore, MLogP (dproperties) and LogD+S (MedChem) were selected for further evaluation to 

determine the representative in silico lipophilicity model that will yield kinetic parameters closer 

to clinically-observed values in the next chapter. 

4.2 Molecular Volume  

Apart from the chemical properties of a compound, the size of a compound also plays an important 

role in determining its solubility, partition behaviour and transport characteristics, such as BBB 

penetration [Mellors et al., 1985]. Based on Lanevskij’s equation of permeability, McGowan 

volume, Vx is used to represent molecular volume. Vx is the actual volume of a mole when the 

molecules are not in motion and is applicable to both neutral and ionic compounds [Zhao et al., 

2003a]. Vx can be determined from the commercial software, dproperties (Talete, Italy) in the 

units of Å3/molecule (Å, molecular radius). It is based on the fragment contributions, using group 

contributions of each atom and the number of bonds as follows [Zhao et al., 2003a]: 

𝑉x =
∑ 𝑤𝑖 − 6.56𝑁B
𝐴
𝑖

0.602
  (39) 

where wi is the McGowan’s volume atomic contributions [Abraham and McGowan et al., 1987], 

A is the total number of atoms and NB is the total number of bonds. It can be converted to 

cm3/mol/100 by multiplying by 0.00602 [Zhao et al., 2003a]. 

4.3 Free Fractions in Plasma and Tissues 

Free fraction in plasma (fP) and free fraction in tissue (fND) relate to the fraction of free molecules 

available for distributions and interactions (section 3.3). Equilibrium dialysis is considered the 
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“gold standard” for measuring fP and fND [Zhang et al., 2012; Wang et al., 2013]. However, it is a 

long and tedious measurement method, which makes it is unsuitable for measuring fP and fND of 

many radiotracers. Less time-consuming techniques, such as ultracentrifugation, gel filtration etc. 

have been applied but their results do not correlate well with that of equilibrium dialysis [Barre 

et al., 1985]. Ultrafiltration is another alternative method and the results are reported to correlate 

well with that of equilibrium dialysis. However, it is only capable of measuring fP of a compound.  

 

The fP and fND values of many amyloid radiotracers are difficult to measure due to the difficulty 

in getting the radiotracers for measurements. Few reported fP values can be found from literature 

(Table 4.6) and none had reported fND values. The limitations of the in vitro methods prompted 

the need for an in silico model to derive fP and fND values reliably from the chemical structures of 

amyloid radiotracers. Currently, no in silico fP-fND model for amyloid radiotracers exists. This 

section discusses the development and validation of a simple in silico fP-fND model. 

4.3.1 Development of In Silico fP-fND model 

Wan et al [2007] analysed the relationships between fND and various structural properties, such as 

molecular weight, the number of rotatable bonds using 108 CNS drugs. From his results, 

lipophilicity was the most important component to fND and fP, and it correlated well with fND. 

Lipophilicity was also reported by others to yield the best correlation with fND and fP, and hence 

was deemed as a dominant factor in tissues binding [Di et al., 2011; Summerfield et al., 2006]. 

Similarly, fND and fP showed good correlation, suggesting that the unbound fractions of a 

compound in plasma and tissues are governed mostly by non-specific binding [Wan et al., 2007]. 

Although other parameters like solvent accessible polar surface area, also correlated well with fND, 

these parameters also showed good correlations with lipophilicity. This showed a possible link to 

lipophilicity and hence these parameters were excluded from the in silico model.  

 

Relational models were thus developed using lipophilicity, fND and fP. The binding in brain tissue 

is species-independent but binding to plasma protein is species-dependent [Di et al., 2011]. As 

lipophilicity correlates better with fND than fP, the in silico fp-fND model was developed using 

lipophilicity as input to derive fND, which was then used to derive fP. The lipophilicity, fP and fND 

of various compounds were compiled from four different literature. The relationships between fP 

and fND, and fND and lipophilicity were determined from the linear regressions of each dataset. All 

in vitro fP and fND values were measured via equilibrium dialysis using animal samples. The fP and 

fND values were converted to the logarithmic form to avoid skewed distribution of the data in their 
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original form. 

 

Wan & Maurer’s Dataset 

Maurer et al. [2004] measured the fP and fND values of 33 CNS drugs using wild type mouse’s 

blood and homogenised brain tissues. Wan et al. [2007] calculated the lipophilicity, CLogP of 25 

CNS drugs using C-Lab (Dalke Scientific, New Mexico). 24 of the CNS drugs in Wan’s dataset 

were similar to that of Maurer’s dataset. Linear regression was carried out using the 24 CNS drugs 

that were present in both datasets. Good correlations were obtained between fND vs. CLogP and fP 

vs. fND, with R2 of 0.783 and 0.798 respectively (Figure 4.3). 

 
Figure 4.3: Relationships of fND vs. CLogP (Left) and fP vs. fND (Right) of 24 CNS drugs, with fP and fND 

measured using mouse’s blood and brain tissues by equilibrium dialysis. CLogP was calculated using C-

Lab. Data was taken from Maurer et al. [2004] and Wan et al. [2007]. 

 

Guo’s Dataset 

Guo et al. [2009] measured the fP and fND values of 28 CNS radioligands using pig’s blood and 

homogenised brain tissues. The lipophilicity, CLogD of the respective compound was calculated 

using the in-house software. Reasonably good correlations between fP vs. fND (R2 = 0.548) and 

poor correlation between fND and CLogD (R2 = 0.232) were obtained (Figure 4.4). The poor 

correlation may be due to the inclusion of a few radioligands that are actively transported across 

the BBB. As it is difficult to distinguish in-house classified compounds that are actively 

transported across BBB, correlations were carried using all listed compounds. 
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Figure 4.4: Relationships of fND vs. CLogD (Left) and fP vs. fND (Right) of 28 CNS radioligands, with fP and 

fND measured using pig’s blood and brain tissues by equilibrium dialysis. CLogD was calculated using the 

in-house software. Data was taken from Guo et al. [2009]. 

 

Summerfield’s Dataset 

Summerfield et al. [2006] measured the fP and fND values of 43 CNS drugs using rat’s blood and 

homogenised brain tissues. The lipophilicity, CLogP was calculated using BioByte (BioByte 

Corp., US). Reasonably good correlations were obtained between fND vs. CLogP and fP vs. fND, 

with R2 of 0.601 and 0.664 respectively (Figure 4.5). 

 
Figure 4.5: Relationships of fND vs. CLogP (Left) and fP vs. fND (Right) of 43 CNS drugs, with fP and fND 

measured using rat’s blood and brain tissues by equilibrium dialysis. CLogP was calculated using BioByte. 

Data was taken from Summerfield et al. [2006]. 

 

Kalvass’s Dataset 

Kalvass et al. [2007] compiled a list of measured fP and fND values of 34 CNS drugs from literature 

or measured in-house using mouse’s blood and homogenised brain tissues. The experimental 
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lipophilicity, XLogP3 of the respective compounds were extracted from an online database 

(ChemSpider, Royal Society of Chemistry). Reasonably good correlations between fP vs. fND (R2 

= 0.577) and poor correlation between fND and XLogP3 (R2 = 0.397) respectively were obtained 

(Figure 4.6). The poor correlations may be due to experimental errors and differences in 

procedures in measuring fP, fND and LogP.  

 
Figure 4.6: Relationships of fND vs. XLogP3 (Left) and fP vs. fND (Right) of 34 CNS drugs from literature 

or measured in-house using mouse’s blood and homogenised brain tissues by equilibrium dialysis. XLogP3 

was extracted from the online database (ChemSpider). Data was taken from Kalvass et al. [2007]. 

4.3.2 In Silico fp - fND Model 

Out of the 4 datasets, Wan and Maurer’s datasets showed the best correlation between lipophilicity 

and fND, as well as fP and fND. Summerfield and Guo’s dataset contain compounds that are actively 

transported across the BBB, hence the dataset showed slightly poorer correlations compared to 

Wan and Maurer’s. Kalvass’s dataset also had poorer correlations because of experimental errors 

and differences in procedures from different institutions. Therefore, Wan and Maurer’s dataset 

was used to develop the in silico fP-fND model to derive fP and fND from the lipophilicity of the 

amyloid radiotracers.  

 
Although CLogP (C-Lab) was used to derive the fp-fND models, MLogP (dproperties) and LogD+S 

(MedChem) will be used as an input for lipophilicity due to the unavailability of C-lab software. 

The following relationships from Wan [2007] and Maurer [2004] dataset will be applied to 

determine fP and fND values using lipophilicity as input. 

 𝑓ND = 7.717𝑒−1.634∙𝐿𝑜𝑔𝑃  (40) 

𝑓P = 0.936 ∙ 𝑓ND
0.600 (41) 
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This model was developed using CNS drugs that are passively transported cross the BBB, hence 

it might not be applicable for compounds that are actively transported across the BBB. 

4.3.3 Evaluation of In Silico fP values by Ultrafiltration 

To evaluate the proposed in silico fP-fND model, the outcome fP and fND values from the model 

need to be validated. Equilibrium dialysis is the gold standard employed to measure both fP and 

fND values, but it is tedious and long to carry out. Ultrafiltration is a simple and rapid method of 

separating the free drug from the protein-bound drug using centrifugation to force the mixture 

through a selectively permeable membrane. Thus, it was applied instead to measure fP values of 

the available amyloid radiotracers at our center. This subsection covers the issues in ultrafiltration, 

followed by the procedures carried out to measure fP of amyloid radiotracers and the evaluation 

of the in silico fp values predicted from the proposed fP-fND model, using the literature reported fP 

values and the fp values measured via ultrafiltration. 

4.3.3.1 Issues in Ultrafiltration 

Target Binding Conditions 

Compound binding to target sites decreases with increasing temperature [Kwong et al., 1985]. To 

mimic the in vivo conditions, ultrafiltration is normally carried out at 37°C using a temperature-

controlled equipment. However, lipolysis of the plasma samples may occur after a long 

experimental period at 37°C. Therefore, care is needed to ensure that the experiment is conducted 

within a reasonable time window for consistency in results. 

 

The pH of the plasma may cause ionisation of the compound or the target protein. This affects the 

interaction between the compound and the target protein. The pH of the plasma is changed when 

it is mixed with the radioactive compound. Therefore, a neutralising agent may be required to 

adjust the pH of the mixture. However, pH adjustment takes time and adding neutralising agent 

may lead to changes in the mixture conditions. Therefore, the pH of the medium was not adjusted 

in our experiment. 

 

Volume Ratio of Ultrafiltrate 

Ultrafiltration utilises a pressure gradient to drive the free compound molecules through a 

selectively permeable membrane [Kwong et al., 1985; Dong et al., 2013]. As such, a transient 

decrease in the amount of the compound molecules occurs, causing the initial plasma protein to 
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compound equilibrium to be broken. This affects the free compound concentration and leads to 

inaccurate measurement [Kwong et al., 1985; Dong et al., 2013]. To ensure minimum disturbance 

to the protein-binding equilibrium, the volume ratio of the ultrafiltrate to the sample solution was 

advised to be kept less than 40% [Kwong et al., 1985, Dow et al., 2006] or if possible, less than 

20% [Dong et al; 2013]. However, if the ultrafiltrate volume is too small, accurate measurement 

may be hindered.  

 

The volume of ultrafiltrate is dependent on the amount and viscosity of the plasma, length of 

centrifugation time, centrifugal force and the type of rotor etc. Centrifugation using a fixed angle 

rotor will reduce the sieve effects caused by the polarisation of the plasma proteins and 

compounds on the filter membrane. However, as a fixed angle rotor is not available, a sliding 

rotor is used instead. To reduce disturbance to protein-binding equilibrium while ensuring 

sufficient amount of ultrafiltrate for measurement using a gamma counter, the volume ratio of the 

ultrafiltrate to the sample solution was kept to less than 20%. 

 

Non-Specific Binding 

Ultrafiltration utilises a filter membrane of a specified size to allow unbound compounds and 

water to freely diffuse through the filter. However, non-specific binding (NSB) of the compound 

molecules can occur due to the charge property of the filter membrane and the device wall [Wang 

et al., 2013]. Pre-treatment of the filter membrane can help to reduce binding of the compound to 

the filter membrane [Lee et al., 2003]. However, NSB should be less than 5% [Dow et al., 2006] 

without pre-treatment of the filter membrane, or less than 50% with pretreatment to ensure that 

the fp values measured by ultrafiltration will correlate with that from equilibrium dialysis [Lee et 

al., 2003].  

 

NSB is measured using the radiolabelled compound with phosphate buffer saline (PBS). Some 

suggested that since PBS and plasma have different viscosity properties, they have different NSB 

behaviours when incubated in the Centrifree tubes [Wang et al., 2013]. As such, NSB values 

calculated using PBS was said to be a poor representation of that of plasma. However, no reliable 

methods exist to determine NSB in ultrafiltration. Therefore, NSB was determined using the 

conventional method with PBS. In addition to NSB, the recovery of the compounds was also 

determined to evaluate the applicability of ultrafiltration in measuring fP of amyloid radiotracers. 
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4.3.3.2 Ultrafiltration 

Phosphate Buffer Saline (PBS) solution preparation 

PBS (pH 7.4, Wako Pure Chemical Industries, Japan) was diluted with Milli-Q water (Millipore, 

US) to obtain a 1:10 PBS solution. The solution was stored at about 4°C when not in use. 

 

Plasma Samples Handling and Storage 

Human plasma (Common Pool with Heparin, 100 mL) (Cosmo Bio, Japan) was de-froze 

completely upon receipt, within 80 min at 30°C in a pre-warmed incubator (Taitec, Japan). De-

froze plasma samples were then centrifuged using a temperature-controlled centrifugal machine 

(Kubota 2800, Japan) for 10 min, at 2500 xg at 25°C to remove the triglycerides [Dow et al., 

2006]. Triglycerides would be stuck at the bottom of the centrifugal tubes at the end of 

centrifugation and could be separated from the plasma samples. The samples were then vortexed 

to ensure even mixing and pipetted into storage tubes (4 mL x 24) for storage at -80°C. Repeated 

freeze-thaw cycles were kept strictly to two (initial separation and ultrafiltration) to prevent 

lipolysis and to maintain the integrity of the plasma samples [Dow et al., 2006]. 

 

Ultrafiltration 

One tube of frozen human plasma sample (4 mL) was de-froze at 37°C for 30 min in a pre-warmed 

incubator (Taitec, Japan). The presence of triglycerides and plasma pH were checked [Dow et al., 

2006]. 4 mL of PBS was pipetted into another storage tube and kept in the incubator for 30 min 

at the same time. After 30 min of defrosting, 40μL (18F) or 200μL (11C) of the radiolabeled 

compound was pipetted into both plasma and PBS storage tubes. Both tubes were vortexed and 

incubated for 30 min at 37°C, with side-to-side tiling to ensure continuous mixing.  

 

1 mL of radioactive plasma and PBS were then pipetted into three Centrifree tubes (10 kDa 

MWCO, Millipore) each. Centrifugation was carried out with sliding buckets at 2000 xg for 20 

min at 37°C, using a temperature-controlled centrifugal machine (Kubota 2800, Japan). The 

Centrifree tubes of both plasma and PBS and their respective ultrafiltrate containers were weighed 

before and after centrifugation to obtain the weight of the plasma left in the pipette (Wpti) and the 

ultrafiltrate (Wpfi).  

 

Fifteen empty gamma counter tubes were weighed. 100 μL of the plasma in the original storage 

tubes (Cpi), plasma left in the pipette of the Centrifree tubes (Cpti) and the respective ultrafiltrate 
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(Cpfi) were pipetted into gamma counter tubes. The radioactivity in each tube was measured in 

three aliquots using WIZARD2 (2480, Perkin Elmer). The same procedure was repeated for PBS 

to obtain radioactivity concentration in the original storage tube (Cbi), and the PBS ultrafiltrate 

(Cbfi). The filled gamma counter tubes were then weighed. 

 

Ultrafiltration was carried out using three available amyloid radiotracers in CYRIC, Tohoku 

University – [11C]BF227, [11C]PIB and [18F]florbetapir. For each radiotracer, fP was measured in 

three aliquots to determine the variability within each measurement and measurements were 

carried thrice to determine the reproducibility of measurements. 

4.3.3.3 Determination of fP 

Due to NSB issues in ultrafiltration, a few methods were proposed to calculate fP. The basic 

method was used as the standard [Dow et al, 2006], but it does not correct for NSB. A “reference” 

method, using PBS was introduced to correct for NSB [Lee et al., 2003]. However, PBS has 

different viscosity property from plasma and hence may not be suitable for correcting NSB in 

plasma [Wang et al., 2013]. Moreover, the accuracy of fP measurements is dependent on the 

ultrafiltrate volume ratio. Thus, Wang et al. [2013] introduced a mass-balance method to correct 

for the differences in measurements due to the differences in volume ratio. The three methods of 

determining fP values were explored and compared to literature’ values where applicable. 

 

A. Mass-balance Method [Wang et al., 2013]: 
The fP, NSB and recovery were calculated using the mass balance method as follows: 

% Recovery =  ∑ {
(𝐶𝑝𝑓𝑖 ×𝑊𝑝𝑓𝑖) + (𝐶𝑝𝑡𝑖 ×𝑊𝑝𝑡𝑖)

(𝐶𝑝𝑖 ×𝑊𝑝𝑖)
}

𝑛

𝑖

 ×  
100%

𝑛
  (42) 

% NBS =  ∑ {1 −
𝐶𝑏𝑓𝑖
𝐶𝑏𝑖

}

𝑛

𝑖

 ×  
100%

𝑛
  (43) 

𝑓𝑃 =  ∑ {
𝐶𝑝𝑓𝑖  ×  𝑉𝑝𝑓𝑖

(𝐶𝑝𝑡𝑖  ×  𝑉𝑝𝑡𝑖)+ (𝐶𝑝𝑓𝑖  ×  𝑉𝑝𝑓𝑖)
}

𝑛

𝑖

×  
100%

𝑛
  (44) 

B. Reference Method [Lee et al., 2003]:  

𝑓𝑃 =  ∑ {
𝐶𝑝𝑓𝑖 𝐶𝑝𝑖⁄

𝐶𝑏𝑓𝑖 𝐶𝑏𝑖⁄
}  ×  

100%

𝑛

𝑛

𝑖

  (45) 

C. Basic Method [Dow et al, 2006]:  
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𝑓𝑃 =
𝐶𝑝𝑓𝑖
𝐶𝑝𝑖

× 100% (46) 

where i refers to the number of samples measured (n = 1 ~ 3), p refers to plasma and b refers to 

PBS (buffer), t refers to top part or the pipet of the Centrifree tube, f refers to the ultrafiltrate, 

without t or f refers to the total of both top and filtrate part of Centrifree tube, which is taken from 

the original storage tube. C refers to the radioactive concentration measured using WIZARD and 

W refers to the weight of the sample.  

 

For example, Cpi and Wpi are the radioactive concentration and the total weight of the plasma 

sample in the original storage tube, Cpti and Wpti are the radioactive concentration and weight of 

the plasma in the pipet of the Centrifree tube, Cpfi and Wpfi are the radioactive concentration and 

weight of the ultrafiltrate respectively. 

4.3.3.4 Comparison with Literature fP values 

Up to date, there were few values of fP reported for amyloid radiotracers (Table 4.6), and the 

methods used to calculate fP were not discussed. The fP values extracted from the literature were 

measured by means of thin layer chromatography or ultrafiltration. Thus far, no fND values were 

available from the literature. As binding to plasma protein is species-dependent [Di et al., 2011], 

human plasma samples were used in our experiment. However, the reported fP values were 

measured using animals’ plasma samples (e.g. rat and monkey), and hence the direct comparison 

of fP values of [11C]PIB was difficult. 

 
Table 4.6: Measured fP of [11C]PIB, [18F]flutemetamol and [11C]MeS-IMPY reported in literature. 

Tracer fP (%) Method of Measurement Species References 

[11C]PIB 14 
Thin-layer Chromatography 

(60 min) 
Rat 

Snellman et al., 
2012  

[18F]flutemetamol 1 (0.9–1.3)# Ultrafiltration Rat 
Snellman et al., 

2012  
[11C]MeS-IMPY 0.83 ± 0.17* Ultrafiltration Monkey Seneca et al., 2007 
# Range of fP values 
* Mean ± Stdev 

 

Table 4.7 shows the recovery, NSB, volume ratio and fP values, determined using the mass-

balanced, reference and basic methods of [11C]PIB, [18F]florbetapir and [11C]BF227. [11C]PIB had 

the highest NSB to the filter membrane, followed by [11C]BF227 then [18F]florbetapir. The 

opposite trend was observed in the fP values calculated using the mass-balance and basic methods. 
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For the reference method, [11C]BF227 had the highest fP value, followed by [11C]PIB then 

[18F]florbetapir. The average volume ratio of the ultrafiltrate was kept less than 20%, with an 

overall mean of 18.4% and a standard deviation of 0.5% (Table 4.7).  

 
Table 4.7: Recovery, NSB, ultrafiltrate volume ratio and fP measured using ultrafiltration. Results are 

presented in mean ± stdev. In silico fP determined from the model is also displayed. 

Radiotracers 
Recovery 

(%) 
NSB 
(%) 

Volume 
Ratio 
(%) 

fP (%) 

Mass 
Balanced 

Reference Basic  
In 

Silico 
[11C]PIB 82.1±1.3 99.0±0.2 18.7±0.4 0.04±0.02 15.0±4.39 0.13±0.11 30.3 
[18F]florbetapir 83.3±0.5 65.6±2.3 16.7±0.8 0.64±0.07 9.28±0.62 3.17±0.19 27.0 
[11C]BF227 81.7±1.5 94.7±0.3 18.1±0.5 0.19±0.01 16.2±0.67 0.84±0.03 30.4 

Measured values are presented as Mean ± Stdev. 
 

The mass-balance method can correct for the differences in the ultrafiltrate volume output, which 

are affected by the centrifugal forces and the length of centrifugation. The reference method 

corrects for NSB to the filter membrane, by using PBS as a reference. However, the PBS and 

plasma have different viscosities and hence, the use of PSB to correct for NSB effect should be 

applied with caution. The basic equation has the advantage of avoiding possible complications of 

correcting for NSB with PBS, especially for radiotracers with high NSB. However, it has the 

disadvantage of greater variabilities due to differences in volume ratio, NSB, etc. The three 

methods resulted in very different fP values (Table 4.7), hence showing the effect of the calculation 

methodology on the outcome fP values. The huge differences might be caused by the high NSB 

of the amyloid radiotracers to the Centrifree equipment. As such, the reported fP values measured 

using ultrafiltration could not be used for validation (Table 4.7). 

 

The measured concentrations varied by less than 5%, within an experiment and between the 

experiments, for all the radiotracers measured. Therefore, the procedure was well-controlled and 

optimised for fP measurements. As only three clinically-applied amyloid radiotracers were 

available for fP measurements, it was difficult to use the measured fP values for validating the in 

silico fP values. Moreover, due to the binding nature of all the measured amyloid radiotracers, 

NSB was always greater than 50% and % recovery values were also less than 90% (Table 4.7). 

Great differences in calculated fp values across the three calculation methods were observed. 

Therefore, ultrafiltration was not a suitable method for measuring the fP of amyloid radiotracers.  

 

Although the results showed that ultrafiltration was not a suitable method for measuring fP values, 
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the results obtained showed a similar trend to the performance of clinically-applied radiotracer, 

whereby [11C]PIB showed higher amyloid binding than [18F]florbetapir. If more clinically-applied 

radiotracers were available, further evaluation on the possible relationship could be carried out. 

The literature fP values that were measured by ultrafiltration were also very small, showing that 

our measured results were consistent with measured results (Table 4.6). However, as animal’s 

plasma was used in literature, they could not be used for direct validation or comparison with our 

results. 

4.3.4 Summary  

An in silico fP-fND model was developed based on the relationships between lipophilicity, fP and 

fND relationships using data from Wan and Maurer’s datasets. We tried to validate the proposed fP-

fND model using fP values measured via ultrafiltration. However, high NSB of greater 50% and 

poor recovery of less than 90% were obtained. Thus, ultrafiltration was not suitable for measuring 

fP of amyloid radiotracers. The model needs to be validated by other means. A possible method 

would be to carry out simulations with the in silico fp and fND values and to determine if the 

outcome parameters of interest correlate well with reported clinical results.  

4.4 Dissociation Constant & Binding Sites Density  

The binding affinity of a radiotracer or drug to the target protein is an important parameter 

evaluated in the drug/radiotracer development process. It is represented by the inverse of binding 

affinity, the equilibrium dissociation constant, KD. KD is measured via in vitro binding assays but 

can also be determined from in vivo measurements via PET or SPECT imaging [Lopresti et al., 

2005]. For amyloid radiotracers, KD or Ki values were commonly measured using synthetic Aβ1-

40 and Aβ1-42 fibrils, or human AD brain homogenates. However, some amyloid radiotracers have 

been reported to bind to multiple binding sites on the Aβ proteins [Lockhart et al., 2005; Ni et al., 

2013] (section 2.3). Reported KD or Ki values of the various amyloid radiotracers were compiled 

and compared to understand their binding characteristics. The type and density of various types 

of Aβ proteins in HC, MCI and AD were surveyed from literature to determine the representative 

binding sites concentrations. 
 
This section describes the in vitro binding assays used to measure KD and Ki values, as well as the 

Enzyme-Linked Immuno-Sorbent Assay (ELISA) to measure the concentrations of various types 

of Aβ proteins in brain homogenates. A selection criterion for selecting KD and Ki values from 
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literature to ensure consistency in results for comparison is described. The representative amyloid 

load concentrations under HC, MCI and AD conditions is also explained. 

4.4.1 In Vitro Binding Assays 

The in vitro binding assay is based on the simple 1-to-1 model of the receptor (R) and radiotracer 

(L) interacting to form a complex (RL) as described by Michaelis and Menten: 

[L] + [R]  ⇌𝑘off

𝑘on   [RL] (47) 

 

where [L] is the concentration of the free radiotracer (mol/L or M), [R] is the concentration of the 

receptors (M), and [RL] is the concentration of the bound radiotracer-receptor complex (M). kon 

is the association rate constant (M/min) and koff is the dissociation rate constant (min-1).  

 

Based on the law of mass action, there is no net change in concentration of the radioligand at 

equilibrium and the following relationship results: 

[L] ∙ [R] ∙ 𝑘on  =   [RL] ∙ 𝑘off   (48) 

 

Under the law of mass action, it is assumed that (1) all the receptors are equally accessible to all 

radiotracers, (2) interacting components can diffuse freely within the medium, (3) all receptors 

are either free or bound, without any partial binding to the radiotracers, (4) the receptor and 

radiotracers are not altered by interaction, and (5) the binding of radiotracer to the receptor is 

reversible [Limbird et al., 2011].  

 

In reality, these assumptions are never fully achieved as the radiotracers and receptors are never 

freely moving in the homogenised tissues or tissue slices or synthetic mixture under in vitro 

conditions. The binding is also dependent on the temperature and pH of the medium and hence 

the measured KD values are more appropriately referred to as “apparent” values under in vitro 

conditions. Two types of binding assays are commonly employed to determine the binding affinity 

of a compound, namely saturation and competitive binding assays.  

4.4.1.1 Saturation Binding Assay 

In a saturation binding assay, increasing concentrations of radiotracer are added to a fixed 

concentration of receptors. [RL] is measured in the assay while [R] is unknown and needs to be 

determined. A high concentration of radiotracer is added such that [L] >> [R] and less than 5% of 
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the radiotracers are bound by either specific binding to the target receptor or non-specific binding 

to receptors or equipment. In this case, [L]free can be assumed to be equal to the [L]total.  

 

The equilibrium dissociation constant (KD, nmol/L or nM) can be determined from a saturation 

binding assay. It is defined as the ratio of the dissociation rate constant (koff) and the association 

rate constant (kon), such that KD = koff/kon. The total receptor concentration, Bmax is the sum of the 

free receptor concentration and the bound complex concentration, where Bmax = [R] + [LR]. By 

substituting KD and Bmax into equation (48):  
[RL]

𝐵max
=  

[L]

𝐾D + [L]
 (49) 

 

Fractional occupancy, f is the ratio of the bound complex concentration to the total receptors 

concentration, where f = [RL]/Bmax. When the fractional occupancy is 50%, KD is equal to [L]. 

The fractional occupancy is plotted against the free radiotracer concentration [L] to obtain the 

occupancy curve (Figure 4.7) [Limbird et al., 2011].  

 

 
Figure 4.7: A typical occupancy curve.  

 

The accuracy of KD value is dependent on the choice of the model used to fit the occupancy curve. 

To avoid the complexity of fitting a sigmoidal curve, a Scatchard plot is commonly employed to 

derive KD. This is done by dividing by [L] on both sides of equation (49):  
𝑓

[L]
=  

1

𝐾D
−
𝑓

𝐾𝐷
 (50) 

 

A Scatchard plot of f / [L] against f is then linearly fitted whereby the slope yields -1/KD, and the 

x-intercept gives Bmax (Figure 4.8).  
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Figure 4.8: A typical Scatchard Plot.  

4.4.1.2 Competition Binding Assay 

In a competition binding assay, the equilibrium inhibitory constant, Ki of the target compound or 

unlabeled tracer is determined by using a single concentration of radiolabeled competitor and 

varying the concentrations of the unlabeled tracer. The radiolabeled competitor and unlabeled 

tracer should compete for the same target site or receptor. Similar to the saturation binding assay, 

the concentrations of the radiolabeled competitor and unlabeled tracer are much greater than the 

receptor concentration, such that the total free concentrations of both the radiolabeled competitor 

and the unlabeled tracer are equal to the amount added. The fractional occupancy is plotted against 

the logarithmic concentration of the unlabeled tracer (Figure 4.9) [Limbird et al., 2011].  

 
Figure 4.9: A typical occupancy curve for competition binding assay.  

 

When f is 100%, no unlabeled tracer is present. The trough of the curve (Figure 4.9) gives the 

non-specific binding (NSB), while the difference between the peak and trough gives the specific 

binding of the radiolabeled competitor. The inhibitory concentration, IC50 is defined as the 

concentration of the unlabeled tracer that results in 50% specific binding of the radiolabeled 
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competitor. Ki value is determined from IC50 using Cheng-Prusoff equation [Limbird et al., 2011]. 

𝐾i =  
𝐼𝐶50

1+
[Radioligand]

𝐾D

 (51) 

 

KD value of the radiolabeled competitor must be known and is determined from saturation binding 

studies. Increasing the concentration of the radiolabeled competitor will increase IC50, but Ki value 

remains constant. If a radiolabeled competitor with higher affinity (lower KD) is used, a higher 

concentration of the unlabeled tracer will be required to compete with the competitor [Limbird et 

al., 2011]. Longer equilibrium time may lead to inaccurate Ki value of the unlabeled tracer. KD is 

only equal to Ki if the radiolabeled competitor and the unlabeled radiotracer are the same 

compound or have similar binding affinities.  

4.4.1.3 Binding to Multiple Receptor Sites 

Amyloid radiotracers have been shown to bind with different affinities to multiple independent 

binding sites of different concentrations on the fibrillar Aβ proteins [Lockhart et al., 2005; Ni et 

al., 2013]. In such cases, the fractional occupancy of equation (49) is modified as shown:  

𝑓 =
∑ [RL𝑖]
𝑛
𝑖

𝐵max
=  ∑

𝑚 ∙ 𝑛 ∙ [L]

[L] +  𝐾D,𝑛

𝑛

 (52) 

where n is the number of binding sites, m is the density of each respective binding site. 

 

The occupancy curve shown in figure 4.7 will become a sum of hyperbolas, which is difficult to 

be observed by the eye. The occupancy curve is thus converted to Scatchard plot whereby the 

linear plot in 1-to-1 binding (Figure 4.8) will be observed as a curve in the case of binding to 

multiple receptor sites (Figure 4.10).  

 
Figure 4.10: A Scatchard Plot showing binding to multiple binding sites. The bold line represents the actual 

fit through the measured data points. The dashed lines represent the solutions to two possible receptor sites.  
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4.4.2 Enzyme-Linked Immuno-Sorbent Assay (ELISA) 

Enzyme-linked immunosorbent assay (ELISA) or enzyme immunoassay (EIA) are biochemical 

assays that rely on specific antigen-antibodies binding with chromogenic substrate-enzyme 

reaction for the detection of very small concentrations of biological molecules such as hormones, 

peptides and proteins [Gan et al., 2013]. ELISA can be applied only if a known antibody or antigen 

is available to detect a given antigen or antibody [Gan et al., 2013].  

 

In direct ELISA, the target biological molecules, which are bound to specific antigens, are 

immobilised in a 96-well microtiter plate (Figure 4.11). The antigen then binds specifically to a 

capture antibody, which then binds specifically to an enzyme-linked detector antibody. A 

chromogenic substrate is then added and it interacts with the enzyme to produce a colour change 

or emit fluorescence. Quantitative measurement of the amount of target biological molecules can 

be carried out using a colorimetric reading or fluorescence detector. The measured colour 

intensity correlates directly with the concentrations of the bound antibodies in non-competitive 

ELISA [Gan et al., 2013].  

 

 
Figure 4.11: Procedures for “Sandwich” ELISA [Gan et al., 2013]. 
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To measure the amount of different types of Aβ in AD brain tissues, “sandwich” ELISA is 

commonly applied. It is a non-competitive method whereby the antigen is sandwiched between 

the capture antibodies. This ensures that the target bound antigens are immobilised in the well, 

hence eliminating the need to purify the mixture from other antigens [Gan et al., 2013]. The 

general procedure for Sandwich ELISA is shown in figure 4.11. 

 

ELISA is a highly sensitive method for detecting very low concentrations of antigens compared 

to other technology like spot blotting, immunoblotting, immunohistochemistry etc. However, it 

also has some limitations, which will affect the accuracy of the measurement. Firstly, the strength 

of the fluorescence or colour emitted will decrease over a long period, hence reducing the 

accuracy of measurement. Secondly, the antibodies bind nonspecifically to the walls of the wells 

or other antigens that may be present in the sample. This NSB may be reduced with the use of 

bovine serum albumin [Gan et al., 2013] or non-fat dry milk [Naslund et al., 2000]. However, the 

applicability of milk must be validated as the amount of immunoglobulins or natural antibodies 

present may affect the measurement. Background correction is also required for each set of 

measurement to correct for NSB, which is measured with the antigen omitted. Thirdly, ELISA is 

dependent on the specific antigen-antibodies binding for measuring the target concentrations. 

Therefore, the accuracy of the detection of the target molecules is dependent on the antigen and 

the antibodies applied. Lastly, the measurements are affected by the choice of the well, dilution 

method, the detection method (e.g. colour change, fluorescence). Optimisation of procedures can 

ensure the reliability and accuracy of the data for comparison and evaluation within an institution 

but the data cannot be compared directly across institutions.   

4.4.3 Concentrations of Aβ1-40 & Aβ1-42 in Brain 

The concentrations of Aβ1-40 and Aβ1-42 in human brain homogenates can be measured 

quantitatively using ELISA. The detection of Aβ1-40 and Aβ1-42 are commonly carried out using 

immunohistochemistry, western blotting etc. but these methods are unable to measure the 

concentration of Aβ1-40 and Aβ1-42 quantitatively. Currently, the available antigen-antibodies 

employed in ELISA can measure the total concentrations of Aβ1-40 and Aβ1-42. Compartmental-

extraction or biochemical sample method can be applied to differentiate soluble and insoluble, 

and intracellular and extracellular Aβ using various buffers: Tris (extracellular soluble Aβ), trition 

(intracellular soluble Aβ), sodium dodecyl sulfate (SDS) (membrane-associated Aβ) and formic 

acid (FA) (extracellular-insoluble Aβ associated with parenchymal and vascular amyloid 

deposition) [Steinerman et al., 2008]. However, this method only increases the fractions of the 
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targeted Aβ proteins. Thus, the samples still suffer from small amounts of contaminations from 

other forms of Aβ proteins during measurements [Steinerman et al., 2008].  

 

The antibodies for Aβ1-40 and Aβ1-42 were shown to bind to Aβ oligomers with higher selectivity 

than that of monomeric Aβ, but the measurements also included a small amount of monomeric 

Aβ [Klaver et al., 2011]. Moreover, different antibodies with the same affinity to the same target 

may have different binding kinetics [Klaver et al., 2011]. As PET measures the total signal from 

the binding of the amyloid radiotracer to fibrillar Aβ in the various brain regions, the total 

concentrations of Aβ1-40 and Aβ1-42 in the brain regions measured using ELISA is sufficient for 

our analysis.   

 

Although there are many studies that measured the concentrations of various Aβ in either synthetic 

Aβ or human brains using ELISA, few have reported the measured values. The concentrations of 

Aβ1-40 and Aβ1-42 in various brain regions of HC and AD subjects measured via ELISA, using 

different antigen-antibodies pairs, from four different institutions were compared (Table 4.8). 

 

Naslund et al. [2000] used 4G8 (anti-Aβ17-20) as the capture antibody and αAβC40 (anti-Aβ40) and 

αAβC42 (anti-Aβ42) as detector antibodies to measure the Aβ concentrations in 38 AD and 24 

HC brains. The total concentrations of extracellular soluble and insoluble Aβ were evaluated in 5 

different brain regions. Naslund’s results showed that the concentrations of Aβ1-42 were generally 

higher than Aβ1-40 in both HC and AD (Table 4.8). Moreover, the Tris and FA-extracted Aβ1-40 and 

Aβ1-42 correlated with disease severity, and the concentrations of Aβ1-40 and Aβ1-42 correlated with 

each other. 
 

Ingelsson et al. [2004] employed BNT77 (anti-Aβ11-28) as the capture antibody and BA27 (anti-

Aβ40) and BC05 (anti-Aβ42) as the detector antibodies to measure the Aβ concentrations in the 

temporal cortices of 83 AD and 26 HC brains. Ingelsson’s results showed that FA-extracted Aβ1-

40 and Aβ1-42 were elevated in AD independent of illness duration and Tris and FA-extracted Aβ1-

40 are increased in subjects with APOE-ε4 allele.  
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Table 4.8: Concentrations of Aβ1-40 and Aβ1-42 (pmol/g of tissue) measured via ELISA in the various brain regions of HC and AD subjects, as reported from four literature. 

The calculated ratios of the concentrations of Aβ1-42 to the total Aβ in HC and AD subjects based on the reported data were also displayed. 

References 
Biochemical 

Samples 
Brain Regions 

Concentrations of Aβ (pmol/g of tissue)  
Ratio of Aβ1-42/Total 

HC  AD  
Aβ1-40 Aβ1-42  Aβ1-40 Aβ1-42  HC AD 

Naslund et al.,  
2000 

Tris + FA 

Frontal 169 ± 50 478 ± 135  657 ± 116 1924 ± 221  0.7 0.7 
Temporal 63.1 ± 28 161 ± 49  434 ± 99 1199 ± 249  0.7 0.7 
Parietal 141 ± 54 194 ± 63  621 ± 116 1023 ± 172  0.6 0.6 

Entorhinal 54.6 ± 24 303 ± 77  420 ± 169 1765 ± 205  0.8 0.8 
Visual 118 ± 39 254 ± 66  477 ± 113 933 ± 159  0.7 0.7 

Ingelsson et al.,  
2004 

Tris Temporal 160 ± 33 703 ± 263  785 ± 163 6550 ± 641  0.8 0.9 
FA Temporal 3 ± 1 161 ± 55  156 ± 31 8382 ± 1108  1.0 1.0 

Steinerman et 
al.,  

2008 

Tris 
Temporal 0.8 ± 0.4 1.6 ± 3.23  2.7 ± 3.5 14.6 ± 7.5  0.7 0.8 
Cingulate 0.6 ± 0.5 1.1 ± 2.5  1.7 ± 2.4 10.2 ± 7.3  0.7 0.9 

Trition 
Temporal 11.9 ± 5.2 4.0 ± 1.6  13.3 ± 9.3 7.0 ± 3.1  0.3 0.3 
Cingulate 11.6 ± 1.5 5.0 ± 1.4  12.4 ± 4.2 8.8 ± 3.0  0.3 0.4 

SDS Temporal 55.8 ± 34.9 18.6 ± 12.7  55.4 ± 22.1 53.9 ± 27.3  0.3 0.5 
Cingulate 73.6 ± 40.3 17.1 ± 9.1  78.9 ± 28.4 25.6 ± 7.9  0.2 0.2 

FA 
Temporal 89.7 ± 52.9 186.3 ± 343.4  555.6 ± 817.2 1240.2 ± 835.1  0.7 0.7 
Cingulate 120.4 ± 70.8 297.5 ± 698.5  389.9 ± 597.6 1088.9 ± 520.9  0.7 0.7 

Svedberg et al.,  
2009 FA 

Frontal 38 ± 14 34 ± 7.9  482 ± 98 226 ± 16  0.5 0.3 
Temporal 3.8 ± 1.6 26 ± 7.6  387 ± 103 276 ± 53  0.9 0.4 
Parietal 1.7 ± 1.0 35 ± 12  384 ± 116 138 ± 24  0.9 0.3 

Cerebellum 21 ± 10 4.5 ± 0.9  97 ± 13 6.6 ± 1.6  0.2 0.1 
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Steinerman et al. [2008] used the same capture and detector antibodies as Ingelsson et al. [2004] 

to measure the Aβ concentrations in the temporal and cingulate neocortices of 27 AD and 13 HC 

brains. Steinerman’s results showed that Tris and FA-extracted Aβ1-40 correlated with illness 

duration and APOE-ε4 allele. Moreover, Tris and FA-extracted Aβ1-40 and Aβ1-42 were elevated in 

AD but only Trition and SDS-extracted Aβ1-42 were elevated in AD. Trition and SDS-extracted 

Aβ1-42 correlated with AD progression and SDS-extracted Aβ1-42 correlated well with cognitive 

decline. However, the results of the cingulate cortex differed from that of temporal cortex, and 

thus were excluded in his evaluation.  

 

Svedberg et al. [2009] used a commercialised ELISA package (Signal Select, Biosource 

International, USA), with Hu Aβ40 (anti-Aβ40) and Hu Aβ42 (anti-Aβ42) as detector antibodies 

to measure the Aβ concentrations in four regions of 9 AD and 9 HC brains. His results showed 

that AD had a higher amount of Aβ1-40 compared to Aβ1-42, which was different from the other 

studies (Table 4.8). However, Svedberg et al. [2009] concluded that these differences might be 

due to the inclusion of CAA in AD subjects, where Aβ1-40 predominated over Aβ1-42. 

 

The measured concentrations of Aβ1-40 and Aβ1-42 in HC and AD brains showed different results 

(Table 4.8). The differences may be due to the different immunohistochemical and ELISA 

protocols, subject/brain inclusion criteria, the use of different brain regions and the methods of 

analysis across different institutions [Naslund et al., 2000; Steinerman et al., 2008]. As there were 

few brains available from subjects in the early stages of AD, it was difficult to determine the full 

disease progression [Naslund et al., 2000]. The binding kinetics and selectivity of the antibodies 

are different depending on the types of Aβ proteins, the length of the monomeric Aβ proteins (e.g. 

40, 42, 43 etc.), and the type of terminals (C or N) after cleavage by β and γ proteases. The folding 

of the oligomeric and fibrillar Aβ proteins may also have an effect on the total binding. 

 

The reported values of the concentrations of Aβ1-40 and Aβ1-42 were very different even in the same 

region with huge amount of variations (Table 4.8). To eliminate the differences caused by the 

different protocols employed, the ratios of Aβ1-42 concentration to total Aβ concentration in HC 

and AD were determined (Table 4.8). As amyloid radiotracers are targeting extracellular amyloid 

plaques, only Tris and FA-extracted (extracellular soluble and insoluble) data are considered. 

Apart from Svedberg’s results, which consisted of CAA subjects, the Tris and FA-extracted 

(extracellular soluble and insoluble) ratios of Aβ1-42 to total Aβ concentrations in HC and AD were 

relatively similar in Naslund’s and Steinerman’s data. Therefore, the ratio of Aβ1-42 to total Aβ 
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concentrations in HC and AD of 0.7 will be applied as a representative ratio of Aβ1-40 and Aβ1-42 

binding of the radiotracers in amyloid imaging.  

4.4.4 Determination of KD 

Reported KD or Ki values of amyloid radiotracers were measured using either synthetic Aβ1-40 

fibrils and/or synthetic Aβ1-42 fibrils or human AD brain homogenates. In cases where KD values 

were not available, the reported Ki values were measured using different competitors such as PIB, 

IMPY, florbetapir, BTA-1, TZDM and the tracer itself. The KD or Ki values measured using human 

AD brain homogenates were said to differ from that measured using synthetic Aβ fibrils [Mathis 

et al., 2003; Klunk et al., 2005], though some had claimed that there were no differences in the 

measured values [Klunk et al., 2003]. In addition, the radiotracers also bind with different 

affinities to different binding sites on the Aβ fibrils [Lockhart et al., 2005; Agdeppa et al., 2009]. 

Thus, a KD or Ki selection criteria is required to synchronise the KD or Ki values extracted from 

literature to ensure more consistent outcome comparison. 

 

In cases where KD or Ki values of both synthetic Aβ1-40 and Aβ1-42 were reported, a model 

representing the ratio of the concentrations of Aβ1-42 to Aβ1-40 available in HC and AD brains is 

applied to obtain a single value of KD or Ki for input. The ratio of Aβ1-42 to total Aβ concentrations 

in HC and AD of 0.7, determined in the subsection 4.4.3, was employed to combine the KD values 

of both synthetic Aβ1-40 and Aβ1-42 fibrils, as shown: 

𝐾𝐷 = (𝐾D,Aβ1−40 × 0.3)+   (𝐾D,Aβ1−42 × 0.7)  (53) 

 

KD was chosen over Ki as KD is more consistent and representative compared to Ki, which differed 

greatly depending on the competitor used. The amount, types and distribution of Aβ fibrils in the 

brain homogenates differed greatly depending on the severity of the AD brain used, thus affecting 

KD or Ki measurements. The amounts of Aβ1-40, Aβ1-42 and/or other proteins (e.g. NFT) in AD 

brain homogenates are unknown, hence the KD or Ki values measured may vary depending on the 

sample homogenates used. On the other hand, the amount of synthetic Aβ1-40 and Aβ1-42 fibrils 

used can be controlled in the in vitro experiment, which allowed for more accurate comparison. 

The KD or Ki values measured using synthetic Aβ fibrils were similar to that of AD brain 

homogenates [Klunk et al., 2003]. Therefore, KD or Ki values measured with synthetic amyloid 

fibrils are preferred over that of AD brain homogenates.  
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The final KD or Ki values used for simulations are shown in table 4.9. The KD or Ki values were 

chosen in the following preference: (1) modelled value using both synthetic Aβ1-40 and Aβ1-42, 

(2) synthetic Aβ1-42 only, (3) synthetic Aβ1-40 only, and lastly (4) brain homogenates. For Ki 

values, only those measured with itself or IMPY as a competitor will be selected. IMPY was 

chosen due to a large number of Ki values measured with IMPY as a competitor. [18F]florbetaben 

is the only radiotracer in the list, whereby its Ki value is measured with florbetapir as a competitor. 

It is included as it is an FDA-approved amyloid radiotracer that has been clinically-applied with 

clinical data reported in the literature.  

 

Based on the KD or Ki selection criterion, only radiotracers in figure 4.1 and those highlighted in 

figure 4.2 are used for further evaluation (Table 4.9). Most candidate radiotracers have Ki values 

measured with IMPY as a competitor. Those that were excluded, have Ki values measured using 

other competitors apart from IMPY and itself. Although the Ki value of [18F]FPPIP was measured 

with IMPY, the value was much higher than the rest of the amyloid radiotracers selected. 

Therefore, it was excluded for further evaluation. Although [18F]MK3328 had been clinically 

applied, the clinical data were presented only as posters in conferences. Hence, it was included as 

a candidate radiotracer instead of a clinically-applied radiotracer.  

4.4.5 Binding Site Density  

The maximum available binding sites, Bmax is measured using in vitro binding assays, together 

with KD or Ki. However, the amount of amyloid fibrils varies greatly for different subject 

conditions. As such, the amount of available binding sites, Bavail is used instead of Bmax. The 

representative Bavail values for HC, MCI and AD conditions were determined from the in vitro 

autoradiography experiment measured using [11C]PIB in the frontal, parietal and temporal cortical 

regions of HC, MCI (Braak stage 3) and AD brains. 
 

The amount of [11C]PIB binding is equivalent to Bavail and ranged from 1-5 fmol/mg (or nM), 11-

34 fmol/mg and 56-62 fmol/mg in HC, MCI and AD respectively [Svedberg et al., 2009]. The 

Bavail in the three regions of the three subject groups were averaged and the resulting Bavail values 

of 4 nM, 20 nM and 50 nM were employed for HC, MCI and AD conditions respectively. 

Although the mean value of Bavail for AD was 60 nM, 50 nM was selected instead to reduce the 

difference between MCI and AD. The Bavail values ranged from 4 ± 80%, 20 ± 35% and 50 ± 25% 

in HC, MCI and AD conditions using the selected mean values. 
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Table 4.9: Compiled KD or Ki values extracted from literature with the final KD or Ki values used for 

simulations highlighted in grey. [11C]PIB to [18F]FIBT are clinically applied radiotracers and the rest are 

candidate radiotracers. 

Radiotracers 
In Vitro KD (Literature) 

Aβ1-40 Aβ1-42 Brain 
Homogenates 

KD for 
simulations References 

[11C]PIB 2.48$ 0.93$  1.40# 

Mathis et al., 2003,  
Klunk et al., 2005 
Ikonomovic et al., 2008, 
Johnson et al., 2009 

[18F]FDDNP 0.12 5.52  3.90# Agdeppa et al., 2001, 
Harada et al., 2013 

[11C]SB13   2.43 2.43 Kung et al., 2004 
[18F]florbetaben (Neuraceq)   2.22& 2.22 Choi et al., 2009 
[11C]BF227 1.80¶ 4.30¶  3.55# Furumoto et al., 2007 
[18F]AV138   1.90* 1.90 Chandra et al., 2007 
[18F]flutemetamol (Vizamyl) 1.60   1.60 Jureus et al., 2010 
[18F]florbetapir (Amyvid)   3.72 3.72 Choi et al., 2009 
[11C]AZD2184 8.40   8.40 Johnson et al., 2009 
[18F]flutafuranol 2.30   2.30 Jureus et al., 2010 
[18F]FACT 9.40   9.40 Furumoto et al., 2013 

[18F]FIBT 2.10† 3.20† 0.70 0.70 Yousefi et al., 2011b, 
Yousefi et al., 2015a 

[11C]6-Me-BTA-1 20.20*   20.20 Klunk et al., 2001 
[11C]BTA-1 11.00*   11.00 Mathis et al., 2002 
[18F]FMAPO   5.00* 5.00 Zhang et al., 2005a 
[18F]FPEG-Stilbenes-12a§   2.90* 2.90 Zhang et al., 2005b 
[11C]Benzofuran-8§   0.70* 0.70 Ono et al., 2006 
[18F]FPEGN3-Styrylpyridine-2§   2.50* 2.50 Zhang et al., 2007 
[11C]MeS-IMPY   8.95* 8.95 Seneca et al., 2007 
[18F]Indole-14§   1.50* 1.50 Qu et al., 2008 
[18F]Indoline-8§   4.00* 4.00 Qu et al., 2008 
[11C]Benzothiazole-6a§   18.80* 18.80 Serdons et al., 2009a 
[11C]Benzothiazole-6b§   11.50* 11.50 Serdons et al., 2009a 
[11C]Benzothiazole-6c§   11.20* 11.20 Serdons et al., 2009a 
[18F]Benzothiazole-2§   9.00* 9.00 Serdons et al., 2009b 
[18F]Benzothiazole-5§   5.70* 5.70 Serdons et al., 2009c 
[18F]MK3328   9.60 9.60 Harrison et al., 2011 
[18F]FIAR  6.81*  6.81 Watanabe et al., 2011 
[18F]Benzoxazole-24§  9.30*  9.30 Cui et al., 2012a 
[18F]Pyridinylbenzoxazole-32§  8.00*  8.00 Cui et al., 2012b 
[18F]Phenylindole-1a§  28.40*  28.40 Fu et al., 2013 
#KD is derived using KD values of synthetic Aβ1-40 and Aβ1-42 using: KD(Aβ1-40) * 0.3 + KD(Aβ1-42) * 0.7 
$KD(Aβ1-40) was averaged from 4 literatures (1.02, 0.90, 3.30, 4.70) and KD(Aβ1-42) was averaged from 2 
literatures (0.91, 0.95). 
*Ki values (with itself or IMPY as competitor) 
&Ki values (with florbetapir as competitor) 
¶Ki values (with BF180 as competitor; BF180 exhibits similar binding to IMPY [Furumoto et al., 2007]) 
†Ki values (with PIB as competitor) 
§Simplified name with the compound number or alphabet, as reported in the literature, used when generic 
name or institute code name (supplied by the author) was not available. 
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4.5 Conclusions 

In this chapter, in silico Vx, in vitro KD and fixed values of Bavail for HC, MCI and AD conditions 

were determined. An in silico model for predicting the fP and fND values of the amyloid radiotracers 

was proposed. However, due to the limitations of the in vitro fP measured via ultrafiltration, the 

validation of fP-fND model has to be carried out by other means. MLogP (dproperties) and LogD+S 

(MedChem) showed potential in representing the lipophilicity of the amyloid radiotracers with 

good performance in RMSE and mean values, and good correlations in both linear and orthogonal 

regressions. Further evaluation by means of model simulation and correlation of predicted kinetic 

parameters with clinically-observed values is required to determine the representative 

lipophilicity model and the reliability of the fP-fND model in predicting fP and fND values for 

amyloid radiotracers. 
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Chapter 5  

Development of Biomathematical Model for 

Amyloid Radiotracers 

Guo’s biomathematical model was developed for CNS radiotracers [Guo et al., 2009], therefore 

validation is required to ensure that the model is applicable to amyloid radiotracers. Moreover, 

Guo’s model was developed based on pigs’ in vivo data [Guo et al., 2009], hence adjustment might 

be required for human data. The two remaining issues from the previous chapter of determining 

the representative lipophilicity model and validating the proposed fP-fND model in predicting the 

fP and fND values for amyloid radiotracers will be addressed in this chapter.  

 

This chapter focuses on the development and evaluation of the final biomathematical model in 

predicting 1TCM kinetic parameters and the outcome of interest, SUVR of amyloid radiotracers 

in HC, MCI and AD conditions. Firstly, the reason for choosing SUVR as the outcome parameter 

of interest is discussed. Clinical kinetic data and SUVR data are compiled for evaluating the 

outcome parameters of interest of the model. These data are used to determine the representative 

lipophilicity model by correlating the predicted and clinically-observed K1 values and to evaluate 

the in silico fP-fND model by correlating the predicted and clinically-observed k2 and BPND values. 

As SUVR is affected by the input function, shape of the TACs, choice of the time window, these 

parameters will be optimised for developing the final biomathematical model. The model is 

evaluated to understand the effect of changing an input on the accuracy of predicting the outcome.  

5.1 Choice of SUVR as Outcome Parameter of Interest 

SUVR is often employed to measure the amyloid load in HC, MCI and AD in clinical amyloid 

PET imaging studies due to its simplicity in quantification, as no blood sampling is required. 

However, the measured SUVR is dependent on the selected reference region, choice of the time 

window, and image processing such as partial volume correction. Partial volume effects (PVE) 

includes spill-in of radioactivity from neighbouring white matter regions into cortical regions 

resulting in lower cortical measurements, and spill-out from cortical regions to neighbouring 
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white matter regions, yielding higher radioactivity measurements in white matter regions. To 

measure the target specific-binding in terms of SUVR, the time window chosen should correspond 

to the phase of quasi-steady-state, where the washout becomes stable in both the target and 

reference regions. In this state, the ratio of the measured radioactivity in the target region to the 

reference region or SUVR becomes almost constant over time (Figure 5.1).  

 
Figure 5.1: Time activity curves of target and reference regions of an amyloid radiotracer (y-axis on the 

left) and the changes in SUVR over time (y-axis on the right). Pale shaded area highlights the quasi-steady-

state phase [Cselenyi et al., 2015]. 

 

SUVR is shown to correlate well with the distribution volume ratio (DVR) for several amyloid 

radiotracers [Nelissen et al., 2009; Rowe et al., 2008; Hatashita et al., 2014; Cselenyi et al., 2015]. 

However, changes in the structure (e.g. brain atrophy) and functions (e.g. metabolism, perfusion) 

of the brain due to normal ageing and disease are shown to affect the definitive diagnosis of AD. 

As SUVR is dependent on the target specific-binding and the regional cerebral blood flow (rCBF), 

changes in SUVR values in longitudinal studies may be affected by unequal changes in rCBF of 

the target and reference regions, and/or changes in amyloid load [Cselenyi et al., 2015]. 

 

Even though SUVR becomes constant over time, the concentration of the radiotracer in plasma is 

lower than that in tissue. This resulted in a net transport of radiotracer from the tissues into the 

plasma after the steady-state. In addition, the differences in non-specific binding in the reference 

and target regions will lead to differences in equilibrium. As a result, SUVR is dependent on rCBF 

due to the differences in the equilibrium of the radiotracer distributions between the blood and 

tissue in the target and reference regions [canBerck et al., 2013]. Although the effect of rCBF is 
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small (~2-5% in SUVR of MCI and AD), the variation in SUVR was greater than that of DVR and 

other kinetic parameters. The use of SUVR will thus confound the measurement of changes in 

amyloid load in longitudinal studies and hence DVR was highly recommended for quantitative 

PET analysis [canBerck et al., 2013; Cselenyi et al., 2015]. However, the determination of DVR 

requires long dynamic scan time, which may be difficult for patients. As such, many clinical 

studies are still analysing PET imaging data by means of SUVR within an optimal time window.  

 

Cerebellar gray matter or whole cerebellum is generally chosen as the reference region due to its 

low concentrations of amyloid fibrils [van Berckel at el., 2013; Cselenyi et al., 2015]. White matter 

dominated regions such as the brain stem [Landau et al., 2014 and 2015] or pons [Leinonen et al., 

2014] or sub-cortical white matter [Chen et al., 2015], are also used as reference regions. Although 

the decrease in rCBF may affect longitudinal SUVR values, the choice of the reference region also 

shows an effect on longitudinal SUVR. The choice of the pons or cerebellum as the reference 

region showed both increased and decreased in longitudinal SUVR but the choice of subcortical 

white matter showed a consistent increased in longitudinal SUVR [Chen et al., 2015]. Moreover, 

amyloid was reported to accumulate in the cerebellum in the late stage of Aβ distribution [Jucker 

et al., 2013]. This might be the cause of reduced longitudinal SUVR with the cerebellum as a 

reference region. Although DVR was highly recommended for quantitative evaluation of amyloid 

PET images, the use of SUVR would be less tiring for the patient due to short scan time and ease 

of quantification. Thus, SUVR was chosen as the outcome parameter of interest. 

5.2 Clinical Data 

Presently, there are about 11 amyloid radiotracers that have been applied clinically-applied, with 

their clinical SUVR data reported in the literature. However, only 9 clinically-applied amyloid 

radiotracers have been evaluated using kinetic models with their data reported in the literature. 

Due to the limited number of clinically-applied amyloid radiotracers, the statistical power of our 

evaluation is low. Yet at the same time, it shows the importance of this project in boosting the 

development of amyloid radiotracers. 

5.2.1 Clinical SUVR  

The clinically-observed SUVR values were measured from different ROIs using different 

reference regions and different time windows. Although white matter reference region was 

recommended for longitudinal studies [Chen et al., 2015], most SUVR reported from literature 
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used the cerebellum as the reference region. For consistency, only SUVR determined using the 

cerebellum or cerebellar gray matter was used.  

 

There are three possible types of SUVR from the literature that can be used for correlation with 

the predicted SUVR: (1) SUVR from the region with greatest clinically-observed SUVR in AD, (2) 

SUVR taken from the region with the greatest clinically-observed SUVR difference between AD 

and HC, and (3) SUVR taken from the same region across all radiotracers – posterior cingulate 

gyrus. The posterior cingulate gyrus was chosen as it was commonly reported in many studies. 

The three types of SUVR were compiled for 11 clinically-applied amyloid radiotracers as shown 

in table 5.1.  

5.2.2 Clinical 1TCM Parameters 

Although Guo’s biomathematical was used to derive the 1TCM parameters - K1, k2 and BPND, 

2TCM was reported to result in better fit with the measured clinical data for 8 clinically-applied 

amyloid radiotracers, [11C]PIB, [18F]florbetaben, [11C]BF227, [18F]flutemetamol, [18F]florbetapir, 

[11C]AZD2184, [18F]flutafuranol and [18F]FACT. (Table 5.2). Yaqub et al. [2009] showed that the 

2 tissue compartment with 1 metabolite (2T1M) resulted in the best fit with measured clinical 

data for [18F]FDDNP.  

 

As the 2TCM is a representative model of the actual pharmacokinetics of the amyloid radiotracers, 

K1, k2 and BPND of 2TCM were extracted from the literature for consistency. BPND values derived 

from DVR-1 were selected instead of k3/k4 in 2TCM (Table 5.2). This is because the values of k3 

and k4 are small and are subjected to huge variations across subjects, while DVR is a macro-

parameter with smaller variation in the data.  

 

The values of K1, k2 and BPND were taken from the same target region with the highest SUVR in 

AD, which coincided mostly with the region with the greatest SUVR difference between HC and 

AD (Table 5.1). In some cases (e.g. [11C]PIB), kinetic parameters of only one target region were 

reported, hence they were used for evaluation. Out of the 11 clinically-applied amyloid 

radiotracers, [11C]SB13 and [18F]FIBT did not have any kinetic data and [18F]florbetapir only had 

clinically-observed BPND reported (Table 5.2). 
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 Table 5.1: Three types of clinically-observed SUVR of 11 clinically-applied amyloid radiotracers: (1) SUVR value of target region with highest SUVR in AD, (2) SUVR 

of the target region with the greatest SUVR difference between HC and AD and (3) SUVR of posterior cingulate gyrus, with SUVR of white matter. 

Clinically-Applied 
Radiotracers 

Time 
Window 

(min) 

Highest SUVR  Greatest SUVR 
Difference 

 
SUVR of PCG 

References 
SUVR of WM 

References 
HC AD Target 

Region 
 

HC AD HC AD HC AD HC AD 

[11C]PIB 40-60 1.32 2.79 PCG  1.32 2.79 1.32 2.79 1.32 2.79 Price et al.,2005 1.65 1.54 Price et al.,2005 
[18F]FDDNP 45-55 1.24 1.37 ACG  1.06 1.20 1.10 1.15 1.10 1.15 Tauber et al., 2013 - - - 
[11C]SB13 40-120 - 1.34 LFC  - - - - - - Verhoeff et al., 2004 - - - 
[18F]florbetaben 90-120 1.37 2.15 GR  1.27 2.14 1.27 2.14 1.27 2.14 Rowe et al., 2008 1.93 1.89 Rowe et al., 2008 
[11C]BF227 40-60 1.32 1.65 TOC  1.32 1.65 1.30 1.58 1.30 1.58 Shidahara et al., 2015 1.73 1.78 Shidahara et al., 2015 
[18F]flutemetamol  85-115 1.36 2.16 PC  1.36 2.16 1.40 2.09 1.40 2.09 Hatashita et al., 2014 2.03 Landau et al., 2014 
[18F]florbetapir 50-60 1.30 1.85 PC  1.30 1.85 1.31 1.65 1.31 1.65 Wong et al., 2010 1.22 1.56 Nemmi et al., 2014 
[11C]AZD2184 40-60 1.24 2.54 PCG  1.24 2.54 1.24 2.54 1.24 2.54 Ito et al., 2014 1.33 1.50 Nyberg et al., 2009 
[18F]flutafuranol 51-63 1.15 2.88 PFC  1.15 2.88 1.23 2.73 1.23 2.73 Cselenyi et al., 2012 1.94 2.10 Cselenyi et al., 2012 
[18F]FACT 40-60 1.25 1.33 TOC  1.12 1.29 1.24 1.31 1.24 1.31 Shidahara et al., 2015 1.84 1.94 Shidahara et al., 2015 
[18F]FIBT 70-90 1.52 1.91 OC  1.52 1.91 - - - - Yousefi et al., 2015b - - - 
PCG = Posterior Cingulate Gyrus,  ACG = Anterior Cingulate Gyrus, FC = Frontal Cortex, LFC = Left Frontal Cortex, PFC = Prefrontal Cortex, GR = Gyrus Rectus, 
OC = Occipital Cortex, TOC = Temporal OC, LTC = Lateral Temporal Cortex, PC = Precuneus, WM = White Matter 
Reference regions are either whole cerebellum or cerebellar gray matter 
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Table 5.2: Clinically-observed K1, k2 and BPND of 11 clinically-applied amyloid radiotracers. [11C]SB13 and [18F]FIBT do not have any 1TCM parameters reported in the 

literature. [18F]florbetapir does not have any K1 and k2 reported in the literature. 

Clinically-Applied  
Radiotracers 

K1  k2 Target 
Region References 

BPND Target 
Region References 

HC AD HC AD HC AD 
[11C]PIB 0.291 0.263 0.168 0.123 MPC McNamee et al., 2009 0.30 1.51 PCG Price et al.,2005 
[18F]FDDNP 0.250 0.360 0.060 0.060 Global* Yaqub et al., 2009 0.06$ 0.07$ Global* Yaqub et al., 2009 
[11C]SB13 - - - - - - - - - - 
[18F]florbetaben  0.216 0.187 0.085 0.076 FC Becker et al., 2013 0.27 0.75 Global# Becker et al., 2013 
[11C]BF227 0.270 0.230 0.130 0.120 TOC Shidahara et al., 2015 0.25 0.50 TOC Shidahara et al., 2015 
[18F]flutemetamol  0.250 0.230 0.080 0.080 Global¶ Heurling et al., 2015 0.52 0.93 PCG Nelissen et al., 2009 
[18F]florbetapir  - - - - - - 0.39 0.60 PU† Wong et al., 2010 
[11C]AZD2184 0.320 0.260 0.520 0.300 PCG Ito et al., 2014 0.16 1.39 PCG Ito et al., 2014 
[18F]flutafuranol 0.340 0.230 0.300 0.140 PCG Cselenyi et al., 2012 0.14 1.26 PCG Cselenyi et al., 2012 
[18F]FACT 0.220 0.200 0.230 0.160 TOC Shidahara et al., 2015 0.23 0.28 TOC Shidahara et al., 2015 
[18F]FIBT - - - - - - - - - - 
Units: K1 (ml/100 g/min), k2 (min-1), BPND  (unitless), SUVR (unitless), Time Window (min) 
All K1, k2 were obtained from 2TCM, using the region with the highest DVR or SUVR differences between HC and AD  
BPND was estimated using DVR-1 from 2TCM unless otherwise stated 
$ Estimated BPND from SRTM 
† Estimated BPND (DVR-1) from a graphical plot (Zhou’s method) 
FC = Frontal Cortex, LFC = Left Frontal Cortex, SFC = Superior FC, MIFC = Medial Inferior FC, PFC = Prefrontal Cortex, OFC = Orbital FC, TC = 
Temporal Cortex, MITC = Medial Inferior TC, STC = Superior TC, PCG = Posterior Cingulate Gyrus,  ACG = Anterior Cingulate Gyrus, PU = Putamen, PC = 
Precuneus, MPC =  Middle PC, GR = Gyrus Retus, HIP = Hippocampus, OC = Occipital Cortex, TOC = Temporal OC, PAR = Parietal Cortex, EC = 
Enthorinal Cortex 
* Cortical Regions: OFC, MIFC, ACG, STC, PAR, MITC, SFC, EC and HIP 
# Cortical Regions: FC, LTC, PAR and PCG 
¶ Cortical Regions: FC, PAR, ACG, PCG and TC  
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5.3 Determination of Representative Lipophilicity & 

Validation of In Silico fP-fND model 

In this section, MLogP (dproperties) and LogD+S (MedChem) were input into Guo’s model 

[2009] to determine the 1TCM kinetic parameters of K1, k2 and BPND. The default values of the 

physiological and correction parameters in Guo’s model were input accordingly. The fP and fND 

values were predicted from the proposed in silico fP-fND model using equations (40) and (41) with 

the respective lipophilicity values as input. Fixed Bavail values of 4, 20 and 50 nM for HC, MCI 

and AD conditions (section 4.4.5) were applied, with in vitro KD values extracted from literature 

(Table 4.9). A fixed input function averaged from six HC subjects injected with [11C]BF227, was 

used for simulation [Shidahara et al., 2015]. SUVR was determined using the literature-stated time 

window (Table 5.1). The predicted K1, k2 and BPND values were correlated with 8, 8 and 9 

clinically-observed values in HC and AD from table 5.2.   

 

Table 5.3 shows the in silico MLogP (dproperties), with the predicted fP and fND values, as well as 

the predicted K1, k2 and BPND values in HC and AD. The values of K1 and BPND were generally 

greater than the clinically-observed values listed in table 5.2.  
 

Table 5.3: In silico MLogP (dproperties) of 11 clinically-applied amyloid radiotracers, which were used to 

predict the fP and fND values using the proposed in silico fP-fND model. These parameters were used to predict 

the 1TCM parameters of K1 and k2 values in general for both HC and AD, and BPND values in HC and AD. 

Clinically-Applied 
Radiotracers 

In Silico  Predicted 

MLogP fp  fND 
 K1  

(ml/100 g/min) 
k2  

(min-1) 
BPND (unitless) 

 HC AD 
[11C]PIB 2.40 0.303 0.152  0.73 0.40 0.44 5.44 
[18F]FDDNP 2.89 0.187 0.068  0.58 0.23 0.07 0.88 
[11C]SB13 3.23 0.135 0.040  0.60 0.19 0.07 0.82 
[18F]florbetaben 3.11 0.152 0.048  0.47 0.16 0.09 1.09 
[11C]BF227 2.40 0.304 0.153  0.63 0.34 0.17 2.16 
[18F]flutemetamol 2.80 0.205 0.080  0.69 0.29 0.20 2.49 
[18F]florbetapir 2.52 0.270 0.126  0.54 0.28 0.14 1.70 
[11C]AZD2184 1.75 0.573 0.441  0.69 0.58 0.21 2.63 
[18F]flutafuranol 2.41 0.300 0.150  0.75 0.41 0.26 3.26 
[18F]FACT 1.87 0.511 0.365  0.57 0.44 0.16 1.94 
[18F]FIBT 3.04 0.162 0.054  0.54 0.19 0.31 3.84 
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Figure 5.2 shows the correlations between the predicted and clinically-observed K1, k2 and BPND 

in HC and AD, using MLogP (dproperties) as lipophilicity input. Good correlations were obtained 

in K1 in both HC and AD, with R2 of 0.73 and 0.71 respectively. Similarly, good correlations were 

obtained in k2 in both HC and AD, with R2 of 0.81 and 0.83 respectively. A reasonable correlation 

was obtained in BPND in AD, with R2 of 0.63 but a poor correlation was obtained in HC, with R2 

of 0.02. The K1 value of AD of [18F]FDDNP was excluded for correlation as an outlier. On the 

whole, good correlations were obtained between the predicted and clinically-observed K1, k2 and 

BPND with MLogP (dproperties) as lipophilicity input. 

 
Figure 5.2: Correlations of predicted and clinically-observed values of (A) K1, (B) k2 and (C) BPND in HC 

and AD. The K1, k2 and BPND values were generated using MLogP (dproperties) as lipophilicity input. The 

K1 value of [18F]FDDNP in AD was excluded for correlation as an outlier (filled circle). 

 

Table 5.4 shows the in silico LogD+S (MedChem), with the predicted fP and fND values, as well 

as the predicted K1, k2 and BPND values in HC and AD. Similar to the case for MLogP (dproperties) 

(Table 5.3), the values of K1 and BPND were generally greater than the clinically-observed values 

listed in table 5.2. Guo’s model was developed using pigs’ in vivo data [Guo et al., 2009], while 

human clinical data was used in our evaluation. The results showed that the data needs to be 

rescaled to compensate for the differences in the type of data used for model development.  
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Table 5.4: In silico LogD+S (MedChem) of 11 clinically-applied amyloid radiotracers, which were used to 

determine fP and fND values using the proposed in silico fP-fND model. These parameters were used to predict 

the 1TCM parameters of K1 and k2 values in general for both HC and AD, and BPND values in HC and AD. 

Clinically-Applied 
Radiotracers 

In Silico  Predicted 

LogD+S fp fND 
 K1  

(ml/100 g/min) 
k2  

(min-1) 
BPND (unitless) 

 HC AD 
[11C]PIB 3.64 0.090 0.020  0.48 0.12 0.06 0.72 
[18F]FDDNP 3.72 0.083 0.018  0.39 0.09 0.02 0.23 
[11C]SB13 3.83 0.075 0.015  0.42 0.09 0.02 0.30 
[18F]florbetaben 4.22 0.051 0.008  0.21 0.04 0.01 0.18 
[11C]BF227 3.49 0.104 0.026  0.45 0.12 0.03 0.36 
[18F]flutemetamol 3.98 0.064 0.012  0.37 0.07 0.03 0.36 
[18F]florbetapir 3.40 0.114 0.030  0.41 0.12 0.03 0.40 
[11C]AZD2184 2.99 0.170 0.058  0.67 0.25 0.03 0.35 
[18F]flutafuranol 3.16 0.144 0.044  0.64 0.21 0.08 0.96 
[18F]FACT 2.78 0.209 0.082  0.56 0.24 0.04 0.44 
[18F]FIBT 4.21 0.051 0.008  0.25 0.04 0.04 0.05 

 

Figure 5.3 shows the correlations between the predicted and clinically-observed K1, k2 and BPND 

in HC and AD using LogD+S (MedChem) as lipophilicity input. A reasonable correlation was 

obtained in K1 of AD, with R2 of 0.54, but a poor correlation was obtained in HC, with R2 of 0.03. 

The predicted k2 showed good correlations with clinically-observed k2 in both HC and AD, with 

R2 of 0.72 and 0.66 respectively. Poor correlation was obtained in BPND in AD, with R2 of 0.34, 

but no correlation was obtained in HC, with R2 of 0.01. The K1 value of [18F]FDDNP in AD was 

excluded for correlation as an outlier. On the whole, poorer correlations were obtained using 

LogD+S (MedChem) to predict K1, k2 and BPND. 

 

The predicted K1, k2 and BPND generated using MLogP (dproperties) as lipophilicity input showed 

good correlations with clinically-observed values (Figure 5.2), while those generated using 

LogD+S (MedChem) showed reasonable correlations with clinically-observed values (Figure 5.3). 

As such, MLogP (dproperties) was chosen as the representative lipophilicity input for the 

biomathematical model for amyloid radiotracers. Poor correlations between predicted and 

clinically-observed BPND values in HC were obtained regardless of the lipophilicity inputs. The 

low concentrations of Aβ load in HC and non-specific binding of the radiotracer might have 

contributed to the poor correlation in BPND values in HC. As such, the correlation of BPND values 

in HC was excluded for further evaluation. 
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Figure 5.3: Correlations of predicted and clinically-observed values of (A) K1, (B) k2 and (C) BPND in HC 

and AD. The K1, k2 and BPND values were generated using LogD+S (MedChem) as lipophilicity input. The 

K1 value of [18F]FDDNP in AD was excluded for correlation as an outlier (filled circle). 

 

The correlations between the predicted and clinically-observed k2 values in HC and AD were good 

with k2 values generated using MLogP (dproperties) and LogD+S (MedChem). Moreover, 

relatively good correlation of BPND values in AD was obtained using MLogP (dproperties) as 

lipophilicity input. This supported the use of the in silico fP-fND model for deriving fP and fND 

values. However, the predicted K1 and BPND values were greater than the clinically-observed 

values. As such, the scaling factors need to be adjusted or included to account for the differences 

between predicted and clinically-observed values. 

5.4 Scaling Factors  

The predicted K1 and BPND values were greater than the clinically-observed values (Table 5.2). In 

Guo’s model, a scaling factor of 3.43 was introduced to compensate for the differences between 

the predicted and in vivo K1 values determined from PET data of pigs [Guo et al., 2009]. In our 

model, in vivo human PET data is used, hence an adjustment to the scaling factor is required. The 

k2 and BPND were predicted using the measured fP and fND values obtained from in vitro 
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equilibrium dialysis experiment in Guo’s model. The outcome parameter of interest in Guo’s 

model was BPND. In our model, fP and fND values were derived using in silico models, based on 

data of CNS drugs. Therefore, adjustments to both k2 and BPND values might be required. 

 

To predict the values of K1, k2 and BPND, the default values of the physiological and correction 

parameters in Guo’s model were input first. The fP and fND values were predicted from the 

proposed in silico fP-fND model using equations (40) and (41) with MLogP (dproperties) as 

lipophilicity input. Fixed Bavail values of 4, 20 and 50 nM for HC, MCI and AD conditions (section 

4.4.5) were applied, with in vitro KD values extracted from literature (Table 4.9). A fixed input 

function averaged from six HC subjects injected with [11C]BF227, was used for simulation 

[Shidahara et al., 2015]. SUVR was determined using the literature-stated time window (Table 

5.1). The predicted K1, k2 and BPND values were correlated with 8, 8 and 9 clinically-observed 

values in HC and AD from table 5.2. 

 

The scaling factors of K1, k2 and BPND can be determined using kinetic data of either HC (SF-HC) 

or AD (SF-AD). Kinetic data of MCI were not available for most clinically-applied radiotracers 

and hence could not be applied. The scaling factor of K1 was first determined by minimising the 

differences between the predicted and clinically-observed K1 values. The scaling factor of k2 was 

then determined by minimising the differences between the clinically-observed k2 with the 

predicted k2, derived using the newly-scaled K1 value. The scaling factor of BPND was then 

determined by minimising the differences between the clinically-observed BPND with the 

predicted BPND, derived using the newly-scaled K1 and k2 values. K1 of [18F]FDDNP in AD was 

excluded when adjusting the scaling factors of K1 due to completely different kinetics from other 

clinically-applied amyloid tracers [Yaqub et al., 2009]. The same procedure was carried out using 

the kinetic data of AD and HC individually to determine the scaling factors. 

 

Using the kinetic data of AD, the scaling factor of K1 was changed from 3.43 to 1.23, and that of 

k2 was changed from 1.08 to 1.15. A scaling factor of 0.38 was introduced for BPND. After the 

introduction of the new scaling factors, the predicted K1, k2 and BPND values were within the same 

range as clinically-observed values (Figure 5.4). Changing the scaling factors for predicting K1, 

k2 and BPND shifted the predicted K1, k2 and BPND values closer to clinically observed values with 

no changes in the correlations of K1, k2 and BPND as compared to that of Guo’s (Figure 5.2). 
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Figure 5.4: Correlations between predicted and clinically-observed (A) K1, (B) k2 and (C) BPND in HC and 

AD. Predicted values were obtained using scaling factors determined using AD kinetic data. 

 

Using the kinetic data of HC, the scaling factors for K1, k2 and BPND were 1.45, 1.38 and 1.52 

respectively. The correlations between the predicted and clinically-observed K1, k2 and BPND of 

HC and AD were similar using both sets of scaling factors (Figures 5.4 vs 5.5). However, the 

values of K1, k2 and BPND were generally greater using the scaling factors determined from HC 

kinetic data, especially for BPND of AD subjects (Figures 5.4 vs 5.5). The correlation between the 

predicted and clinically-observed K1, k2 and BPND were similar despite the use of different scaling 

factors (Figures 5.2, 5.4 and 5.5). The scaling factors determined from AD data were hence more 

suitable for predicting K1, k2 and BPND. 
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Figure 5.5: Correlations between predicted and clinically-observed (A) K1, (B) k2 and (C) BPND in HC and 

AD. Predicted values were obtained using scaling factors determined using HC kinetic data. 

 

The TACs of [11C]PIB and [18F]FDDNP were simulated using three different scaling factors (SF-

AD, SF-HC and SF-Guo) in the reference and target regions in HC, MCI and AD (Figure 5.6). 

Within the time window of 40-60 min, the TACs of reference and target regions in HC and MCI 

were about the same for [18F]FDDNP but were different for the TACs of the target region in AD 

using the three different scaling factors (Figure 5.6). For [11C]PIB, the TACs of the reference and 

target regions in HC were about the same but were very different for TACs of the target regions 

in MCI and AD. [11C]PIB was reported to have greater binding than [18F]FDDNP [Shin et al., 

2008], thus the evaluation of higher target binding radiotracers would be more affected by the use 

of different scaling factors. The shape of the TACs simulated using SF-Guo was different from 

that of SF-HC and SF-AD, with higher and sharper peak and faster rate of washout (Figure 5.6). 

The shape of the TACs simulated using SF-AD appeared closer to clinically-observed TACs for 

[11C]PIB [Price et al., 2005] and [18F]FDDNP [Yaqub et al., 2009]. This supported the use of the 

new scaling factors derived using the kinetic data of AD.  
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Figure 5.6: Time activity curves of [11C]PIB simulated using three scaling factors (SF-AD, SF-HC and SF-Guo) in the (A) reference, and the target regions in (B) HC, 

(C) MCI and (D) AD and that of [18F]FDDNP simulated using three scaling factors (SF-AD, SF-HC and SF-Guo) in the (E) reference, and target regions in (F) HC, (G) 

MCI and (H) AD.
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5.5 Correlation with Three Types of SUVR 

The SUVR of the 11 clinically-applied amyloid radiotracers were simulated using the specified 

time window stated in the literature (Table 5.1). The predicted SUVR values were correlated with 

(1) SUVR from the region with the highest SUVR in AD, (2) SUVR from the region with the 

greatest SUVR difference between HC and AD and (3) SUVR of posterior cingulate gyrus (PCG). 

However, only 9 radiotracers had SUVR of PCG reported. For [11C]SB13, only SUVR values in 

AD were reported, hence the region with the greatest SUVR difference could not be determined.  

In this case, only 10 radiotracers were applied. The correlations were also carried out using 9 

radiotracers with SUVR of PCG reported for all 3 cases for consistency.  

 

To predict the values of K1, k2 and BPND, the following inputs were applied. The fP and fND values 

were predicted from the proposed in silico fP-fND model using equations (40) and (41) with MLogP 

(dproperties) as lipophilicity input. Fixed Bavail values of 4, 20 and 50 nM for HC, MCI and AD 

conditions (section 4.4.5) were applied, with in vitro KD values extracted from literature (Table 

4.9). A fixed input function averaged from 6 HC subjects injected with [11C]BF227, was used for 

simulation [Shidahara et al., 2015]. SUVR was determined using the literature-stated time window 

(Table 5.1). The new scaling factors determined using AD kinetic data (SF-AD) were applied. 

Simulations were also carried using Guo’s scaling factor (SF-Guo) to determine if the changes in 

scaling factor would greatly affect the outcome SUVR. Correlations of clinically-observed SUVR 

of the white matter region with predicted SUVR were also carried out using both HC and AD data. 

 

Averaged correlations were obtained for all three types of SUVR with R2 of 0.46, 0.40 and 0.50 

for SUVR from the region with the highest SUVR in AD, SUVR from the region with the greatest 

SUVR difference between HC and AD and SUVR of PCG respectively (Figure 5.7). Regardless of 

the number of radiotracers used for correlation, the SUVR of PCG resulted in the best correlation, 

followed by the SUVR from the region with the highest SUVR in AD and lastly by the SUVR from 

the region with the greatest SUVR difference between HC and AD (Figures 5.7 and 5.8). The 

difference in R2 was small using SUVR from the region with the highest SUVR values in AD and 

PCG (same region) (Figure 5.8), hence showing that the SUVR of PCG were often the highest 

SUVR value (Table 5.1) or close to that of the region with the highest SUVR.  
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Figure 5.7: Correlations of predicted SUVR with clinically-observed SUVR of (1) region with the highest 

SUVR in AD (n = 11), (2) region with greatest SUVR difference between HC and AD (n =10) and (3) PCG 

(n = 9). 

 
Figure 5.8: Correlations of predicted SUVR with clinically-observed SUVR of (1) region with the highest 

SUVR in AD, (2) region with greatest SUVR difference between HC and AD and (3) PCG of 9 clinically-

applied amyloid radiotracers. 

 

The R2 values for all three correlations were about 5.0 (Figures 5.7 and 5.8). This was probably 

due to the prediction of SUVR values of [11C]PIB, [18F]FIBT and [18F]florbetaben as they appeared 

as outliers as shown in figures 5.7 and 5.8.  The KD value used for [18F]FIBT was first reported as 
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Ki values measured using synthetic Aβ1-40 and Aβ1-42 with PIB as a competitor but was later 

reported in the later journal as a single KD value (Table 4.9). As such, the KD of [18F]FIBT used in 

our evaluation might not accurate for use. The Ki value used for [18F]florbetaben was measured 

with florbetapir as a competitor, so it was different from the other clinically-applied radiotracers 

(Table 4.9). The predicted SUVR of [11C]PIB was much greater than the clinically-observed SUVR. 

This may be due to the “ceiling effect” in AD conditions, whereby the rate of Aβ production, 

aggregation, deposition and clearance reached a steady-state in AD state (Figure 2.3) [Ingelsson 

et al., 2004]. This would explain the smaller variation in the Aβ concentration in AD subjects and 

the lack of correlation between Aβ load and disease duration or severity.  

 

Theoretically, SUVR values taken from the same region will yield more consistent correlations. 

This is particularly true in amyloid imaging, especially for regions where the accumulation of the 

amyloid proteins has reached its peak (no change in amyloid load). In such cases, the SUVR values 

from the region with the highest SUVR in AD and the same region will show similar correlation. 

If the region chosen is the region where amyloid proteins start to accumulate, then SUVR values 

of the region with the greatest SUVR difference between HC and AD region should be employed. 

Since the difference in correlation was small and more clinically-applied radiotracers could be 

evaluated, SUVR from the region with the highest SUVR in AD were selected for evaluation.   

 

The SUVR correlations in AD were slightly better using the new scaling factor (SF-AD) than 

Guo’s original scaling factor (SF-Guo) (R2 of 0.46 vs. 0.45) (Figure 5.9). However, the 

correlations of predicted and clinically-observed SUVR in HC were poor regardless of the scaling 

factor applied with R2 of less than 0.1 (Figure 5.9). This was probably because of the low amyloid 

load in HC, and thus other factors such as image processing and white-matter spill-over will 

greatly affect the measured SUVR. The consistency in the correlation between predicted and 

clinically-observed SUVR using both scaling factors supported the use of the new scaling factors 

to obtain kinetic data and SUVR values closer to clinically-observed values.  

 

No correlation was obtained between the predicted SUVR and clinically-observed SUVR values 

of the white matter region of both HC and AD subjects of 8 clinically-applied amyloid PET 

radiotracers (Figure 5.10). This is expected as little or no differences between HC and AD groups 

were reported [Nemmi et al., 2014] (section 2.3). 
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Figure 5.9: Correlations of predicted SUVR using new scaling factor (SF-AD) and original Guo’s SF (SF-

Guo) against clinically-observed SUVR in HC (n = 10) and AD (n = 11). 

 
Figure 5.10: Correlations of predicted SUVR with clinically-observed SUVR of white matter region under 

HC and AD conditions (n = 8). 

5.6 Choice of Time Window  

The predicted SUVR is affected by the choice of time window. A single time window will be used 

to predict SUVR under HC, MCI and AD conditions for the candidate radiotracers. To determine 

the optimal time window, SUVR under HC and AD conditions of 11 clinically-applied amyloid 

radiotracers were obtained using time windows of 20-40, 30-50, 40-60, 50-70 and 60-80 min with 

a 20 min time period of measurement. For each time window, the ratios of the predicted 

SUVRAD/SUVRHC and the % difference of the predicted SUVR from clinically-observed SUVR 

were calculated. The correlations between the predicted SUVR of these time windows and 
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clinically-observed SUVR were also evaluated.  

 

The ratios of predicted SUVRAD/SUVRHC plateaued at time windows of 40-60 or 50-70 min for 

most radiotracers (Figure 5.11, Table 5.5). The quasi-steady-state appeared to have reached 

around the time window of 40-60 min, as highlighted in table 5.5. The greater the ratio of 

SUVRAD/SUVRHC, the clearer the discrimination between HC and AD conditions. The earliest time 

window applied clinically was 40-60 min (Table 5.1) and many clinically-applied amyloid 

radiotracers had optimal time window of 40-60 min (e.g. [11C]PIB, [11C]AZD2184, [11C]BF227 

and [18F]FACT) or within the time window of 40 to 60 min (e.g. [18F]FDDNP). The shorter the 

waiting time, the less tiring it is for the patient. SUVR are also less bias and less dependent on 

blood flow at earlier time window [canBerck et al., 2013]. A default time window of 40-60 min 

seems to be a good choice. 

 

 
Figure 5.11: Ratio of predicted SUVRAD/SUVRHC of time windows of 20-40, 30-50, 40-60, 50-70 and 60-

80 min for 11 clinically-applied amyloid radiotracers. 

 

The best correlation was obtained using time window of 20-40 min, with R2 of 0.57 (Figure 5.12). 

The R2 decreased with late time windows. Although early time window of 20-40 min resulted in 

the best correlation (Figure 5.12) and the smallest standard deviation (Table 5.6), the average ratio 

of SUVRAD/SUVRHC was the smallest (Table 5.5). The better correlation obtained using time 

window of 20-40 min might be caused by the smaller SUVR values in AD for [11C]PIB and 

[18F]FIBT (Table 5.6).  
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Table 5.5: Ratio of predicted SUVRAD/SUVRHC generated using time windows of 20-40, 30-50, 40-60, 50-70 and 60-80 min of 11 clinically-applied radiotracers. Quasi-

steady-state highlighted in gray. 

Clinically Applied  
Radiotracers 

Time window (min) 
20-40 30-50 40-60 50-70 60-80 

[11C]PIB 2.75 3.05 3.16 3.17 3.09 
[18F]FDDNP 1.31 1.36 1.37 1.38 1.37 
[11C]SB13 1.26 1.31 1.34 1.35 1.35 
[18F]florbetaben 1.29 1.36 1.41 1.44 1.46 
[11C]BF227 1.83 1.91 1.91 1.89 1.85 
[18F]flutemetamol 1.85 1.99 2.04 2.05 2.02 
[18F]florbetapir 1.61 1.69 1.72 1.72 1.69 
[11C]AZD2184 2.11 2.07 2.01 1.97 1.92 
[18F]flutafuranol 2.25 2.36 2.35 2.31 2.24 
[18F]FACT 1.81 1.82 1.79 1.75 1.72 
[18F]FIBT 1.81 2.06 2.25 2.40 2.48 

Average 1.81 1.91 1.94 1.95 1.93 
Table 5.6: % difference of predicted SUVR from clinically-observed SUVR for HC and AD conditions. The standard deviation of the % SUVR difference of 11 and 8 

(excluding [11C]PIB, [18F]FIBT and [18F]florbetaben) clinically-applied amyloid radiotracers are shown. 

Clinically-Applied 
Radiotracers 

20-40  30-50  40-60  50-70  60-80 
HC AD  HC AD  HC AD  HC AD  HC AD 

[11C]PIB -8.59 18.8   -8.92 31.4   -9.63 34.9   -10.2 34.2   -10.7 30.4 
[18F]FDDNP -17.0 -1.61   -16.8 2.14   -16.7 3.58   -16.8 3.64   -16.8 2.75 
[11C]SB13 - -3.58   - 0.527   - 2.84   - 3.72   - 3.53 
[18F]florbetaben -24.8 -38.1   -24.4 -34.4   -24.2 -31.8   -24.1 -30.2   -24.1 -29.6 
[11C]BF227 -18.2 19.6   -18.2 25.0   -18.4 25.0   -18.6 23.0   -18.8 19.9 
[18F]flutemetamol -19.9 -6.94   -19.6 0.6   -19.7 3.29   -19.9 3.2   -20.2 1.3 
[18F]florbetapir -18.4 -7.92   -18.2 -2.60   -18.2 -1.03   -18.4 -1.44   -18.6 -3.11 
[11C]AZD2184 -11.7 -9.15   -12.2 -11.3   -12.4 -14.1   -12.6 -16.1   -12.7 -18.0 
[18F]flutafuranol -2.37 -12.4   -2.70 -8.41   -3.22 -9.10   -3.54 -11.1   -3.86 -13.9 
[18F]FACT -14.2 46.1   -14.5 46.5   -14.7 43.3   -14.9 40.3   -15.0 37.1 
[18F]FIBT -26.6 5.8   -25.4 22.0   -24.8 34.7   -24.7 43.6   -24.9 48.3 

Stdev 7.29 21.7   6.88 22.8   6.56 23.4   6.41 24.0   6.33 24.3 
Stdev (n = 8) 6.04 20.0   5.81 19.5   5.66 18.7   5.62 18.2   5.59 17.8 
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Figure 5.12: Correlation of predicted SUVR generated using time windows of literature-stated (-), 

20-40 (x), 30-50 (⟡), 40-60 (o), 50-70 (⧠) and 60-80 (Δ) min against clinically-observed SUVR 

under AD condition for 11 clinically-applied amyloid radiotracers. 

 

The standard deviation of the % difference of predicted SUVR from clinically-observed 

SUVR in both HC and AD increased with late frame time when all 11 clinically-applied 

radiotracers were included. When [11C]PIB, [18F]FIBT and [18F]florbetaben were excluded, 

the % difference decreased with late time window (Table 5.6). This showed that the poor 

correlation at late time window was due to the greater change in shape of the simulated 

TACs for radiotracers with high binding affinities such as [11C]PIB and [18F]FIBT. The % 

SUVR difference was small in HC compared to that of AD (Table 5.6).  

 

On the whole, a default time window of 40-60 min proved to be a good choice for screening 

new candidate amyloid radiotracers. The correlation of the predicted SUVR generated using 

default time window of 40-60 min was better than that generated using literature-stated 

time window, with R2 of 0.51 against 0.46 (Figure 5.12). This supported the use of a fixed 

time window for predicting SUVR of amyloid radiotracers. 

5.7 Input Function  

A fixed plasma input function will be used for screening all candidate compounds. As such, 

we need to investigate the choice of the input function on the outcome SUVR. The input 

functions of two amyloid radiotracers, [11C]BF227 and [18F]FACT, and one CNS 

radiotracer, [18F]FDDAA were used for evaluation (Figure 5.13). The input functions of 

HC and AD subjects might differ and hence their input functions were investigated. The 

input functions of BF227-HC and BF227-AD were averaged from the metabolite-corrected 
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plasma input functions of 6 HC and 7 AD subjects injected with [11C]BF227. The input 

functions of FACT-HC and FACT-AD were averaged from metabolite-corrected plasma

input functions of 10 HC and AD subjects injected with [18F]FACT respectively [Shidahara 

et al., 2015]. The four input functions of BF227-HC, BF227-AD, FACT-HC and FACT-AD 

have areas under the input function curves of 374, 436, 196 and 279 (kBq/mL).min. The 

input function of FDDAA was obtained from an HC subject injected with [18F]FDDAA. 

 

The input functions of both HC and AD subjects injected with the amyloid radiotracers, 

[11C]BF227 and [18F]FACT, showed fast uptake and fast washout with slight differences in 

the peak magnitude (Figure 5.13). The same trend in input function could be observed for 

other clinically-applied radiotracers [Price et al., 2005; Heurling et al., 2015; Yaqub et al., 

2009; Ito et al., 2014; Csele´nyi et al., 2012]. The input function of [18F]FDDAA was 

completely different with a higher peak and slower washout compared to that of the 

amyloid radiotracers. 

 
Figure 5.13: The logarithmic input functions of BF227-HC (-), BF227-AD (-.), FACT-HC (..), 

FACT-AD (--) and FDDAA (- -) with time (min). 

 

The evaluation was carried out by correlating the predicted SUVR using the five different 

input functions (BF227-AD, BF227-HC, FACT-AD, FACT-HC and FDDAA) with 

clinically observed SUVR of 11 clinically-applied amyloid radiotracers. The correlations of 

the predicted and clinically observed SUVR for 11 clinically-applied amyloid radiotracers

were relatively similar using the input functions of [11C]BF227 and [18F]FACT, with R2 of 

about 0.47 (Figure 5.14). Among the input functions of amyloid radiotracers, FACT-HC 

with the smallest area under the input function curve (Figure 5.13), resulted in the best 



Chapter 5: Development of Biomathematical Model for Amyloid Radiotracers 
 

113 

 

correlation of R2 = 0.48 (Figure 5.14). The input function of BF227-HC, with the second 

biggest area under the input function curve (Figure 5.13), resulted in the worse correlation

of R2 = 0.46 (Figure 5.14). The input function of FDDAA was completely different from 

that of amyloid radiotracer and resulted in poor correlation with R2 of 0.41 (Figure 5.14). 

As such, the input function of a different radiotracer should not be used for simulation.  

 

 
Figure 5.14: Correlations of clinically-observed SUVR with SUVR predicted using five different 

input functions (BF227-AD, BF227-HC, FACT-AD, FACT-HC, FDDAA) for 11 clinically-applied 

radiotracers. 

 

The time activity curves of [11C]PIB were simulated using the four different input functions 

of BF227-AD, BF227-HC, FACT-AD and FACT-HC, for reference region and target 

regions of HC, MCI and AD conditions (Figure 5.15). The TACs were simulated for 11 

clinically-applied amyloid radiotracers using the five input functions. The simulated TACs 

of the reference and target regions of HC, MCI and AD conditions using BF227-HC are 

shown in figure 5.16.  

 

The simulated TACs of [11C]PIB showed similar shape across HC, MCI and AD conditions 

with fast uptake and steady washout (Figure 5.15). However, the TACs simulated using 

BF227-HC were different from that using BF227-AD and FACT-HC and FACT-AD under 

HC condition (Figure 5.15B). The TAC of [11C]PIB simulated using FACT-HC reached the 

peak and nearly flattened out under AD condition (Figure 5.15D). The clinically-observed 

TAC for [11C]PIB curved downwards after peak uptake and continued to decrease as 

observed for simulated TACs of BF227-AD and BF227-HC. [Price et al., 2005]. Thus, the 

[11C]PIB 

[18F]FIBT 
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input functions of [18F]FACT are not suitable for simulations despite slightly better 

correlations (Figure 5.14).

 

The input function of HC is more representative as it is less affected by disease progression 

or the presence of vascular disease (e.g. CAA) [vanBerck et al., 2013]. The correlations 

between predicted and clinically observed SUVR were about the same for all input 

functions of [11C]BF227 and [18F]FACT. As such, the input function of BF227-HC was 

selected for simulation. The TACs simulated using BF227-HC for [11C]PIB, [11C]BF227, 

[18F]FACT, [11C]AZD2184 and [18F]flutafuranol were relatively similar to that observed 

clinically (Figure 5.16). Interestingly, the simulated TACs for MCI condition reflected 

closer to clinically-observed TACs of AD [Price et al., 2005; Shidahara et al., 2015; Ito et 

al., 2014; Cselenyi et al., 2012], rather than the simulated TACs of AD (Figure 5.16). The 

simulated TACs of [18F]FIBT and [18F]florbetaben might be affected by the KD values 

applied (section 5.5). 

 
Figure 5.15: Time activity curves of [11C]PIB for the (A) reference region and target regions of (B) 

HC, (C) MCI and (D) AD, simulated using the input functions of BF227-HC (Default,-), BF227-AD 

(— —), FACT-HC (..) and FACT-AD (--) respectively. 
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Figure 5.16: Simulated time activity curves from 0–90 min of the reference region and target regions of HC, MCI and AD of 11 clinically-applied amyloid radiotracers: 

(A) [11C]PIB, (B) [18F]FDDNP, (C) [11C]SB13, (D) [18F]florbetaben, (E) [11C]BF227, (F) [18F]AV138, (G) [18F]flutemetamol, (H) [18F]florbetapir, (I) [11C]AZD2184, 

[18F]flutafuranol, (K) [18F]FACT and [18F]FIBT.
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5.8 Final Amyloid Biomathematical Model  

The choice of the basic structure of the biomathematical model was discussed in chapter 3 and 

the determination of required parameters was discussed in chapter 4. The development of the 

biomathematical model was described in details in earlier sections of this chapter. This section 

focuses on providing an overview of the amyloid biomathematical model and summarising all the 

parts discussed earlier.  

 

The final biomathematical model was based on Guo’s simplified 1-tissue-compartment model 

(1TCM). It involved 3 main steps (Figure 5.17): (1) Generation of physicochemical and 

pharmacological parameters, (2) Derivation of 1TCM kinetic parameters, and (3) Simulations of 

TACs and SUVRs.   

 

 
Figure 5.17: Overview of Final Amyloid Biomathematical Model. 

 
Generation of Physicochemical and Pharmacological Parameters  

A total of six in silico/in vitro physicochemical and pharmacological parameters are required as 

input into the amyloid biomathematical model (Figure 5.17) for each radiotracer. McGowan 

volume (Vx, cm3/mol/100) and lipophilicity, represented by Moriguchi LogP (MLogP, unitless), 

were generated based on the chemical structure of the amyloid radiotracer using commercial 

software, dproperties (Talete, Italy). In silico free fraction in tissues of the nondisplaceable 
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compartment (fND, unitless) and free fraction in plasma (fP, unitless) were calculated from MLogP, 

using the equations (40) and (41) derived from Wan [2007] and Maurer [2004] datasets. 

𝑓ND = 7.717𝑒−1.634∙M𝐿𝑜𝑔𝑃 (40) 

𝑓P = 0.936 ∙ 𝑓ND
0.600 (41) 

The dissociation constant (KD, nM) was measured by in vitro binding assays using synthetic Aβ1-

40, synthetic Aβ1-42 or human AD brain homogenates (Table 4.9). For accurate comparison of the 

radiotracers, the same protocol in measuring KD values should be applied. The in vitro binding 

assays using both synthetic Aβ1-40 and Aβ1-42 are highly recommended to determine the binding 

selectivity to Aβ1-40 and Aβ1-42. In the case where measured KD values of both synthetic Aβ1-40 and 

Aβ1-42 were available, the following model should be applied to obtain the final KD value:  

𝐾D = 𝐾D(𝐴𝛽1−40) × 0.3+ 𝐾D(𝐴𝛽1−42) × 0.7 (53) 

 

In our evaluation, the KD or Ki values were selected as previously described in section 4.4.4 with 

the final KD values used shown in table 4.9. Fixed available target binding sites (Bavail, nM) of 4, 

20 and 50 nM were employed to represent the amyloid loads under HC, MCI and AD conditions 

respectively [Svedberg et al., 2009]. 

 

Derivation of 1TCM Kinetic Parameters  

The influx rate constant (K1, mL/cm3/ min) was derived using the modified Renkin and Crone 

equation, with compound-specific permeability (P, cm/min) and fixed values of capillary surface 

area (S = 150 cm2/cm3 of brain) and perfusion (f = 0.6 mL/cm3/min): 

𝐾1 = 𝑓 (1 − 𝑒
−
𝑃𝑆
𝑓 )  (14) 

The compound-specific permeability was derived from the simplified Lanevskij’s permeability 

model [Guo et al., 2009], using MLogP and Vx: 

𝑃 =  10−0.121(M𝐿𝑜𝑔𝑃 −2.298)
2
 −2.544log (𝑉x

1/3)−2.525  (15) 

At equilibrium, the efflux rate constant (k2, min-1) can be derived using K1, fP and fND:  

𝑘2 =  
𝑓ND
𝑓P

∙ 𝐾1 (16) 

The in vivo non-displaceable binding potential (BPND, unitless) was derived from Mintun’s 

equation using Bavail, fND and KD: 

𝐵𝑃ND =  𝑓ND  ∙  
𝐵avail
𝐾D

 (17) 
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Three scaling factors with the values of 1.23, 1.15 and 0.38 were introduced to account for the 

difference between the predicted and in vivo K1, k2 and BPND in equations (14), (16) and (17) 

respectively. These scaling factors were derived by minimising the differences between the 

predicted and clinically observed K1, k2 and BPND values of 8, 8 and 9 clinically-applied 

radiotracers in AD respectively (Table 5.2). 

 

Simulations of TACs and SUVRs 

The predicted K1, k2 and BPND were then used to simulate the TACs in the target regions of HC, 

MCI and AD and a reference region, with a fixed input function (IF):  

𝐶Target(t) = 𝐾1 ∙ 𝑒
−

𝑘2
(1+𝐵𝑃ND)

×𝑡
 ⊗  𝐼𝐹(t) (18) 

𝐶Reference(t) = 𝐾1 ∙ 𝑒
−𝑘2×𝑡  ⊗  𝐼𝐹(t)  (19) 

IF was derived by averaging the metabolite-corrected, arterial plasma input functions of 6 HC 

subjects injected with [11C]BF227 [Shidahara et al., 2015].

 

The SUVR of subject conditions of HC, MCI and AD were determined from the ratio of the areas 

under the TACs of the target regions in HC, MCI and AD, and that of the reference region within 

a selected time window. This time window was determined from the literature for clinically-

applied amyloid radiotracers (Table 5.1), or otherwise by default of 40 to 60 min. The final list of 

31 amyloid radiotracers used for evaluation and their respective in silico MLogP, Vx, fP and fND 

and in vitro KD are shown in table 5.7. 

 

For the amyloid model developed, the same assumptions made by Guo et al [2009] were applied 

(Section 3.4.1). For the application of the proposed in silico fP-fND model, we assumed that the 

amyloid radiotracers, like CNS radiotracers, displayed consistent plasma to tissue free fractions 

ratio at equilibrium and that the ratio was consistent in both animals and human [Di et al., 2011]. 

This is applicable only for radiotracers that cross the BBB by passive diffusion. [11C]PIB has been 

reported that it was not a substrate of P-glycoprotein (P-gp) [Tournier et al., 2011; Ishiwata et al., 

2007] and good correlation between predicted and clinically-observed K1 was obtained (Figure 

5.2). Therefore, we can assume that the clinically-applied amyloid radiotracers listed are 

transported across the BBB by passive diffusion (Table 5.7).  
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Table 5.7: Final values of in silico MLogP, Vx, fP and fND of 31 amyloid radiotracers. 

Radiotracers In Silico  In Vitro 
MLogP Vx  fP  fND  KD 

[11C]PIB 2.40 1.88 0.303 0.152  1.40# 
[18F]FDDNP 2.89 2.31 0.187 0.068  3.90# 
[11C]SB13 3.23 1.86 0.135 0.040  2.43 
[18F]florbetaben (Neuraceq) 3.11 2.84 0.152 0.048  2.22 
[11C]BF227 2.40 2.33 0.304 0.153  3.55# 
[18F]AV138 3.11 2.80 0.152 0.048  1.90 
[18F]flutemetamol (Vizamyl)  2.80 1.89 0.205 0.080  1.60 
[18F]florbetapir (Amyvid) 2.52 2.80 0.270 0.126  3.72 
[11C]AZD2184 1.75 1.84 0.573 0.441  8.40 
[18F]flutafuranol 2.41 1.79 0.300 0.150  2.30 
[18F]FACT 1.87 2.53 0.511 0.365  9.40 
[18F]FIBT 3.04 2.41 0.162 0.054  0.70 
[11C]6-Me-BTA-1 3.23 1.96 0.135 0.040  20.2 
[11C]BTA-1 2.97 1.82 0.173 0.060  11.0 
[18F]FMAPO 3.47 2.50 0.107 0.027  5.00 
[18F]FPEG-Stilbenes-12a§ 3.47 2.50 0.107 0.027  2.90 
[11C]Benzofuran-8§ 2.66 1.81 0.236 0.100  0.70 
[18F]FPEGN3-Styrylpyridine-2§ 3.74 2.94 0.082 0.017  2.50 
[11C]MeS-IMPY 3.33 2.20 0.122 0.034  8.95 
[18F]Indole-14§ 2.98 2.79 0.172 0.060  1.50 
[18F]Indoline-8§ 2.93 2.83 0.180 0.064  4.00 
[11C]Benzothiazole-6a§ 2.40 1.88 0.303 0.152  18.8 
[11C]Benzothiazole-6b§ 2.40 1.88 0.303 0.152  11.5 
[11C]Benzothiazole-6c§ 2.40 1.88 0.303 0.152  11.2 
[18F]Benzothiazole-2§ 3.72 1.59 0.083 0.018  9.00 
[18F]Benzothiazole-5§ 3.98 1.74 0.064 0.012  5.70 
[18F]MK3328 2.63 1.78 0.241 0.104  9.60 
[18F]FIAR 3.66 2.29 0.088 0.020  6.81 
[18F]Benzoxazole-24§ 2.41 2.75 0.302 0.152  9.30 
[18F]Pyridinylbenzoxazole-32§ 2.42 2.03 0.297 0.148  8.00 
[18F]Phenylindole-1a§ 3.84 2.09 0.074 0.015  28.4 
MLogP (unitless) and Vx (cm3/mol/100) were determined using dproperties (Talete, Italy). 
fP (unitless) and fND (unitless) were extrapolated from relationships of fP and fND of CNS tracers. 
KD (nM) was obtained from the literature, measured via in-vitro binding studies using synthetic Aβ1-
40, Aβ1-42 or AD brain homogenates. 
#KD is derived using KD values measured with synthetic Aβ1-40 and Aβ1-42 using: KD(Aβ1-40) * 0.3 + 
KD(Aβ1-42) * 0.7 
§Simplified name with the compound number or alphabet, as reported in the literature, used when 
generic name or institute code name (supplied by the author) was not available. 

5.9 Evaluation of Amyloid Biomathematical Model  

The applicability of a model is dependent on its accuracy and reliability in predicting the outcome 

parameters of interest. As the measured inputs into a model are subjected to experimental errors, 

it is important to determine the effect of possible errors on the outcome [Loucks et al., 2005]. 

Moreover, a model is an imperfect construction of the actual outcome. Hence, it is also important 

to determine if the assumptions of the model are valid [Loucks et al., 2005].  This section describes 
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the evaluation of the proposed model via sensitivity analysis and noise simulation, with different 

input functions on the predicted outcome.  

5.9.1 Sensitivity Analysis  

Sensitivity analysis is used to evaluate a model of the impact of possible errors in input data on 

predicted output and to identify the key parameters affecting the predicted outcome [Loucks et 

al., 2005]. The amyloid biomathematical model requires 6 physicochemical and pharmacological 

parameters, of which MLogP, Vx, fP and fND are in silico parameters based on the chemical 

structure of the radiotracer. Fixed values of Bavail are used to represent the amount of Aβ load in 

HC, MCI and AD conditions. KD is the only in vitro parameter measured via binding assay. As 

such, MLogP, Vx, fP, fND and Bavail would not contribute experimental errors to the outcome 

parameter. However, to identify the key parameters affecting the predicted outcome, all 6 

parameters were evaluated individually.  

 

For each amyloid radiotracer and for each subject condition of HC, MCI and AD, each input 

parameter was varied by ±20% in 5 steps in each direction (i.e. -20%, -16%, -12%, -8% -4%, 4%, 

8%, 12%, 16%, 20%). The predicted SUVR were compared with the reference SUVR generated 

without any variations. The % SUVR differences from the reference, with respect to the amount 

of variations (%), in each parameter were investigated for all 6 parameters using the 31 amyloid 

radiotracers (Table 5.7).  

 

The % SUVR differences due to MLogP, Vx and fP were small with less than 1%, 3.5% and 8% in 

HC, MCI and AD respectively (Figures 5.18-5.20). Therefore, MLogP, Vx and fP will not affect 

the outcome SUVR significantly with small variations in measurements of less than 20%. MLogP 

and Vx affected K1 and k2, based on equations (14) to (16), which resulted in irregular patterns 

(Figures 5.18 and 5.19). All the amyloid radiotracers evaluated had MLogP values within the 

range of 1.5 to 4.15 (Table 5.7), hence these amyloid radiotracers were likely to cross the blood-

brain-barrier [Lipinski et al., 2001]. 
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Figure 5.18: %SUVR difference from reference with ±20% variations in MLogP only. 

 
Figure 5.19: %SUVR difference from reference with ±20% variations in Vx only. 

 
Figure 5.20: %SUVR difference from reference with ±20% variations in fP only. 
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Figure 5.21: %SUVR difference from reference with ±20% variations in fND only. 

 
Figure 5.22: %SUVR difference from reference with ±20% variations in Bavail only. 

 
Figure 5.23: %SUVR difference from reference with ±20% variations in KD only. 
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The % SUVR differences were greater in AD compared to HC, with less than 20%, 20% and 15% 

in AD and less than 4%, 6% and 5% in HC, for fND, KD and Bavail respectively (Figures 5.21- 5.23). 

The changes in fND values resulted in the greatest % SUVR differences as it affected both k2 and 

BPND values based on equations (16) and (17). However, in terms of experimental measurement 

errors, errors in KD measurement were greater than that of fND. Increasing fND and Bavail values 

resulted in greater SUVR values (Figures 5.21 and 5.22) while increasing KD values resulted in 

smaller SUVR values (Figure 5.22). On the whole, variations in KD led to greatest changes in 

outcome SUVR values, followed closely by fND, Bavail, MLogP, fP then Vx (Figures 5.18- 5.23). 

Thus, the amyloid biomathematical model is highly sensitive to KD followed by fND.  

5.9.2 Noise Simulations 

The in vivo SUVR measured from PET images are subjected to noise due to reduced radioactive 

counts from decaying radioisotope, scattering of photons etc. (section 3.1). The effects of noise 

on outcome SUVR values was evaluated to determine whether the model is sensitive to noise 

during the evaluation of the possible clinical performance of candidate radiotracers. 

  

1000 noisy time activity curves were generated using Monte Carlo simulations using equations 

adopted from Logan [2001]. The random noise simulated at each frame time included the noise 

effects due to scan durations and radioactive decay of the isotopes:  

dev(t) = 𝑝𝑟𝑛  ∙ 𝑆𝐹  ∙  √
𝑒−𝜆𝑡   ∙  𝐶𝑡(𝑡)

∆𝑡
 (54) 

𝐶𝑡
′(𝑡) =   𝐶𝑡(𝑡) +  𝑒

𝜆𝑡 ∙ 𝑑𝑒𝑣(𝑡) (55) 

 

where Ct(t) is the original simulated radioactivity at mid-frame time (t) for each frame, e-λt ∙ dev(t) 

is the noise contribution at time t, e-λt ∙ Ct(t) is the non-decay corrected radioactivity at time t, λ is 

the half-life of the isotope, ∆t is the duration between two frames, prn is the pseudo random 

number generated from a Gaussian distribution with zero mean and standard deviation of one and, 

SF is the scaling factor to control the level of noise [Ikoma et al., 2008].  

 

The level of noise due to the counting statistics of a PET scanner can be expressed as the inverse 

square-root of the non-decay-corrected tissue concentration for each frame time. The scaling 

factor (SF) was determined such that the noise level of the time activity curve (TAC) from 8 to 

150 min was 3%:  
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𝑁𝑖 =  ∫ 𝐶𝑡(𝑡)   ∙  𝑒
−𝜆𝑡 𝑑𝑡

𝑡2

𝑡1

 (56) 

𝑆𝐷𝑚𝑒𝑎𝑛 ∙ SF =  ∑
√𝑁𝑖
𝑁𝑖

𝑛

𝑖

   (57) 

Ni represents the area under non-decay corrected TAC from the start of the frame time (t1) to the 

end of the frame time (t2) for the simulated radioactivity (Ct(t)) at mid-frame time t.  

 

The TACs were simulated with noise for the reference region and the target regions of each subject 

conditions of HC, MCI and AD. SUVR values were then obtained by dividing the area under the 

TAC (AUC) of the target over the reference region within the stated time window from the 

literature for clinically-applied radiotracers (Table 5.1) or from 40 to 60 min for candidate 

radiotracers using equation (4).  

𝑆𝑈𝑉𝑅 =  
𝐴𝑈𝐶target,t1−t2

𝐴𝑈𝐶reference,t1−t2
 (4) 

 

Good amyloid radiotracers will show huge differences in SUVR values across the various subject 

groups, but small variance in SUVR values within each subject group to ensure clear 

differentiation of the subject groups. The coefficient of variance of SUVR values simulated by 

Monte Carlo can be determined from the mean (μ) and standard deviation (σ) of the simulated 

SUVR values: 

%𝐶𝑂𝑉[𝑆𝑈𝑉𝑅] =  
𝜎(𝑆𝑈𝑉𝑅)

𝜇(𝑆𝑈𝑉𝑅)
 × 100% (58)

 

The %COV of predicted SUVR values for all 31 amyloid radiotracers across the three subject 

conditions of HC, MCI and AD were less than 3% indicating that the noise of the PET scanner 

has very little impact on outcome SUVR values (Table 5.8). Moreover, the noise level was 

approximately the same regardless of the subject conditions for each radiotracer, hence indicating 

that the simulated TACs were not greatly affected by the increased binding to the higher amyloid 

load under MCI and AD conditions. 
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Table 5.8: %COV of SUVR generated with noise simulation for 31 amyloid radiotracers under HC, MCI 

and AD conditions. 

Radiotracers %COV 
HC MCI AD 

[11C]PIB 1.32 1.32 1.27 
[18F]FDDNP 2.54 2.55 2.47 
[11C]SB13 1.46 1.43 1.38 
[18F]florbetaben 2.81 2.73 2.59 
[11C]BF227 1.33 1.36 1.30 
[18F]AV138 2.16 2.19 2.12 
[18F]flutemetamol  2.53 2.42 2.53 
[18F]florbetapir 3.02 2.96 2.83 
[11C]AZD2184 1.39 1.37 1.29 
[18F]flutafuranol 2.94 2.81 2.85 
[18F]FACT 2.29 2.32 2.33 
[18F]FIBT 2.85 2.75 2.70 
[11C]6-Me-BTA-1 1.26 1.26 1.21 
[11C]BTA-1 1.26 1.28 1.30 
[18F]FMAPO 2.10 2.11 2.06 
[18F]FPEG-Stilbenes-12a* 2.12 2.10 2.18 
[11C]Benzofuran-8* 1.25 1.23 1.24 
[18F]FPEGN3-Styrylpyridine-2* 2.05 2.09 2.04 
[11C]MeS-IMPY 1.24 1.24 1.19 
[18F]Indole-14* 2.21 2.07 2.12 
[18F]Indoline-8* 2.14 2.26 2.21 
[11C]Benzothiazole-6a* 1.34 1.35 1.42 
[11C]Benzothiazole-6b* 1.34 1.34 1.30 
[11C]Benzothiazole-6c* 1.32 1.33 1.30 
[18F]Benzothiazole-2* 2.04 2.07 2.07 
[18F]Benzothiazole-5* 2.05 2.02 2.03 
[18F]MK3328 2.45 2.37 2.46 
[18F]FIAR 1.96 1.96 2.00 
[18F]Benzoxazole-24* 2.27 2.30 2.24 
[18F]Pyridinylbenzoxazole-32* 2.44 2.32 2.42 
[18F]Phenylindole-1a* 2.00 2.03 2.00 
*Simplified name with the compound number or alphabet, as reported in the literature, 
used when generic name or institute code name (supplied by the author) was not available. 
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5.9.3 Effect of Input Functions 

The effect of input function on the predicted SUVR was evaluated in section 5.7. In this subsection, 

the effect of input function was further evaluated with noise simulations. The five different input 

functions obtained from both AD and HC subjects injected with [11C]BF227 and [18F]FACT 

(BF227-AD, BF227-HC (default), FACT-AD, FACT-HC) and one CNS tracer, [18F]FDDAA were 

used for evaluation (refer to section 5.7 for details). For each radiotracer, SUVR values were 

simulated 1000 times with noise, as described in section 5.9.2. The mean SUVR values were then 

calculated for each amyloid radiotracer. The % differences of the mean SUVR values from that 

generated using the default input function of BF227-HC were calculated for all 31 amyloid 

radiotracers (Table 5.7) for subject conditions of HC, MCI and AD.  

 

As BF227-HC has a higher area under the input function curve compared to FACT-HC and FACT-

AD (Figure 5.13), the SUVR values generated were generally higher than that of FACT-HC and 

FACT-AD, but smaller than that of BF227-AD and FDDAA, which have larger areas under input 

function curve. Therefore, the % differences in mean SUVR were generally negative for FACT-

HC and FACT-AD but positive for BF227-AD and FDDAA (Figure 5.24).  

 

The % differences in mean SUVR were less than 1.5%, 7% and 12% under HC, MCI and AD 

conditions excluding FDDAA. For FDDAA, the % differences in mean SUVR were less than 

2.5%, 14% and 25% under HC, MCI and AD conditions. This showed that the type of input 

functions employed will affect the outcome SUVR significantly if the input function of a 

radiotracer with completely different kinetics was used. However, if an input function of a 

radiotracer with similar kinetics was used, the outcome SUVR values would not be greatly affected 

by more than 12%, regardless of the subject groups used. Hence, the input function of amyloid 

radiotracers should be used for simulations. 
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Figure 5.24: Boxplots of % mean SUVR difference generated using BF227-AD, FACT-AD, FACT-HC and 

FDDAA from that generated using reference input function of BF227-HC under (A) HC, (B) MCI and (C) 

AD conditions. 

5.10 Summary 

In this chapter, we have developed a biomathematical model for predicting the SUVR values under 

representative HC, MCI and AD conditions with the appropriate scaling factors, choice of the 

time window and input function. The remaining issue from the previous chapter of determining 

the representative lipophilicity parameter was resolved by correlating the predicted SUVR values 

with clinically-observed values. MLogP was thus chosen as the input parameter for lipophilicity. 

The in silico fP-fND model resulted in good correlations between predicted and clinically-observed 

k2, BPND and SUVR. This showed the feasibility of the model in predicting fP and fND for amyloid 

radiotracers. The sensitivity analysis of the amyloid biomathematical model showed that KD was 
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the key parameter that would greatly affect the outcome SUVR, followed by fND. The outcome 

SUVR would not be greatly affected by the use of a plasma input function of a subject injected 

with an amyloid radiotracer.  
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Chapter 6  

Screening Methodology of Amyloid 

Radiotracers 

During radiotracer development, the comparison of the amyloid radiotracers is mostly carried out 

based on KD or Ki values, which do not reflect the pharmacokinetics of the radiotracers under 

clinical situations. The developed amyloid biomathematical model helps to predict the possible 

in vivo pharmacokinetics performance of the amyloid radiotracer in terms of SUVR. However, to 

evaluate the diagnostic capability of an amyloid radiotracer, the prediction of SUVR values at a 

single amyloid load under representative HC, MCI and AD conditions would not be sufficient. 

Moreover, the actual PET data contains noise, which will also affect the measured outcome and 

the accuracy of the diagnosis. Therefore, to evaluate the diagnostic capability of an amyloid 

radiotracer in discriminating the subject conditions, simulating variation in population data and 

noise in PET data are required.  

 

This chapter focuses on the development of a screening methodology to evaluate the diagnostic 

capability of the amyloid radiotracers in discriminating subject conditions in terms of SUVR. The 

various existing methods applied to evaluate the diagnostic performance of various radiotracers 

are also discussed. The feasibility of the screening methodology is evaluated by comparing the 

ranking results of the radiotracers with comparison results reported in the literature. A total of 31 

amyloid radiotracers (12 clinically-applied, 19 candidates) are used for evaluation (Table 5.7). 

6.1 Existing Evaluation Methods 

There are many existing methods employed to evaluate a treatment effect or the accuracy of a test 

or diagnosis. These methods measure the different aspects or properties of a treatment or diagnosis 

and may be sensitive to factors like disease prevalence, the spectrum of the disease etc. However, 

regardless of the methods applied, they are sensitive to the population being studied and the design 

of the study [Šimundić et al., 2009]. In this section, three evaluation methods that are commonly 

applied are described in details. 
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6.1.1 Coefficient of Variance (COV) 

The coefficient of variance (COV) is a measure of the variability of a set of data, independent of 

the unit of measurements. Therefore, it can be used to compare the spread of different dataset with 

different units of measurement. However, it is applicable only if the dataset consists of a real zero. 

COV is commonly determined in % using equation (58): 

𝐶𝑂𝑉(%) =  
𝑠𝑡𝑑𝑒𝑣

𝑚𝑒𝑎𝑛
× 100% (58) 

where stdev is the standard deviation of a set of data and mean is the average or mean value of 

the set of data. 

 

COV is used to determine the performance of radiotracer such as CNS. A good CNS radiotracer 

has small COV value which indicates small variation in measured outcome (e.g. BPND) [Guo et 

al., 2009]. Small COV within a subject condition is desirable. However, COV cannot be used to 

evaluate the performance of the radiotracer in discriminating subject conditions as the variations 

in SUVR differed across the subject conditions and it is used as an index of variability within a 

subject condition and not across subject conditions. 

6.1.2 Receiver Operating Characteristics (ROC) 

Receiver operating characteristics (ROC) is commonly applied to judge the diagnostic accuracy 

of a diagnostic test. It requires a threshold, which is set to discriminate subjects into two groups 

and involves identifying subjects that are correctly or incorrectly classified. Subjects that are 

correctly identified as having a disease are termed true-positive (TP), and those correctly 

identified as not having a disease are termed true negatives (TN). Subjects that are incorrectly 

identified as having and not having a disease are termed false positive (FP) and false negative 

(FN) respectively. These 4 cases are summarised in table 6.1. 

 
Table 6.1: Classification of subjects based on diagnostic test results and the actual outcome. 

Diagnostic 
Test Results 

Actual Outcomes 
Positive Negative 

Positive TP FP 
Negative FN TN 

 

The sensitivity of a test is defined as the probability of correctly identifying subjects with the 

disease and is calculated as TP / (TP+FN). The specificity of a test is defined as the probability of 
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correctly identifying subjects without the disease and is calculated as TN / (FP+TN) [Bewick et 

al., 2004]. Positive predictive value (PPV) is the probability of having subjects with the disease 

in the positive diagnostic test results and is calculated as TP / (TP+FP). Negative predictive value 

(NPV) is the probability of having subjects without disease in the negative diagnostic test results 

and is calculated as TN / (TN+FN) [Bewick et al., 2004]. 

 

The receiver operating characteristics (ROC) plot is obtained by varying the thresholds and 

determining the respective sensitivities and specificities and plotting the sensitivity against the 1-

specificity (Figure 6.1). The area under the ROC curve (AUROC, Az) can be used as a global 

measure of diagnostic accuracy but it is unable to differentiate test with higher sensitivity from 

that with higher specificity. The value of Az ranges from 0 to 1, whereby the larger the value of 

Az, the higher the diagnostic accuracy. 

 
Figure 6.1: Receiver Operating Characteristic plot with three curves of different Az values of 0.5, 0.75 and 

0.9. The curve with Az of 0.75 is coloured in gray.  

 

Az can be determined as a sum of trapezoids (empirical) or by fitting the curve (parametric) 

[Bewick et al., 2004]. It is often accompanied by the determination of the confidence interval (CI) 

of 95% and a statistics test [Šimundić et al., 2009]. In amyloid imaging, Az, sensitivity and 

specificity are commonly employed to determine the diagnostic accuracy of a radiotracer in 

classifying the subjects into HC, MCI and AD conditions, as classified by neuropsychological test 

(Table 6.2). For clinically-applied amyloid radiotracers, the values of sensitivity and specificity 

are mostly greater than 85% and varied even for the same radiotracers as the sensitivity and 

specificity depend on the population evaluated. 
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Table 6.2: Sensitivity and specificity of five clinically-applied amyloid radiotracers. 

Radiotracers 
ROC 

References 
Sensitivity (%) Specificity (%) 

[11C]PIB 97.2 85.3 Hatashita et al., 2014 

[11C]BF227 97.5# 81.7# Shao et al., 2010; 
Furumoto et al., 2013 

[18F]flutemetamol 95.2* 89.3* Hatashita et al., 2014; 
Vandenberghe et al., 2010 

[18F]florbetapir 92.7$ 95.3$ Clark et al., 2011;  
Camus et al., 2012 

[18F]FACT 90 100 Furumoto et al., 2013 
# Averaged values of Sensitivity (95,100) and of Specificity (92,71.4) 
* Averaged values of Sensitivity (97.2,93.1) and of Specificity (85.3,93.3) 
$ Averaged values of Sensitivity (93,92.3) and of Specificity (100,90.5) 

 

Sensitivity, specificity, PPV and NPV are dependent on the thresholds applied and the spectrum 

of the disease. Az is independent on the thresholds set but does not differentiate tests with high 

specificity or sensitivity. The values of sensitivity, specificity, PPV, NPV and Az range from 0.0 

to 1.0. To correctly apply ROC, statistical analysis with CI should be stated to determine the 

strength of the differences between two treatments or diagnostic test for discriminating two groups 

of subjects. However, statistical results are dependent on sample size and the disease spectrum in 

clinical studies. 

6.1.3 Power & Sample Size Analysis  

Effect size (Es) shows the magnitude of the difference between two datasets. It is scale-free 

(unitless) and hence it is applicable for comparing the relative magnitude effects of different data. 

There are a few types of formula to determine Es and it is dependent on the dataset. The equation 

used to determine Es is similar to that of Z-score or t-value formulae but instead of dividing by 

the population standard deviation or standard error (SE = σ /√n) respectively, a specified standard 

deviation is applied instead. The most common Es is the Cohen’s D, which can be determined 

using the means of the two datasets and a pooled standard deviation, σpooled.  

𝐸𝑠 =  
𝑀2 −𝑀1

𝜎pooled
 (59) 

𝜎pooled (Cohen
′s D) =  √

(𝑆𝐷2
2 + 𝑆𝐷1

2)

2
 (60)  

where M2 is the mean of the sample or dataset 2 and M1 is the mean of the population or dataset 
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1. SD2 is the standard deviation of the sample or dataset 2 and SD1 is the standard deviation of the 

population or dataset 1. 

 

However, Es (Cohen’s D) is applicable only if there is homogeneity in the variance of the datasets 

such that the results differed due to the sampling variation. If the standard deviations of the two 

datasets differ greatly, then this assumption will be violated and the standard deviations cannot be 

pooled together. If the sample sizes of the two datasets differ, σpooled (Hedges’G) is recommended 

to weigh the standard deviation by its sample size.  

𝜎pooled(Hedges
′G) = √

(𝑛1 − 1) ∙ 𝑆𝐷1
2 + (𝑛2 − 1) ∙ 𝑆𝐷2

2

𝑛1 + 𝑛2 − 2
 

(61) 

If σpooled (Hedges’G) is applied, Es should be corrected for small positive bias. 

Corrected 𝐸𝑠 (Hedges′G) = 𝐸𝑠 ∙ (1 −
3

[4(𝑛1 + 𝑛2)− 9]
) (62) 

Where n1 and n2 are the sample size of dataset 1 and 2 respectively. 

 

If the sample sizes of both datasets are the same but the standard deviations differed, the standard 

deviation of the control group should be applied instead to determine Es (Glass’s delta). This is 

based on the assumption that the measurements of the control group are not biased by the 

treatment or another external factor. 

 

The use of Es is limited to normally-distributed datasets and comparison of one type of 

measurement at a time. Moreover, Es is based on average values, which can differ widely 

depending on measurement reliability. For normally-distributed datasets with equal variances, Es 

(Cohen’s D) can also be converted to a common language effect size (CL), also known as Az in 

ROC [McGraw and Wong, 1992]: 

𝐶𝐿 =  ∅(
𝛿

√2
) (63) 

where Φ is the cumulative distribution function for a normally-distributed data, δ is the population 

effect size of datasets with homogeneous variance, similar to Es (Cohen’s D).  

6.2 Screening Methodology 

To fully evaluate the diagnostic capability of an amyloid radiotracer, SUVR values at variable 

amyloid load for each subject condition of HC, MCI and AD should be carried out. Moreover, to 
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mimic actual clinical data, population variation and noise level of scanner modality should be 

included in the simulations. Screening of radiotracers using population SUVR simulations is 

discussed in this section. The introduction of a common index is also described and evaluated to 

support objective evaluation of the clinical usefulness of multiple candidate radiotracers 

simultaneously and rapidly during radiotracer development. 

6.2.1 Simulation with Population Variation & Noise 

To simulate clinical situations, K1 and k2
 inputs into the biomathematical model were varied by 

10% and 20% respectively [Guo et al., 2012]. Bavail was also varied by 80%, 35% and 20% under 

HC, MCI and AD conditions respectively (section 4.4.5) [Svedberg et al., 2009]. These 

parameters were varied assuming a normally distributed population. 1000 noisy TACs in both 

target and reference regions were generated by Monte Carlo simulations. The noise was simulated 

such that the averaged noise level from 8 to 150 min was 3% using equations (54) to (57) (section 

5.9.2) [Logan et al., 2001; Ikoma et al., 2008]. The 1000 TACs simulated for both target and 

reference regions were used to obtain 1000 SUVRs for each subject condition of HC, MCI and 

AD. Simulations were carried out using an in-house software written in Matlab (Ver. R2014b, The 

MathWorks Inc., US).  

 

SUVR distributions across subject conditions of HC, MCI and AD were different depending on 

the regions of interest [Vandenberghe et al., 2010]. However, in regions excluding the cerebellum 

and subcortical white matter, the variations in young HC is the smallest, followed by elderly HC, 

then AD and lastly MCI [Vandenberghe et al., 2010]. The tails of the boxplot of MCI spreads from 

the minimum tail in elderly HC to the nearly the mean of AD [Vandenberghe et al., 2010; 

Hatashita et al., 2014]. The position of the median, box length and whisker length of simulated 

boxplot were evenly distributed due to the use of 1000 SUVR values, which differed from clinical 

data as the sample size reported were generally smaller. Even for large population datasets, the 

boxplot is dependent on the population screened. On the whole, the overall spread of simulate SUVR 

distributions across subject conditions of HC, MCI and AD for [11C]PIB and [18F]flutemetamol 

reflected closely to that observed in clinical data (Figure 6.2), thus showing that the variations in 

Bavail applied were suitable.  
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Figure 6.2: Simulated SUVR distributions across HC, MCI and AD conditions for (A) [11C]PIB and (B) 

[18F]flutemetamol. 

6.2.2 Clinical Usefulness Index (CUI) 

The clinical usefulness of a radiotracer reflects its diagnostic capability to differentiate the subject 

conditions. It is evaluated using methods such as receiver operating characteristics (ROC) and 

effect size. ROC evaluates the sensitivity and specificity of a radiotracer in diagnosing the subjects’ 

conditions correctly (section 6.1.2) [Fawcett et al., 2006]. Effect size is used to determine the 

strength of the differences in the measured values between two subject groups (section 6.1.3) 

[Okamura et al., 2014]. In amyloid imaging, the ratio of SUVR of AD to that of HC are often 

employed [Hatashita et al., 2014, Vandenberghe et al., 2010]. These methods are applied post-

imaging and are not evaluated during radiotracer development.  

 

Good amyloid radiotracers show great differences in clinical SUVR between subject conditions, 

thus making it easier to set SUVR threshold for diagnosing the subjects with higher accuracy 

(Figure 6.3). Presently, the comparison of the diagnostic capabilities of clinically-applied 

radiotracers are carried out by (1) visual comparison of clinical image data based on gray-white 

matter demarcation [Hatashita et al., 2014; Yousefi et al., 2015a; Carpenter et al., 2009] or (2) 

white matter retention [Wong et al., 2010; Ito et al., 2014; Cselenyi et al., 2012]  or (3) quantitative 

analysis of SUVR differences in gray and white matter regions between HC and AD subjects 

[Hatashita et al., 2014, Barthel et al., 2011, Price et al., 2005, Becker et al., 2013; Rowe et al., 

2008; Shidahara et al., 2015; Heurling et al., 2015; Nelissen et al., 2009; Ito et al., 2014; Carpenter 

et al., 2009]. However, the comparison of the clinical usefulness of clinically-applied radiotracers 

was difficult. This was due to issues such as a limited number of subjects and radiotracers 
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available, variations in subjects’ physiology and pathologies (e.g. other dementia), differences in 

amyloid distributions and densities), and the presence of white matter retention. 

 
Figure 6.3: SUVR distribution across HC, MCI and AD conditions using poor, average and good 

radiotracers 

 

A clinical usefulness index (CUI) was proposed for objective evaluation of the diagnostic power 

of radiotracer in differentiating the subjects clearly into subject conditions based on its binding 

capability to the cortical amyloid fibrils, in terms of SUVR. Evaluation tests used to evaluate the 

performance of a radiotracer were selected for the development and evaluation of CUI. 

6.2.2.1 Determination of Parameters 

COV is not suitable for comparing two or more dataset or for evaluating the discrimination power 

of two sets of data. For ROC analysis, sensitivity, specificity, PPV and NPV are dependent on the 

thresholds applied while Az is independent on the thresholds set. Az was thus selected as a 

potential parameter for evaluating the diagnostic capability of radiotracers. Es can serve as an 

independent parameter in evaluating the strength of the differences between 2 datasets. However, 

Az and Es are related and there are many types of Es available, the evaluation of Az and Es is 

required. Subject conditions of HC, MCI and AD are then grouped into conditions-pairs of HC-

MCI, MCI-AD and HC-AD. The conditions-pairs that can evaluate the diagnostic capability of 

the radiotracer needs to be determined. The SUVR ratios (Sr) of HC-MCI, MCI-AD and HC-AD 

were also included to determine if it was sufficient to evaluate the diagnostic performance of the 

amyloid radiotracers. 

 

Az was derived from the parametric fitting of the ROC curve using a ROC program written in 

Matlab (Ver. R2014b, The MathWorks Inc., US). Es was calculated from equations (59) and (60) 

using the means and respective standard deviations of 1000 SUVR values for each subject 
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conditions of HC, MCI and AD. Sr was determined by dividing the means of 1000 SUVR values 

for subject conditions of HC, MCI and AD accordingly to obtain SrMCI/HC, SrAD/MCI and SrAD/HCI 

for conditions-pairs of HC-MCI, MCI-AD and HC-AD. 

 

The 1000 SUVR values were simulated for all three conditions of HC, MCI and AD, assuming a 

normally-distributed population. However, the standard deviations of the SUVR values simulated 

across HC, MCI and AD conditions were different, hence their variances were not homogeneous. 

In this case, σ of a control group should be used (refer to section 6.1.3). The σpooled (Hedges’G) is 

not required since the same, large sample size was used for all conditions. As such, Es (Cohen’s 

D) and Es (Glass’s delta) of the 31 amyloid radiotracers were evaluated. The difference between 

Az and CL (generated from Es (Cohen’s D) using equation (63)) was also investigated for 

conditions-pairs of HC-MCI, MCI-AD and HC-AD.  

 

Az, Es and Sr of conditions-pairs of HC-MCI and MCI-AD were averaged and combined in pairs 

or all combined together to form different combinations. The spread and variance of the values of 

the combinations and the individual averaged parameters were determined. The parameter with 

the largest spread was evaluated against the other parameters individually using F-Test (ANOVA) 

on Matlab (Ver. R2014b, The MathWorks Inc., US) to ensure that these parameters are 

significantly different. 

6.2.2.2 Evaluation of Parameters 

Es (Glass’s Delta) generated using standard deviations of HC and MCI for conditions-pair of HC-

MCI were very different, with a range of 0~6.0 and 0~2.5 respectively (Figure 6.4). Es (Glass’s 

Delta) generated using standard deviations of MCI for conditions-pair of MCI-AD ranged from 

0~4.5. Es (Glass’s Delta) generated using standard deviations of HC for conditions-pair of HC-

AD ranged from 0~18 (Figure 6.4). Es (Cohen’s D) ranged from 0~3.0, 0~3.5 and 0~6.5 

respectively for conditions-pairs of HC-MCI, MCI-AD and HC-AD (Figure 6.4). Es (Glass’s 

delta) generated using standard deviations of HC increased with increasing Es (Cohen’s D) while 

that of MCI decreased (Figure 6.4).  

 

Es (Glass’s Delta) was dependent on the choice of standard deviation used and its range differed 

greatly between conditions-pairs of HC-MCI, MCI-AD and HC-AD. Es (Cohen’s D) appeared 

most consistent with closer ranges for both conditions-pairs of HC-MCI and MCI-AD. Thus, only 

conditions-pairs of HC-MCI and MCI-AD was selected to evaluate the diagnostic performance 
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of amyloid radiotracers, while conditions-pair of HC-AD was excluded. 

 
Figure 6.4: Es (Glass’s Delta) Vs. Es (Cohen’s D) for conditions-pairs of HC-MCI (Stdev of HC used for 

Glass’s Delta, blue), HC-MCI (Stdev of MCI used for Glass’s Delta, orange) and MCI-AD (Stdev of MCI 

used for Glass’s Delta, black) and HC-AD (Stdev of HC used for Glass’s Delta, green) of 31 amyloid 

radiotracers.  

 

The correlations between Az and CL for conditions-pairs of HC-MCI, MCI-AD and HC-AD were 

very strong with R2 of 0.999 (Figure 6.5). The small differences in values between Az and CL 

(Figure 6.5) may be due to the fitting of the ROC curve or due to the effects of violating the 

assumptions applied in using Es (Cohen’s D). Az was assumed to be correct and was used to 

correct for Es (Cohen’s D) to determine the differences in Es as follows: 

Corrected 𝐸𝑠 (c𝐸𝑠) =
𝐴𝑧

𝐶𝐿
× 𝐸𝑠 (64) 

 
Figure 6.5: Correlations between Az and CL for conditions-pairs of HC-MCI (blue), MCI-AD (orange) and 

HC-AD (black) for 31 amyloid radiotracers. 
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The curve of CL vs. Es (Cohen’s D) followed the cumulative distribution curve, hence showing 

that Az and Es evaluated the same properties of the radiotracers but Es showed greater differences 

in values compared to Az (Figure 6.6). For conditions-pair of HC-AD, the values of Az were 

similar for most radiotracers, hence Az would not be able to discriminate the performance of many 

amyloid radiotracers between HC and AD conditions. Due to the lack of differences in Az and 

huge differences in Es for conditions-pair of HC-AD as compared to conditions-pairs of HC-MCI 

and MCI-AD, only conditions-pairs of HC-MCI and MCI-AD will be used for further evaluation. 

 
Figure 6.6: Relationship between CL and Es (Cohen’s D) for 31 amyloid radiotracers. 

 

The combination of averaged Az x Es x Sr of conditions-pairs of HC-MCI and MCI-AD yielded 

the largest spread and variance and hence F-test was determined using this combination as a 

reference against the other parameters. A small difference was observed between averaged Es and 

cEs and between the various combinations using averaged Es and cEs (Table 6.3). This supported 

the use of Es (Cohen’s D) despite inhomogeneous variances across HC, MCI and AD conditions. 

Although Az and Es were related via the cumulative distribution function, they were not linearly 

correlated. As such, the F-value of averaged Az x Es was different from that of averaged Es with 

respect to averaged Az x Es x Sr. 

  

On the whole, the combination of averaged Az x Es x Sr of conditions-pairs of HC-MCI and MCI-

AD showed the greatest discrimination in the performance of the radiotracers. A common index, 

named clinical usefulness index (CUI) was developed using the product of the averaged Az, Es 

and Sr of conditions-pairs of HC-MCI and MCI-AD. 
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Table 6.3: Minimum, maximum, spread, mean and standard deviation of the respective parameters, Az, Es, 

cEs, Sr, Az x Es, Az x cEs, Es x Sr, cEs x Sr, Az x Sr and Az x Es x Sr. The resulting F-values and p-values 

from ANOVA with respect to Az x Es x Sr for the various parameters were shown at the bottom of the table. 

 Az Es cEs Sr Az x Es Az x cEs Es x Sr cEs x Sr Az x Sr 
Az x

Es x Sr 
Min 0.55 0.18 0.18 1.00 0.10 0.10 0.18 0.18 0.55 0.10 
Max 0.99 3.30 3.29 1.83 3.26 3.25 5.79 5.79 1.80 5.72 

Spread 
(Max-Min) 

0.44 3.12 3.11 0.83 3.15 3.15 5.61 5.60 1.25 5.62 

Mean 0.92 2.46 2.46 1.22 2.36 2.36 3.11 3.11 1.13 2.99 
Stdev 0.11 0.87 0.87 0.22 0.92 0.92 1.42 1.42 0.29 1.47 

Variance 0.01 0.75 0.75 0.05 0.86 0.85 2.02 2.01 0.08 2.16 
F-value 67 179 180 97 194 194 36279 36746 633 - 

6.2.3 Overview of Screening Methodology 

In this section, an overview of the proposed screening methodology was described for screening 

amyloid radiotracers based on their diagnostic capability of discriminating subjects’ conditions. 

The screening methodology involves three main steps (Figure 6.7): (1) Simulating 1000 SUVR 

values, with noise and population variation, for each subject condition of HC, MCI and AD, (2) 

Determination of AUROC (Az), effect size (Es) and SUVR ratios (Sr) for conditions-pairs of HC-

MCI and MCI-AD, and (3) Determination of CUI from the product of the averaged Az, Es and Sr.  

 
Figure 6.7: Overview of screening methodology for amyloid radiotracers based on the biomathematical 

model developed. 
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SUVR Population Datasets Realizations 

K1 and k2
 were varied by 10% and 20% respectively and Bavail was also varied by 80%, 35% and 

20% under HC, MCI and AD conditions respectively. 1000 noisy TACs in both target and 

reference regions were generated using the amyloid biomathematical model developed. The noise 

was simulated such that the averaged noise level from 8 to 150 min was 3%. The 1000 TACs 

simulated for both target and reference regions were used to obtain 1000 SUVRs for each subject 

condition of HC, MCI and AD. Simulations were carried out using an in-house software written 

in Matlab (Ver. R2014b, The MathWorks Inc., US).   

 

Determination of Az, Es and Sr 

Az, Es and Sr were determined for each conditions-pair of HC-MCI and MCI-AD using the 1000 

SUVR values of subject conditions of HC, MCI and AD. Az was derived using a ROC program 

written in Matlab (Ver. R2014b, The MathWorks Inc., US). Es was determined using the means 

(M) and standard deviations (STD) of 1000 SUVR values of subject conditions of HC, MCI and 

AD, in pairs of HC-MCI and MCI-AD: 

𝐸𝑠1−2 =
(𝑀2 − 𝑀1)

√(𝑆𝑇𝐷2
2 + 𝑆𝑇𝐷1

2)/2

 
(65) 

where 1 = HC and 2 = MCI for conditions-pair of HC-MCI, and 1 = MCI and 2 = AD for 

conditions-pair of MCI-AD. Sr was determined by dividing M of 1000 SUVR values for subject 

conditions of HC, MCI and AD accordingly to obtain SrMCI/HC and SrAD/MCI for conditions-pairs 

of HC-MCI and MCI-AD. 
 

Determination of CUI 

CUI was obtained from the product of the averaged Az, Es and Sr of conditions-pairs of HC-MCI 

and MCI-AD as follows: 

𝐶𝑈𝐼 =
1

2
(𝐴𝑧𝐻𝐶−𝑀𝐶𝐼 + 𝐴𝑧𝑀𝐶𝐼−𝐴𝐷) ×

1

2
(𝐸𝑠𝐻𝐶−𝑀𝐶𝐼 + 𝐸𝑠𝑀𝐶𝐼−𝐴𝐷) ×

1

2
(𝑆𝑟𝑀𝐶𝐼

𝐻𝐶
+ 𝑆𝑟 𝐴𝐷

𝑀𝐶𝐼
)  (66) 

        = 𝐴𝑧̅̅̅̅ × 𝐸𝑠̅̅ ̅ × 𝑆𝑟̅̅ ̅   

𝐴𝑧̅̅̅̅ , 𝐸𝑠̅̅ ̅ and 𝑆𝑟̅̅ ̅ represent the averaged Az, Es and Sr of conditions-pairs of HC-MCI and MCI-AD. 

Conditions-pairs of HC-MCI and MCI-AD were used to represent the conditions of low and high 

amyloid loads respectively. Equal weightage was applied to both conditions-pairs, indicating that 

the binding capabilities to low and high amyloid loads were equally important in evaluating the 

performance of the amyloid radiotracer. 
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6.3 Screening of Amyloid Radiotracers 

The CUI values of 31 amyloid PET radiotracers were simulated using the proposed screening 

methodology and ranked from highest to lowest. The evaluation results of the amyloid 

radiotracers based on CUI were compared with available comparison results of clinically-applied 

amyloid radiotracers. The relationships among 𝐴𝑧̅̅̅̅ , 𝐸𝑠̅̅ ̅ and 𝑆𝑟̅̅ ̅ and the resulting CUI for the listed 

radiotracers were investigated. 

6.3.1 Screening Results 

CUI values ranged from 0.10 to 5.72 for the list of 31 amyloid radiotracers evaluated (Table 6.4), 

with clinically-applied radiotracers having CUI values of greater than 3.0. The CUI distribution 

of the 31 amyloid radiotracers shows two slopes (< 3.0, > 3.5) and one flat region (3.0-3.5) (Figure 

6.8). Among the clinically-applied amyloid radiotracers, [11C]PIB was ranked first, followed by 

[18F]FIBT, [18F]flutafuranol, [11C]BF227, [11C]AZD2184, [18F]flutemetamol, [18F]florbetapir, 

[18F]FACT, [11C]SB13, [18F]florbetaben, [18F]AV138, and lastly [18F]FDDNP.  

6.3.2 Comparison Data of Clinically-Applied Radiotracers 

The resulting CUI values were compared to comparison data of clinically-applied radiotracers 

from literature. There were few comparison data of clinically-applied radiotracers due to the 

limited availability of the radiotracers. 

 

 [18F]flutafuranol vs. [11C]AZD2184 [Forsberg et al., 2012]:  

[11C]AZD2184 (distribution volume ratio (DVR) = 1.7) showed relatively similar cortical binding 

to [18F]flutafuranol (DVR = 1.6) in AD subjects. [18F]flutafuranol had a CUI value of  4.74  and 

was ranked 4th, while [11C]AZD2184 had a CUI value of 4.32 and was ranked 6th (Table 6.4). 

[18F]flutafuranol and [11C]AZD2184 showed relatively similar clinical usefulness, which was 

similar to DVR results reported by Forsberg et al.  

 

[11C]BF227 vs. [18F]FACT [Shidahara et al., 2015]:  

[11C]BF227 showed greater significant differences in cortical SUVR values between HC and AD 

subjects than [18F]FACT, which allowed for clearer differentiation of subject groups. [11C]BF227 

(CUI = 4.35, ranked 5th) had higher CUI value than [18F]FACT (CUI = 3.97, ranked 9th) in our 

simulations (Table 6.4).  
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Figure 6.8: CUI distribution of 31 amyloid radiotracers. 12 clinically-applied amyloid radiotracers are 

shaded in light gray. 

 

[18F]florbetapir vs. [18F]AV138 [Carpenter et al., 2009]:  

[18F]florbetapir and [18F]AV138 showed similar SUVR values in precuneus, but [18F]florbetapir 

was reported to have better pharmacokinetics and pharmacodynamics compared to [18F]AV138 in 

the clinical trial. [18F]florbetapir (CUI = 4.01, ranked 8th) also had higher CUI value than 

[18F]AV138 (CUI = 3.22, ranked 17th) in our simulations (Table 6.4).  

 

[11C]PIB vs.  [18F]flutemetamol vs. [18F]florbetapir [Landau et al., 2014]:  

In terms of clinical cortical uptakes in MCI and AD subjects, [11C]PIB was the highest, followed 

by [18F]flutemetamol then [18F]florbetapir, without partial volume correction. Likewise, our 

simulation results showed that [11C]PIB had the highest CUI value of 5.72, followed by 

[18F]flutemetamol (CUI = 4.13, ranked 7th) then [18F]florbetapir (CUI = 4.01, ranked 8th) (Table 

6.4). 
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The ranking of the CUI values of clinically-applied amyloid radiotracers reflected closely to their 

reported clinical results, attesting to the applicability of the screening methodology and the use of 

CUI, as a common index for evaluating the diagnostic capability of the amyloid radiotracers. 

 
Table 6.4: Az, Es and Sr of conditions-pairs of HC-MCI and MCI-AD and CUI of 31 amyloid radiotracers. 

Radiotracers 
AUROC (Az) Effect Size (Es) SUVR ratio (Sr) 

CUI HC-
MCI 

MCI-
AD 

HC-
MCI 

MCI-
AD 

MCI/ 
HC 

AD/ 
MCI 

[11C]PIB 0.979 0.995 2.96 3.64 1.68 1.83 5.72 
[18F]FDDNP 0.956 0.989 2.44 3.17 1.12 1.21 3.19 
[11C]SB13 0.977 0.992 2.79 3.40 1.11 1.19 3.50 
[18F]florbetaben 0.968 0.987 2.57 3.13 1.14 1.23 3.30 
[11C]BF227 0.981 0.992 2.95 3.46 1.30 1.46 4.35 
[18F]AV138 0.964 0.983 2.63 2.95 1.15 1.23 3.22 
[18F]flutemetamol  0.977 0.989 2.87 3.28 1.29 1.44 4.13 
[18F]florbetapir 0.977 0.993 2.78 3.44 1.23 1.38 4.01 
[11C]AZD2184 0.978 0.991 2.94 3.26 1.33 1.50 4.32 
[18F]flutafuranol 0.985 0.993 2.94 3.39 1.42 1.61 4.74 
[18F]FACT 0.973 0.992 2.66 3.40 1.25 1.42 3.97 
[18F]FIBT 0.981 0.991 2.97 3.37 1.49 1.62 4.87 
[11C]6-Me-BTA-1 0.774 0.885 1.03 1.74 1.01 1.03 1.17 
[11C]BTA-1 0.945 0.981 2.20 3.07 1.04 1.07 2.68 
[18F]FMAPO 0.840 0.927 1.39 2.07 1.03 1.06 1.59 
[18F]FPEG-Stilbenes-12a* 0.910 0.958 1.85 2.50 1.05 1.10 2.18 
[11C]Benzofuran-8* 0.978 0.991 2.91 3.21 1.89 1.78 5.52 
[18F]FPEGN3-Styrylpyridine-2* 0.808 0.907 1.30 1.85 1.03 1.05 1.40 
[11C]MeS-IMPY 0.866 0.963 1.62 2.45 1.02 1.05 1.93 
[18F]Indole-14* 0.977 0.984 2.89 3.00 1.27 1.35 3.77 
[18F]Indoline-8* 0.958 0.985 2.45 3.03 1.11 1.19 3.06 
[11C]Benzothiazole-6a* 0.943 0.984 2.29 3.05 1.05 1.10 2.77 
[11C]Benzothiazole-6b* 0.967 0.988 2.67 3.23 1.09 1.16 3.24 
[11C]Benzothiazole-6c* 0.970 0.991 2.74 3.33 1.09 1.17 3.36 
[18F]Benzothiazole-2* 0.635 0.768 0.498 0.988 1.01 1.02 0.530 
[18F]Benzothiazole-5* 0.631 0.737 0.450 0.865 1.01 1.02 0.456 
[18F]MK3328 0.913 0.974 1.99 2.78 1.07 1.12 2.47 
[18F]FIAR 0.683 0.803 0.682 1.22 1.01 1.03 0.723 
[18F]Benzoxazole-24* 0.960 0.988 2.54 3.22 1.12 1.20 3.25 
[18F]Pyridinylbenzoxazole-32* 0.966 0.987 2.53 3.16 1.13 1.22 3.26 
[18F]Phenylindole-1a* 0.554 0.548 0.168 0.200 1.00 1.00 0.102 
Az, Es, Sr and CUI are unitless. 
*Simplified name with the compound number or alphabet, as reported in the literature, used when 
generic name or institute code name (supplied by the author) was not available. 

6.3.3 Evaluation of CUI 

CUI was derived from the product of 𝐴𝑧̅̅̅̅ , 𝐸𝑠̅̅ ̅ and 𝑆𝑟̅̅ ̅ of conditions-pairs of HC-MCI and MCI-AD 

using equation (66). The relationships of 𝐴𝑧̅̅̅̅ , 𝐸𝑠̅̅ ̅ and 𝑆𝑟̅̅ ̅ with CUI were different (Figures 6.9A to 

6.9C), which suggested that the 𝐴𝑧̅̅̅̅   , 𝐸𝑠̅̅ ̅  and 𝑆𝑟̅̅ ̅  assessed different key properties of the 
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radiotracers. This was also observed from the differences in the ranking of the radiotracers based 

on 𝐴𝑧̅̅̅̅ , 𝐸𝑠̅̅ ̅ and 𝑆𝑟̅̅ ̅ (Table 6.4). For example, [18F]flutafuranol was  ranked the highest based on 𝐴𝑧̅̅̅̅ , 

while [11C]PIB was ranked the highest based on 𝐸𝑠̅̅ ̅ and [11C]Benzofuran-8 was ranked as the 

highest based on 𝑆𝑟̅̅ ̅.  

 
Figure 6.9: Relationships between (A) 𝐴𝑧̅̅̅̅  vs. CUI, (B) 𝐸𝑠̅̅ ̅ vs. CUI, (C) 𝑆𝑟̅̅ ̅ vs. CUI, (D) 𝐴𝑧̅̅̅̅  vs. 𝐸𝑠̅̅ ̅ (E) 𝑆𝑟̅̅ ̅ 

vs. 𝐸𝑠̅̅ ̅ and (F) 𝑆𝑟̅̅ ̅ vs. 𝐴𝑧̅̅̅̅ , of 31 amyloid radiotracers 

 

The rankings of Az, Es and Sr were also different between conditions-pairs of HC-MCI and MCI-

AD (Table 6.4). This suggested possible differences in diagnostic capability of amyloid 

radiotracers at high and low amyloid loads. For instance, comparing [11C]PIB and 

[11C]Benzofuran-8, [11C]PIB had higher Az, Es and Sr for conditions-pair of MCI-AD, while 

[11C]Benzofuran-8 had higher Az, Es and Sr for conditions-pair of HC-MCI (Table 6.4). Therefore, 
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CUI was derived using conditions-pairs of HC-MCI and MCI-AD. The conditions-pair of HC-

AD was excluded because of replication of results, and if used individually, it would not be able 

to differentiate the performance of the radiotracers at low and high amyloid loads. 

 

Individual Az, Es and Sr were unable to evaluate the clinical usefulness of amyloid radiotracers. 

Az had the smallest range of values from 0.548 to 0.995 (Table 6.4), which resulted in many 

radiotracers having the same 𝐴𝑧̅̅̅̅   values. Clinical ROC analysis showed that clinically-applied 

radiotracers were able to diagnose subjects with high sensitivity and specificity (Table 6.2). 

Similarly, both individual and averaged Az calculated were relatively similar for all clinically-

applied radiotracers, with high sensitivity and specificity (Table 6.4). As such, Az could not be 

used alone to evaluate the radiotracers. Although the range of values of Es of 0.168 to 3.64 was 

reasonably broad (Table 6.4), it only considered the strength of the differences between the 

measured outcomes (e.g. SUVR) of two conditions with respect to the variations in the measured 

outcomes. Likewise, Sr, which ranged from 1.00 to 1.89, only showed the magnitude of the 

differences in mean SUVR values between 2 conditions (Table 6.4). 

 

The combination of Az, Es and Sr integrated their strengths, including statistical significance 

(mainly Es), sample variability (mainly Az and Es), and measurement precision (mainly Az and 

Sr) (Figure 6.10). Greater spread in 𝐴𝑧̅̅̅̅  and 𝐸𝑠̅̅ ̅ were observed when CUI was smaller than 3.0, 

while greater spread in 𝑆𝑟̅̅ ̅  was observed when CUI was greater than 3.0 (Figure 6.9). The 

combination of Az, Es and Sr thus complemented each other and resulted in a broader range of 

CUI values of 0.10 to 5.72 (Table 6.4, Figure 6.8). This allowed for clear differentiation of the 

clinical usefulness of the amyloid radiotracers. 

 
Figure 6.10: Relationship of the strengths of Az, Es and Sr. 

6.4 Evaluation of Effects of Input on CUI 

CUI is dependent on the inputs into the biomathematical model. From the results of sensitivity 
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analysis of the amyloid biomathematical, the model is highly sensitive to KD. KD is also the only 

in vitro input into the model and errors in KD measurement were the greatest among the 6 

physicochemical and pharmacological parameters. The effect of changes in KD on outcome CUI 

was hence investigated. Effects of the input function, choice of the time window and changes in 

scaling factor on CUI were also investigated. 

6.4.1 Effect of KD on CUI 

The KD values for the list of 31 amyloid radiotracers (Table 5.7) were varied by ±20% and input 

into the amyloid biomathematical screening model (Figure 6.7) to simulate 1000 SUVR with noise 

and population variation. SUVR were obtained using the literature-stated time window for 

clinically-applied amyloid radiotracers and default time window for the candidate radiotracers. 

The resulting SUVR in HC, MCI and AD were then used to determine Az, Es and Sr and CUI in 

conditions-pairs of HC-MCI and MCI-AD.  

 

The distribution of CUI values with ±20% change in KD showed a similar trend to that without 

any variation (Figure 6.11). However, the ranking of radiotracers based on CUI was changed 

slightly within small groups of radiotracers whose ranking were originally close to each other 

(Figure 6.11). This showed the small effect of population variation in outcome measurement. 

Despite the variations, CUI still showed reasonable consistency in the ranking results. 

 
Figure 6.11: CUI values generated using original KD values (0%, ‘-‘) and 20% reduction in KD values (-
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20%, ‘o’), and 20% increase in KD values (+20%, ‘x’). 

6.4.2 Effect of Input Function on CUI 

To determine the effects of input function on CUI evaluation of radiotracer, 4 input functions of 

BF227-HC, BF227-AD, FACT-HC and FACT-AD were input into the amyloid biomathematical 

screening model. The same values for the 6 physicochemical and pharmacological parameters 

were applied (Table 5.7). Literature stated time window for clinically-applied amyloid 

radiotracers and default time window were applied for the candidate radiotracers for the list of 31 

amyloid radiotracers. For each radiotracer, the standard deviation and mean of the resulting CUI 

obtained with the four different input functions were used to calculate the %COV of the CUI.  

 

The %COV of the CUI values generated using the four input functions were less than 4.5% for 

all clinically applied radiotracers (Figure 6.12). Poor radiotracer, [18F]FIAR had the largest %COV 

value of 13.4% due to its small CUI value (Figure 6.12). Small CUI values were not altered 

significantly despite large %COV. On the whole, the ranking of radiotracers would not be altered 

significantly with the use of different input functions from a subject injected with an amyloid 

radiotracer. 

 
Figure 6.12: %COV of CUI values generated using BF227-HC, BF227-AD, FACT-HC and FACT-AD input 
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functions for the list of 31 amyloid radiotracers. 

6.4.3 Effect of Time Window on CUI 

To determine the effect of the use of default time window against literature-stated, optimised time 

window, CUI was simulated using the default time window of 40-60 min and literature-stated 

time window for 11 clinically-applied radiotracers. The same values for the 6 physicochemical 

and pharmacological parameters were applied (Table 5.7), with the default input function of 

BF227-HC. The % difference in CUI values determined using the default time window from that 

of the literature-stated time window was calculated. The CUI generated using both time windows 

are shown in Figure 6.13. 

 
Figure 6.13: CUI distributions of 11 clinically-applied amyloid radiotracers, generated using literature-

stated time window (box) and default time window of 40-60 min (-). 

 
Table 6.5: % difference in CUI values generated using default time window from that of literature stated 

time window for 7 clinically-applied amyloid radiotracers. 

Radiotracers Time Window (min) % Difference in CUI 
[18F]FIBT 70-90 -13.85 
[11C]SB13 40-120 -4.60 
[18F]flutemetamol 85-115 3.30 
[18F]flutafuranol 51-63 -2.45 
[18F]florbetapir 50-60 -2.02 
[18F]florbetaben 90-120 -1.10 
[18F]FDDNP 45-55 0.25 
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Out of the 11 clinically-applied radiotracers, 7 had SUVR values determined using different time 

window from the default time window of 40-60 min (Table 6.5). These 7 radiotracers had small 

differences in CUI values of less than 5%, except for [18F]FIBT, which had a huge difference in 

CUI value of -13.85% (Table 6.5). This was probably due to the greater change in the shape of 

the TAC due to its higher binding capability at high amyloid load. However, small differences in 

CUI and in the ranking of CUI could also result from population variation. The changes in CUI 

was more prominent for radiotracer with a higher binding capability (Figure 6.13, Table 6.5). 

Therefore, the % difference in CUI was the greatest for [18F]FIBT. On the whole, the % difference 

in CUI was small for the 7 clinically-applied radiotracers, hence the use of default time window 

of 40-60 min would not affect the evaluation of CUI significantly. 

6.4.4 Effect of Scaling Factor on CUI 

The scaling factors of K1, k2 and BPND will change the shape of the TACs, which in turn will affect 

the outcome SUVR. Although similar correlations between the predicted and clinically-observed 

SUVR were obtained using the new scaling factors determined using AD kinetic data (SF-AD), 

scaling factors determined using HC kinetic data (SF-HC) and original scaling factor determined 

by Guo et al [2009] (SF-Guo) (Figures 5.4, 5.5 and 5.9), it is also important to determine the effect 

of scaling factors on CUI. CUI was simulated using literature-stated time window for 11 

clinically-applied radiotracers. The same values for the six physicochemical and pharmacological 

parameters were applied (Table 5.7), with a default input function of BF227-HC. The scaling 

factors were changed to SF-HC or SF-Guo accordingly. 

 

The ranges of CUI using SF-Guo and SF-HC were 0.41~8.01 and 0.59~7.34 (Table 6.6), while 

that of SF-AD was 0.10~5.72 (Table 6.4). Although the maximum CUI were greater using SF-

Guo and SF-HC, the differences in CUI values were 6.31 and 5.35 respectively (Table 6.6), which 

were larger slightly greater than that of the original of 5.26 (Table 6.4) if [18F]Phenylindole-1a 

was removed. The ranges of 𝐴𝑧̅̅̅̅  , 𝐸𝑠̅̅ ̅  and 𝑆𝑟̅̅ ̅  were 0.667~0.989, 0.613~3.25 and 1.01~2.54 

respectively using SF-Guo, while they were 0.715~0.988, 0.812~3.25 and 1.02~2.42 respectively 

using the SF-HC (Table 6.6). The ranges of 𝐴𝑧̅̅̅̅ , 𝐸𝑠̅̅ ̅ and 𝑆𝑟̅̅ ̅ were 0.551~0.989, 0.184~3.30 and 

1.00~1.83 using the SF-AD (Table 6.4). The spread of 𝐴𝑧̅̅̅̅  and 𝐸𝑠̅̅ ̅ were greater using the SF-AD 

compared to SF-Guo or SF-HC, while the spread of 𝑆𝑟̅̅ ̅ were greater using SF-Guo followed by 

SF-HC. The contribution of 𝑆𝑟̅̅ ̅ to CUI was greater using SF-Guo and SF-HC. The range of 𝐴𝑧̅̅̅̅  
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was limited from 0~1.0, while 𝐸𝑠̅̅ ̅ was limited from 0 to about 3.25. The recommended minimum 

CUI was also changed from 3.0 (Table 6.4) to 4.1 and 4.4 using the SF-Guo and SF-HC (Table 

6.6). The increase in the values of CUI and differences in ranking were probably caused by the 

increased contribution of 𝑆𝑟̅̅ ̅ to CUI. 

 
Table 6.6: Averaged Az, Es, Sr and CUI calculated from SUVR simulated using scaling factors determined 

using HC kinetic data (SF-HC) and Guo’s scaling factors (SF-Guo). 

Radiotracers 
SF-HC  SF-Guo 

Az Es Sr CUI  Az Es Sr CUI 
[11C]PIB 0.985 3.08 2.41 7.34  0.989 3.25 2.36 7.59 
[18F]FDDNP 0.984 3.08 1.55 4.69  0.982 3.06 1.37 4.12 
[11C]SB13 0.985 3.11 1.50 4.58  0.983 3.09 1.35 4.12 
[18F]florbetaben 0.980 2.93 1.55 4.45  0.981 3.06 1.47 4.42 
[11C]BF227 0.987 3.22 1.99 6.33  0.983 3.08 1.73 5.23 
[18F]AV138 0.982 3.01 1.57 4.64  0.985 3.08 1.48 4.49 
[18F]flutemetamol 0.988 3.23 2.02 6.45  0.983 3.06 1.84 5.52 
[18F]florbetapir 0.987 3.12 1.84 5.66  0.981 3.02 1.63 4.82 
[11C]AZD2184 0.986 3.17 2.14 6.68  0.984 3.05 1.79 5.38 
[18F]flutafuranol 0.985 3.25 2.24 7.16  0.984 3.07 1.95 5.88 
[18F]FACT 0.981 3.06 1.95 5.86  0.985 3.06 1.65 4.95 
[18F]FIBT 0.969 2.80 1.93 5.24  0.987 3.22 2.09 6.64 
[11C]6-Me-BTA-1 0.970 2.70 1.08 2.82  0.944 2.31 1.05 2.28 
[11C]BTA-1 0.985 3.09 1.20 3.66  0.978 2.96 1.12 3.26 
[18F]FMAPO 0.976 2.81 1.18 3.25  0.961 2.71 1.14 2.96 
[18F]FPEG-Stilbenes-12a* 0.979 2.86 1.28 3.57  0.979 2.93 1.23 3.52 
[11C]Benzofuran-8* 0.974 2.84 2.33 6.44  0.986 3.19 2.54 8.01 
[18F]FPEGN3-Styrylpyridine-2* 0.966 2.58 1.17 2.91  0.974 2.84 1.17 3.23 
[11C]MeS-IMPY 0.978 2.97 1.14 3.32  0.975 2.78 1.09 2.97 
[18F]Indole-14* 0.981 2.98 1.79 5.24  0.981 3.04 1.74 5.20 
[18F]Indoline-8* 0.986 3.14 1.49 4.63  0.985 3.09 1.36 4.15 
[11C]Benzothiazole-6a* 0.983 3.09 1.27 3.86  0.984 3.07 1.17 3.55 
[11C]Benzothiazole-6b* 0.983 3.04 1.42 4.25  0.986 3.13 1.27 3.91 
[11C]Benzothiazole-6c* 0.986 3.16 1.43 4.46  0.989 3.19 1.27 4.02 
[18F]Benzothiazole-2* 0.937 2.22 1.08 2.24  0.895 1.81 1.05 1.70 
[18F]Benzothiazole-5* 0.922 2.03 1.06 1.99  0.899 1.91 1.05 1.81 
[18F]MK3328 0.984 3.09 1.37 4.15  0.984 3.08 1.23 3.72 
[18F]FIAR 0.962 2.57 1.10 2.71  0.934 2.30 1.08 2.32 
[18F]Benzoxazole-24* 0.983 3.10 1.52 4.65  0.982 3.03 1.33 3.96 
[18F]Pyridinylbenzoxazole-32* 0.984 3.14 1.57 4.86  0.984 3.12 1.37 4.20 
[18F]Phenylindole-1a* 0.715 0.812 1.02 0.59  0.667 0.613 1.01 0.41 
*Simplified name with the compound number or alphabet, as reported in the literature, used when 
generic name or institute code name (supplied by the author) was not available. 

 

The ranking of the radiotracers was different within small groups, such as the flat region 

(highlighted area of Figure 6.14), poor and good radiotracers. For both sets of scaling factors, 

[18F]FDDNP showed better performance than [11C]SB13 and for SF-HC, [18F]FDDNP had higher 

CUI than [18F]florbetaben. [11C]Benzofuran-8 and [18F]FIBT had very different CUI rankings, 

which showed that their simulated SUVR were very susceptible to changes in the shape of the 

TACs. The ranking of CUI generated using the new scaling factors (SF-AD) was more consistent 
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with literature-reported results. Moreover, the contributions of Az, Es and Sr to CUI were more 

evenly distributed. However, the different CUI results generated using different scaling factors 

showed that CUI was dependent on the model used to derive the outcome parameter of interest.  

 
Figure 6.14: CUI distribution of 31 amyloid radiotracers, simulated using scaling factors determined using 

HC kinetic data (SF-HC) and Guo’s scaling factors (SF-Guo). The black line represents the CUI distribution 

of the respective radiotracers based on the new scaling factors determined using AD kinetic data (SF-AD). 

The shaded area highlights the flat region of CUI distribution.  

6.5 Limitations of Screening Methodology with CUI 

The amyloid biomathematical model assumes passive diffusion, therefore the model may not 

work well for amyloid radiotracers that are actively transported across the BBB by transport 

proteins (e.g. P-glycoprotein (P-gp) substrates) [Guo et al., 2009]. However, the clinically-applied 

amyloid radiotracers used for the current evaluation showed good correlation between predicted 

and clinically observed K1 and k2 values. This showed that these radiotracers were transported 

across the BBB by passive diffusion. 
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CUI was defined to judge the clinical usefulness of a radiotracer, based on its cortical Aβ binding 

capability. Therefore, the screening methodology with CUI could not be used to differentiate 

radiotracers that showed white matter retention. The screening methodology with CUI also could 

not be used to predict binding to off-target, as observed for THK tau radiotracers. Possible binding 

to target needs to be known through in vitro binding assays. It is impossible to predict binding to 

off-target during the compound development of both radiotracers and drugs unless the chemical 

structure of the protein, receptors or any target sites are known and the chemical structure of the 

candidate compound was known to bind or interact with the target. 

 

The current list of CUI values was determined using KD or Ki values obtained from the various 

literature. Although KD is the only in vitro input, it is the most sensitive input parameter in the 

amyloid biomathematical model, followed by fND, Bavail, MLogP, fP then Vx (Figures 5.18-5.23). 

Changes in 20% in KD values resulted in less than 6%, 16% and 20% in differences in SUVR 

values in HC, MCI and AD conditions (Figure 5.23) and small changes in CUI values (Figure 

6.11). The other parameters were in silico parameters, hence they will not contribute significant 

errors to the screening methodology. The KD or Ki values measured using brain homogenates were 

said to differ from that measured using synthetic Aβ fibrils [Mathis et al., 2003; Klunk et al., 

2005], though some had claimed that there were no differences in measured values [Klunk et al., 

2003]. In addition, the radiotracers also bind with different affinities to different binding sites on 

the Aβ fibrils [Agdeppa et al., 2009, Lockhart et al., 2005]. Despite these issues, reasonable 

comparison of radiotracers can be achieved by using KD values measured using the same 

experimental protocol within an institution.  

 

Amyloid radiotracers such as [11C]PIB, [11C]BF227 and [18F]FDDNP had been reported to bind 

to neurofibrillary tangles [Harada et al., 2013]. As [18F]FDDNP had a lower binding affinity for 

amyloid fibrils, it showed lower cortical uptake in AD [Thompson et al., 2009]. The amyloid 

biomathematical model did not include the effect of tau binding on the binding performance of 

the amyloid radiotracers. Despite the use of only KD values of Aβ fibrils, the rankings of CUI 

values of clinically-applied amyloid radiotracers (Figure 6.8, Table 6.4) reflected well with 

reported clinical results. Therefore, the model showed applicability in evaluating the clinical 

usefulness of amyloid radiotracers. For proper application of the screening methodology with 

CUI, in vitro binding studies to both Aβ fibrils and tau protein, and comparison of CUI values 

with one clinically-applied amyloid radiotracer (e.g. [11C]PIB) are recommended. This ensures 

accurate and comparable CUI values in evaluating the performance of amyloid radiotracers during 
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radiotracer development. 

6.6 Summary of Use of CUI 

On the whole, CUI was most affected by the scaling factors used but was less affected by KD, 

choice of the time window and the input function used. This was due to the greater contribution 

of Sr to CUI due to the changes in SUVR values. Therefore, using the appropriate scaling factors 

is important in ensuring accurate interpretation of CUI. The small changes in CUI due to KD, 

choice of the time window and the input function used showed consistency and reliability in the 

use of CUI in evaluating the radiotracers. Moreover, CUI showed the greatest discrimination 

power compared to other combinations or evaluation methods in terms of SUVR. The ranking of 

the CUI values of clinically-applied amyloid radiotracers reflected closely to their reported 

clinical results and hence CUI showed potential in radiotracer evaluation. As the predicted kinetic 

parameters and SUVR showed good correlations with clinically-observed values and the ranking 

of CUI was close to literature-reported results, the model was optimised for evaluating amyloid 

radiotracers.  

 

CUI can be used to screen multiple candidate radiotracers simultaneously and rapidly during 

radiotracer development. In addition, CUI allows for the comparison of candidate radiotracers 

with clinically-applied radiotracers. This will assist decision-making in moving candidate 

radiotracers to clinical applications. 

6.7 RSwCUI Software 

A software written in Matlab was developed based on the proposed biomathematical screening 

methodology with CUI. It comes as a free package with a user manual and a Microsoft excel 

template for batch processing. The software is named RSwCUI, which is short for Radiotracer 

Screening with CUI (Figure 6.15).  

 
Figure 6.15: Logo of RSwCUI software. 
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RSwCUI can be run on Matlab by clicking on “RSwCUI.m” followed by “Run” button or 

by typing RSwCUI on the Command window if the software folder directory had been 

added to the program path. A simple graphical user interface (GUI) will be displayed with the 

default Options settings applied automatically. The GUI consists of 8 parts as shown in Figure 

6.16. 

 
Figure 6.16: RSwCUI GUI: (1) Batch Processing, (2) Required Inputs, (3) Options, (4) Progress panel, (5) 

Outputs of K1, k2, BPND and SUVR at representative amyloid loads for HC, MCI and AD conditions, (6), 

tracer evaluation results with CUI based on population simulation with noise, (7) Results display and (8) 

Simulate Button. 

 

(1) Batch Processing 

An excel template with the required inputs will be provided with the program. The inputs required 

are the same as that listed under the “Required Inputs”. The user can click on the […] button and 

a file directory will prompt the user to select the required excel file. 

 

(2) Required Inputs 

The user can choose to evaluate one radiotracer at a time or carry out batch processing by filling 

in the excel template provided. For each radiotracer, only 5 inputs are required:  

(1) Name of the chemical compound for ease of reference, especially in batch processing 

 



Chapter 6: Screening Methodology of Amyloid Radiotracers 
 

156 

 

(2) Lipophilicity (MLogP), determined from dproperties (Talete, Italy). 

(3) Molecular volume (Vx), determined from dproperties (Talete, Italy). 

(4) Dissociation constant (KD) as measured by in vitro binding assay.  

(5) Isotope of the radiotracer (C-11 or F-18) 

 

If the batch processing excel file is selected, the user does not need to fill in the required input. 

The inputs will be automatically filled in from the excel file. The software will prompt users of 

any unfilled or incorrect forms of input in the excel file in the “Progress” panel. 

 

(3) Options 

The user can choose to change the Options settings depending on the type of radiotracers they 

want to evaluate. Default settings are recommended if users are uncertain about the amount of 

population variation etc. The user should select the output directory desired, otherwise it will be 

automatically saved into the program folder. 

 

(4) Progress Panel 

The panel shows the simulation progress and prompts for any errors. 

 

(5) Outputs (K1, k2, BPND and SUVR) 

The predicted 1TCM kinetic parameters (K1, k2, BPND_HC, BPND_MCI, BPND_AD) and SUVR values 

at the representative amyloid loads for HC, MCI and AD conditions will be displayed.  

 

(6) Tracer Evaluation 

Az, Es and Sr for subject-conditions pairs of HC-MCI and MCI-AD and outcome CUI will be 

displayed after 1000 SUVR simulations with population variation and noise for each subject 

conditions of HC, MCI and AD. 

 

(7) Display 

The time activity curves at representative amyloid loads for HC, MCI and AD conditions will be 

displayed (Top of Figure 6.17). After the completion of all simulation for one radiotracer, the 

SUVR distributions across subject conditions of HC, MCI and AD will be displayed (Bottom of 

Figure 6.17). For batch processing, the same figures will be displayed at the end of each 

radiotracer. At the end of batch processing, the CUI distribution for all radiotracers evaluated will 

be displayed (Figure 6.18). 
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(8) Simulate Button 

The user only needs to click on the “Simulate” button to begin individual radiotracer evaluation 

or batch processing. 

 

 
Figure 6.17: RSwCUI GUI: Results displayed at the completion of a single radiotracer evaluation. 

 
Figure 6.18: RSwCUI GUI: CUI distribution of evaluated tracers is displayed at the end of batch processing. 

The values displayed in the outputs and tracer evaluation column referred to the values of the last radiotracer. 
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Outputs of the radiotracer evaluation will be saved into folders named after the name of the 

radiotracer in the selected output directory. The images displayed in “Display” panel will be saved 

in “.png” format. Outputs listed in the “Output” and “Tracer Evaluation” panels will be compiled 

together and saved in an excel file. 

6.8 Summary 

A screening methodology with CUI was developed using the proposed amyloid biomathematical 

model with noise simulation and population variation to evaluate the potential diagnostic 

capability of an amyloid radiotracer during radiotracer development. The use of biomathematical 

model helps to predict the possible in vivo pharmacokinetics of the radiotracer, while the 

application of CUI serves as a common index to evaluate the diagnostic capability of the 

radiotracers across subject conditions. CUI is defined as the diagnostic capability of a radiotracer 

to differentiate the subject conditions and is obtained from the product of the averaged Az, Es and 

Sr of conditions-pairs of HC-MCI and MCI-AD. It showed the greatest differences across subject 

conditions compared to other combinations or evaluation methods. CUI allows for the comparison 

of multiple candidate radiotracers, as well as clinically-applied radiotracers, which will help to 

support decision making in moving candidate radiotracers to clinical application. The ranking of 

the CUI of clinically-applied amyloid radiotracers reflected close to their reported clinical results, 

attesting to the applicability of the screening methodology with CUI in screening candidate 

amyloid radiotracers. 

 

The developed software based on the proposed screening methodology with CUI serves as a tool 

to support the development of amyloid radiotracers especially during the design of compounds in 

the early phases of radiotracer development. The proposed screening methodology with CUI can 

be extended to other types of radiotracers with similar binding characteristics such as tau 

radiotracers. However, the extension of the screening methodology with CUI to tau radiotracers 

needs to be further evaluated.
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Chapter 7  

Extending Screening Methodology to Tau 

We have developed a screening methodology with CUI for evaluating the diagnostic capability 

of amyloid radiotracers during radiotracer development. Apart from amyloid radiotracers, tau 

radiotracers are currently being actively developed to support the diagnosis of AD and other tau-

related dementia. Therefore, we would like to determine the feasibility of extending the developed

amyloid biomathematical screening methodology in predicting the in vivo kinetic parameters and 

SUVR to support the screening of tau radiotracers.  

 

This chapter focuses on evaluating the feasibility of extending the screening methodology with 

CUI in screening the diagnostic capability of tau radiotracers. The chapter starts with the 

introduction of the current issues faced in tau imaging, followed by the presentation of in vitro 

data of tau radiotracers and clinical data of clinically-applied tau radiotracers. The feasibility of 

extending the screening methodology to tau radiotracers is investigated using 22 radiotracers: 8 

clinically-applied tau-focused, 3 clinically-applied but non-tau-focused and 11 candidates. The 

predicted kinetic parameters and SUVR values were compared with clinically-observed values 

and the ranking of CUI was compared with comparison results of clinically-applied tau 

radiotracers where applicable.  

7.1 Tau Radiotracers 

To determine whether a model developed for amyloid radiotracers can be extended to tau 

radiotracers, the differences between amyloid and tau radiotracers need to be identified. Problems 

faced in clinical studies with clinically-applied tau radiotracers are discussed in this section with 

a detailed explanation of the enantiomeric property of chiral chemical compounds, such as Tohoku 

University’s THK tau radiotracers. 

7.1.1 Issues with Existing Clinically-Applied Tau Radiotracers 

The development of a successful tau radiotracer faces new challenges due to its binding target. In 

general, a good neuroimaging radiotracer needs to cross the BBB and has high binding affinity to 
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its target (section 3.3). Tau radiotracers, in addition, need to discriminate PHF-tau from other β-

sheet structured aggregates such as Aβ and α-synuclein. Similar to Aβ, tau proteins also have 

various conformations due to the existence of six (3R and 4R) isoforms, and various post-

translational modifications (section 2.1.2). Tau binding sites are present at smaller concentrations 

compared to Aβ binding sites by 5-20 folds, hence the selectivity of tau over other β-sheet 

structured aggregates needs to be high to ensure accurate quantification. Moreover, as tau proteins 

exist intracellularly, tau radiotracers not only need to cross the BBB, they also need to be able to 

cross the cell membrane.  

 

Existing clinically-applied tau radiotracers showed some limitations. [11C]PBB3 has high binding 

selectivity to tau over Aβ but it is difficult to synthesise as it is sensitive to photo-isomerization. 

Moreover, it is rapidly metabolised in the plasma, leading to limited entry into the brain 

[Hashimoto et al., 2014]. [18F]T808 showed defluorination, which might affect the quantitative 

analysis of PET images [Declercq et al., 2016]. THK compounds (Tohoku University, Japan) 

showed differences in uptake due to enantiomeric properties, which need to be carefully prepared 

to ensure the synthesis of the targeted enantiomer [Tago et al., 2016]. Some THK compounds, 

[11C]PBB3 and [18F]T807 (also known as [18F]flortaucipir) showed off-target binding [Harada et 

al., 2016; Maruyama et al., 2013; Lowe et al., 2016]. Subsequently, [18F]THK5351 was showed 

to also bind to MAO-B enzymes [Ng et al., 2017]. [11C]Astemizole and [18F]Lansoprazole showed 

binding to tau proteins but are mostly applied in the treatment of allergies and gastrointestinal 

disorders respectively [Rojo et al., 2010]. [18F]FDDNP was developed as an amyloid radiotracer 

but also showed some binding to tau proteins. Moreover, its metabolites also entered the BBB, 

which makes quantification difficult [Luurtsema et al., 2008]. 
 

As the enantiomeric property of a chemical compound affects its binding to the target, the next 

sub-section describe the different forms of a chemical compound and explain the meaning of 

enantiomeric property. This is important to ensure correct identification of chemical structures of 

enantiomeric tau radiotracers, especially THK compounds.  

7.1.2 Chirality and Stereoisomers 

Isomers are different compounds with the same molecular formula. Constitutional isomers are 

chemical molecules made up of the same atoms but are bonded together in different ways (Figure 

7.1). Stereoisomers are compounds with the same molecular formula but differed from each other 

in structural configuration. They can be further classified as chiral or achiral, depending on the 
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presence of reflective symmetry element around one or more stereocenters or chiral centers 

(Figure 7.1). The summary of the different types of chemical compounds is shown in figure 7.1. 

 

A chiral center is single carbon atom surrounded by four different substituents and is typically 

labelled with an asterisk. Thus, chiral compounds do not have any reflective symmetry elements 

and exist in pairs as non-superimposable mirror images of each other about the chiral center. 

Achiral compounds have an internal point or plane of symmetry, hence they are superimposable 

on its internal mirror image. Samples containing only a single stereoisomer are considered as 

enantiomerically pure. However, most processes result in a mixture of stereoisomers, known as a 

racemic mixture, which consists of two enantiomers in equal amount with zero net optical activity.  

 
Figure 7.1: Classifications of chemical compounds. 

 

Enantiomers exist as a pair of stereoisomers with the same chemical composition but with a non-

superimposable mirror-image relationship. Their asymmetry structure around a chiral center 

resulted in “R” (+, clockwise, right-handedness) or “S” (-, counter-clockwise, left-handedness) 

handedness. R-enantiomer and S-enantiomer have the same physical properties (e.g. same melting 

point and solubility) and have exactly the same kinds of intermolecular attractions.  

 

Stereoisomers that are not enantiomers are called diastereomers. These compounds have two or 

more chiral centers and are non-superimposable and non-mirror images of each other. They can 

have different physical properties and reactivity. An achiral form of a stereoisomer is called Meso 

compound. These compounds have an internal point or plane of symmetry and can be 
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superimposed on its mirror image. They are optically inactive and have different physical 

properties and reactivity compared to its equivalent enantiomers and diastereomers. 

 

In cases where only one enantiomer of a pharmaceutical is likely to be therapeutically active or 

have higher binding affinity to target sites, asymmetric chemical synthesis strategies have been 

devised for preparing chemical compounds of only one enantiomer. These strategies are: (1) 

physical separation by temporarily converting the two enantiomers into two diastereomers; (2) 

physical separation in a chiral chromatographic environment; (3) chemical discrimination in a 

chiral environment, using enzymes or other chiral platforms as chemical reagents and (4) 

asymmetric synthesis of one enantiomer in preference to the other.  

7.1.3 R-S Enantiomers 

Cahn-Ingold-Prelog (CIP) rules, also known as RS-rules were instigated by three chemists: R.S. 

Cahn, C. Ingold, and V. Prelog. The RS-rules were used to unambiguously assign the R or S 

handedness of a molecule. The 3 basic steps to determine the RS configuration are as follows: 

 

Step 1: Order the constituents surrounding the chiral carbon using CIP rules, from 1 (highest 

priority) to 4 (lowest priority). 

CIP rule 1: Isotope substituents with higher atomic mass receives higher priority. (e.g. Br vs. Cl, 

Br has priority) 

CIP rule 2: Molecular substituents with higher molecular mass receives higher priority.  

CIP rule 3: Double bonds have higher priority than a single bond and are treated as a chiral carbon 

bonded to 2 carbons. 

Step 2: Rotate the molecule such that substituent, with the least priority, points away from the 

viewer or is in the back (dashed line, Table 7.1). 

Step 3: Draw an arrow from substituent with the highest priority to lowest priority. If the arrow 

is clockwise, the compound is an R-enantiomer; if the arrow moves counter-clockwise, it is an S-

enantiomer.  
Table 7.1: Basic chemical bond symbols 

Solid line indicates that the bond exists in the plane of the drawing surface. 
Dashed line indicates that the bond is extending behind the plane of the drawing surface. 
Bold-wedged line indicates that the bond is protruding out from the plane of the drawing 
surface. 
Wavy line indicates that the stereochemistry of the bond is unknown. 
Dotted line indicates that the bond is only a partial bond as in a hydrogen bond or a partially 
formed or broken bond in a transition state. 



Chapter 7: Extending Screening Methodology to Tau 
 

163 

 

7.2 In Vitro & In Vivo Data of Tau Radiotracers 

To determine if the previously developed amyloid biomathematical screening methodology could 

be extended to support the development of tau radiotracers, comparing the predicted kinetic 

parameters and SUVR values with clinically-observed values and comparing the TACs and SUVR 

distribution with clinically-observed data are important. However, tau clinical studies started in 

recent years and reported clinical data are limited. As such, the available in vitro and in vivo data 

of tau radiotracers are discussed in this section. 22 radiotracers reported to bind to tau proteins 

were investigated (Figure 7.2). The 8 clinically-applied tau-focused radiotracers include 

[18F]THK523, [18F]THK5105, [18F]THK5117, [18F]THK5317, [18F]THK5351, [18F]T807, 

[18F]T808 and [11C]PBB3. The 3 clinically-applied but non-tau-focused radiotracers are 

[11C]Astemizole, [18F]Lansoprazole and [18F]FDDNP and the remaining are candidates. 

7.2.1 In Vitro Data of Tau Radiotracers 

In silico lipophilicity (MLogP) and McGowan volume (Vx) and in vitro dissociation constant (KD) 

are required as inputs into the developed software, RSwCUI, to predict the outcome 1TCM kinetic 

parameters and SUVR values (Table 7.2). For each tau radiotracer, MLogP and Vx were 

determined using dproperties (Talete, Italy). KD or Ki values were obtained from the literature, 

measured using either synthetic heparin-induced tau polymer (HITP) or AD human brain 

homogenates. However, unlike for amyloid radiotracers, KD or Ki values measured using AD brain 

homogenates were selected instead of those measured using HITP. This is because HITP 

composed of only 3R and/or 4R, and hence may not undergo the same phosphorylation process 

as human tau [Okamura et al., 2013; Ariza et al., 2015]. As a result, KD or Ki values differed 

greatly using synthetic tau and AD brain homogenates (Table 7.2). However, for [18F]Lansoprazol, 

KD values measured using synthetic tau was applied instead for comparison with [11C]NML. 

 

The values of Bavail set in the amyloid biomathematical model and RSwCUI software were 

determined using the concentrations of amyloid for HC, MCI and AD conditions. To determine if 

the values of Bavail was suitable for tau radiotracers, the tau concentrations for HC, MCI and AD 

conditions were extracted from the literature. However, the measurements of tau concentrations 

using ELISA faced considerable challenges: (1) presence of various post-translational forms of 

tau and phosphorylated sites (Mukaetova-Ladinska et al., 2015), (2) difficulty in dissolving the 

insoluble phosphorylated tau for measurement (Hashimoto et al., 1999) and (3) data are regional-

dependent due to the progressive distribution of tau with disease progression (Han et al., 2017).  
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Figure 7.2: Chemical structures of 22 tau radiotracers. 
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In addition, the reported tau concentrations were mostly measured using the brains of normal aged 

controls and AD, with very little data on the tau concentrations in MCI. The comparison of ELISA 

measurements was difficult as different antibodies and technologies were applied since 1999. 
Table 7.2: MLogP, Vx and KD values of 22 tau-related radiotracers. 

Radiotracers MLogP Vx KD  References for KD 
[18F]THK523 3.19 2.11 1.67α Fodero-Tavoletti et al., 2011 
   1.99α Harada et al., 2013 
   86.5 Okamura et al., 2013 
[18F]THK5105 
  

3.08 
 

2.59 
 

1.45α Okamura et al., 2013 
2.63  

[18F]THK5116 2.62 2.31 106& Tago et al., 2016 
[18F]THK5117 2.85 2.45 2.65$ Lemoine et al., 2015 
[18F]THK5125 3.08 2.59 10.2 Tago et al., 2016 
[18F]THK5129 2.48 2.55 3.14 Tago et al., 2016 
[18F]THK5151 2.25 2.41 7.07 Tago et al., 2016 
[18F]THK5287 1.94 2.55 2.60 Tago et al., 2016 
[18F]THK5307 1.71 2.41 5.60 Tago et al., 2016 
[18F]THK5317 2.85 2.45 9.40& Tago T., 2016 
[18F]THK5351 2.25 2.41 2.90 Harada et al., 2016 
[18F]THK5451 2.25 2.41 28.0 Tago et al., 2016 
[18F]T807 1.95 1.86 14.6# Xia et al., 2013 
[18F]T808 3.64 2.23 22.0# Declercq et al., 2016 
[11C]PBB3 
  2.34 2.31 

2.50α Kimura et al., 2015 
6.30 Ono et al., 2017 

[18F]FDDNP 2.89 2.31 36.7α Harada et al., 2013 
[18F]FPPDB 2.87 3.15 44.8 Matsumura et al., 2011 
[11C]NML 1.98 2.51 0.700α Fawaz et al., 2014 
[18F]Lansoprazol 1.75 2.37 3.30α Fawaz et al., 2014 
   >3998δ Declercq et al., 2016 
[11C]Astemizole 

4.63 3.56 
13.4 

Rojo et al., 2010 
 1.86α 
   >3998δ Declercq et al., 2016 
[18F]MK6240 2.49 1.96 0.260β Hostetler et al., 2016 
[18F]JNJ64349311 
([18F]JNJ311) 

2.07 1.83 7.90δ Rombouts et al., 2017 

Units: MLogP (Unitless), Vx (cm3/mol/100), KD (nM) 
$Averaged KD values (2.2, 3.1) for tau in AD brain homogenates of temporal and 
hipβAveraged KD values 0.14, 0.30, 0.25, 0.24 and 0.38 for tau in AD brain homogenates of 
frontal and entorhinal cortex of 5 AD. 
αKD values are measured using synthetic tau (K18Δ280K) 
&Ki values measured using AD brain homogenates with THK5105 as competitor 
δKi values measured using AD brain homogenates with T808 as competitor  

#KD values measured using AD brain via autoradiography 
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The tau concentrations under HC, MCI and AD conditions are measured using ELISA but reported 

with different units of measurement based on the counting instruments used (Table 7.3). For MCI 

condition, only soluble tau concentration was reported. However, AD progression is caused by 

the accumulation of insoluble phosphorylated tau and tau radiotracers binds to insoluble 

phosphorylated tau in PET imaging. The concentrations of soluble tau under HC, MCI and AD 

conditions were very different in the frontal and temporal cortices (Table 7.3). Thus, the reported 

soluble tau concentrations could not be used to determine the values of Bavail.  

 
Table 7.3: Measured tau concentrations under HC, MCI and AD conditions from the literature. 

References Biochemical 
Samples Brain Regions Concentrations of Tau Ratio 

HC MCI AD AD / HC 

Herrmann et 
al., 1999 

Phosphorylated tau 
(ng/ml) 

Frontal Cortex 16 ± 2 - 316 ± 50 19.8
Parietal cortex 14 ± 1 - 374 ± 46 26.7
Hippocampus 89 ± 39 - 570 ± 35 6.40
Cerebellum 16 ± 4 - 10 ± 1 0.625 

Han et al., 2017 Soluble Tau 
(ng/mg of protein) 

Frontal Cortex 61.96 ± 6.78 42.67 ± 3.28 51.31  ± 2.37 0.8 
Temporal cortex 592.6 ± 57.3 871.0 ± 42.8 874.5 ± 51.34 1.5 

Mukaetova-
Ladinska et al., 

2015 

Total Tau 
(Relative counts) 

Frontal Lobe 40 ± 4 - 110 ± 27 2.8 
Temporal Lobe 172 ± 21 - 211 ± 4 1.2 

Phosphorylated Tau 
(Thr181) 

(Relative counts) 

Frontal Lobe 40.57 ± 2.60 - 37.50 ± 4.91 0.9 

Temporal Lobe 36.87 ± 2.29 - 35.09 ± 2.11 1.0 

Phosphorylated Tau 
(Ser262) 

(Relative counts) 

Frontal Lobe 7.99 ± 0.61 - 8.11 ± 0.31 1.0 

Temporal Lobe 4.53 ± 0.39 - 10.59 ± 1.89 2.3 

Phosphorylated Tau 
(Ser202/Thr205) 
(Relative counts) 

Frontal Lobe 0.44 ± 0.04 - 0.65 ± 0.05 1.5 

Temporal Lobe 0.58 ± 0.02 - 0.83 ± 0.13 1.6 

 

Antibodies Thr181, Ser262 and Ser202/Thr205 were used to detect three phosphorylated sites of 

tau, representing pretangle, matured tau and ghost tangles respectively (Mukaetova-Ladinska et 

al., 2015). Although the concentrations of more mature tau were higher in AD, the concentrations 

of pretangles were lower in AD compared to HC. The ratio of tau concentration in AD to that of 

HC differed with the brain regions and with the type of tau measured (Mukaetova-Ladinska et al., 

2015). The results reported by Herrmann et al (1999) showed higher tau concentrations in AD in 

cortical regions but the AD/HC tau concentrations ratio in the various brain regions were very 

different from other reported data (Table 7.3). Due to the inconsistent AD/HC tau concentrations 

ratio, the values of Bavail based on tau concentrations could not be determined for simulations of 

tau radiotracers. As such, the default values of Bavail in RSwCUI, which were determined using 

amyloid concentrations under HC, MCI and AD conditions, are applied. 
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7.2.2 Clinical Data of Tau Radiotracers 

The 1TCM kinetic parameters and SUVR values of clinically-applied tau radiotracers in HC and 

AD subjects were extracted from the literature. For SUVR correlations, 3 types of SUVR were 

employed: SUVR from the regions with the highest cortical SUVR in AD, greatest SUVR 

differences between HC and AD and SUVR of the hippocampus (Table 7.4). Thus far, kinetic 

analysis was carried out for [18F]T807, [18F]THK5317, [18F]THK5351 and [11C]PBB3 only.  

 

For [18F]THK5351, a regional k2 value of 0.115 min-1 was obtained using SRTM [Lockhart et al., 

2016]. For [18F]THK5317, the 2TCM or SRTM were said to fit the data well [Jonasson et al., 

2016]. K1 and k2 values of 0.33 mL/cm3/min and 0.09 min-1 were obtained in the target region 

using the 2TCM with plasma input function of one subject [Jonasson et al., 2016]. Chiotis et al. 

[2016] determined DVR values using reference Logan graphical method as the arterial blood data 

was not measured. For our evaluation, a BPND value (DVR-1) of 0.60 was taken from the region 

with the highest value, Putamen [Chiotis et al., 2016].  

 

For [18F]T807, the averaged cerebellar K1 and k2 values of 0.26 mL/cm3/min and 0.17 min-1 

respectively were obtained by fitting the measured data to the 2TCM with a variable vascular 

fraction [Wooten et al. 2016]. For [11C]PBB3, BPND values of HC and AD of -0.15 and 0.37 were 

obtained from original multilinear reference tissue model (MRTM0) for our evaluation [Kimura 

et al., 2015]. 

7.3 Screening of Tau Radiotracers 

Evaluation of the feasibility of extending the amyloid biomathematical model to tau radiotracers 

was carried out using the in vitro and in vivo data gathered for 22 tau radiotracers (8 clinically-

applied tau-focused, 3 clinically-applied but non-tau-focused and 11 candidates). The three input 

parameters of MLogP, Vx and KD (Table 7.2) were fed into RSwCUI to generate the predicted in 

vivo 1TCM parameters of K1, k2 and BPND, and SUVR under HC, MCI and AD conditions. The 

predicted SUVR was correlated with the three different types of clinically-observed SUVR (Table 

7.4) using 8 clinically-applied tau radiotracers. The predicted K1, k2 and BPND values were 

compared with reported values where applicable. The TACs and SUVR distributions under HC, 

MCI and AD conditions were also shown. Finally, the radiotracers were compared using the CUI 

values generated. 
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Table 7.4: Three types of clinically-observed SUVR of 8 clinically-applied tau radiotracers: (1) the highest cortical SUVR in AD, (2) greatest SUVR differences between 

HC and AD and (3) SUVR of the hippocampus of 8 clinically-applied tau radiotracers. 

Clinically-applied 
Radiotracers 

Time Window  
(min) 

Highest Cortical SUVR  Greatest SUVR Difference  SUVR (HIP) 
References 

HC AD Target 
Region 

 
HC AD Target 

Region 
 

HC AD 

[18F]THK523 60-90 0.96 1.81 ITL  0.96 1.81 ITL  0.78 0.97 Villemagne et al., 2014 
[18F]THK5105 90-100 1.41 1.52 PU  1.09 1.32 ITL  - - Okamura et al., 2014 
[18F]THK5117 50-60 1.57 1.77 PU  1.15 1.61 ITL  1.35 1.57 Harada et al, 2015 
[18F]THK5351 50-60 2.14 2.98 HIP  1.41 2.27 PAR  2.14 2.98 Harada et al., 2016 
[18F]T807 80-100 1.17 2.19 ITL  1.17 2.19 ITL  1.39 1.31 Johnson et al., 2016 

*Chie al. 2013[18F]T808 80-100 0.94 1.52 LTL  0.94 1.52 LTL  1.01 1.32 Chien et al., 2014 
[11C]PBB3 30-50 0.85 1.42 Global#  0.85 1.42 Global#  - - Kimura et al., 2015 
[18F]FDDNP 45-55 1.24 1.37 ACG  1.06 1.20 FC  - - Tauber et al., 2013 
ITL = Inferior Temporal Lobe, LTL = Lateral Temporal Lobe, PU = Putamen, PAR = Parietal Lobe, HIP = Hippocampus 
#Global = Cerebral cortex for HC and High binding ROI for AD 

 

Table 7.5: Predicted K1, k2, BPND (HC and AD) and SUVR (HC and AD, Literature-stated, default time window of 40-60 min) of 9 clinically-applied tau radiotracers.  

Clinically-applied 
Radiotracers 

K1 
(mL/cm3/ min) 

k2 
(min-1) 

BPND 
(unitless) 

SUVR 
(unitless) 

Time 
Window  

(min) 

Simulated SUVR 
(Default)  

HC AD HC AD HC AD 
[18F]THK523 0.200 0.069 0.035 0.43 1.00 1.01 60-90 1.00 1.01 
[18F]THK5105 0.181 0.067 0.053 0.67 1.03 1.41 90-100 1.04 1.43 
[18F]THK5117 0.202 0.087 0.042 0.53 1.05 1.67 50-60 1.05 1.66 
[18F]THK5317 0.202 0.087 0.012 0.15 1.01 1.17 70-90 1.01 1.18 
[18F]THK5351 0.220 0.141 0.10 1.28 1.12 2.67 50-60 1.12 2.68 
[18F]T807 0.256 0.199 0.033 0.42 1.03 1.42 80-100 1.04 1.47 
[18F]T808 0.151 0.039 0.0010 0.0017 1.00 1.02 80-100 1.00 1.02 
[11C]PBB3 0.226 0.136 0.041 0.51 1.05 1.65 30-50 1.05 1.63 
[18F]FDDNP 0.209 0.088 0.003 0.036 1.00 1.04 45-55 1.00 1.04 
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7.3.1 Comparison of 1TCM Kinetic Parameters 

For [18F]T807, the predicted K1 and k2 of 0.256 and 0.199 were almost similar to the reported 

averaged cerebellar K1 and k2 of 0.26 and 0.17 (Table 7.6). For [18F]THK5351, the predicted k2 of 

0.141 was slightly higher than the clinically-observed k2 of 0.115 (Table 7.6). This may be due to 

the differences in binding of the enantiomeric tau radiotracers to plasma proteins [Itoh et al., 1997]. 

However, the predicted k2 value of 0.087 of [18F]THK5317, another S-enantiomeric compound, 

was close to the literature reported value of 0.09 (Table 7.6). On the other hand, the predicted K1 

value of 0.202 was smaller than the reported value of 0.33 obtained using 2TCM. The predicted 

BPND values of 0.15 and 0.51 were different from clinically-observed values of 0.60 and 0.37 in 

AD for [18F]THK5317 and [11C]PBB3 respectively (Table 7.6). The great differences in BPND 

values may be due the more complicated in vivo binding of tau radiotracers in the presence of 

other similar β-sheet structures (amyloid-β and α-synuclein). 

 

Table 7.6: Predicted vs. clinically-observed K1, k2 and BPND of 4 tau radiotracers. 

Radiotracers 
Literature Reported Values 

Predicted 
Values %Diff 

Parameters Region Clinically-
Observed Values References 

[18F]T807 
K1 Cerebellum 

Excluding 
Vermis 

0.26 
Wooten et al., 
2016 

0.256 -1.54 

k2 0.17 0.199 17.1 

[18F]THK5351 
(S-enantiomer of 
[18F]THK5151) 

k2
‡ Cerebellum 0.115 Lockhart et 

al., 2016 0.141 22.6 

[18F]THK5317 
(S-enantiomer of 
[18F]THK5117) 

K1 Targetδ 0.33 Jonasson et 
al., 2016 

0.202 -38.8 
k2 0.09 0.087 -3.3 

BPND  (AD) Putamen 0.60* Chiotis et al., 
2016 0.15 -75.0 

[11C]PBB3  BPND  (AD) High-binding 
cortical regions 0.37¶ Kimura et al., 

2015 0.51 37.8 

#Global: Entorhinal cortex, Fusiform gyrus, Hippocampus, Inferior temporal gyrus, Lingual gyrus, Middle temporal 
gyrus, Parahippocampal gyrus, Anterior cingulate, Frontal lobe, Occipital lobe, Parietal lobe, Posterior cingulate 
gyrus, Precuneus, Brainstem, Caudate Nucleus, Cerebral white matter, Pallidum, Putamen, Thalamus, Cerebellar 
gray. 
δTarget: Thalamus, putamen, hippocampus, amygdala, parietal cortex, frontal cortex, sensory motor cortex, occipital 
cortex, midbrain, entorhinal cortex, and temporal cortex. 
*BPND = DVR - 1, where DVR was determined using reference Logan  
¶BPND determined using MRTM0 
‡k2 determined from SRTM for reference region of cerebellum 

 

We are limited by the small number of reported kinetic parameters to fully determine the 

limitations of the amyloid biomathematical model. The prediction of K1 and k2 values of tau 

radiotracers appeared to work well in racemic compounds and slightly poor for enantiomeric 

compounds. However, the model might not be suitable in predicting the BPND values of tau 
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radiotracers due to the exclusion of possible binding to other β-sheet structures. Other issues 

included the use of the default values for population variation and the use of amyloid binding site 

densities for simulating HC, MCI and AD conditions, which might not be suitable for tau. 

7.3.2 Comparison of SUVR  

The screening of the tau radiotracers was carried out using the default time window of 40-60 min 

and the literature-stated time window (Table 7.5). The differences in SUVR were very small for 

both HC and AD (Table 7.5). The correlation between predicted and clinically-observed SUVR 

was slightly better, using default time window (Figures 7.3 vs. 7.4). These showed that the use of 

default time window would not affect the screening outcome.  

 

The best correlation was obtained using clinically-observed SUVR of the hippocampus. However, 

there were a fewer number of reported SUVR of the hippocampus (Figures 7.3 and 7.4). To 

confirm whether the SUVR of hippocampus resulted in the best correlation, further correlations 

were carried out using the highest SUVR values in AD from the same radiotracers with available 

SUVR of the hippocampus (n = 5). The correlation using SUVR of the hippocampus was still the 

best with R2 values of 0.93 (Figures 7.3 and 7.4). The correlation between predicted and clinically-

observed SUVR from the region with the highest SUVR values in AD also resulted in a good 

correlation with R2 values of 0.83 and 0.81 (Figures 7.3 and 7.4). As such, the highest SUVR in 

AD were used for evaluation of tau radiotracers. 

 

For amyloid radiotracers, the correlations were almost similar, with R2 of about 0.50 for 9 

radiotracers, using the highest SUVR in AD, the SUVR from the region with the greatest SUVR 

difference between HC and AD and SUVR of posterior cingulate gyrus (Figure 5.7, section 5.5). 

The three types of SUVR reported were very close to each other. This showed that the amyloid 

binding sites were nearly saturated in AD conditions and that amyloid accumulation progresses 

drastically from HC to AD conditions. This led to regions with highest SUVR in AD and greatest 

SUVR differences between HC and AD having nearly identical SUVR values.  

 

For tau radiotracers, correlations were very different using the highest SUVR in AD, the SUVR 

from the region with the greatest SUVR difference between HC and AD, and SUVR of the 

hippocampus (Figures 7.3 and 7.4). Based on Braak & Braak staging [1991] and Delacourte 

staging [1999], tau accumulates in the hippocampus after entorhinal cortex in the early stages, yet 
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the SUVR of the hippocampus was not always the highest (Table 7.4). Phosphorylated tau starts 

to accumulate in small quantities in the early stages of AD and under healthy conditions in normal 

ageing in certain regions. As such, the SUVR of the region with the greatest SUVR difference 

between HC and AD might not correlate well [Braak et al., 1991; Delacourte et al., 1999]. 

 

 
Figure 7.3: Correlation of clinically-observed and predicted SUVR using default time window of 40-60 min. 

Highest SUVR value in AD (o-), greatest SUVR difference between HC and AD (x--), SUVR of the 

hippocampus (Δ.., n = 5) and highest SUVR in AD (n = 5). 

 
Figure 7.4: Correlation of clinically-observed and predicted SUVR using literature-stated time window. 

Highest SUVR value in AD (o-), greatest SUVR difference between HC and AD (x--), SUVR of the 

hippocampus (Δ.., n = 5) and highest SUVR in AD (n = 5). 

  

Despite the poor prediction of BPND values (Table 7.6), the predicted SUVR correlated well with 

the highest clinically-observed SUVR in AD and SUVR of the hippocampus in 9 and 5 clinically-

applied tau radiotracers. The clinically-observed SUVR distributions across subject groups of HC, 
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MCI and AD were different depending on the regions of interest [Villemagne et al., 2014; Harada 

et al., 2015; Chien et al., 2012; Chien et al., 2014; Maruyama et al., 2013]. The lateral/inferior 

temporal cortex showed clear differences between HC and AD in general, but other regions might 

not show any differences [Villemagne et al., 2014]. There were also occasional outliers whereby 

AD subjects with low MMSE scores had SUVR values lower than HC in lateral/inferior temporal 

cortex and other regions [Chien et al., 2014; Maruyama et al., 2013]. The spread of SUVR values 

in HC may also be greater than that of AD in certain regions [Villemagne et al., 2014; Harada et 

al., 2015]. This may be due to issues like NSB in white matter leading to spill-over in the 

surrounding cortical regions. NSB issue is more apparent in tau radiotracers with lower tau 

binding selectivity and higher NSB, such as [18F]THK523 and [18F]THK5117. 

7.3.3 Comparison of TACs and SUVR distributions 

The simulated TACs of [18F]THK523 (Figure 7.5A) had slower washout and overlapping of TACs 

of HC and AD compared to clinically-observed TACs [Villemagne et al., 2014], which had higher 

peak in cerebellum region compared to target regions and slightly higher height of the tails of the 

TACs in AD compared to HC. The simulated TACs of [18F]THK5105 [Okamura et al., 2014] 

showed faster washout, but with later time to peak compared to clinically-observed TACs (Figure 

7.5B). The simulated TACs of [18F]THK5117 [Harada et al., 2015] and [18F]THK5351 [Harada et 

al., 2016] showed a similar rate of washout to clinically-observed TACs but with later time to 

peak in the TACs of MCI and AD (Figures 7.5C and E). The clinically-observed TACs of these 

radiotracers also had higher peaks in the cerebellum than target regions, while the peaks of the 

simulated TACs of the reference region were always lower than that of the target regions (Figure 

7.5). Faster washout was also observed in clinically-observed TACs of the cerebellum compared 

to that of the target regions in all reported THK tau radiotracers. For [18F]THK5317, the simulated 

TACs were completely different from clinically-observed TACs. This might be due to the use of 

Ki and the enantiomeric properties of the compound, which were not included in the amyloid 

biomathematical model.  

 

The simulated TACs of [18F]T807 (Figure 7.5G) had slightly sharper peaks and faster washout 

compared to clinically-observed TACs in both HC and AD. Higher peak was observed in the 

target region than the reference region in simulated TACs, which was similar to that observed in 

the clinically-observed TACs of posterior cingulate gyrus and the reference region of the 

cerebellum [Wooten et al., 2016]. The predicted TACs of [18F]T808 of both the reference and 

target regions of HC, MCI and AD conditions completely overlapped each other (Figure 7.5H). 
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The clinically-observed TACs of [18F]T808 appeared similar to that of [18F]T807 but with smaller 

differences between subject conditions [Chien et al., 2014]. The simulated TACs of [11C]PBB3 

(Figure 7.5I) were similar to that observed clinically in AD in the nonbinding and low, middle 

and high binding regions [Kimura et al., 2015]. The differences might be due to the use of KD 

values measured using synthetic tau for [11C]PBB3, and KD values measured via autoradiography 

for [18F]T807 and [18F]T808.  

 

Thus far, the plots of the arterial input functions of only two clinically-applied tau radiotracers 

were reported: [11C]PBB3 [Kimura et al.,2015] and [18F]T807 [Wooten et al., 2016]. The arterial 

input functions of these radiotracers were similar in HC and AD, with fast uptake and fast washout 

and the shape of the curves was similar to that of BF227-HC used in the simulation. Although the 

shape of the input functions of these two radiotracers was similar to that of BF227-HC, the shape 

of the arterial input function might be different for other tau radiotracers. There were also issues 

with metabolites crossing the BBB (e.g. [11C]PBB3), but the amyloid biomathematical model 

could not be used to predict the possibilities of metabolites crossing the BBB. 

 

The trend of the simulated SUVR population distributions of [18F]THK5117, [18F]T807 and 

[11C]PBB3 were nearly similar to that observed clinically (Figure 7.6B-D) but not for 

[18F]THK523 (Figure 7.6A). The lack of differences across subject conditions for [18F]THK523 

might be due to the use of KD value measured using human brain homogenates instead of synthetic 

tau (Table 7.2). The differences in KD value measured using human brain homogenates and 

synthetic tau were much greater in [18F]THK523 than [18F]THK5105 (Table 7.2). On the other 

hand, the clinically-observed SUVR distributions of [18F]THK523 might show greater differences 

across subject conditions because of binding to other β-sheet proteins (e.g. Aβ) since 

[18F]THK523 has lower selectivity for tau binding sites. The spread of simulated SUVR 

distributions under HC condition was small compared to that observed clinically (Figure 7.6) 

[Villemagne et al., 2014; Harada et al., 2015; Chien et al., 2012; Chien et al., 2014; Maruyama et 

al., 2013]. 
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Figure 7.5: Simulated TACs from 0–90 min of the reference region and target regions of HC, MCI and AD of 9 clinically-applied tau radiotracers: (A) [18F]THK523, 

(B) [18F]THK5105, (C) [18F]THK5117, (D) [18F]THK5317, (E) [18F]THK5351, (F) [18F]FDDNP, (G) [18F]T807, (H) [18F]T808 and (I) [11C]PBB3. 
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Figure 7.6: Simulated SUVR distributions across HC, MCI and AD conditions for clinically-applied tau 

radiotracers of (A) [18F]THK523, (B) [18F]THK5117, (C) [18F]T807 and (D) [11C]PBB3. 

7.3.4 CUI Results of Tau Radiotracers  

The CUI distributions for 22 tau radiotracers are shown in Figure 7.7. Up to date, the comparison 

of multiple tau radiotracers were carried out by means of in vitro competition binding assays in 

human brain sections or using human AD brain homogenates [Tago et al., 2016; Declercq et al., 

2016] or by means of pre-clinical imaging [Chien et al., 2014]. Based on the Declercq’s results, 

[18F]T807 > [18F]T808 > [18F]THK5105 > [18F]Lansoprazole / [11C]Astemizole. Based on Tago’s 

results, [18F]THK5105 > [18F]THK5129 > [18F]THK5287 > [18F]THK5125 > [18F]THK5151 > 

[18F]THK5307 > [18F]THK523. However, high binding affinity to target does not always yield 

good in vivo pharmacokinetics. Although the KD values of [18F]T807 was much greater than that 

of [11C]PBB3, which is greater than [18F]THK5117 (the greater the KD value, the lower the binding 

affinity) (Table 7.2), the difference in SUVR between HC and AD were greatest in [18F]T807, 
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followed by [18F]THK5117 then [11C]PBB3 (Table 7.4). Yet, the resulting CUI values were about 

the same for these three radiotracers (Figure 7.7).  

 

 
Figure 7.7: CUI distributions of 22 tau-related radiotracers. Clinically-applied tau radiotracers are shaded 

in light gray. 

 

[18F]THK5351 yielded higher clinically-observed SUVR than [18F]THK5117 in the same AD 

patients, with lower white matter binding [Harada et al., 2016]. [18F]THK5351 was also reported 

to have a higher signal-to-noise ratio (SNR), and lower NSB in white matter than [18F]THK5105 

and [18F]THK5117 [Villemagne et al., 2015]. Similarly, CUI value of [18F]THK5351 was higher 

than [18F]THK5105 and [18F]THK5117.  

 

The binding affinity of [18F]T808 to tau was lower than [18F]T807 in vitro binding studies using 

human brain slices (Table 7.2) but showed higher selectivity in competition binding studies using 

purified tau [Declercq et al., 2016]. In in vivo preclinical studies, [18F]T808 displayed lower 
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uptake but faster pharmacokinetics than [18F]T807 in rodents [Declercq et al., 2016]. The CUI 

value of [18F]T807 was higher than [18F]T808. However, the CUI value of [18F]T808 was very 

small and does not appear to be promising clinical tau radiotracer. Similarly, [18F]THK523 also 

yielded small CUI value, even though clinical studies showed that it can be applied clinically. 

This is may be due to the use of KD values measured using human brain via autoradiography 

instead of the binding assay or due to relatively high selectivity for other β-sheet structures. 

Therefore, it is important to measure the binding affinity of tau radiotracers to other β-sheet 

structures such as Aβ and α-synuclein. 

 

[18F]Lansoprazole is used clinically for the treatment of gastrointestinal disorders and hence it is 

known to have good uptake into the system. The ranking of [18F]Lansoprazole based on CUI was 

high as the KD value employed was measured using synthetic tau instead of human brain 

homogenate. The KD values were very different, hence it was likely that [18F]Lansoprazole has a 

low binding affinity to human tau. Similarly, [11C]NML yielded high CUI, probably due to the 

use of KD value measured using synthetic tau. The huge difference in KD values measured using 

synthetic tau and human AD brain homogenates (Table 7.2) showed that KD values measured 

using human AD brain homogenates should be used for proper evaluation of tau radiotracers. 

7.4 Summary 

Currently, the screening methodology with CUI showed limited potential in evaluating the 

radiotracers with greater differences observed in the predicted kinetic parameters for enantiomeric 

radiotracer. Moreover, the evaluation of [18F]THK523 and [18F]T808 were not as expected. This 

is may be due to differences in KD values measured synthetic tau, or using human brain via 

autoradiography and instead of the binding assay, or due to relatively high selectivity for other β-

sheet structures. Therefore, it is important to measure binding affinity to other β-sheet structures 

such as Aβ and α-synuclein. Due to great differences in binding to synthetic tau and human brain 

homogenates, KD values should be measured using human brain homogenates in the binding assay. 

 

Thus far, only the arterial input functions of 2 clinically-applied tau radiotracers had been reported. 

Although the shape of the input functions was relatively similar to that of BF227-HC used for 

simulation, there were issues with metabolites crossing the BBB (e.g. [11C]PBB3). Moreover, 

there were limited kinetic data and SUVR data of clinically-applied tau radiotracers for a full 

evaluation of the amyloid biomathematical model. Although predicted and clinically-observed 
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SUVR showed good correlation, the predicted BPND of [18F]THK5317 and [11C]PBB3 were very 

different from that of clinically-observed.  

 

Off-target binding (e.g. [18F]THK5351 also binds to MAO-B enzymes) were observed for some 

of the clinically-applied tau radiotracers, which further complicates evaluation of the radiotracers. 

Although ensuring no off-target binding exists for the candidate radiotracer during development 

is ideal, the process of screening through binding to thousands of possible proteins requires more 

time and leads to higher costs of evaluation. It would be useful to model possible off-target 

binding but the inclusion of all possible forms of binding would lead to less accurate and precise 

models in predicting the binding capability of the radiotracer to the target sites and longer 

computational time. A balance between accuracy, precision and effort is thus required. In 

conclusion, more work appears to be required for more accurate and precise screening of tau 

radiotracers.  
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Chapter 8  

Overall Conclusions and Future Directions 

This PhD project is focused on the development of an amyloid biomathematical screening 

methodology to screen a large number of candidate compounds during the design of the 

compounds in the early phases of radiotracer development mainly before, but also after 

optimization of synthesis and radiolabeling procedures. The biomathematical screening

methodology is used to predict the possible in vivo pharmacokinetic performance and clinical 

usefulness of multiple radiotracers simultaneously during development. Although some 

biomathematical models exist, they were either focused on other drugs or radiotracers or, for 

amyloid radiotracers, they were focused on the progression of amyloid accumulation. Thus far, 

this study is the first attempt to predict the clinical usefulness of radiotracers during the 

development phase. 

 

We have successfully developed a biomathematical model to predict the SUVR of an amyloid 

radiotracer, using mostly in silico inputs. The free fractions in plasma and tissue can be predicted 

from the proposed fP-fND model using lipophilicity as input. The model can also be used to predict 

other kinetic parameters such as K1, k2 and BPND and can be extended to other radiotracers with 

similar binding characteristics as amyloid radiotracers (e.g. tau, alpha-synuclein). A screening 

methodology based on the proposed biomathematical model and simulations with noise and 

population variations was developed. A clinical usefulness index (CUI) was introduced to support 

comparison and decision-making of moving candidate radiotracers to clinical applications. It can 

also be used to compare radiotracers developed within and across institutions with the use of a 

reference radiotracer. 

 

The feasibility of extending the amyloid screening methodology to the screening of tau 

radiotracers was evaluated. The prediction of kinetic parameters and SUVR values appeared good 

for a few clinically-applied tau radiotracers. However, tau radiotracers were developed much later 

than amyloid radiotracers and thus limited clinical pharmacokinetic results were reported. The 

current screening methodology for amyloid radiotracers could not be adjusted for tau radiotracers. 

Moreover, more issues were observed in tau imaging due to the tau pathology and hence further 
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changes to the existing model may be required. 

 

The future work of this project involves the inclusion of a specific binding compartment for 

amyloid radiotracers and adjustments to fP-fND model due to the enantiomeric properties of some 

tau radiotracers. 
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