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Over the past decades, the scale of the silicon (Si)-based Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETS)
is continually shrinking to about 10 nm regime. The function of the MOSFET devices is determined by the cooperated
impurities, including dopants (boron, phosphorus, etc.) and other impurities (hydrogen, oxygen, carbon, etc.), continuous
shrinking of device scale requires a better control of the impurity distribution, i.e. the nanoscale confinement of the impurities.

There are several methods to confine the impurity distribution, such as (1) Co-doping: adding a supplementary element can
be used to control the principle dopant element. This method is usually used for controlling the in-depth diffusion of the
principle dopant. For example, C co-implantation can be used to suppress P and B diffusion in crystalline Si. B co-doping is
able to suppressed the As diffusion along the grain boundaries of polycrystalline Si. (2) Blocking layer: using a special layer to
prevent the penetration of unwanted impurities into the protected region. For example, using a tungsten mixed cobalt layer
could be used to prevent copper diffusing from the Cu-interconnect. (3) Lithography mask: lithography is a typical method to
control the lateral range of the dopants and the resolution of lithography relies on the wavelength of incident beam. The
resolution of lithography relies on the wavelength of incident beam. The light source for photolithography used to be visible
light, ultraviolet (UV) light, extreme UV light. Electron beam could be accelerated to decrease its wavelength to less than 1 nm.

For realizing the confinement of impurities, we need to clarify their behaviors and the mechanisms responsible for the
behaviors. In order to understand the mechanisms, the visualization of the elemental distribution in nanoscale region with
atomic resolution is the precondition. Therefore, the research purpose of current work is: (1) visualization of the impurity
distribution in the nanoscale region, and (2) understanding of the mechanisms of impurities behavior.

Recently, atom probe tomography (APT) has emerged as a powerful technique for its capability of obtaining 3D elemental
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distribution maps with nearly atomic scale resolution. In preparation for APT measurements, samples are fabricated into a
needle shape, and the application of a focused ion beam (FIB) enables the site-specific extraction of the region of interest
during the needle fabrication process. The implementation of pulsed lasers has enabled its application to semiconductor
materials.

In current thesis, APT will be mainly used to study several topics to achieve a better understanding on the impurities
behavior and the mechanisms. Such a study will provide very important information for the further confinement of impurities

and finally enhance the performance and reliability of future nano-electronic devices.

Corresponding to the three typical methods on impurities confinement, three interesting topics are investigated in current

thesis:

1. Effect of coimplanted carbon (C) on boron (B) behaviors. B is the principle p-type doping elements in silicon (Si), and its
behavior is vital to the performance of the semiconductor devices. On one hand, transient enhanced diffusion (TED) of B
during the post-implantation annealing is an obstacle to restrict the junction depth. On the other hand, it is believed that B and |
form clusters in the high concentration region of the implanted profile, which is responsible for the low electrical activation rate.
C coimplantation is proposed as an effective method to suppress B diffusion but the mechanism is still unclear.

APT is promising to demonstrate behavior of B and B-C interaction. However, the APT analysis on B distribution may be
biased due to the laser irradiation during the measurement. Before our experiment on investigating the B behavior and B-C
interaction, we studied the possible artifacts induced by high power laser and optimized the laser condition. The measured
distributions are almost uniform and homogeneous when using low laser power, while clear B accumulation at the low-index
pole of single-crystalline Si and segregation along the grain boundaries in polycrystalline Si are observed when using high laser
power (100 pJ). These effects are thought to be caused by the surface migration of atoms, which is promoted by high laser
power. In the following experiments, we selected 30 pJ so as to avoid introducing artifacts as well as achieve high success rate
of the measurements.

Consequently, we use secondary ion mass spectrometry (SIMS) and APT to to investigate the effects of carbon (C)
co-implantation and subsequent annealing at 600 to 1200 °C on the behavior of implanted boron (B) atoms in silicon. When B
alone was implanted, annealing at 600 to 800 °C caused it to form clusters in the peak region (10%° cm®) of the concentration
profile, and diffusion only occurred in the low-concentration tail region (< 10% cm), which is thought to be the well-known
transient enhanced diffusion. However, when co-implantation with C was performed, this diffusion was almost completely
suppressed in the same annealing temperature range. In the absence of C implantation, annealing at 2000 °C caused B clusters

to begin to dissolve and B to diffuse out of the peak concentration region. However, this diffusion was also suppressed by C
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implantation because C atoms trapped B atoms in the kink region. At 1200 °C, B clusters were totally dissolved and strong B
diffusion occurred. In contrast to lower annealing temperatures, this diffusion was actually enhanced by C implantation. It is
believed that Si interstitials play an important role in the interaction between B and C. This kind of comprehensive

investigation yields important information for optimizing ion implantation and annealing processes.

2. Blocking of H penetration in Al,Os/HfO, high-k stacks. High-permittivity (high-k) materials based on hafnium dioxide
(HfO) have been widely used as gate dielectrics in logic devices. Hydrogen (H) plays an important role in determining the
reliability and performance of HfO.- and Al,Os-based high-k dielectric electronic devices. Alumina (AlOs) has been reported
as a potential H, diffusion barrier for preventing H attack but this has not been directly demonstrated.

APT is a useful method to study the distribution of ion in nanoscale region, thus it is widely used to study the trapping or
blocking effect. However, H detection is a problem in APT due to the residual gas in the analysis chamber. In order to avoid
the interference from residual gas, deuterium (D), an isotope of H, was introduced into the poly-Si cap of
AlLOs/Hf,Si1402/Si0; high-k stacks by ion implantation. APT was then used to image the D distribution in samples annealed
under different conditions. The results clearly demonstrated that the D atoms were trapped at the interface of poly-Si and Al,Os
after annealing at 900 K for 10 min. Thus, it is possible that AlOs blocks the H atoms at the surface, preventing them from
diffusing into the high-k dielectrics during the H annealing process in current fabrication technology. The current work also

exhibits an example of investigating H behavior in semiconductors by APT.

3. Distribution of ions implanted through nanoapertures. Implantation of dopant ions through a resist mask with
nano-apertures is a method to realize a deterministic uniform dopant distribution. Electron beam lithography (EBL) is a
potential technique for sub-10 nm device fabrication. The distribution of ions near a mask edge is critical for device
performance, but measuring the doping profiles in such a small region is very difficult.

APT is first-ever used to investigate the 3D distribution of germanium atoms in Si after implantation through nano-aperture
of 10 nm in diameter, for evaluation of the amount and spatial distribution of implanted dopants. Since it is difficult to maintain
an intact distribution spot in the needle specimen due to the limited precision of the FIB technique. Therefore, the best results
were selected from dozens of replicate trials. Meanwhile, we performed a simulation to show the expected dopant distribution.
The experimental results obtained by APT are generally consistent with a simple simulation with consideration of several

effects during lithography and ion implantation, such as channeling and resist flow.

Fabrication of nanoscale semiconductor devices is based on the precise placement of dopant atoms into the crystal lattice of

semiconductors. Throughout the fabrication processes like lithography, ion implantation, and thermal annealing, fundamental
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phenomena like dopant diffusion, trapping, and clustering occur simultaneously. These processes are described by atomic scale
mechanisms of impurity-defect-host interaction and have an immense impact on the electrical performance of the devices.

In this work, we demonstrated the application of APT on investigating the nanoscale distribution and behavior of impurities
in Si devices under different conditions, and speculated the mechanisms responsible for such behaviors. The results in current
study, which are hard to obtain by other techniques, provide important information for optimizing the manufacturing process in
the semiconductor industry. Except for its application, we also studied on the APT technique itself. We studied the possible
artifacts induced by high power laser, and we try to introduce D into the samples for avoid the residual gas problem. Such kind
of studies are very helpful for improving this technique for future application on semiconductor industry.

Monitoring and controlling the atomic scale impurity-defect-host interaction is required for the confinement of impurities in
nanoscale region, which is necessary for proceeding the development of IC technology. From this perspective, APT, combined

with other characteristic techniques, will play an increasingly important role on contributing to semiconductor industry.
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