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Chapter 1. Introduction 

A nanofluid (NF) is a dispersion of nanoparticles (NPs, 1–100 nm) in a liquid solvent or base fluid (BF).
1
 Because of 

the existence of NPs in NFs, these fluids should exhibit unusual fluid properties, including magnetic properties, dielectric 

constants, thermal or electric conductance, and reflective indexes. Thus, NFs are expected to have various new applications in 

industries such as chemical processing, transportation, refrigeration, electronics, optics, medicine, energy, and environment.
2‒4

 

For such applications, the key issues for designing NFs are dispersing NPs (i.e., the phase behavior) and controlling the 

viscosity of the resulting NF. Although it has been recognized that these two factors should be closely related, few approaches 

are available to elucidate the underlying mechanism.
5
 Indeed, previously, synthesizing NPs with controlled sizes and solvent 

affinities (i.e., organic surface molecules) was not an easy task. 

Supercritical hydrothermal synthesis is one method of synthesizing NPs with containing capping organic molecules on 

their surfaces. This research aimed to understand the relationship between the rheological and phase behaviors of NFs through 

a systematic study utilizing the same core particle (CeO2) modified with surfactants with different chain lengths synthesized by 

the supercritical hydrothermal method using a variety of organic solvents. 

 

Chapter 2. Background of Research  

NPs tend to aggregate because of their high surface energy, which significantly affects the properties of the resulting 

NFs. The surface treatment of NPs with organic molecules can suppress this aggregation. Fatty acid surfactant-modified CeO2 

NPs can be obtained by in situ synthesis in supercritical water (SCW), and such NPs are dispersible in non-polar organic 

solvents up to certain volume fractions.
6
 The phase behavior of NPs in solvents (i.e., their dispersion/agglomeration at different 

concentrations) can be assessed by the naked eye because NFs are clear (i.e., the NPs are well dispersed) up to a certain volume 

fraction and subsequently become cloudy (i.e., at the cloud point) because of agglomeration. Ultraviolet-visible (UV-vis) 

spectroscopy can be also used to monitor dispersion/agglomeration (i.e., phase changes). 

Rheological measurements of well-dispersed and agglomerated NFs have revealed a relationship between the 

rheological and phase behaviors of NFs. Well-dispersed NFs exhibit low viscosities, whereas agglomerated NFs have higher 

viscosities. The dependence of the shear rate on the viscosity is also important when attempting to relate the rheological and 

phase behaviors of NFs. Regarding well-dispersed NFs, very few research studies have addressed the effect of the surfactant 

chain length on the resulting viscosity. Furthermore, for agglomerated NFs, abundant research has investigated their 
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shear-dependent characteristics, such as shear thinning and thickening, but few studies have addressed the phase behavior or 

performed thermodynamic analyses.
7
 

Thus, the first objective of this study is to elucidate the relationship between the phase behavior and the rheological 

behavior through a systematic study using NFs with the same core but surface molecules with different chain lengths 

synthesized by the supercritical hydrothermal method. The second objective is to clarify the effect of the chain length on the 

viscosity of well-dispersed NFs. Finally, the third aim is to correlate the shear thinning/thickening behavior and phase behavior 

considering the elucidated relationship between the phase and rheological behaviors. 

 

Chapter 3. Phase Behavior of Surface-Modified Nanoparticles 

CeO2 NPs whose surfaces were modified with n-alkanoic acids with different chain lengths were synthesized by an in 

situ SCW method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform 

infrared (FT-IR) spectroscopy, and thermogravimetric analysis.
6
 Cube-shaped, nanometer-sized CeO2 NPs were obtained. 

Table 1 summarizes the information about the surfactants, solvents, synthesized NPs, and prepared NFs involved in this study. 

NFs with wide concentration ranges were prepared by simply adding the required amount of NPs into each solvent. The NF 

concentrations are presented in vol%. The phase behavior of the NFs was assessed by observation with the naked eye. Fig. 1 

demonstrates that the C10-CeO2–cyclohexane NFs were well dispersed (i.e., clear) up to 21.24 vol%, unclear at 23.44 vol% and 

agglomerated (i.e., cloudy) at 29.55 vol%. UV-vis spectroscopy was also performed to assess the phase behavior of the NFs. In 

most cases, both evaluations give similar results, although it was difficult to obtain UV-vis signals from highly concentrated 

NFs. Thus, naked eye observation was employed in this study. 

 

 

 

 

Chapter 4. Relationship Between the Rheological and Phase Behaviors of Nanofluids 

To investigate the relationship between the rheological and phase behaviors of NFs, rheological measurements were 

performed using various 

well-dispersed and agglomerated NF 

systems with a wide range of 

concentrations. The experimental 

results revealed clear links between 

the rheological and phase behaviors 

of NFs. When the NFs were well 

dispersed, their viscosities were lower. 

Conversely, when the NFs were 

agglomerated, their viscosities were 

higher. Rheological measurements 

also demonstrated that well-dispersed 

NFs exhibit low viscosities with 

Newtonian characteristics. To 

compare the viscosities of NFs of 

Surfactants NPs Solvents NFs 

Hexanoic acid (C6-) 

Octanoic acid (C8-) 

Decanoic acid (C10-) 

Stearic acid (C18-) 

C6-CeO2 

C8-CeO2 

C10-CeO2 

C18-CeO2 

Cyclohexane 

Decalin 

Dodecane 

 

C6-CeO2–cyclohexane 

C8-CeO2–cyclohexane 

C10-CeO2–cyclohexane 

C18-CeO2–cyclohexane 

C8-CeO2–decalin 

C10-CeO2–dodecane Fig. 1. Images of C10-CeO2–cyclohexane NFs. 

Fig. 2. Relative viscosities of NFs as a function of the volume fraction of NPs. 

Table 1: Surfactants, solvents, NPs, and NFs used in this study. 
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different solvents (BFs), the relative viscosity (i.e., the viscosity of an NF divided by the viscosity of the BF) was calculated and 

plotted as a function of the volume fraction of NPs for all NFs, as shown in Fig. 2. The initial viscosity of each NF at the lowest 

shear was used to calculate the relative viscosities of the NFs. Clearly, well-dispersed NFs exhibited lower relative viscosities 

(blue symbols) and fall in the common zone indicated by the green area in Fig. 2. The relative viscosities of well-dispersed 

C8-CeO2–cyclohexane NFs at 7.21 and 10.78 vol% are very low and remain in the lower region of the common zone. 

Conversely, agglomerated NFs show relatively high viscosities (red symbols), and fall above that common zone. 

 

Chapter 5. Shear Thinning and Thickening in Nanofluids 

Shear thinning: During the viscosity measurement, as the shear rate increased, the viscosity of the agglomerated NFs decreased 

gradually and approached a constant or low value. This phenomenon is called shear thinning.
7
 Fig. 3 shows the shear thinning 

in C10-CeO2–dodecane NFs at different concentrations. Some other CeO2-based NFs also exhibited shear thinning 

characteristics. The relative viscosity after shear (i.e., decreased viscosity) is plotted in Fig. 4, which clearly shows that the 

relative viscosities of various agglomerated NFs approach the common zone established for the well-dispersed NFs. This result 

implies that under shear energy, the agglomerated NFs collapsed, resulting in a clear colloidal (well-dispersed) solution. 

 

 

 

Shear thickening: Shear thickening was observed in 25.19 and 29.72 vol% C8-CeO2–cyclohexane, 23.44 and 29.55 vol% 

C10-CeO2–cyclohexane, and 32.09 vol% C8-CeO2–decalin NFs. The shear thickening in 32.09 vol% C8-CeO2–decalin NFs is 

shown in Fig. 5. To explain the shear thickening phenomenon, potential energy diagram was considered. Two wells exist in the 

potential energy diagram with a potential energy barrier. Initially, agglomerated 

NFs with low potential energy remained in the shallow well. When the shear 

energy supplied to NFs was sufficient relative to the potential barrier, the NPs 

transited from shallow well to deeper well, and trapped in the deeper potential 

well with the minimum distance between particles. Larger and sometimes ordered 

cluster formation in deep wells decreases the dispersibility and increases the 

viscosity of NF. 

 

 Chapter 6. Summary and Conclusion 

Various phase behavior assessments suggest that octanoic acid- and decanoic acid-modified CeO2 NPs are stably 

dispersible in cyclohexane up to ~21 vol%. The rheology results indicate that well-dispersed NFs exhibit low viscosity with 

Newtonian characteristics and that shear thinning occurs only in agglomerated NFs. The relative viscosities of well-dispersed 

NFs fall in a common zone, irrespective of the solvent and surface-modified NPs used. Conversely, the relative viscosities of 

agglomerated NFs remain above the common zone. The experimental results indicated that shear thinning occurs in 

agglomerated NFs because of the decomposition of agglomerates, which implies improved dispersibility. Conversely, shear 

Fig. 8 Shear thickening and thinning in multiple cycles. 

Fig. 8 Shear thickening and thinning in multiple cycle of shear. 

Fig. 5. Shear thickening in C8-CeO2–decalin NFs. 

Fig. 3. Shear thinning in C10-CeO2–dodecane NFs. Fig. 4. Relative viscosity after shear thinning. 
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thickening in highly concentrated NFs indicates larger cluster formation with decreased dispersibility. Shear thickening 

behaviors can be explained by considering the potential curves of NFs. Overall, the results suggest that the rheological behavior 

depends strongly on the phase behavior of NFs. 

 

References 

1. Choi, S. U. S. ASME, New York 1995, 231, 99–105. 

2. Raja, M.; Vijayan, R.; Dineskumar, P.; Venkatesan, M. Renew. Sustain. Energy Rev. 2016, 64, 163–173. 

3. Chen, H.; Ding, Y.; Tan, C. New J. Phys. 2007, 9, 367. 

4. Kosmala, A.; Zhang, Q.; Wight, R.; Kirby, P. Mater. Chem. Phys. 2012, 132, 778–795. 

5. Mahbubul, I. M.; Saidur, R.; Amalina, M. A. Int. J. Heat Mass Transfer 2012, 55, 874–885. 

6. Zhang, J.; Ohara, S.; Umestu, M.; Naka, T.; Hatakeyama, Y.; Adschiri, T. Adv. Mater. 2007, 19, 203–206. 

7. Hojjat, M. Etemad, S. Gh.; Bagheri, R.; Thibault, J. Int. Commun. Heat Mass Transfer 2011, 38, 144–148.  

― 140 ―



― 141 ―


	28



