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Abstract 

Reducing health risks from household air pollution (HAP) and ambient air pollution 

(AAP) is a critical issue in achieving sustainable development worldwide, especially in 

low-income countries. Children are particularly at high risk because their respiratory and 

immune systems are not fully developed. Previous studies have identified the adverse 

impacts of air pollution on child health; however, most have neither focused on HAP and 

AAP simultaneously nor addressed differences in the timing and magnitude of prenatal 

and postnatal exposure across genders. This article examines the impacts of prenatal and 

postnatal exposure to ambient particulate matter with an aerodynamic diameter of 2.5 μm 

or less (PM2.5) and household use of solid fuels (a main cause of HAP) on child health 

in Bangladesh. We combine individual-level data from nationally representative surveys 

with satellite-based high-resolution data on ambient PM2.5. We find that: (1) the use of 

solid fuels is associated with respiratory illness among girls but not boys; (2) prenatal 

exposure to ambient PM2.5 adversely affects stunting, without any clear evidence on 

gender differences; and (3) postnatal exposure consistently increases the risk of both 

stunting and respiratory illness for both genders. These results provide new evidence on 

the heterogeneous impacts of AAP and HAP on children in terms of gender and the timing 

of exposure. The main policy implications are that intervention against HAP would be 

more effective by targeting girls and that intervention against AAP should cover not only 

born children but also pregnant mothers. In sum, our findings highlight the importance of 

protecting women from air pollution and achieving Target 3.9 of the Sustainable 

Development Goals. 

 

Keywords: Household (indoor) air pollution; Ambient (outdoor) air pollution; child health, 

child respiratory illness; Bangladesh 
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1. Introduction 

 Reducing adverse health impacts from air pollution is one of the most critical 

global issues. According to Cohen et al. (2017), ambient air pollution (AAP) and 

household air pollution (HAP) from the use of solid fuels caused 4.2 million and 2.8 

million deaths, respectively, in 2015, ranking fifth and tenth in that year’s mortality risk 

factors. It is also recognized that AAP and HAP have various negative health impacts, 

such as suppressed visual health and respiratory diseases. Accordingly, reducing the 

number of deaths and illnesses caused by air pollution has been set as Target 3.9 of the 

Sustainable Development Goals (SDGs), recognizing the situation as an important agenda 

for sustainable development (United Nations, 2016).  

Children in developing countries are particularly vulnerable due to several 

biological and socioeconomic factors. First, most poor households in developing 

countries lack access to modern energy, relying instead on traditional biomass fuels (wood, 

dung, and agricultural residues), candles, and kerosene for cooking and lighting, all of 

which intensify HAP (Lam, Smith, Gauthier, & Bates, 2012). Second, rapid economic 

and population growth is causing AAP to worsen in many developing countries, with 

enormous particulate matter (PM) caused by agricultural burning, factories, car fumes, 

and other activities. However, there remain few formal regulations to effectively reduce 

PM emissions. Third, children in developing countries often need to help their parents 
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both inside and outside the home. These duties include cooking inside houses without 

chimneys and open agricultural burning, highly exposing them to toxic HAP and AAP 

(e.g., Lam et al., 2012). Fourth, since their immune system and lungs are not fully 

developed, children breathing in air pollutants are more susceptible than adults to HAP 

and AAP (Schwartz, 2004). Previous studies indicate a significant association between 

air pollution and infant mortality (Chay & Greenstone, 2003; Jayachandran, 2009), acute 

lower respiratory infection (Smith & Mehta, 2000), anemia and stunting (Mishra & 

Retherford, 2006), and low birth weight (Pope et al., 2010). Because damage to health in 

childhood (or the financial costs of recovery) can have long-term impacts on adult health, 

economic activities, and well-being (Campbell et al., 2014; Gertler et al., 2014; Baird, 

Hicks, Kremer, & Miguel, 2016; Miguel & Kremer, 2004), protecting children from both 

AAP and HAP is an urgent issue to fulfil the SDGs. 

Toward that goal, this study aims to identify root causes of the adverse health 

impacts of air pollution on children aged below five years, such as stunting and respiratory 

illness. The study focuses on Bangladesh, which is known as one of the world’s most air-

polluted countries in terms of AAP; also, most poor households, especially in rural areas, 

heavily rely on solid fuels for their cooking and lighting, thus worsening HAP (Kudo 

Shonchoy, & Takahashi, 2017, 2018). 



4 

More specifically, this study focuses on several dimensions not extensively 

studied in the existing literature. First, we elucidate gender differences in the impact of 

air pollution. Biologically, boys are considered at higher risk than girls due to lower 

respiratory volumes and narrower peripheral airways in infancy (Clougherty, 2010). 

However, the direction of gendered bias may not be uniform across different social 

contexts.1 In Bangladesh, an important traditional norm is the seclusion of women (called 

purdah), whereby women must spend long hours inside the home performing household 

chores (Amin, 1997; Dasgupta, Huq, Khaliquzzaman, Pandey, & Wheeler, 2006). If this 

also applies to girls, they would be more exposed to and adversely affected by HAP than 

boys. Second, most previous studies in developing countries, especially south Asia, have 

focused only on HAP (Pitt, Rosenzweig, & Hassan, 2006; Duflo, Greenstone, & Hanna, 

2008; Hanna, Duflo, & Greenstone, 2016; Balietti & Datta, 2017); however, we 

simultaneously examine HAP and AAP because the latter is becoming a serious problem 

in Bangladesh. By considering both HAP and AAP, we can specify which channels more 

seriously damage child health and how these differ between boys and girls. Third, 

                                                   
1 A handful of empirical studies in developed countries show mixed results on gendered impacts: in 

Stockholm, girls tend to be more affected by outdoor NO2 concentration and use of a gas stove in the 

home than boys (Pershagen, Rylander, Norberg, Eriksson, & Nordvall, 1995), while, in Germany, boys 

are more vulnerable to traffic-related air pollution than girls (Gehring et al., 2002). 
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previous studies reveal that child health is influenced by AAP not only through inhalation 

but also by transplacental transmission in utero (Sun et al., 2016). Therefore, we calculate 

the cumulative prenatal exposure to AAP during pregnancy (fixed as 9 months for all 

children) and postnatal exposure separately for each child. This distinction enables us to 

disentangle the impacts of exposure to AAP before and after birth. To the best of our 

knowledge, this is the first study to explore the health impact of both HAP and AAP by 

considering differences in the timing and magnitude of prenatal and postnatal exposure 

across genders.  

Our empirical analysis is based on individual- and household-level data from a 

nationally representative survey, combined with satellite-based high-resolution data. 

Exposure to HAP is measured by a proxy variable on the use of solid fuels (wood, 

agricultural crops, animal dung, straw, shrubs, grass, and charcoal) using the household 

data, while exposure to AAP is measured objectively by ambient particulate matter with 

an aerodynamic diameter of 2.5 μm or less (PM2.5) concentrations using the satellite data. 

Although it is common to use annual mean or a specific season of PM2.5 for AAP 

(Dasgupta et al., 2006; Goyal & Canning, 2017), seasonal variation is prominent in 

Bangladesh. To precisely measure the cumulative pre- and postnatal exposure to PM2.5 

for each child, we use an adjusted value of PM2.5 that considers seasonal fluctuations 
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and children’s birth timing, along with the annual mean of PM2.5. To account for 

potential endogeneity in the use of solid fuels, we employ not only an ordinary least 

squares approach but also an instrumental variable approach that uses the share of 

neighboring households using solid fuels, following an identification strategy suggested 

by Balietti and Datta (2017). 

We find that the use of solid fuels for cooking is associated with respiratory 

illness in girls but not in boys. Prenatal exposure to ambient PM2.5 adversely affects only 

stunting, while postnatal exposure increases the risk of both stunting and respiratory 

illness consistently. These negative effects of AAP (both prenatal and postnatal exposure) 

are not significantly different between boys and girls. Our findings are robust even after 

addressing seasonal variations in AAP, potential endogeneity in HAP, and possible 

selection bias and measurement errors due to migration. These results imply the 

importance of protecting girls and pregnant mothers to reduce negative health effects 

from HAP and AAP in our context.  

The remainder of this paper is organized as follows. Section 2 briefly overviews 

the background situation of HAP and AAP in Bangladesh. Section 3 explains details on 

the conceptual framework, datasets, variables, and empirical framework used in the 

analysis. In Section 4, we first explain descriptive statistics, then present the results of 
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regression analysis. Section 5 implements robustness checks and discuss their results. 

Finally, Section 6 provides concluding remarks with policy implications. 

 

2. Background: Ambient and Household Air Pollution in Bangladesh 

In terms of ambient PM2.5 concentrations, Bangladesh is one of the world’s 

most air-polluted countries, and its situation continues to deteriorate (Cohen et al. 2017; 

Wendling, Levy, Esty, de Sherbinin, & Emerson, 2018). As shown in Figure 1, the annual 

average PM2.5 concentration has increased rapidly since 2000 (Health Effects Institute, 

2018a). The main sources of PM2.5 in Bangladesh are agricultural burning, motor 

vehicles, brick kilns, and smelters, with a large seasonal variation (Begum et al., 2014). 

Figure 2 indicates the index of seasonal ambient PM2.5, as measured by air monitoring 

stations in four major cities. For all cities, the ambient PM2.5 tends to become acute in 

the winter, with enormous differences between the winter and monsoon seasons.2 

 

[INSERT FIGURES 1 AND 2 ABOUT HERE] 

                                                   
2 Bangladesh has four seasons: winter (December, January, and February), pre-monsoon (March, 

April, and May), monsoon (June, July, August, and September), and post-monsoon (October and 

November). 



8 

 

The Bangladesh government recognizes AAP as a critical environmental issue in 

the country. In the 7th Five-Year Plan (2016-2020), the government aims to reduce urban 

PM2.5 from its 2013 level of 78 μg/𝑚3 to 73 μg/𝑚3 in 2020. To achieve this goal, the 

government is planning and implementing several programs, such as introducing cleaner 

fuel and transport standards, and strict enforcement of the Brick Kiln Act 2013 to replace 

traditional kilns with more efficient Hybrid Hoffman Kilns (Bangladesh Planning 

Commission, 2016). 

HAP is also serious in the country. In developing countries, the main causes of 

HAP are domestic activities, such as cooking, heating, and lighting with solid fuels (i.e., 

biomass fuels or coal). Figure 3 shows that the proportion of the population using solid 

fuels is higher in Bangladesh than in any of the other 10 most populous countries (Health 

Effects Institute, 2018a). In 2014, it was reported that 50% of urban households and 95% 

of rural households used solid fuels for cooking (National Institute of Population 

Research and Training, Mitra and Associates, & ICF International, 2016). 

 

[INSERT FIGURE 3 ABOUT HERE] 
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To mitigate HAP, the government has conducted the nationwide Improved Cook 

Stove (ICS) program since 2013. If the program is well-executed, ICSs may have a 

significant impact on reducing HAP (Thomas et al., 2015). The program achieved the 

dissemination of 1 million ICSs in 2017,  although its impacts on HAP have not yet been 

fully investigated.3 

 

3. Methodology 

3.1. Conceptual Framework 

In this paper, we investigate the difference in health effects of HAP and AAP 

between boys and girls. Such differences can be caused by biological differences as sex 

and social differences as gender (Clougherty, 2010). Biological factors comprise 

physiologic characteristics (e.g., reproductive organs), body size, and hormonal status, 

while social factors include cultural norms, roles, and behaviors.4  

                                                   
3  In the neighboring country of India, most ICS programs have failed due to low uptake rates, 

inappropriate maintenance, and subsequent low usage rates (Hanna et al., 2012; Khandelwal et al., 

2017). Regarding ICSs in Bangladesh, Miller and Mobarak (2013) found in field experiments that 

women have a strong preference for ICSs, but lack decision-making rights on purchases. 

4 Although conceptually clear, it is sometimes difficult to distinguish biological and social factors 

because both can interact with each other (Krieger, 2003). 
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To better understand the differential impacts of biological and social factors on 

child health, Figure 4 presents our conceptual framework. The overall process is 

classified into three phases: (1) the first phase from concentration to exposure; (2) the 

second phase from exposure to effective dose; and (3) the third phase from effective dose 

to health status (Clougherty, 2010). In the first phase, social factors play an important role, 

because whether and the extent to which boys and girls are exposed to HAP and AAP 

depend upon their culture. For example, girls may have higher exposure to HAP if they 

are expected to help with cooking using solid fuels inside the house, while boys may have 

higher exposure to AAP if they are expected to help with agricultural work outside the 

house. 

 

[INSERT FIGURE 4 ABOUT HERE] 

 

Through the second and third phases, biological differences matter because such 

phases are strongly related to physiological mechanisms. For example, hormonal changes 

in women during pregnancy can affect toxicant transport throughout the body (Nethery, 

Brauer & Janssen, 2009). In addition, when children are young (under 5 years old), boys 

tend to be more vulnerable than girls to air pollution because their respiratory volumes 
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are lower and peripheral airways are narrower compared to girls (Falagas et al., 2007; 

Gold et al., 1994). 

However, social factors also play a role in the third phase. One of the most crucial 

differences appears to be gender-biased preferences for seeking health care services. In 

Bangladesh, women suffering illness have been found to receive health care services 

significantly less often than men (Ahmed, et al., 2000), whereas opposite results have 

been reported in other countries (Bertakis, Azari, Helms, Callahan, & Robbins, 2000; 

Thompson et al., 2016). 

Based on the conceptual framework of Figure 4, we ascertain whether the health 

impacts of HAP and AAP differ between boys and girls. Unfortunately, we cannot 

examine each phase from (1) to (3) separately, because actual levels of exposure and 

effective dose are not measured in our study. Instead, we directly estimate the association 

between concentration of air pollution (HAP and AAP) and health outcomes by 

controlling biological and social factors.  

Since boys are more vulnerable to air pollution in terms of biological 

characteristics, the negative association between concentration and health outcomes is 

expected to be stronger for boys than girls. If the opposite result is confirmed, it would 

suggest that girls are disadvantaged due to social factors. 
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3.2. Data 

This study mainly uses two datasets: the Demographic and Health Survey (DHS) 

and the Global Annual PM2.5 Grids from MODIS, MISR, and SeaWiFS Aerosol Optical 

Depth (AOD) with GWR, 1998-2016 (hereafter “the PM2.5 dataset”). 

The DHS is a globally standardized survey that collects nationally representative 

data on population, family planning, and maternal and child health in developing 

countries (Rutstein & Rojas, 2006). In Bangladesh, the DHS has been conducted eight 

times since 1993. We use two datasets collected in 2011 and 2014, since both datasets 

share similar questionnaires and sampling design, with 600 primary sampling units 

(PSUs) from the whole country. The DHS provides GPS data for each PSU, although the 

latitude/longitude positions are randomly displaced by up to 2 km in urban clusters and 5 

km in rural clusters to protect respondents’ confidentiality. To control for such positional 

errors, we created a buffer zone around each reported PSU of 2km and 5 km for urban 

and rural clusters, respectively, and combined the adjusted buffer zone with the PM2.5 

dataset. 

The PM2.5 dataset (van Donkelaar et al., 2018) contains annual global 

concentrations of ground-level PM2.5 from 1998 to 2016 at 0.01 degrees (approximately 
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1 km grid), with dust and sea-salt removed. Since this study focuses on the health statuses 

of children under five years old in the 2011 and 2014 surveys, the PM2.5 dataset from 

2005 to 2014 is used. As noted earlier, child health has been found to be affected by AAP 

not only through inhalation but also by transplacental transmission in utero (Sun et al., 

2016); accordingly, we aim to calculate the cumulative prenatal exposure to ambient 

PM2.5 during pregnancy (fixed as 9 months for all children) and postnatal exposure for 

each individual child. One drawback of the constructed annual PM2.5 dataset is the lack 

of seasonal variation in ambient PM2.5. This causes measurement errors in the 

cumulative exposure to ambient PM2.5 because it gives the same value for all same-aged 

children, regardless of their actual birth seasons. To more precisely measure cumulative 

exposure for each child, we adjust annual ambient PM2.5 for each season-specific PM2.5, 

by setting regional and seasonal parameters of ambient PM2.5 concentrations, and match 

the adjusted PM2.5 for each child, as shown in Table 1. The parameters are the ratios of 

the annual mean of ambient PM2.5 based on estimations by Begum et al. (2014). For 

example, in Rajshahi and Rangpur, exposure to PM2.5 in winter becomes 1.9 times the 

annual mean, while in the monsoon season it becomes 0.38 times the annual mean. We 
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logged both cumulative prenatal and postnatal exposure.5 

 

[INSERT TABLE 1 ABOUT HERE] 

 

3.3. Variables 

Table 2 indicates the definitions and summary statistics for the outcomes and 

covariates used in our analysis. For outcomes, we focus on the health status of children 

under five years old and examine their stunting and respiratory illness. Stunting (a height-

for-age z-score of less than −2) is an objective indicator measured by anthropometry using 

a height meter. Respiratory illness is measured by coughing and breathing difficulty being 

reported by the child’s mother in the two weeks before the survey. 

 

[INSERT TABLE 2 ABOUT HERE] 

                                                   
5 In practice, we use log(X+1) where X indicates cumulative prenatal or postnatal exposure to 

PM2.5, because 1% of the sample (168 children) are less than one month old and their postnatal 

exposure is assumed to be zero. Although the log(X+1) transformation is widely used in social 

sciences, some recent papers use the inverse hyperbolic sine (IHS) transformation (e.g., Eyer & 

Wichman, 2018). We also used IHS transformation, yielding similar results to those of our 

estimations with the log(X+1) transformation. 
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As explained in the previous subsection, AAP is measured as the average PM2.5 

concentration level within a 2km buffer zone around each urban PSU and a 5km buffer 

zone around each rural PSU. By contrast, HAP is not measured in numerical values in the 

DHS: instead, respondents are asked about their main cooking fuel. As a proxy variable 

for HAP, we use a dummy equal to 1 if a household uses solid fuels (wood, agricultural 

crops, animal dung, straw, shrubs, grass, and charcoal), and 0 otherwise. 

Other covariates are classified into child, parental, and household characteristics, 

which have been commonly used in the literature. Child characteristics include age, birth 

order, multiple births, diarrhea symptoms in the two weeks before the survey, and basic 

vaccination (BCG, measles, and polio) in the past. Birth order and multiple births are 

known as risk factors for stunting (Jayachandran & Pande, 2017). Incidence of diarrhea 

symptoms can control for environmental factors unrelated to air pollution that affect child 

health, such as water pollution. 

Mother’s attributes include her age, years of education, body mass index (BMI), 

relationship with the household head (wife or daughter-in-law), decision-making 

authority over own health care in the household, and boy preference. Relationship with 

the household head and authority over health care reflect her social status within the 
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household, which is strongly connected with exposure to HAP (Pitt et al., 2006). Boy 

preference is a dummy variable that takes 1 if the mother’s ideal number of boys exceeds 

the ideal number of girls, and 0 otherwise. This gender-biased preference may affect the 

mother’s behavior differently for boys against girls. Father’s characteristics comprise his 

age, years of education, and whether he lives separately from the family. 

Household characteristics include the head’s attributes, household composition, 

religion, cooking location, roof and wall materials, access to electricity, frequency of 

media use, and household wealth. Cooking outside the house and construction materials 

with higher permeability can mitigate exposure to HAP but, conversely, promote 

exposure to AAP, especially in the high dust season (Dasgupta et al., 2006; Dasgupta, 

Huq, Khaliquzzaman, & Wheeler, 2007). Frequency of media use is a dummy variable 

that equals 1 if the household takes a newspaper, listens to the radio, or watches TV at 

least once a week, which should capture exposure to media campaigns for better activities 

(Madajewicz et al., 2007). For household wealth, we use a set of dummy variables for the 

wealth index quintile, as calculated by the DHS. 

 

3.4. Empirical Framework 

3.4.1. Ordinary least squares  



17 

To examine the impact of HAP and AAP on child health in detail, we conduct an 

individual-level regression analysis using the ordinary least squares (OLS) method, 

assuming a linear probability model as follows: 

 

where 𝐻𝑒𝑎𝑙𝑡ℎ𝑖ℎd𝑡  is the health outcome for child 𝑖  in household ℎ  in district d  in 

year 𝑡 ; 𝑃𝑀2.5𝑖ℎd𝑡
𝑝𝑟𝑒𝑛𝑎𝑡𝑎𝑙

  and 𝑃𝑀2.5𝑖ℎd𝑡
𝑝𝑜𝑠𝑡𝑛𝑎𝑡𝑎𝑙

  are cumulative prenatal and postnatal 

exposure levels to ambient PM2.5 concentrations, respectively; 𝑆𝑜𝑙𝑖𝑑ℎd𝑡 is a dummy 

variable that equals 1 if a household uses solid fuels for cooking, and 0 otherwise; 𝑿𝑖ℎd𝑡

′
 

is a vector of child attributes, while 𝒁ℎd𝑡

′
  is a vector of parental and household 

characteristics; and 𝜇𝑑, 𝜌𝑡, and 𝜎𝑚 are district, year, and the survey month fixed effects, 

respectively. The district fixed effects control any time-invariant regional factors. We also 

include the survey month fixed effects to control for the survey timing. 

Since the DHS is not a panel survey, parameters (α, 𝛽1, 𝛽2, γ, 𝛿, 𝑎𝑛𝑑 𝜃 ) are 

pooled estimates using the datasets of 2011 and 2014. The impacts of AAP are measured 

by 𝛽1  and 𝛽2 , while the impacts of HAP are measured by γ . To examine gender 

differences explicitly, these parameters are estimated separately for boys and girls. We 
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use sample weights and clustered standard errors at the district level for all regressions.  

 

4. Results 

4.1. Descriptive Statistics 

Table 3 summarizes the health status of children by year and gender. In 2011, 

there was no significant differences in stunting and respiratory illness between genders. 

However, these outcomes for boys became worse than girls in 2014. Figure 5 compares 

health status by wealth index quintile, confirming the negative correlation between 

stunting and wealth, although the association is not very clear for respiratory illness. 

 

[INSERT TABLE 3 AND FIGURE 5 ABOUT HERE] 

 

For ambient PM2.5, Figure 6 shows the annual mean, minimum, and maximum 

values from 1998 to 2016. The annual mean of PM2.5 increased from 34.3 μg/𝑚3 in 

1998 to 51.7 μg/𝑚3  in 2016, far exceeding the World Health Organization’s (2015) 

guideline value of 10 μg/𝑚3. However, AAP has not been spread homogeneously over 

the whole country. As shown in Figure 7, PM2.5 has increased rapidly in the central, 

southern, and northeastern regions. The most prominent area is the capital city and its 
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eastern sub-districts, where PM2.5 has risen more than 15 μg/𝑚3 from 2005 to 2014. 

 

[INSERT FIGURES 6 AND 7 ABOUT HERE] 

 

The main types of cooking fuels are summarized in Table 4. Solid fuels were 

used by the majority of households, with 87% in 2011 and 85% in 2014. Among them, 

wood is most prevalent, followed by agricultural crops and animal dung. The composition 

did not change much during the study period. 

 

[INSERT TABLE 4 ABOUT HERE] 

 

4.2. Regression Analysis 

4.2.1. Main results 

We first discuss the results of OLS regressions, followed by those of IV in the 

next section. Table 5 reports the OLS estimation results with and without seasonal 

variation in ambient PM2.5 (i.e., AAP). There are five main findings . 

 

[INSERT TABLE 5 ABOUT HERE] 
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First, the household’s use of solid fuels for cooking (i.e., HAP) has adverse 

effects on respiratory illness in girls. The coefficient indicates that the probability of 

respiratory illness in girls is 4 percentage points higher in households using solid fuels. 

However, no effects are observed in boys’ respiratory illness or in stunting for either sex. 

The results are almost the same between estimations with and without seasonal 

adjustment of PM2.5. 

Second, seasonal adjustment substantially influences the coefficients of prenatal 

exposure to ambient PM2.5. When seasonal variation is not incorporated, the coefficients 

show that prenatal exposure decreases the risk of respiratory illness in boys and girls 

(Table 5, columns 3 and 4), which seems counterintuitive. A problem detected in these 

estimations is high variance inflation factors (VIFs) of prenatal exposure (approximately 

7.5 for boys and girls), indicating severe multicollinearity.6  

After making seasonal adjustments, the VIFs decrease to acceptable levels (2.9 

                                                   
6 A rule of thumb commonly used is that VIFs exceeding 5 indicate multicollinearity. In the analysis 

without seasonal variation, there are no other explanatory variables indicating VIFs more than 5, 

except for prenatal exposure to PM2.5. The mean VIF of all explanatory variables is approximately 

2.2 for both boys and girls. In the analysis with seasonal variation, all VIFs are less than 5 and its 

mean is approximately 2.1 for both boys and girls. 
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for boys and girls) and the seemingly strange estimated coefficient becomes statistically 

insignificant with negligible magnitude (Table 5, columns 7 and 8). Therefore, it seems 

that seasonal variation should be taken into consideration to deal with multicollinearity 

in prenatal exposure. The results with seasonal adjustment indicate its adverse impact on 

girls’ stunting, but no effects on respiratory illness. 

Third, postnatal exposure to ambient PM2.5 has adverse impacts on all health 

outcomes for both sexes. With seasonal adjustments, a 1% increase in postnatal exposure 

increases the probability of stunting by 0.10-0.12 percentage points and that of respiratory 

illness by 0.01-0.02 percentage points.  

Fourth, individual and parental attributes have a reasonable association with 

child health. As expected, later birth order and multiple births increase the risk of stunting, 

while diarrhea is strongly related to respiratory illness. Higher maternal BMI and parental 

education can mitigate stunting, although these effects are weak for respiratory illness. 

Mother’s decision making on healthcare can reduce risks of stunting and respiratory 

illness in boys. However, there is no correlation between mother’s boy preference and 

child health outcomes. 

Fifth, among household characteristics, the location of kitchen and house 

materials have limited impacts on child health. The dummy variable of cooking inside the 
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house has little effect, even when we include its interaction term with the dummy variable 

of solid fuels. This is consistent with Pitt et al. (2006). Access to electricity has no 

significant impacts, perhaps because most households, especially poor ones, are equipped 

only with low power and low-quality electricity, and so simultaneously use traditional 

fuels for lighting and cooking. Frequent access to media is associated with a lower 

probability of respiratory illness in girls. This might be because those households are 

more likely to be aware of the danger of HAP and AAP for child health. 7  Finally, 

economic wealth has a stronger association with stunting than respiratory illness, as 

confirmed in the descriptive statistics. More interestingly, the association between wealth 

and health is weaker for girls than for boys. In other words, boys’ health is more related 

to household wealth than that of girls. 

 

4.2.2. Decomposition of Solid Fuel Type 

The above analysis uses solid fuels as a single dummy variable. However, 

different sources of solid fuels may have heterogeneous health impacts (Dasgupta et al., 

                                                   
7 An alternative explanation is that those households are richer and so able to take better care of 

their children’s health. However, this explanation seems not convincing as we included wealth 

classes as control variables.  
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2006). To examine this possibility, we classify solid fuels by type (firewood, agricultural 

crops, animal dung, and other biomass), and use each of these four dummies instead of 

the single dummy variable. 

Table 6 shows the results for HAP and AAP with seasonal variation, suppressing 

the coefficients of other covariates since they are similar to the previous results in Table 

5. We confirm that the use of solid fuels is significantly associated with respiratory illness 

only in girls. Three main sources (firewood, agricultural crops, and animal dung) have 

similar effects on girls’ respiratory illness. The results for AAP are unchanged from the 

previous results reported in Table 5. 

 

[INSERT TABLE 6 ABOUT HERE] 

 

5. Robustness checks  

5.1. Endogeneity in the Use of Solid Fuels 

One potential threat to our identification is endogeneity in the use of solid fuels. 

Although the OLS regression model assumes the use of solid fuels as an exogenous 

variable, the selection of cooking fuel may not be independent from the error term due to 

omitted factors affecting both child health and the use of solid fuels. Moreover, there may 
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be reverse causality: for example, mothers may decide not to use solid fuels because their 

children have a respiratory illness. Such endogeneity can cause bias in our estimation. 

Thus, as a first robustness check, we use the IV approach by exploiting the share 

of other households using solid fuels in the same PSU as the instrument. A similar 

instrument is used by Balietti and Datta (2017), who analyze the impact of using solid 

fuels on stunting in Indian children. The instrument 𝑍ℎ𝑝 for children living in household 

ℎ in PSU 𝑝 is defined as: 

 

𝑍ℎ𝑝 =
∑ 𝑆𝑜𝑙𝑖𝑑𝑘𝑝𝑘≠ℎ

𝑁𝑝 − 1
 

 

where the numerator is the number of households using solid fuels in PSU 𝑝 excluding 

household ℎ, and 𝑁𝑝 in the denominator is the total number of households minus one 

in PSU 𝑝. This instrument is regarded as a proxy variable for the availability of solid 

fuels, assumed to affect child health only through its impact on the use of solid fuels in 

household ℎ . In our setting, all outcome variables and the endogenous explanatory 

variable (use of solid fuels) are dummy variables. Following Angrist and Pischke (2008), 

we use the standard two-step least squares (2SLS) approach. 

Table 7 shows the results of IV estimation with its first and second stage 
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regressions. The first-stage result clearly shows that the instrument has a strong and 

statistically significant effect on the use of solid fuels with sufficiently large F-statistics. 

Thus, our estimation does not suffer the weak IV problem. It is also confirmed that 

wealthier households tend to use non-solid fuels for cooking, which is consistent with our 

expectation. 

 

[INSERT TABLE 7 AROUND HERE] 

 

In the second stage, almost all coefficients of HAP and AAP are qualitatively 

similar to previous results presented in Table 5. The use of solid fuels has adverse impacts 

on girls’ respiratory illness. Prenatal exposure to PM2.5 affects stunting in girls, while 

postnatal exposure affects all outcomes in both sexes. The gender difference in the 

impacts of wealth on health is also confirmed again. Overall, these results show that our 

OLS estimations are not sensitive to potential endogeneity concerns.  

 

5.2. Migration 

Another possible concern regarding our estimations is migration. While we 

assume that all children continue to live in the same PSU during pregnancy and after birth, 
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the living place of some children could change through migration. This raises a potential 

selection problem, such that ambient PM2.5 cannot be considered exogeneous. 

Unfortunately, the Bangladesh DHS has no data on migration. However, the Household 

Income and Expenditure Survey 2016, another nationally representative household 

survey conducted by the government, reports that only 3% of households experienced any 

kind of migration within the country (from one district to another) in the last five years 

from the survey (Bangladesh Bureau of Statistics, 2017). This indirectly supports the view 

that migration is not a serious problem in our analysis. 

 To further verify this point, we conducted a sub-sample analysis of children 

under three years old. Because the probability of migration in the past should be lower 

for younger children, we can mitigate the possible bias due to migration, if any. Table 8 

shows the results of IV estimation for children under three years old. The main findings 

remain robust: the use of solid fuels affects only girls’ respiratory illness; prenatal 

exposure to PM2.5 affects stunting for both sexes; and postnatal exposure affects stunting 

and respiratory illness for both sexes. Again, the impacts of wealth on health outcomes 

are much smaller for girls. 

 

[INSERT TABLE 8 AROUND HERE] 
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5. Discussion and Conclusion 

This article explores the impacts of household air pollution (HAP) and ambient 

air pollution (AAP) on child health in Bangladesh, one of the world’s most air-polluted 

countries. By combining individual-level data from a nationally representative survey and 

satellite-based high-resolution data on ambient PM2.5 concentrations, we estimated 

prenatal and postnatal exposure to PM2.5 for each child and examined their adverse 

impacts on stunting and respiratory illness. The main findings are summarized as follows. 

First, the use of solid fuels for cooking, a proxy variable for HAP, has adverse 

impacts on respiratory illness among girls but not boys. Since boys are more vulnerable 

to air pollution in terms of biological characteristics, these results call attention to social, 

cultural, and/or behavioral factors. For example, girls may be more susceptible to HAP 

because they spend longer hours around cooking stoves or receive health care services 

less frequently than boys (Ahmed, et al., 2000). To assess the plausibility of these 

explanations, more detailed surveys measuring time use patterns and health-seeking 

activities by genders are required. These are issues for future research. 

Second, prenatal exposure to ambient PM2.5 leads to stunting, while postnatal 

exposure consistently increases the risk of both stunting and respiratory illness. These 
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health impacts of AAP are not significantly different between boys and girls. However, 

the results signify the importance of protecting not only infants but also pregnant mothers 

from AAP.  

Taken together, our results highlight the importance of prioritizing women (girls 

and pregnant mothers) to reduce the negative impact of air pollution on child health. 

Although the precise mechanisms that disadvantage girls and pregnant mothers could not 

be identified in this study, raising awareness of the risk of AAP during pregnancy may be 

an important policy objective, especially for mothers with lower education levels. Since 

frequent access to media is found to be negatively associated with girls’ respiratory illness 

(column 8, Table 5), media campaigns on the risk of HAP may be a possible means to 

reduce girls’ smoke inhalation. Moreover, the existing program to provide ICSs might be 

combined with the promotion of risk management practices to further improve child and 

pregnant mother’s health.  

Finally, a potential limitation of our analysis is survival bias, as the mortality rate 

may be higher in children with more exposure to air pollution. Consequently, our results 

may underestimate the actual adverse impacts of HAP and AAP on child health, and 

should be regarded as the minimal level of impact. However, we believe that such bias is 

not serious in our study as the existing evidence suggests that HAP is not strongly 
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associated with child mortality in Bangladesh (Naz, Page & Agho, 2015). Because DHS 

datasets have limited information on stillbirths, further analysis with more detailed child 

mortality datasets may be useful to investigate the existence and magnitude of survival 

bias.  
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Figures 

 

 

Source: Authors’ compilation from Health Effects Institute (2018a). 

Note: Data for Nigeria in 2015 (115μg/𝑚3) is excluded from the figure as an outlier due to an ex

tensive dust storm in late 2015 and early 2016 (see Health Effects Institute, 2018b). 

 

Fig 1. Trends in population-weighted annual average 𝐏𝐌𝟐.𝟓 (𝛍𝐠/𝐦𝟑) in the world’s 10 most 

populous countries. 
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Source: Begum et al. (2014) 

 

Fig. 2. Index of Seasonal Average PM2.5 in Four Cities (Winter 2011 = 1). 
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Source: Authors’ compilation from Health Effects Institute (2018a). 

 

Fig. 3. Trends in proportion of population using solid fuels In the world’s 10 most populous countries. 
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Source: Authors’ compilation based on Clougherty (2010). 

 

Fig 4. Conceptual Framework. 
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Fig. 5. Health Status by Wealth Index Quintile (%). 
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Fig. 6. Ambient PM2.5 Concentrations 1998-2016. 
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Difference in PM2.5 Concentration 

  

Fig. 7. Comparing Ambient PM2.5 Concentration (𝛍𝐠/𝒎𝟑) between 2005 and 2014. 
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Tables 

 

Table 1. Parameters Used as Ratios of Seasonal PM2.5 to Annual Mean. 

 

Note: Authors’ calculations based on Begum et al. (2014). 

 

  

Rajshahi &

Rangpur

Dhaka &

Sylhet

Khulna &

Barisal
Chittagong

Winter

(Dec - Feb)
1.90 1.68 1.95 1.86

Pre-monsoon

(Mar - May)
0.98 0.81 0.70 0.94

Monsoon

(Jun - Sep)
0.38 0.44 0.33 0.20

Post-monsoon

(Oct - Nov)
0.75 1.07 1.02 1.00
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Table 2. Definition and Summary Statistics of Variables 

 

Notes: In addition to the variables in the table, we include in the regression analysis a set of dummy variables 

for the wealth index quintile (calculated using the DHS), a year fixed effect, district fixed effects, the DHS’s 

survey month fixed effects. 

 

  

Variables Definition Mean Std. Dev. Min Max

Child health

Stunting =1 if a child has a height-for-age z-score of less than −2 0.39 0.49 0 1

Respiratory illness =1 if a child had an illness with a cough and difficulty breathing 0.15 0.36 0 1

Household and ambient air pollution

Solid fuels =1 if solid fuels are used for cooking 0.78 0.41 0 1

Log ( prenatal PM2.5 ) Log of cumulative prenatal exposure to ambient PM2.5 concentrations 3.70 0.19 2.9 4.1

Log ( postnatal PM2.5 ) Log of cumulative postnatal exposure to ambient PM2.5 concentrations 4.52 0.99 0.0 5.7

Child's characteristics

Age Child's age (months) 29.76 17.29 0 59

Birth order Birth order of the child 2.30 1.51 1 14

Twin =1 if the child is twin or triplet 0.01 0.11 0 1

Diarrhea =1 if the child had diarrhea in the last 2 weeks 0.05 0.22 0 1

Vaccination =1 if the child received basic vaccination 0.35 0.48 0 1

Parental characteristics

Mother: age Mother's age (years) 25.52 5.84 15 49

Mother: BMI Mother's body mass index (BMI) 21.31 3.80 12 32

Mother: education Mother's years of education 5.65 3.85 0 18

Mother: wife =1 if mother is wife of the household head 0.62 0.48 0 1

Mother: daughter-in-law =1 if mother is daughter-in-law of the household head 0.17 0.37 0 1

Mother: decision on healthcare =1 if mother has decision-making authority on her own healthcare 0.61 0.49 0 1

Mother: boy preference =1 if mother's ideal number of boys exceeds that of girls 0.10 0.30 0 1

Father: age Father's age (years) 34.53 8.57 16 65

Father: education Father's years of education 5.29 4.61 0 18

Father: separation =1 if father lives separately 0.13 0.34 0 1

Household characteristics

Female head =1 if household head is female 0.08 0.28 0 1

Age of head Age of household head (years) 41.88 14.50 15 95

Household size Number of household members 6.11 2.79 2 31

Share of under 5 yrs Share of household members under 5 years old 0.25 0.13 0 1

Two or more women =1 if two or more women exist in the household 0.28 0.45 0 1

Muslim =1 if household is muslim 0.92 0.28 0 1

Cooking inside house =1 if cooking is done inside house 0.15 0.35 0 1

Wall permeability =1 if wall material is tin or cane 0.45 0.50 0 1

Roof permeability =1 if roof material is tin 0.77 0.42 0 1

Electricity =1 if household has access to electricity 0.54 0.50 0 1

Media =1 if household use media at least once a week 0.49 0.50 0 1
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Table 3. Child Health by Year and Sex (%). 

 

Notes: *** p<0.01; ** p<0.05; * p<0.1. 

  

Boys Girls Difference Boys Girls Difference

(A) (B) (B - A) (C) (D) (D - C)

Stunting 40.3 41.0 0.7 37.6 35.5 -2.0*

Respiratory illness 17.1 16.0 -1.1 15.0 13.2 -1.8**

2011 2014
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Table 4. Type of Cooking Fuel 

 

Main type of cooking fuel (%) 2011 2014 Difference

Solid fuels Wood 50.5 54.8 4.3

Agricultural crop 26.0 21.0 -5.0

Animal dung 8.9 7.5 -1.4

Straw/shrubs 1.1 1.0 -0.2

Charcoal 0.2 0.4 0.2

Coal, lignite 0.0 0.3 0.3

Subtotal 86.8 85.0 -1.8

Natural gas 10.7 12.6 1.9

LPG 1.5 1.6 0.1

Biogas 0.3 0.1 -0.1

Electricity 0.2 0.4 0.2

Kerosene 0.2 0.1 -0.1

Other 0.3 0.2 -0.2

Subtotal 13.2 15.0 1.8

Total 100.0 100.0

Non-solid

fuels
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Table 5. Ordinary Least Squares with and without Seasonal Variation of Ambient PM2.5. 

 

Notes: See Table 2 for other covariates included in regressions. Clustered standard errors at the district level 

are in parentheses. *** p<0.01; ** p<0.05; * p<0.1. 

  

(1) (2) (3) (4) (5) (6) (7) (8)

Boys Girls Boys Girls Boys Girls Boys Girls

Solid fuel -0.003 0.005 0.009 0.041*** -0.008 0.006 0.010 0.042***

(0.023) (0.024) (0.019) (0.015)   (0.023) (0.024) (0.019) (0.015)   

Log(prenatal PM2.5) 0.214** 0.045 -0.103 -0.127*  0.005 0.111** -0.042 -0.053   

(0.090) (0.115) (0.076) (0.074)   (0.038) (0.044) (0.034) (0.046)   

Log(postnatal PM2.5) 0.127*** 0.124*** 0.031*** 0.028*** 0.118*** 0.105*** 0.017** 0.014   

(0.015) (0.015) (0.010) (0.009)   (0.011) (0.012) (0.009) (0.009)   

Birth order 0.018*** 0.025*** 0.005 -0.000   0.017** 0.025*** 0.005 0.000   

(0.007) (0.008) (0.006) (0.006)   (0.007) (0.008) (0.006) (0.006)   

Twin 0.139** 0.147** -0.009 0.031   0.139** 0.148** -0.006 0.031   

(0.058) (0.069) (0.040) (0.040)   (0.058) (0.069) (0.039) (0.040)   

Diarrhea 0.097*** 0.042 0.069** 0.066** 0.094*** 0.040 0.071** 0.068** 

(0.024) (0.034) (0.031) (0.027)   (0.024) (0.035) (0.031) (0.027)   

Mother: BMI -0.011*** -0.008*** -0.003** -0.001   -0.011*** -0.008*** -0.003** -0.001   

(0.002) (0.002) (0.001) (0.002)   (0.002) (0.002) (0.001) (0.002)   

Mother: decision on health -0.025* -0.019 -0.022* -0.006   -0.026* -0.019 -0.022* -0.007   

(0.015) (0.013) (0.013) (0.012)   (0.015) (0.013) (0.013) (0.012)   

Mother: boy preference 0.021 0.042 0.009 -0.003   0.021 0.041 0.010 -0.003   

(0.019) (0.027) (0.016) (0.018)   (0.019) (0.027) (0.016) (0.018)   

Mother: education -0.004 -0.007** -0.001 -0.001   -0.004 -0.007** -0.001 -0.001   

(0.003) (0.003) (0.002) (0.002)   (0.003) (0.003) (0.002) (0.002)   

Father: education -0.007*** -0.006** -0.001 -0.001   -0.006*** -0.005** -0.001 -0.001   

(0.002) (0.002) (0.002) (0.001)   (0.002) (0.002) (0.002) (0.001)   

Cooking inside house 0.019 0.024 0.006 -0.007   0.018 0.023 0.005 -0.006   

(0.021) (0.018) (0.015) (0.014)   (0.020) (0.018) (0.015) (0.014)   

Wall permeability 0.018 0.021 -0.025 0.002   0.022 0.020 -0.025 0.001   

(0.019) (0.022) (0.016) (0.015)   (0.018) (0.022) (0.016) (0.015)   

Roof permeability -0.041* 0.013 0.027 -0.007   -0.038* 0.012 0.027 -0.008   

(0.021) (0.022) (0.016) (0.012)   (0.021) (0.021) (0.016) (0.012)   

Access to electricity 0.011 0.019 0.010 0.003   0.010 0.020 0.011 0.003   

(0.027) (0.019) (0.013) (0.015)   (0.027) (0.019) (0.014) (0.015)   

Access to media -0.005 0.004 -0.006 -0.026** -0.006 0.004 -0.007 -0.026** 

(0.019) (0.018) (0.014) (0.012)   (0.018) (0.018) (0.014) (0.012)   

Wealth quintile: poorer -0.062** -0.006 -0.030* -0.002   -0.061** -0.008 -0.031* -0.002   

(0.028) (0.019) (0.017) (0.018)   (0.029) (0.019) (0.017) (0.018)   

Wealth quintile: middle -0.081*** -0.044* -0.033 -0.007   -0.080*** -0.045* -0.034 -0.008   

(0.029) (0.023) (0.022) (0.018)   (0.029) (0.023) (0.022) (0.018)   

Wealth quintile: richer -0.128*** -0.073*** -0.048* -0.020   -0.126*** -0.076*** -0.050* -0.020   

(0.032) (0.027) (0.026) (0.024)   (0.032) (0.027) (0.026) (0.024)   

Wealth quintile: richest -0.214*** -0.160*** -0.064** -0.008   -0.208*** -0.162*** -0.065** -0.009   

(0.043) (0.035) (0.027) (0.030)   (0.043) (0.035) (0.027) (0.030)   

Other control variables Yes Yes Yes Yes Yes Yes Yes Yes

District fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Survey month fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 7470 7124 8094 7672   7470 7124 8094 7672   

Adjusted R-squares 0.106 0.122 0.038 0.030   0.107 0.123 0.038 0.029   

Without seasonal variation With seasonal variation

Stunting Respiratory illness Stunting Respiratory illness
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Table 6. Ordinary Least Squares with Seasonal Variation in Ambient PM2.5: Health Effects of 

Household Air Pollution by Solid Fuel Type. 

 

Notes: See Table 2 for other covariates included in regressions. Clustered standard errors at the district level 

are in parentheses. *** p<0.01; ** p<0.05; * p<0.1. 

 

(1) (2) (3) (4)

Boys Girls Boys Girls

Solid fuel: firewood -0.008 0.008 0.007 0.041***

(0.023) (0.024) (0.018) (0.015)   

Solid fuel: agri. crop -0.011 -0.006 0.007 0.054***

(0.029) (0.029) (0.025) (0.017)   

Solid fuel: animal dung -0.007 0.021 0.009 0.068***

(0.039) (0.040) (0.027) (0.024)   

Solid fuel: others -0.011 -0.005 0.098 -0.005   

(0.079) (0.079) (0.093) (0.043)   

Log(prenatal PM2.5) 0.005 0.112** -0.041 -0.054   

(0.038) (0.044) (0.035) (0.046)   

Log(postnatal PM2.5) 0.118*** 0.106*** 0.018** 0.014   

(0.011) (0.012) (0.009) (0.009)   

Other control variables Yes Yes Yes Yes

District fixed effects Yes Yes Yes Yes

Survey month fixed effects Yes Yes Yes Yes

Observations 7470 7124 8094 7672   

Adjusted R-squares 0.106 0.123 0.038 0.029   

Stunting Respiratory illness
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Table 7. Instrumental Variable Estimation with Seasonal Variation in Ambient PM2.5: Children under 

Five Years Old. 

 

Notes: See Table 2 for other covariates included in regressions. Clustered standard errors at the district level 

are in parentheses. *** p<0.01; ** p<0.05; * p<0.1. 

  

(1) (2) (3) (4) (5) (6)

Boys Girls Boys Girls Boys Girls

Share of solid fuel in PSU 0.779*** 0.814***

(0.023) (0.020)

Solid fuel 0.020 0.008 0.003 0.054** 

(0.053) (0.057) (0.041) (0.024)   

Log(prenatal PM2.5) -0.044** -0.025 0.008 0.111*** -0.043 -0.052   

(0.019) (0.020) (0.036) (0.043) (0.034) (0.044)   

Log(postnatal PM2.5) 0.015*** 0.006 0.117*** 0.105*** 0.018** 0.014*  

(0.004) (0.006) (0.011) (0.012) (0.008) (0.009)   

Wealth quintile: poorer -0.020** -0.018** -0.060** -0.007 -0.031* -0.002   

(0.008) (0.007) (0.028) (0.019) (0.017) (0.018)   

Wealth quintile: middle -0.036** -0.044*** -0.079*** -0.045* -0.034 -0.007   

(0.014) (0.010) (0.029) (0.023) (0.022) (0.018)   

Wealth quintile: richer -0.041** -0.054*** -0.123*** -0.075*** -0.050** -0.019   

(0.019) (0.015) (0.032) (0.025) (0.025) (0.024)   

Wealth quintile: richest -0.015 -0.032 -0.204*** -0.162*** -0.066** -0.006   

(0.030) (0.026) (0.041) (0.035) (0.028) (0.030)   

Other control variables Yes Yes Yes Yes Yes Yes

District fixed effects Yes Yes Yes Yes Yes Yes

Survey month fixed effects Yes Yes Yes Yes Yes Yes

Observations 8094 7672 7470 7124 8094 7672   

Adjusted R-squares 0.740 0.752 0.106 0.123 0.038 0.029   

First stage F-statistics 24811.2*** 3234.0***

First stage

Solid fuel Stunting Respiratory illness

Second stage
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Table 8. Instrumental Variable Estimation with Seasonal Variation in Ambient PM2.5: Children under 

Three Years Old. 

 

Notes: See Table 2 for other covariates included in regressions. Clustered standard errors at the district level 

are in parentheses. *** p<0.01; ** p<0.05; * p<0.1 

 

(1) (2) (3) (4) (5) (6)

Boys Girls Boys Girls Boys Girls

Share of solid fuel in PSU 0.770*** 0.814***

(0.020) (0.024)

Solid fuel -0.057 -0.013 0.008 0.083** 

(0.070) (0.066) (0.047) (0.033)   

Log(prenatal PM2.5) -0.062*** -0.009 0.132*** 0.122** -0.048 -0.074   

(0.023) (0.025) (0.047) (0.055) (0.041) (0.045)   

Log(postnatal PM2.5) 0.012* 0.004 0.059*** 0.052*** 0.043*** 0.017   

(0.006) (0.007) (0.016) (0.014) (0.011) (0.012)   

Wealth quintile: poorer -0.018 -0.020** -0.067* 0.004 -0.048** -0.014   

(0.012) (0.010) (0.037) (0.023) (0.024) (0.025)   

Wealth quintile: middle -0.028 -0.046*** -0.069** -0.008 -0.070** -0.034   

(0.020) (0.014) (0.028) (0.031) (0.029) (0.023)   

Wealth quintile: richer -0.027 -0.051*** -0.107*** -0.044 -0.074** -0.045   

(0.023) (0.017) (0.034) (0.032) (0.035) (0.027)   

Wealth quintile: richest 0.021 -0.039 -0.162*** -0.138*** -0.097*** -0.040   

(0.038) (0.032) (0.042) (0.046) (0.034) (0.035)   

Other control variables Yes Yes Yes Yes Yes Yes

District fixed effects Yes Yes Yes Yes Yes Yes

Survey month fixed effects Yes Yes Yes Yes Yes Yes

Observations 4721 4547 4354 4205 4721 4547   

Adjusted R-squares 0.740 0.760 0.133 0.122 0.034 0.029   

First stage F-statistics 2476.1*** 21800.2***

First stage

Solid fuel Stunting Respiratory illness

Second stage
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