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Interpretability and stability are two important features that are desired in many

contemporary big data applications arising in economics and finance. While the former

is enjoyed to some extent by many existing forecasting approaches, the latter in the sense

of controlling the fraction of wrongly discovered features which can enhance greatly the

interpretability is still largely underdeveloped in the econometric settings. To this end, in

this paper we exploit the general framework of model-X knockoffs introduced recently in

Candès, Fan, Janson and Lv (2018), which is nonconventional for reproducible large-scale

inference in that the framework is completely free of the use of p-values for significance

testing, and suggest a new method of intertwined probabilistic factors decoupling (IPAD)

for stable interpretable forecasting with knockoffs inference in high-dimensional models.

The recipe of the method is constructing the knockoff variables by assuming a latent fac-

tor model that is exploited widely in economics and finance for the association structure

of covariates. Our method and work are distinct from the existing literature in that we

estimate the covariate distribution from data instead of assuming that it is known when

constructing the knockoff variables, our procedure does not require any sample splitting,

we provide theoretical justifications on the asymptotic false discovery rate control, and

the theory for the power analysis is also established. Several simulation examples and the
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real data analysis further demonstrate that the newly suggested method has appealing

finite-sample performance with desired interpretability and stability compared to some

popularly used forecasting methods.

Running title: IPAD

Key words: Reproducibility; Power; Big data; Interpretable forecasting; Stability; La-

tent factors; Model-X knockoffs; Large-scale inference and FDR; Scalability; Intertwined

probabilistic factors decoupling; Lasso and random forest

1 Introduction

Forecasting is a fundamental problem that arises in economics and finance. With the avail-

ability of big data, many machine learning algorithms such as the Lasso and random forest

can be resorted to for such a purpose by exploring a large pool of potential features. Many of

these existing procedures provide a certain measure of feature importance which can then be

utilized to judge the relative importance of selected features for the goal of interpretability.

Yet the issue of stability in the sense of controlling the fraction of wrongly discovered features

is still largely underdeveloped in the econometric settings. As argued in [20], it is difficult

to obtain interpretability and stability simultaneously even in simple Lasso forecasting. A

natural question is how to ensure both interpretability and stability for flexible forecasting.

Naturally stability is related to statistical inference. The recent years have witnessed

a growing body of work on high-dimensional inference in the econometrics and statistics

literature. For example, [42] proposed a simple procedure for inference of the average par-

tial effects based on a debiased `1-regularized method in approximately sparse panel probit

models. [38] used the de-sparsified estimator for constructing pointwise and group confi-

dence sets. [43] conducted simultaneous inference for high-dimensional sparse linear models

based on a bootstrap and desparsifying Lasso estimator. They also applied their procedure

for the family-wise error rate control. [16] provided a double/debiased machine learning

(DML) method for estimation and inference of treatment effects, which utilizes the Ney-

man orthogonal scores and cross-fitting. [18] then extended this idea to linear functionals.

[17] considered debiased simultaneous inference in a system of high-dimensional regression

equations with temporal and cross-sectional dependency based on a uniform robust post-

selection procedure. [36] proposed Lasso residual-based tests for checking goodness-of-fit in

(low- and) high-dimensional linear models. [29] presented a method for estimating the effect

of the treatment on the outcome by using instrumental variables where the instruments are

not necessarily valid.

Most existing work on high-dimensional inference for interpretable models has focused

primarily on the aspects of post-selection inference known as selective inference and debi-

asing for regularization and machine learning methods. In real applications, one is often

interested in conducting global inference relative to the full model as opposed to local in-

ference conditional on the selected model. Moreover, many statistical inferences are based

on p-values form significance testing. However, oftentimes obtaining valid p-values even for

2



the Lasso in relatively complicated high-dimensional nonlinear models also remains largely

unresolved, not to mention for the case of more complicated model fitting procedures such

as random forest. Indeed high-dimensional inference is intrinsically challenging even in the

parametric settings [27].

The desired property of stability for interpretable forecasting in this paper concentrates

on global inference by controlling precisely the fraction of wrongly discovered features in

high-dimensional models, which is also known as reproducible large-scale inference. Such a

problem involves testing the joint significance of a large number of features simultaneously,

which is known widely as the problem of multiple testing in statistical inference. For this

problem, the null hypothesis for each feature states that the feature is unimportant in the

joint model which can be understood as the property that this individual feature and the

response are independent conditional on all the remaining features, while the corresponding

alternative hypothesis states the opposite. Conventionally p-values from the hypothesis

testing are used to decide whether or not to reject each null hypothesis with a significance

level to control the probability of false discovery in a single hypothesis test, meaning rejecting

the null hypothesis when it is true. When performing multiple hyothesis tests, the probability

of making at least one false discovery which is known as the family-wise error rate can be

inflated compared to that for the case of a single hypothesis test. The work on controlling

such an error rate for multiple testing dates back to [13], where a simple, useful idea is

lowering the significance level for each individual test as the target level divided by the

total number of tests to be performed. The Bonferroni correction procedure is, however,

well known to be conservative with relatively low power. Later on, [30] proposed a step-

down procedure which is less conservative than the Bonferroni procedure. More recently,

[35] suggested a procedure in which the critical values of individual tests are constructed

sequentially.

A more powerful and extremely popular approach to multiple testing is the Benjamini–

Hochberg (BH) procedure for controlling the false discovery rate (FDR) which was originated

in [9], where the FDR is defined as the expectation of the fraction of falsely rejected null

hypotheses known as the false discovery proportion. Given the p-values from the multiple

hypothesis tests, this procedure sorts the p-values from low to high and chooses a simple,

intuitive cutoff point, which can be viewed as an adaptive extension of the Bonferroni cor-

rection for multiple comparisons, of the p-values for rejecting the null hypotheses. The BH

procedure was shown to be capable of controlling the FDR at the desired level for indepen-

dent test statistics in [9] and for positive regression dependency among the test statistics in

[10], where it was shown that a simple modification of the procedure can control the FDR

under other forms of dependency but such a modification is generally conservative. There

is a huge literature on the theory, applications, and various extensions of the original BH

procedure for FDR control. See, for instance, [8] for a review of related developments, [24]

for a factor model approach to FDR control under arbitrary covariance dependence, and [7]

for a review of key results on estimation and inference including multiple testing with FDR

control in high-dimensional models.

It is worth mentioning that [19] recently introduced a one covariate a time, multiple
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testing procedure for high-dimensional variable selection in linear regression models. In par-

ticular, their method was shown to have asymptotic FDR equal to the ratio of the number of

pseudo signals and the total number of pseudo signals and true signals, where the true signals

have nonzero regression coefficients and the pseudo signals have zero regression coefficients

but nonzero marginal correlations with the response. Unlike [19], the main interest of our

paper is the FDR control with respect to only the set of true signals.

The aforementioned econometric and statistical inference methods including the BH-type

procedures for FDR control are all rooted on the availability and validity of computable p-

values for evaluating variable importance. As mentioned before, such a prerequisite can

become a luxury that is largely unclear how to obtain in high dimensions even for the case

of Lasso in general nonlinear models and random forest. In contrast, [4] proposed a novel

procedure named the knockoff filter for FDR control that bypasses the use of p-values in

Gaussian linear model with deterministic design matrix, where the dimensionality is no larger

than the sample size, and [5] generalized the method to high-dimensional linear models as

a two-step procedure based on sample splitting, where a feature screening approach is used

to reduce the dimensionality to below sample size (see, e.g., [23] and [25]) and then the

knockoff filter is applied to the set of selected features after the screening step for selective

inference. The key ingredient of the knockoff filter is constructing the so-called knockoff

variables in a geometrical way that mimic perfectly the correlation structure among the

original covariates and can be used as control variables to evaluate the importance of original

variables. Recently, [15] extended the work of [4] by introducing the framework of model-X

knockoffs for FDR control in general high-dimensional nonlinear models. A crucial distinction

is that the knockoff variables are constructed in a probabilistic fashion such that the joint

dependency structure of the original variables and their knockoff copies is invariant to the

swapping of any set of original variables and their knockoff counterparts, which enables us

to go beyond linear models and handle high dimensionality. As a result, model-X knockoffs

enjoys exact finite-sample FDR control at the target level. However, a major assumption in

[15] is that the joint distribution of all the covariates needs to be known for the valid FDR

control.

Motivated by applications in economics and finance, in this paper we model the asso-

ciation structure of the covariates using the latent factor model, which reduces effectively

the dimensionality and enables reliable estimation of the unknown joint distribution of all

the covariates. By taking into account the latent factor model structure, we first estimate

the association structure of covariates and then construct empirical knockoffs matrix using

the estimated dependency structure. Our empirical knockoffs matrix can be regarded as an

approximation to the oracle knockoffs matrix in [15] that requires the knowledge of the true

covariate distribution. Exploiting the general framework of model-X knockoffs in [15], we

suggest the new method of intertwined probabilistic factors decoupling (IPAD) for stable

interpretable forecasting with knockoffs inference in high-dimensional models. The innova-

tions of our method and work are fourfold. First, we estimate the covariate distribution from

data instead of assuming that it is known when constructing the knockoff variables. Second,

our procedure does not require any sample splitting and is thus more practical when the
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sample size is limited. Third, we provide theoretical justifications on the asymptotic false

discovery rate control when the estimated dependency structure is employed. Fourth, the

theory for power analysis is also established which reveals that there can be asymptotically

no power loss in applying the knockoffs procedure compared to the underlying variable selec-

tion method. Therefore, FDR control by knockoffs can be a pure gain. Compared to earlier

work, an additional challenge of our study is that knowing the true underlying distribution

does not lead to the most efficient construction of the oracle knockoffs matrix due to the

presence of latent factors. The appealing interpretability and stability of our new method

compared to some popularly used forecasting methods are confirmed with several simulation

and real data examples.

The rest of the paper is organized as follows. Section 2 introduces the model setting

with a review of the model-X knockoffs inference framework and presents the new IPAD

procedure. We establish the asymptotic properties of IPAD in Section 3. Sections 4 and 5

present several simulation and real data examples to showcase the finite-sample performance

and the advantages of our newly suggested procedure compared to some popularly used ones.

We discuss some implications and extensions of our work in Section 6. The proofs of the

main results and additional technical details are relegated to the Appendix.

2 Intertwined probabilistic factors decoupling

To facilitate the technical presentation, we will introduce the model setting for the high-

dimensional FDR control problem in Section 2.1 with a review of the model-X knockoffs

inference framework in Section 2.2, and present the new IPAD procedure in Section 2.3.

2.1 Model setting

Consider the high-dimensional linear regression model

y = Xβ + ε, (1)

where y ∈ Rn is the response vector, X ∈ Rn×p is the random matrix of a large number of

potential regressors, β = (β1, · · · , βp)′ ∈ Rp is the regression coefficient vector, ε ∈ Rn is the

vector of model errors, and n and p denote the sample size and dimensionality, respectively.

Here without loss of generality, we assume that both the response and the covariates are

centered with mean zero and thus there is no intercept. Motivated by many applications in

economics and finance, we further assume that the design matrix X follows the exact factor

model

X = F0Λ0′ + E = C0 + E, (2)

where F0 = (f0
1 , . . . , f

0
n)′ ∈ Rn×r is a random matrix of latent factors, Λ0 = (λ0

1, . . . ,λ
0
p)
′ ∈

Rp×r is a matrix of deterministic factor loadings, and E ∈ Rn×p captures the remaining

variation that cannot be explained by these latent factors. We assume that the number of

factors r is fixed but unknown and the components of E are independent and identically
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distributed (i.i.d.) from some unknown parametric distribution with cumulative distribution

function G(·;η0), where η0 ∈ Rm is a finite-dimensional parameter vector. For simplicity,

models (1) and (2) are assumed to have no endogeneity.

In this paper, we focus on the high-dimensional scenario when the dimensionality p can

be much larger than sample size n. Therefore, to ensure model identifiability we impose the

sparsity assumption that the true regression coefficient vector β has only a small portion

of nonzeros; specifically, β takes nonzero values only on some (unknown) index set S0 ⊂
{1, . . . , p} and βj = 0 for all j ∈ S1 := {1, . . . , p}\S0. Denote by s = |S0| the size of S0. We

assume that s = o(n) throughout the paper.

We are interested in identifying the index set S0 with a theoretically guaranteed error

rate. To be more precise, we try to select variables in S0 while keeping the false discovery

rate (FDR) under some prespecified desired level q ∈ (0, 1), where the FDR is defined as

FDR := E [FDP] with FDP :=
|Ŝ ∩ S1|
|Ŝ| ∨ 1

. (3)

Here the FDP stands for the false discovery proportion and Ŝ represents the set of variables

selected by some procedure using observed data (X,y). A slightly modified version of FDR

is defined as

mFDR := E

[
|Ŝ ∩ S1|
|Ŝ|+ q−1

]
. (4)

Clearly, FDR is more conservative than mFDR in that the latter is always under control if

the former is.

It is easy to see that FDR is a measurement of type I error for variable selection. The

other important aspect of variable selection is power, which is defined as

Power := E

[
|Ŝ ∩ S0|
|S0|

]
= E

[
|Ŝ ∩ S0|

s

]
. (5)

It is well known that FDR and power are two sides of the same coin. We aim at developing

a variable selection procedure with theoretically guaranteed FDR control and meanwhile

achieving high power.

2.2 Review of model-X knockoffs framework

The key idea of the model-X knockoffs framework is to construct the so-called model-X

knockoff variables, which were introduced originally in [15] and whose definition is stated

formally as follows for completeness.

Definition 1 (Model-X knockoff variables [15]) For a set of random variables x =

(X1, . . . , Xp), a new set of random variables x̃ = (X̃1, · · · , X̃p) is called a set of model-X

knockoff variables if it satisfies the following properties:

1) For any subset S ⊂ {1, . . . , p}, we have [x, x̃]swap(S) = [x, x̃] in distribution, where the

vector [x, x̃]swap(S) is obtained by swapping Xj and X̃j for each j ∈ S.
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2) Conditional on x, the knockoffs vector x̃ is independent of response Y .

An important consequence is that the null regressors {Xj : j ∈ S1} can be swapped with their

knockoffs without changing the joint distribution of the original variables x, their knockoffs

x̃, and response Y . That is, we can obtain for any S ⊂ S1,

([x, x̃]swap(S), Y )
d
= ([x, x̃], Y ), (6)

where
d
= denotes equal in distribution. Such a property is known as the exchangeability

property using the terminology in [15]. For more details, see Lemma 3.2 therein. Following

[15], one can obtain a knockoffs matrix X̃ ∈ Rn×p given observed design matrix X.

Using the augmented design matrix [X, X̃] and response vector y constructed by stacking

the n observations, [15] suggested constructing knockoff statistics Wj = wj([X, X̃],y), j ∈
{1, . . . , p}, for measuring the importance of the jth variable, where wj is some function

that satisfies the property that swapping xj ∈ Rn with its corresponding knockoff variable

x̃j ∈ Rn changes the sign of Wj ; that is,

wj([X, X̃]swap(S),y) =

wj([X, X̃],y), j /∈ S,

−wj([X, X̃],y), j ∈ S.
(7)

The knockoff statistics constructed above Wj = wj([X, X̃],y) satisfy the so-called sign-flip

property; that is, conditional on |Wj |’s the signs of the null Wj ’s with j 6∈ S0 are i.i.d. coin

flips (with equal chance 1/2). For the examples on valid constructions of knockoff statistics,

see [15].

Let t > 0 be a fixed threshold and define Ŝ = {j : Wj ≥ t} as the set of discovered

variables. Then intuitively, the sign-flip property entails∣∣∣Ŝ ∩ S1
∣∣∣ d= ∣∣{j : Wj ≤ −t} ∩ S1

∣∣ ≤ |{j : Wj ≤ −t}| .

Therefore, the FDP function can be estimated (conservatively) as

FDP =
|Ŝ ∩ S1|
|Ŝ| ∨ 1

≤ |{j : Wj ≤ −t}|
|Ŝ| ∨ 1

=: F̂DP

for each t. In light of this observation, [15] proposed to choose the threshold by resorting to

the above F̂DP. Their results are summarized formally as follows.

Result 1 ([15]) Let q ∈ (0, 1) denote the target FDR level. Assume that we choose a

threshold T1 > 0 such that

T1 = min

{
t > 0 :

|{j : Wj ≤ −t}|
|{j : Wj ≥ t}| ∨ 1

≤ q
}

or T1 = +∞ if the set is empty. Then the procedure selecting the variables Ŝ = {j : Wj ≥ T1}
controls the mFDR in (4) to no larger than q. Moreover, assume that we choose a slightly

more conservative threshold T2 > 0 such that

T2 = min

{
t > 0 :

1 + |{j : Wj ≤ −t}|
|{j : Wj ≥ t}| ∨ 1

≤ q
}
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or T2 = +∞ if the set is empty. Then the procedure selecting the variables Ŝ = {j : Wj ≥ T2}
controls the FDR in (3) to no larger than q.

It is worth noting that Result 1 was derived under the assumption that the joint distri-

bution of the p covariates is known. In our model setting (1) and (2), however there exist

unknown parameters that need to be estimated from data. In such case, it is natural to

construct the knockoff variables and knockoff statistics with estimated distribution of the p

covariates. Such a plug-in principle usually leads to breakdown of the exchangeability prop-

erty in Definition 1, preventing us from using directly Result 1. To address this challenging

issue, we will introduce our new method in the next section and provide detailed theoretical

analysis for it.

It is also worth mentioning that recently, [6] provided an elegant new line of theory which

ensures FDR control of model-X knockoffs procedure under the approximate exchangeability

assumption, which is weaker than the exact exchangeability condition required in Definition

1. However, the conditions they need on estimation error of the joint distribution of x

is difficult to be satisfied in high dimensions. [26] investigated the robustness of model-X

knockoffs procedure with respect to unknown covariate distribution when covariates x follow

a joint Gaussian distribution. Their procedure needs data splitting and their proofs rely

heavily on the Gaussian distribution assumption, and thus their development may not be

suitable for economic data with limited sample size and heavy-tailed distribution. For these

reasons, our results complement substantially those in [15], [26], and [6].

2.3 IPAD

It has been seen from the previous section that the key for the model-X knockoffs framework

is the construction of valid knockoff variables. We begin with the ideal situation where the

the factor model structure (2) is fully available to us; that is, we know the realization C0 and

the distribution G(·;η0) for the error matrix E. In such case, the oracle knockoffs matrix

X̃(θ0) can be constructed as

X̃(θ0) = C0 + Eη0 , (8)

where Eη0 is an i.i.d. copy of E and θ0 = (C0,η0) is the augmented parameter vector. Note

that Eη0 itself is not a function of η0, but we slightly abuse the notation to emphasize the

dependence of the distribution function on parameter η0. It is easy to check that X̃(θ0)

constructed above is a valid knockoffs matrix and satisfies the properties in Definition 1.

Although X̃(θ0) is generally unavailable to us, it plays an important role in our theoretical

developments.

We remark that in the construction above, we slightly misuse the concept and call C0 a

parameter. This is because although C0 is a random matrix, for the construction of valid

knockoff variables it is the particular realization C0 leading to the observed data matrix

X that matters. In other words, a valid construction of knockoff variables requires the

knowledge of the specific realization C0 instead of the distribution of C0. To understand

this, consider the scenario where the underlying parameter η0 and the exact distribution of
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C0 are fully available to us. If we independently generate random variables from this known

distribution and form a new data matrix X1, because of the independence between X1 and

X, the exchangeability assumption in Definition 1 will be violated and thus X1 cannot be

a valid knockoffs matrix. On the other hand, as long as we know the realization C0 and

parameter η0, a valid knockoffs matrix X̃(θ0) can be constructed using (8) regardless of

whether the exact distribution of C0 is available to us or not.

In practice, however θ0 is unavailable to us and consequently, X̃(θ0) is inaccessible. To

overcome this difficulty, we next introduce our new method IPAD. We start with introducing

the knockoff generating function – for each given parameter vector θ = (C,η), define

X̃(θ) = C + Eη, (9)

where Eη is a matrix composed of i.i.d. random samples from the distribution G(·;η). Let-

ting θ̂ denote an estimator (obtained using data X) of θ0, we name X̃(θ̂) as the empirical

knockoffs matrix while X̃(θ0) as the oracle (ideal) knockoffs matrix.

With the aid of empirical knockoffs matrix, we suggest the following IPAD procedure for

FDR control with knockoffs inference.

Procedure 1 (IPAD) 1) (Estimation of parameters) Estimate the unknown parame-

ters in θ0 using the design matrix X. Denote by θ̂ = (Ĉ, η̂) the resulting estimated

parameter vector.

2) (Construction of empirical knockoffs matrix) Construct the empirical knockoffs matrix

by applying the knockoff generating function in (9) to the estimated parameter θ̂; that

is,

X̃(θ̂) = Ĉ + Eη̂, (10)

where Eη̂ ∈ Rn×p is a matrix composed of i.i.d. random variables from G(·; η̂), and is

independent of (X,y) conditional on η̂.

3) (Application of knockoffs inference) Calculate knockoff statistics Wj(θ̂) using data

([X, X̃(θ̂)],y) and then construct Ŝ by applying knockoffs inference to Wj(θ̂).

Intuitively, the accuracy of the estimator θ̂ in Step 1 will affect the performance of our

IPAD procedure. In fact, as shown later in our Theorem 1, the consistency rate of θ̂ is

indeed reflected in the asymptotic FDR control of the IPAD procedure. For the specific

case when the error distribution is N(0, σ2), the parameter σ2 can be estimated naturally

as (np)−1
∑

i,j ê
2
ij , where êij ’s are the entries of Ê = X − Ĉ. In Step 3, various methods

can be used to construct knockoff statistics. For the illustration purpose, we use the Lasso

coefficient difference (LCD) statistic as in [15]. Specifically, with y the response vector and

([X, X̃(θ̂)]) the augmented design matrix we consider the variable selection procedure Lasso

[39] which solves the following optimization problem

β̂aug(θ̂;λ) = arg min
b∈R2p

{
‖y − [X, X̃(θ̂)]b‖22 + λ‖b‖1

}
, (11)

9



where λ ≥ 0 is the regularization parameter and ‖ · ‖m with m ≥ 1 denotes the vector

`m-norm. Then for each variable xj , the knockoff statistic can be constructed as

Wj(θ̂;λ) = |β̂augj (θ̂;λ)| − |β̂augp+j(θ̂;λ)|, (12)

where β̂aug` (θ̂;λ) is the `th component of the Lasso regression coefficient vector β̂aug(θ̂;λ).

It is seen that intuitively the LCD knockoff statistics evaluate the relative importance of the

jth original variable by comparing its Lasso coefficient β̂augj (θ̂;λ) with that of its knockoff

copy β̂augj+p(θ̂;λ). In the ideal case when the oracle knockoffs matrix X̃(θ0) is used instead of

X̃(θ̂) in (11), it is easy to verify that the LCD is a valid construction of knockoff statistics

and satisfies the sign-flip property in (7). Consequently, the general theory in [15] can be

applied to show that the FDR is controlled in finite sample. We next show that even with the

empirical knockoffs matrix employed in (11), the FDR can still be asymptotically controlled

with delicate technical analyses.

3 Asymptotic properties of IPAD

We now provide theoretical justifications for our IPAD procedure suggested in Section 2

with the LCD knockoff statistics Wj(θ̂;λ) = wj([X, X̃(θ̂)],y;λ) defined in (12). We will

first present some technical conditions in Section 3.1, then prove in Section 3.2 that the

FDR is asymptotically under control at desired target level q, and finally in Section 3.3 show

that asymptotically IPAD has no power loss compared to the Lasso under some regularity

conditions.

3.1 Technical conditions

We first introduce some notation and definitions which will be used later on. We use X ∼
subG(C2

x) to denote that X is a sub-Gaussian random variable with variance proxy C2
x > 0

if E[X] = 0 and its tail probability satisfies P(|X| > u) ≤ 2 exp(u2/C2
x) for each u ≥ 0. In

all technical assumptions below, we use M > 1 to denote a large enough generic constant.

Throughout the paper, for any vector v = (vi) let us denote by ‖v‖1, ‖v‖2, and ‖v‖max the `1-

norm, `2-norm, and max-norm defined as ‖v‖1 =
∑

i |vi|, ‖v‖2 = (
∑

i v
2
i )

1/2, and ‖v‖max =

maxi |vi|, respectively. For any matrix M = (mij), we denote by ‖M‖F , ‖M‖1, ‖M‖2,

and ‖M‖max the Frobenius norm, entrywise `1-norm, spectral norm, and entrywise `∞-norm

defined as ‖M‖F = ‖ vec(M)‖2, ‖M‖1 = ‖ vec(M)‖1, ‖M‖2 = supv 6=0 ‖Mv‖2/‖v‖2, and

‖M‖max = ‖ vec(M)‖max, respectively, where vec(M) represents the vectorization of matrix

M. For a symmetric matrix M, vech(M) stands for the vectorization of the lower triangular

part of M.

Condition 1 (Regression errors) The model error vector ε has i.i.d. components from

subG(C2
ε ).

Condition 2 (Latent factors) The rows of F0 consist of mean zero i.i.d. random vectors

f0
i ∈ Rr such that ‖F0‖max ≤ M almost surely (a.s.) and ‖Σf‖2 + ‖Σ−1

f ‖2 ≤ M , where

Σf := E[f0
i f0
i
′
].
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Condition 3 (Factor loadings) The rows of Λ0 consist of deterministic vectors λ0
j ∈ Rr

such that ‖Λ0‖max ≤M and ‖p−1Λ0′Λ0‖2 + ‖(p−1Λ0′Λ0)−1‖2 ≤M .

Condition 4 (Factor errors) The entries of matrix Eη0 are i.i.d. copies of eη0 ∼ subG(C2
e )

with continuous distribution function G(·;η0). For each 1 ≤ ` ≤ m, the `th element of η0

is specified as η0
` = h`(E[eη0 ], . . . ,E[emη0 ]) with h` : Rm → R some local Lipschitz continuous

function in the sense that∣∣∣h`(t1, . . . , tm)− h`(E[eη0 ], . . . ,E[emη0 ])
∣∣∣ ≤M max

k∈{1,...,m}

∣∣∣tk − E[ekη0 ]
∣∣∣

for each tk ∈ {t : |t − E[ekη0 ]| ≤ Mcnp} and 1 ≤ k ≤ m, where cnp := (p−1 log n)1/2 +

(n−1 log p)1/2. Moreover, there exists some stochastic process (eη)η such that

i) for each η ∈ {η ∈ Rm : ‖η − η0‖max ≤ Mcnp}, the entries of Eη in (9) have identical

distribution to eη,

ii) for some sub-Gaussian random variable Z ∼ subG
(
c2
e

)
with some positive constant ce,

sup
η: ‖η−η0‖max≤Mcnp

|eη − eη0 | ≤M1/2c1/2
np |Z|. (13)

Condition 5 (Eigenseparation) The r eigenvalues of p−1Λ0′Λ0Σf are distinct for all p.

The number of factors r is assumed to be known for developing the theory with simpli-

fication, but in practice it can be estimated consistently using methods such as information

criteria [3] and test statistics [1]. The sub-Gaussian assumptions in Conditions 1 and 4 can

be replaced with some other tail conditions as long as similar concentration inequalities hold.

Condition 3 is standard in the analysis of factor models. Stochastic loadings can be assumed

in Condition 3 with some appropriate distributional assumption, such as sub-Gaussianity, at

the cost of much more tedious technical arguments. The boundedness of the eigenvalues of

Σf in Condition 2 is standard while the i.i.d. assumption and boundedness of f0
i are stronger

compared to the existing literature (e.g., [3] and [2]). However, these conditions are imposed

mostly for technical simplicity. In fact, the boundedness condition on f0
i can be replaced

with (unbounded) sub-Gaussian or other heavier-tail assumption whenever concentration

inequalities are available at the cost of slower convergence rates and stronger sample size

requirement. Our theory on FDR control is based on that in [15], which applies only to the

case of i.i.d. rows of design matrix X. This is the main reason for imposing the i.i.d. assump-

tion on εi and fi in Conditions 1 and 2. However, we conjecture that similar results can also

hold in the presence of some sufficiently weak serial dependence in εi and fi. Condition 4

introduces a sub-Gaussian process eη with respect to η. The norm in (13) can be replaced

with any other norm since η is finite dimensional. In the specific case when the components

of E have Gaussian distribution such that η is a scalar parameter representing variance, by

the the reflection principle for the Wiener process ([12], p.511), eη can be constructed as

a Wiener process and the inequality (13) can be satisfied. For more information on sub-

Gaussian processes, see, e.g., [41]. Condition 5 guarantees that F̂′F0/n is asymptotically

nonsingular, which has been proved in [2] and is used in the proof of Lemma 6 in Appendix.
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Recall that in the IPAD procedure, we first obtain the augmented Lasso estimator

β̂aug(θ;λ) ∈ R2p by regressing y on [X, X̃(θ)]. Denote by Aaug(θ;λ) = supp(β̂aug(θ;λ)) ⊂
{1, . . . , 2p} the active set of the augmented Lasso regression coefficient vector. Throughout

this section, we content ourselves with sparse estimates satisfying

|Aaug(θ;λ)| ≤ k/2 (14)

for some positive integer k which may diverge with n at an order to be specified later; see,

e.g., [28] and [32] for a similar constraint and justifications therein. This can always be

achieved since users have the freedom to choose the size of the Lasso model.

3.2 FDR control

To develop the theory for IPAD, we consider the principle component estimator Ĉ for the

realization C0. More specifically, we first conduct the singular value decomposition (SVD)

X = UDV′ with U and V the left and right singular matrices and D a diagonal matrix

of singular values, and then threshold the diagonal matrix D by setting the smallest n − r
singular values to zero. Let us denote the thresholded matrix as Dr. Then matrix C0 can be

estimated as Ĉ = UDrV
′. Denote by Ê = (êij) = X− Ĉ. The estimator η̂ = (η̂1, · · · , η̂m)′

is constructed as η̂` = h`(Enp ê, . . . ,Enp êm) with h`, 1 ≤ ` ≤ m, introduced in Condition

4 and Enpêk = (np)−1
∑

i,j ê
k
ij the empirical moments of êij . Throughout our theoretical

analysis, we consider the regularization parameter fixed at λ = C0n
−1/2 log p with C0 some

large enough constant for all the Lasso procedures. Therefore, we will drop the dependence of

various quantities on λ whenever there is no confusion. For example, we will write Aaug(θ;λ)

and β̂aug(θ;λ) as Aaug(θ) and β̂aug(θ), respectively.

Denote by U(θ) := n−1[X, X̃(θ)]′[X, X̃(θ)] and v(θ) := n−1[X, X̃(θ)]′y and define

T(θ) := vec(vech U(θ),v(θ)) ∈ RP with P := p(2p + 3). The following lemma states

that the statistic T(θ) plays a crucial role in our procedure.

Lemma 1 The set of variables Ŝ selected by Procedure 1 depends only on T(θ).

For any given θ, define the active set A∗(θ) := Aaug
1 (θ) ∪ Aaug

2 (θ) ⊂ {1, . . . , p}, where

Aaug
1 (θ) := {j : j ∈ {1, . . . , p}∩Aaug(θ)} andAaug

2 (θ) := {j−p : j ∈ {p+1, . . . , 2p}∩Aaug(θ)}.
That is, A∗(θ) is equal to the support of knockoff statistics (W1(θ), · · · ,Wp(θ))′ if there are

no ties on the magnitudes of the augmented Lasso coefficient vector β̂aug(θ).

We next focus on the low-dimensional structure of T(θ) inherited from the augmented

Lasso because it will be made clear that this is the key to controlling the FDR without sample

splitting. For any subset A ⊂ {1, . . . , p}, define a lower-dimensional expression of the vector

as TA(θ) := vec(vech UA(θ),vA(θ)) with UA(θ) the principle submatrix of U(θ) formed by

columns and rows in A and vA(θ) the subvector of v(θ) formed by components in A. Then it

is easy to see that UA(θ) = n−1[XA, X̃A(θ)]′[XA, X̃A(θ)] and vA(θ) = n−1[XA, X̃A(θ)]′y.

Motivated by Lemma 1, we define a family of mappings indexed by A that describes the

selection algorithm of Procedure 1 with given data set ([XA, X̃A(θ)],y) that forms TA(θ).

Formally, define a mapping SA : R|A|(2|A|+3) → 2A as tA 7→ SA(tA) for given TA(θ) = tA,

12



where 2A refers to the power set of A. That is, SA(tA) represents the outcome of first

restricting ourselves to the smaller set of variables A and then applying IPAD to TA(θ) = tA

to further select variables from set A.

Lemma 2 Under Conditions 1–4, for any subset A ⊃ A∗(θ) we have S{1,...,p}(T(θ)) =

SA(TA(θ)).

When restricting on set A, we can apply Procedure 1 to a lower-dimensional data set

([XA, X̃A(θ)],y) that forms TA(θ) to further select variables from A. The previous two

lemmas ensure that this gives us a subset of A that is identical to S{1,...,p}(T(θ)). Note that

the lower-dimensional problem based on TA(θ) can be easier compared to the original one.

We also would like to emphasize that the dimensionality reduction to a smaller model A is

only for assisting the theoretical analysis and our Procedure 1 does not need any knowledge

of such set A.

It is convenient to define t0 = ET(θ0) ∈ RP . Denote by

I :=
{

t ∈ RP : ‖t− t0‖max ≤ anp := C1(k1/2 + s3/2)c̃np

}
, (15)

where C1 is some positive constant and c̃np = p−1/2 log n + n−1/2 log p. For any subset

A ⊂ {1, · · · , p}, let IA be the subspace of I when taking out the coordinates corresponding

to ETA(θ0). Thus IA ⊂ R|A|(2|A|+3). In addition to Conditions 1–5, we need an assumption

on the algorithmic stability of Procedure 1.

Condition 6 (Algorithmic stability) For any subset A ⊂ {1, . . . , p} that satisfies |A| ≤
k ≤ n ∧ p, there exists a positive sequence ρnp → 0 as n ∧ p→∞ such that

sup
|A|≤k

sup
t1,t2∈IA

∣∣SA(t2)4SA(t1)
∣∣

|SA(t1)| ∧ |SA(t2)|
= O(ρnp),

where 4 stands for the symmetric difference between two sets.

Intuitively the above condition assumes that the knockoffs procedure is stable with respect

to a small perturbation to the input t in any lower-dimensional subspace IA. Under these

regularity conditions, the asymptotic FDR control of our IPAD procedure can be established.

Theorem 1 (Robust FDR control) Assume that Conditions 1–6 hold. Fix an arbitrary

positive constant ν. If (s, k, n, p) satisfies s ∨ k ≤ n ∧ p, cnp ≤ c/[r2M2C(ν + 2)]1/2, and

(k1/2 + s3/2)c̃np → 0 as n ∧ p→∞ with c and C some positive constants defined in Lemma

7 in Appendix, then the set of variables Ŝ obtained by Procedure 1 (IPAD) with the LCD

knockoff statistics controls the FDR (3) to be no larger than q +O (ρnp + n−ν + p−ν).

Recall that by definition, the FDR is a function of T(θ̂) and can be written as EFDP(T(θ̂))

while the FDR computed with the oracle knockoffs, EFDP(T(θ0)), is perfectly controlled to

be no larger than q. This observation motivates us to first establish asymptotic equivalence

of T(θ̂) and T(θ0) with large probability. Then a natural idea is to show that EFDP(T(θ̂))
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converges to EFDP(T(θ0)) in probability, which turns out to be highly nontrivial because of

the discontinuity of FDP(·) (the convergence would be straightforward via the Portmanteau

lemma if FDP(·) were continuous). Condition 6 above provides a remedy to this issue by

imposing the algorithmic stability assumption.

3.3 Power analysis

We have established the asymptotic FDR control for our IPAD procedure in Section 3.2. We

now look at the other side of the coin – the power (5). Recall that in IPAD, we apply the

knockoffs inference procedure to the knockoff statistics LCD, which are constructed using

the augmented Lasso in (11). Therefore the final set of variables selected by IPAD is a subset

of variables picked by the augmented Lasso. For this reason, the power of IPAD is always

upper bounded by that of Lasso. We will show in this section that there is in fact no power

loss relative to the augmented Lasso in the asymptotic sense.

Condition 7 (Signal strength I) For any subset A ⊂ S0 that satisfies |A|/s > 1− γ for

some γ ∈ (0, 1], it holds that ‖βA‖1 > bnpsn
−1/2 log p for some positive sequence bnp →∞.

Condition 8 (Signal strength II) There exists some constant C2 ∈ (2(qs)−1, 1) such that

|S2| ≥ C2s with S2 = {j : |βj | � (s/n)1/2 log p}.

Condition 7 requires that the overall signal is not too weak, but is weaker than the

conventional beta-min condition minj∈S0 |βj | � n−1/2 log p. Under Condition 8, we can show

that |Ŝ| ≥ C2s with probability at least 1−O(p−ν + n−ν) using similar techniques to those

of Lemma 6 in [26]. The intuition is that given s→∞, for a variable selection procedure to

have high power it should select at least a reasonably large number of variables. The result

|Ŝ| ≥ C2s will be used to derive the asymptotic order of threshold T , which is in turn crucial

to establish the theorem below on power.

Theorem 2 (Power guarantee) Assume that Conditions 1–5 and 7–8 hold. Fix an arbi-

trary positive constant ν. If (s, k, n, p) satisfies 2s ≤ k ≤ n ∧ p, cnp ≤ c/(r2M2C(ν + 2))1/2,

and sk1/2c̃np → 0 as n ∧ p→∞ with c and C some positive constants defined in Lemma 7,

then both the Lasso procedure based on (X,y) and our IPAD procedure (Procedure 1) have

power bounded from below by γ − o(1) as n ∧ p → ∞. In particular, if γ = 1 IPAD has no

power loss compared to Lasso asymptotically.

4 Simulation studies

We have shown in Section 3 that IPAD can asymptotically control the FDR in high-dimensional

setting and there can be no power loss in applying the procedure. We next move on to nu-

merically investigate the finite-sample performance of IPAD using synthetic data sets. We

will compare IPAD with the knockoff filter in [4] (BCKnockoff) and the high-dimensional

knockoff filter in [5] (HD-BCKnockoff). In what follows, we will first explain in detail the

model setups and simulation settings, then discuss the implementation of the aforementioned

methods, and finally summarize the comparison results.
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4.1 Simulation designs and settings

In all simulations, the design matrix X ∈ Rn×p is generated from the factor model

X = F0(Λ0)′ +
√
rθE = C0 +

√
rθE, (16)

where F0 = (f0
1 , · · · , f0

n)′ ∈ Rn×r is the matrix of latent factors, Λ0 = (λ0
1, . . . ,λ

0
p)
′ ∈ Rp×r

is the matrix of factor loadings, E ∈ Rn×p is the matrix of model errors, and θ is a constant

controlling the signal-to-noise ratio. The term
√
r is used to single out the effect of the number

of factors in calculating the signal-to-noise ratio in factor model (16). We then rescale each

column of X to have `2-norm one and simulate the response vector y = (y1, · · · , yn)′ from

the following model

yi = f(xi) +
√
cεi, i = 1, · · · , n, (17)

where f : Rp → R is the link function which can be linear or nonlinear, c > 0 is a constant

controlling the signal-to-noise ratio, and ε = (ε1, · · · , εn)′ is the vector of model error. We

next explain the four different designs of our simulation studies.

4.1.1 Design 1: linear model with normal factor design matrix

The elements of F0, Λ0, E, and ε are drawn independently from N (0, 1). The link function

takes a linear form, that is,

y = Xβ +
√
cε,

where the coefficient vector β = (β1, · · · , βp)′ ∈ Rp is generated by first choosing s random

locations for the true signals and then setting βj at each location to be either A or −A
randomly with A some positive value. The remaining p− s components of β are set to zero.

4.1.2 Design 2: linear model with fat-tail factor matrix and serial dependence

The elements of E are generated as

eij =

(
ν − 2

χ2
ν,j

)
uij , (18)

where uij ∼ i.i.d. N (0, 1) for all i = 1, · · · , n and j = 1, · · · , p, and χ2
ν,j , j = 1, · · · , p are

i.i.d. random variables from chi-square distribution with ν = 8 degrees of freedom. The

rest of the design is the same as in Design 1. It is worth mentioning that in this case, the

entries of matrix E have fat-tail distribution with serial dependence in each column because

of the common factor χ2
ν,j . This design is used to check the robustness of IPAD method with

respect to the serial dependence and the fat-tail distribution of E.

4.1.3 Design 3: linear model with misspecified design matrix

To evaluate the robustness of IPAD procedure to the misspecification of the factor model

structure (16), we set Λ = 0, rθ = 1 and simulate the rows of matrix E independently from

N (0,Σ) with Σ = (σij), σij = ρ|i−j| for ≤ i, j ≤ p. The remaining design is the same as in
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Design 1. It is seen that our assumption on the independence of the entries of E is violated.

This design is used to test the robustness of IPAD to misspecification of the factor model

structure of X.

4.1.4 Design 4: nonlinear model with normal factor design matrix

Our last design is used to evaluate the performance of IPAD method when the link function

f is nonlinear. To be more specific, we assume the following nonlinear model between the

response and covariates

y = sin(Xβ) exp(Xβ) +
√
cε,

where the coefficient vector β, design matrix X, and model error ε are generated similarly

as in Design 1.

4.1.5 Simulation settings

The target FDR level is set to be q = 0.2 in all simulations. For Design 1 and Design 2, we

set n = 2000, p = 2000, A = 4, s = 50, c = 0.2, r = 3, and θ = 1. In order to evaluate the

sensitivity of our method to the dimensionality p and the model sparsity s, we also explore

the settings of p = 1000, 3000 and s = 100, 150. In Design 3, we set r = 0 and ρ = 0, 0.5.

In Design 4, since the model is nonlinear, we use nonparametric method to fit the model

and consider lower-dimensional settings of p = 50, 250, 500. We also decrease the number of

observations to n = 1000 and number of true variables to s = 10. Moreover, we set θ = 1, 2

and c = 0.1, 0.2, 0.3 to test the effects of signal-to-noise ratio on the performance of IPAD

procedure in Design 4.

4.2 Estimation procedure

In implementing the IPAD algorithm suggested in Section 2, we use the PCp1 criterion

proposed in [3] to estimate the number of factors r. With an estimated number of factors

r̂, we use the principle component method discussed in Section 3.2 to obtain an estimate Ĉ

of matrix C0. Denote by Ê = (êij) = X − Ĉ. Recall that in the construction of knockoff

variables, the distribution of E needs to be estimated. Throughout our simulation studies,

we misspecify the model and treat the entries of E as i.i.d. Gaussian random variables.

Under this working model assumption, the only unknown parameter is the variance which

can be estimated by the following maximum likelihood estimator

σ̂2 = (np)−1
n∑
i=1

p∑
j=1

ê2
ij .

Then the knockoffs matrix X̂ is constructed using (10) with the entries of Eη̂ drawn indepen-

dently from N (0, σ̂2). For the two comparison methods BCKnockoff and HD-BCKnockoff,

we follow the implementation in [4] and [5], respectively. Thus it is seen that neither BC-

Knockoff nor HD-BCKnockoff uses the factor structure in X when constructing the knockoff

variables.
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In Designs 1–3, with the constructed empirical knockoffs matrix X̂ we apply the Lasso

method to fit the model with y the response vector and [X, X̂] the augmented design matrix.

Then the LCD discussed in Section 2.3 is used in the construction of knockoff statistics. In

Design 4, we assume the nonlinear relationship between the response and the covariates. In

this case, random forest is used for estimation of the model. To construct the knockoff statis-

tics, we use the variable importance measure of mean decrease accuracy (MDA) introduced

in [14]. This measure is based on the idea that if a variable is unimportant, then rearranging

its values should not degrade the prediction accuracy. The MDA for the jth variable, de-

noted as M̂DAj , measures the amount of increase in prediction error when the values of the

jth variable in the out-of-sample prediction are permuted randomly. Then intuitively, M̂DAj

will be small and around zero if the jth variable is unimportant in predicting the response.

For each original variable xj , we compute Wj statistic as |M̂DAj | − |M̂DAj+p|, j = 1, · · · , p.

4.3 Simulation results

For each method, we use 100 simulated data sets to calculate its empirical FDR and power,

which are the average FDP and TDP (true discovery proportion as in (5)) over 100 repeti-

tions, respectively. Two different thresholds, knockoff and knockoff+ (T1 and T2 in Result

1, respectively), are used in the knockoffs inference implementation. It is worth mentioning

that as shown in [15] and summarized in Result 1, knockoff+ controls FDR (3) exactly while

knockoff controls only the modified FDR (4).

Tables 1 and 2 summarize the results from Designs 1 and 2, respectively. As shown

in Table 1, all approaches can control empirical FDR at the target level (q = 0.2) and

knockoff+, which is more conservative, reduces power negligibly. It is worth mentioning that

even for Design 2, in which the design matrix X is drawn from fat-tail distribution with

serial dependence, we still have FDR under control with decent level of power. This suggests

that the no serial correlation assumption in our theoretical analysis could just be technical.

Compared to the results by BCKnockoff and HD-BCKnockoff, we see that using the extra

information from the factor structure in constructing knockoff variables can help with both

FDR and power. Table 2 also shows the effects of model sparsity on the performance of

various approaches. It can be seen that when the number of true signals is increased from

50 to 150, the FDR is still under control and the empirical power of IPAD remains steady.

Table 3 is devoted to the case of Design 3, where the rows of matrix X are generated

independently from multivariate normal distribution with AR(1) correlation structure. This

is a setting where the factor model structure in X is misspecified. Since BCknockoff and

HD-BCknockoff make no use of the factor structure in generating knockoff variables, in both

low- and high-dimensional examples both methods control FDR exactly at the target level.

IPAD based methods have empirical FDR slightly over the target level, which may be caused

by the misspecification of the factor structure. On the other hand, IPAD based approaches

have much higher empirical power than comparison methods.

Table 4 corresponds to Design 4 in which response y is related to X nonlinearly. Since

BCKnockoff and HD-BCKnockoff are designed for linear models, only the results from IPAD
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Table 1: Simulation results for Designs 1 and 2 of Section 4.1 with different values of dimensionality p

Design 1 Design 2

FDR Power FDR+ Power+ R2 FDR Power FDR+ Power+ R2

p = 1000

IPAD 0.195 0.991 0.180 0.990 0.659 0.199 0.961 0.180 0.960 0.652

BCKnockoff 0.207 0.942 0.192 0.938 0.659 0.172 0.887 0.152 0.885 0.653

p = 2000

IPAD 0.194 0.979 0.179 0.979 0.649 0.199 0.935 0.183 0.933 0.656

HD-BCKnockoff 0.142 0.706 0.127 0.691 0.649 0.136 0.607 0.113 0.581 0.644

p = 3000

IPAD 0.191 0.964 0.176 0.963 0.652 0.188 0.913 0.171 0.911 0.658

HD-BCKnockoff 0.172 0.668 0.149 0.658 0.652 0.125 0.559 0.099 0.524 0.651

Note that FDR+ and Power+ are the values of FDR and Power corresponding to the knockoff+ threshold

T2.

Table 2: Simulation results for Designs 1 and 2 of Section 4.1 with different sparsity level s

Design 1 Design 2

FDR Power FDR+ Power+ R2 FDR Power FDR+ Power+ R2

s = 50

IPAD 0.194 0.979 0.179 0.979 0.649 0.199 0.935 0.183 0.933 0.656

HD-BCKnockoff 0.142 0.706 0.127 0.691 0.649 0.136 0.607 0.113 0.581 0.644

s = 100

IPAD 0.191 0.978 0.183 0.977 0.783 0.181 0.937 0.174 0.936 0.789

HD-BCKnockoff 0.152 0.703 0.140 0.698 0.787 0.106 0.583 0.097 0.573 0.778

s = 150

IPAD 0.183 0.973 0.178 0.972 0.842 0.188 0.935 0.182 0.935 0.848

HD-BCKnockoff 0.139 0.660 0.130 0.654 0.858 0.115 0.578 0.106 0.570 0.843

Table 3: Simulation results for Design 3 of Section 4.1

ρ = 0 ρ = 0.5

FDR Power FDR+ Power+ R2 FDR Power FDR+ Power+ R2

p = 1000

IPAD 0.204 0.995 0.189 0.995 0.444 0.226 0.984 0.216 0.984 0.446

BCKnockoff 0.188 0.919 0.172 0.917 0.444 0.137 0.827 0.117 0.821 0.445

p = 2000

IPAD 0.203 0.993 0.189 0.993 0.447 0.220 0.982 0.202 0.980 0.445

HD-BCKnockoff 0.151 0.630 0.126 0.603 0.449 0.115 0.522 0.090 0.467 0.442

p = 3000

IPAD 0.225 0.988 0.205 0.987 0.445 0.219 0.979 0.206 0.978 0.443

HD-BCKnockoff 0.150 0.589 0.126 0.560 0.446 0.092 0.439 0.064 0.381 0.447
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method are reported. It can be seen form Table 4 that IPAD approach can control FDR

with reasonably high power even in the nonlinear setting. We also observe that in nonlinear

setting, the power of IPAD deteriorates faster as dimensionality p increases compared to the

linear setting.

Table 4: Simulation results for Design 4 of Section 4.1

θ = 1 θ = 2

FDR Power FDR+ Power+ R2 FDR Power FDR+ Power+ R2

p = 50

c = 0.1 0.109 0.839 0.081 0.720 0.707 0.110 0.943 0.061 0.858 0.707

c = 0.2 0.137 0.847 0.068 0.726 0.547 0.097 0.920 0.061 0.837 0.547

c = 0.3 0.137 0.765 0.091 0.582 0.451 0.123 0.907 0.076 0.774 0.451

p = 250

c = 0.1 0.189 0.740 0.104 0.504 0.702 0.174 0.876 0.139 0.788 0.702

c = 0.2 0.218 0.666 0.131 0.522 0.552 0.209 0.831 0.118 0.660 0.552

c = 0.3 0.200 0.569 0.101 0.361 0.451 0.224 0.766 0.141 0.599 0.451

p = 500

c = 0.1 0.243 0.661 0.169 0.497 0.702 0.223 0.831 0.173 0.740 0.702

c = 0.2 0.204 0.507 0.111 0.266 0.543 0.216 0.749 0.126 0.594 0.543

c = 0.3 0.247 0.478 0.128 0.299 0.451 0.241 0.691 0.156 0.550 0.451

5 Empirical analysis

Our simulation results in Section 4 suggest that IPAD is a powerful approach with asymptotic

FDR control. We further examine the application of IPAD to the quarterly data on 109

macroeconomic variables from the third quarter of year 1960 (1960Q3) to the fourth quarter

of year 2008 (2008Q4) in the United States discussed in [37]. These variables are transformed

by taking logarithms and/or differencing following [37]. Our real data analysis consists of two

parts. In the first part, we focus on the performance of IPAD method in terms of empirical

FDR and power. In the second part, the forecasting performance of IPAD method will be

evaluated.

5.1 Simulation study

To evaluate the performance of IPAD approach in terms of empirical FDR and power with

real economic data, we set up one additional Monte Carlo simulation study. In this design,

we use the transformed macroeconomic variables described above as the design matrix X,

but simulate response y from the model in Design 1 in Section 4.1. We set the number

of true signals, the amplitude of signals, and the target FDR level to s = 10, A = 4, and

q = 0.2, respectively.

Table 5 shows the results for IPAD and HD-BCKnockoff approaches. As expected, HD-

BCKnockoff can control FDR but suffers from lack of power. On the other hand, IPAD has

empirical FDR slightly higher than the target level (q = 0.2) while its power is reasonably

high. These results are consistent with our theory in Section 3 because IPAD only controls
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FDR asymptotically. Additional reason for having slightly higher FDR than the target

level can be deviation of the design matrix from our factor model assumption. Overall

this simulation study indicates that IPAD can control FDR at around the target level with

reasonably high power when we use the macroeconomic data set. In the next section, using

the same data set we will compare the forecasting performance of IPAD with that of some

commonly used forecasting methods in the literature.

Table 5: Real data simulation results with (n, p) = (195, 109)

FDR Power FDR+ Power+ R2

c = 0.2

IPAD 0.278 0.812 0.223 0.796 0.747

HD-BCKnockoff 0.096 0.009 0.010 0.002 0.758

c = 0.3

IPAD 0.280 0.757 0.221 0.723 0.665

HD-BCKnockoff 0.149 0.121 0.027 0.036 0.678

c = 0.5

IPAD 0.286 0.661 0.215 0.571 0.560

HD-BCKnockoff 0.119 0.009 0.008 0.001 0.554

5.2 Forecasting results

In this section, we apply the IPAD approach to the real economic data set for forecasting.

One-step ahead prediction is conducted using rolling window of size 120. More specifically,

one of the 109 variables is chosen as the response and the remaining 108 variables are treated

as predictors. For each quarter between 1990Q3 and 2008Q4, we use the previous 120 periods

for model fitting and then one-step ahead prediction is conducted based on the fitted model.

We compare the following different methods, where each method is implemented in a same

way as IPAD for one-step ahead prediction.

1) Autoregression of order one (AR(1)). Assume that

yt = α0 + ρyt−1 + εt,

where yt is regressed on yt−1, and α0 and ρ are the AR(1) coefficients that need to

be estimated. With the ordinary least squares estimates α̂0 and ρ̂, the one-step ahead

prediction based on this model is ŷT+1 = α̂0 + ρ̂yT .

2) Factor augmented AR(1) (FAR). We first extract m factors f1, · · · , fm form the 109

transformed macroeconomic variables by principal component analysis (PCA). Denote

by f̃t ∈ Rm the factor vector at time t extracted from the rows of matrix [f1, · · · , fm] ∈
Rn×m. Then we regress yt on yt−1 and f̃t−1 and fit the following model

yt = α0 + ρyt−1 + γ ′f̃t−1 + εt
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with γ ∈ Rm. The number of factors m is determined using the PCp1 criterion in [3].

Similar to AR(1) model, one-step ahead forecast of yt at time T is

ŷT+1 = α̂0 + ρ̂yT + γ̂ ′f̃T .

3) Lasso method. The yt is regressed on yt−1, f̃t−1, and the 108 transformed macroeco-

nomic variables zt−1 ∈ R108 at time t− 1

yt = α0 + ρyt−1 + γ ′f̃t−1 + δ′zt−1 + εt,

where f̃t is the same as in the FAR(1) model, and α0, ρ, and δ ∈ R108 are regression

coefficients that need to be estimated. The coefficients are estimated by Lasso method

with regularization parameter chosen by the cross-validation. With the estimated Lasso

coefficient vector β̂Lasso, one-step ahead forecast of yt at time T is

ŷT+1 = β̂′LassoxT ,

where xT is the augmented predictor vector at time T .

4) IPAD method. We regress yt on the augmented vector (yt−1, z
′
t−1)′. The lagged variable

yt−1 is assumed to be always in the model. To account for this, we implement IPAD

in three steps. First, we regress yt on yt−1 and obtain the residuals ey,t. Second, we

regress each of the 108 variables in zt−1 on yt−1 and obtain the residual vector ez,t−1.

At last, we fit model (1)–(2) using the IPAD approach by treating ey,t as the response

and ez,t−1 as predictors, which returns us a set of selected variables (a subset of the

108 macroeconomic variables). With the set of variables Ŝ selected by IPAD, we fit

the following model by the least-squares regression

yt = α0 + ρyt−1 + δ′z
t−1,Ŝ + εt, (19)

where z
t,Ŝ stands for the subvector of zt corresponding to the set of variables Ŝ selected

by IPAD at time t. Since Ŝ from IPAD is random due to the randomness in generating

knockoff variables, we apply the IPAD procedure 100 times and compute the average

of these 100 one-step ahead predictions based on (19) and use the mean value as the

final predicted value of yT+1.

Table 6 shows the root mean-squared prediction error (RMSE) of these methods. As can

be seen, the RMSE of IPAD is very close to those of comparison methods. To statistically

compare the relative prediction accuracy of IPAD versus other approaches, we have used the

Diebold–Mariano test [21], where the square of one-step ahead prediction error is used as

the loss function. Table 7 reports the test results. The results indicate that one-step ahead

prediction accuracy of IPAD is comparable to other approaches.

It is worth mentioning that one main advantage of IPAD is its interpretability and sta-

bility. Using IPAD for forecasting, we not only enjoy the same level of accuracy as other

methods but also obtain the information on variable importance with stability. Recall that
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Table 6: Root mean-squared error of one-period ahead forecast of various macroeconomic variables

AR FAR Lasso IPAD

RGDP 2.245 1.929 2.070 2.106

CPI-ALL 1.526 1.552 1.579 1.571

Imports 7.549 5.871 6.595 6.993

IP: cons dble 9.683 8.353 8.424 9.175

Emp: TTU 1.112 0.989 1.167 1.100

U: mean duration 0.573 0.487 0.502 0.494

HStarts: South 0.074 0.071 0.076 0.074

NAPM new ordrs 4.800 4.378 4.659 4.673

PCED-NDUR-ENERGY 31.927 32.121 33.546 32.164

Emp. Hours 2.102 1.899 2.080 1.944

FedFunds 0.421 0.396 0.406 0.392

Cons credit 2.573 2.537 2.648 2.580

EX rate: Canada 10.132 10.139 10.122 10.113

DJIA 23.117 23.997 24.585 23.398

Consumer expect 6.496 6.888 6.681 6.661

Table 7: Diebold–Mariano test for comparing prediction accuracy of IPAD against other procedures

IPAD vs. AR IPAD vs. FAR IPAD vs. Lasso

RGDP -0.780 1.160 0.462

CPI-ALL 0.521 0.394 -0.218

Imports -0.976 2.631∗∗ 1.464

IP: cons dble -1.026 1.567 2.487∗

Emp: TTU -0.140 1.692 -1.845

U: mean duration -3.383∗∗∗ 0.672 -0.505

HStarts: South 0.096 0.821 -0.766

NAPM new ordrs -0.517 1.814 0.076

PCED-NDUR-ENERGY 0.753 0.049 -1.759

Emp. Hours -1.200 0.297 -2.063∗

FedFunds -0.971 -0.134 -0.625

Cons credit 0.207 0.359 -0.661

EX rate: Canada -0.466 -0.138 -0.037

DJIA 0.585 -0.959 -1.428

Consumer expect 1.212 -1.038 -0.277
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for each one-step ahead prediction, we apply IPAD 100 times and obtain 100 sets of selected

variables. Thus we can calculate the selection frequency of each variable in each one-step

ahead prediction. Figure 1 depicts the frequencies of top five selected variables in predicting

real GDP growth before and after year 2000, where the variable importance is ranked accord-

ing to the aggregated frequencies over the entire time period before or after 2000. We have

experimented with different cutoff years around year 2000, and the top five ranked variables

stay the same so only the results corresponding to cutoff year 2000 are reported. Changes

in index of help wanted advertising in newspapers, percentages of changes in real personal

consumption of services, and percentage of changes in real gross private domestic investment

in residential sector were the top three important variables in predicting real GDP growth

during the whole period. It is interesting to see that percentage of changes in residential

price index was among top five important variables in predicting GDP growth during the

90s, and then starting from year 2000 it was replaced by changes in index of consumer expec-

tations about stability of economy. Moreover, it is also seen that the percentage of changes

in industrial production of fuels was of great importance for predicting real GDP growth

during some periods but not the others.

As a comparison, it is very difficult to interpret the results of FAR. As for Lasso based

method, there is no theoretical guarantee on FDR control and in addition, Lasso usually

gives us models with much larger size. For instance, in predicting real GDP growth, IPAD on

average selects 5.42 macroeconomic variables while Lasso on average selects 13.32 variables.

To summarize, our real data analysis indicates that IPAD is an applicable approach for

controlling FDR with competitive prediction power and high interpretability and stability.

6 Discussions

We have suggested in this paper a new procedure IPAD for feature selection in high-

dimensional linear models that achieves asymptotic FDR control while retaining high power.

Our model setting involves a latent factor model that is motivated by applications in eco-

nomics and finance. Our method falls in the general model-X knockoffs framework in [15],

but allows the unknown covariate distribution for the knockoff variable construction. With

the LCD knockoff statistics, we have shown that the FDR of IPAD can be asymptotically un-

der control while the power can be asymptotically the same as that of Lasso. Our simulation

study and empirical analysis also suggest that IPAD has highly competitively performance

compared to many widely used forecasting methods such as Lasso and FAR, but with much

higher interpretability and stability.

Our work has focused on the scenario of static models. It would be interesting to extend

the IPAD procedure to high-dimensional dynamic models with time series data. It is also

interesting to consider nonlinear models and more flexible machine learning methods for

forecasting as well as more refined factor model structures on the covariates for the knockoffs

inference with IPAD, and develop theoretical guarantees for the IPAD framework in these

more general model settings. These extensions are beyond the scope of the current paper

and are interesting topics for future research.
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(a) 1990-1999

(b) 2000-2008

Figure 1: Frequencies of top selected variables in predicting real GDP growth. The set of

selected variables are index of help-wanted advertising in newspapers (Help wanted indx),

real personal consumption expenditures - services (Cons-Serv), real gross private domestic

investment - residential (Res.Inv), residential price index (PFI-RES), industrial production

index - fuels (IP:fuels), and University of Michigan index of consumer expectations (Con-

sumer expect).
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Appendix

This appendix contains all the proofs and technical details for the theoretical results of

the paper. In particular, Section A details the proofs of Lemmas 1–2 and Theorems 1–2,

Section B presents some key lemmas and their proofs, and Section C provides some additional

technical lemmas and their proofs.

To ease the technical presentation, let us introduce some notation. We denote by .

the inequality up to some positive constant factor. Restricting the columns of X and X̃(θ̂)

to the variables in index set A such that |A| ≤ k, we obtain the n × k submatrices XA

and X̃A(θ̂), respectively. Moreover, we define TA(θ̂) := vec(vech UA(θ̂),vA(θ̂)) ∈ Rk(2k+3)

with UA(θ̂) the principle submatrix of U(θ̂) formed by columns and rows in set A, and

vA(θ̂) the subvector of v(θ̂) formed by components in set A. Then it is easy to see that

UA(θ̂) = n−1[XA, X̃A(θ̂)]′[XA, X̃A(θ̂)] and vA(θ̂) = n−1[XA, X̃A(θ̂)]′y. For the oracle

factor loading matrix Λ0, with a slight abuse of notation we use Λ0
A to denote the row

restricted to the variables in A for notational convenience. Recall that ν > 0 is a fixed

positive number, cnp = (p−1 log n)1/2 +(n−1 log p)1/2, and c̃np = p−1/2 log n+n−1/2 log p. We

define πnp = n−ν + p−ν . Since λ is fixed at C0n
−1/2 log p, in all the proofs we will drop the

dependence of various quantities on λ whenever there is no confusion.

A Proofs of main results

A.1 Proof of Lemma 1

For λ fixed at C0n
−1/2 log p and each given θ, Wj(θ) = wj([X, X̃(θ)],y) depends only on

β̂aug(θ) by the LCD construction. Moreover, the Lasso solution β̂aug(θ) satisfies the Karush–

Kuhn–Tucker (KKT) conditions:

v(θ)−U(θ)β̂aug(θ) = n−1λz, (A.1)

where z = (z1, · · · , z2p)
T with zj ∈

{sgn(β̂j)} if β̂j 6= 0,

[−1, 1] if β̂j = 0,
for j = 1, . . . , 2p. (A.2)

This means that β̂aug(θ) depends on the data ([X, X̃(θ)],y)) only through U(θ) and v(θ).

Thus using notation T(θ) = vec(vech U(θ),v(θ)) with the fact that U(θ) is symmetric,

we can reparametrize wj([X, X̃(θ)],y) as wj(T(θ)) with a slight abuse of notation. Fur-

thermore, note that the thresholds T1 and T2 are both completely determined by wj(T(θ)).

Consequently, by the construction of Ŝ we can see that Ŝ depends only on T(θ), which

completes the proof of Lemma 1.

A.2 Proof of Lemma 2

We continue to use the same λ and θ as in Lemma 1 and its proof. Recall that SA(tA)

represents the outcome of first restricting ourselves to the smaller set of variables A and
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then applying IPAD to TA(θ) = tA to further select variables from A. Also recall that

A∗(θ) is the support of knockoff statistics Wj(θ). Thus the knockoff threshold T1 or T2

depends only on Wj(θ) with j ∈ A∗(θ).

On the other hand, when we restrict ourselves to A ⊃ A∗(θ) we solve the following KKT

conditions with respect to β̃ := (β̃1, · · · , β̃2|A|)
T ∈ R2|A| to get the Lasso solution:

β̃ = (UA(θ)′UA(θ))−1(vA(θ)− n−1λz̃), (A.3)

where z̃ = (z̃1, · · · , z̃2|A|)
T with z̃j ∈

{sgn(β̃j)} if β̃j 6= 0,

[−1, 1] if β̃j = 0,
for j = 1, . . . , 2|A|. (A.4)

Since λ is always fixed at the same value C0n
−1/2 log p, it is seen that the solution to the

above KKT conditions is identical to β̂aug
AA(θ), where the latter denotes the subvector of

β̂aug(θ) formed by stacking β̂augj1
(θ), j1 ∈ A and β̂augp+j2

(θ), j2 ∈ A all together. Therefore,

the Lasso solution to (A.3)–(A.4) and the Lasso solution to (A.1)–(A.2) have the identical

support (when viewed in the original 2p-dimensional space) and in addition, identical values

on the support. This guarantees that S{1,...,p}(T(θ)) and SA(TA(θ)) are identical and thus

concludes the proof of Lemma 2.

A.3 Proof of Theorem 1

Recall that for a given θ, A∗(θ) is the support of knockoff statistics (W1(θ), · · · ,Wp(θ))′.

Define set

Â(θ̂) := A∗(θ̂) ∪ A∗(θ0).

It follows from (14) that the cardinality of Â(θ̂) is bounded by k. Hereafter we write Â(θ̂)

as Â for notational simplicity.

By Lemmas 1–2 and the definition of the FDP, we know that S{1,...,p}(T(θ̂)) = SÂ(TÂ(θ̂))

and thus the resulting FDR’s are the same. Therefore, we can restrict ourselves to the smaller

model Â when studying the FDR of IPAD. The same arguments as above also hold for the

oracle knockoffs; that is, the FDR of IPAD applied to T(θ0) is the same as that applied

to TÂ(θ0). Note that all the FDR’s we discuss here are with respect to the full model

{1, · · · , p}. For this reason, in what follows we will abuse the notation and use FDRÂ(TÂ(θ̂))

and FDRÂ(TÂ(θ0)) to denote the FDR of IPAD based on TÂ(θ) and TÂ(θ0), respectively.

We want to emphasize that although we put a subscript Â in FDR’s, their values are still

deterministic as argued above. Summarizing the facts, we obtain

FDRÂ(TÂ(θ̂)) = FDR{1,··· ,p}(T(θ̂)),

FDRÂ(TÂ(θ0)) = FDR{1,··· ,p}(T(θ0)).

Meanwhile, by construction X̃(θ0) satisfies the two properties in Definition 1 and is a

valid model-X knockoffs matrix. Therefore, for any value of the regularization parameter,

the LCD statistics Wj(θ
0) based on ([X, X̃(θ0)],y) together with Result 1 ensure the exact
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FDR control at some target level q ∈ (0, 1). Summarizing this, we obtain that the FDR of

IPAD applied to T(θ0) is controlled at target level q.

Combining the arguments in the previous two paragraphs, we deduce

FDRÂ(TÂ(θ0)) = FDR{1,··· ,p}(T(θ0)) ≤ q.

Thus the desired results follow automatically if we can prove that FDRÂ(TÂ(θ̂)) is asymp-

totically close to FDRÂ(TÂ(θ0)). We next proceed to prove it.

Recall the definitions of I and IA as in (15). Define the event

Enp =
{

TÂ(θ̂) ∈ IÂ
}
∩
{
TÂ(θ0) ∈ IÂ

}
.

Lemma 3 in Section B.1 establishes θ̂ ∈ Θnp with probability at least 1 − O(πnp) and

θ0 ∈ Θnp. Hence, Lemma 4 in Section B.2 guarantees that

P
(
Ecnp
)
≤ 2P

(
sup

|A|≤k,θ∈Θnp

∥∥TA(θ)− E[TA(θ0)]
∥∥

max
> anp

)
= O(πnp), (A.5)

where anp = C1(k1/2 + s3/2)c̃np for some constant C1 > 0.

For a given deterministic set A ⊂ {1, · · · , p}, let FDPA(·) be the FDP function corre-

sponding to FDRA(·). By the definition of FDP function, we have for any t1, t2 ∈ R|A|(2|A|+3),

FDPA(t2)− FDPA(t1) =
|S1 ∩ SA(t2)|
|SA(t2)|

− |S
1 ∩ SA(t1)|
|SA(t1)|

=
|S1 ∩ SA(t2)| · (|SA(t1)| − |SA(t2)|)

|SA(t1)| · |SA(t2)|
+
|S1 ∩ SA(t2)| − |S1 ∩ SA(t1)|

|SA(t1)|
.

Further, note that

|S1 ∩ SA(t2)|/|SA(t2)| ≤ 1, ||SA(t2)| − |SA(t1)|| ≤ |SA(t2)4SA(t1)| ,∣∣|S1 ∩ SA(t2)| − |S1 ∩ SA(t1)|
∣∣ ≤ ∣∣{SA(t2)4SA(t1)} ∩ S1

∣∣ .
Combining the results above yields

|FDPA(t1)− FDPA(t2)|

≤
∣∣|SA(t1)| − |SA(t2)|

∣∣
|SA(t1)|

+

∣∣{SA(t2)4SA(t1)} ∩ S1
∣∣

|SA(t1)|
≤ 2

∣∣SA(t2)4SA(t1)
∣∣

|SA(t1)|
.

Similarly we have

|FDPA(t1)− FDPA(t2)| ≤ 2

∣∣SA(t2)4SA(t1)
∣∣

|SA(t2)|
.

Thus it holds that

sup
|A|≤k

sup
t1,t2∈IA

|FDPA(t1)− FDPA(t2)| ≤ sup
|A|≤k

sup
t1,t2∈IA

∣∣SA(t2)4SA(t1)
∣∣

|SA(t1)| ∧ |SA(t2)|

= O(ρnp), (A.6)
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where the last two steps are due to Condition 6. Therefore, (A.5) and (A.6) together with

the fact that FDP(·) ∈ [0, 1] entail that∣∣∣FDRÂ(TÂ(θ̂))− FDRÂ(TÂ(θ0))
∣∣∣ =

∣∣∣EFDPÂ(TÂ(θ̂))− EFDPÂ(TÂ(θ0))
∣∣∣

≤ E
∣∣∣FDPÂ(TÂ(θ̂))− FDPÂ(TÂ(θ0))

∣∣∣
≤ E

[∣∣∣FDPÂ(TÂ(θ̂))− FDPÂ(TÂ(θ0))
∣∣∣ | Enp]P (Enp) + 2P

(
Ecnp
)

≤ sup
|A|≤k

sup
t1,t2∈IA

|FDPA(t1)− FDPA(t2)|+O(πnp)

= O(ρnp) +O(πnp).

This completes the proof of Theorem 1.

A.4 Proof of Theorem 2

By the definition of the LCD statistics, we construct the augmented Lasso estimator for each

θ ∈ Θnp, which is defined as

β̂aug(θ) = arg min
b∈R2p

∥∥∥y − [X, X̃(θ)]b
∥∥∥2

2
+ λ‖b‖1. (A.7)

The Lasso estimator of regressing y on only X is also given by

β̂ = arg min
b∈Rp

‖y −Xb‖22 + λ‖b‖1, (A.8)

where λ = O(n−1/2 log p). According to the true model S0, the underlying true param-

eter vector corresponding to β̂aug(θ) should be given by βaug := (β′,0′)′ ∈ R2p with

β = (β′S0 ,0
′)′ ∈ Rp and |S0| = s for any θ ∈ Θnp. By Lemma 5 in Section B.3, with

probability at least 1−O(πnp) the Lasso estimators satisfy

sup
θ∈Θnp

∥∥∥β̂aug(θ)− βaug
∥∥∥

1
= O(sλ),∥∥∥β̂ − β∥∥∥

1
= O(sλ),

where λ = O(n−1/2 log p).

We now prove that under Condition 7, the power of the augmented Lasso (A.7) is bounded

from below by γ ∈ [0, 1]; that is,

E
∣∣∣Ŝauglasso ∩ S0

∣∣∣ /s ≥ γ, (A.9)

where Ŝauglasso = {j : β̂augj (θ) 6= 0}. To this end, we first show that with asymptotic

probability one,

|Ŝcauglasso ∩ S0|/s ≤ 1− γ. (A.10)
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The key is to use proof by contradiction. Suppose |Ŝcauglasso ∩ S0|/s > 1 − γ. Then we can

see that

sup
θ∈Θnp

∥∥∥β̂aug(θ)− βaug
∥∥∥

1
≥ sup

θ∈Θnp

∥∥∥∥β̂aug

Ŝcauglasso
(θ)− βaug

Ŝcauglasso

∥∥∥∥
1

=

∥∥∥∥βaug

Ŝcauglasso

∥∥∥∥
1

≥
∥∥∥∥βaug

Ŝcauglasso∩S0

∥∥∥∥
1

> bnpsn
−1/2 log p,

where the last step is by Condition 7. However, by Lemma 5 with probability at least

1−O(πnp), the left hand side above is bounded from above by O(sλ) with λ = O(n−1/2 log p).

These two results contradict with each other since bnp → ∞. Hence (A.10) is proved.

Therefore, the result in (A.9) follows immediately since |Ŝauglasso ∩ S0| = s− |Ŝcauglasso ∩ S0|
and

E
∣∣∣Ŝauglasso ∩ S0

∣∣∣ /s ≥ γ P(|Ŝauglasso ∩ S0|/s > γ
)

= γ P
(
|Ŝcauglasso ∩ S0|/s ≤ 1− γ

)
= γ(1−O(πnp)).

Using the same argument, we can show that the power of the Lasso (A.8) is also bounded

from below by γ(1−O(πnp)) under Condition 7. That is, we have

E
∣∣∣Ŝlasso ∩ S0

∣∣∣ /s ≥ γ(1−O(πnp)),

where Ŝlasso = {j : β̂j 6= 0}.
Next we show that our knockoffs procedure has at least the same power as the augmented

Lasso and hence the Lasso itself. Namely, we prove

E
∣∣∣Ŝ ∩ S0

∣∣∣ /s ≥ γ (A.11)

with threshold T2. Note that the same argument is still valid for T1. Let |W(1)| ≥ · · · ≥ |W(p)|
and define j∗ as |W(j∗)| = T2. Then by the definition of T2, it holds that −T2 < Wj∗+1 ≤ 0.

Here we have assumed that there are no ties on the magnitudes of Wj ’s which should be a

reasonable assumption considering the continuity of the Lasso solution. As in the proof of

Theorem 3 in [26], it is sufficient to consider the following two cases.

Case 1. Consider the case of −T2 < W(j∗+1) < 0. In this case, from the definition of

threshold T2 we have
2 + |{j : W(j) ≤ −T2}|
|{j : W(j) ≥ T2}|

> q.

Using the same argument as in Lemma 6 of [26] together with Lemma 5, we can prove from

Condition 8 that |Ŝ| ≥ C2s with probability at least 1− O(πnp). This leads to |{j : W(j) ≤
−T2}| > C2qs− 2 with the same probability. Now from the same argument as in A.5 of [26],
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we can obtain T2 = O(λ). On the other hand, Lemma 5 and some algebra establish that

O(sλ) = ‖β̂aug(θ̂)− βaug‖1 =

p∑
j=1

|β̂augj (θ̂)− βj |+
p∑
j=1

|β̂augj+p(θ̂)|

=
∑

j∈Ŝ∩S0
|β̂augj (θ̂)− βj |+

∑
j∈S1
|β̂augj (θ̂)|

+
∑

j∈Ŝc∩S0
|β̂augj (θ̂)− βj |+

p∑
j=1

|β̂augj+p(θ̂)|. (A.12)

We then consider the lower bound of the last term in (A.12). For any j ∈ Ŝc, it holds that

|β̂augj+p(θ̂)| > |β̂augj (θ̂)| − T2. Hence we obtain

p∑
j=1

|β̂augj+p(θ̂)| ≥
∑

j∈Ŝ∩S0
|β̂augj+p(θ̂)|+

∑
j∈Ŝc∩S0

|β̂augj+p(θ̂)|

≥
∑

j∈Ŝ∩S0
|β̂augj+p(θ̂)|+

∑
j∈Ŝc∩S0

|β̂augj (θ̂)| − T2|Ŝc ∩ S0|. (A.13)

Plugging (A.13) into (A.12) and applying the triangle inequality yield

O(sλ) ≥
∑

j∈Ŝ∩S0
|β̂augj (θ̂)− βj |+

∑
j∈S1
|β̂augj (θ̂)|+

∑
j∈Ŝc∩S0

|β̂augj (θ̂)− βj |

+
∑

j∈Ŝ∩S0
|β̂augj+p(θ̂)|+

∑
j∈Ŝc∩S0

|β̂augj (θ̂)| − T2|Ŝc ∩ S0|

≥
∑

j∈Ŝ∩S0
|β̂augj (θ̂)− βj |+

∑
j∈S1
|β̂augj (θ̂)|

+
∑

j∈Ŝc∩S0
|βj |+

∑
j∈Ŝ∩S0

|β̂augj+p(θ̂)| − T2|Ŝc ∩ S0|

≥
∑

j∈Ŝc∩S0
|βj | − T2|Ŝc ∩ S0| = ‖βŜc∩S0‖1 − T2|Ŝc ∩ S0|.

Since T2|Ŝc∩S0| = O(sλ) for λ = O(n−1/2 log p) due to the discussion above, we consequently

obtain

‖βŜc∩S0‖1 = O(sn−1/2 log p). (A.14)

Suppose |Ŝc ∩ S0|/s > 1− γ. Then Condition 7 gives ‖βŜc∩S0‖1 > bnpsn
−1/2 log p for some

positive diverging sequence bnp; this contradicts with (A.14). Thus we obtain |Ŝc ∩ S0|/s ≤
1− γ with asymptotic probability one, which leads to (A.11) by taking expectation.

Case 2. Consider the case of W(j∗+1) = 0. In this case, by the definition of threshold T2

1 + |{j : W(j) < 0}|
|{j : W(j) > 0}|

≤ q. (A.15)

If |{j : W(j) < 0}| > C3s for some constant C3 > 0, then from the same argument as in A.5

of [26], we can obtain T2 = O(λ), and the rest of the proof is the same as in Case 1. On the
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other hand, if |{j : W(j) < 0}| ≤ o(s) we have

|{j : W(j) 6= 0} ∩ S0| = |{j : W(j) > 0} ∩ S0|+ |{j : W(j) < 0} ∩ S0|

≤ |Ŝ ∩ S0|+ o(s).

Now note that |{j : W(j) 6= 0}| ≥ |{j : |β̂augj | 6= 0, j = 1, · · · , p}|. Then we can see that with

asymptotic probability one,

|{j : W(j) 6= 0} ∩ S0| ≥ |{j : β̂augj 6= 0, j = 1, · · · , p} ∩ S0|

= |Ŝauglasso ∩ S0|.

≥ γs(1− o(1)).

Consequently, we obtain |Ŝ∩S0|/s ≥ γ(1−o(1)), which leads to (A.11) by taking expectation.

Combining these two cases concludes the proof of Theorem 2.

B Some key lemmas and their proofs

B.1 Lemma 3 and its proof

Lemma 3 Assume that Conditions 2–5 hold. Then with probability at least 1−O(πnp), the

estimator θ̂ = (vec(Ĉ)′, η̂′)′ lies in the shrinking set given by

Θnp =
{
θ = (vec(C)′,η′)′ :

∥∥C−C0
∥∥

max
+
∥∥η − η0

∥∥
max
≤ O(cnp)

}
,

where cnp = (n−1 log p)1/2 + (p−1 log n)1/2 and πnp = p−ν + n−ν .

Proof. We divide the proof into two parts. We prove the bound for ‖Ĉ−C0‖max in Part 1

and then for ‖η̂ − η0‖max in Part 2.

Part 1. Note that ‖Ĉ −C0‖max = maxi,j |ĉij − c0
ij |, where the maximum is taken over

i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. We write f∗i = H′f0
i and λ∗j = H−1λ0

j with rotation matrix

H defined in Lemma 6 in Section C.1. From the definition of cij , it holds that

ĉij − c0
ij = (f̂i − f∗i )′λ∗j + f̂ ′i(λ̂j − λ∗j ).

From Lemma 6, we can assume ‖H‖2 + ‖H−1‖2 + ‖V‖2 + ‖V−1‖2 . 1, which occurs with

probability at least 1 − O(p−ν). We also have maxi∈{1,...,n} ‖f̂i‖22 . 1 a.s. by the assumed

restriction F̂′F̂/n = Ir as mentioned on p.213 of [3]. Hence, the triangle and Cauchy–Schwarz

inequalities with Conditions 2 and 3 give

max
i,j
|ĉij − cij | ≤ max

i
‖f̂i − f∗i ‖2 max

j
‖λ∗j‖2 + max

i
‖f̂i‖2 max

j
‖λ̂j − λ∗j‖2

. max
i
‖f̂i − f∗i ‖2 + max

j
‖λ̂j − λ∗j‖2. (B.1)

Then it is sufficient to derive upper bounds for maxi ‖f̂i−f∗i ‖2 and maxj ‖λ̂j−λ∗j‖2 that hold

with high probability. Using the decomposition of A.1 in [2] along with taking maximum
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over i, ` ∈ {1, . . . , n}, we can deduce

max
i
‖f̂i − f∗i ‖2

≤ ‖V−1‖2 max
i

(σ2
e/n)‖f̂i‖2 + n−1

n∑
`=1

‖f̂`‖2

∣∣∣∣∣∣p−1
p∑
j=1

(e`jeij − E[e`jeij ])

∣∣∣∣∣∣
+ n−1

n∑
`=1

‖f̂`f0
`
′‖2

∥∥∥∥∥∥p−1
p∑
j=1

λ0
jeij

∥∥∥∥∥∥
2

+ n−1
n∑
`=1

‖f̂`f0
i
′‖2

∥∥∥∥∥∥p−1
p∑
j=1

λ0
je`j

∥∥∥∥∥∥
2


. O(n−1) + max

i,`

∣∣∣∣∣∣p−1
p∑
j=1

(e`jeij − E[e`jeij ])

∣∣∣∣∣∣+ max
i

∥∥∥∥∥∥p−1
p∑
j=1

λ0
jeij

∥∥∥∥∥∥
2

. O(n−1) +R1 +R2, (B.2)

where we have used the boundedness of ‖f̂`‖2 discussed above and ‖f0
` ‖2 ≤ r1/2‖f0

` ‖max . 1 in

Condition 2 for the second inequality, and defined R1 = maxi,`

∣∣∣p−1
∑p

j=1 (e`jeij − E[e`jeij ])
∣∣∣

and R2 = maxi,k

∣∣∣p−1
∑p

j=1 λ
0
jkeij

∣∣∣. Similarly, the expression on p.165 of [2] with taking

maximum over i ∈ {1, . . . , n} and j ∈ {1, . . . , p} leads to

max
j
‖λ̂j − λ∗j‖2

≤ ‖H‖2 max
j

∥∥∥∥∥n−1
n∑
i=1

f0
i eij

∥∥∥∥∥
2

+

∥∥∥∥∥n−1
n∑
i=1

f̂i(f̂i − f∗i )′

∥∥∥∥∥
2

∥∥H−1
∥∥

2
max
j

∥∥λ0
j

∥∥
2

+ max
j

∥∥∥∥∥n−1
n∑
i=1

(f̂i − f∗i )eij

∥∥∥∥∥
2

. max
j

∥∥∥∥∥n−1
n∑
i=1

f0
i eij

∥∥∥∥∥
2

+ max
i

∥∥∥f̂i − f∗i

∥∥∥
2

+ max
i

∥∥∥f̂i − f∗i

∥∥∥
2

max
j

(
n−1

n∑
i=1

e2
ij

)1/2

= R3 + max
i
‖f̂i − f∗i ‖2(1 +R4), (B.3)

where R3 = maxj,k
∣∣n−1

∑n
i=1 f

0
ikeij

∣∣
2

and R4 = maxj

(
n−1

∑n
i=1 e

2
ij

)1/2
, and the Cauchy–

Schwarz inequality has been used to obtain the second inequality. To evaluate R4, we note

that

R2
4 ≤ max

j
E e2

ij + max
j

∣∣∣∣∣n−1
n∑
i=1

(
e2
ij − E e2

ij

)∣∣∣∣∣ .
The first term is bounded by 2C2

e . For the second term, Lemma 7(a) in Section C.2 with p

replaced by n and the union bound give

P

(
max
j

∣∣∣∣∣n−1
n∑
i=1

(
e2
ij − E e2

ij

)∣∣∣∣∣ > u

)
≤ pmax

j
P

(∣∣∣∣∣n−1
n∑
i=1

(
e2
ij − E e2

ij

)∣∣∣∣∣ > u

)
≤ 2p exp(−nu2/C)

for all 0 ≤ u ≤ c. Thus putting u = (C(ν + 1)n−1 log p)1/2 and using condition cnp ≤
c/(r2M2C(ν + 2))1/2, we obtain R2

4 = O(1) + O((n−1 log p)1/2) = O(1) with probability at
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least 1−O(p−ν). This together with the observation from (B.1)–(B.3) yields

max
i,j
|ĉij − c0

ij | . R3 +
{
R1 +R2 +O(n−1)

}
(1 +R4)

. R1 +R2 +R3 +O(n−1).

Hence the convergence rate of maxi,j |ĉij − c0
ij | is determined by the slowest term out of R1,

R2, R3, and O(n−1). We evaluate these terms by Lemma 7 in Section C.2 and the union

bound with condition cnp ≤ c/(r2M2C(ν + 2))1/2 as above. First for R1, Lemma 7(a) by

letting u1 = (C(ν + 2)p−1 log n)1/2 results in

P (R1 > u1) ≤ 2n2 exp
{
−p(ν + 2)p−1 log n

}
= O(n−ν).

Next for R2, Lemma 7(c) with u2 = (2(ν + 1)p−1 log n)1/2 gives

P (R2 > u2) ≤ 2rn exp
{
−p(ν + 1)p−1 log n

}
= O(n−ν).

Finally for R3, Lemma 7(b) with putting u3 = (C(ν + 1)n−1 log p)1/2 leads to

P (R3 > u3) ≤ 2rp exp
{
−n(ν + 1)n−1 log p

}
= O(p−ν).

Consequently, we obtain the first result ‖Ĉ−C0‖max = O(cnp), which holds with probability

at least 1−O(πnp).

Part 2. Next we derive the convergence rate of η̂. It is sufficient to prove only the

case when η0 is a scalar (so that we write η0 = η0
1) since dimensionality m is fixed and η0

k’s

share the identical property thanks to Condition 4. Recall notation Enpek = (np)−1
∑

i,j e
k
ij .

Letting δij = c0
ij−ĉij , we have êij = xij−ĉij = eij+δij . For an arbitrary fixed k ∈ {1, . . . ,m},

the binomial expansion entails∣∣∣Enpêk − E ek
∣∣∣ =

∣∣∣Enp(e+ δ)k − E ek
∣∣∣

=

∣∣∣∣∣Enp(ek − E ek) + Enp
k−1∑
`=0

(
k

`

)
e`δk−`

∣∣∣∣∣
≤
∣∣∣Enp(ek − E ek)

∣∣∣+
k−1∑
`=0

(
k

`

)
max
i,j
|δij |k−`Enp|e|`

.
∣∣∣Enp(ek − E ek)

∣∣∣+O

(
max
i,j
|δij |

) k−1∑
`=0

Enp|e|`. (B.4)

For all k ∈ {1, . . . ,m}, the strong law of large numbers with Theorem 2.5.7 in [22] entails

|Enpek − E ek| = o((np)−1/2 log(np)) a.s. under Condition 4. Furthermore, the second term

of (B.4) is O(cnp) with probability at least 1−O(πnp) from Part 1 and the same law of large

numbers. Consequently, we obtain ∣∣∣Enpêk − E ek
∣∣∣ . cnp.
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Therefore by the construction of η̂1 and local Lipschitz continuity of h1 in Condition 4, we

see that ∣∣η̂1 − η0
1

∣∣ = |h1 (Enpê, . . . ,Enpêm)− h1 (E e, . . . ,E em)|

. max
k∈{1,...,m}

∣∣∣Enpêk − E ek
∣∣∣

with probability at least 1−O(πnp). This completes the proof of Lemma 3.

B.2 Lemma 4 and its proof

Lemma 4 Assume that Conditions 1–4 hold. Then with probability at least 1−O(πnp), the

following statements hold

(a) sup
|A|≤k,θ∈Θnp

∥∥UA(θ)− E[UA(θ0)]
∥∥

max
= O

(
k1/2c̃np

)
,

(b) sup
|A|≤k,θ∈Θnp

∥∥vA(θ)− E[vA(θ0)]
∥∥

max
= O

(
s3/2c̃np

)
,

where Θnp was defined in Lemma 3 and c̃np = n−1/2 log p + p−1/2 log n. Consequently, we

have

sup
|A|≤k,θ∈Θnp

∥∥TA(θ)− E[TA(θ0)]
∥∥

max
= O

((
k1/2 + s3/2

)
c̃np

)
.

Proof. To complete the proof of (a), we verify the following

(a–i) sup
|A|≤k,θ∈Θnp

∥∥UA(θ)−UA(θ0)
∥∥

max
. k1/2c̃np,

(a–ii)
∥∥U(θ0)− E[U(θ0)]

∥∥
max

. (n−1 log p)1/2.

From (a–i) and (a–ii), we can conclude that

sup
|A|≤k,θ∈Θnp

∥∥UA(θ)− E[UA(θ0)]
∥∥

max

≤ sup
|A|≤k,θ∈Θnp

∥∥UA(θ)−UA(θ0)
∥∥

max
+ sup
|A|≤k

∥∥UA(θ0)− E[UA(θ0)]
∥∥

max

≤ sup
|A|≤k,θ∈Θnp

∥∥UA(θ)−UA(θ0)
∥∥

max
+
∥∥U(θ0)− E[U(θ0)]

∥∥
max

. k1/2c̃np,

which yields result (a).

We begin with showing (a–i); this is the uniform extension of Lemma 8(a) in Section

C.3 over |A| ≤ k. In fact, the proof is almost the same, with the only difference that bound

(B.15) should be replaced with the bound derived in Lemma 9(c); that is,

max
|A|≤k

∥∥∥n−1/2EA

∥∥∥
2
. 1 ∨

(
kn−1 log p

)1/2
, (B.5)

which holds with probability at least 1 − O(p−ν). Notice that
(
kn−1 log p

)1/2 ≤ log1/2 p.

Therefore, even if we use (B.5) instead of (B.15) in the proof of Lemma 8(a) we can still
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derive the same convergence rate k1/2c̃np as in Lemma 8(a), and hence (a–i) holds with

probability at least 1−O(πnp).

For (a–ii), we see that∥∥U(θ0)− E[U(θ0)]
∥∥

max
≤
∥∥n−1X′X− E[n−1X′X]

∥∥
max

+
∥∥∥n−1X̃(θ0)′X̃(θ0)− E[n−1X̃(θ0)′X̃(θ0)]

∥∥∥
max

+ 2
∥∥∥n−1X′X̃(θ0)− E[n−1X′X̃(θ0)]

∥∥∥
max

=: W1 +W2 + 2W3. (B.6)

We derive the bounds for each of these terms. First, W1 is bounded as

W1 ≤
∥∥∥n−1C0′C0 − E[n−1C0′C0]

∥∥∥
max

+
∥∥n−1E′E− En−1E′E

∥∥
max

+ 2
∥∥n−1E′C0

∥∥
max

=: W1,1 +W1,2 +W1,3.

Under Condition 3, we deduce

W1,1 = max
j,`∈{1,...,p}

∣∣∣∣∣∣
r∑

k,m=1

λ0
jkλ

0
`mn

−1
n∑
i=1

(
f0
ikf

0
im − E f0

ikf
0
im

)∣∣∣∣∣∣
≤ rM2 max

j,`∈{1,...,p}

∣∣∣∣∣n−1
n∑
i=1

(
f0
ikf

0
im − E f0

ikf
0
im

)∣∣∣∣∣ .
From Lemma 7(d) with Condition 2 and the union bound, we have

P

(
max

j,`∈{1,...,p}

∣∣∣∣∣n−1
n∑
i=1

(
f0
ikf

0
im − E f0

ikf
0
im

)∣∣∣∣∣ > u

)

≤ p2 max
j,`∈{1,...,p}

P

(∣∣∣∣∣n−1
n∑
i=1

(
f0
ikf

0
im − E f0

ikf
0
im

)∣∣∣∣∣ > u

)
≤ 2p2 exp

(
−nu2/C

)
.

Hence, letting u = (C(ν + 2)n−1 log p)1/2 above yields the bound W1,1 . (n−1 log p)1/2 with

probability at least 1−O(p−ν). Next for W1,2, we can find from Lemma 7(a) with p replaced

by n and the union bound that

P
(∥∥n−1E′E− En−1E′E

∥∥
max

> u
)
≤ p2 max

j,`
P

(∣∣∣∣∣n−1
n∑
i=1

(eijei` − E eijei`)

∣∣∣∣∣ > u

)
≤ 2p2 exp

(
−nu2/C

)
.

Letting u = (C(ν + 2)n−1 log p)1/2 and using n−1 log p ≤ c2/(C(ν + 2)), we obtain W1,2 .

(n−1 log p)1/2 with probability at least 1−O(p−ν). Next for W1,3, the union bound gives

P
(∥∥∥n−1E′F0Λ0′

∥∥∥
max

> u
)

= P

(
max

j,`∈{1,...,p}

∣∣∣∣∣n−1
r∑

k=1

n∑
i=1

eijf
0
ikλ

0
`k

∣∣∣∣∣ > u

)

≤ P

(
r max
j,`∈{1,...,p}

max
k∈{1,...,r}

∣∣∣∣∣n−1
n∑
i=1

eijf
0
ik

∣∣∣∣∣ ∣∣λ0
`k

∣∣ > u

)

≤ rp max
k∈{1,...,r}

max
j∈{1,...,p}

P

(∣∣∣∣∣n−1
n∑
i=1

eijf
0
ik

∣∣∣∣∣ > u/(rM)

)
.
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Lemma 7(b) states that for all 0 ≤ u/(rM) ≤ c/(rM) it holds that

P

(∣∣∣∣∣n−1
n∑
i=1

eijf
0
ik

∣∣∣∣∣ > u/(rM)

)
≤ 2 exp

{
−nu2/(Cr2M2)

}
.

Therefore, if we put u = rM(C(ν + 1)n−1 log p)1/2 using n−1 log p ≤ c2/(r2M2C(ν + 1)),

the upper bound of the probability is further bounded by 2rp−ν . Thus we obtain W13 .

(n−1 log p)1/2 with probability at least 1−O(p−ν). Consequently, the bound of W1 is

W1 ≤W1,1 +W1,2 +W1,3 . (n−1 log p)1/2

with probability at least 1−O(p−ν). Note that we have the same result for W2 since it has

the same distribution as W1. Finally, W3 is bounded as

W3 ≤
∥∥∥n−1C0′C0 − E[n−1C0′C0]

∥∥∥
max

+
∥∥n−1E′Eη0

∥∥
max

+
∥∥n−1E′C0

∥∥
max

+
∥∥∥n−1E′η0C

0
∥∥∥

max
=: W1,1 +W3,1 +W1,3 +W3,2.

The upper bound of W3,1 turns out to be O((n−1 log p)1/2) that holds with probability at

least 1−O(p−ν). We check this claim. Using the union bound and the inequality of Lemma

7(a) with p replaced by n and putting u = (C(ν + 2)n−1 log p)1/2 yield

P
(∥∥n−1E′Eη0

∥∥
max

> u
)
≤ p2 max

j,`
P

(∣∣∣∣∣n−1
n∑
i=1

(
eijeη0,i`

)∣∣∣∣∣ > u

)
≤ 2p−ν .

Finally, W3,2 is found to have the same bound as W1,3 because Eη0 is an independent copy

of E. Consequently, with probability at least 1−O(p−ν), we obtain∥∥U(θ0)− E[U(θ0)]
∥∥

max
. (n−1 log p)1/2.

This completes the proof of (a) since p−ν/πnp = O(1).

Next we show (b) by verifying the following

(b–i) sup
|A|≤k,θ∈Θnp

∥∥vA(θ)− vA(θ0)
∥∥

max
. s3/2c̃np,

(b–ii)
∥∥v(θ0)− E[v(θ0)]

∥∥
max

. s(n−1 log p)1/2.

Similar to the proof of (a), we need to modify the proof of Lemma 8(b) in Section C.3 for

obtaining the uniform bound with respect to A, but the obtained result is already uniform

over the choice of A. Thus the same upper bound holds and (b–i) follows. Next we show

(b–ii). It holds that∥∥v(θ0)− Ev(θ0)
∥∥

max

≤
∥∥n−1X′y − En−1X′y

∥∥
max

+
∥∥∥n−1X̃(θ0)′y − En−1X̃(θ0)′y

∥∥∥
max

≤
∥∥(n−1X′X− En−1X′X

)
β
∥∥

max
+
∥∥n−1X′ε− En−1X′ε

∥∥
max

+
∥∥∥(n−1X̃(θ0)′X− E[n−1X̃(θ0)′X]

)
β
∥∥∥

max
+
∥∥∥n−1X̃(θ0)′ε− E[n−1X̃(θ0)′ε]

∥∥∥
max

=: Z1 + Z2 + Z3 + Z4.
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These terms can be bounded by the results obtained in the proof of (a–ii). We see that

Z1 ≤ s1/2
∥∥n−1X′XS0 − En−1X′XS0

∥∥
max
‖βS0‖2 . sW1 . s(n−1 log p)1/2

with probability at least 1−O(p−ν). Next we deduce

Z2 ≤
∥∥∥n−1Λ0F0′ε

∥∥∥
max

+
∥∥n−1E′ε

∥∥
max

.

The first and second terms can be bounded by the same ways as W1,3 and W3,1 in the proof

of (a) above with E and Eη0 replaced by ε, respectively. Then the first term dominates the

second and hence Z2 . (n−1 log p)1/2 with probability at least 1−O(p−ν). Similarly, we can

obtain

Z3 ≤ s1/2
∥∥∥n−1X̃(θ0)′XS0 − En−1X̃(θ0)′XS0

∥∥∥
max
‖βS0‖2 . sW3 . s(n−1 log p)1/2

with probability at least 1−O(p−ν). Note that Z4 has the same bound as Z2. Consequently,

collecting terms leads to the result, Z1 + · · ·+ Z4 . s(n−1 log p)1/2 with probability at least

1−O(p−ν). This proves (b–ii) and concludes the proof of Lemma 4.

B.3 Lemma 5 and its proof

Lemma 5 Assume that all the conditions of Theorem 2 hold. Then with probability at least

1−O(πnp), the Lasso solution in (A.7) satisfies

sup
θ∈Θnp

∥∥∥β̂aug(θ)− βaug
∥∥∥

2
= O(s1/2λ),

sup
θ∈Θnp

∥∥∥β̂aug(θ)− βaug
∥∥∥

1
= O(sλ),

where λ = c1n
1/2 log p with c1 some positive constant.

Proof. Let δ(:= δ(θ)) := β̂aug(θ)− βaug. We start with introducing two inequalities

sup
θ∈Θnp

∥∥∥n−1[X, X̃(θ)]′ε
∥∥∥

max
≤ 2−1λ, (B.7)

inf
θ∈Θnp, δ∈V

δ′U(θ)δ/‖δ‖22 ≥ σ2
e(1 + o(1)), (B.8)

where λ = c1n
−1/2 log p for some positive constant c1 and

V =
{
δ ∈ R2p : ‖δS1‖1 ≤ 3‖δS0‖1, ‖δ‖0 ≤ k

}
. (B.9)

It is well known that the rate of convergence of the Lasso estimator can be obtained provided

that (B.7) and (B.8) hold. Thus we show that these two inequalities actually hold with high

probability in Step 1, and then derive the convergence rate using (B.7) and (B.8) in Step 2.

Step 1. We check whether (B.7) and (B.8) actually hold with high probability. We first

verify (B.7). By the proofs of Lemmas 8 and 4, we have

sup
θ∈Θnp

∥∥∥n−1[X, X̃(θ)]′ε
∥∥∥

max

≤
∥∥n−1X′ε

∥∥
max

+ sup
θ∈Θnp

∥∥∥n−1X̃(θ)′ε− n−1X̃(θ0)′ε
∥∥∥

max
+
∥∥∥n−1X̃(θ0)′ε

∥∥∥
max

.
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The first and third terms can both be upper bounded by O(n−1/2 log p) with probability at

least 1−O(p−ν), following the same lines for deriving bound for Z2 in the proof of Lemma 4.

To evaluate the second term, we can use the argument about V2 and its upper bound (B.16)

in the proof of Lemma 8. That bound still holds with the same rate O(n−1/2 log p) even if

we take A = {1, . . . , p}. Thus we conclude that (B.7) is true for the given λ by choosing an

appropriate positive large constant c1, with probability at least 1−O(πnp).

Next to verify (B.8), we derive the population lower bound first and then show that the

difference is negligible. From the construction, we have

E[n−1X̃(θ0)
′
X̃(θ0)] = E[n−1X′X] = Λ0ΣfΛ

0′ + σ2
eIp,

E[n−1X̃(θ0)
′
X] = E[n−1X′X̃(θ0)] = Λ0ΣfΛ

0′.

Using these equations, we obtain the lower bound

inf
δ∈V

δ′ E
[
U(θ0)

]
δ/‖δ‖22 = inf

δ∈V
δ′

(
Λ0ΣfΛ

0′ + σ2
eIp Λ0ΣfΛ

0′

Λ0ΣfΛ
0′ Λ0ΣfΛ

0′ + σ2
eIp

)
δ/‖δ‖22

= inf
δ∈V

δ′

{(
1 1

1 1

)
⊗Λ0ΣfΛ

0′ + σ2
eI2p

}
δ/‖δ‖22

≥ σ2
e . (B.10)

Because δ ∈ V is sparse and satisfies |B| ≤ k for B := supp(δ), it holds that δ′U(θ0)δ =

δ′BUB(θ0)δB and δ′ E
[
U(θ0)

]
δ = δ′B E

[
UB(θ0)

]
δB. Hence from Lemma 4 together with

the condition on dimensionality, we obtain

sup
|B|≤k,θ∈Θnp

∥∥UB(θ)− E[UB(θ0)]
∥∥

max
= O

(
k1/2c̃np

)
= o(s−1) (B.11)

with probability at least 1−O(πnp). Thus using (B.11), we have for any δ ∈ V,

δ′ E[U(θ0)]δ − δ′U(θ)δ = δ′B
{
E[UB(θ0)]−UB(θ)

}
δB

≤ ‖δ‖21 sup
|B|≤k,θ∈Θnp

∥∥UB(θ)− E[UB(θ0)]
∥∥

max
= (‖δS0‖1 + ‖δS1‖1)2 o(s−1)

. ‖δS0‖21o(s−1) ≤ ‖δS0‖22o(1) ≤ ‖δ‖22o(1).

Rearranging the terms with (B.10) yields

inf
θ∈Θnp, δ∈V

δ′U(θ)δ/‖δ‖22 ≥ inf
δ∈V

δ′ E[U(θ0)]δ/‖δ‖22 − |o(1)| ≥ σ2
e − |o(1)|,

resulting in (B.8). In consequence, two inequalities (B.7) and (B.8) hold with probability at

least 1−O(πnp).

Step 2. This part is well known in the literature (e.g., [33]) so we briefly give the proof

omitting the details. Because the objective function is given by

β̂aug(θ) = arg min
b∈R2p

n−1
∥∥∥y − [X, X̃(θ)]b

∥∥∥2

2
+ λ‖b‖1,
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the global optimality of the Lasso estimator implies

(2n)−1
∥∥∥y − [X, X̃(θ)]β̂aug(θ)

∥∥∥2

2
+ λ

∥∥∥β̂aug(θ)
∥∥∥

1

≤ (2n)−1
∥∥∥y − [X, X̃(θ)]βaug

∥∥∥2

2
+ λ ‖βaug‖1 ,

where the true parameter vector βaug was defined in the proof of Theorem 2. Note that

supθ∈Θnp
‖δ(θ)‖0 ≤ k by the assumption. Expanding the inequality and collecting terms

with (B.7) yield

2−1δ′U(θ)δ ≤
∥∥∥n−1ε′[X, X̃(θ)]

∥∥∥
max
‖δ‖1 + λ‖δ‖1 ≤ (3/2)λ‖δ‖1. (B.12)

On the other hand, applying Lemma 1 of [33] to our model reveals that δ ∈ V. Thus we can

use (B.8), (B.12), and (B.9) to get

‖δ‖22(σ2
e + o(1)) ≤ 3λ‖δ‖1 = 3λ (‖δS1‖1 + ‖δS0‖1) ≤ 12λ‖δS0‖1.

Since |S0| = s and ‖δS0‖1 ≤ s1/2‖δS0‖2, it holds that ‖δ‖2 ≤ 12s1/2λ/(σ2
e + o(1)). Since

‖δS0‖2 ≤ ‖δ‖2, we obtain the desired bound ‖δ‖1 ≤ 48sλ/(σ2
e + o(1)). This bound holds

uniformly over θ ∈ Θnp, which completes the proof of Lemma 5.

C Additional technical lemmas and their proofs

C.1 Lemma 6 and its proof

Lemma 6 Denote by V ∈ Rr×r a diagonal matrix with its entries the r largest eigenval-

ues of (np)−1XX′ and define H = (Λ0′Λ0/p)(F0′F̂/n)V−1. Assume that Conditions 2–5

hold. Then ‖H‖2 + ‖H−1‖2 + ‖V‖2 + ‖V−1‖2 is bounded from above by some constant with

probability at least 1−O(p−ν).

Proof. Let λk[A] denote the kth largest eigenvalue of square matrix A throughout the proof.

Because ‖Λ0′Λ0/p‖2 ≤M and

‖F0′F̂/n‖2 ≤ ‖n−1/2F0‖2‖n−1/2F̂‖2

≤ (rn)1/2‖n−1/2F0‖max

(
λ1[n−1F̂′F̂]

)1/2
≤ r1/2M

by Conditions 2–3, and F̂′F̂/n = Ir, we have

‖H‖2 ≤
∥∥∥Λ0′Λ0/p

∥∥∥
2

∥∥∥F0′F̂/n
∥∥∥

2

∥∥V−1
∥∥

2
.
∥∥V−1

∥∥
2
,

where ‖V−1‖2 is equal to the reciprocal of the rth largest eigenvalue of (np)−1XX′. Similarly,

under Conditions 2–3 we also have∥∥H−1
∥∥

2
≤ ‖V‖2

∥∥∥(F0′F̂/n)−1
∥∥∥

2

∥∥∥(Λ0′Λ0/p)−1
∥∥∥

2
. ‖V‖2

∥∥∥(F0′F̂/n)−1
∥∥∥

2
,

where ‖V‖2 is equal to the largest eigenvalue of (np)−1XX′ and the inverse matrix in the

upper bound is well defined by [2]. To see if ‖(F0′F̂/n)−1‖2 is bounded from above, it suffices
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to bound the minimum eigenvalue of F0′F̂F̂′F0/n2 away from zero uniformly in n. Regarding

r eigenvalues of the matrix, Sylvester’s law of inertia (e.g., [31], Theorem 4.5.8) entails that

all the r eigenvalues are positive for all n. Moreover, by Proposition 1 of [2] we know that

the limiting matrix of F̂′F0/n is nonsingular under Conditions 2 and 5. Therefore, we can

conclude that lim infn→∞ λ
r[F0′F̂F̂′F0/n2] > 0 a.s., and hence ‖H−1‖2 . ‖V‖2 follows.

To complete the proof, it is sufficient to show that the maximum and rth largest eigen-

values of (np)−1XX′ are bounded from above and away from zero, respectively, for all large

n and p. By the definition of the spectral norm and triangle inequality, we have{
λ1
[
(np)−1XX′)

]}1/2
=
∥∥∥(np)−1/2X

∥∥∥
2
≤
∥∥∥(np)−1/2F0Λ0′

∥∥∥
2

+
∥∥∥(np)−1/2E

∥∥∥
2

≤
∥∥∥n−1/2F0

∥∥∥
2

∥∥∥p−1/2Λ0
∥∥∥

2
+
∥∥∥(np)−1/2E

∥∥∥
2
.

By Conditions 2 and 3, the first term is a.s. bounded by a constant as discussed above. The

second term is O((n ∧ p)−1/2) = o(1) with probability at least 1 − 2 exp(−|O(n ∨ p)|) by

Lemma 9(a) under Condition 4. Therefore, the largest eigenvalue of (np)−1XX′ is bounded

from above by some constant with probability at least 1− 2 exp(−|O(n ∨ p)|).
Next we bound the rth largest eigenvalue of (np)−1XX′ away from zero. Since the matrix

is symmetric, Weyl’s inequality (e.g., [31], Theorem 4.3.1) yields

λr
[
(np)−1XX′

]
= λr

[
(np)−1

{
F0Λ0′Λ0F0′ +

(
EΛ0F0′ + F0Λ0′E′

)
+ EE′

}]
≥ λr

[
(np)−1F0Λ0′Λ0F0′

]
+ λn

[
(np)−1

(
EΛ0F0′ + F0Λ0′E′

)]
+ λn

[
(np)−1EE′

]
.

(B.13)

The third term of lower bound (B.13) is obviously nonnegative. For the first term of

lower bound (B.13), let V denote a subspace of Rn. Because F0Λ0′Λ0F0′ is symmetric,

the Courant–Fischer min-max Theorem (e.g., [31], Theorem 4.2.6) yields

λr
[
(np)−1F0Λ0′Λ0F0′

]
= max
V:dim(V)=r

min
v∈V\{0}

{
(np)−1 v′F0Λ0′Λ0F0′v

v′v

}

≥ max
V:dim(V)=r

min
v∈V\{0}

(
n−1 v′F0F0′v

v′v

)
min

F0′v∈Rr\{0}

(
p−1 v′F0Λ0′Λ0F0′v

v′F0F0′v

)
= λr

[
n−1F0F0′

]
λr
[
p−1Λ0′Λ0

]
= λr

[
n−1F0′F0

]
λr
[
p−1Λ0′Λ0

]
≥ λr [Σf ]λr

[
p−1Λ0′Λ0

]
−
∥∥∥n−1F0′F0 −Σf

∥∥∥
2

≥ λr [Σf ]λr
[
p−1Λ0′Λ0

]
− r

∥∥∥n−1F0′F0 −Σf

∥∥∥
max

.

In this lower bound, the first term is bounded away from zero by Conditions 2–3. Meanwhile,

to evaluate the second term we use Lemma 7(d) in Section C.2, which together with the union

bound establishes

P
(∥∥∥n−1F0′F0 −Σf

∥∥∥
max

> u
)
≤ r2 max

k,`∈{1,...,r}
P

(∣∣∣∣∣n−1
n∑
i=1

(
f0
ikf

0
i` − E f0

ikf
0
i`

)∣∣∣∣∣ > u

)
≤ 2r2 exp(−nu2/C)
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for any 0 ≤ u ≤ c. Thus the second one turns out to be O((n−1 log p)1/2) = o(1) with

probability at least 1 − O(p−ν) once we set u = (Cνn−1 log p)1/2 and assume n−1 log p ≤
c2/(Cν) without loss of generality. Therefore, the first term of lower bound (B.13) is bounded

away from zero eventually. For the second term of (B.13), since the spectral norm gives the

upper bound of the spectral radius we have∣∣∣λn [(np)−1
(
EΛ0F0′ + F0Λ0′E′

)]∣∣∣ ≤ ∥∥∥(np)−1
(
EΛ0F0′ + F0Λ0′E′

)∥∥∥
2

≤ 2
∥∥∥(np)−1/2E

∥∥∥
2

∥∥∥p−1/2Λ0
∥∥∥

2

∥∥∥n−1/2F0
∥∥∥

2

= O
(

(n ∧ p)−1/2
)
O(1)O(1) = o(1),

which holds with probability at least 1− 2 exp(−|O(n ∨ p)|) by Lemma 9(a) in Section C.4.

As a consequence, the desired result holds with probability at least 1 − O(p−ν) and this

concludes the proof of Lemma 6.

C.2 Lemma 7 and its proof

Lemma 7 Assume that Conditions 2–4 hold. Then there exist some positive constants c

and C such that the following inequalities hold

(a) For all `, i ∈ {1, . . . , n} and 0 ≤ u ≤ c, we have

P

∣∣∣∣∣∣p−1
p∑
j=1

(e`jeij − E[e`jeij ])

∣∣∣∣∣∣ > u

 ≤ 2 exp
(
−pu2/C

)
.

(b) For all k ∈ {1, . . . , r}, j ∈ {1, . . . , p}, and 0 ≤ u ≤ c, we have

P

(∣∣∣∣∣n−1
n∑
i=1

f0
ikeij

∣∣∣∣∣ > u

)
≤ 2 exp

(
−nu2/C

)
.

(c) For all k ∈ {1, . . . , r}, i ∈ {1, . . . , n}, and u ≥ 0, we have

P

∣∣∣∣∣∣p−1
p∑
j=1

λ0
jkeij

∣∣∣∣∣∣ > u

 ≤ 2 exp
(
−pu2/C

)
.

(d) For all k, ` ∈ {1, . . . , r} and 0 ≤ u ≤ c, we have

P

(∣∣∣∣∣n−1
n∑
i=1

(
f0
ikf

0
i` − E[f0

ikf
0
i`]
)∣∣∣∣∣ > u

)
≤ 2 exp

(
−nu2/C

)
.

Proof. (a) To obtain the first result, we rely on the Hanson–Wright inequality. Let ξ =

(ξ1, . . . , ξm)′ ∈ Rm denote a random vector whose components are independent copies of

e ∼ subG(C2
e ). Then the inequality states that for any (nonrandom) matrix A ∈ Rm×m,

P
(∣∣ξ′Aξ − E ξ′Aξ

∣∣ > u
)
≤ 2 exp

{
−C̃H min

(
u2

K4‖A‖2F
,

u

K2‖A‖2

)}
, (B.14)
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where K is a positive constant such that supk≥1 k
−1/2(E |e|k)1/k ≤ K and C̃H is a positive

constant. In our setting, we can take K = 3C2
e (e.g., Lemma 1.4 of [34]). Using this

inequality, we first prove the case when ` = i. If we set m = p and A = diag(p−1, . . . , p−1),

then we have

∣∣ξ′Aξ − E ξ′Aξ
∣∣ =

∣∣∣∣∣∣p−1
p∑
j=1

(ξ2
j − E ξ2

j )

∣∣∣∣∣∣ d=
∣∣∣∣∣∣p−1

p∑
j=1

(
e2
ij − E[e2

ij ]
)∣∣∣∣∣∣

for all i. Moreover, we obtain ‖A‖2F = p−1 and ‖A‖2 = p−1 in this case. The assumed

condition 0 < u ≤ 9C2
e = K2 entails that u2/K4 ≤ u/K2 so the result follows from (B.14)

with C̃H replaced by CH = 81C4
e/C̃H .

Similarly, we prove the case when ` 6= i. We set m = p+1 and A = (a1, . . . ,ap+1), where

a1 = (0, p−1, . . . , p−1)′ and aj = 0 for j = 2, . . . , p+ 1. That is, the entries of A are all zero

except that the second to (p + 1)th components in the first column vector are p−1. Under

this setting, we observe that

∣∣ξ′Aξ − E ξ′Aξ
∣∣ =

∣∣∣∣∣∣p−1
p+1∑
j=2

ξ1ξj

∣∣∣∣∣∣ d=
∣∣∣∣∣∣p−1

p∑
j=1

e`jeij

∣∣∣∣∣∣
for all ` 6= i. Moreover, we obtain ‖A‖2F = ‖A‖2 = p−1 in this case. Therefore, the same

bound holds as in the case of ` = i from (B.14) again. Consequently, for any 0 ≤ u ≤ 9C2
e

we have

P

∣∣∣∣∣∣p−1
p∑
j=1

(e`jeij − E[e`jeij ])

∣∣∣∣∣∣ > u

 ≤ 2 exp
(
−pu2/CH

)
.

(b) We prove the second assertion by Bernstein’s inequality for the sum of a martingale

difference sequence (e.g., Theorem 3.14 in [11]). Fix k = 1 and j = 1. Define Fi−1 as

the σ-field generated from {f0
`1 : ` = i, i − 1, . . . }. Then (f0

i1ei1,Fi) forms a martingale

difference sequence because E |f0
i1ei1| < ∞ and E[f0

i1ei1|Fi−1] = 0 under Conditions 2 and

4. Since the sub-Gaussianity of ei1 implies E e2
i1 ≤ 4C2

e (e.g., Lemma 1.4 of [34]), we have

Vi := E
[
f0 2
ik e

2
ij | Fi−1

]
≤ 4C2

eM
2, and hence

∑n
i=1 Vi ≤ 4nC2

eM
2 a.s. due to boundedness

|f0
i1| ≤ M a.s. On the other hand, by the sub-Gaussianity of eij and boundedness of |f0

i1|
again we observe that for all p ≥ 3 and i ∈ {1, . . . , n},

E
[
(0 ∨ f0

i1ei1)p | Fi−1

]
≤Mp(2C2

e )p/2pΓ(p/2) ≤ p!(2CeM)p−2Vi/2,

where Γ denotes the Gamma function and we have used the estimates pΓ(p/2) ≤ p! and

2p/2−2 ≤ 2p−2/2 for p ≥ 3 in the last inequality. Then an application of Theorem 3.14 in [11]

by putting x = u, y = 4M2C2
e , and c = 2MCe in their notation gives the one-sided result.

Making twice the bound yields

P

(∣∣∣∣∣n−1
n∑
i=1

f0
ikeij

∣∣∣∣∣ > u

)
≤ 2 exp

(
− nu2

8M2C2
e + 4MCeu

)
.

45



For all 0 ≤ u ≤ MC2
e , the upper bound is further bounded by 2 exp(nu2/(12M2C2

e )). We

set CI = 12M2C2
e . Consequently, for any 0 ≤ u ≤MC2

e we have

P

(∣∣∣∣∣n−1
n∑
i=1

f0
ikeij

∣∣∣∣∣ > u

)
≤ 2 exp

(
−nu2/CI

)
.

(c) We prove the third inequality. Note that

P
(∣∣λ0

jkeij
∣∣ > u

)
≤ 2 exp

{
− u2

2λ02
jkC

2
e

}
≤ 2 exp

{
− u2

2M2C2
e

}
.

This implies that λ0
jkeij is a sequence of i.i.d. subG(M2C2

e ). Thus the result is obtained

directly by Bernstein’s inequality for the sum of independent sub-Gaussian random variables.

Consequently, for any u ≥ 0 putting CJ = M2C2
e leads to

P

∣∣∣∣∣∣p−1
p∑
j=1

λ0
jkeij

∣∣∣∣∣∣ > u

 ≤ 2 exp
(
−pu2/CJ

)
.

(d) We show the last inequality. Note that for each k, (fik)i ∼ i.i.d. subG(M2) since

|f0
ik| ≤ M a.s. by Lemma 1.8 of [34] under Condition 2. Thus the remaining is the same as

(a). Set CK = 81M4/C̃H here. Then for any 0 ≤ u ≤ 9M2, we have

P

(∣∣∣∣∣n−1
n∑
i=1

(
f0
ikf

0
i` − E[f0

ikf
0
i`]
)∣∣∣∣∣ > u

)
≤ 2 exp

(
−nu2/CK

)
.

Finally the obtained inequalities hold even if the constant in the upper bound is replaced

with arbitrary fixed constant C such that C ≥ max{CH , CI , CJ , CK}. Similarly, we can also

restrict the range of u for each inequality to be 0 ≤ u ≤ c for arbitrary fixed constant c that

satisfies 0 < c ≤ min(9C2
e ,MC2

e , 9M
2). This completes the proof of Lemma 7.

C.3 Lemma 8 and its proof

Lemma 8 Assume that Conditions 1–4 hold. Then for any set A satisfying |A| ≤ k, the

following statements hold with probability at least 1−O(πnp)

(a) sup
θ∈Θnp

∥∥UA(θ)−UA(θ0)
∥∥

max
= O

(
k1/2c̃np

)
,

(b) sup
θ∈Θnp

∥∥vA(θ)− vA(θ0)
∥∥

max
= O

(
s3/2c̃np

)
,

where Θnp was defined in Lemma 3 and c̃np = n−1/2 log p + p−1/2 log n. Consequently, we

have

sup
θ∈Θnp

∥∥TA(θ)−TA(θ0)
∥∥

max
= O

((
k1/2 + s3/2

)
c̃np

)
.

Proof. We first state some results that are useful in the proof. Since ‖n−1/2F0‖2 = O(1) a.s.

by Condition 2 and ‖k−1/2Λ0
A‖2 = O(1) for any A such that |A| ≤ k under Condition 3, we

first have ∥∥∥n−1/2C0
A

∥∥∥
2
≤
∥∥∥n−1/2F0

∥∥∥
2
k1/2

∥∥∥k−1/2Λ0
A

∥∥∥
2
. k1/2.
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Next Lemma 9(b) in Section C.4 gives directly∥∥∥n−1/2Eη0A

∥∥∥
2
. 1 (B.15)

with probability at least 1−O(p−ν). By Condition 4, we also deduce

P

(
sup

η∈Θnp

∥∥Eη −Eη0

∥∥
max

> u

)
≤ npmax

i,j
P

(
sup

η∈Θnp

∣∣eηij − eη0ij

∣∣ > u

)
≤ npmax

i,j
P
(
|Z| > u/(M1/2c1/2

np )
)

≤ 2np exp
(
−u2/

(
c2
eMcnp

))
for any u ≥ 0. Thus setting u = 2ceM

1/2c
1/2
np log1/2(np) with some large enough positive

constant M , we obtain that with probability at least 1−O((np)−ν),

sup
η∈Θnp

∥∥Eη −Eη0

∥∥
max

. cnp log1/2(np) = O(c̃np).

We will use these results and Lemma 10 in Section C.5 in the proofs below.

To prove (a), we have∥∥UA(θ)−UA(θ0)
∥∥

max
≤
∥∥∥n−1X̃A(θ)′X̃A(θ)− n−1X̃A(θ0)′X̃A(θ0)

∥∥∥
max

+ 2
∥∥∥n−1X′AX̃A(θ)− n−1X′AX̃A(θ0)

∥∥∥
max

=: U1 + U2.

Observe that U1 is further bounded as

U1 ≤
∥∥∥n−1C′ACA − n−1C0

A
′
C0
A

∥∥∥
max

+
∥∥∥n−1E′ηAEηA − n−1E′η0AEη0A

∥∥∥
max

+ 2
∥∥∥n−1E′ηACA − n−1E′η0AC0

A

∥∥∥
max

=: U11 + U12 + U13.

By Lemma 10, it is easy to see that

U11 ≤
∥∥∥n−1

(
CA −C0

A
)′ (

CA −C0
A
)∥∥∥

max
+ 2

∥∥∥n−1C0
A
′ (

CA −C0
A
)∥∥∥

max

≤ n−1/2
∥∥CA −C0

A
∥∥

max

∥∥CA −C0
A
∥∥

2
+ 2

∥∥∥n−1/2C0
A

∥∥∥
2

∥∥CA −C0
A
∥∥

max

. k1/2
∥∥C−C0

∥∥2

max
+ k1/2

∥∥C−C0
∥∥

max

= O
(
k1/2c2

np + k1/2cnp

)
= O

(
k1/2cnp

)
,

where the last estimate follows from Lemma 3. Similarly, we deduce

U12 ≤
∥∥∥n−1

(
EηA −Eη0A

)′ (
EηA −Eη0A

)∥∥∥
max

+ 2
∥∥∥n−1E′η0A

(
EηA −Eη0A

)∥∥∥
max

≤ n−1/2
∥∥EηA −Eη0A

∥∥
max

∥∥EηA −Eη0A
∥∥

2
+ 2

∥∥∥n−1/2Eη0A

∥∥∥
2

∥∥EηA −Eη0A
∥∥

max

. k1/2
∥∥Eη −Eη0

∥∥2

max
+
∥∥Eη −Eη0

∥∥
max

= O
(
k1/2c̃2

np + c̃np

)
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and

U13 ≤
∥∥∥n−1

(
EηA −Eη0A

)′ (
CA −C0

A
)∥∥∥

max

+
∥∥∥n−1E′η0A

(
CA −C0

A
)∥∥∥

max
+
∥∥∥n−1C0

A
′
(
EηA −E0

η0A

)∥∥∥
max

≤ k1/2
∥∥Eη −Eη0

∥∥
max

∥∥C−C0
∥∥

max

+
∥∥∥n−1/2Eη0A

∥∥∥
2

∥∥C−C0
∥∥

max
+
∥∥∥n−1/2C0

A

∥∥∥
2

∥∥∥Eη −E0
η0

∥∥∥
max

= O
(
k1/2c̃npcnp + cnp + k1/2c̃np

)
= O

(
k1/2c̃np

)
.

Combining these bounds of U11–U13, we have

U1 ≤ U11 + U12 + U13 . k1/2c̃np.

This holds uniformly in θ ∈ Θnp with probability at least 1 − O(πnp) by Lemma 3 and the

discussion above. Next we obtain

U2 ≤
∥∥∥n−1C0

A
′
(CA −C0

A)
∥∥∥

max
+
∥∥∥n−1C0

A
′
(EηA −Eη0A)

∥∥∥
max

+
∥∥n−1E′A(CA −C0

A)
∥∥

max
+
∥∥n−1E′A(EηA −Eη0A)

∥∥
max

≤
∥∥∥n−1/2C0

A

∥∥∥
2

∥∥CA −C0
A
∥∥

max
+
∥∥∥n−1/2C0

A

∥∥∥
2

∥∥EηA −Eη0A
∥∥

max

+
∥∥∥n−1/2Eη0A

∥∥∥
2

∥∥CA −C0
A
∥∥

max
+
∥∥∥n−1/2Eη0A

∥∥∥
2

∥∥Eη −Eη0

∥∥
max

= O
(
k1/2cnp + k1/2c̃np + cnp + c̃np

)
= O

(
k1/2c̃np

)
.

This also holds uniformly in θ ∈ Θnp with probability at least 1−O(πnp) by Lemma 3 and

the discussion above. Consequently, it holds that

sup
θ∈Θnp

∥∥UA(θ)−UA(θ0)
∥∥

max
. k1/2c̃np

with probability at least 1−O(πnp).

To prove (b), we have∥∥vA(θ)− vA(θ0)
∥∥

max
≤
∥∥∥n−1X̃A(θ)′y − n−1X̃A(θ0)′y

∥∥∥
max

≤
∥∥∥n−1X̃A(θ)′Xβ − n−1X̃A(θ0)′Xβ

∥∥∥
max

+
∥∥∥n−1X̃A(θ)′ε− n−1X̃A(θ0)′ε

∥∥∥
max

=: V1 + V2.

First, because Xβ = XS0βS0 we see that

V1 ≤ s1/2
∥∥∥n−1X̃A(θ)′XS0 − n−1X̃A(θ0)′XS0

∥∥∥
max
‖βS0‖2

. s
∥∥∥n−1X̃A(θ)′XS0 − n−1X̃A(θ0)′XS0

∥∥∥
max

.
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Recall that |S0| = s and s ≤ n ∧ p. By a similar bound of U2, the norm just above can be

bounded further as∥∥∥n−1/2C0
S0

∥∥∥
2

∥∥CA −C0
A
∥∥

max
+
∥∥∥n−1/2C0

S0

∥∥∥
2

∥∥EηA −Eη0A
∥∥

max

+
∥∥∥n−1/2Eη0S0

∥∥∥
2

∥∥CA −C0
A
∥∥

max
+
∥∥∥n−1/2Eη0S0

∥∥∥
2

∥∥EηA −Eη0A
∥∥

max

. s1/2
∥∥C−C0

∥∥
max

+ s1/2
∥∥Eη −Eη0

∥∥
max

+
∥∥C−C0

∥∥
max

+
∥∥Eη −Eη0

∥∥
max

= O
(
s1/2cnp + s1/2c̃np + cnp + c̃np

)
= O

(
s1/2c̃np

)
.

Thus we have

V1 . ss1/2c̃np = s3/2c̃np

with probability at least 1−O(πnp). Next the same procedure yields

V2 ≤
∥∥∥X̃A(θ)− X̃A(θ0)

∥∥∥
max

∥∥∥n1/2ε
∥∥∥

2

.
∥∥C−C0

∥∥
max

+
∥∥Eη −Eη0

∥∥
max

. c̃np, (B.16)

where ‖n1/2ε‖2 = (E ε2)1/2 + o(1) a.s. by the law of large numbers for independent random

variables. Since the results hold uniformly in θ ∈ Θnp, combining them leads to

sup
θ∈Θnp

∥∥vA(θ)− vA(θ0)
∥∥

max
. s3/2c̃np

with probability at least 1−O(πnp). This concludes the proof of Lemma 8.

C.4 Lemma 9 and its proof

Lemma 9 Assume that Condition 4 holds. Then the following statements hold

(a) We have

P
(∥∥∥(n ∨ p)−1/2E

∥∥∥
2
. 1
)
≥ 1− 2 exp(−|O(n ∨ p)|);

(b) For any fixed set A with |A| ≤ k ≤ n, we have

P
(∥∥∥n−1/2EA

∥∥∥
2
. 1
)
≥ 1− 2p−ν ;

(c) For all k ≤ n, we have

P
(

max
|A|≤k

∥∥∥n−1/2EA

∥∥∥
2
. 1 ∨

(
n−1k log p

)1/2) ≥ 1− 2p−ν ,

where ν > 0 is a predetermined constant.

Proof. Result (a) is obtained by Theorem 5.39 of [40]. Moreover, by the same theorem there

exist some positive constants c and C such that for any A with |A| ≤ k ≤ n and every t ≥ 0,

P
(
σ−1
e ‖n−1/2EA‖2 > 1 + C + n−1/2t

)
≤ 2 exp

(
−ct2

)
,
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where σ2
e = E e2. Therefore, result (b) is immediately obtained by putting t2 = c−1ν log p

since n−1/2t = o(1) and exp
(
−ct2

)
= p−ν in this case.

For (c), taking the union bound leads to

P
(
σ−1
e max
|A|≤k

‖n−1/2EA‖2 > 1 + C + n−1/2t

)
≤
(
p

k

)
max
|A|≤k

P
(
σ−1
e ‖n−1/2EA‖2 > 1 + C + n−1/2t

)
≤ 2pk exp

(
−ct2

)
.

Set t2 = c−1(ν + k) log p in this inequality. Then we have n−1/2t = O
(
(n−1k log p)1/2

)
and

2pk exp
(
−ct2

)
≤ 2pk exp (−(ν + k) log p) = 2p−ν ,

which gives result (c) and completes the proof of Lemma 9.

C.5 Lemma 10 and its proof

Lemma 10 For matrices A ∈ Rk1×n and B ∈ Rn×k2, we have ‖AB‖max ≤ n1/2‖A‖2‖B‖max

and ‖AB‖max ≤ n1/2‖A‖max‖B‖2.

Proof. For any matrix M = (mij) ∈ Rk×n, let ‖M‖∞,∞ denote the induced `∞-norm. First,

we have

‖M‖∞,∞ := sup
v∈Rn\{0}

‖Mv‖max

‖v‖max
≤ sup

v∈Rn\{0}

‖Mv‖2
‖v‖2

‖v‖2
‖v‖max

≤ n1/2‖M‖2.

Therefore, by a simple calculation we see that

‖AB‖max = ‖ vec(AB)‖max = ‖(Ik2 ⊗A) vec(B)‖max

=
‖(Ik2 ⊗A) vec(B)‖max

‖ vec(B)‖max
‖ vec(B)‖max

≤ ‖Ik2 ⊗A‖∞,∞‖ vec(B)‖max = ‖A‖∞,∞‖B‖max ≤ n1/2‖A‖2‖B‖max.

The second assertion follows from applying this inequality to B′A′. This concludes the proof

of Lemma 10.
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