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Chapter 1  

General introduction 

 

Abstract 

Sulfur is a biologically abundant element, like amino acids, disulfide bridges, etc. The 

existence of the sulfur-centered hydrogen bond (SCHB) has been well established by 

crystallographic data of protein and organic molecules. The role of SCHB in stabilization of 

protein structures and selective binding of ligands at the active site of proteins is profound, 

while the understanding of such particular weak interaction is rather scarce, especially from 

the aspect of molecular level in the gas phase. Even though it has been figured out that 

sulfur is incompetent in forming a strong and typical HB due to its weak electronegativity, 

surprisingly, it is capable of engaging in other significant and versatile intermolecular 

bonds, for instance, chalcogen bond (or more generally, σ hole interaction), lone pair-π 

interaction (intrinsically, π hole interaction), hemibond in radical cations, and so on. 

However, so far, we could hardly look insight into their nature due to experimental 

difficulties in molecular-level characterization. In this thesis, we aim at resolving these 

problems, mainly focusing on SCHB and hemibonds, by infrared photodissociation 

spectroscopy in the gas phase and quantum-chemical calculations.  
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1.1 Noncovalent interactions 

Noncovalent interactions have been the subject of inquiry for many years, because of their 

critical importance in a multitude of chemical and biological phenomena.
1 

All the 

noncovalent interactions can be classified by four fundamental physical contributions: 

electrostatic, induction, dispersion, and exchange interaction, and the nature of the  

interaction varies by proportions of these ingredients. The quantitative analysis can be 

realized by computational methods providing a rigorous quantitative quantum mechanical 

description of noncovalent interactions, for example, the symmetry adapted perturbation 

theory (SAPT) program. As a qualitative understanding, the interaction of two nonpolar 

species is usually dominated by dispersion, while the interaction of charged or highly polar 

entities is primarily governed by electrostatic force. In both the cases, exchange repulsion is 

competing with the attractive interactions, and their balance determines the equilibrium 

intermolecular structure.  Among noncovalent interactions, a hydrogen bond (HB) is the 

most well-explored one, which is formed between an electron-deficient hydrogen 

covalently bound to an electronegative atom and a region of high electron density, denoted 

as AHD (A refers to the electron acceptor and D to the donor).
2   

      Regular HBs have been fairly well understood. On the other hand, sulfur centered 

hydrogen bonds (SCHBs) have been overlooked, and many queries remain with respect to 

them. The large difference in electronegativity of sulfur (2.58) and oxygen (3.44) and the 

small difference in that of S and H (2.20) have resulted in a general awareness for a long 

time that SCHBs should not be classified to a conventional HB and SCHBs should be a 
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weak intermolecular interaction. However, is this truth? With the progress of investigations, 

such understanding has been challenged.
3
 Characterization of SCHBs by model molecular 

clusters has revealed that SCHBs have many properties different from typical H-bonds.
3-7 

By the matrix-isolation IR spectroscopy, it has been reported that the strength of the 

SH−O and OH−O HBs are very close to each other for DMS-HNO3 and DME-

HNO3.
4
 Wategaonkar and coworkers have emphasized that dispersion plays a major role to 

generate attraction in the O−H···S hydrogen bond.
4
 Sulfur not only forms σ-type HBs, like 

SH−N and SH−S, but also can be engaged in π-type HBs, for instance, S−Hπ 

formed between H2S and benzene. It has been theoretically proved that the magnitude of 

the S−Hπ interaction is the largest one among the X−Hπ (X = C, N, O, and S) type 

interactions
5,8 

and dispersion has been concluded to make a significant contribution to the 

S−Hπ-type interaction. The investigation of SCHBs has covered many organic crystals, 

peptides, and protein, as well as their roles in biomolecular structures and functions.
9
 The 

geometric characteristic and strength of SCHBs vary in different systems, and the 

underlying mechanism of their particularity and diversity are still obscure.   

      The σ-hole and π-hole interactions also have recently become popular topics in many 

fields. The σ-hole bond has been initially known as the halogen bond, however, its essence 

can be expanded extensively by substitution of a halogen element to a chalcogen or 

pnicogen element.
10

 The halogen bond refers to a net attractive interaction between an 

electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic 

region in another or the same molecular entity, and it is electrostatic in nature. Basically, 

such an interaction is due to the polarization of the atom’s electronic charge toward the 
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covalent bonds that it forms. According to the definition of the σ-hole bond, if we change 

the positive electrostatic potential moiety to the special π system with the π-electron-

deficient cavity, a π-hole interaction could occur. Such an interaction is proved by a strong 

complex formed between C6F6 and Cl
-
.
11 

This interaction is also called n- (lone pair-) 

interaction.
 
The directionality of the σ-hole bond (Y−XA) refers to the angle between the 

Y−X covalent bond and the vector direction from the center of the σ-hole in X to the bond 

acceptor (A). Similarly, the directionality of the π-hole bond refers to the angle formed 

between the -framework plane and the vector direction from the center of the π-hole (or 

interacting atom(s) to the bond acceptor−it resembles a mortise−tenon joint structure.
12 

The 

participation of a sulfur atom occupies a large proportion of these σ-hole interactions 

because of the abundance of sulfur in biochemistry field. For instance, the theoretical 

investigation of the SS interaction formed between H3C−S−CH3 and H3C−S−Z (Z=CH3, 

C2H, CN) has revealed the existence of σ-hole contact;
13

 The SN bond in FHSNH3 

complex with the binding energy of around 8 kcal/mol, which is stronger than H-bond 

SHN, has been proposed by the theoretical calculation.
14

 Some particular cases of sulfur-

containing noncovalent interactions also have drawn great interest. As has been found in 

the calculation performed on (X2CS)2 dimers, a sulfur atom generate a negative σ-hole 

where X=−NH2, −OH, and a positive σ-hole where X=−F, −Cl, and the C=SS=C contact 

is generally dominated by the dispersive component.
15

 All these phenomenon are charming 

to scientist, while we still have little knowledge on them. Especially from a spectroscopic 

view in the gas phase, more experimental works can be planned.  
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1.2 Hemibond  

When we go further on the sulfur-containing intermolecular interactions, a significant 

notion will be put forward, that is hemibond, a particular covalent bond prevalently exists 

in (cation) radical systems.  

      A radical cation with an unpaired electron in p orbital could be stabilized by 

coordination with a free p-electron pair of another unoxidized molecule. Such an 

interaction is called hemibond or two-center three-electron (2c-3e) bond. Since the concept 

of the hemibond was first proposed by Linus Pauling in the early 1930s, hemibonds have 

been encountered in various areas such as free-radical chemistry, biochemistry, organic 

reactions, radiation chemistry, and so on.
16-19

 To elucidate the nature of hemibond, two 

main theories are developed. In the valence bond (VB) formalism, a hemibond is viewed as 

originating from the resonance between two VB structures. This means that a hemibond is 

more stabilized when the orbital energy difference is smaller. In other words, the closer 

ionization potential energies of the two counterparts will result in a stronger hermibond. 

Another theory is molecular orbital (MO) theory, which is extensively utilized to get 

insight into a hemibond. In MO theory, a hemibond is represented by two MOs formed by a 

linear combination of a fully occupied non-bonding orbital and a half-occupied non-

bonding orbital. Typically, a lone pair p orbital of a closed shell molecule interacts with a 

half-occupied p orbital of a (cation) radical. One MO is bonding, and the other MO is anti-

bonding. These two MOs are occupied by three electrons, and therefore, the bond order is 

½. Many literatures have described the signature of hemibonds by theoretically calculated 
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bond length, binding energy, band order, and the degree of localization of the unpaired 

electron.
20

 The net hemibond energy, De, can be expressed by,
21

 

                         De=[3αS
2
+β-(α+3β)S]/(1-S

2
) 

Herein, the symbols α, β, and S denote the Hűckel Coulomb, resonance, and overlap 

integrals respectively. Based on the Wolfsberg-Helmholtz approximation, we assume that β 

is proportional to S.  Then, a further simplified representation is given,  

                         De=(K-1)aS(1-3S)/(1-S
2
);  β=KαS 

      It is clear that the hemibond energy is zero under the condition that overlap integral S=0 

or 1/3, and the maximum De is achieved at S=0.17.  This means that the weak overlap is 

favored in the hemibond bond and a longer bond is expected than a normal two-electron 

bond. Furthermore, De is approximately quadratic to S while the linear correlation is 

expected in a two-electron bond.  

      The concept of the hemibond was first proposed by L. Pauling to interpret the stability 

of some simple chemical systems like NO, NO2, O2, and He2
+
.
22

 Let us start from the 

quintessential example, He2
+
 shown in Fig. 1.1. The 1s orbitals of each He atom overlaps 

with that of the counterpart to form double-occupied σ bonding and single-occupied σ*  
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antibonding orbitals. By the similar manner, the alkaline earth metal dimer cations
23-24 

and 

group 12 dimer cations
25-26

 also form their hemibonds by overlap of two s orbitals. Next, 

the concept of the hemibond was extended to radical cation dimers in the p or d block 

elements. For the p block species, the monocationic noble gas dimers fulfill the valence 

electron requirement of the hemibond, where the bonding σ and two  orbitals and 

antiobonding * orbital are fully-occupied along with the half-occupied σ* orbital. For 

Xe2
+
, the crystallographic characterization was performed and it showed the long Xe∴Xe 

distance, 3.09 Å.
27 

As could be conceived, the overlap between d orbitals could be formed 

for the dimer of transition metals, like Pd2
+
. However, no experimental evidence for the 

hemibond structure of Pd2
+ 

has been reported so far. As has been well known, coordination 

chemistry is a powerful avenue to stabilize unstable species. Therefore, some experimental 

Fig. 1.1 Molecular orbital schemes for 2c/3e bonds formed by overlap of two orbitals. (A) 

He2
+
, the two s orbital overlap (B) the p orbitals overlap (C) the d orbital overlap. Reproduced 

from Ref. 28 with permission from the Acc. Chem. Res. Owner Societies. 
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and theoretical studies in coordination chemistry have been reported on the hemibond 

consisted of transition metal.
28 

 

Now, we step into the species with high complexity beyond the simplest homonuclear 

dimer. Besides the coordination chemistry mentioned above, hemibonds including main 

group atoms also have attracted great interest, and they have been widely characterized.  

For instance, there have been many reports on [HnX∴XHn]
+
(X=F,O,N,Cl,S,P; n=1 − 3) 

and [R2S∴SR2]
+
.
29-35

 [RS∴SR]
-36

 We should notice that most of the hemibonded systems 

are charged ones, and the excess charge complicates the understanding of the bonding with 

the coexistence of the electrostatic interaction. Therefore, there have been some 

investigations of neutral radicals, like XH2O (X=F, Cl, Br and OH),
37

 H2SX (X=F, Cl, 

Br and OH)
38

 and more generally all kinds of X∴Y hemibond (X and Y = N, S, P, 

halogen, and etc.).
39-43   

We also could find some more complicated cases of hemibonds, like cations of 1,5-

dithiocane (Fig. 1.2 (A)) and 1,8-chalcogen naphthalenes (e.g., Nap(SPh)2 in Fig. 1.2(B)).
44-

45
 In these systems, the unpaired electron is p-localized over two equivalent sulfur atom. 

Actually, we could expand the two-centered three electron structure to many-nuclei 

systems, especially containing aromatic ring, where the unpaired electron is π-delocalized 

over more than two atoms.
46

 If the system is centrosymmetric, it is regarded as a special 

case of two-centered three electron bonds described by Pauling.   
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Recently, biochemical importance of multi-centered three electron bonds has been 

pointed out. A critical role of hemibond has been proposed in the hopping mechanism of 

electron transfer in the biological process. For instance, the temporary formation of 

hemibonds, like O∴O, O∴S, can serve as relay stations in the long-range electron (hole) 

transport in protein.
47

 Besides these p block hemibonds, one particular type also has 

attracted much interest. This is the S∴ interaction. The neighboring aromatic rings can 

favor the side chain of methionine (Met) or cysteine (Cys) residues (two sulfur-containing  

Fig. 1.2 Two complicated cases of hemibonded structures.  

(A) 

(B) 

Fig. 1.3 Electron transfer through the S∴π relay station in proteins.  Reproduced from Ref. 

48 with permission from the J. Phys. Chem. C Owner Societies.    
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amino acids) to take part in the electron transfer by forming the S∴π relay station in 

proteins (as shown in Fig. 1.3). Because of the moderate binding energies of S∴π, the self-

movement of the protein is able to break this bonding and promotes the electron hole 

transfer.
48-49

 However, such a multi centered three electron bond has rarely been 

investigated.
50-52

 

Among the enormous studies of hemibonds, the most extensively studied system is 

sulfur-sulfur centered radical cations due to its key role in organic reactions and biological 

process as intermediates (such as shown in Fig. 1.2). The experimental observation of the 

sulfur-sulfur hemibond has been pioneered by Asmus and coworkers.
53-58

 In 1975, They 

found the formation of transient radical cation (R2S2)
+
 upon oxidation of 1,4-dithian by OH 

radicals in aqueous solutions at low solute concentration, through the observation of the 

transient absorption due to the σ*-σ electronic transition.
53

 Then, through both Fourier 

transform ion cyclotron resonance (FTICR) and tandem mass spectrometry (MSMS), the 

stable dimer cation formation by ionizing di-isopropyl sulphide with its neutral analogue in 

the gas phase was observed. The hemibond formation in the gas phase has been proposed 

for the first time on the basis of the fragmentation pattern.
57

 In the work of Moradi et al., 

the gas phase dimerization equilibrium measurement of dimethyl sulfide cations has also 

suggested formation of the S-S hemibond.
59

 To verify the existence and illustrate the 

property of the S-S hemibond, numerous quantum chemistry calculations have been 

performed. As the first step towards a wider investigation of the S-S hemibond, the 

simplest model, (H2S)2
+
 has been frequently utilized. The calculations of (H2S)2

+
 have been 
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first performed by Clark,
60

 and the series of his study has been extended to a variety of 

hemibonded systems.
61-63 

For the detail of H2S species, we will discuss in Chapter 3.  
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Chapter 2 

Structures of protonated hydrogen sulfide clusters, H
+
(H2S)n, 

highlighting the nature of sulfur-centered intermolecular 

interactions 

 

Published in Physical Chemistry Chemical Physics, 2017, 19, 2036-2043. 

 

Abstract  

Unique intermolecular structures of protonated hydrogen sulfide clusters, H
+
(H2S)n, are 

revealed by infrared spectroscopy and ab initio calculations. The identified intermolecular 

structures are significantly different from those of corresponding protonated water clusters, 

H
+
(H2O)n, in spite of the common hydrogen bond coordination ability between hydrogen 

sulfide and water. Protonated hydrogen sulfide clusters have the Eigen type ion core, H3S
+
, 

in the size range of n = 3 – 9. After the first hydrogen bonded shell formation is completed 

at n = 4, further solvation prefers a new shell bound by the charge-dipole interaction rather 

than the second hydrogen bonded shell. Thus, much closely solvated structures, in which 7 

molecules, at maximum, directly interact with the Eigen type ion core, are formed. The 
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beginning of the second hydrogen bonded shell is found at n = 9. Competition among 

intermolecular interactions in H
+
(H2S)n is discussed.  

2.1 Introduction  

Extensive investigations have been conducted on protonated water clusters, H
+
(H2O)n, in 

the gas phase, which is regarded as a powerful model system to explore structures and 

dynamics of the aqueous proton.
1-7

 In the intermolecular structure formation of H
+
(H2O)n, 

the hydrogen bond (H-bond) plays an essential role. The H-bond coordination property of 

water is obviously a key factor to understand intermolecular structures of H
+
(H2O)n. Sulfur 

belongs to the same group as oxygen, and the H-bond coordination property of H2S is 

expected to be same as that of H2O. This raises a simple question whether the 

intermolecular structure of H
+
(H2O)n can be held if we replace H2O with H2S. Recently, 

because of the ubiquity and significance in biological systems, and also those in materials 

science, sulfur-centered hydrogen bonds (SCHBs) have received increasing interest.
8,9

 As 

has been discussed in the Chapter 1, The properties of SCHBs are different from typical H-

bonds.
10-13

 These properties could easily be rationalized by comparison
 
between the electric 

properties of H2O and H2S summarized in Table 2.1.1.
14,15

 The magnitude of the proton 

affinity of H2S is close to that of H2O. The small dipole moment and large polarizability of 

H2S suggest a remarkable role of dispersion and relatively less importance of electrostatic 

interactions in SCHBs. On the other hand, cluster studies on SCHB network structures have 

been surprisingly scarce.
16-20

 With respect to H
+
(H2S)n, a very elementary level calculation 

at HF/4-31G has been the unique report on their H-bond structures, so far.
21 
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Table 2.1.1  Dipole moments, polarizabilities, and proton affinities of H2O and H2S. 

 H2O H2S 
dipole moment / D 

[a]
 1.855 0.978 

polarizability / 10
-24

cm
3
 
[a]

 1.45 3.95 

proton affinity  / kJmol
-1 [b]

 691 705 

                                                      [a]
 Ref. 14, 

[b]
 Ref. 15 

 

In the present work, we perform size-selective infrared (IR) spectroscopy of protonated 

hydrogen sulfide clusters, H
+
(H2S)n, to characterize intermolecular structures constructed 

by sulfur-centered intermolecular interactions. Quantum chemical calculations are also 

employed to analyze measured IR spectra. Characteristic intermolecular structure formation 

of H
+
(H2S)n is demonstrated, and the particularity and generality of sulfur-centered 

intermolecular interactions, in comparison with typical H-bonds of water, are discussed. 

Through this work, we also try to shed new light on the structure property of H
+
(H2O)n 

from the view point of the competition among intermolecular interactions. H2S, which has 

the same H-bond coordination property as H2O, can be an interesting reference to examine 

factors in construction of H-bonded water network structures. 

 

2.2 Experiment Setup  

2.2.1 Overview of infrared photodissociation spectroscopy 
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Fig. 2.2.1 The mass spectra of our cluster ion source under the resolution -10% (left panel) and 

100% (right panel)  
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H
+
(H2S)n clusters were generated by discharge to a supersonic jet expansion of the H2S/Ar 

gaseous mixture. Generated ions were introduced into the tandem type quadrupole mass 

spectrometer. The cluster size of interest was selected by the first mass spectrometer. The 

mass resolution was set to be higher than Δm/z = 1 (high mass resolution condition as 

shown in the right column in Fig. 2.2.1), and contribution of (H2S)n
+
 radical cation clusters 

was carefully removed. Then, the size-selected clusters were introduced into the octopole 

ion guide. The clusters were irradiated by the tunable IR light from the OPO/OPA system 

(LaserVision) pumped by the Nd-YAG laser (Continuum PL-8000), and the fragment ions 

were monitored by the second quadrupole mass spectrometer. IR spectra were recorded by 

monitoring the fragment in the single H2S loss channel while scanning the IR frequency in 

the 2300 – 2700 cm
-1

 region. The observed spectra were normalized by the IR light power 

and band frequencies were calibrated by absorption lines of CO2 and CH4. 

2.2.2  Vacuum Chamber 

As schematically shown in Fig. 2.2.2, the vacuum chamber is composed of an ion source 

chamber and a differentially-pumped ion analyzing chamber, which will be introduced in 

detail later. A skimmer was set in between the two chambers as an ion-optics component 

with a tunable voltage. The source chamber was pumped by a turbo molecular pump which 

was backed up by a mechanic pump. The typical pressure of the chamber without loading 

the gas was 1.0×10
-7

 Torr, while the working pressure is in the range of 1.0 ×10
-5

 to 5.0 

×10
-5

 Torr. 
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2.2.3 Ion Source  

To produce clusters with low internal energy, a supersonic jet expansion with high pressure 

is an ideal choice in gas phase studies. This technique overcomes many problems 

encountered in molecular spectroscopy, such as hot bands, transitions originating from 

thermally populated vibrational and rotational levels in a large extent. In a supersonic jet 

expansion, a high pressure gas is expanded from a reservoir into a vacuum through a small 

orifice.
23,24

 The cooling effect in the jet expansion is achieved by the collision of the 

polyatomic species with the noble gases which have no vibrational or rational modes and 

exhibit nearly ideal behavior. There are two major steps account for the cooling; in the 

primary stage of the jet, the velocity of the polyatomic species is accelerated to that of the 

noble gas, e.g., Argon or Helium, by collision. Subsequently, as the second stage, the 

relative zero velocity leads to a very low energy collision, thus, the vibrational and 

rotational temperatures are decreased effectively with only a slight increase in the 

Fig. 2.2.2 Scheme of the vacuum chamber equipped with a tandem quadrupole mass 

spectrometer used in this study. Reproduced from Ref. 22 with permission from the PCCP 

Owner Societies.  
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translational temperature. Typically, the rotational temperatures could reach in the order of 

0.1-10K, through supersonic jet expansion, while, due to the smaller collision cross section 

for vibrational depopulation, the typical vibrational temperature obtained is around 20-

150K. Because of the large excess energy in ionization or protonation, in the case of ionic 

and protonated species, the temperature tends to be higher.  

In the downstream from the orifice, the gas density falls down rapidly, and gradually 

enters the free-collision region. When ionization occurs at the position close to the nozzle 

orifice (<1 mm), it allows the ions to cool and participate in clustering reactions with the 

co-expanding atoms and molecules. In such a region, some of the ionization techniques, 

such as, discharge, electron ionization, and laser photoionization, can be combined with a 

supersonic jet expansion to produce ions. Here we chose the combination with discharge to 

generate ions, which has been frequently used in the previous studies of H
+
(H2O)n.  In this 

method,
25

 the gas mixture of H2S seeded in Ar was expanded into a chamber from a pulsed 

supersonic valve through a channel nozzle. The channel was equipped with a small pin 

electrode at its sidewall. The discharge in the channel was triggered by the pulsed high 

voltage of -400V, which was synchronized with the pulsed valve operation. The protonated 

cluster cations were cooled on expansion from the channel.    
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2.2.4 Tandem quadrupole mass spectrometer  

Fig. 2.2.3 shows a scheme of the mass spectrometer with two linearly aligned quadrupole 

mass filters used in this study. The source region of the chamber is evacuated by a turbo 

molecular pump and separated from the detection region with a skimmer of 3 mm in 

diameter. Two quadrupoles were connected by an octopole ion guide. In order to achieve 

high transmission efficiency, we put ion lens at the entrance and exit of each Q-mass and 

octopole ion guide. Through such assembling, cluster cations of a specific mass to charge 

ratio, which were size-selected by the front-stage quadrupole mass filters, were introduced 

into the octopole ion guide. The cluster cations then were irradiated by counter-propagating 

IR light in the ion guide, and the resulting fragment by vibrational predissociation is mass 

selected again by the 2
nd

 quadrupole mass filter. 

All the voltages of the ion optics, pole bias of each multipole, fine-tuning of mass 

resolutions, and detector voltages were well controlled by the Merlin controller interface 

and Merlin automation data system program (Extrel). The ion signal from the channeltron 

electron multiplier (CEM) detector was amplified by a preamplifier and subsequently sent 

to the interface. By the processing of Merlin software, a mass spectrum is then available.  

Fig. 2.2.3 Scheme of the tandem quadrupole mass spectrometer  
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2.2.5 IR source  

 

To produce wide wavelength range IR light in the SH stretch region, we employed a 

custom-made IR light source (IR-OPO/OPA, LaserVision), which uses the KTP/KTA-

based OPO/OPA processes. The process of the tunable IR generation is shown in Fig. 2.2.4. 

A pump beam, a fundamental output of a Nd:YAG laser (1064 nm, ~560 mJ/pulse),  was 

split into two by a beam-splitter. One of the beams was frequency-doubled with a KTP 

crystal, giving 532nm light which was used to pump the first OPO stage, which is consisted 

of two KTP crystals. Then, the combination of the idler output (1345-2122 nm) and the 

residual light from the pump beam (1064 nm) was introduced to the OPA stage with four 

KTA crystals. The idler output of the OPA around 2100-4600 cm
-1

 is the IR light we use 

for measurements. The wavelength tuning of the IR light is performed by tuning the crystal 

angles via a computer. IR frequency was calibrated by absorption lines of CO2 and CH4. 

Fig. 2.2.4  Scheme of the IR light source (IR-OPO/OPA).  
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2.3 Calculation 

21 calculation levels were adopted to energy-optimize and analyze structures and vibrations 

of H
+
(H2S)3 with the Eigen type ion-core for evaluation of the calculation method on the 

present system. Results are summarized in Table 2.3.1. First, the scaling factor for each 

calculation level was determined by the sym. SH stretch band (ν1) of the H-bond acceptor  

H2S moieties. We fitted the average of the calculated frequencies of the two H-bonded H2S 

molecules in H
+
(H2S)3 to the experimental value (2585 cm

-1
). Then, the calculated 

frequency of the free SH in H3S
+
 was scaled by this factor, and the resultant frequency was 

compared with the experimental value (2558 cm
-1

). The deviation of the calculated value 

from the experimental one, ΔE-C, is listed in Table 2.3.1. It is seen that the MP2 method 

shows the good agreement irrespective of the basis sets. Thus, MP2/aug-cc-pVDZ, which 

has been frequently employed for analyses of neutral SCHB systems,
1
 was selected for the 

level of theory in the following analyses. We also examined the aug-cc-pVTZ basis set, but 

its combination with MP2 was too much time-consuming for our computational resource. 

The scaling factor is determined to be 0.945 at the MP2/aug-cc-pVDZ level. Natural bond 

orbital (NBO) was utilized to analyze the intermolecular interaction. Dissociation energies 

(D0) of the clusters were also evaluated with the zero point energy (ZPE) and basis set 

superposition error (BSSE) correlations. All the computations for the clusters were carried 

out using the Gaussian09 program package.
26
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Table 2.3.1 Calculated free SH stretch frequencies of H
+
(H2S)3 at different calculation levels.  All 

units are in cm
-1

.  

Calculation level 
Stretch of 
free SH in 

H3S
+ [a]

 

ν1 in  H-bonded 
H2S

[a],[b]
 

Scaling 
factor 

[c]
 

ΔE-C 
[d]

 

B3LYP/6-311++G(3df,2p) 2659 2674 0.9667 -12 
B3LYP/6-311++G(d,p) 2650 2664 0.9703 -13 
B3LYP/aug-cc-pVDZ 2675 2696 0.9588 -7 

CAM- B3LYP /6-311++G(3df,2p) 2694 2718 0.9511 -4 
CAM - B3LYP /6-311++G(d,p) 2689 2714 0.9525 -3 
CAM - B3LYP /aug-cc-pVDZ 2675 2697 0.9585 -6 

M06-2X/6-311++G(3df,2p) 2700 2745 0.9417 15 
M06-2X/6-311++G(d,p) 2688 2740 0.9434 22 
M06-2X/aug-cc-pVDZ 2666 2706 0.9553 11 
MP2/6-311++G(3df,2p) 2727 2752 0.9393 -3 

MP2/6-311++G(d,p) 2773 2806 0.9212 4 
MP2/aug-cc-pVDZ 2711 2736 0.9448 -3 

MPW1PW91/6-311++G(3df,2p) N/A N/A N/A N/A 
MPW1PW91/6-311++G(d,p) 2694 2707 0.9549 -15 
MPW1PW91/aug-cc-pVDZ 2681 2690 0.961 -18 

LC-PBE/6-311++G(3df,2p) 2755 2781 0.9295 -3 
LC-PBE /6-311++G(d,p)     
LC-PBE /aug-cc-pVDZ 2843 2766 0.9346 -99 

B97XD/6-311++G(3df,2p) 2734 2754 0.9386 -8 
B97XD/6-311++G(d,p) 2730 2768 0.9339 8 
B97XD/aug-cc-pVDZ 2721 2746 0.9414 -4 

[a] 
Values without scaling.  

[b]
 Averaged values between two frequencies of the two acceptor H2S molecules.  

[c] 
Scaling factors are determined by fitting the observed sym. stretch frequency of free SH in H-bonded H2S

 

(2585 cm
-1

) by the corresponding calculated frequency.  

[d] 
ΔE-C is difference between the observed free SH frequency in H3S

+ 
(2558 cm

-1
) and calculated one scaled by 

the factor determined for the free SH band of the H-bonded H2S. 

 

2.4 Results and discussion  

2.4.1 H
+
(H2S)3 and  H

+
(H2S) 4  
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Fig. 2.4.1 Vibrational predissociation spectra of size-selected H
+
(H2S)n (n = 3 − 9) with their 

simulated stick spectra based on the most stable energy-optimized structures. The optimized 

structures for the simulations are shown in Fig. 2.4.2. The harmonic vibration modes are 

calculated at the MP2/aug-cc-pVDZ level (scaled by 0.945) and are presented as colored 

sticks. Orange stick: free SH stretch of the Eigen type ion core H3S
+
; Blue sticks: sym. stretch 

(ν1) of free SH in H-bonded H2S; Red sticks: sym. stretch (ν1) of free SH in charge-dipole 

bound H2S; Green sticks: asym. stretch (ν3) of free SH in both H-bonded and charge-dipole 

bound H2S molecules. All the H-bonded SH stretch bands of the ion core are calculated below 

the observed frequency region (See Table 2.4.1). Reproduced from Ref. 35 with permission 

from the PCCP Owner Societies. 
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Table 2.4.1 Calculated SH stretch harmonic vibrational frequencies (in cm
-1

) of H
+
(H2S)n (n = 3 – 8) at the MP2/aug-cc-pVDZ level with 

the scaling factor 0.945. Corresponding optimized structures are shown in Fig. 2.4.2. Frequencies of the observed bands are also shown in 

parentheses.  

[a]
  Degenerated frequencies 

 3 4 5-1 5-2 6 7 8 9 

Stretch of H-bonded SH 

in H3S
+
 

1702 

1849 

1985
[a]

 

1985
[a] 

 

2094 

1883 

2043 

2131 

1935 

2009 

2142 

1897 

2014 

2185 

2047 

2119 

2224 

2088 

2148 

2260 

 

Stretch of H-bonded SH 

in neural H2S 
       (2564) 

Stretch of free SH in  

H3S
+
 

2563 

(2558) 
       

Sym. stretch of free SH 

in  H-bonded H2S 

2585 

2586 

(2590) 

2591
[a]

 

2591
[a]

 

2591
[a]

 

(2592) 

2589 

2593 

2594 

   2591
[a]

 

2591
[a]

 

2593   

2590 

2593 

2595 

2590 

2591
[a]

 

2591
[a]

 

2590 

2591 

2593 

 

 (2593) (2594) (2594) 

Sym. stretch of free SH 

in charge-dipole bound 

H2S 

  
2600 2605 

2601 

2605 

    2599 

2603
[a]

 

2603
[a]

 

2596 

2600 

2603
[a]

 

2603
[a]

 

(2603) 

(2603) 

(2605) (2603) (2603)  

Asym. stretch of free SH 

in  H-bonded H2S 

2609 

2610 

2614
[a]

 

2614
[a]

 

2614
[a]

 

2618 

2619 

2621 

2616 

2618 

2619 

2619
[a]

 

2619
[a]

 

2620 

2616 

2618 

2619 

2620 

2621 

2623 

 

Asym. stretch of free SH 

in charge-dipole bound 

H2S 

  2627 2631 
2627 

2630 

2625 

2627 

2629 

2622 

2625 

2629 

2631 
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IR predissociation spectra of size-selected H
+
(H2S)n (n = 3 − 9) obtained by 

monitoring the single H2S loss channel are displayed in Fig. 2.4.1 with the simulated 

stick spectra at the MP2/aug-cc-pVDZ level. The energy-optimized structures 

corresponding to the spectral simulations are shown in Fig. 2.4.2. All the frequencies 

and assignments of the observed bands are summarized in Table 2.4.1. 

In the observed spectrum of n = 3, three features are seen; intense and broadened 

absorption below ca. 2400 cm
-1

 and two relatively sharp bands at 2558 and 2585 cm
-1

. The 

broadened absorption is obviously attributed to the tail of strong H-bonded SH stretch 

bands of the protonated ion core. Its peak is expected to be lower than 2300 cm
-1

, which is 

the low frequency limit of the reliable measurement by the present experiment system. 

Extremely broadened absorption of such an ion core vibration has also been reported for 

H
+
(H2O)3.

4,5
 The sharp band at 2558 cm

-1
 in the spectrum of n = 3 suddenly disappears in n 

 4. The absence of the band for n  4 gives unambiguous implication that this band is 

attributed to the free SH stretch of the ion core, and the ion core is the Eigen type, H3S
+
. 

This is because the first H-bonded solvation shell of the Eigen type ion core should be 

completed at n = 4. This spectral assignment is also supported by the good agreement with 

the simulated spectra based on the minimum energy structures (details will be discussed 

below). Therefore, the development of the proton solvation structure in H
+
(H2S)n is parallel 

to that in H
+
(H2O)n at n = 3 and 4.

4,5
 In the structures of n = 3 and 4, free SH should exist in 

the neutral moiety (H-bonded shell) and the observed bands at 2585 and 2590 cm
-1

, 

respectively, are uniquely assigned to their stretch vibration (symmetric stretch, ν1). Free 

SH stretch bands of neutral H2S monomer (ν1 and asym. stretch ν3) have been reported at  
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Fig. 2.4.2 Energy-optimized structures of H
+
(H2S)n (n = 3 − 8) identified by the observed 

spectra. H2S molecules bound by the charge-dipole interaction are denoted by red arrows. The 

spectral simulations in Fig. 2.4.1 are based on these structures (for n = 5, more stable structure 

5-1 is used). Energy optimization of the structures was performed at the MP2/aug-cc-pVDZ 

level. Reproduced from Ref. 35 with permission from the PCCP Owner Societies. 
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2614 and 2628 cm
-1

, respectively,
27

 and the small low-frequency shifts are attributed to the 

influence of the excess charge in the ion core. Absence of a clear ν3 band in the observed 

spectra will be discussed later.    

                     

2.4.2 H
+
(H2S)5 

As seen in the spectrum of n = 5 in Fig. 2.4.1, a new free SH band strongly appears at 2605 

cm
-1

. If the second H-bonded shell begins to form following the completion of the first 

shell at n = 4, an H-bonded SH band of the neutral moiety (H-bonded SH of the first shell 

molecule) is expected in the frequency region lower than the free SH band (< 2585 cm
-1

) 

However, such a band is totally absent. This suggests that the second H-bonded shell is not 

formed in n = 5 and the solvation structure is quite different from that of H
+
(H2O)5, in 

which the fifth H2O interacts only with the first solvation shell by an H-bond.
3,4,6,28

  

To uncover the structure of H
+
(H2S)5, we turn to quantum chemical calculations at the 

MP2/aug-cc-pVDZ level. Fig. 2.4.3 shows the comparison between the harmonic simulated 

spectra of stable isomer structures and the experimental spectrum. Because the H-bonded 

SH stretch bands of the ion core are largely red-shifted beyond the measured frequency 

range, thus their frequencies are not given in Fig. 2.4.3, but they are found in Table 2.4.2.  
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Fig. 2.4.3 Comparison between the experimental and simulated IR spectra of H
+
(H2S)5. The 

simulation was performed at the MP2/aug-cc-pVDZ level with the scaling factor 0.945. 

Relative energies (RE) are in kJ/mol. Red dotted circles indicate the first solvation shell. Note 

that the structures with the second H-bonded shell formation (5-3 to 5-7) show H-bonded SH 

stretch bands of the neutral H2S moiety (their intensities are scaled in the spectra), but the 

observed spectrum lacks a corresponding band. Reproduced from Ref. 35 with permission from 

the PCCP Owner Societies. 
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Table 2.4.2 Calculated SH stretch harmonic vibrational frequencies (in cm
-1

) and their assignments of all the isomers of H
+
(H2S)5 shown 

in Fig. 2.4.3. The calculation level is MP2/aug-cc-pVDZ and the scaling factor of 0.945 is applied. 

 5-1 5-2 5-3 5-4 5-5 5-6 5-7 

Stretch of 

H-bonded 

SH in 

H3S
+ 

1883 

2043 

2131 

1935 

2009 

2142 

1886 

2026 

2121 

1900 

1977 

2106 

1727 

2070 

2135 

1525 

2013 
1323 

2130 

Stretch of 

H-bonded 

SH in 

neutral 

H2S 

  2565 
2539 

2546 
2433 2463 2440 

Stretch of 

free SH 

in  H3S
+ 

     2556 2581 

Sym. 

stretch of 

free SH 

in H-

bonded 

H2S 

2589(1st shell)
[a]

 

2593(1st shell) 

2594(1st shell 

2591(1
st 

shell) 

2591(1
st 

shell) 

2593(1
st 

shell) 

2592(1
st 

shell) 

2593(1
st 

shell) 

2603(2
nd 

shell)
[b]

 

2605(2
nd 

shell)
[b] 

2592(1
st  

shell) 

2603(2
nd

 shell)
[b]

 

2604(2
nd

 shell)
[b]

 

2605(2
nd

 shell)
[b] 

2592(1
st  

shell) 

2593(1
st  

shell) 

2602(2
nd 

shell) 

2591(1
st  

shell) 

2603(2
nd

 shell) 
2594(1

st 
shell) 

2603(2
nd 

shell) 

Stretch of 

free SH 

in the 1
st
 

shell H-

bonded 

H2S 

  
2603

[b]
 

2605
[b] 

2603
[b]

 

2604
[b]

 

2605
[b] 

2599 2593 2588 
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Sym. 

stretch of 

free SH 

in charge-

dipole 

bound 

H2S 

2600 2605    2597 2599 

Asym. 

stretch of 

free SH 

in  H-

bonded 

H2S 

2618(1
st 

shell) 

2619(1
st 

shell) 

2621(1
st 

shell) 

2616(1
st 

shell) 

2618(1
st 

shell) 

2619(1
st 

shell) 

2617(1
st 

shell) 

2630(2
nd 

shell) 
2616(1

st 
shell) 

2630(2
nd 

shell) 

2616(1
st 

shell) 

2616(1
st 

shell) 

2626(2
nd 

shell) 

2615(1
st 

shell) 

2628(2
nd 

shell) 
2617(1

st 
shell) 

2628(2
nd 

shell) 

Asym. 

stretch of 

free SH 

in charge-

dipole 

bound 

H2S 

2627 2631    2622 2625 

[a]
 The H2S molecules in the “1

st
 shell” are highlighted by the dotted red circle in Fig. 2.4.3 in the main text while the molecules outside the circle 

belong to the “2
nd

 shell”. 

[b]
 The stretch frequency of free SH in the 1

st
 shell H-bonded H2S is mixed with the sym. stretch of free SH in 2

nd
 shell H-bonded H2S for isomer 5-3. 

Therefore, for these two types of stretch, only single band exists for each. This case is the same for structure 5-4. 
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      The structural search demonstrates that in n = 5, after the completion of the first H-

bonded shell, the fifth H2S still prefers directly solvating the ion core (5-1 and 5-2) rather 

than the second H-bonded solvation shell formation (5-3 to 5-7). The fifth H2S can locate 

either under the umbrella of the H3S
+
 moiety (5-1) or in the same plane as the H-bonded 

shell molecules (5-2). The sulfur atom of the fifth H2S faces to the ion core, and these 

structures indicate that the charge-dipole interaction would be the major component of the 

intermolecular interactions. Both the charge-dipole shell structures are estimated to be more 

stable than second H-bonded shell structures. Second H-bonded shell structure is higher in 

energy by at least 1.73 kJ/mol than most stable structure 5-1. As seen in Fig. 2.4.3, the 

structures with the second H-bonded shell formation show H-bonded SH stretch bands of 

the neutral H2S moiety below 2580 cm
-1

 (note that their intensities are scaled in the 

simulated spectra), but the observed spectrum totally lacks such a band. Therefore, the 

observed spectrum should be exclusively carried by the charge-dipole shell structures. At n 

= 5, two possible sites for the charge-dipole shell are energetically almost degenerated 

(structure 5-2 is +1.48 kJ/mol to structure 5-1, with the ZPE correction). As shown in later, 

the energy evaluation may be influenced by the BSSE correction. Moreover, the relative 

population of isomers would change with temperature. Therefore, at the present stage, we 

suppose both structures 5-1 and 5-2 contribute to the observed spectrum. Structure 5-1, the 

most stable isomer, is temporally chosen for the spectral simulation in Fig. 2.4.1. The 

spectral simulation based on the charge-dipole shell structure explains well the absence of 

the H-bonded SH band of the neutral moiety in the observed spectra, and the band at 2605 

cm
-1

 is attributed to the ν 1 of free SH of H2S in the charge-dipole shell. Only the second H-
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bonded shell structure similar to H
+
(H2O)n has been calculated for H

+
(H2S)n so far.

21
 The 

charge-dipole shell formation following the first H-bonded shell completion is 

demonstrated for the first time in the present work.  

 

 

 

 

Fig. 2.4.4 The natural bond orbitals of H
+
(H2S)5 (isovalue=0.006). In panel A, the lone pair 

orbital (n) of H-bonded H2S and the antibonding orbital (σ*) of S-H in the H3S
+
 ion-core 

exhibits an apparent overlap, indicating a hydrogen bond. In panel B, any kind of overlap 

between the lone pair orbital (n) and the antibonding orbital (σ*) is absent in the charge-

dipole shell. Reproduced from Ref. 35 with permission from the PCCP Owner Societies. 
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To obtain more insight into the interactions involved in the intermolecular structures, 

the NBO analysis is adopted, as it provides a quantitative assessment of an H-bond in terms 

of donor-acceptor charge delocalization by the second-order perturbation theory. As seen in 

panel A of Fig. 2.4.4 for H
+
(H2S)5 (for clarity of viewing, only structure 5-2 is selected), an 

H-bond is stabilized by charge (electron) transfer from an S lone pair (n) orbital of H-

bonded H2S to the proximal S-H antibonding (σ*) orbital of the H3S
+
 core, with the 

stabilization energy E(2) for three H-bonds, 45.9, 45.8, and 34.0 kcal/mol, respectively (the 

H-bonds proximal to the charge-dipole shell molecule correspond to the larger two values). 

On the other hand, as seen in panel B of Fig. 2.4.4, any kind of overlap between the 

occupied and adjacent virtual orbitals is not observed between the charge-dipole shell 

molecule and the neighboring molecules. This analysis explicitly leads to the non-

hydrogen-bonding character of the charge-dipole shell. 

One may note that both in the H-bonded and charge-dipole shells, only the ν1 band 

strongly appears and the ν3 band is much weaker or almost disappears in the observed 

spectra. The similar trend has been frequently observed for H2O directly solvating a 

protonated or positively charged site.
29,30

 Three reasons could be supposed to account for 

the weak ν3 band. (i) The ν1 intensity should be largely enhanced in such a system as its 

transition dipole moment is parallel to the electric field of the ion core while that of the ν3 

band is perpendicular to the field.
29

 (ii) The ν3 band shows a wider hindered rotation 

structure due to P and R branches while that of the ν1 mode is sharper due to a Q 

branch.
30,31

 (iii) The lower dissociation rate (yield) in the ν3 mode excitation can be caused 

by the weak coupling between ν3 and the intermolecular stretch mode.
30 
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2.4.3 H
+
(H2S)6  to H

+
(H2S)9 

In the size range of n = 5 − 8, the basic spectral motifs are kept, as shown in Fig. 2.4.1, but 

a remarkable intensity ratio change happens between the two free SH bands of neutral H2S 

with increasing of the cluster size. The intensity of the H-bonded shell band is gradually 

overtaken by the charge-dipole shell band. This spectral change clearly exhibits the filling 

process of the charge-dipole shell. To support this interpretation, stable isomer structures 

were searched for H
+
(H2S)6 and H

+
(H2S)7, and the results are summarized in Figs. 2.4.5 and 

2.4.6, respectively.  More information is available in Tables 2.4.3 and 2.4.4. The structural 

search was performed by manual construction of the initial structures, which are inferred 

from the structures of H
+
(H2S)5. Since there would be a large number of possible structures 

in n = 6 and 7, we do not exclude the possibility of low-lying structures other than those 

shown in the figures. Search for H
+
(H2S)8 was not performed because of its practical 

difficulty and computational cost. In the present search results, similar to H
+
(H2S)5, the 

charge-dipole shell structures are the most stable isomers in both the sizes. In the charge-

dipole shell, however, H2S clearly prefers locating under the umbrella (out-of-plane) rather 

than in the plane of the ion core (in-plane). The energy difference between these two 

solvation sites increases from 1.48 kJ/mol for H
+
(H2S)5 (between 5-1 and 5-2) to 5.36 

kJ/mol for H
+
(H2S)6 (between 6-1 and 6-2) and 6.58 kJ/mol for H

+
(H2S)7 (between 7-1 and 

7-6). It is also seen that energy separation between the in-plane type charge-dipole shell 

structures and second H-bonded shell structures decreases with increasing size (e.g., 5-2 

and 5-5, 6-2 and 6-5), and some of the second H-bonded shell structures (e.g., 7-5) become 

more stable than the in-plane type charge-dipole shell structures in n = 7 (7-7). However, 
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the observed spectra definitely demonstrate that the charge-dipole shell is superior to the 

second H-bonded shell up to n = 8, because the H-bonded SH bands of the first shell 

molecules, which are expected below 2580 cm
-1

 with a large intensity, are undoubtedly 

absent. At n = 9, a somewhat broadened band finally appears at 2564 cm
-1

. The frequency 

of this band coincides well with the SH stretch band of crystalline H2S,
32

 and the band is 

assigned to an H-bonded SH stretch of the neutral moiety. Therefore, this band indicates the 

beginning of the second H-bonded shell formation. 
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Fig. 2.4.5 Comparison between the experimental and simulated IR spectra of H
+
(H2S)6. The 

simulation was performed at the MP2/aug-cc-pVDZ level with the scaling factor 0.945. 

Relative energies (RE) are in kJ/mol.  Red dotted circles indicate the first solvation shell. Note 

that the structures with the second H-bonded shell formation (6-3 to 6-7) show H-bonded SH 

stretch bands of the neutral H2S moiety (their intensities are scaled in the simulated spectra), 

but the observed spectrum lacks a corresponding band. Reproduced from Ref. 35 with 

permission from the PCCP Owner Societies. 
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Table 2.4.3 Calculated SH stretch harmonic vibrational frequencies (in cm
-1

) and their assignments of all the isomers of H
+
(H2S)6 shown 

in Fig. 2.4.5. The calculation level is MP2/aug-cc-pVDZ and the scaling factor of 0.945 is applied. 

 6-1 6-2 6-3 6-4 6-5 6-6 6-7 

Stretch of 

H-bonded 

SH in H3S
+
 

1897 

2014 

2185 

2022 

2129 

2198 

1890 

2050 

2123 

1873 

1965 

2066 

1785 

2121 

2207 

1806 

1949 

2124 

1655 

1818 

Stretch of 

H-bonded 

SH in 

neutral H2S 

  
2544 

2549 

2544 

2551 
2491 

2482 

2496 

2494 

2507 

Stretch of 

free SH in  

H3S
+
 

      2556 

Sym. 

stretch of 

free SH in 

H-bonded 

H2S 

2590(1
st 

shell) 

2593(1
st 

shell) 

2595(1
st 

shell) 

2589(1
st 

shell) 

2594(1
st 

shell) 

2595(1
st 

shell) 

2592(1
st 

shell) 

2604(2
nd 

shell) 

2603(2
nd

 shell) 

2604(2
nd

 shell) 

2594(1
st  

shell) 

2595(1
st  

shell) 

2604(2
nd 

shell) 

2593(1
st  

shell) 

2598(2
nd  

shell)
[a]

 

2599(2
nd  

shell)
[a]

 

2604(2
nd

 shell) 

2604(2
nd

 shell) 

2605(2
nd 

shell) 

Stretch of 

free SH in 

the 1
st
 shell 

H-bonded 

H2S 

  
2607 

2612 

2605 

2606 
2597 

2598
[a]

 

2599
[a]

 

2603 

2597 

2599 
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Sym. 

stretch of 

free SH in 

charge-

dipole 

bound H2S 

2601 

2605 

2604 

2605 
2604  2599  2592 

Asym. 

stretch of 

free SH in  

H-bonded 

H2S 

2619(1
st 

shell) 

2619(1
st 

shell) 

2620(1
st 

shell) 

2618(1
st 

shell) 

2619(1
st 

shell) 

2622(1
st 

shell) 

2617(1
st 

shell) 

2630(2
nd 

shell) 
2630(2

nd 
shell) 

2618(1
st 

shell) 

2619(1
st 

shell) 

2629(2
nd 

shell) 

2617(1
st 

shell) 

2625(2
nd 

shell) 

2628(2
nd 

shell) 

2629(2
nd 

shell) 

2630(2
nd 

shell) 

Asym. 

stretch of 

free SH in 

charge-

dipole 

bound H2S 

2627 

2630 

2630 

2631 
2630  2624  2619 

[a]
  The stretch frequency of free SH in the 1

st
 shell H-bonded H2S is mixed with the sym. stretch of free SH in 2

nd
 shell H-bonded H2S for isomer 6-6. 

Therefore, for these two types of stretch, only single band exists for each.
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Fig. 2.4.6 Comparison between the experimental and simulated IR spectra of H
+
(H2S)7. The 

simulation was performed at the MP2/aug-cc-pVDZ level with the scaling factor 0.945. 

Relative energies (RE) are in kJ/mol. Red dotted circles indicate the first solvation shell. Note 

that the structures with the second H-bonded shell formation (7-2 to 7-5, 7-7 and 7-8) show H-

bonded SH stretch bands of the neutral H2S moiety (their intensities are scaled in the simulated 

spectra), but the observed spectrum lacks a corresponding band. Reproduced from Ref. 35 with 

permission from the PCCP Owner Societies. 
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Table 2.4.4 Calculated SH stretch harmonic vibrational frequencies (in cm
-1

) and their assignments of all the isomers of H
+
(H2S)7 shown 

in Fig.  2.4.6. The calculation level is MP2/aug-cc-pVDZ and the scaling factor of 0.945 is applied. 

 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 

A
[b]

 

2047 

2119 

2224 

1946 

1973 

2082 

2041 

2072 

2151 

2014 

2117 

2189 

1607 

2186 

2236 

2069 

2177 

2223 

1996 

2085 

2213 

1897 

1973 

2088 

B
[c]

  

2539 

2556 

2560 

2563 

2539 

2563 
2568 2487  2511 

2493 

2501 

2600 

C
[d]

 

2590(1
st 

shell) 

2591(1
st 

shell) 

2591(1
st 

shell) 

2588(1
st
 shell) 

2603(2
nd

 shell) 

2603(2
nd

 shell) 

2604(2
nd

 shell) 

2593(1
st  

shell) 

2595(1
st  

shell) 

2602(2
nd 

shell)
[a]

 

2604(2
nd 

shell)
[a]

 

2595(1
st  

shell) 

2596(1
st
 
 
shell) 

2603(2
nd  

shell) 

2591(1
st
 shell) 

2592(1
st
 shell) 

2593(1
st
 shell) 

2590(1
st
 shell) 

2594(1
st
 shell) 

2604(2
nd 

shell) 

2591(1
st
 shell) 

2598(2
nd 

shell) 

2603(2
nd 

shell) 

D
[e]

  
2609 

2611 

2606 

2611 

2602
[a]

 

2604
[a]

 
2573  2602 2606 

E
[f]

 

2599 

2603 

2603 

2604 
2603 

2604 

2600 

2605 

2598 

2603 

2602 

2605 

2605 

2596 

2601 
2604 
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F
[g]

 

2616(1
st 

shell) 

2618(1
st 

shell) 

2619(1
st 

shell) 

2629(2
nd

 shell) 

2630(2
nd 

shell) 

2620(1
st
 shell) 

2629(2
nd 

shell) 

2617(1
st 

shell) 

2620(1
st 

shell) 

2630(2
nd 

shell) 

2619(1
st 

shell) 

2621(1
st
 shell) 

2628(2
nd 

shell) 

2618 

2619 

2620 

2613(1
st 

shell) 

2621(1
st 

shell) 

2630(2
nd 

shell) 

2620(1
st 

shell) 

2624(2
nd 

shell) 

2628(2
nd 

shell) 

G
[h]

 

2625 

2627 

2629 

2630 
2629 

2630 

2626 

2630 

2625 

2629 

2627 

2628 

2630 

2622 

2627 
2630 

[a]
 The stretch frequency of free SH in the 1

st
 shell H-bonded H2S is mixed with the sym. stretch of free SH in 2

nd
 shell H-bonded H2S for isomer 7-4. 

Therefore, for these two types of stretch, only single band exists for each.  

[b]
 Stretch of H-bonded SH in H3S

+
. 

[c] 
Stretch of H-bonded SH in neutral H2S.  

[d] 
Sym. stretch of free SH in H-bonded H2S.     

[e] 
Stretch of free SH in the 1

st
 shell H-bonded H2S.  

[f] 
Sym. stretch of free SH in charge-dipole bound H2S.   

[g] 
Asym. stretch of free SH in  H-bonded H2S   

[h] 
Asym. stretch of free SH in charge-dipole bound H2S. 
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2.4.4 Dissociation energy, maximum temperature, and Gibbs energy 

Dissociation energies (D0) for the structures in Fig. 2.4.2 (the most energetically favorable 

structure at each size) are given in Table 2.4.5. For n = 6 – 8, two dissociation channels, 

loss of the out-of-plane H2S and in-plane H2S in the charge-dipole shell, are possible, and 

both the channels are calculated. Because of the presence of the heavy atoms (S atoms) in 

the system, the size of the BSSE correction is large. For n = 5, the order of the dissociation 

energies of isomers 5-1 and 5-2 is reversed with the BSSE corrections due to the small 

energy difference between the two isomers. This result suggests optimization with a larger 

basis set or that with BSSE corrections would be requested to definitely determine the 

energy order of isomers. At the present stage, these two dissociation paths are regarded to 

be essentially same in energy. The same phenomenon occurs also in the two dissociation 

channels of 6-1. The magnitude of the H-bond in H
+
(H2S)n is approximately half of that of 

H
+
(H2O)n (for example, D0 of H

+
(H2O)4 is 83.3 kJ/mol at the ωB97X-D/6-311++G(3df,2p) 

level
6
). With increasing cluster size, the dissociation energy in the charge-dipole shell is 

clearly lowered. This is probably due to the delocalization of the excess charge in the ion 

core H3S
+
. The magnitude of the dissociation (binding) energy in the charge-dipole shell is 

at the border between weak and moderate hydrogen bonds in typical neutral systems.
33

     

 



47 

 

Table 2.4.5 Dissociation energy (D0) and maximum temperature (Tmax) of selected isomers of 

H
+
(H2S)n. The ZPE corrections are included.  All units are kJ/mol, except Tmax in K.

 

 
D0 

(without 
BSSE) 

BSSE 
correction 

D0 

(with BSSE)  
Dissociation channel Frag.

[a]
 Tmax 

3 56.8 9.47 47.3   575 

4 51.2 8.87 42.3   395 

5-1 32.3 10.9 21.3 Loss of out-of-plane H2S 4 
204 

5-2 30.8 8.50 22.3 Loss of in-plane H2S 4 

6-1 30.3 8.76 21.5 Loss of in-plane H2S 5-1 

170 
 31.8 11.1 20.6 Loss of out-of-plane H2S 5-2 

7-1 26.3 8.85 17.4 Loss of in-plane H2S 6-1 

140 
 31.6 11.5 20.1 Loss of out-of-plane H2S 6-2 

8 25.3 9.01 16.2 Loss of in-plane H2S 7-1 

119 
 31.8 13.0 18.9 Loss of out-of-plane H2S 7-6 

[a]
 Isomer structure of the charged fragment in the dissociation channel. 

 

      Maximum temperature (Tmax) of the clusters is also evaluated from the dissociation 

energy and is displayed in Table 2.4.5. Tmax is the temperature at which the thermal 

vibrational energy (Evib) is equal to the dissociation energy. We suppose that the cluster can 

survive at temperature lower than Tmax, otherwise it should dissociate before the 

measurement. Herein, Evib was evaluated under the harmonic oscillator approximation.
34

 As 

seen in Table 2.4.5, Tmax falls with increasing cluster size, reflecting the lowering of the 

dissociation energy, and Tmax of the clusters of n > 4 are lower than ca. 200 K. Therefore, 

though the harmonic approximation is a crude approximation, it seems reasonable to 
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assume that the temperature of the observed H
+
(H2S)n clusters of n > 4 is equal or lower 

than ca. 200 K.  

      To estimate the temperature dependence of the isomer population, we evaluated the 

Gibbs free energy of the isomers of n = 5 up to 200 K. The results are summarized in Table 

2.4.6. As seen in Table 2.4.6, the isomer with the lowest Gibbs energy changes between the 

charge-dipole type structures, 5-1 and 5-2, with temperature, indicating the change of the 

dominant isomer in the population. At the present stage, we have no experimental data to 

evaluate the temperature of the observed cluster, and it is difficult to unambiguously 

determine the observed isomer. We also should note that the Gibbs energies of the second 

H-bonded shell type structures are higher than (at least one of) those of the charge-dipole 

type structures throughout the temperature range, and this is consistent with the lack of the 

spectral signature of the second H-bonded shell type structures in the observed spectrum. 

 

Table 2.4.6 Gibbs energies at different temperatures for the isomers of H
+
(H2S)5. All units are in 

kJ/mol. Calculations were performed at MP2/aug-cc-pVDZ.   

 50 K 100 K 150 K 200 K 

5-1 0 1.74 3.93 6.17 

5-2 0.286 0 0 0 

5-3 1.08 1.64 2.54 3.46 

5-4 3.36 3.73 4.57 5.49 

5-5 7.40 5.93 4.88 3.92 

5-6 11.0 12.2 13.8 15.4 

5-7 16.0 16.2 16.6 17.1 
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4.5 Overview of the structures  

The overview of the solvation structure evolution of H
+
(H2S)n till the first solvation shell 

completion is illustrated in Fig. 2.4.2. In addition to the three H-bond solvation sites, there 

are four sites for the charge-dipole solvation of the ion core; three of them are in the plane 

of the first H-bonded shell, and remaining one is under the umbrella of the ion core. Totally 

seven H2S molecules can directly solvate the ion core. Regarding the four sites of the 

charge-dipole shell, the present MP2/aug-cc-pVDZ calculations suggest the first preference 

of the site under the umbrella of H3S
+
. However, these four sites are not distinguishable 

from the observed spectra. Calculations at higher levels (e.g., the aug-cc-pVTZ basis set 

and optimization with BSSE corrections) are requested for the definite conclusion of the 

preferential site in the charge-dipole shell. Temperature (internal energy) control of the 

clusters by a cryogenic ion trap or inert gas tagging is a future experimental task to obtain 

more firm information on the (free) energy order of the isomer structures. Under the present 

experimental condition, we observed the beginning of the second H-bonded shell formation 

at n = 9. However, because the larger flexibility is expected for the second H-bonded shell, 

its formation may be more competitive at higher temperature. 

      The preference of the charge-dipole shell formation over the second H-bonded shell is a 

quite unique property of H
+
(H2S)n. The magnitude of the H-bonds between the ion core and 

the first shell is largely enhanced by the excess charge of the core, relative to the H-bonds 

between the first and second H-bonded shells which are those between essentially neutral 

molecules. Meanwhile, the magnitude of H-bonds between neutral H2S molecules is  
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Table 2.4.7 Relative energies among the optimized structures of H
+
(H2S)5 by various calculation 

methods. All units are in kJ/mol.  

 5-5 5-2 5-1 

with dispersion correction  

MP2/aug-cc-pVDZ 9.56 1.48 0 

M062x/aug-cc-pVDZ 20.5 8.72 0 

M062X/6-311++G(3df,2p) 12.3 0.436 0 

M062x/6-311++g(d,p) 17.5 8.39 0 

B97xD/aug-cc-pVDZ 3.85 0.971 0 

B97XD/6-311++G(3df,2p) 2.81 0 1.26 

B97XD/6-311++g(d,p) 5.47 0 0.683 

without dispersion correction  

B3LYP/aug-cc-pVDZ 0 3.58 N/A 

B3LYP/6-311++G(3df,2p) 2.66 0 N/A 

B3LYP/6-311++G(d,p) 0 N/A N/A 

 

 

much smaller than those of H2O molecules. Thus, the charge-dipole interaction with the ion 

core can be superior to the H-bond between the first and second shells. It is noteworthy that 

a large induced dipole moment is expected for H2S in the charged system because of its 

large polarizability (see Table 2.1.1). To form such a dense solvation structure around the 

ion core, not only the charge-dipole interaction but also dispersion should play an important 

role.
9-13

 This is because dispersion can contribute to the attraction with all neighboring 
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molecules and it becomes more effective in a denser structure. This interpretation is simply 

proved by the fact that B3LYP level calculations, which are known to lack the contribution 

of dispersion, largely underestimate the stability of the charge-dipole solvation structures 

relative to the second H-bonded shell structures. In contrast, dispersion-corrected DFT 

calculations show similar trend with the MP2 results. The details are provided in Table 

2.4.7. For more quantitative description of the contribution of dispersion, an energy 

decomposition analysis is needed. 

      Finally, we briefly comment on some implications of the present results for H-bonded 

structures of H
+
(H2O)n. Though H2S has the same H-bond coordination property with H2O, 

the proton solvation structures following the first H-bonded solvation shell are totally 

different between these two systems. Because of the small magnitude of H-bonds in 

H
+
(H2S)n, the charge-dipole shell formation is superior to the second H-bonded shell 

formation. Such charge-dipole shell formation has never been found in H
+
(H2O)n, and H-

bonds are an exclusive factor in construction of intermolecular structures of H
+
(H2O)n. The 

present finding shows that there should be a threshold of H-bond strength to keep its 

exclusive role in intermolecular structure construction. In addition, no sign of Zundel type 

ion-core structures was obtained for H
+
(H2S)n of 3  n  9 while the competition between 

the Eigen and Zundel type isomers has been revealed in H
+
(H2O)n, especially at n = 6.

6
 The 

competition between the Eigen and Zundel ion-cores is the key concept of the Grotthhus 

mechanism of proton transfer. In the present study, no IR dissociation signal could be 

detected for H
+
(H2S)2 because of its high dissociation energy, and its ion core motif was not 

determined. However, collapse of the Zundel ion core in H
+
(H2S)6 is clearly concluded  
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from the observed spectrum, and this is in contrast with the fact that the Zundel type isomer 

is the global minimum in H
+
(H2O)6. Thus, the present result suggests that the Zundel type 

ion-core is not stable in weak H-bonded systems, at least for an H-bonded solvation shell. 

These findings imply that not only the coordination property but also the magnitude of the 

interaction is highly important to determine intermolecular structures.  

 

2. 5. Conclusions 

The structures of H
+
(H2S)n (n = 3 − 9) in the gas phase were characterized by means of 

size-selective IR spectroscopy in combination with the ab initio calculations. The observed 

structures of H
+
(H2S)n significantly differ from those of corresponding H

+
(H2O)n after the 

first H-bond solvation shell formation at n = 4. The charge-dipole shell formation precedes 

the second H-bonded shell formation. Much closely solvated structures, in which 7 

molecules, at maximum, directly interact with the Eigen type ion core, are formed. The 

second H-bonded shell formation was confirmed to initiate at n = 9. The dissociation 

energy of the charge-dipole shell decreases with increasing size. The importance of 

dispersion in the charge-dipole shell structures was qualitatively demonstrated. The 

competition among intermolecular interactions was discussed to interpret the observed 

structures of H
+
(H2S)n. 
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                                          Chapter 3 

Spectroscopic observation of hemibonded (two-center three-

electron bonded) structures of (H2S)n
+
 clusters in the gas phase 

 

Published in Chemical Science, 2017, 8, 2667-2670. 

 

Abstract 

A hemibond (two-center three-electron 2c-3e bond) is a non-classical chemical bond, and 

its existence has been supposed in radical cation clusters with lone pairs. Though the nature 

of hemibond and its role in the reactivity of the radical cation have attracted great interest, 

spectroscopic observations of hemibonded structures have been very scarce. In the present 

study, the stable hemibonded core (H2S∴SH2)
+
 in (H2S)n

+
 (n = 3  ̶  6) in the gas phase is 

demonstrated by infrared spectroscopy combined with quantum chemical calculations. The 

spectral feature of the free SH stretch of the ion core shows that the hemibond motif of the 

ion core is held up to the completion of the first H-bonded solvation shell. All the observed 

spectra are well reproduced by the minimum energy hemibonded isomers, and no sign of 

the proton-transferred type ion core H3S
+
 ̶ SH, which is estimated to have much higher 

energy, is found. The spin density calculations show that the excess charge is almost 
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equally delocalized over the two H2S molecules in the cluster through n = 3 to 6. This also 

indicates the hemibond nature of the (H2S∴SH2)
+
 ion core and small impact of the 

solvation shell formation on the  ion core. 

3.1 Introduction 

      As has been described in Chapter 1, even though enormous theoretical and 

experimental studies have been performed on hemibonded systems, our understanding of 

such particular chemical bonds is still limited. One of the simple model systems to 

investigate hemibonded radical cations is (H2O)n
+
. In spite of many theoretical studies so 

far, however, hemibonded structures of (H2O)n
+
 have not yet been experimentally observed 

because of the strong competition of the proton-transferred type H3O
+
 ̶ OH ion core 

formation.
1-4

 On the other hand, (H2S)n
+
 seems to be more feasible for hemibond studies.  

 

Theoretical calculations of the S-S hemibond have been first performed by Clark for 

(H2S)2
+
,
5
Later on, several high level ab inito studies of (H2S)2

+
 have been performed, and 

these studies have predicted that the hemibonded structure (H2S∴SH2)
+
 is much more 

stable than the proton-transferred structure H3S
+
-SH (see Fig. 3.1.1) by ca. 50~100 kJ/mol, 

Fig. 3.1.1 Two possible structural motifs of (H2S)2
+ 

. Reproduced from Ref. 16 with permission 

from the Chemical Science Owner Societies. 
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depending on the level of theory.
6,7-9

 This preference of the hemibonded type structure in 

(H2S)2
+
 contrasts to its analogues of the period 2 elements. Furthermore, an energy 

decomposition scheme has been applied to (H2S∴SH2)
+
, and its result has shown that 

nearly 60% of the attraction in a sulfur−sulfur bond is provided by the three-electron bond 

but the electrostatic interaction also makes a large contribution (~40%) to the bond.
10

 This 

energy decomposition scheme neglects electron correlation. Therefore, we should note that 

dispersion may also play an important role in such a system.
11

                                    

      Apart from the theoretical studies, a few experimental studies have been reported. The 

first experimental observation of the sulfur-sulfur hemibond has been performed by Asmus 

and coworkers.  They have observed the (, *) transition of the hemibond. The electronic 

spectrum of (H2S)2
+ 

in the aqueous solution has been also reported by Asmus and 

coworkers, and the absorption band position well agree with the theoretical prediction. 

However, detailed structural information is hardly extracted from the broadened electronic 

transition.
12

  Spectroscopic evidence in the gas phase was highly requested to examine the 

theoretical predictions on the sulfur-sulfur hemibond.  

      Recently, weakening of a hemibond through the delocalization of the spin density 

beyond the two nuclei centers has been suggested.
13,14

 This phenomenon implies potential 

influence of hydrogen bonds (H-bonds) on the hemibond since charge transfer by orbital 

overlap frequently occurs with formation of an H-bond.
15

 Influence of H-bonds (solvation) 

on the hemibonded ion core should be also explored.  
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      In the present study, to address the issues proposed above, we perform infrared (IR) 

spectroscopy of (H2S)n
+
 (n = 3  ̶  6) in the gas phase. The presence of the (H2S∴SH2)

+
 

hemibonded ion core is revealed for all the observed sizes, and the solvation structure 

evolution is characterized. The experimental observation is consistent with the superiority 

of the hemibonded ion core over the proton-transferred ion core in (H2S)n
+
 predicted by the 

recent theoretical calculations.
8 

 

3.2 Experimental Setup  

3.2.1 Overview of Infrared Photodissociation Spectroscopy  

The scheme of spectroscopy and experimental apparatus are essentially the same as those 

described in Chapeter 2.  (H2S)n
+
 clusters were generated by discharge to a supersonic jet 

expansion of the H2S/Ar gaseous mixture of 5 atm. Generated ions were introduced into the 

tandem type quadrupole mass spectrometer. The cluster size of interest was selected by the 

first mass spectrometer. The mass resolution was set to be higher than Δm/z = 1, and 

contribution of H
+
(H2S)n protonated clusters was carefully removed. Then the size-selected 

clusters were introduced into the octopole ion guide, therein, the clusters were irradiated by 

the tunable IR light from the OPO/OPA system (LaserVision) pumped by the Nd-YAG 

laser (Continiuum PL-8000). The fragment ions were monitored by the second quadrupole 

mass spectrometer. IR spectra were recorded by monitoring the fragment in the single H2S 

loss channel while scanning the IR frequency in the 2300 – 2700 cm
-1

 region. The observed 
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spectra were normalized by the IR light power and band frequencies were calibrated by 

absorption lines of CO2 and CH4.  

 

3.3 Results and Discussion  

Fig. 3.2.1 shows the observed IR spectra of (H2S)n
+ 

(n = 3  ̶  6) in the SH stretch region. The 

bands higher than 2550 cm
-1

 are attributed to free SH stretches, and they are categorized to 

three different types of vibrations, as indicated by colored dotted blocks in the figure. 

Because of the ionization, SH bonds in the ion core should be somewhat weakened, so their 

stretch frequency is expected to be lower than neutral H2S. Therefore, the lowest frequency 

band at around 2560 cm
-1

 in each size (the band in the red dotted block) is assigned to free 

SH stretches of the ion core. The frequency of this band is very close to the free SH stretch 

band (2558 cm
-1

) of the H3S
+
 ion core in H

+
(H2S)n shown in the previous chapter.

16
 The 

two relatively higher frequency bands at around 2595 and 2610 cm
-1

 (the bands in the blue 

and green dotted blocks) are assigned to the symmetric (ν1) and asymmetric (ν3) SH stretch 

bands of neutral H2S moiety, respectively, which is solvating the ion core as an acceptor of 

an H-bond. These band frequencies are also very close to the corresponding free SH bands 

in H
+
(H2S)n.

34
 The ν 1 and ν 3 frequencies of neutral H2S monomer have been reported to be 

2614 and 2628 cm
-1

, respectively.
17 

The most striking feature in the spectra is in the free SH 

stretch band of the ion core highlighted by the red dotted block. Since the acidity of the SH 

bond in the ion core is enhanced with the charge, SH in the ion core is expected to be  
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Fig. 3.2.1 Observed IR spectra of (H2S)n
+ 

(n = 3 − 6). The bands are categorized into three 

types by colored dotted blocks (see text). The bump at ~2400cm
-1

 throughout all the size is 

caused by the depletion at 2360 cm
-1

 due to the strong IR absorption by atmospheric CO2.  

Reproduced from Ref. 16 with permission from the Chemical Science Owner Societies. 
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preferentially solvated (H-bonded) by neutral H2S in the cluster. Therefore, the free SH 

band of the ion core should disappear when the number of neutral H2S molecules in the 

cluster is enough to solvate all the SH bonds of the ion core. Whatever the ion core is the 

hemibonded or proton-transferred type, the free SH of the ion core should exist in (H2S)3
+
. 

Assuming the ion core is the proton-transferred type, the free SH stretch in the core is 

supposed to disappear at n = 4.
3
 In the observed spectra, however, the free SH band actually 

disappears at n = 6. This clearly demonstrates that the ion core of the clusters is the 

hemibonded type (H2S∴SH2)
+
 which has four SH bonds. The solvation of the SH bonds of 

the hemibond ion core is completed at n = 6. Moreover, this result indicates that the 

hemibonded ion core is stable with the solvation (H-bond formation) at least up to the first 

solvation shell completion.  

      With the solvation of the hemibonded ion core, the H-bonded SH stretch band of the 

ion core is expected to appear in the spectra. In the region below 2300 cm
-1

, a very broad 

absorption is seen, and this absorption is attributed to the H-bonded SH of the ion core. 

With increasing size, the weakening of the hydrogen bond of the ion core occurs as the ion 

core interacts with more number of H2S molecules, and a blue-shift trend of the broad 

absorption appears. However, the peak position is out of the reliable measurement range of 

our experimental setup.  

      To shed light on the structures of (H2S)n
+
 (n = 3  ̶  6), theoretical methods with a good 

balance between reliability and efficiency are requested. As confirmed in Chapter 2, the 

MP2/aug-cc-pVDZ level has high reliability for various neutral sulfur-centered hydrogen 
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bonded systems and H
+
(H2S)n.

18
 Unrestricted wave functions for radical cations in MP2 

tend to be contaminated by states of higher spin multiplicity. However, for (H2S)2
+
, it has 

been found that the unrestricted and restricted open-shell MP2 approaches, namely UMP2 

and ROMP2, predict almost the same energy difference between the hemibonded and 

proton-transferred type structures, showing comparable accuracy with those of CCSD(T), 

and the deviation of the spin angular moment <S
2
> value under UMP2 and ROMP2 is in 

the acceptable range.
9
 In the present work, besides the UMP2 method, a computational 

cost-effective double hybrid DFT procedure, UB2PLYPD, is also employed. By including 

53% HF exchange and 27% perturbation correlation contribution, UB2PLYPD has been 

tested to treat spin contamination well.
19

 Upon these two theoretical approaches, exhaustive 

conformational search generates both hemibonded and proton-transferred type low-lying 

structures on the potential energy surface.  For all the sizes we searched, the energy 

separation between the two ion core motifs is larger than 40 kJ/mol and the hemibonded 

type is the most energetically favored one. Therefore, for the proton-transferred type 

isomers, only the most stable one is included in the summary of n 4 (we should note that 

the structures of the proton-transferred type isomer are essentially same as those of 

corresponding H
+
(H2S)n, which have been shown in Chapter 2).  The dominance of the 

hemibonded type and the relative energy order are irrespective of the choice of the 

theoretical level, UMP2/aug-cc-pVDZ or UB2PLYPD/aug-cc-pVDZ. Details are seen in 

Table 3.2.1.  
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Table 3.2.1. Calculated relative energies in kJ/mol of the isomers of (H2S)n
+ 

(n = 3  ̶  6) at the 

UMP2/aug-cc-pVDZ and  UB2PLYPD/aug-cc-pVDZ levels. Spin angular moment <S
2
> values are 

also shown.  

Structure
[a]

 UMP2/aug-cc-pVDZ <S
2
> UB2LYPD/aug-cc-pVDZ <S

2
> 

3-1 0 0.7776 0 0.7609 

3-2 41.6 0.7619 48.4 0.7560 

3-3 44.7 0.7637 50.9 0.7569 

3-4 54.6 0.7611 92.2 0.7557 

3-5 80.6 0.7611 63.4 0.7556 

4-1 0 0.7778 0 0.7610 

4-2 4.63 0.778 0.840 0.7612 

4-3 6.01 0.7759 2.76 0.7607 

4-4 9.13 0.7773 N/A N/A 

4-5 42.8 0.7616 46.6 0.7559 

5-1 0 0.7775 0 0.7609 

5-2 3.28 0.7776 5.85 0.7610 

5-3 10.7 0.7623 N/A N/A 

5-4 4.76 0.7768 8.86 0.7608 

5-5 46.0 0.7611 53.4 0.7556 

6-1 0 0.7780 0 0.7610 

6-2 2.87 0.7774 N/A N/A 

6-3 6.01 0.7770 6.74 0.7608 

6-4 46.6 0.7611 57.1 0.7556 

 
[a]

 The label of the structure corresponds to those in the following Tables and Figures.  
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Table 3.2.2 Calculated harmonic frequencies of the isomers of (H2S)4
+
 at the UMP2/aug-cc-pVDZ 

level. All units are in cm
-1

. The hemibonded type isomers are scaled by 0.942 and the proton-

transferred type isomer is scaled by 0.946. The corresponding experimental values are listed for 

comparison.  

 Exp. 4-1 4-2 4-3 4-4 4-5
[a]

 

stretch of H-bonded SH 

in the ion core 
 

2210 

2243 

2166 

2182 

2232 

2266 
2150 

1949 

2021 

2138 

stretch of SH radical      2584 

stretch of free SH in the 

hemibonded core 
2565 

2565 

2566 

2565 

2567 

2555 

2578 

2548 

2564 

2585
[b]

 

 

sym. stretch of free SH 

in H-bonded H2S 
2593 

2586 

2587 

2585
[c]

 

2585
[c]

 

2586 

2588 
2585

[b]
 

2592 

2593 

sym. stretch of free SH 

in charge-dipole bound 

H2S 

    2593  

asym. stretch of free 

SH in H-bonded H2S 
2610 

2610 

2611 

2609
[c]

 

2609
[c]

 

2610 

2612 
2610 

2615 

2617 

asym. stretch of free 

SH in charge-dipole 

bound H2S 

    2618  

[a]
 Proton-transferred type. 

[b]
 These two vibrational modes are heavily mixed.  

[c]
 Degenerated frequencies. 
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Table 3.2.3 Calculated harmonic frequencies of the isomers for (H2S)4
+
 at the UB2PLPYD/aug-cc-

pVDZ level. All units are in cm
-1

. The hemibonded type isomers are scaled by 0.9607 and the 

proton-transferred type isomer is scaled by 0.963. The corresponding experimental values are listed 

for comparison.   

 Exp. 4-1 4-2 4-3 4-5
[a]

 

stretch of H-bonded 

SH in the ion core 
 

2144 

2195 

2094 

2126 

2161 

2194 

1884 

1963 

2107 

stretch of SH radical     2580 

stretch of Free SH in 

the hemibonded core 
2565 

2576 

2577 

2574 

2576 

2568 

2582 
 

sym. stretch of H-

bonded H2S 
2593 

2593
[b]

 

2593
[b]

 

2587
[b]

 

2587
[b]

 

2590 

2591 

2593 

2594 

asym. stretch of H-

bonded H2S 
 

2608
[b]

 

2608
[b]

 

2603
[b]

 

2603
[b]

 

2606
[b]

 

2606
[b]

 

2608 

2609 

[a]
 Proton-transferred type 

[b]
 Degenerated frequencies 

 

           The essentially same conclusion has also been reported by Do et al. for (H2S)n
+ 

(n=2-

4) by searching the isomers through the Basin-Hopping approach and structural 

optimization at CCSD(T)/aug-cc-pVDZ.
8
 In our computations, the UMP2 method yields 

the <S
2
> value with small deviation of 0.021 at average to the exact value (0.75) and the 

spin contamination is not serious. Furthermore, the simulated spectra by the UMP2 method 

show better agreement with the experimental ones than those by UB2PLYPD. Details are 

shown in Tables 3.2.2 and 3.2.3. Thus, in the following, UMP2/aug-cc-pVDZ is utilized as 

the main theoretical method.  
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      In Fig. 3.2.2 to 3.2.5, we compare the observed IR spectra of (H2S)n
+
 (n = 3  ̶  6) with 

the harmonic simulated spectra of the stable isomers. In addition, the simulated spectrum of 

the most stable isomer of each size, which is actually in the best agreement with the 

experimental spectrum, is summarized in Fig. 3.2.6. The most stable isomer in each size 

has the hemiboned type ion core. The stick harmonic spectra are convoluted with a 

Lorentzian function of 10cm
-1

 FWHM, and the frequencies are scaled by the factor 0.942. 

The simulations reproduce well the observed spectra, supporting the qualitative 

assignments provided above. For the ν3 band, non-negligible discrepancy between the 

observed spectra and simulations is found. The observed ν3 band intensity, relative to ν1, 

seems to be remarkably suppressed. The similar suppression of the ν3 band has been also 

seen in H
+
(H2S)n and many water analogues. This has been ascribed to difference of the 

internal rotation structure, dissociation yield, and transition intensity enhancement between 

the ν 1 and ν 3 bands, as discussed in Chapter 2.
16,20-22

  



69 

 

 

 

Fig. 3.2.2. Comparison between the observed and simulated spectra of (H2S)3
+
. Colors of the 

sticks represent types of stretch modes, and they are shown on the top of the panel. Relative 

energy (RE) is also shown in kJ/mol. Since the intensity of the stretch of H-bonded SH in the ion 

core is about 100~400 times greater than those of the free SH stretches in the neutral H2S 

moiety, its stick is simply cut for a clear presentation. The stretch frequencies of H-bonded SH in 

the ion core of 3-2, 3-3 and 3-4 are out of the displayed range; 1690 and 1945 cm
-1

 for 3-2, 1573 

and 1754 cm
-1

 for 3-3, and 1368 cm
-1

 for 3-4. Reproduced from Ref. 16 with permission from 

the Chemical  Science Owner Societies. 
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Fig. 3.2.3. Comparison between the observed and the simulated spectra for (H2S)4
+
. Colors of 

the sticks represent types of stretch modes, and they are shown on the top of the panel. Relative 

energy (RE) is also shown in kJ/mol. Since the intensities of the stretches of H-bonded SH in 

the ion core are about 100~400 times greater than that of the free SH stretches in the neutral H2S 

moiety, their sticks are simply cut for a clear presentation. The two bands of stretches of H-

bonded SH in the hemibonded core of 4-2 are degenerated. Another stretch of H-bonded SH in 

the ion core of 4-5 is located at 1949 cm
-1

. For 4-4, one H2S is bound to the hemibonded ion 

core by the charge-dipole interaction. Reproduced from Ref. 16 with permission from the 

Chemical Science Owner Societies. 
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Fig. 3.2.4 Comparison between the observed and the simulated spectra for (H2S)5
+
. Colors of 

the sticks represent types of stretch modes, and they are shown on the top of the panel. Relative 

energy (RE) is also shown in kJ/mol. Since the intensities of the stretches of H-bonded SH in 

the ion core are about 100~400 times greater than that of the free SH stretches in the neutral 

H2S moiety, their sticks are simply cut for a clear presentation. In 5-2 and 5-3, there are the 

stretch vibrational modes of charge-dipole bound H2S, which are denoted by black dotted lines. 

In 5-4, the SH stretches arising from the 2-coordinated H2S sites are denoted by red dotted lines. 

The stretches of H-bonded SH in the ion core of 5-5 locate at 1889, 2011, and 2106 cm
-1

. 

Reproduced from Ref. 16 with permission from the Chemical  Science Owner Societies.   
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Fig. 3.2.5 Comparison between the observed and the simulated spectra for (H2S)6
+
. Colors of 

the sticks represent types of stretch modes, and they are shown on the top of the panel. Relative 

energy (RE) is also shown in kJ/mol. Since the intensities of the stretches of H-bonded SH in 

the ion core are about 100~400 times greater than that of the free SH stretches in the neutral 

H2S moiety, their sticks are simply cut for a clear presentation. For 6-2 and 6-4, there are the 

stretch vibrational modes of charge-dipole bound H2S, which are denoted by black dotted lines. 

The stretches arising from the 2-coordinated H2S sites in 6-3 are denoted by red dotted lines. 

Another two stretches of H-bonded SH in the ion core of 6-4 locate at 1897 and 1995 cm
-1

. 

Reproduced from Ref. 16 with permission from the Chemical  Science Owner Societies. 
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      The spin density of the most stable structures is shown in Fig. 3.2.7. The spin density 

(unpaired electron) is almost equally delocalized on the two H2S molecules, indicating the 

2c-3e bond nature of the ion core. With the solvation of the ion core, the positive charge 

gradually delocalizes to the solvent H2S moiety. Even under the first solvation shell 

completion at n = 6, however, the natural charge in the (H2S∴SH2)
+ 

ion core is 

predominant, and this demonstrates the stability of the hemibond to the solvation (H-bond 

formation). The influence of the charge is also seen in the dissociation energy (D0)  

Fig. 3.2.6 Comparison between the observed spectral and harmonic spectra of the most stable 

isomers of (H2S)n
+
 (n = 3 − 6) in the free SH region. The simulation was performed at 

UMP2/aug-cc-pVDZ with the scaling factor 0.942. Reproduced from Ref. 16 with permission 

from the Chemical Science Owner Societies. 
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calculated with the basis set superposition error (BSSE) and zero point energy corrections. 

D0 is estimated to be 32.1, 30.2, 24.6, and 22.6 kJ mol
-1

 for n = 3 to 6, respectively. The 

gradual decrease reflects the charge delocalization of the ion core to the solvent H2S 

molecules. The D0 values of (H2S)n
+
 are lower than those of H

+
(H2S)n, wherein D0 in the 

first H-bonded solvation shell is 42.3 kJ/mol at the same level of theory.
23 

This is 

rationalized by the fact that the charge in H
+
(H2S)n is primarily distributed to the single 

molecule of the Eigen type core H3S
+ 

while the charge in (H2S)n
+
 is shared by the two H2S 

molecules of the hemibonded ion core.  

 

Fig. 3.2.7 The spin density for (H2S)n
+
 (n = 3 − 6) (isovalue = 0.006), and the natural 

population analysis (NPA) charge distribution for the molecular component.  Reproduced from 

Ref. 16 with permission from the Chemical Science Owner Societies. 
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3.4 conclusions  

In summary, through an IR spectroscopic study of the SH stretch region, we have 

experimentally proven the hemibonded motif of the ion core in (H2S)n
+
 (n = 3 – 6) which 

has been predicted by the theoretical calculations and electronic spectroscopy. In (H2S)n
+
, 

the hemibonded ion core motif is much more stable than the proton transferred ion core 

motif. The hemibonded ion core motif is stable toward solvation at least up to the 

completion of the first solvation shell. 

 

Reference 

[1] G. H. Gardenier and M. A. Johnson, J. Phys. Chem. A 2009, 113, 4772-4779. 

[2] P.-R. Pan, Y.-S. Lin, M.-K. Tsai, J.-L. Kuo and J.-D. Chai, Phys. Chem. Chem. 

Phys.2012, 14, 10705-10712.   

[3] J. D. Herr, J. Talbot, and R. P. Steele, J. Phys. Chem. A 2015, 119, 752-766. 

[4] K. Mizuse and A. Fujii, J. Phys. Chem. A 2013, 117, 929-938.  

[5] T. Clark, J. Comput. Chem. 1981, 2, 261-265.   

[6] P. M. W. Gill and L. Radom, J. Am. Chem. Soc. 1988, 110, 4931-4941. 

[7] T. K. Ghanty and S. K. Ghosh,  J. Phys. Chem. A 2002, 106, 11815-11821.  

[8] H. Do and N. A. Besley, Phys. Chem. Chem. Phys. 2013, 15, 16214-16219. 

[9] T. Stein, C. A. Jiménez-Hoyos and G. E. Scuseria, J. Phys. Chem. A 2014, 118, 7261-

7266. 



76 

 

[10] F. M. Bickelhaupt, A. Diefenbach, S. P. de Visser, L. J. de Koning and N. M. M. 

Nibbering, J. Phys. Chem. A 1998, 102, 9549-9553.   

[11] P. R. Horn, Y. Mao, and M. Head-Gordon,  J. Chem. Phys. 2016, 144, 114107.  

[12] S. A. Chaudri, K.-D. Asmus,  Angew. Chem. Int. Ed.1981, 20, 672-673.  

[13] S. Zhang, X. Wang, Y. Sui and X. Wang, J. Am. Chem. Soc. 2014, 136, 14666-14669. 

[14] C. H. Hendon, D. R. Carbery and A. Walsh, Chem. Sci. 2014, 5, 1390-1395.  

[15] E. Ronca, L.Belpassi and F. Tarantelli, ChemPhysChem  2014, 15, 2682-2687.  

[16] D. Wang and A. Fujii, Phys. Chem. Chem. Phys. 2017, 19, 2036-2043. 

[17] L. Lechuga-Fossat, J. M. Flaud, C. Camy-Peyret and J. W. C. Johns, Can. J. Phys. 

1984, 62, 1889-1923. 

[18] H. S. Biswal, S. Bhattacharyya, A. Bhattacherjee and S. Wategaonkar, Int. Rev. Phys. 

Chem. 2015, 34, 99-160.   

[19] A. S. Menon and L. Radom, J. Phys. Chem. A 2008, 112, 13225-13230.  

[20] Y. S. Wang, H. C. Chang, J. C. Jiang, S. H. Lin, Y. T. Lee, and H. C. Chang, J. Am. 

Chem. Soc. 1998, 120, 8777-8788.  

[21] T. Pankewitz, A. Lagutschenkov, G. Niedner-Schatteburg, S. S. Xantheas and Y.-T. 

Lee, J. Chem. Phys. 2007, 126, 074307. 

[22] K. Mizuse, H. Hasegawa, N. Mikami and A. Fujii, J. Phys. Chem. A 2010, 114, 11060-

11069.  

[23] M. Bonifačić, K.-D. Asmus, J. Chem. Soc. Perkin Trans. II 1980, 758-762. 

 

 



77 

 

Summary 

In this thesis, in order to illustrate the nature of sulfur-centered intermolecular interactions, 

the structures of H
+
(H2S)n (n = 3 – 9) and (H2S)n

+
 (n = 3 – 6) in the gas phase were 

characterized by infrared spectroscopic observation and ab initio calculations. The 

structural information of the proposed models provides a significant and in-depth 

understanding of stabilization of protein structures and radical chemistry, since sulfur-

centered intermolecular interactions are ubiquitous in protein. For example, sulfur exists in 

the amino acids, cysteine and methionine, and it could form the S∴π  and S∴S 

hemibonds with the neighboring aromatic ring and amino acid, such hemibond plays a 

critical role in electron hopping in proteins.  

      We found that, in H
+
(H2S)n (n = 3 – 9), the charge-dipole shell formation precedes the 

second H-bonded shell formation, that means 7 molecules could directly interact with the 

Eigen type ion core, and the second H-bonded shell starts at size n=9. The role of 

dispersion and the charge-induced dipole were conceived to be critical in such closely 

solvated structures.  In (H2S)n
+
 (n = 3 – 6), the hemibonded motif of the ion core was 

demonstrated, as well as the small impact of the formation of a solvation shell on the ion 

core structure.  

      As for the future work, we are aimed at the spectroscopic characterization of S ̶ Hπ 

interaction in the simplest model system, benzene-H2S, in the gas phase. The noncovalent 

interactions involving the aromatic ring in amino acids are important in the dynamics of 

protein folding, while, S ̶ Hπ interaction has rarely been investigated with only large 
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theoretical calculations and one investigation of rotational spectra. The dearth experimental 

observation is in need.  


