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Chapter 1  Introduction 

Transition metal oxides, such as the group 5 transition metal oxides, have numerous 

applications because of their electrical, optical, and magnetic performances. Also, they are of important 

industrial materials because of their ability to effective oxidation-reduction reactions, and their ability 

to act as promotors to can enhance catalytic activity, selectivity, and prolong catalyst life. The group 5 

metal oxides exist as pentoxides (M2O5, M = V, Nb, or Ta) in the bulk phase with a formal oxidation 

state of +5, yet each of its crystalline structure vary largely from one another. Considering the surface 

structures in the bulk phase as assemblies of clusters of different sizes and isomers, can further support 

the understanding their catalytic activities and properties. Therefore, exploring the structural differences 

in the form of gas-phase clusters may give insights the differences in bulk phase properties. Gas-phase 

clusters provide an ideal and controlled environment to probe their reactivity, or structures as a 

complementary knowledge to the bulk materials. Especially, there are numerous experimental and 

theoretical techniques that can be incorporated into the study of gas-phase clusters, an isolated system. 

 This study intend to unveil the composition and structural information of the group 5 metal oxide 

cluster ions with ion mobility mass spectrometry (IM-MS). By applying IM-MS and theoretical calculations, 

detailed cluster structure information such as collision cross section can be evaluated to understand the 

similarities and differences of the group 5 metal oxide in the cluster phase. These information can be further 

used to evaluate the difference in their properties as bulk phase materials. 

 

 

Chapter 2 – 3  Experimental Principle and Method 

Ion mobility mass spectrometry is an analytical method that separates ions in the gas phase under 

the influence of an electric field in the presence of an inert gas as collision gas in an ion drift cell. Gas-phase 

ions can be separated according to their size and shape, which is on the basis of their mobilities measured in 

the ion drift cell. A common technique for ion mobility spectrometry is the combination with mass 

spectrometry. Coupling with mass spectrometry allows the determination of molecular weight, or mass, 

 

 

Experimentally, vanadium, niobium, and tantalum oxide cluster ions (MmOn
±) were first generated 

by combination of laser ablation and supersonic expansion of O2/He mixture gas. The generated cluster ions 

were injected into an ion drift cell with an injection energy of 50 or 250 eV by a pulsed electric field, and 

collision induced dissociation (CID) occurred along with ion injection. Following the entrance into the ion 

drift cell, the product ions experience acceleration with an applied electrostatic field and deceleration by 

collisions with He buffer gas filled inside the cell. The cluster ions reached constant drift velocity depending 

on their interaction with He buffer gas, and therefore arrived at the cell exit with different arrival times for 

structure analysis. Arrival time is the time that each cluster ion takes to pass through the cell, and is dependent 

on its interaction with He buffer gas. Finally, the product ions were delivered through the reflectron-type 

time-of-flight (TOF) mass spectrometer for mass analysis. The obtained arrival time and TOF were used to 

analyze the collision cross sections (CCSs) of the size-selected cluster ions by using ion transport theory. 

 In the theoretical study, geometrical structure candidates were first optimized with Gaussian09 

program. The calculation levels were B3LYP/6-311+G(d) for vanadium oxides, B3LYP/DGDZVP for 

niobium oxides, and B3LYP/cc-pVTZ(O) and cc-pVTZ-pp(Ta) for tantalum oxide cluster ions. Next, 

theoretical CCSs of the proposed geometrical structures were calculated with the projection approximation 

method in MOBCAL program. 

 

 

Chapter 4 Group 5 Transition Metal Oxides 

 

Vanadium Oxide Cluster Ions 

The stable species found upon collision induced dissociation caused by high injection energy 

at the inlet of the ion-drift cell were (VO2)(V2O5)(m-1)/2
+, (V2O4)(V2O5)(m-2)/2

+, (VO3)(V2O5)(m-1)/2
, and 

(V2O5)m/2
 for all vanadium oxide cluster ions between m = 2–20, depending on the odd or even number 

of vanadium atoms. These compositions for vanadium oxide cluster ions are of stoichiometric 
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compositions, formed with stoichiometric units or stable building block units. They had an oxygen to 

metal ratio of approximately n = 2.5m.  

Next, vanadium oxide cluster ions (VmOn
±), with m = even, were known to have polyhedral 

cage structure frameworks, where every vanadium atom forms the vertices of the polyhedron, and are 

inter-connected by bridging oxygen atoms. The result is proved by comparing the experimental and 

theoretical collision cross sections of Gaussian09 optimized geometrical structures. Perfect tetrahedron 

structure is an example of such polyhedron structure. In this tetrahedral structure of V4O9
+ or V4O10

, 

vanadium metal atoms bond to a maximum of four oxygen atoms, of which three are bridging oxygen 

atoms and one is terminal oxygen atom. The geometrical structures of vanadium oxide cluster ions grow 

smoothly by increasing the size of polyhedron framework.  

 

Niobium Oxide Cluster Ions 

 

First, the stable compositions found for niobium oxide cluster ions, NbmOn, up to m = 24 were 

slightly different from vanadium oxide counterpart: (NbO2)(Nb2O5)(m-1)/2
 + and (Nb2O5)m/2

 +. Similarly, 

these compositions are formed with stoichiometric units or stable building block units. 

As for the geometrical structures for niobium oxide cluster ions (NbmOn
±), the same basic 

framework to vanadium oxide cluster ions was found for m = 2-7. Nb4O10
+ is intensively found for 

cluster cations, which also have the same tetrahedral framework as the vanadium oxide counterpart. 

From the experimental CCSs observed with IM-MS, a structure transition of NbmOn
+ can be observed 

at m = 8-9, where a decrease in overall CCS growth occurred. Similarly, a transition is found at m = 7-

8 for NbmOn
. Such difference in experimental CCS growth suggested a difference in structural 

formation. At medium to large cluster size, optimized geometrical structures indicated that some Nb 

atom in the most stable structures of species such as Nb9O22
+ were found to have more than 4 oxygen 

atom coordination, forming NbO5 or NbO6 coordination. This is a property greatly different from that 

of vanadium oxide cluster ions.  

 

Tantalum Oxide Cluster Ions 

 

Finally, different from vanadium and niobium oxide cluster ions, On the other hand, the stable 

composition of tantalum oxide was found to be (Ta2O5)(TaO3)m-2
+ and (TaO3)m

± for most species in m 

= 1-13. Relatively oxygen-rich species (in comparison to stoichiometric compositions) were thus stable 

for tantalum oxide cluster cations, where the oxygen to metal ratio of approximately n = 3m. 

Geometrical structures for the oxygen rich tantalum oxide cluster (TamOn
±) greatly resemble 

that of vanadium and niobium oxide cluster ions at small m. The optimized geometrical structures of 

oxygen-rich tantalum oxide clusters shows multiple oxygen atom coordination. For m = 4, Ta4O11
+ was 

also found to have a perfect tetrahedral structure, yet it contains an extra oxygen atom bonded to the 

terminal metal atom as a superoxide unit. Additionally, the geometrical structures of Ta5O13-16
+ resemble 

that of V5O12
+ and Nb5O12

+ pyramid framework, and the additional oxygen atoms are found to be on the 

terminal sites. From here, tantalum atoms bond to excess oxygen atoms with more than 4 oxygen  

coordination, which is a similar property found in the bulk materials. 

 

 In conclusion, though group 5 metal oxides have very similar properties in the bulk phase, they 

share many similarities and differences in the cluster phase. The main similarity found is the 

compositions, where all of the group 5 metal oxides are composed of stoichiometric building block 

units. As cluster size increases, bulk like properties such as number of oxygen atom coordination began 

to become a dominant property in the gas-phase cluster ions. 


