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Abstract

It has been established that star formation activities in the universe were in their maximum rate

about 10 Gyrs ago (z ⇠ 2; an epoch commonly called as the cosmic noon) after which most galaxies

undergoing quenching of star formation activity. Despite the decreasing global average of star

formation activity over the last 10 Gyrs, stellar mass buildup in the universe were still progressing.

About 50% of the current stellar mass density in the universe is built over the last ⇠ 8.7 Gyrs ago.

How galaxies quench their star formation activities and build their stellar masses during the cosmic

afternoon epoch (i.e. an epoch after the cosmic noon) is still unclear. In order to understand that

and furthermore study the spatially resolved quenching process and stellar mass buildup in galaxies,

information on the spatially resolved star formation rate (SFR) and stellar mass (M⇤) of galaxies

over wide redshift range is needed. In this thesis, we study the spatially resolved distributions of

SFR and M⇤ in massive disk galaxies at 0.01 < z < 0.02 and 0.8 < z < 1.8 and infer the evolution of

surface density radial profiles of massive disk galaxies over the last 10 Gyrs. We derive the spatially

resolved SFR and M⇤ in a galaxy using our established spatially resolved spectral energy distribution

(SED) fitting method, namely pixel-to-pixel SED fitting. In this method, spatially resolved SEDs of

a galaxy are fitted to a set of model SEDs using Bayesian statistics approach to obtain the spatially

resolved (at ⇠ 1 kpc-scale) SFR and M⇤ of the galaxy. We construct spatially resolved SEDs, which

covers rest-frame far-ultraviolet (FUV) to near-infrared (NIR), of a galaxy at 0.01 < z < 0.02 by

combining imaging data-set from GALEX and SDSS. For the sample galaxies at 0.8 < z < 1.8, we

use imaging data-set from CANDELS and 3D-HST, which gives a similar rest-frame FUV to NIR

coverage.

We find a relation between SFR surface density (⌃SFR) and M⇤ surface density (⌃⇤) at sub-

galactic scale (⇠ 1 kpc) namely spatially resolved star formation main sequence (SFMS), which

is hold at z ⇠ 0 and z ⇠ 1. In massive star-forming disk galaxies at 0.8 < z < 1.8 that reside

on the global SFMS, this relation is linear over entire ⌃⇤ range, while in massive disk galaxies

with lower global specific SFR (sSFR⌘ SFR/M⇤) at both 0.8 < z < 1.8 and 0.01 < z < 0.02

redshift ranges, the spatially resolved SFMS has a ’flattening’ trend at high ⌃⇤ end. The spatially

resolved SFMS evolves with cosmic time by decreasing sSFR (⌃SFR/⌃⇤) over entire ⌃⇤ range with

systematically larger decrease at high ⌃⇤ region compared to that at low ⌃⇤ region leading to an

increasing prominence of the ’flattening’ at high ⌃⇤ end. The ’flattening’ trend at high ⌃⇤ end of the

spatially resolved SFMS is consistent with a suppression of sSFR in the central region as shown in the

sSFR(r) radial profile. The evolutionary trend shown in the spatially resolved SFMS is consistent

with the evolutionary trend of the sSFR(r) radial profile, which shows decreasing sSFR with cosmic

time over entire radii with systematically larger decrease in the central region compared to that in the

outskirt, agrees with the ’inside-out’ quenching scenario. The above evolutionary trend of sSFR(r)

radial profile combined with an observed tendency of increasing bulge fraction with decreasing global

sSFR suggests a formation and growth of bulge as galaxies undergoing inside-out quenching. In order

to quantitatively examine evolution of the spatially resolved SFR and stellar mass of massive disk
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galaxies, we construct an empirical model for the evolution of the surface density radial profiles

(i.e. ⌃SFR(r), ⌃⇤(r), and sSFR(r)). The empirical model could connect between the evolution of

the ⌃SFR(r) radial profile and resolved stellar mass growth depicted by the evolution of the ⌃⇤(r).

The empirical model suggests that massive disk galaxies undergoing steady stellar mass buildup and

quenching of star formation that proceed in ’inside-to-outside’ manner.

Contents of this thesis are partially adopted from our following published papers:

1. Understanding the scatter in the spatially resolved star formation main sequence of local mas-

sive spiral galaxies, Abdurro’uf and M. Akiyama, 2017, MNRAS, 469, 2806. doi: 10.1093/mn-

ras/stx936.

2. Evolution of spatially resolved star formation main sequence and surface density profiles in

massive disc galaxies at 0 . z . 1: inside-out stellar mass buildup and quenching, Abdurro’uf

and M. Akiyama, 2018, MNRAS, 479, 5083. doi: 10.1093/mnras/sty1771.

Contents of Chapter 4, which discuss the spatially resolved distributions of SFR and M⇤ in massive

disk galaxies at z ⇠ 0, are partially adopted from the first paper. Contents of Chapters 5 and 6,

which discuss the spatially resolved distributions of SFR and M⇤ in massive disk galaxies at z ⇠ 1

and evolution of the spatially resolved SFR and M⇤ at 0 . z . 1 are based on the second paper.
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Chapter 1

Introduction

Galaxy, which consists of stars, gas, and dust, is the biggest visible celestial body in the universe.

There are more than 100 billion galaxies spreading all over the universe. This fact make galaxies

are considered as ’islands in the universe’. Despite their abundances in the universe, total energy

(mass) budget contributed by all the baryonic matters (which make up the visible galaxies) only

account for ⇠ 5% of the total energy (mass) budget of the universe. Another contributions to the

energy (mass) budget come from invisible matters, which are dark matter (⇠ 25%) and dark energy

(⇠ 70%). How do galaxies formed and evolved in the dark universe is one of the biggest question

in astronomy. Based on the currently favored cosmological framework, ⇤CDM cosmology, galaxies

were formed hierarchically as large scale structures in the universe assembled. The assembly of large

scale structures is started from tiny primordial density fluctuation (believed to be initiated from

quantum fluctuation) which then grow by gravitational attraction. At early cosmic time, all matters

(baryon and dark matter) are mixed, then due to radiative energy loss of the dissipative baryons, the

baryons are separated from the weakly interacting and non dissipative dark matter. The baryons

dissipate their energies and fall toward central gravitational well and become a seed of a galaxy,

while the dark matter stay on the outer envelope and become a halo. The seed of galaxy then grow

over cosmic time and become a present day galaxy through complex processes that include matter

(including gas) accretion by mergers or smooth filamentary accretion and internal processes that

include star formation, which transform gas into stars, and feedback process, which slow down the

star formation rate. The various complex processes experienced by the galaxies throughout their

life make up the diversity of the present day galaxies.

In the first chapter we briefly overview cosmological evolution of global properties of the galaxies

and current e↵orts on analyzing spatially resolved properties in the galaxies at the present day

universe and at high redshift. In the final part of this chapter, we describe the goals of this thesis.
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1.1 Cosmic star formation history

Observations of star-forming galaxies at di↵erent redshifts can provide information on the production

rate of stars in the universe as a function of redshift. The time evolution of star formation rate (i.e.

star formation history) in the universe can be characterized by cosmic star formation rate density

(cSFRD), ⇢SFR(z), which is star formation rate per unit comoving volume at redshift z. Deriving

the ⇢SFR(z) from observations requires estimates of the number density of galaxies as a function

of redshift and their star formation rates (SFRs). In practice, one can use the number density of

galaxies as a function of luminosity in some waveband, i.e. luminosity function  (L, z), which is

obtained from spectroscopic surveys of galaxies, to estimate ⇢SFR(z) by using following equation

⇢SFR(z) =

Z
dṀ⇤Ṁ⇤

Z
P (Ṁ⇤|L, z)�(L, z)dL =

Z
hṀ⇤i(L, z) (L, z)dL. (1.1)

In the above equation, P (Ṁ⇤|L, z)dṀ⇤ is the probability for a galaxy with luminosty L (in a given

band) at redshift z to have a SFR in the range (Ṁ⇤, Ṁ⇤ + dṀ⇤), and hṀ⇤i(L, z) is the mean SFR

for galaxies with luminosity L at redshift z. The conversion from luminosity to SFR depends on

the rest-frame waveband used to measure the luminosity function. Following the above principle,

Madau and Dickinson (2014) used data from redshift surveys of galaxies in the rest-frame UV and

IR to compile the ⇢SFR(z) and found that the ⇢SFR(z) is best-fitted by the following equation

⇢SFR(z) = 0.015
(1 + z)2.7

1 + [(1 + z)/2.9]5.6
M�yr

�1Mpc�3 (1.2)

Fig. 1.1 (left panel) shows the cosmic evolution of star formation rate density in the universe

(cSFRD) measured by Madau and Dickinson (2014) (and reference therein). The black line repre-

sents best-fit function for the cSFRD (eq. 1.2). It is shown by the figure that the star formation rate

density in the universe reached a peak value at z ⇠ 2 and dropped by roughly an order of magnitude

after that. The declining trend at z < 2 is well fitted with an exponentially declining function with

e-folding timescale of 3.9 Gyr. The same trend of cosmic star formation history also observed by

the preceding works (e.g. Madau 1995; Lilly et al. 1996; Hopkins 2004; Hopkins and Beacom 2006).

Right panel of Fig. 1.1 shows the cosmic evolution of the stellar mass density in the universe. The

black line represents the inferred stellar mass density evolution from the best-fit cSFRD (eq. 1.2)

(which is derived by integrating the cSFRD). The figure shows that the stellar mass density in the

universe is increasing with cosmic time. It is suggested by this figure that about half of the current

stellar mass density in the universe is built by the star formation in the galaxies over the last ⇠ 8.7

Gyrs (z . 1.3).
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Figure 1.1: Left panel: cosmic evolution of star formation rate density in the universe (cSFRD).
Right panel: cosmic evolution of stellar mass density in the universe. This figure is taken from
Madau and Dickinson (2014).

1.2 Global properties of galaxies

Thanks to the increasing number of the imaging and spectroscopic surveys of galaxies, we can

study galaxy evolution statistically. Over the last decades, the imaging and spectroscopic surveys of

galaxies have been focusing on studying the global galaxy properties. Many galaxy scaling relations

have been studied and give insights toward the understanding of galaxy evolution. Among the

others, those surveys have revealed the following (briefly described in the following subsections)

scaling relations that are meaningful for understanding of the galaxy evolution.

1.2.1 Galaxy bimodality: blue and red sequences

Distribution of galaxies on the color versus absolute magnitude (or color versus stellar mass) plane

is strongly bimodal (e.g. Strateva et al. 2001; Blanton et al. 2003; Kau↵mann et al. 2003a; Baldry

et al. 2004). Two sequences are emerged from the distribution of galaxies on that plane, blue- and

red sequences (see left panel of Fig. 1.2). Less populated region between the two sequences is called

green valley. Low mass galaxies populate the blue sequence, while massive galaxies populate the

red sequence. The (u � r) color of local galaxies (0.02 < z < 0.05; the redshift range considered in

Schawinski et al. (2014)) tell us about age of the stellar population in the galaxies with redder mean

older age. Kau↵mann et al. (2003a) investigated distribution of galaxies on the Dn(4000) (4000Å)

versus M⇤ plane and found a similar bimodality trend as in the color versus M⇤ plane, with massive

galaxies populate the old sequence and low mass galaxies populate the young sequence, furthermore,

they found a typical transition mass (between the old and young sequences) of ⇠ 1010.5M�.

The color bimodality trend mentioned above is correlated with the galaxy morphology. As

investigated by Schawinski et al. (2014) (see the two separate color-M⇤ diagrams for early-type and

late-type galaxies in the left panel of Fig. 1.2), majority of the galaxies in the red sequence are

early-type or elliptical, while majority of the galaxies in the blue sequence are late-type or disk
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Figure 1.2: Left panel: distribution of local galaxies on the u � g versus M⇤ plane for all galaxies
as well as early-type and late-type galaxies separately. The green lines define the locus occupied by
green-valley galaxies. The contours are linear and scaled to the highest value. This figure is taken
from Schawinski et al. (2014). Right panel: distribution of galaxies on the SFR versus M⇤ plane.
The color coding represents the number density of galaxies, which has been corrected for the volume
incompleteness. The SFR and M⇤ are taken from the MPA-JHU catalog (Brinchmann et al. 2004).
This figure is taken from Renzini and Peng (2015).

galaxies. However, there is a substantial amount of late-type galaxies in the green-valley and red

sequence. The authors interpreted the observed trend with two quenching processes, which are fast

and slow quenching processes. Red (quiescent) early-type galaxies seem to be a product of fast

quenching, which caused by a destruction of gas reservoir by some feedback mechanism (due to e.g.

AGN, supernova). The feedback could be triggered by a merger event which could also transform

the galaxy morphology from late-type to early-type. Late-type galaxies in the green-valley and red

(quiescent) sequence are thought of being experienced slow quenching, which could be caused by a

shut o↵ of the cosmic gas accretion, perhaps at the time when its host dark matter halo reaches a

critical mass. The shut o↵ of the cosmic gas accretion results in a gradual run out of the remaining

gas and declining of the SFR.

Distribution of galaxies on the SFR versus M⇤ plane also found to be bimodal (see right panel

of Fig. 1.2). Two sequences are emerged in the distribution of galaxies on the SFR versus M⇤

plane, star-forming sequence (also called star formation main sequence) and quiescent sequence.

The star formation main sequence is populated by star-forming galaxies, while quiescent sequence

is populated by quiescent (also called quenched) galaxies. Sparse region between the star formation

main sequence and the quiescent sequence corresponds to the green-valley.

Physical mechanisms responsible for the quenching of the star formation in galaxies are still

unclear. Several quenching mechanisms have been proposed. Starburst event can rapidly consumes

gas in the galaxy and make the galaxy lack the gas. If cold gas inflow into the galaxy shut o↵

due to the stellar feedback associated with the starburst, the star formation in the galaxy could be
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quenched (e.g. Murray et al. 2005). Moreover, the cold gas supply could also be suppressed by the

feedback from an active galactic nuclei (AGN) through quasar or radio feedback mode (e.g. Sanders

et al. 1988; Silk and Rees 1998; Springel et al. 2005; Hopkins et al. 2006, 2008; Schawinski et al. 2006;

Fabian 2012). The suppression of the cold gas inflow leading to the quenching could also happen

once the growth of the dark matter halo reaches a critical mass (⇠ 1012M�) above which newly

accreted gas will be shock heated and stay at the virial temperature, i.e. transition from the cold

accretion mode to the hot accretion mode (e.g. Birnboim and Dekel 2003; Dekel and Birnboim 2006).

On the other hand, growth of the central bulge component could also quenches the star formation

in the galaxy through its deep gravitational potential, which could stabilize gas in the disk against

local instability and prevent the gas from collapse. This scenario is called a morphological quenching

process (e.g. Martig et al. 2009; Genzel et al. 2014).

1.2.2 Global star formation main sequence

As pointed out in the previous section, star-forming galaxies reside in a sequence called star formation

main sequence (SFMS) on the SFR versus M⇤ plane. The nearly linear SFMS suggests that SFR

increases with M⇤ as a power law (SFR / M↵
⇤ with ↵ ⇠ 1) over at least two orders of magnitude

in M⇤ (⇠ 109 � 1011M�). This relation has been studied by many researchers over the last decade

(e.g. Brinchmann et al. 2004; Elbaz et al. 2007; Noeske et al. 2007; Salim et al. 2007; Whitaker

et al. 2012, 2014; Speagle et al. 2014; Renzini and Peng 2015). The SFMS relation holds up to high

redshifts (see Fig. 1.3) and shows evolution in terms of its normalization and slope. The evolution of

the normalization shows a factor of ⇠ 2 dex decrease from z ⇠ 6 to z ⇠ 0 (Speagle et al. 2014). The

decreasing normalization with decreasing redshift reflects a decreasing global sSFR with decreasing

redshift. While the normalization and slope of the SFMS evolve with redshift, the scatter of the

SFMS, which is ⇠ 0.3 dex, is roughly constant across a wide redshift range (Whitaker et al. 2012;

Speagle et al. 2014). Only few galaxies have significantly elevated SFR with respect to the SFMS,

and their contributions only account for ⇠ 10% of the overall star formation over a redhsift range

of 0 < z < 2 (Rodighiero et al. 2011; Sargent et al. 2012). The tightness of the SFMS implies the

importance of internal secular process against stochastic merger process in driving the star formation

activity in majority of the galaxies (Noeske et al. 2007). The confinement of galaxies on the SFMS

for a long period of time suggests a steady evolution of galaxies governed by quasi-steady gas inflow,

gas outflow, and gas consumption by the star formation activity.

1.2.3 Downsizing phenomenon

The bimodal distribution of galaxies on the color-M⇤ plane suggests that the stellar populations in

massive galaxies are systematically older than those in low mass galaxies. The flatter relation of the

global SFMS than the linear relation (see a compilation by Speagle et al. (2014)) suggests that specific

SFR (sSFR=SFR/M⇤) is decreasing with increasing M⇤ (see e.g. Abramson et al. 2014). The sSFR

of a galaxy reflects a ratio between current star formation rate and past integrated star formation
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Figure 1.3: Global star formation main sequence relation up to z ⇠ 2.5. The running medians are
plotted (with di↵erent colors represent di↵erent redshift) overlaid on the galaxy distribution. The
power-law fit above the M⇤ and SFR completeness limits are shown with solid line. Comparison
among the star formation main sequence relations at the various redshift are plotted in the bottom
right panel. This figure is taken from Whitaker et al. (2012).

rate, thereby it reflects the quenching process of the galaxy. Those trends show that massive galaxies

are more passive than low mass galaxies. Observations of high redshift galaxies also found a similar

trend. Juneau et al. (2005) observed a dependence of cosmic star formation history on the stellar

mass (see Fig. 1.4). The figure shows that at entire redshift range (0.8 < z < 2.0), average star

formation rate density of more massive galaxies is lower than that of less massive galaxies. Moreover,

the figure shows that the average SFR density of massive galaxies decline sharper than low mass

galaxies in the same redshift range. This trend of the faster quenching of more massive galaxies

compared to the less massive galaxies, or in other word, the star formation was proceeded in massive

galaxies in the past and transiting toward low mass galaxies in the present day. The transition is

called ’downsizing’ (firstly suggested by Cowie et al. (1996)).

1.3 Spatially resolved view of the galaxy evolution

Study of the global properties of galaxies over the last decades only considered galaxies as a single

point. Information on the global properties of galaxies only give clues regarding scaling relations

among the global properties and still lack of insights on the physical mechanism governing the global

scaling relations and galaxy evolution processes in general. Recalling that galaxies are complex

systems (consisting of stars, gas, dust, and dark matter) that comes with various structures and

morphologies, it is important to study structural properties and spatially resolved properties of
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Figure 1.4: Cosmic star formation history as a function of stellar mass. SFR density derived from
L([OII]) and from L(2000Å) are shown with circle and triangle, respectively. The symbols are color-
coded with the stellar mass ranges. The squares are the SFR densities at the local universe derived
by Brinchmann et al. (2004). The small diamonds are SFR densities derived by Hopkins (2004).
This figure is taken from Juneau et al. (2005).

galaxies in order to reveal the physical processes governing the galaxy evolution. Nowadays, there is

a growing interest on studying spatially resolved properties of galaxies in the local universe as well

as at high redshifts by using various instruments and techniques, such as integral field spectroscopy

(IFS), grism spectroscopy, and narrow-band imaging. Recent progress in the studies of spatially

resolved properties of galaxies have given us clues toward the understanding of the physical processes

governing the galaxy evolution. In the following, we highlights some recent progresses made by the

studies of spatially resolved properties of galaxies.

1.3.1 Distinct structures between star-forming and quiescent galaxies

As pointed out in Section 1.2.1, there is a morphological di↵erence between galaxies in the blue

(star-forming) cloud and red (quiescent) sequence, such that blue cloud is dominated by late-type

galaxies, while red sequence is dominated by early-type galaxies. Generally, late-type galaxies have

a structure that is dominated by a thin disk with a characteristic spiral pattern and they often

have a central spheroidal component (i.e. bulge), while early-type galaxies have round shape and

smooth light distribution with isophotes (i.e. lines of constant surface brightness) that have nearly
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Figure 1.5: Sérsic index of the galaxies across the global SFMS on the SFR versus M⇤ plane. Sérsic
index is represented with the color-coding. Di↵erent panel represents di↵erent redshift bin. This
figure is taken from Wuyts et al. (2011).

elliptical shapes. Optical surface brightness profile of the early-type galaxies is best-fitted with the

de Vaucouleurs profile (de Vaucouleurs 1948). More generally, surface brightness profile of late-type

and early-type galaxies can be fitted by the Sérsic profile (Sérsic 1963) with late-type galaxies having

low Sérsic index (n . 2.5) while early-type galaxies having high Sérsic index (n & 2.5).

Investigation of the structural properties of galaxies at 0.02 < z < 2.5 using high spatial resolution

images from the Sloan Digital Sky Survey (SDSS) and the Hubbe Space Telescope (HST) by Wuyts

et al. (2011) (see Fig. 1.5) found that star-forming galaxies, which are located on the global SFMS

in the SFR vs. M⇤ plane, have structures that are best-fitted with a low Sérsic index profile (n . 2),

while quiescent galaxies, which are located on the quiescent sequence, have structures that are

best-fitted with high Sérsic index profile (n & 2). This trend holds in all redshift bins within the

considered redshift range (0.02 < z < 2.5) suggesting that the Hubble sequence (firstly proposed by

Edwin Hubble, Hubble 1926, 1936) is already in place at z ⇠ 2. It is also implied by this trend

that there is a tendency of changing structure from a disk-dominated system to a bulge-dominated

system as star-forming galaxies evolve into quenched state. A reverse SFR-n trend is found in the

upper envelope of the global SFMS, where galaxies have high n. This reverse trend suggests a rapid

buildup of the central mass concentration in the starburst galaxies.

1.3.2 Indications of the inside-out growth

Recent IFS observations have shed lights on the understanding of how galaxies establish their struc-

tures. An emerging picture is that galaxies tend to construct their structures (i.e. stellar mass) from

their central region first, then the construction propagates toward outskirt (e.g. van Dokkum et al.

2010; Nelson et al. 2012; Morishita et al. 2015; Nelson et al. 2016a; Tacchella et al. 2015; Tadaki et al.
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2017). This picture of galaxy growth agrees with the inside-out growth scenario (Kau↵mann 1996;

Cole et al. 2000; Firmani and Avila-Reese 2000; van den Bosch 2002; Stringer and Benson 2007).

One way to investigate how galaxies built their structures is by comparing the spatial extents (sizes)

of the spatially resolved distributions of H↵ emission and stellar continuum. The H↵ emission map

tells us about the spatially resolved distribution of the ongoing star formation activities, while the

stellar continuum (i.e. flux in the optical band) map tells us about the spatially resolved distribution

of the assembled stellar mass by star formation activities in the past. Nelson et al. (2012) compared

sizes (i.e. e↵ective radii) of the H↵ emission map (re(H↵)) and stellar continuum (observed F140W

flux or rest-frame R band flux) map (re(R); see left panel of Fig. 1.6) of star-forming galaxies at

0.8 < z < 1.3 and found that the H↵ emission map is more extended than the map of rest-frame R

band flux (i.e. re(H↵) > re(R)) for majority of the sample galaxies. This trend (re(H↵) > re(R))

means that ongoing star formation is distributed in more extended area than the assembled stellar

mass, implying that their growth began with smaller area in the central region and has proceeded

outward, i.e. inside-out growth. As shown in Fig. 1.6, some galaxies have re(H↵) < re(R), implying

that they might be experiencing central starburst by which they are constructing their central mas-

sive component. The larger size of the H↵ map than the stellar continuum map is observed across

almost entire M⇤ range (log(M⇤/M�) > 9.5), see the sizes-M⇤ relation in right panel of Fig. 1.6 from

an analyses done by Nelson et al. (2016a). Despite their clear trends of the inside-out growth, the

above observational results (especially the re(H↵)) have to be taken with a caution, because spatial

variation of dust extinction was not taken into account in the analysis of those two works. Centrally

concentrated dust extinction profile (as observed by e.g. Nelson et al. 2016b; Tacchella et al. 2018)

could shrink the re(H↵).

1.3.3 Indications of the inside-out quenching

Recent IFS observations also have shed lights on an understanding about how galaxies quench their

star formation. An emerging picture is that galaxies tend to quench their star formation activity in

an ’inside-to-outside’ manner, similar as the growth trend discuss in the previous section. Indications

of this inside-out quenching are found through various ways. Abramson et al. (2014) analyzed a

dependence of the global SFMS slope on the inclusion of bulge component in the calculation of the

integrated SFR and M⇤. The authors found that the flatter relation, with slope less than unity,

of the global SFMS in the local universe is caused by the inclusion of bulge component (which

gives little contribution to the total SFR but gives high contribution to the total M⇤), implying

the existence of quiescent central region in the local galaxies. Using IFS observations, previous

researchers found a centrally suppressed sSFR radial profile in massive (log(M⇤/M�) > 10.0) local

galaxies (e.g. González Delgado et al. 2016; Belfiore et al. 2018) and at high redshifts (z ⇠ 1 by

Nelson et al. (2016a) and z ⇠ 2 by Tacchella et al. (2015, 2018)). Fig. 1.7 shows average radial

profiles of SFR surface density (⌃SFR(r)), M⇤ surface density (⌃⇤(r)), and sSFR (sSFR(r)) of star-

forming galaxies at z ⇠ 2 reported by Tacchella et al. (2015). The authors found that the average
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Figure 1.6: Left panel: comparison between the e↵ective radius of the spatially resolved distribution
of the H↵ emission and the e↵ective radius of the spatially resolved distribution of the rest-frame R
band (observed F140W) flux in star forming galaxies at 0.8 < z < 1.3. Each galaxy in the plot is
shown with its morphology in H↵. This figure is taken from Nelson et al. (2012). Right panel: size
(i.e. e↵ective radius)-M⇤ relations for maps of H↵ (blue points) and F140W (rest-frame R band)
flux (black points) of star-forming galaxies at 0.7 < z < 1.5. This figure is taken from Nelson et al.
(2016a). Spatial variation of the dust extinction is not taken into account in the analysis of those
two works.

sSFR radial profile of galaxies in the most massive bin is centrally suppressed. Moreover, ⌃⇤ of

the central region of those massive galaxies are similar to those of local early-type galaxies (see the

bottom right panel), implying that quiescent central component (i.e. bulge) is already formed in

those massive galaxies.

1.4 Open questions and aims of this thesis

The advent of IFS observations has shed lights on the understanding of how galaxies build their

structures and quench their star formations (as described in the previous sections). The emerging

picture is that galaxies seem to build their structures and quench their star formations in the ’inside-

to-outside’ manner. However, the two phenomenons (inside-out growth and inside-out quenching)

have only been discussed separately in the literature (as mentioned in the previous sections) as if

the both phenomenons are independent each other. It is unclear whether the two phenomenons

are correlated each other and occur simultaneously or not. Moreover, correlation (i.e. consistency)

between the evolution of the spatially resolved SFR and stellar mass buildup in the galaxies is

unclear.

In order to study the evolution of the spatially resolved SFR and the stellar mass buildup in

the galaxies across the cosmic time, information on the spatially resolved SFR and stellar mass

in galaxies in a wide redshift range is needed. Despite the capabilities of the IFS observations in
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Figure 1.7: Indication of the inside-out quenching from radial profiles of (⌃SFR(r)), M⇤ surface
density (⌃⇤(r)), and sSFR (sSFR(r)) of star-forming galaxies at z ⇠ 2. Three columns from left to
right show results for three M⇤ bins containing 9, 8, and 5 galaxies, respectively. Top row shows
the ⌃SFR(r) (blue) and ⌃⇤(r) (red). Middle row shows the sSFR(r). Bottom row shows comparison
between the ⌃⇤(r) of the three mass bins (red) and ⌃⇤(r) of local early-type (orange) and late-type
(cyan) galaxies. This figure is taken from Tacchella et al. (2015). Reprinted with permission from
AAAS.

resolving physical properties in the galaxies, the IFS observations commonly could only observe

sample galaxies at narrow redshift range, and connecting spatially resolved properties of galaxies at

wide redshift range derived from various IFS observations is di�cult, due to some technical aspects

that are addressed in Section 2.3.1. In order to study the spatially resolved SFR and stellar mass

of galaxies at wide redshift range consistently, a single method which could be applied to sample

galaxies in a wide redshift range is needed. The usage of a single method could reduce biaess that

emerges if di↵erent methods are used for analyzing sample galaxies at di↵erent redshifts.

In this thesis research, we use a di↵erent approach in deriving the spatially resolved SFR and

stellar mass in galaxies at z ⇠ 0 and z ⇠ 1. We use a method based on spatially resolved spectral

energy distribution (SED) fitting, which is called the pixel-to-pixel SED fitting. Reason for using

this method is that the same method could be applied to sample galaxies at di↵erent redshifts,

in this case z ⇠ 0 and z ⇠ 1, so the systematic bias (causes by the usage of di↵erent method for

galaxies at di↵erent redshifts) could be reduced. Detailed description about this method is presented

in Section 3. By using this method, we analyze spatially resolved SFR and stellar mass in massive
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(log(M⇤/M�) > 10.5) disk galaxies at z ⇠ 1 and z ⇠ 0 to study stellar mass buildup and quenching

process in the massive disk galaxies over the last 10 Gyrs.

As suggested by Schawinski et al. (2014) (which is described in Section 1.2.1), late-type (disk)

galaxies in the red-sequence are product of a steady slow quenching of star-forming late-type galaxies,

which could require several Gyrs. The authors propose a strangulation process as the possible cause

of the slow quenching. In order to investigate what mechanism of the slow quenching that really

happens in disk galaxies, and furthermore study the structural evolution of massive disk galaxies,

we focus on disk galaxies in this research. If disk galaxies experienced strangulation (stop of gas

accretion) and star formation proceed with the remaining gas in the galaxies, we expect to see a

steady evolution (i.e. decrease or increase) of the radial profiles of SFR and stellar mass. In addition

to that, we also study the scaling relation between surface densities of SFR (⌃SFR) and M⇤ (⌃⇤) in

kpc scale, namely spatially resolved star formation main sequence in massive disk galaxies at z ⇠ 1

and z ⇠ 0, and also its cosmic evolution during 0 . z . 1.

Overall, goals of this thesis are:

1. Study the spatially resolved distributions of SFR and M⇤ in massive disk galaxies at 0.01 <

z < 0.02. Key aspects include: (a) the scaling relation between ⌃SFR and ⌃⇤ and e↵ect

of global M⇤ and sSFR on the scatter of this relation; (b) the radial distributions of ⌃SFR,

⌃⇤, and sSFR, and e↵ect of global M⇤ and sSFR on those radial distributions; (c) spatially

resolved distributions of SFR and M⇤ in barred- and non-barred galaxies, and e↵ect of bar on

the secular evolution of the disk galaxies,

2. Study the spatially resolved distributions of SFR and M⇤ in massive disk galaxies at 0.8 < z <

1.8. Key aspects include: (a) the scaling relation between ⌃SFR and ⌃⇤ and e↵ect of global

sSFR on the shape of this relation; (b) the radial distributions of ⌃SFR, ⌃⇤, and sSFR, and

e↵ect of global M⇤ and sSFR on those radial distributions,

3. Study the evolution of the radial distribution of SFR and radial stellar mass buildup in massive

disk galaxies over the last 10 Gyrs by connecting the results from the preceding two analysis.

Moreover, deriving an empirical model for the evolution of the surface density radial profiles

(⌃SFR(r), ⌃⇤(r), and sSFR(r)) and investigate the slow quenching process in massive disk

galaxies.

Goals 1, 2, and 3 are addressed in Chapters 4, 5,and 6, respectively. Sample selection for local and

high redshift galaxies are described in Chapter 2. Chapter 3 presents details of the methodology.

Finally, we present the summary of this thesis and possible future extensions from the current

research in Chapter 7. Throughout this thesis, cosmological parameters of ⌦m = 0.3, ⌦⇤ = 0.7,

and H0 = 70kms�1Mpc�1 are assumed. M⇤ is used to represent the integrated stellar mass, while

m⇤ is used to represent a total stellar mass within a sub-galactic region. As will be described in

Chapter 2, our sample contains galaxies at 0.01 < z < 0.02 and galaxies at 0.8 < z < 1.8. For

simplicity, throughout this thesis, we shorten 0.01 < z < 0.02 as z ⇠ 0 and 0.8 < z < 1.8 as z ⇠ 1.
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Chapter 2

Data sample

2.1 Sample galaxies in the local universe

In order to study the structural evolution of massive disk galaxies over the last 10 Gyrs, we construct

samples of massive disk galaxies in the local universe and at z ⇠ 1. The selection criteria for defining

the sample galaxies at z ⇠ 1 is described in the next section, while the selection criteria for defining

the sample galaxies in the local universe is described in this section. We define our z ⇠ 0 sample using

the MPA-JHU (Max-Planck-Institut für Astrophysik - Johns Hopkins University) galaxy catalog 1.

In the catalog, M⇤ is derived based on fits to the photometry following Kau↵mann et al. (2003b)

and Salim et al. (2007), and SFR is derived based on emission line indices following Brinchmann

et al. (2004). The sample galaxies are defined by applying the following criteria: (1) redshift range

of 0.01 < z < 0.02, (2) M⇤ higher than 1010.5M�, (3) spiral morphology, and (4) face-on disk with

ellipticity less than 0.6 or b/a > 0.4 (with b and a are semi-minor and semi-major axes, respectively).

The redshift range is determined to acquire a spatial resolution of 1 � 2 kpc with the Galaxy

Evolution Explorer (GALEX) NUV-band point spread function (PSF), which corresponds to 5.3

arcsec and is the largest among the seven imaging bands from the GALEX and Sloan Digital Sky

Survey (SDSS) (FUV, NUV, u, g, r, i, and z) used in this research. The spatial sampling of the

GALEX image (1.500 pixel�1), which also defines the final pixel scale achieved in the analysis of

this research as the SDSS image is brought to the same spatial sampling as the GALEX image,

corresponds to a physical scale of 0.3 - 0.6 kpc at the 0.01 < z < 0.02. Because we focus on

massive galaxies, we set the M⇤ limit. As massive galaxies have larger sizes than less massive

galaxies, choosing massive galaxies gives another benefit regarding the resolution. Because we focus

on disk galaxies, we only select spiral galaxies. We follow the morphological classification (spiral and

elliptical) in the SDSS website 2, which adopts the morphological classification by the Galaxyzoo

project 3 (Lintott et al. 2008). In addition to that, we also inspect the SDSS gri composite image

1https://wwwmpa.mpa-garching.mpg.de/SDSS/DR7/
2http://skyserver.sdss.org/dr10/en/tools/toolshome.aspx
3https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/
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Figure 2.1: Integrated SFR versus M⇤ of galaxies at 0.01 < z < 0.02 from MPA-JHU catalog and
location of the sample galaxies on the SFR - M⇤ plane. Black points represent spiral galaxies with
log(M⇤/M�) > 10.5 that have GALEX imaging. The sample galaxies considered in this research
are marked with blue open circles and green open squares for non-barred and barred galaxies,
respectively. The cross at bottom right side indicates the average uncertainties of SFR and M⇤.
This figure is taken from Abdurro’uf and Akiyama (2017).

of each galaxy. We limit our sample to face-on galaxies with ellipticity less than 0.6 or b/a > 0.4

to minimize the e↵ect of dust extinction, which tend to be severe in highly-inclined galaxies. By

focusing on face-on galaxies, we could also expect to reduce the bias due to the e↵ect of inclination

on the spatially resolved analysis. The ellipticities of the selected massive spiral galaxies are derived

by averaging the elliptical isophotes of the r-band image, which is obtained using the ellipse

command in IRAF, outside of the e↵ective radius (see Section 4.4.1 for detailed description on this

issue). In addition to the above four criteria, we require the sample galaxies to have imaging data in

the FUV and NUV bands of GALEX, and we only consider galaxies that have more than four bins

(of pixels), where each bin has a signal-to-noise (S/N) of more than 10 in all of the seven bands (see

Section 3.1.4 for the description on the pixel binning method). Number of galaxies selected using

the above criteria is 152. Fig. 2.1 shows the integrated SFR versus M⇤ of galaxies at 0.01 < z < 0.02

from the MPA-JHU catalog. The black points represent spiral galaxies with log(M⇤/M�) > 10.5

that have both GALEX and SDSS imaging data. The sample galaxies considered in this research

are marked with blue open circles and green open squares, which indicate non-barred and barred

galaxies, respectively.

As we consider massive disk galaxies, consequently our sample contains large fraction (⇠50%

from the entire sample) of barred galaxies. It provides an opportunity to investigate the di↵erence

between the spatially resolved properties of barred- and non-barred galaxies and study the role of bar
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on the secular evolution of galaxies. We classified the barred- and non-barred galaxies based on the

morphological types assigned for the sample galaxies by the NASA/IPAC Extragalactic Database

(NED) 4 which include barred- and non-barred classification. Number of barred- and non-barred

galaxies in the sample are 42 and 51, respectively.

2.2 Sample galaxies at high redshift

In order to trace back the structural evolution of massive disk galaxies over the last 10 Gyrs, sample

galaxies at high redshift that have comparable global properties with the sample of local galaxies

(with which the analysis results from the sample of local galaxies will be compared) have to be

defined. We select sample of high redshift galaxies from the 3D-HST catalog (Skelton et al. 2014;

Brammer et al. 2012). We only consider galaxies located in the Great Observatories Origins Deep

Survey - South (GOODS-S) field. M⇤ in the catalog is derived through 0.3µm to 8µm SED modeling

using the FAST code (Kriek et al. 2009). For SFR, we adopt the SFR derived using the combination

of rest-frame UV and IR luminosities following Whitaker et al. (2014) instead of the SFR derived

by the FAST code. Redshift is determined using three methods: (1) 0.3µm to 8µm photometric

SED fitting using EAZY code (Brammer et al. 2008), (2) two-dimensional grism spectroscopy, and (3)

ground-based spectroscopy. Sample of high redshift galaxies are selected using following criteria: (1)

redshift range of 0.8 < z < 1.8, (2) stellar mass higher than log(M⇤/M�) = 10.5, (3) observed in the

eight bands of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS)

and 3D-HST (F435W, F606W, F775W, F814W, F850LP, F125W, F140W, and F160W), (4) face-on

configuration with an ellipticity less than 0.6 or b/a > 0.4, and (5) late-type or disk morphology

with Sérsic index (n) less than 2.6.

The redshift range is determined to achieve spatial resolution of ⇠ 1 kpc with F160W PSF,

which is 0.19 arcsec and largest among the eight imaging bands. The PSF corresponds to a physical

scale of 1.4 - 1.6 kpc at 0.8 < z < 1.8, while the pixel scale, which is 0.0600 pixel�1, corresponds

to a physical scale of 0.45 - 0.50 kpc in the redshift range. The upper limit in the redshift range

corresponds to a look-back time of 9.90 Gyr, while the redshift range corresponds to a physical

time-lag of 3.07 Gyr. Because we focus on massive galaxies, the stellar mass limit is defined, which

is the same as that used to define the local galaxies sample. We only select face-on galaxies (which

also applied in the selection of local galaxies sample) to minimize the e↵ect of dust extinction,

which thought to be severe in highly inclined galaxies, and to minimize bias in analysis of the

spatially resolved properties due to the inclination e↵ect. The ellipticity is calculated by averaging

the elliptical isophotes of the F125W image outside of the e↵ective radius. The elliptical isophotes

are obtained using the ellipse command in IRAF (see Section 4.4.1 for detailed description on this

issue). Because we focus on spiral/disk galaxies, we only select galaxies which show disk morphology.

As the spiral arm structure is not prominent in high redshift galaxies (opposite to the local galaxies

where spiral arm structure is more prominent and easily recognized), we quantitatively define disk

4https://ned.ipac.caltech.edu/
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galaxies using the Sérsic index of the best-fitting Sérsic profile for the stellar mass surface density

radial profile (⌃⇤(r)). The calculation of ⌃⇤(r) and the Sérsic index is explained in Section 5.2.3. In

addition to the five selection criteria described above, we only select galaxies that have more than

four bins of pixels. Each bin has S/N ratio of higher than 10 in all of the eight imaging bands (see

Section 3.1.4 for the description on the pixel binning method).

For galaxies (selected by the above criteria) with the photometric redshifts, we do SED fitting

to check the reliability of the redshift estimations. The integrated fluxes in the eight bands are

calculated to obtain the integrated SED of the galaxy. The model SEDs with which the galaxy’s

integrated SED is fitted are calculated by assuming the photometric redshift as the true redshift of the

galaxy. The SED fitting is done using the maximum likelihood method. Through this checking, we

find eight galaxies with strange SED shapes and result in very large �2, which indicates unreliable

redshift estimates, while the other galaxies have small �2, which indicates the reliability of their

photometric redshifts. The eight galaxies with strange SED shapes are then excluded from the

sample. The above selection processes result in 163 galaxies. Finally, we exclude galaxies with high

probability of hosting an active galactic nuclei (AGN) to avoid contamination by the contribution

from the non-stellar AGN component to the broad band photometry. We look for the AGN-host

galaxies by cross-matching the 163 galaxies with the Chandra 7 Ms sources catalog (Luo et al. 2017;

Yang et al. 2017). The Chandra catalog contains X-ray sources from the ⇠ 7 Ms exposure in the

Chandra Deep Field-South (CDF-S), which covers GOODS-S field. We find 11 galaxies that have

a luminous X-ray AGN activity (L2�10keV > 1043erg s�1) among the sample. Final sample for this

research (after excluding the 11 AGN-host galaxies) contains 152 galaxies. Top panel of Fig. 2.2

shows the integrated SFR versus M⇤ of the GOODS-S field galaxies at 0.8 < z < 1.8 taken from

the 3D-HST catalog. The blue large points show the 152 sample galaxies, while the purple stars

represent the AGN-host galaxies. The black line and gray shaded represent the global SFMS relation

by Speagle et al. (2014) that is calculated at the median redshift of the sample galaxies (z = 1.217)

and the ±0.3 dex scatter around the global SFMS relation, respectively. Bottom panel in Fig. 2.2

shows M⇤ versus redshifts of the sample galaxies. It is shown that the redshifts of the sample galaxies

are spread uniformly within the redshift range.

2.3 Imaging data-set

2.3.1 Reasons why using imaging data-set

Recently, there is a growing interests on studying the spatially resolved distributions of galaxy

properties using integral field spectroscopy (IFS) observation. Using IFS observation, one could

obtain spatially resolved spectra within a galaxy, i.e. spectrum from each sub-galactic region in the

galaxy. Since spectrum is obtained for each sub-galactic region within the galaxy, physical properties

that could be derived with a spectrum (including stellar population properties, e.g. stellar age,

metallicity, stellar mass, SFR; gas properties, e.g. gas phase metallicity; and kinematics of gas
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Figure 2.2: Top panel: integrated SFR versus M⇤ of the GOODS-S field galaxies at 0.8 < z < 1.8
from the 3D-HST catalog and location of the sample galaxies on the SFR - M⇤ plane. The large
blue points represent the 152 sample galaxies, while purple stars represent AGN-host galaxies which
are excluded when selecting the sample galaxies. The black line and gray shaded area represent
the global SFMS relation by Speagle et al. (2014) calculated at the median redhsift of the sample
galaxies (z = 1.217) and the ±0.3 dex scatter around it, respectively. Bottom panel: M⇤ versus
redshift of the sample galaxies. This figure is taken from Abdurro’uf and Akiyama (2018).
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and stellar components) could be obtained for each sub-galactic region within the galaxy. It could

provide us with the spatially resolved properties of the galaxy. Despite those capabilities of the

IFS data-set, the IFS observations are always confined to limited sample of galaxies within a narrow

redshift range due to the limited wavelength coverage given by the instrument and the high ”cost” of

this observation (i.e. expensive due to a long exposure needed for observing each galaxy). Some IFS

surveys observed galaxies in the local universe, such as Calar Alto Legacy Integral Field spectroscopy

Area Survey (CALIFA; Sánchez et al. 2012, redshift range:0.005 < z < 0.03), Sydney-AAO Multi-

object Integral field spectrograph galaxy survey (SAMI; Bryant et al. 2015, redshift range: z < 0.1),

Mapping nearby Galaxies at Apache Point Observatory (MaNGA; Bundy et al. 2015, redshift range:

0.01 < z < 0.15), and other IFS surveys targeting galaxies at high redshift, such as Spectroscopic

Imaging survey in the Near-infrared with SINFONI (SINS; Förster Schreiber et al. 2009, redshift

range: 1 < z < 4), 3D-HST (Brammer et al. 2012, redshift range: 1.0 < z < 3.5), The Grism

Lens-Amplified Survey from Space (GLASS; Treu et al. 2015), KMOS-3D (Wisnioski et al. 2015,

redshift range: 0.7 6 z 6 2.7), KMOS Redshift One Spectroscopic Survey (KROSS; Stott et al.

2016, redshift range: 0.7 < z < 1.5).

Information on the spatially resolved properties in the galaxies in a wide redhsift range could

gives us an opportunity to study the evolution of the internal structures of the galaxies with which

insights on the physical mechanisms governing the galaxy evolution could be obtained. Currently

provided data-sets from the IFS surveys mentioned above provide us with the pictures of the galaxy

structures at various redshifts from which we could qualitatively infer the evolution of the galaxy

structures. More quantitative examination of the structural evolution of galaxies need quantitatively

connecting the spatially resolved properties of galaxies observed in a wide redhsift range. However,

due to di↵erence in specifications of the IFS observations mentioned above, quantitatively connect-

ing the spatially resolved properties of galaxies based on their observations is di�cult. Substantial

e↵orts on calibrations need to be done in order to quantitatively connect the results from the various

IFS surveys. The di↵erence in specification includes: (1) di↵erence in the spectral resolution, for ex-

ample grism spectrograph of the 3D-HST has low spectral resolution (R⇠ 130) such that the H↵ and

[NII] emission lines are blended, while high spectral resolution (R⇠ 2000) of MaNGA fibre bundle

spectrograph could resolve the two emission lines; (2) di↵erence in rest-frame wavelength coverage,

for example grism spectrograph of the 3D-HST has narrower rest-frame wavelength coverage com-

pared to the fibre bundle of MaNGA. The rest-frame wavelength coverage of the grism spectrograph

3D-HST is narrow, such that spatially resolved H↵ emission line could only be obtained for galaxies

at 0.7 < z < 1.5 and majority of those galaxies with H↵ information do not have spatially resolved

H� emission line because the H� could only be obtained for galaxies at 1.20 < z < 2.35. Due to this

limitation, information regarding spatially resolved dust extinction (which could be estimated using

the Balmer decrement, H↵/H�) could not be obtained for most of the sample galaxies considered by

the 3D-HST. Due to this limitation, analysis on the spatially resolved star formation activity done

by the 3D-HST assumes uniform dust extinction across the galaxy region (which is derived based

on the integrated SED fitting), such as done in Nelson et al. (2012) and Nelson et al. (2016a). It
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contrasts with the capability of MaNGA survey with its full rest-frame optical wavelength coverage

which could obtain spatially resolved distributions of both of the H↵ and H� for all the sample

galaxies observed by MaNGA; (3) di↵erence in the spatial resolution among the currently available

data-sets from the above mentioned IFS surveys. Physical spatial resolutions of the MaNGA, CAL-

IFA, SAMI, 3D-HST, and KROSS based on their redshift coverage are ⇠ 0.5�5.0 kpc, ⇠ 0.26�1.50

kpc, ⇠ 0.17� 3.70 kpc, ⇠ 1.0� 1.2 kpc, and ⇠ 2.0� 3.4 kpc, respectively.

As described in Section 1.4, motivation of this research is to study the evolution of the spatially

resolved star formation activity and its connection with the spatially resolved stellar mass buildup in

massive disk galaxies from z ⇠ 1 to z ⇠ 0. In order to do that, information on the spatially resolved

SFR and stellar mass of massive disk galaxies at z ⇠ 0 and z ⇠ 1 is required. It is also important to

have the spatially resolved SFR and stellar mass of the galaxies at the both redshifts derived using

the same methodology so that an unbiased quantitative comparison could be performed to connect

the results in the both redshifts. For the reasons described previously, we do not use the spatially

resolved spectroscopic data-sets form the IFS surveys targeting galaxies at z ⇠ 0 and z ⇠ 1. In this

research, we apply the broad-band SED fitting method, which is commonly used to derive the global

SFR and stellar mass of galaxies, to derive the spatially resolved SFR and stellar mass within the

galaxies. We use imaging data-sets from the GALEX and SDSS to perform the spatially resolved

SED fitting method (which is described in detailed in Section 3) for deriving the spatially resolved

SFR and stellar mass of massive disk galaxies at z ⇠ 0, while that for massive disk galaxies at

z ⇠ 1, we use imaging data-set from the CANDELS and 3D-HST. Those imaging data-sets have

similar rest-frame wavelength coverage, which is FUV-NIR, and spatial resolutions. The rest-frame

wavelength coverage and spatial resolution of the 7 bands imaging of GALEX+SDSS are 1500-9134 Å

at the median redshift of the z ⇠ 0 sample (z = 0.0165) and 1.10-2.15 kpc at the considered redshift

range, while those of the 8 bands imaging of CANDELS+3D-HST is 1948-6944 Å at the median

redshift of the z ⇠ 1 sample (z = 1.217) and 1.4-1.6 kpc at the considered redshift range. Applying

the same method, which is the pixel-to-pixel SED fitting (see Section 3), and the similar imaging

data-set (similar rest-frame wavelength coverage and spatial resolution) could reduce a systematic

biases associated with applying di↵erent methods to the sample galaxies at the di↵erent redshifts

and could allow a consistent quantitative analysis connecting the results for the sample galaxies at

both redshifts.

2.3.2 Imaging data-set from GALEX and SDSS

In order to construct spatially resolved SEDs of the galaxies in the z ⇠ 0 sample with rest-frame

far-ultraviolet (FUV) to near-infrared (NIR) coverage, we use imaging data-sets from GALEX (Mor-

rissey et al. 2007) and SDSS (Ahn et al. 2014), which cover 1350�10000 Å. Combination of the two

imaging data-sets, which consist of seven bands: FUV, NUV, u, g, r, i, and z, give spatially resolved

SED with the rest-frame FUV to NIR coverage for galaxies at the 0.01 < z < 0.02. Imaging data
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Table 2.1: Specification of GALEX imaging data

Band �central[Å] Width[Å] FWHM
Survey type

AIS MIS DIS

exp. time[s] 5� Depth[mag] exp. time[s] 5� Depth[mag] exp. time[s] 5� Depth[mag]

FUV 1528 442 400.3 100 19.9 1500 22.6 30000 24.8
NUV 2271 1060 500.3 100 20.8 1500 22.7 30000 24.4

Table 2.2: Specification of SDSS imaging data
Band �e↵ective[Å] FWHM 5� Depth[mag]
u 3590 100.3 22.3
g 4810 100.4 23.3
r 6230 100.5 23.1
i 7640 100.5 22.3
z 9060 100.1 20.8

from GALEX Data Release (DR) 6 5 are sky-background subtracted. We use GALEX DR6 imaging

data from the three survey types: All-sky Imaging Survey (AIS), Medium Imaging Survey (MIS),

and Deep Imaging Survey (DIS). Specification of the GALEX imaging data is shown in Table 2.1.

GALEX imaging data has spatial sampling of 100.5 pixel�1. We use imaging data from SDSS Data

Release (DR) 10 6. The SDSS imaging data is not sky-background subtracted. Sample sky image

of a field is stored in a particular extension (HDU2) in the fits image of the field. By interpolating

the sample sky image using the bilinear interpolation, we then can get full sky image of the field.

Specification of SDSS imaging data is shown in Table 2.2. SDSS imaging data has spatial sampling

of 000.4 pixel�1.

2.3.3 Imaging data-set from CANDELS and 3D-HST

For the sample galaxies at 0.8 < z < 1.8, we use combined imaging data-set from CANDELS (Grogin

et al. 2011; Koekemoer et al. 2011) and 3D-HST (Brammer et al. 2012), which covers 4318�15396 Å

in the observer frame. We use the combined CANDELS+3D-HST imaging data, consisting of eight

bands: F435W, F606W, F775W, F814W, F850LP, F125W, F140W, and F160W, from the 3D-HST

public data-set 7. The 3D-HST survey itself only provides F140W image, while the other seven

band imaging are provided by CANDELS survey. The eight band imaging data cover rest-frame

wavelength of 2123�9315 Å and 1364�5988 Å at z = 0.8 and z = 1.8, respectively. The eight band

imaging provided by the 3D-HST are sky-background subtracted, brought into the same sampling

(000.06 pixel�1), and PSF-matched to the PSF size of the F160W band (000.19), which has the largest

PSF size among the eight bands. Specification of the eight band imaging data is shown in Table 2.3.

5http://galex.stsci.edu/GR6/
6http://www.sdss3.org/dr10/
7https://3dhst.research.yale.edu/Data.php
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Table 2.3: Specification of CANDELS and 3D-HST imaging data
Band �central[Å] Width[Å] FWHM 5� Depth[mag]
F435W 4318 993 0.11 27.3
F606W 5919 2225 0.11 27.4
F775W 7693 1491 0.10 26.9
F814W 8057 2358 0.10 27.2
F850LP 9036 2092 0.11 26.5
F125W 12471 2867 0.18 26.1
F140W 13924 3760 0.18 25.6
F160W 15396 2744 0.19 26.4

2.4 Ability of the rest-frame FUV-NIR photometric SED on

breaking degeneracies existing in model SEDs

In pixel-to-pixel SED fitting method, spatially resolved SEDs of a galaxy with rest-frame FUV to

NIR coverage are fitted with a set of model SEDs. In order to examine the ability of the rest-frame

FUV-NIR photometric SED in breaking degeneracies existing in SEDs, especially the degeneracy

between age and dust extinction, we calculate tracks of the model stellar populations on color-color

diagrams that are made with photometric sampling of the GALEX+SDSS (for the z ⇠ 0) and

CANDELS+3D-HST (for the z ⇠ 1). Model stellar populations are generated using the GALAXEV

stellar population synthesis model (Bruzual and Charlot 2003) assuming Chabrier (2003) initial mass

function (IMF) with a mass range of 0.1 � 100M�, exponentially declining star formation history

(SFH), and reddening e↵ect by dust assuming Calzetti et al. (2000) dust extinction law. Fig. 2.3

shows tracks of model stellar populations on NUV-r versus FUV-NUV color-color diagram. In this

figure, model SEDs are calculated at a redshift of z = 0.019. Di↵erent panel represents model stellar

populations with di↵erent assumed ⌧ of the exponentially decaying SFH. Clockwise from top left

to bottom left panels show model stellar populations with ⌧ = 0.8 Gyr, ⌧ = 1.0 Gyr, ⌧ = 8.0 Gyr,

and ⌧ = 4.0 Gyr. In each panel, variation in E(B � V ) color excess dust extinction is represented

with color, while variation in metallicity is represented with di↵erent line style. Blue, green, and red

colors represent E(B � V ) = 0 (no extinction), E(B � V ) = 0.3, and E(B � V ) = 0.6, respectively.

Z = 0.004 and Z = 0.02 are represented with solid line and dashed line, respectively.

It is shown by the Fig. 2.3 that the e↵ect of dust extinction and aging could be separated by

the NUV-r versus FUV-NUV color-color diagram especially for model stellar population with large

⌧ (⌧ & 2 Gyr). For model stellar populations with large ⌧ , FUV-NUV color is sensitive to the

dust extinction e↵ect and less a↵ected by aging e↵ect, while NUV-r color is sensitive to aging a↵ect

and less a↵ected by dust extinction e↵ect. In this color-color diagram, dusty star-forming and non

dusty quiescent galaxies (or sub-galactic regions) are expected to reside in di↵erent locus. Dusty

star-forming galaxies (or sub-galactic regions) will reside in top right side, while non dusty quiescent

galaxies (or sub-galactic regions) will reside in bottom left side. For model stellar populations with

small ⌧ , overlapping among tracks only occur at old age, while the tracks are separated at young
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Figure 2.3: Breaking degeneracies in model SEDs with NUV-r versus FUV-NUV color-color diagram.
Model SEDs are calculated at a redshift of z = 0.019. Di↵erent panel represents model stellar
population with di↵erent assumed ⌧ of decaying SFH. Clockwise from top left represent model
SEDs with ⌧ = 0.8 Gyr, ⌧ = 1.0 Gyr, ⌧ = 8.0 Gyr, and ⌧ = 4.0 Gyr. In each panel, tracks of model
stellar populations with two values of metallicities [Z = 0.004 (solid line) and Z = 0.02 (dashed
line)] and three values of color excesses dust extinctions [E(B�V ) = 0 (blue color), E(B�V ) = 0.3
(green color), and E(B� V ) = 0.6 (red color)] are shown. Color-coding represents age of the model
stellar population.

age. With the NUV-r versus FUV-NUV color-color diagram, e↵ect of Z to the model SED could

also be distinguished from the e↵ects of aging and dust extinction.

Fig. 2.4 shows similar analysis as for Fig. 2.3, but now photometric sampling provided by

CANDELS+3D-HST imaging data-set is tested. In the figure, model SEDs are calculated at z = 1.2

and their tracks on F775W-F125W versus F435W-F606W color-color diagram, which has similar

rest-frame coverage as the NUV-r versus FUV-NUV color-color diagram, is shown. Line style and

color-coding used in this figure are the same as those used for Fig. 2.3. In the analysis for this

figure, maximum value for age is set as the age of the universe at z = 0.8 (agemax = 6.6 Gyr,

which is the same maximum age that is set in construction of model SEDs to be used for fitting

observed spatially resolved SEDs of the sample galaxies at 0.8 < z < 1.8, as will be discussed in

later chapters). Similar trends as shown in the Fig. 2.3 are found in this figure. The e↵ect of dust

extinction and aging could be separated by the F775W-F125W versus F435W-F606W color-color
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Figure 2.4: Breaking degeneracies in model SEDs with F775W-F125W versus F435W-F606W color-
color diagram. Model SEDs are calculated at a redshift of z = 1.2. Di↵erent panel represents model
SEDs with di↵erent assumed ⌧ of decaying SFH. Clockwise from top left represent model SEDs with
⌧ = 0.8 Gyr, ⌧ = 1.0 Gyr, ⌧ = 8.0 Gyr, and ⌧ = 4.0 Gyr. In each panel, tracks of model stellar
populations with two values of metallicities [Z = 0.004 (solid line) and Z = 0.02 (dashed line)] and
three values of color excesses dust extinctions [E(B � V ) = 0 (blue color), E(B � V ) = 0.3 (green
color), and E(B � V ) = 0.6 (red color)] are shown. Color-coding represents age of the model stellar
population.

diagram especially for model stellar population with large ⌧ (⌧ & 2 Gyr). For model stellar popu-

lation with large ⌧ , F435W-F606W color is sensitive to the dust extinction e↵ect and less a↵ected

by aging e↵ect, while F775W-F125W color is sensitive to the aging a↵ect and less a↵ected by the

dust extinction e↵ect. Similar as for the model SEDs at z ⇠ 0, overlapping among tracks of model

stellar populations with small ⌧ only occur at old age, while the tracks are separated at young age.

With the F775W-F125W versus F435W-F606W color-color diagram, e↵ect of Z to the model SED

could also be distinguished from the e↵ects of aging and dust extinction, although not as good as

that achieved with the NUV-r versus FUV-NUV color-color diagram. Thus, by using photometric

SED from GALEX+SDSS and CANDELS+3D-HST which cover rest-frame FUV-NIR, degeneracies

among model parameters (especially between age and dust extinction) existed in the model SEDs

are expected to be resolved.
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Chapter 3

Methodology: pixel-to-pixel SED

fitting

Throughout this research, we use a single method based primarily on the spatially resolved spectral

energy distribution (SED) fitting, namely pixel-to-pixel SED fitting, to derive spatially resolved

distributions of stellar population properties (especially SFR and M⇤) of the galaxies at 0.01 < z <

0.02 and 0.8 < z < 1.8. Previous researchers have performed this kind of method to derive spatially

resolved stellar population properties of local and high redshift galaxies (e.g. Abraham et al. 1999;

Welikala et al. 2008; Zibetti et al. 2009; Wuyts et al. 2012; Sorba and Sawicki 2015; Mart́ınez-Garćıa

et al. 2018). Those spatially resolved SED fitting implementations come with various techniques.

Here, we adopt Bayesian statistics approach, which now commonly used in the integrated SED

fitting implementation. Pioneered by Kau↵mann et al. (2003b), SED fitting with Bayesian statistics

approach now has been used in many integrated SED fitting implementations (e.g. Salim et al. 2007;

da Cunha et al. 2008; Noll et al. 2009; Serra et al. 2011; Acquaviva et al. 2011; Han and Han 2014;

Rovilos et al. 2014; Chevallard and Charlot 2016).

The pixel-to-pixel SED fitting consists of three main steps: analysis of multiband imaging data,

construction of a library of model SEDs, and fitting observed spatially resolved SED with the library

of model SEDs using Bayesian statistics. In the following, we describe those three steps in detail.

3.1 Analysis of imaging dataset

In this step, multiband imaging data of a galaxy is spatially-matched and spatially resolved SED

in the galaxy is obtained. Then pixel binning is applied to increase signal-to-noise ratio (S/N) of

the spatially resolved SED. Imaging dataset from GALEX, SDSS, and 3D-HST are background

subtracted so we do not include this step here.
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3.1.1 Image registration and PSF matching

First step that has to be done in SED fitting realization is to make the multiband imaging dataset

into the same spatial resolution and sampling. Because we want to obtain SED from a particular

region in the galaxy by combining the multiband images of the galaxy, so making all images in the

same resolution and sampling is very important to avoid overlap of the photometric fluxes from

di↵erent spatial regions. This step, which is called point spread function (PSF) matching is done by

degrading the spatial resolution of image with higher resolution to match the spatial resolution of

image with lowest spatial resolution.

Seven bands imaging dataset from GALEX (FUV and NUV) and SDSS (u, g, r, i, and z) have

di↵erent PSF sizes. The typical PSF FWHM of the SDSS images, GALEX FUV, and GALEX NUV

are 1.300, 4.200, and 5.300, respectively (see Tables 2.1 and 2.2). The PSF sizes of the SDSS, GALEX

NUV, and GALEX FUV images correspond to physical sizes of 0.3–0.5 kpc, 1–2 kpc, and and 0.8–1.7

kpc respectively, for a galaxy at 0.01 < z < 0.02. To match the PSFs of the seven imaging dataset,

we degrade the PSFs of the FUV, u, g, r, i, and z images to match the PSF of the NUV image,

which has largest PSF size among the seven bands.

The PSF matching is done by convolving the image with a PSF matching kernel. We constructed

six PSF matching kernels, each for FUV, u, g, r, i, and z band. To construct the PSF matching

kernels, first, average PSF of each band (for seven bands) is derived based on average of ⇠ 50

normalized images of isolated stars. Then based on the average PSF, PSF matching kernel for

each band is constructed using psfmatch command in IRAF. PSF matching process is done in SDSS

sampling (0.400 pixel�1), which is higher than GALEX sampling (1.500 pixel�1), as the determination

of central position and size of the PSF is expected to be more accurate when it is done in higher

sampling compared to if it is done in a lower sampling. For this purpose, the PSF matching kernels

are made in SDSS sampling and all images are registered into SDSS sampling using wregister

command in IRAF before the PSF matching. Fig. 3.1 shows PSFs of the NUV, FUV, u, g, r, i, and z

bands (top row from left to right), and PSF matching kernels produced by the psfmatch command

in IRAF for the FUV, u, g, r, i, and z (bottom row from left to right). Fig. 3.2 shows PSF profiles

of the FUV, NUV, u, g, r, i, and z bands (left panel). In the right panel, resulted PSF profiles after

being convolved with the PSF matching kernels are shown. This figure demonstrates reliability of

the convolution kernels and performance of the PSF matching process. After PSF matching, all 7

bands images are brought to the GALEX sampling. This process will bin neighboring pixels and

increase S/N of pixel’s flux in the new sampling. GALEX sampling corresponds to a physical scale

of 0.3� 0.6 kpc at 0.01 < z < 0.02.

Eight bands background-subtracted mosaic images (F435W, F606W, F775W, F814W, F850LP,

F125W, F140W, and F160W) provided by the 3D-HST 1 are registered to the same sampling of

0.0600 pixel�1 and PSF-matched to the PSF of F160W image, 0.900. The PSF size corresponds to

⇠ 1.4� 1.6 kpc at 0.8 < z < 1.8. :

1The background-subtracted PSF-matched imaging dataset is publicly available from the 3D-HST website: http:
//3dhst.research.yale.edu/Data.php
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Figure 3.1: First row: from left to right shows point spread functions (PSFs) of NUV, FUV, u, g,
r, i, and z bands. Second row: from left to right shows PSF matching kernels for FUV, u, g, r, i,
and z bands.

Figure 3.2: Left panel: PSF profiles of the FUV, NUV, u, g, r, i, and z bands, whose PSF images
are shown in Fig. 3.1. Right panel: PSF profiles after being convolved with the convolution kernels
using the psfmatch in IRAF.

3.1.2 Defining galaxy’s region

After the multiband images are registered to the same sampling and PSF-matched, next step is

defining galaxy’s region, i.e. region within which we want to apply the pixel-to-pixel 11SED fitting

and derive the spatially resolved stellar population properties. We define the galaxy’s region based on

segmentation map obtained with SEXTRACTOR (Bertin and Arnouts 1996). First, we use SEXTRACTOR

to generate segmentation maps of all detected objects in the image of a field that contain the

targeted galaxy with a detection threshold of above 1.5 times higher than the rms scatter outside

of the galaxy. In case of the 3D-HST imaging data, SEXTRACTOR is applied to the mosaic image and

segmentation maps of all detected objects in the mosaic image are obtained. Fig. 3.3 shows example

of a segmentation map produced by SEXTRACTOR (right panel) for an image of a field that is shown

in the left panel. Color coding in the right panel represents pixel value in the detected object which

is the same as id of the detected object in a catalog that is produced along with the source detection
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Figure 3.3: Example of segmentation map produced by SEXTRACTOR. Left panel: gri composite
image of a field observed by SDSS. Right panel: segmentation maps produced by SEXTRACTOR for
the detected objects within the field shown in the left panel. Color-coding represent id of the
detected object in the catalog generated by the SEXTRACTOR. In this example, the segmentation
map is produced based on the image in r band. This image is registered to GALEX sampling
(1.500 pixel�1) using wregister command in IRAF.

process by SEXTRACTOR. In this example, the segmentation map is produced based on image in the

r band.

Next step is finding the segmentation map of the galaxy. We use position of the galaxy (i.e.

central coordinate; based on the galaxy catalog) to locate position of galaxy’s central pixel in the

SEXTRACTOR segmentation map. Then value stored in the central pixel is used as a reference to collect

pixels that belong to the galaxy by looking for pixels that have the same pixel value. Sometimes

pixels that are not connected with the main area of the galaxy have the same pixel value as the

pixels associated with the galaxy’s main area. In such case, we exclude those outlier pixels that have

no direct connection to the central area pixels. We applied above procedure to each imaging band.

At the end of this process, we obtain galaxy’s segmentation map in each imaging band.

The segmentation maps in all bands are then merged and the merged-segmentation-map is used

as the fitting area of the galaxy. Fig. 3.4 shows an example of segmentation maps in seven bands

of a galaxy in the z ⇠ 0 sample (SDSS ObjID 1237652947457998886 or NGC 309) which the

field associated with it is shown in Fig. 3.3. Final segmentation map resulted from merging the

segmentation maps in seven imaging bands and gri composite image showing the optical area covered

by the final segmentation map are shown in second row in the figure.

3.1.3 Deriving multiband photometric fluxes and flux uncertainties of

pixels in the galaxy

Flux and flux uncertainty associated with a galaxy’s pixel is obtained by converting value stored

in the pixel, i.e. counts per second which is average number of electrons that hit the CDD’s pixel
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Figure 3.4: Top row: Example of segmentation maps in the seven imaging bands of GALEX+SDSS
for a galaxy in the z ⇠ 0 sample (SDSS ObjID 1237652947457998886 or NGC 309). Final segmenta-
tion map obtained by merging the seven segmentation maps and gri composite image showing the
optical area covered by the final segmentation map are shown in the bottom row.

in a second. Next, we will describe procedures to convert from pixel value to the flux and flux

uncertainty for imaging dataset from GALEX, SDSS, and HST (CANDELS and 3D-HST).

In GALEX image, pixel value is in unit of counts per second. To convert from pixel values in

FUV and NUV images to corresponding fluxes, we use following equations 2. CPS represents pixel

value in counts per second.

FluxFUV[erg s�1cm�2Å
�1

] = 1.4⇥ 10�15 ⇥ CPS (3.1)

FluxNUV[erg s�1cm�2Å
�1

] = 2.06⇥ 10�16 ⇥ CPS (3.2)

To calculate flux uncertainties in FUV and NUV, first, uncertainty of CPS is calculated using

CPSerr,FUV =

p
CPS⇥ exp-time + (0.050⇥ CPS⇥ exp-time)2

exp-time
(3.3)

CPSerr,NUV =

p
CPS⇥ exp-time + (0.027⇥ CPS⇥ exp-time)2

exp-time
(3.4)

with exp-time represents exposure time. Then based on the uncertainty of CPS, flux uncertainties

in FUV and NUV can be calculated using equation 3.1 and 3.2.

2Following information given in this webpage: https://asd.gsfc.nasa.gov/archive/galex/FAQ/counts_
background.html
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Table 3.1: Gain for CCD cameras of SDSS
camcol u g r i z

1 1.62 3.32 4.71 5.165 4.745

2
1.595 (for run<1100)
1.825 (for run>1100)

3.855 4.6 6.565 5.155

3 1.59 3.845 4.72 4.86 4.885
4 1.6 3.995 4.76 4.885 4.775
5 1.47 4.05 4.725 4.64 3.48
6 2.17 4.035 4.895 4.76 4.69

In the SDSS image, pixel value is counts in unit of nanomaggy. To convert the pixel value into

flux in unit of erg s�1cm�2Å
�1

, we use following equation 3

Flux�,SDSS[erg s�1cm�2Å
�1

] = counts[nanomaggie]

⇥ 3.631⇥ 106


Jy

nanomaggie

�

⇥ 2.994⇥ 10�5

✓
Å

�

◆2 
1

Jy

�
(3.5)

To calculate flux uncertainty in the SDSS image, first, counterr (i.e. uncertainty of counts) is

calculated using the following equation

counterr =

vuut
⇣

count[nanomaggie]
NMGY

⌘
+ countsky

gain
+ dark variance (3.6)

with NMGY is a conversion factor from counts to flux in unit of nanomaggie (i.e. nanomaggie per

count) and countsky is counts associated with sky background image. countsky at particular point

in the image field is obtained by interpolating from sampled sky background counts given in HDU2

of the SDSS fits file using bilinear interpolation method. Gain is a conversion factor from count to

the detected number of photo electron and dark variance is an additional source of noise from the

read-noise and the noise in the dark current. Values of gain and dark variance are given in Table 3.1

and 3.2 4, respectively. Those values depend on the camera column (camcol) and filter. After getting

counterr, flux uncertainty can be calculated using following equation

�Flux�,SDSS[erg s�1cm�2Å
�1

] = countserr ⇥NMGY

⇥ 3.631⇥ 106


Jy

nanomaggie

�

⇥ 2.994⇥ 10�5

✓
Å

�

◆2 
1

Jy

�
(3.7)

3Based on information taken from: http://www.sdss.org/dr12/algorithms/magnitudes/
4Based on information taken from: https://dr10.sdss.org/datamodel/files/BOSS_PHOTOOBJ/frames/RERUN/

RUN/CAMCOL/frame.html
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Table 3.2: Dark variances for CCD cameras of SDSS
camcol u g r i z

1 9.61 15.6025 1.8225 7.84 0.81

2 12.6025 1.44 1.00
5.76 (for run<1500)
6.25 (for run>1500)

1.0

3 8.7025 1.3225 1.3225 4.6225 1.0

4 12.6025 1.96 1.3225
6.25 (for run<1500)

7.5625 (for run>1500)
9.61 (for run<1500)

12.6025 (for run>1500)

5 9.3025 1.1025 0.81 7.84
1.8225 (for run<1500)
2.1025 (for run>1500)

6 7.0225 1.8225 0.9025 5.0625 1.21

Fig. 3.5 shows example of spatially resolved multiband fluxes (in the seven bands of GALEX

and SDSS) of a galaxy in z ⇠ 0 sample (SDSS ObjID 1237652947457998886 or NGC 309, whose

the segmentation map is shown in Fig. 3.4). Fig. 3.6 shows the spatially resolved multiband flux

uncertainties (in the seven bands) of the galaxy.

Pixel value in the image provided by the 3D-HST is a count in unit of counts per second.

To convert the pixel value to flux in unit of erg s�1cm�2Å
�1

, we multiply it with a conversion

factor given in the PHOTFLAM header keyword 5. Flux uncertainty of a pixel is calculated from

weight image provided by the 3D-HST. Pixel value in the weight image is an inverse variance of the

count and it could be used to calculate uncertainty of the count and the flux uncertainty in unit

of erg s�1cm�2Å
�1

by using the same PHOTFLAM header keyword. Fig. 3.7 shows example of

the spatially resolved fluxes in the eight bands for a galaxy in the z ⇠ 1 sample (GS 19186 which

located at RA= 53�.120750, DEC= �27�.818984 and z = 1.0940), while the spatially resolved flux

uncertainties in the eight bands are shown in Fig. 3.8.

3.1.4 Pixel binning

After getting spatially resolved distributions (in pixel scale) of multiband photometric fluxes of a

galaxy, next step is binning neighboring pixels to increase signal to noise (S/N) ratio of the spatially

resolved SEDs, thereby increasing constraint to the model SEDs. We develop a new pixel binning

technique that taking into account three criteria: (1) closeness, such that only neighboring connected-

pixels are binned, (2) similarity of SED shape, such that only pixels that have similar SED shape

(i.e. high probability of having similar stellar population properties, e.g. stellar metallicity (Z),

stellar age, and dust extinction) are binned, and (3) minimum S/N (i.e. S/N threshold), such that

the resulted bin should have S/N in all bands as high as S/N threshold. We do not use publicly

available pixel binning code, such as voronoi binning (Cappellari and Copin 2003), because the code

does not consider similarity of SED shape among pixels that are binned. Binning the pixels that

have di↵erent SED shape (i.e. high possibility of having di↵erent stellar population properties) could

potentially erase information embedded in pixel-scale SED, which is important to be preserved when

studying galaxy’s spatially resolved properties.

5Based on information taken from http://www.stsci.edu/documents/dhb/web/c03_stsdas.fm3.html
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Figure 3.5: Spatially resolved fluxes in the seven bands of GALEX+SDSS for a galaxy in the z ⇠ 0
sample (SDSS ObjID 1237652947457998886 or NGC 0309).
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Figure 3.6: Spatially resolved flux uncertainties in the seven bands of GALEX+SDSS for a galaxy
in the z ⇠ 0 sample (SDSS ObjID 1237652947457998886 or NGC 0309).
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Figure 3.7: Spatially resolved fluxes in the eight bands of CANDELS+3D-HST for a galaxy in the
z ⇠ 1 sample, GS 19186 which located at RA= 53�.120750, DEC= �27�.818984 and z = 1.0940.
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Figure 3.8: Spatially resolved flux uncertainties in the eight bands of CANDELS+3D-HST for a
galaxy in the z ⇠ 1 sample, GS 19186 which located at RA= 53�.120750, DEC= �27�.818984 and
z = 1.0940.
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In practice, a particular band is chosen as a reference for selecting brightest pixel from which

subsequently increasing circular annulus binning is initiated to select (i.e. merge) neighboring pixels

with similar SED shape until S/N>S/N threshold (in all bands) is reach. We use r and F125W

bands as the reference for selecting the brightest pixel in the pixel binning process for the z ⇠ 0 and

z ⇠ 1 samples, respectively. Briefly, the pixel binning is done with the following procedures. First,

locate the position of a brightest pixel in the reference band. Location of the brightest pixel is then

used as a central position of the bin that will be built and its SED is used as a reference for selecting

neighboring pixels with similar SED shape. Pixels lying within a circle with an initial radius of 2

pixels are tested for the similarity of SED shape as that of the central brightest pixel.

The SED similarity test is done through calculating �2 as given by

�2 =
X

i

(fm,i � smbfb,i)2

�2
m,i + �2

b,i

, (3.8)

with i, b, and m represent indexes for filter/band, the central brightest pixel, and the neighboring

pixel that is tested. fm,i and fb,i are i-th band flux of a pixel m and b, respectively, while �m,i and

�b,i are i-th band flux uncertainty of the pixel m and b, respectively. smb represent a correction

for scaling di↵erence between the SEDs of the two pixels, which can be calculated using following

equation

smb =

P
i

fm,ifb,i
�2
m,i+�2

b,i

P
i

f2
b,i

�2
m,i+�2

b,i

. (3.9)

If �2 is smaller than a �2 limit (set as a free parameter), the pixel m is included in the bin.

If the S/N threshold has not been reached in all bands, then radius of the circular annulus is

increased by 2 pixels and the same procedure is done to add up more pixels until the resulted S/N

in each band reaches the S/N threshold. The selected pixels for the bin that has been built is flag

with index of the bin (increasing from 1, which is first bin made for the galaxy, to nbin, which is last

bin, i.e. number of bins created). Subsequent bin is made by looking for the position of brightest

pixel in the reference band that has not been selected in the previous binning (indicated by its flag)

and then do the same procedures as described previously. The binning process proceed until no

one bin could be made with available pixels (un-selected in all previous bins). In many cases, the

un-selected pixels are located in outskirt. It could happen due to some reasons, such as binning

all of those pixels does not meet S/N threshold requirement; those pixels have di↵erent SED shape

compared to that of pixels selected in the previous bins; and fraction of those pixels do not meet

the requirement on similarity of SED shape thereby reducing number of pixels to be binned, which

could result in lower S/N than the threshold. In such cases, all those un-selected pixels are binned

into one bin.

Fig. 3.9 shows results of pixel binning for a galaxy in the z ⇠ 0 sample (SDSS ObjID

1237652947457998886 or NGC 309) with various values of parameters, i.e. �2 limit (maximum value

of �2 below which two SEDs of pixels are considered as having similar shape) and S/N threshold
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Figure 3.9: Example of pixel binning results with various values of �2 limit (maximum value of
�2 below which two SEDs of pixels are considered as having similar shape) and S/N threshold
(minimum S/N in all imaging bands that has to be reached by each bin). The same galaxy (SDSS
ObjID 1237652947457998886 or NGC 0309) as used in some figures in previous sections is used for
this example. Throughout this research, �2 limit of 30 and S/N threshold of 10 are used as the pixel
binning parameter.

(minimum S/N in all imaging bands that has to be reached by each bin). Throughout this research,

�2 limit of 30 and S/N threshold of 10 are used as the pixel binning parameters. Pixel binning

result with �2 limit of 30 and S/N threshold of 10 is shown in middle panel in the figure. Fig. 3.10

shows example of pixel binning result with �2 limit of 30 and S/N threshold of 10 for a galaxy in the

z ⇠ 1 sample (GS 19186 which located at RA= 53�.120750, DEC= �27�.818984 and z = 1.0940).

36



Figure 3.10: Example of a pixel binning result with �2 limit of 30 and S/N threshold of 10 for a
galaxy in the z ⇠ 1 sample, GS 19186 which located at RA= 53�.120750, DEC= �27�.818984 and
z = 1.0940.

3.2 Construction of model SEDs

In this step, a library of model SEDs is constructed. The constructed model SEDs are then used for

fitting with the observed spatially resolved SEDs (i.e. SED of galaxy’s bins). The model SEDs are

generated using stellar population synthesis model which have been passed through some processes

that more less resembling those of real processes experienced by the emitting spectrum from a stellar

population in a galaxy all the way to hitting the camera filter that is used for the observation on

earth. In the following, procedures that are done in the construction of the library of model SEDs

are described.

3.2.1 Generating rest-frame spectra of the stellar population synthesis

model

Rest-frame model spectra with uniform parameter grids are generated using publicly available stellar

population synthesis model, GALAXEV (BC03) (Bruzual and Charlot 2003). We assume Chabrier

(2003) initial mass function (IMF) with mass range between 0.1M� and 100M� and exponentially

declining SFR model SFR(t) / e�t/⌧ with ⌧ for decaying timescale and t for stellar population age.

We use the following grids of parameters to generate the rest-frame model spectra:

1. 100 values of SFR e-folding time, ⌧ , from 0.1 Gyr to 10 Gyr with 4⌧ of 0.1 Gyr,

2. 55 values of age, t, from 0.25 Gyr to 13.75 Gyr with 4t of 0.25 Gyr,

3. 4 values of metallicities, Z : 0.004, 0.008, 0.02, and 0.05.
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Figure 3.11: Example of rest-frame model spectrum generated using GALAXEV with various values of
Z, ⌧ , and ages.

Model spectrum generated by GALAXEV is in unit of L�Å
�1

and normalized to the total stellar

mass of 1M�. Total number of the model spectra generated in this step is 100 ⇥ 55 ⇥ 4 = 22000.

Fig. 3.11 shows example of the rest-frame model spectra with various values of Z, ⌧ , and age. In

the first row, e↵ect of ⌧ on the evolution of model spectra is shown. Model stellar population with

shorter ⌧ have less number of young stars which is shown by suppression of luminosity in the short

wavelength region. In the second row, e↵ect of Z on the evolution of model spectra is shown. It

should be noted that each panel in this figure is not a good representation of the evolution of model

spectrum from evolving model stellar population because it does not include modeling of metallicity

evolution, instead instantaneous metallicity is used.
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3.2.2 Attenuation by interstellar dust

To simulate attenuation e↵ect by the interstellar dust to the model spectrum, we assume Calzetti

et al. (2000) dust attenuation law for starburst galaxies which has following form

k(�) = 2.659

✓
�2.156 +

1.509

�
� 0.198

�2
+

0.011

�3

◆
+RV for 0.12µm  �  0.63µm

k(�) = 2.659

✓
�1.857 +

1.040

�

◆
+RV for 0.63µm < �  2.20µm (3.10)

with RV = 4.05. k(�) is related to attenuation at wavelength � (A�) as A� = k(�)E(B � V ) with

E(B � V ) is color excess in B � V . Change of flux at each wavelength as a↵ected by the dust

attenuation can then be calculated with

fobs(�) = fint(�)10
�0.4A�

= fint(�)10
�0.4k(�)E(B�V ) (3.11)

We use Calzetti et al. (2000) dust extinction law because its dust extinction vector could broadly

reproduce distribution of the spatially resolved SEDs (of galaxies in the z ⇠ 0 sample) on the

FUV-NUV versus FUV-u and FUV-NUV versus NUV-u color-color diagrams (see Appendix A.1).

For each rest-frame model spectrum generated from the previous step, we applied dust atten-

uation e↵ect with 13 assumed values of E(B � V ), 0 (no extinction), 0.05, 0.1, 0.15, 0.2, 0.25,

0.3, 0.35, 0.4, 0.45, 0.5, 0.55, and 0.6 mag. After this step, number of model spectra becomes

22000⇥ 13 = 286000. Fig. 3.12 shows the k(�) as a function of � of the Calzetti et al. (2000) dust

extinction law (in the left panel) and examples of the implementation of Calzetti et al. (2000) dust

extinction law to a model rest-frame model spectrum with Z = 0.02, ⌧ = 7 Gyr, and age of 10 Gyr.

As shown in this figure, e↵ect of dust extinction is more severe in shorter wavelength range than

that in the longer wavelength range.

3.2.3 Cosmological redshifting and dimming

Due to expansion of the universe, wavelength of light emitted by a galaxy is stretched as the light

travels toward the observer. This e↵ect makes the galaxy’s spectrum to be shifted toward longer

wavelength (i.e. redshifted) and dimmed. This cosmological redshifting and dimming e↵ect is applied

to the model spectra. Flux (F�) that we observe on earth from a galaxy at redshift of z that has a

luminosity of L� can be calculated using the following equation

F�(�) =
L�/(1+z)(�)

4⇡DL(1 + z)
, (3.12)
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Figure 3.12: Left panel: k(�) of the (Calzetti et al. 2000) dust extinction law. Right panel: example
of the implementation of the dust extinction e↵ect to a rest-frame model spectrum. The rest-frame
model spectrum used for this example has Z = 0.02, ⌧ = 7.0 Gyr, and age of 10 Gyr. Dust extinction
e↵ect is more severe in the shorter wavelength region than that in the longer wavelength region.

with DL is a luminosity distance which depends on the galaxy’s redshift through the following

equation

DL(z) =
(1 + z)c

H0

Z 1

(1+z)�1

dap
a⌦m + a2(1� ⌦m � ⌦⇤) + a4⌦⇤

(3.13)

Flux in the above equation is expressed in the observer frame so that the index �/(1 + z) for the

luminosity (in the numerator) represents emitting-object frame (i.e. rest-frame). In practice, each

wavelength point in the rest-frame spectrum is shifted by multiplying the wavelength with (1 + z)

and flux associated with that wavelength point (after redshifted) is calculated using the above equa-

tion (eq. 3.12). Throughout this research, redshift of the sample galaxies are fixed, adopting redshift

information given in the galaxy catalog from which the sample galaxies are defined. Thus, reducing

one free parameter in the SED fitting process. As we express the observed spatially resolved fluxes

in the sample galaxies in unit of erg s�1cm�2Å
�1

(see Section 3.1.3), we also expressed flux associ-

ated with the model spectrum in the same unit. Throughout this research, we assume the ⇤CDM

cosmology with the cosmological parameters of ⌦m = 0.3, ⌦⇤ = 0.7, and H0 = 70km s�1Mpc�1.

Fig. 3.13 shows cosmological redshifting and dimming e↵ect on a model spectrum. Blue spectrum

(with y axis shown in the left) shows rest-frame model spectrum, while two red spectra (with y

axis shown in the right) show the model spectra as if the model galaxies are placed at z = 0.1 and

z = 0.3. Redshifting and dimming e↵ects are clearly shown in this figure.

3.2.4 Integrating through filter transmission curve

Observed photometric SED of a galaxy is obtained from broadband imaging which catches fraction

(within a particular wavelength range) of the galaxy’s light by passing the light through a filter which

has a unique transmission function (that varies with wavelength). To produce model photometric

SEDs that could serve as a template with which the observed SED is fitted, model spectra resulted

from the cosmological redshifting and dimming step are then integrated through transmission curves
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Figure 3.13: Example of applying cosmological redshifting and dimming to a model spectrum. Blue
spectrum with y axis shown in the left shows a rest-frame model spectrum, while two red spectra
show the model spectra as if model galaxies are placed at z = 0.1 and z = 0.3.

of filters that are used in the observation. We integrate the model spectra with 7 filter transmission

curves of GALEX (FUV and NUV) and SDSS (u, g, r, i, and z) when constructing a library of

model SEDs to be used for fitting with the observed spatially resolved SEDs of galaxies in the

z ⇠ 0 sample. In the same way, we integrate the model spectra with 8 filter transmission curves

of HST (F435W, F606W, F775W, F814W, F850LP, F125W, F140W, and F160W) for constructing

the model SEDs to be used for fitting with the observed spatially resolved SEDs of galaxies in the

z ⇠ 1 sample. Photometric flux Fi in a particular filter i which has a transmission function of Ti(�)

can be calculated using following equation

Fi =

R
F�(�)�Ti(�)d�R

�Ti(�)d�
. (3.14)

The � factor in both the numerator and denominator accounts for the fact that the number of

photons per unit of flux varies with wavelength. Fig. 3.14 shows example of the integrating model

spectrum through filter transmission curves of GALEX+SDSS (top panel) and CANDELS+3D-HST

(bottom panel). Model spectrum redshifted from a model galaxy placed at z = 0.015 is used in the

top panel, while model spectrum redshifted from a model galaxy placed at z = 1.2 is used in the

bottom panel. Red points show the photometric fluxes resulted from the integration.
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Figure 3.14: Example of integrating model spectrum through filter transmission curves. Top panel:
a model spectrum emitted by a model galaxy that is placed at z = 0.015 is integrated through 7 filter
transmission curves of GALEX+SDSS. Bottom panel: a model spectrum emitted by a model galaxy
that is placed at z = 1.2 is integrated through 8 filter transmission curves of CANDELS+3D-HST.
Red points in the two panels show the photometric fluxes resulted from the integration.

3.2.5 Model SED interpolation

Last step in constructing a library of model SEDs is to interpolate parent model SEDs generated by

the previous steps. The interpolation is done in 4 dimensional parameters space (Z, ⌧ , E(B � V ),

and age). By the interpolation, model SEDs with random parameters (in the Z, ⌧ , E(B � V ),

and age) are derived. The interpolation also could fill the gap given by the parameter grids in

the parent model SEDs, especially for Z where only four Z could be generated from the GALAXEV.

The randomized parameters and their uniformity within a large range is important for the Bayesian

SED fitting that we adopt (which will be described in the next section). The interpolation method

consists of two steps, (1) interpolation in three dimensional parameters space of ⌧ , E(B � V ), and

age (t) for each ”fix” value of Z using tricubic interpolation technique and (2) interpolation in one

dimensional parameter space of Z using cubic spline interpolation technique.

The tricubic interpolation in three dimensional space of ⌧ , E(B� V ), and age (t) for ”fix” value

of Z is done by solving the following equation in a cube of the three parameters

f(E(B � V ), t, ⌧) =
3X

i=0

3X

j=0

3X

k=0

aijkE(B � V )itj⌧k. (3.15)
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Then the cubic spline interpolation in one dimensional space of Z is done by solving the following

equation

f(Z) =
3X

i=0

aiZ
i. (3.16)

Fig 3.15 shows example of results obtained from the tricubic and cubic spline interpolation steps.

Two cubes of model photometric fluxes in the first row show the parent model SEDs that are

generated following steps described in the previous sections, while two cubes in the second row show

full-cube of model SEDs resulted from the tricubic interpolation method. It is shown by the plots

that the tricubic interpolation method could interpolate the model SEDs considerably good. Two

plots in the third row show example of cubic spline interpolation in one dimensional space of Z. In

combination, those two interpolation steps will interpolate model SEDs in four dimensional space.

Using the 286000 parent model SEDs, model interpolation process produces 300000 model SEDs

with all have completely random values of the model parameters.

3.3 SED fitting with Bayesian statistics approach

Once spatially resolved distribution (in bin space) of the observed SEDs in a galaxy and a set of

model SEDs (the 300000 model SEDs) that is redshifted according to the redshift of the galaxy

are obtained, next step is fitting each bin SED with the set of model SEDs. Here, we apply SED

fitting that adopts Bayesian statistics for parameter inference. It is a method of statistical inference

in which Baye’s theorem is used to update the probability of a hypothesis (i.e. prior) as more

information (i.e. data) becomes available. Bayes’ theorem has the following form

P (✓|X) =
P (X|✓)P (✓)R
P (X|✓)P (✓)d✓

(3.17)

with ✓ andX represent model parameter and data, respectively. P (✓|X), P (X|✓), and P (✓) represent

posterior probability of the model parameter given the data, probability of the data given the model

(i.e. likelihood function), and prior, respectively. We do not set special form of prior for all the

model parameters, except range of value for each parameter (as described in section 3.2.1). Thus,

uniform prior is applied for all the model parameters.

The likelihood function (P (X|✓)) is calculated based on the �2 statistics. The �2 value of the

m-th model for the SED of a d-th bin can be calculated with

�2
m =

X

i

(
fd,i � sfm,i

�d,i
)2, (3.18)

with i represents index for filter. fd,i, fm,i, and �i represent observed flux in the i-th band of the

d-th bin, model flux in the i-th band of the m-th model, and uncertainty of the observed flux in the

i-th band of the d-th bin, respectively. s represents the scaling (i.e. normalization) of the model

SED. s is set as a free parameter. It is randomly drawn between 0.1 ⇥ sleast to 10 ⇥ sleast, where
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Figure 3.15: Example of the interpolation of model SEDs in four dimensional parameters space (Z,
⌧ , E(B � V ), and t). In this example, the model SEDs are assumed to be emitted by a galaxy at
z = 1.5. Two cubes in the first row show the parent model SEDs, while two cubes in the second
row show fulled-cube of model SEDs resulted from the tricubic interpolation method. Two plots in
the third row show example of results of the cubic spline interpolation in one dimensional space of
Z. Four green points and red point represent parent models and interpolated model (with random
Z), respectively.
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sleast is the model normalization if �2 minimization (i.e. maximum likelihood) applied, that is

sleast =

P
i

fd,ifm,i

�2
i

P
i

f2
m,i

�2
i

. (3.19)

For each model SED, 100 random s are generated and �2 of model SED with each s (total number

of models becomes 30000000) is calculated. The likelihood function is assumed to have a form of

the Student’s t distribution as follows

P (X|✓m) =
�
�
⌫+1
2

�
p
⌫⇡�

�
⌫
2

�
✓
1 +

(�2
m)2

⌫

◆� ⌫+1
2

(3.20)

We assume the degree of freedom of the Student’s t-distribution, ⌫, as 3, because that distribution

gives the consistent sSFR estimate as tested with mock SEDs and also gives the best SFR estimate

as compared to 24µm observations (see Appendix A.2). Adopting the Student’s t-distribution for the

likelihood function could give higher probability to a model with large �2 compared to the Gaussian

distribution (P (✓|X) / exp(��2/2)), which is commonly used in the Bayesian SED fittings (e.g.,

Kau↵mann et al. 2003b; Salim et al. 2007; da Cunha et al. 2008; Han and Han 2014).

With the uniform prior, the likelihood function associated with a model parameter could be

thought as a weight for the model parameter and the posterior probability of the model parameter

then has the following form

P (✓m|X) =
P (X|✓m)

NP
m=1

P (X|✓m)

(3.21)

with m is index for model such that ✓m represent value of a model parameter ✓ associated the m-th

model and N is the number of models. In order to derive the best estimate for a model parameter

of ✓, a posterior mean of ✓ is calculated with the following equation

✓ =
NX

m=1

✓P (✓m|X) (3.22)

=

NP
m=1

✓P (X|✓m)

NP
m=1

P (X|✓m)

(3.23)

For each model SED, there are seven parameters associated with it, Z, ⌧ of SFR decaying

timescale, E(B � V ), stellar population age (t), model normalization (s), SFR, and stellar mass

(m⇤). The m⇤ and SFR are not first principal model parameters, instead they are multiplication

between other model parameters. Because each model SED generated with the GALAXEV (Bruzual

and Charlot 2003) is normalized with a stellar mass of 1 M�, the estimated s corresponds to the

45



m⇤. Instantaneous SFR is derived with

SFR =
m⇤

1� exp(�t/⌧)
⇥ exp(�t/⌧)

⌧
(3.24)

where the first multiplication term in the right-hand side serve as a scaling between integrated

mass and instantaneous SFR. Throughout this research, we only focus on the spatially resolved

distributions of SFR and stellar mass. Therefore, currently we only extract SFR and m⇤ from the

fitting process. In this case, SFR and m⇤ of each bin are derived by calculating their posterior means

using eq. 3.22 (with ✓ being replaced by SFR or m⇤).

Once the posterior means of SFR and m⇤ of each bin are calculated, those values are divided into

the pixels that belong to the bin. To divide the SFR and m⇤ of a bin into pixels that are associated

with the bin, we assume that the SFR and m⇤ of a pixel are proportional to its fluxes in waveband

with the shortest and longest wavelength (FUV and z fluxes for the z ⇠ 0 sample and F435W and

F160W fluxes for the z ⇠ 1 sample), respectively, such that SFR and m⇤ of pixel could be calculated

using following equation

SFRpixel =
FluxFUV (or F435W,pixel)

FluxFUV (or F435W,bin)
⇥ SFRbin (3.25)

m⇤,pixel =
Fluxz (or F160W,pixel)

Fluxz (or F160W,bin)
⇥m⇤,bin (3.26)

We also calculate uncertainties of SFR and m⇤ of each bin by calculating the standard deviation of

the probability distribution function (PDF) associated with the posterior probability distributions of

SFR and m⇤. The uncertainties of SFR and m⇤ of pixels that belong to the bin are then calculated

using the propagation error of the above equations.

3.4 Examples of the pixel-to-pixel SED fitting result

3.4.1 Matrix of the posterior probability distribution functions

Fig. 3.16 and 3.17 show examples of posterior probability distribution functions of the model param-

eters outputted by the pixel-to-pixel SED fitting method. This kind of diagram is obtained for each

galaxy’s bin (collection of pixels). By using model weighting (likelihood) with Student’s t form (see

Section 3.3 for detailed description on the SED fitting method), reasonably higher weight is given

to each model SED compared to the weight if Gaussian likelihood is assumed. By giving reasonably

higher weight to all the model SEDs, the degeneracies existing in the model SEDs are statistically

considered in estimating the SFR and stellar mass. As shown in the Fig. 3.16, degeneracy between

dust extinction and age is depicted in 2D posterior probability distribution function (between age

and E(B�V )) as well as in 1D posterior probability distribution function (that of E(B�V )). Small

box in the upper right side of each figure shows observed SED of the bin.
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Figure 3.16: Example of a posterior probability distributions of the model parameters in the Bayesian
SED fitting adopted in the pixel-to-pixel SED fitting. This posterior probability distribution repre-
sents a fitting result for 10th bin of the galaxy GS 3236 in the z ⇠ 1 sample. As a product of the
pixel-to-pixel SED fitting, each bin (collection of pixels) in a galaxy has this kind of diagram. Small
box in the top right side shows observed SED of the bin.
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Figure 3.17: Same as in Fig. 3.16 but for 4th bin of the galaxy GS 6494 in the z ⇠ 1 sample.
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In many cases, 1D posterior probability distribution functions of SFR and m⇤ are relatively tight

(with small standard deviation), while those of other stellar population properties (Z, ⌧ , E(B�V ),

and age) are wide (with large standard deviation) and even have two peaks due to the degeneracy

among the model parameters, such as shown in the Fig. 3.16. Due to the degeneracy, it is not

appropriate to pick a single best-fitting model SED and use its properties as the best estimate for

the parameters. Any estimate of parameter resulted from this fitting process must be followed with

appropriate averaging with weighting by probability. In this research, we only extract SFR and M⇤

from the fitting process. Given relatively tight 1D posterior probability distribution functions of the

SFR and M⇤, it is appropriate to calculate posterior means, while for other stellar population prop-

erties, calculating posterior means could be misleading, given their broad 1D posterior probability

distribution functions. Due to those reasons, we do not discuss the spatially resolved distributions

of other properties. It will be the focus of future work to further develop the methodology and find

an appropriate technique to extract the other stellar population properties.

3.4.2 Example of the pixel-to-pixel SED fitting results: ⌃⇤ and ⌃SFR maps

Fig. 3.18 shows the pixel-to-pixel SED fitting result, consisting ⌃⇤ (top left), ⌃⇤ uncertainty (bot-

tom left), ⌃SFR (top right), and ⌃SFR uncertainty (bottom right), for a galaxy (SDSS ObjID

1237652947457998886 or NGC 309) in the z ⇠ 0 sample whose pixel binning result is shown in

Fig. 3.9, and the maps of the multiband fluxes and flux uncertainties are shown in Fig. 3.5 and

Fig. 3.6, respectively. Fig. 3.19 shows the pixel-to-pixel SED fitting result, consisting ⌃⇤ (top left),

⌃⇤ uncertainty (bottom left), ⌃SFR (top right), and ⌃SFR uncertainty (bottom right), for a galaxy

(GS 19186) in the z ⇠ 1 sample whose the pixel binning result is shown in Fig. 3.10, and maps of

the multiband fluxes and flux uncertainties are shown in Fig. 3.7 and Fig. 3.8, respectively. Fig. 3.20

and Fig. 3.21 show pixel-to-pixel SED fitting results for four galaxies in the z ⇠ 0 and z ⇠ 1 samples,

respectively. In each figure, di↵erent column represents result for di↵erent galaxy. In each column,

from top to bottom show: pixel binning result, ⌃⇤, ⌃⇤ uncertainty, ⌃SFR, and ⌃SFR uncertainty.

We have checked the reliability of the pixel-to-pixel SED fitting method through some tests that

include pixel-by-pixel comparison of the estimated SFR from this method with that converted from

the 24µm image using a nearby resolved galaxy, the M51 galaxy, comparison of the integrated SFR

and M⇤ derived using this method with those taken from the MPA-JHU and 3D-HST catalogs, and

fitting test with mock SEDs to verify the Bayesian SED fitting approach adopted by this method.

In addition to that, we also checked the reliability of the Calzetti et al. (2000) dust extinction law by

comparing a dust extinction vector calculated based on the dust extinction law with a distribution

of the spatially resolved SEDs of the z ⇠ 0 sample galaxies on a color-color diagram. We discuss

this issues in Appendix A.

49



Figure 3.18: Example of the pixel-to-pixel SED fitting results for a galaxy (SDSS ObjID
1237652947457998886 or NGC 0309) in the z ⇠ 0 sample whose the pixel binning result is shown
in Fig. 3.9, and the maps of the multiband fluxes and flux uncertainties are shown in Fig. 3.5 and
Fig. 3.6, respectively. Top left, top right, bottom left, and bottom right panels show the spatially
resolved distributions of ⌃⇤, ⌃SFR, ⌃⇤ uncertainty, and ⌃SFR uncertainty, respectively.
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Figure 3.19: Example of the pixel-to-pixel SED fitting results for a galaxy (GS 19186) in the z ⇠ 1
sample whose the pixel binning result is shown in Fig. 3.10, and the maps of the multiband fluxes
and flux uncertainties are shown in Fig. 3.7 and Fig. 3.8, respectively. Top left, top right, bottom
left, and bottom right panels show the spatially resolved distributions of ⌃⇤, ⌃SFR, ⌃⇤ uncertainty,
and ⌃SFR uncertainty, respectively. This figure is taken from Abdurro’uf and Akiyama (2018).
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Figure 3.20: Another example of the pixel-to-pixel SED fitting results for galaxies in the z ⇠ 0
sample. Di↵erent column represent fitting result for di↵erent galaxy. In each column, from top to
bottom show: pixel binning result, ⌃⇤ map, ⌃⇤ uncertainty map, ⌃SFR map, and ⌃SFR uncertainty.
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Figure 3.21: Another example of the pixel-to-pixel SED fitting results for galaxies in the z ⇠ 1
sample. Di↵erent column represent fitting result for di↵erent galaxy. In each column, from top to
bottom show: pixel binning result, ⌃⇤ map, ⌃⇤ uncertainty map, ⌃SFR map, and ⌃SFR uncertainty.
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Chapter 4

Spatially resolved distributions of

SFR and M⇤ in massive disk

galaxies at z ⇠ 0

4.1 Spatially resolved star formation main sequence (SFMS)

in massive disk galaxies at z ⇠ 0

In order to investigate the possible relation between surface densities of SFR (⌃SFR) and stellar

mass (⌃⇤) at ⇠ 1 kpc scale, we plot all pixels of the 93 galaxies in the z ⇠ 0 sample (which contains

375215 pixels) on the ⌃SFR versus ⌃⇤ plane. The resulted plot is shown in the Fig. 4.1. In the left

panel of the figure, ⌃SFR - ⌃⇤ relation is shown. The contours show regions in the plots with similar

number of pixels which is accounted based on a 0.1 ⇥ 0.1 dex2 bin. The contour is color-coded by

the number of pixels associated with it. The tight relation between ⌃SFR and ⌃⇤ is evidenced by

the contours with high number. This relation, which is called spatially resolved star formation main

sequence (SFMS), is also observed by other researchers (e.g. Wuyts et al. 2013; Magdis et al. 2016;

Cano-Dı́az et al. 2016; Maragkoudakis et al. 2017; Lin et al. 2017; Hsieh et al. 2017; Medling et al.

2018; Liu et al. 2018).

Red dashed line in the left panel represents result of a linear function fitting with the form of

log⌃SFR = ↵ log⌃⇤ + � (4.1)

to all the scattered data. It has slope (↵) of 0.33, zero-point (�) of �5.23, and scatter (�) of

0.70 dex (see Table 4.1). The fitting is done using the least square method. Black circles with

errorbars represent mode of ⌃SFR distribution associated with each ⌃⇤ bin with 0.3 dex width.

The errorbar represents standard deviation around the mode value and it is calculated separately
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Table 4.1: Coe�cients of the best-fitting linear function to the various spatially resolved SFMS
definition

Coe�cient
Best-fitting linear function

linear part of
the mode profile

100% of
the data

80% of
the data

50% of
the data

Slope (↵) 1.00 0.33 0.53 0.67
Zero-point (�) �9.58 �5.23 �6.52 �7.31
Scatter (�)[dex] 0.7 0.48 0.31

above and below the mode value. It should be noted that the errorbar does not represent un-

certainty associated with the mode value, instead it is only intended to show the distribution of

pixels above and below the mode value. The mode profile clearly shows linear increasing trend

at low ⌃⇤ region (log(⌃⇤[M�kpc
�2]) < 7.55), while a flattening tendency is observed at high ⌃⇤

end (log(⌃⇤[M�kpc
�2]) � 7.55). This ’flattening’ trend suggests that a significant number of sub-

galactic regions with high ⌃⇤ have suppressed specific star formation rate (sSFR⌘ ⌃SFR/⌃⇤). This

’flattening’ trend is responsible for the shallow slope of the red dashed line which makes it largely

deviates from the linear trend at the low ⌃⇤ region suggested by the contours with high number.

The linear part in the mode profile (consists of four mode values, excluding two mode values with

lowest ⌃⇤ because they are a↵ected by the detection limit) could be best-fitted with a linear function

with a slope (↵) of 1.00 and zero-point (�) of �9.58 (see Table 4.1), as shown by black line.

Right panel in the Fig. 4.1 shows the spatially resolved SFMS shown with contours which rep-

resent percentage of number of enclosing pixels with respect to the total number of pixels. The

increasing percentage is calculated from the bin that contains largest number of pixels toward the

bin with lowest number of pixels. It is shown from this figure that most of the pixels (80%) reside

within a narrow locus. Brown solid line shows result of linear function fitting (with least square

fitting method) to the pixels within the 80% contour. The line has a slope (↵) of 0.53, zero-point (�)

of �6.52, and scatter (�) of 0.48 dex (see Table 4.1). This line is steeper than the red dashed line in

the left panel and the scatter around this line is much smaller than the scatter if 100% of the data is

used. Brown dashed line represents best-fitting linear function to the 50% of the data. It has steeper

slope (↵ = 0.67) and smaller scatter (� = 0.31 dex) compared to the best-fitting linear function if

80% and 100% of the data are used. The increasing slope from the red dashed line in the left panel

to the brown solid and dashed lines in the right panel further demonstrates e↵ect of the ’flattening’

on decreasing the slope of the best-fitting function. Characteristic slopes, zero-points, and scatters

of the best-fitting linear functions that are shown in the Fig. 4.1 are compiled in Table 4.1.

Fig. 4.2 shows sSFR versus ⌃⇤ of all 375215 pixels of the sample galaxies. Similar as in the left

panel of Fig. 4.1, contours connect regions with similar number of pixels that is accounted based on

a bin with 0.1⇥ 0.1 dex2 area. The black circles with errorbars represent mode values of the sSFR

distributions associated with ⌃⇤ bins with 0.3 dex width. Similar as in the Fig. 4.1, the errorbar is ob-

tained by calculating standard deviation around the mode value and it is calculated separately above

and below the mode value. It is shown by the figure that in the sub-galactic scale, sSFR is decreasing
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Figure 4.1: Spatially resolved star formation main sequence (SFMS) constructed from all pixels in
the sample galaxies. Left panel: spatially resolved SFMS shown with color contour representing
number of pixel within each 0.1⇥ 0.1 dex2 bin. Gray points show the scattered data. Black circles
show mode of ⌃SFR distribution associated with each ⌃⇤ bin with 0.3 dex width. Red dashed line
represents result of linear function fitting to all the scattered data, while black solid line represents
result of linear function fitting to the linear increasing part of the mode profile (with four mode
value excluding two model values with lowest ⌃⇤ which a↵ected by the detection limit). Right
panel: spatially resolved SFMS shown with contour representing increasing percentage of number of
enclosed pixels. Brown solid and dashed lines represent linear function fitting to the data enclosed
within 80% and 50% contours, respectively.

with increasing ⌃⇤. The decreasing sSFR is sharper at high ⌃⇤ end (log(⌃⇤[M�kpc
�2]) � 7.55),

while roughly constant sSFR across ⌃⇤ is shown at low ⌃⇤ (log(⌃⇤[M�kpc
�2]) < 7.55, excluding

two point in the lowest ⌃⇤ because they are a↵ected by the detection limit), agrees with what is

implied by the spatially resolved SFMS (Fig. 4.1).

As we will see later in the discussions on the radial profiles of ⌃⇤(r), ⌃SFR(r), and sSFR(r) (such

as in Sections 4.4 and 5.2), sub-galactic regions associated with high ⌃⇤ are located in the central

regions of the galaxies. The ’flattening’ trend at high ⌃⇤ end in the spatially resolved SFMS is

possibly responsible for the shallower slope (less than 1) of the global SFMS relation observed in the

local universe. This result agrees with Abramson et al. (2014) who found that slope of the global

SFMS relation in the local universe is nearly unity if the quiescent bulge component is excluded

when calculating the integrated SFR and M⇤ of galaxies, while the slope becomes shallower (< 1) if

the bulge region is included.

The mode profile could serve as an objective definition for the spatially resolved SFMS relation.

As suggested by Renzini and Peng (2015), the global SFMS could be objectively defined with the

ridge line of the number density contours on the SFR-M⇤ plane. The ridge line could be obtained

quantitatively with the mode of the SFR distribution for each M⇤ bin, as we adopted here for the

spatially resolved SFMS relation. Later on, we will use the mode profile to define the spatially

resolved SFMS.
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Figure 4.2: Spatially resolved sSFR versus ⌃⇤ of all 375215 pixels of the galaxies in the z ⇠ 0 sample.
Contours represent number of pixels within each 0.1⇥ 0.1 dex2 bin and black circles with errorbars
represent mode values of the ⌃SFR distributions associated with ⌃⇤ bins with 0.3 dex width. The
errorbar represent standard deviation around the mode value and it is calculated separately above
and below the mode value. This figure is taken from Abdurro’uf and Akiyama (2017).

4.2 Spatially resolved SFMS as a function of distance from

the global SFMS

In order to get insights on the quenching process in massive disk galaxies (and all galaxies in

general), it is important to compare the spatially resolved distributions of SFR and stellar mass in

the galaxies across the global SFMS (i.e. SFR versus M⇤ plane). Spatially resolved SFMS relation

provides a unique information about the spatially resolved SFR and stellar mass in the galaxies with

a particular global properties. Therefore it could be used to investigate the connection between global

properties and spatially resolved properties associated with the star formation activity. Here, we

use the spatially resolved SFMS to investigate the connection between global properties of galaxy

associated with distance from the global SFMS (which corresponds to the global sSFR) and the

spatially resolved properties associated with SFR and stellar mass.

First, sample galaxies at z ⇠ 0 are divided into three groups based on their distances from the

global SFMS relation. Fig. 4.3 shows integrated SFR versus M⇤ of the 93 galaxies in the z ⇠ 0

sample. We adopt global SFMS relation by Speagle et al. (2014) that is calculated at median

redshift of the z ⇠ 0 sample (z = 0.0165), which is shown by black solid line, to divide the sample

galaxies. Galaxies which reside above +0.3 dex, within ±0.3 dex, and below �0.3 dex from the

global SFMS are grouped as z0-�MS1, z0-�MS2, and z0-�MS3, respectively. Number of galaxies

in the z0-�MS1, z0-�MS2, and z0-�MS3 are 50, 34, and 9, respectively. It should be noted that
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Figure 4.3: Integrated SFR versus M⇤ of the sample galaxies at z ⇠ 0. Sub-samples that are defined
based on distance from the global SFMS are indicated with di↵erent symbols. Blue circles, green
squares, and red diamonds represent z0-�MS1, z0-�MS2, and z0-�MS3 sub-samples. The global
SFMS relation by Speagle et al. (2014) that is calculated at median redshift of the z ⇠ 0 sample
galaxies (z = 0.0165) is adopted and it is shown by black line. Gray shaded area represents ±0.3
dex around the global SFMS relation.

this classification is based on the global sSFR. Variation on slope and normalization of the global

SFMS reported in the literature (see Speagle et al. (2014) for the compilation) could give di↵erent

result in the galaxy classification based on the distance from the global SFMS relation.

Fig. 4.4 shows spatially resolved SFMS in the z0-�MS1 (top left panel; which consists of 218593

pixels), z0-�MS2 (top right panel; which consists of 120161 pixels), and z0-�MS3 (bottom left

panel; which consists of 36461 pixels) galaxies. Spatially resolved SFMS in the z0-�MS1 galaxies

is tight, which is evidenced by the contours with high number. Blue circles, cyan squares, and

red triangles represent mode values of the ⌃SFR distribution for each ⌃⇤ bin with 0.3 dex width.

Errorbar associated with the mode value represents standard deviation around the mode value and

it is calculated separately above and below the mode value. The spatially resolved SFMS in the

z0-�MS1 is linear at low ⌃⇤ (log(⌃⇤[M�kpc
�2])  7.55) and flattened at high ⌃⇤ end. Best-fitting

linear function to the linear increasing part of the mode profile (consisting four mode values) has a

slope (↵) of 0.99 and zero-point (�) of �9.59, which is shown by black solid line. Black dashed lines

in the three panels is the same as the black solid line in the Fig. 4.1. Spatially resolved SFMS in

the z0-�MS2 galaxies has stronger ’flattening’ tendency at high ⌃⇤ end. As shown in the bottom

left panel, spatially resolved SFMS seems to be broken in the z0-�MS3 galaxies.

Bottom right panel shows comparison of the mode profiles associated with the spatially resolved

SFMS in the three groups. It is shown that ⌃SFR di↵erence is larger at high ⌃⇤ region compared
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Figure 4.4: Spatially resolved star formation main sequence (SFMS) in z0-�MS1 (top left), z0-�MS2
(top right), and z0-�MS3 (bottom left) galaxies. Bottom right panel shows comparison of those
three spatially resolved SFMS. Black solid line in the top left panel represents linear function fitting
to the linear increasing part of the mode profile, which consists of four mode values, while black
dashed line in three panels are the same as the black solid line in left panel of Fig. 4.1. For clarity,
blue circles are shifted by 0.05 to the left from their actual positions and red triangles are shifted
by 0.05 to the right from their actual positions. This figure is taken from Abdurro’uf and Akiyama
(2017).

to that at low ⌃⇤ region. Normalization in the global SFMS (which also means sSFR) is spatially

preserved, in the sense that sSFR of the z0-�MS1 galaxies are higher than the sSFR of z0-�MS2

galaxies over the entire ⌃⇤ range and sSFR of the z0-�MS2 galaxies are higher than sSFR of the

z0-�MS3 galaxies over the entire ⌃⇤ range. It should be noted that errorbar associated with each

mode value does not represent uncertainty of the mode value.

As commonly known for galaxies in general, radial profile of the ⌃⇤ is increasing with decreas-

ing radius (which also implied by the radial profile of the optical surface brightness). Therefore,

increasing ⌃⇤ in the spatially resolved SFMS plot (such as shown in Fig. 4.1 and Fig. 4.4) roughly

corresponds to a decreasing radius toward the central region of the galaxies. In this sense, bottom

right panel in Fig. 4.4 suggests that there is a tendency of decreasing sSFR in the central region as

galaxies progressing to quench. In Section 4.4, we will investigate the ⌃⇤(r), �SFR(r), and sSFR(r)

radial profiles to get insight on the quenching process in massive disk galaxies.
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4.3 Understanding the scatter of the spatially resolved

SFMS

Spatially resolved SFMS exists with a relatively larger scatter (⇠ 0.48 dex if sub-galactic regions

from all sample galaxies are considered; see Section 4.1) than that of the global SFMS (⇠ 0.3 dex

regardless of redshift). Scatter in the spatially resolved SFMS corresponds to the variation of ⌃SFR

for ’fix’ ⌃⇤ which also means variation of sSFR for ’fix’ ⌃⇤. Investigating the origin of the scatter

in the spatially resolved SFMS could give insights on the causes of the variation of the sub-galactic

sSFR. Thus, quenching of star formation activity in sub-galactic scale could be studied. In this

section, we will discuss the local variation of sSFR which gives contribution to the scatter in the

spatially resolved SFMS and try to study what causes the local variation of sSFR. Given that we

only focus on the SFR and M⇤ (globally and locally) in this research, we only discuss the origin

of the scatter in the spatially resolved SFMS in term of those properties. Other stellar population

properties (e.g. metallicity, age) and gas properties (density and metallicity) might give e↵ect on

the local variation of sSFR. However, it is outside of the scope of this thesis to discuss about that

and they will be the focus of future researches.

As suggested by Fig. 4.4, global sSFR gives e↵ect on the normalization of the spatially resolved

SFMS, such that the spatially resolved SFMS of galaxies with higher global sSFR has higher normal-

ization than that of the spatially resolved SFMS of galaxies with lower global SFMS. Thus, global

sSFR gives contribution to the scatter in the spatially resolved SFMS. Next, we will investigate the

contributions from global stellar mass.

4.3.1 E↵ect of global stellar mass to the scatter of the spatially resolved

SFMS

In order to investigate e↵ects of the global M⇤ on the scatter of the spatially resolved SFMS, we

divide the z ⇠ 0 sample into two groups based on the integrated M⇤. Median value of the M⇤ of

the sample galaxies (3.5 ⇥ 1010M�) is used as the threshold. Number of galaxies in each group

(i.e. high-mass and low-mass groups) is 46. Then we investigate spatially resolved SFMS of the

two groups. Left panel in Fig. 4.5 shows comparison between the mode values (i.e. mode profiles)

of the spatially resolved SFMS of galaxies in the low-mass (shown with gray color) and high-mass

groups (shown with black color). The mode value is calculated with the same method as used

for the spatially resolved SFMS of all sample galaxies (see Section 4.1). There is a systematic

dependence of the normalization of the spatially resolved SFMS on the global M⇤, such that the

spatially resolved SFMS of more massive galaxies tend to have lower normalization than that of the

spatially resolved SFMS of less massive galaxies. It should be noted that the errorbar plotted along

with the mode value is not the uncertainty associated with the mode value, instead it is intended

to show the distribution of pixels around the mode value (i.e. peak of the number density) as it
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Figure 4.5: E↵ect of global M⇤ on the normalization (i.e. scatter) in the spatially resolved SFMS.
Left panel: mode values (i.e. mode profiles) associated with the spatially resolved SFMS of galaxies
in the low-mass group (shown in gray) and high-mass group (shown in black). Black dashed line is
the same as black solid line in the left panel of Fig. 4.1. Right panel: mode profiles associated with
the sSFR versus ⌃⇤ in sub-galactic scale of the galaxies in the low-mass group (shown in gray) and
high-mass group (shown in black). For clarity, gray circles are shifted by 0.05 dex to the left from
their actual positions. Figure in the right panel is adopted from Abdurro’uf and Akiyama (2017).

is calculated with the standard deviation. Uncertainty associated with the mode value (calculated

with e.g. bootstrap resampling) could result in lower uncertainty.

Right panel in the Fig. 4.5 shows the mode values of the sSFR distributions associated with the

⌃⇤ bins with 0.3 dex width. It is shown by this figure that there is a systematic dependence of the

sub-galactic sSFR on the global M⇤, such that more massive galaxies tend to have lower sub-galactic

sSFR than that of less massive galaxies. The lower sub-galactic sSFR in more massive galaxies is

observed over the entire ⌃⇤ range. It is already known that more massive galaxies tend to quench

earlier than less massive galaxies, i.e. ”downsizing” scenario (e.g. Cowie et al. 1996; Juneau et al.

2005). Right panel in the Fig. 4.5 shows an indication that the ”downsizing” is happen not only in

the global scale but also in the local kpc-scale.

4.3.2 Local variation of the sSFR and its contribution to the scatter of

the spatially resolved SFMS

In order to get insights on the origin of the scatter of the spatially resolved SFMS relation and what

drives the relation, we investigate the ⌃SFR - ⌃⇤ relation in individual galaxy. For each galaxy, we

plot the distribution of the pixels (that belong to the galaxy) on the ⌃SFR versus ⌃⇤ plane. We found

that the spatially resolved SFMS relation is hold in individual galaxy. Figures 4.6, 4.7, and 4.8 show

examples of the spatially resolved SFMS relations (leftmost column in each figure) in the individual

galaxies that belong to the z0-�MS1, z0-�MS2, and z0-�MS3 groups, respectively. In each figure,

black line in each panel in the leftmost column represents best-fitting linear function to the ⌃SFR-⌃⇤

relation for pixels located outside of a half-mass radius. Slope (↵), zero-point (�), and scatter (�)

of the best-fitting linear function is shown along with the figure. The half-mass radius is defined as
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a radius (along the semi-major axis) which covers half of the total M⇤. The method to calculate

semi-major axis (i.e. ellipticity and position angle) of a galaxy is described in Section 4.4.1. Pixels

located within the half-mass radius are shown with the red points. Blue and green points represent

pixels located outside of the half-mass radius that reside above and below the best-fitting linear

function (the black solid line), respectively. Spatial locations of the red, blue, and green points are

shown in a panel in the middle column in each figure. The linear function fitting is done for the

sub-galactic regions located outside of the half-mass radius because those regions seem to form a

linear relation in the ⌃SFR-⌃⇤ plane, while the sub-galactic regions located within the half-mass

radius seem to make a ⌃SFR suppression trend at high ⌃⇤ end. This ⌃SFR suppression trend at high

⌃⇤ is responsible for the ’flattening’ trend at high ⌃⇤ end in the spatially resolved SFMS formed with

all pixels of the sample galaxies (Fig. 4.1) as well as with pixels that belong to the z0-�MS1 and

z0-�MS2 galaxies. Only in few cases, such as in galaxies with SDSS ObjIDs of 1237649962454941712

(Fig. 4.6), 1237655463774191765 (Fig. 4.7), and 1237663716555489322 (Fig. 4.8), the sub-galactic

regions within the half-mass radius seem to follow the same linear trend as followed by the sub-

galactic regions outside of the half-mass radius.

To get perspective on the location of each ⌃SFR-⌃⇤ relation with respect to the spatially resolved

SFMS relation formed with all pixels of the galaxies in the z ⇠ 0 sample (see Fig. 4.1), we plot

black dashed line which is the same as black solid line in the Fig. 4.1 (which represents best-fitting

linear function to the linear part of the mode profile associated with the spatially resolved SFMS

with all pixels of the sample galaxies). It is shown by the figures that the spatially resolved SFMS

in individual galaxy that belong to lower sSFR group has systematically lower normalization and

tendency to lower slope. Some galaxies in the z0-�MS3 group even have negative slope, such as

SDSS ObjID 1237663783144128544 (Fig. 4.8). The negative slope is consistent with the spatially

resolved distribution of sSFR in the galaxy (shown in rightmost panel), which appears to has large

central void followed by a ring-like structure. We will see in Section 4.5 that this feature (ring-like

structure in the spatially resolved distribution of sSFR) is common for barred galaxies.

In the rightmost column, the spatially resolved distribution of sSFR is shown to get perspective

on the local variation of the sSFR and how it is connected with the scatter of the spatially resolved

SFMS in individual galaxy. Regions indicated with blue points roughly correspond to the spiral arms

and some knots where relatively intense star formation activities take place. It is shown from this

figure that the scatter in the spatially resolved SFMS (in individual galaxy) is corresponds to the

spatial (i.e. local) variation of the sSFR which usually associated with some distinguished features,

such as spiral arm and knots of star formation. It is also shown that the ’flattening’ at high ⌃⇤ end

in the spatially resolved SFMS is correspond to the central quiescent region (which has low sSFR).

Slope (↵) of 1 in the ⌃SFR-⌃⇤ relation means constant sSFR across the entire region (whole ⌃⇤

range), while a slope below 1 represents decreasing sSFR with increasing ⌃⇤. The sSFR which repre-

sent the stellar mass growth rate roughly corresponds to an e�ciency of a star formation. Therefore,

the slope of the spatially resolved SFMS in individual galaxy could give important information re-

garding the star formation e�ciency within the galaxy. Any dependence of the slope on the global
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Figure 4.6: Left column: example of spatially resolved SFMS hold in individual galaxies that belong
to the z0-�MS1 group. Black solid line represents best-fitting linear function to the ⌃SFR-⌃⇤ relation
formed with sub-galactic regions (i.e. pixels) located outside the half-mass radius. Slope (↵), zero-
point (�), and scatter (�) of the best-fitting linear function are shown along with the figure. Black
dashed line is the same as black solid line in the Fig. 4.1. Red points represent sub-galactic regions
located within the half-mass radius, while blue and green points represent sub-galactic regions located
outside the half-mass radius and reside above and below the best-fitting linear function, respectively.
Middle column: spatial locations of the red, blue and green points within the galaxy. Right column:
spatially resolved distribution of sSFR.
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Figure 4.7: Same as Fig. 4.6 but now for some galaxies in the z0-�MS2 group.
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Figure 4.8: Same as Fig. 4.6 but now for some galaxies in the z0-�MS3 group.
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Figure 4.9: Slopes of the spatially resolved SFMS in individual galaxies as functions of SFR (left
panel), M⇤ (middle panel), and sSFR (right panel). The vertical errorbar represents the uncertainty
of the median of the slope which is calculated through bootstrap resampling method, while the
horizontal errorbar represents the width of the global property considered in calculating the median
of the slope.

properties of galaxy (such as SFR, M⇤, and sSFR) might give insight on the connection between

global phenomenon (related to the global properties, such as global gas accretion) and the local star

formation activity in the galaxy. We investigate dependence of the slope of the spatially resolved

SFMS in individual galaxy on the global properties of SFR, M⇤, and sSFR. Fig. 4.9 shows the slope

as functions of the SFR (left panel), M⇤ (middle panel), and sSFR (right panel). The red squares

with errorbars represent median of the slope associated with each global property with width of 0.3

dex, 0.2 dex, and 0.3 dex for the SFR, M⇤, and sSFR, respectively. The vertical errorbar represents

the uncertainty of the median of the slope which is calculated through bootstrap resampling method,

while the horizontal errorbar represents the width of the global property considered in calculating

the median of the slope. This figure shows that there seems a dependence of the spatially resolved

SFMS slope in an individual galaxy on the SFR of the galaxy, in such a way that the galaxy with

higher SFR tend to have spatially resolved SFMS with steeper slope. It means that in galaxies with

higher SFR (might be due to higher gas content/gas accretion), star formation e�ciency tend to be

uniform within their regions.

4.4 Radial profiles of ⌃⇤(r), ⌃SFR(r), and sSFR(r)

4.4.1 Deriving the ⌃⇤(r), ⌃SFR(r), and sSFR(r) radial profiles for individ-

ual galaxy

Throughout this thesis, average surface density radial profiles (⌃⇤(r), ⌃SFR(r), and sSFR(r)) of

galaxies with a particular global properties is derived by averaging over individual radial profiles of

the galaxies. It is di↵erent from the methods used by other researchers (e.g. Nelson et al. 2016a)

where the spatially resolved maps (of ⌃⇤ and ⌃SFR) are stacked then the radial profiles from the

stacked-maps are calculated. In order to derive ⌃⇤(r), ⌃SFR(r), and sSFR(r) radial profiles of a
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galaxy, first, elliptical isophotes fitting is done to obtain the best-fitting elliptical isophotes (with

certain values of ellipticity and position angle) associated with the spatially resolved distribution of

r-band fluxes in the galaxy. Spatially resolved r-band flux is chosen as a reference to obtain the

characteristic elliptical isophotes because r band is roughly located in the central part of the SED.

The elliptical isophotes fitting is done by applying ellipse command in IRAF to the r-band image of

the galaxy. Result of this fitting is a fits table which contains a set of elliptical isophotes with various

semi-major axis (increasing from central region toward outskirt), ellipticities, and position angles.

The position angle represents orientation of the semi-major axis and it is expressed as an angle in

degree measured counterclockwise from the positive y axis. In many cases, central coordinates of

those isophotes are slightly di↵erent (within ⇠ 1 pixel). However, those central coordinates are close

to the coordinate of the brightest pixel in r-band.

Next step is averaging the best-fitting elliptical isophotes obtained from the previous step. We

assume the central coordinate of the galaxy as the coordinate of brightest pixel in r-band. The

ellipticities and position angles of the best-fitting elliptical isophotes are averaged. To avoid bias

toward isophotes located in the central region (in many cases, elliptical isophotes located in the

central region have di↵erent ellipticities and position angles compared to those in the underlying

disk due to bar structure and bulge), only elliptical isophotes located outside of the half-mass radius

(i.e. semi-major axis within which half of total M⇤ is enclosed) are averaged. The half-mass radius

is defined using elliptical isophotes obtained by averaging all the elliptical isophotes regardless of

their radial positions (i.e. including those reside in the central region).

After getting the average ellipticity and position angle, next step is deriving the ⌃⇤(r) and

⌃SFR(r) of each galaxy in the z ⇠ 0 sample. The ⌃⇤(r) and ⌃SFR(r) are derived by calculating

average ⌃⇤ and ⌃SFR within elliptical annuli (which are constructed based on the average ellipticity

and position angle) with semi-major axis that is sampled by 2 kpc steps within 6 kpc radius and 4

kpc steps outside of it. The radial profile of sSFR(r) is derived by dividing the ⌃SFR(r) with the

⌃⇤(r).

Fig. 4.10 shows example of the elliptical isophotes fitting results and derived radial profiles of

⌃⇤(r) and ⌃SFR(r) for three galaxies in the z ⇠ 0 sample. Row from top to bottom shows: (1) results

of the elliptical isophotes fitting using ellipse command in IRAF overlaid on the map of r band

flux. The generated isophotes are shown with green ellipses; (2) Elliptical isophotes after averaging

the best-fitting isophotes outside of the half-mass radius (generated by the ellipse command in

the previous step) overlain on the map of r band flux; (3) The elliptical isophotes overlaid on the

⌃⇤ map; (4) The elliptical isophotes overlaid on the ⌃SFR map; Elliptical annuli defined by the set

of elliptical isophotes shown in figures in the second, third, and fourth rows are used in the radial

profile calculation; (5) Derived radial profiles of ⌃⇤(r); and (6) derived radial profiles of ⌃SFR(r).

In later analysis, we investigate the surface density radial profiles as function of global properties

(M⇤ and distance from the global SFMS, i.e. sSFR) by averaging the radial profiles of galaxies with

similar global properties. It is useful to have the radial profiles with the same radial extent when

averaging the radial profiles otherwise the averaged radial profile might be bias (especially in the
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Figure 4.10: Example of the results of elliptical isophote fitting and derivation of the radial profiles
of ⌃⇤(r) and ⌃SFR(r) for individual galaxy.
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Figure 4.11: Radial profiles of ⌃⇤(r), ⌃SFR(r), and sSFR(r) of sample galaxies at z ⇠ 0. Blue
squares with lines represent radial profiles of all 93 galaxies in the z ⇠ 0 sample, while black line
represents extrapolated part which obtained by exponential function fitting from the original radial
profile. Green circles with lines represent average radial profiles. Figure in the right panel is adopted
from Abdurro’uf and Akiyama (2017).

outskirt) by the radial profiles of massive bright galaxies. An exponential function fitting is done to

extrapolate the radial profile if the radial profile does not reach radius of 38 kpc. Red dashed line

on each radial profile represents best-fitting exponential function with the form of

 (r) =  0e
r/h (4.2)

to the radial profile.  in the above equation stand for ⌃⇤ and ⌃SFR.  0 and h represent zero-point

and radial scale-length, respectively. The fitting is only done to the outskirt part of the radial profile,

r � 6 kpc, to avoid e↵ect of the central components, e.g. bar and bulge. The galaxy shown in the

middle column has the radial profiles that reach radius of 38 kpc so the exponential function fitting

is not applied to this galaxy. Black points in each radial profile represent the extrapolated part for

the radial profile.

4.4.2 Average surface density radial profiles over all sample galaxies

Fig. 4.11 shows radial profiles of ⌃SFR(r) (left panel), ⌃⇤(r) (middle panel), and sSFR(r) (right

panel) of all the 93 sample galaxies (shown with blue squares with line). Black lines represent

extrapolated part of the radial profiles which are obtained by fitting each radial profile with an

exponential function, as described in Section 4.4.1. Green radial profile in each panel represents the

average radial profile. Errorbars in the average radial profiles represent their uncertainties and they

are calculated with standard error of mean.

On average, ⌃SFR(r) is centrally peaked, i.e. decreasing with increasing radius. However, it

is shown in the left panel of Fig. 4.11 that significant fraction of the galaxies have ⌃SFR(r) that

are centrally suppressed. As we will see later in Section 4.5.2, the centrally suppressed ⌃SFR(r)

radial profiles are associated with barred galaxies. ⌃⇤(r) radial profiles are centrally peaked with
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Figure 4.12: Left panel: comparison between normalized of the average radial profiles of ⌃⇤(r) and
⌃SFR(r). Right panel: Comparison between e↵ective radius of SFR and M⇤ of the 93 galaxies in
the z ⇠ 0 sample. Figure in the right panel is taken from Abdurro’uf and Akiyama (2017).

’cuspy’ shape toward the galactic center, which suggests the existence of central massive component.

sSFR(r) radial profiles of all the sample galaxies are centrally suppressed (within r < 6 kpc) and

roughly flat in the outskirt with slightly increasing with radius in the outermost region. Centrally

suppressed sSFR(r) radial profile (i.e. increasing sSFR with radius) of local galaxies also observed

by other researchers e.g. González Delgado et al. (2016); Belfiore et al. (2018) using integral field

spectroscopy observations. Positive gradient of the sSFR(r) means a ratio of current to past average

SFR is lower in the central region compared to that in the outskirt. This trend suggests that

quenching of star formation activity is progressed in ”inside-to-outside” manner. This ”inside-out”

quenching trend is one of the focus of this thesis. Quantitative analysis of the inside-out quenching

trend is discussed in Chapter 6.

The positive gradient of the sSFR(r) also suggests that spatially resolved distribution of the ongo-

ing star formation activities in the galaxies is more extended than the spatially resolved distribution

of the stellar masses. Left panel of Fig. 4.12 shows a comparison between the averages ⌃SFR(r) and

⌃⇤(r) radial profiles which have been normalized by their central (r = 1 kpc) values. It is clearly

shown in this figure that the normalized-average ⌃SFR(r) is much more extended compared to the

normalized-average ⌃⇤(r). Right panel of the Fig. 4.12 shows a comparison between e↵ective radius

of SFR and M⇤, which are radius (i.e. semi-major axis) that encloses half of the total SFR and M⇤,

respectively. It is shown in this figure that the e↵ective radius of SFR is systematically larger than

the e↵ective radius of M⇤ for almost all of the sample galaxies. This trend suggests that ongoing

star formation activities are distributed in more extended area compared to the assembled stellar

masses. It could also be thought that the galaxies are currently building their disk and growing.

This observed trend agrees with the inside-out growth scenario (e.g. Kau↵mann 1996; Cole et al.

2000; Firmani and Avila-Reese 2000; van den Bosch 2002; Stringer and Benson 2007).
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Figure 4.13: Radial profiles of ⌃SFR(r) (left panel), ⌃⇤(r) (middle panel), and sSFR(r) (right panel)
of low mass (gray) and high mass (black) groups in the z ⇠ 0 sample.

4.4.3 Surface density radial profiles as a function of the global stellar

mass

In order to investigate the e↵ect of global M⇤ on the spatially resolved distributions of ⌃SFR, ⌃⇤, and

sSFR, we divide the z ⇠ 0 sample into two groups based on the integrated M⇤ and then compare

the average ⌃SFR(r), ⌃⇤(r), and sSFR(r) radial profiles of the two groups. Median value of the

integrated M⇤ of the galaxies in the z ⇠ 0 sample (3.5⇥ 1010M�) is used as the threshold. Number

of galaxies in each group (i.e. high-mass and low-mass groups) is 46. We then calculate average

radial profiles of ⌃⇤(r), ⌃SFR(r), and sSFR(r) of the low-mass and high-mass groups. Fig. 4.13 shows

comparison of the ⌃SFR(r) (left panel), ⌃⇤(r) (middle panel), and sSFR(r) (right panel) between

the low-mass (shown in gray color) and high-mass groups (shown in black color).

More massive galaxies tend to have higher SFR in the outskirt and lower SFR in the central

region than less massive galaxies. More massive galaxies tend to have higher ⌃⇤ in the entire region

compared to less massive galaxies with larger di↵erence shown in the outskirt. It suggests that

central region of both galaxy groups might have reached a saturation (i.e. critical ⌃⇤) point while

the building of the disk (by star formation) is ongoing, especially in the low-mass group. Interesting

feature is shown in the sSFR(r) where average sSFR(r) of more massive galaxies is lower in all radii

compared to the sSFR(r) of less massive galaxies. Recalling that sSFR represents the ratio of the

current to the past averaged SFR, this sSFR(r) trend suggests that more massive galaxies tend to

quench their star formations over the entire region earlier compared to less massive galaxies. This

picture agrees with the global ’downsizing’ scenario and furthermore suggests that the ’downsizing’

signal might be preserved in the kpc-scale within a galaxy. The preservation of ’downsizing’ in

kpc-scale also observed by Pérez et al. (2013) and Ibarra-Medel et al. (2016) using integral field

spectroscopy observations. Using the integral field spectroscopy data they investigated the radially-

resolved history of the stellar mass growth in galaxies with various M⇤ (log(M⇤/M�) ⇠ 9.0� 11.0).

They found that more massive galaxies tend to built their stellar mass faster over entire radius

compared to less massive galaxies.
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Figure 4.14: Radial profiles of ⌃SFR(r), ⌃⇤(r), and sSFR(r) as a function of distance from the global
SFMS.

4.4.4 Surface density radial profiles as a function of distance from the

global SFMS

In order to investigate the dependence of the spatially resolved distributions of ⌃SFR, ⌃⇤, and sSFR

on the global sSFR (i.e. distance from the global SFMS), we calculate the average ⌃SFR(r), ⌃⇤(r),

and sSFR(r) radial profiles of the galaxies located above the global SFMS (z0-�MS1), on the global

SFMS (z0-�MS2), and below the global SFMS (z0-�MS3). See Section 4.2 for detail of the z0-

�MS1, z0-�MS2, and z0-�MS3 classification. Fig. 4.14 shows the average ⌃SFR(r) (left panel),

⌃⇤(r) (middle panel), and sSFR(r) (right panel) of the z0-�MS1 (shown in blue), z0-�MS2 (shown

in cyan), and z0-�MS3 (shown in red).

On average, normalization with respect to the global SFMS is preserved in kpc-scale as shown

by the average radial profiles of ⌃SFR(r) and sSFR(r). The z0-�MS1 galaxies have higher ⌃SFR and

sSFR in entire radii compared the z0-�MS2 galaxies and the z0-�MS2 galaxies have higher ⌃SFR

and sSFR in entire radii compared to those of the z0-�MS3 galaxies. The ⌃⇤ of the three groups

are roughly similar to each other in all radii. Belfiore et al. (2018) using data from integral field

spectroscopy observation also found that local massive (log(M⇤/M�) � 10.5) green-valley galaxies

have systematically lower sSFR in the entire region compared to the local massive (with the same

stellar mass range) star-forming galaxies.

4.5 Spatially resolved SFR and M⇤ in barred- and non-barred

galaxies

4.5.1 Global properties of barred- and non-barred galaxies

More than ⇠ 30% of massive (log(M⇤/M�) & 9.5) spiral galaxies in the local universe have central

non-axisymmetric feature with a bar-like shape (Laurikainen et al. 2004; Gavazzi et al. 2015; Con-

solandi et al. 2016). Those galaxies are called barred galaxies. Bar is thought to play a significant
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Figure 4.15: Integrated SFR versus M⇤ of barred- and non-barred galaxies in z ⇠ 0 sample. Barred
galaxies are shown with green squares, while non-barred galaxies are shown with blue circles. Black
line represents global SFMS relation by Speagle et al. (2014) which calculated at the median redshift
of the sample galaxies (z = 0.0165), while gray shaded area represents the ±0.3 dex scatter around
the global SFMS. This figure is taken from Abdurro’uf and Akiyama (2017).

role in the secular evolution of the disk galaxy. Bar could drive a strong gas inflow toward the

galactic center (Athanassoula 1992) and trigger central starbursts (Hunt and Malkan 1999; Lau-

rikainen et al. 2004; Jogee et al. 2005). In longer time-scale, gas transport toward the central region

and consumption of gas by the central starburst could a↵ect star formation activity in the central

region within the bar extent. In order to investigate the e↵ect of bar on the internal star formation

activity in the galaxy, we study the di↵erence on the spatially resolved SFR and M⇤ between barred

and non-barred galaxies in the z ⇠ 0 sample. The z ⇠ 0 sample contains 42 barred- and 51 non-

barred galaxies (see Section 2.1 for the method used for classifying barred and non-barred galaxies).

Fig. 4.15 shows integrated SFR versus M⇤ of the barred- and non-barred galaxies in the z ⇠ 0 sam-

ple. Barred- and non-barred galaxies are shown with green squares and blue circles, respectively.

Black solid line and gray shaded area represent the global SFMS relation by Speagle et al. (2014)

that is calculated at the median redshift of the z ⇠ 0 sample (z = 0.0165) and the ±0.3 dex scatter

around the global SFMS relation, respectively. It is shown by the figure that the distributions of the

barred- and non-barred galaxies with respect to the global SFMS are similar, they spread similarly

around the global SFMS. A clear systematic di↵erence is found in the integrated M⇤, where barred

galaxies tend to have higher integrated M⇤ than those of non-barred galaxies.

Fig. 4.16 shows histograms for the distributions of the integrated SFR (left panel), M⇤ (middle

panel), and sSFR (right panel) of barred (shown with green dashed line) and non-barred galaxies

(shown with blue solid line). In order to quantitatively check the di↵erences in the distributions of
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Figure 4.16: Histograms of the distributions of the integrated SFR (left panel), M⇤ (middle panel),
and sSFR (right panel) of barred- (shown with green dashed line) and non-barred galaxies (blue
solid line) in the z ⇠ 0 sample. D and P values of the Kolmogorov–Smirnov (KS) test are shown
along with the histograms.

those integrated properties between those of barred- and non-barred galaxies, we do the Kolmogorov-

Smirnov (KS) test. The figure shows that barred- and non-barred galaxies have similar integrated

SFR with P value nearly one. The M⇤ distributions of barred- and non-barred galaxies are di↵erent

within a significant level of 0.05 emphasizing that barred galaxies indeed have systematically higher

M⇤ compared to non-barred galaxies. The sSFR distributions of barred- and non-barred galaxies are

mildly di↵erent (with P=0.07) with barred galaxies have a tendency of having slightly lower sSFR.

Previous researchers (e.g. Cheung et al. 2013; Gavazzi et al. 2015) observed that barred galaxies have

systematically lower sSFR compared to non-barred galaxies but here we see less significant sSFR

suppression in the barred galaxies. Next, we will study the spatially resolved distributions of SFR,

M⇤, and sSFR in the barred- and non-barred galaxies to investigate their di↵erences in kpc-scale

and get insights on the bar-driven secular evolution of the galaxies.

4.5.2 Spatially resolved SFR and M⇤ in barred- and non-barred galaxies

First, we compare the ⌃SFR(r), ⌃⇤(r), and sSFR(r) radial profiles of barred- and non-barred galaxies

to get a first glance on the structural di↵erence between them. Fig. 4.17 shows ⌃SFR(r) (left panel),

⌃⇤(r) (middle panel), and sSFR(r) (right panel) radial profiles of barred- (shown with light-green

color) and non-barred (shown with light-blue color). Gray lines are extrapolated part of their radial

profiles which are derived through fitting the radial profiles with an exponential function as described

in Section 4.4.1. Average radial profiles of barred- and non-barred galaxies are shown by large circles

with thick lines in green and blue colors, respectively. It is shown by the figure that ⌃SFR(r) radial

profiles of most of the barred galaxies have suppression of ⌃SFR in their central regions which make

their average ⌃SFR(r) shows lower ⌃SFR in the central region compared to the average ⌃SFR(r)

radial profile of non-barred galaxies. Higher ⌃SFR in the outskirt of barred galaxies should be

taken with caution due to the e↵ect of the detection limit. Middle panel shows that there is no

systematic di↵erence between the ⌃⇤(r) radial profiles of the barred- and non-barred galaxies. On
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Figure 4.17: Radial profiles of ⌃SFR(r) (left panel), ⌃⇤(r) (middle panel), and sSFR(r) (right panel)
of barred (shown with light-green color) and non-barred galaxies (shown with light-blue color) in
the z ⇠ 0 sample. Average radial profiles of barred- and non-barred galaxies are shown by large
circles with thick line in green and blue colors, respectively.

average, sSFR(r) radial profiles of barred galaxies show only slightly lower sSFR in the central region

compared to those of the sSFR(r) radial profiles of non-barred galaxies.

In order to get insights on the ⌃SFR suppression in the central region, we check the spatially

resolved distribution of ⌃SFR of the barred galaxies. We found that region within the bar extent

commonly corresponds to a void in the ⌃SFR and sSFR maps, which means that the region has low

star formation activity. We also check the spatially resolved distribution of FUV flux in the barred

galaxies. The FUV map of the barred galaxies typically have central void within the bar extent (i.e.

systematically lower flux compared to the outskirt region). Fig. 4.18 shows example of three barred

galaxies in the z ⇠ 0 sample. Each column represents di↵erent galaxy. In each column, from top

to bottom panel show gri composite image; spatially resolved distribution of FUV flux; spatially

resolved distribution of the ⌃SFR; spatially resolved distribution of the sSFR; ⌃SFR(r) radial profile;

and sSFR(r) radial profile. It is shown from this figure that the ⌃SFR and sSFR maps of the three

galaxies have a void in the central region that corresponds to the bar size. It agrees with the FUV

flux maps which also show void in the central region associated with the bar size. The ⌃SFR(r)

radial profiles show declining trend within a radius associated with the bar size, while increasing

trend toward shorter radius is shown in the region outside of the bar extent. The sSFR(r) radial

profiles show declining trend in the central region and roughly flat trend in the outskirt.

Based on the scenario of a bar being an e�cient gas transporter toward the galactic center,

accumulation of stellar mass in the central region is expected to be high due to a central starburst

that happen following the rapid gas transport. Central (within the bar extent) SFR is expected to

be low after a long time if gas accretion into the galaxy is suppressed (due to e.g. decreasing cosmic

gas accretion rate) while gas consumption rate in the galactic center is high. While the suppression

of ⌃SFR in the central region of barred galaxies is evidenced by the ⌃SFR(r) radial profiles (in both

of the average radial profile over all the sample galaxies and in individual galaxies), systematically

di↵erent ⌃⇤ in the central region between barred- and non-barred galaxies is not evidenced from the
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Figure 4.18: Example of the spatially resolved distributions of FUV flux, ⌃SFR, and sSFR of three
barred galaxies in the z ⇠ 0 sample. Each column represent di↵erent galaxy. In each column, from
top to bottom panel: gri composite image; spatially resolved distribution of FUV flux; spatially
resolved distribution of ⌃SFR; spatially resolved distribution of sSFR; radial profile of ⌃SFR(r); and
radial profile of sSFR(r).
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average ⌃⇤(r) radial profiles. It should be noted that due to the relatively wide elliptical annulus (2

kpc width for the annuli within 6 kpc radius and 4 kpc width for the annuli outside 6 kpc radius)

that is assumed for deriving the radial profiles, the variation of ⌃⇤ in small scale within around the

galactic center is not resolved, i.e. smoothed out with the ⌃⇤ contribution from the circumnuclear

region.

Next, we will quantitatively examine the di↵erences of SFR, M⇤, and sSFR in various radial

regions between the barred- and non-barred galaxies. Now we use radial distance that is normalized

with the half-mass radius in order to probe further into the structural feature of the galaxies.

First, we examine whether there is a di↵erence in term of a radial gradient of the sSFR be-

tween the barred- and non-barred galaxies. Specifically, we want to examine whether the central

suppression of the sSFR in the barred galaxies is stronger compared to that in the non-barred

galaxies. We do it by calculating the ratio between total sSFR within the half-mass radius to the

total sSFR outside of the half-mass radius (sSFRinside/sSFRoutside) for each galaxy, then compare

that quantity in the barred- and non-barred galaxies. Fig. 4.19 shows the sSFRinside/sSFRoutside

versus integrated SFR of the barred- and non-barred galaxies. Barred- and non-barred galaxies are

shown with green squares and blue circles, respectively. Histograms in the right panel shows the

distributions of the sSFRinside/sSFRoutside of barred- (green dashed line) and non-barred galaxies

(blue solid line). While the integrated SFR and sSFR of barred- and non-barred galaxies do not

show a systematic di↵erence (see Fig. 4.16), the sSFRinside/sSFRoutside of barred galaxies tend to

be lower than that of non-barred galaxies. The median values of sSFRinside/sSFRoutside for barred-

and non-barred galaxies are �1.08 and �0.78 dex, respectively. We do the KS test to check if the

sSFRinside/sSFRoutside distributions of barred- and non-barred galaxies are indeed di↵erent. The

KS test result (the D and P values which are are shown along with the histogram) suggests that the

both distributions are indeed di↵erent within a significant level of 0.05, supporting the argument

that the sSFRinside/sSFRoutside of barred galaxies are systematically lower than those of non-barred

galaxies.

To check further into the structural di↵erence between the barred- and non-barred galaxies, we

divide the galaxy’s region into three: core defined as a region inside 10�0.5re,M⇤ , middle defined

as a region with 10�0.5re,M⇤ < r 6 re,M⇤ , and outside defined as a region with r > re,M⇤ . The

re,M⇤ represents a half-mass radius, i.e. radius along the semi-major axis that encloses half of the

integrated M⇤. The same division of a galaxy into the sub regions was also used by Wuyts et al.

(2013). Then total SFR, stellar mass (m⇤), and sSFR in the three regions are calculated. Fig. 4.20

shows histograms for the distributions of the total SFR (left column), m⇤ (middle column), and

sSFR (right column) in the core (first row), middle (second row), and outside (third row) regions.

Histograms for the barred- and non-barred galaxies are shown with green dashed line and blue solid

line, respectively. We do the KS test to check the possible di↵erence in the histograms of the two

groups. The figure shows that there is no di↵erence in SFR in the three regions between the barred-

and non-barred galaxies. The D and P values of the KS test suggest that the distributions of SFR in

the three regions are similar. Total m⇤ in the core of barred galaxies are systematically higher than
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Figure 4.19: Left panel: Integrated SFR versus ratio of the sSFR inside and outside of the half-
mass radius (sSFRinside/sSFRoutside) in barred- and non-barred galaxies. Barred- and non-barred
galaxies are represented by green squares and blue circles, respectively. Right panel: histograms for
the sSFRinside/sSFRoutside distributions of the barred- (green dashed line) and non-barred galaxies
(blue solid line). The D and P values of the Kolmogorov–Smirnov (KS) test are shown along with
the histogram.

those of non-barred galaxies. The D and P values from the KS test suggests that the distributions

of m⇤ in the core of barred- and non-barred galaxies are systematically di↵erent. In the middle

and outside region, the m⇤ of barred- and non-barred galaxies are slightly di↵erent with barred

galaxies tend to have higher m⇤ than non-barred galaxies. In the core and middle regions, the

sSFR of barred- and non-barred galaxies are slightly di↵erent with barred galaxies show tendency

of having lower sSFR than non-barred galaxies. The sSFR in the outside (i.e. outskirt) of barred-

and non-barred galaxies are similar.

It has been suggested by other researchers whose analyzed global properties (SFR and sSFR)

of local barred- and non-barred galaxies that a bar structure could promote the quenching of star

formation in galaxies (e.g. Cheung et al. 2013; Gavazzi et al. 2015). However, we found here that

bar structure tend to give e↵ect only in the central region of galaxies. The e↵ect given by the bar

structure is a suppression of sSFR and higher stellar mass in the most central part (i.e. core) of the

galaxies. Total SFR and sSFR in the outskirt of barred- and non-barred galaxies are similar leading

to the similar integrated SFR and sSFR. Thus, we conclude that with only secular process driven

by bar, it is not enough to quench an entire galaxy.

Our observed structural trend of barred- and non-barred galaxies is in a good agreement with a

result of cosmological zoom-in hydrodynamical simulation of barred galaxy evolution run by Spinoso
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Figure 4.20: Histograms for the distributions of total SFR (left column), M⇤ (middle column), and
sSFR (right column) in ”core” (first row), ”middle” (second row), and ”outside” (i.e. outskirt; third
row) of barred- (shown with green dashed line) and non-barred galaxies (shown with blue solid
line). D and P values from the KS test are shown along with the histograms. ”Core”, ”middle”,
and ”outside” are defined as region inside 10�0.5re,M⇤ , 10

�0.5re,M⇤ < r 6 re,M⇤ , and r > re,M⇤ ,
respectively.
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et al. (2017). The simulation by Spinoso et al. (2017) suggests that during the bar formation and

its early growth, the bar exerts a strong torque on the gas and drives rapid gas inflows toward the

galactic center which triggers nuclear starburst. The nuclear starburst rapidly consumes gas in the

central region such that the gas in the central region (within the bar extent) could run out once the

bar reaches its maximum length and strength. Thus, star formation rate within the bar extent is

low due to the low gas density in the region. The authors also argue that observations of barred

galaxies will likely observe the barred galaxies when they are in the stage of centrally-quenched

which is when the bar structure is prominent because detecting barred galaxies in the stage of early

bar formation (that expected to happen at high redshift), where the bar structure is not prominent,

is di�cult with current instrument sensitivity, while it is easy to recognize the barred galaxies when

the bar structure is matured. While evolution of star formation activity in the central region of a

barred galaxy is discussed in this simulation work, the evolution of star formation activity in the

outskirt of the barred galaxy is not discussed.
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Chapter 5

Spatially resolved distributions of

the SFR and M⇤ in massive disk

galaxies at z ⇠ 1

5.1 Spatially resolved SFMS in massive disk galaxies at z ⇠ 1

5.1.1 Spatially resolved SFMS with all the sample galaxies

In order to investigate the relation between ⌃SFR and ⌃⇤ (i.e. spatially resolved SFMS) at ⇠ 1

kpc-scale in the massive disk galaxies at z ⇠ 1, we plot the ⌃SFR versus ⌃⇤ of all 597651 pixels

of the 152 galaxies in the 0.8 < z < 1.8 sample. For simplicity, we call the 0.8 < z < 1.8 sample

as z ⇠ 1 sample throughout this chapter. Fig. 5.1 shows the ⌃SFR versus ⌃⇤ of all the pixels.

Contours show regions in the plot with similar number of pixels, which is counted based on the

bin with 0.1 ⇥ 0.1 dex2 area. The contour is color-coded by the number of pixels. Relatively tight

spatially resolved SFMS relation is evidenced by the contours with high number. This figure shows

that the spatially resolved SFMS is hold in the massive disk galaxies at z ⇠ 1. Black circles with

errorbars represent modes of the ⌃SFR distributions associated with each ⌃⇤ bin with 0.3 dex width.

The errorbars are obtained by calculating the standard deviation around the mode value and it is

calculated separately above and below the mode value.

The mode profile with which the spatially resolved SFMS is defined shows a linear trend at low

⌃⇤ but flattened at high ⌃⇤ end. Slight deviation from the linear trend of two mode values at low

⌃⇤ end is caused by the detection limit which sets the limiting values for the ⌃⇤ and ⌃SFR. The

limiting values for the ⌃⇤ and ⌃SFR are shown by the vertical and horizontal black lines in the

bottom and left axes, respectively. Those limiting values are the median values of the ⌃⇤ and ⌃SFR

of pixels located in the outermost 8 kpc elliptical annulus of all the sample galaxies. Those pixels

commonly have low S/N, ⇠ 0.5pixel�1. The linear part of the mode profile (consisting of five mode
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Figure 5.1: Spatially resolved SFMS relation with all 597651 pixels of the 152 galaxies in the z ⇠ 1
sample. Contours show regions in the plot with similar number of pixels, which is counted based on
the bin with 0.1 ⇥ 0.1dex2 area. The contour is color-coded by the number of pixel. Black circles
with errorbars represent modes of the ⌃SFR distributions in each ⌃⇤ bin with 0.3 dex width. The
errorbars are obtained by calculating standard deviation around the mode value and it is calculated
separately above and below the mode value. Black horizontal (vertical) lines in the left (bottom)
axes represent limiting values for the ⌃SFR(⌃⇤) which are median values of the ⌃SFR(⌃⇤) of pixels
located in outskirt (outermost 8 kpc elliptical annulus). Red squares with solid line represent
spatially resolved SFMS reported by Wuyts et al. (2013). This figure is taken from Abdurro’uf and
Akiyama (2018).

values with log(⌃⇤[M⇤kpc
�2]) . 8.5, excluding the two mode values with lowest ⌃⇤ because they

are below the limiting value of ⌃⇤) is best-fitted by a linear function (eq. 4.1) with a slope (↵) of

0.88 and zero-point (�) of �8.31, which is shown by the black line. The nearly unity slope of the

spatially resolved SFMS at low ⌃⇤ region (which corresponds to the disk region) also observed for

the spatially resolved SFMS in the galaxies at z ⇠ 0 (see Sections 4.1 and 4.2).

The red squares with line in the Fig. 5.1 shows the spatially resolved SFMS relation in massive

(log(M⇤/M�) > 10) star-forming galaxies at 0.7 < z < 1.5 reported by Wuyts et al. (2013). The

relation was defined with the median of ⌃SFR distribution associated with each ⌃⇤ bin. As shown

by the figure, the ’flattening’ tendency at high ⌃⇤ end reported by the authors is not as pronounced

as the ’flattening’ tendency obtained in this work. The systematically lower normalization of the

spatially resolved SFMS obtained by this work compared to that reported by Wuyts et al. (2013) is

in part caused by the di↵erent sample selection. Wuyts et al. (2013) only considered massive star-

forming galaxies, while here we consider not only massive star-forming galaxies but also green-valley

and quiescent galaxies which have lower ⌃SFR for a fixed ⌃⇤ at high ⌃⇤ region as will be discussed

in next section.
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5.1.2 Spatially resolved SFMS as a function of distance from the global

SFMS

As observed for the sample galaxies at z ⇠ 0 (see Section 4.3.2), the spatially resolved SFMS shown

in Fig. 5.1 is also expected to be a combination of the spatially resolved SFMS relations of the

individual galaxies. Therefore it is important to investigate the spatially resolved SFMS relation

for group of galaxies with similar properties or being in the similar phase in their evolution. One

meaningful way is to group the sample galaxies based on their distances from the global SFMS in

the SFR-M⇤ plane since it tells us about the evolutionary phases of the galaxies. Here, we divide

the z ⇠ 1 sample galaxies into three groups based on their distances from the global SFMS. As we

used the global SFMS relation by Speagle et al. (2014) for dividing the z ⇠ 0 sample galaxies, here

we also use the same relation for dividing the z ⇠ 1 sample galaxies.

Fig. 5.2 shows the integrated SFR versus M⇤ of the 152 galaxies in the z ⇠ 1 sample. The

integrated SFR and M⇤ of a galaxy are derived by summing up the SFR and m⇤ of the pixels

that belong to the galaxy. The global SFMS relation at the median redshift of the z ⇠ 1 sample

(z = 1.217) and the 0.3 dex scatter around the relation is shown by the black solid line and gray

shaded area, respectively. The black dashed line represents �0.8 dex from the global SFMS relation.

Distribution of the sample galaxies on the SFR-M⇤ plane in this figure is di↵erent compared to that

shown in Fig. 2.2, which the SFR and M⇤ are taken from the 3D-HST catalog. This di↵erence is

mainly caused by a discrepancy in integrated M⇤ where our estimated M⇤ is systematically higher

than that reported in the 3D-HST catalog. This issue is discussed in Appendix A.4. Galaxies that

are located within the scatter (±0.3 dex) of the global SFMS (shown with blue circles), between

�0.3 dex and �0.8 dex from the global SFMS (shown with green squares), and below �0.8 dex from

the global SFMS (shown with red diamonds) are grouped as z1-�MS1, z1-�MS2, and z1-�MS3,

respectively. Number of galaxies in the z1-�MS1, z1-�MS2, and z1-�MS3 groups are 47, 72, and

33, respectively. Median values of the log(sSFR[yr�1]) of the z1-�MS1, z1-�MS2, and z1-�MS3

groups are �9.28, �9.70, and �10.07, respectively. The above sSFR grouping is chosen such that

most of the z1-�MS1 and z1-�MS3 are star-forming and quiescent galaxies, respectively. The upper

limit in the sSFR for defining the z1-�MS3 is chosen such that most of the galaxies located below

it are quiescent galaxies, by verifying it with the UV J diagram. In Appendix B, we show positions

of the sample galaxies on the UV J diagram and the verification that most of the galaxies in the

z1-�MS1 and z1-�MS3 groups are star-forming and quiescent galaxies, respectively.

Pixels belong to the galaxies in the z1-�MS1 (consists of 160210 pixels), z1-�MS2 (consists of

286721 pixels), and z1-�MS3 (consists of 150720 pixels) groups are plotted on the ⌃SFR-⌃⇤ plane

to investigate the spatially resolved SFMS relation of those three groups. Fig. 5.3 shows that the

spatially resolved SFMS hold by the sub-galactic regions (i.e. pixels) in the galaxies that belong

to the z1-�MS1 (top left panel), z1-�MS2 (top right panel), and z1-�MS3 (bottom left panel).

Contours in each plot show regions in the plot with similar number of pixels that is counted based

on a bin with 0.1 ⇥ 0.1 dex2 area. The figure shows that relatively tight spatially resolved SFMS
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Figure 5.2: Integrated SFR versus M⇤ of the 152 galaxies in the z ⇠ 1 sample and the sample
division based on the distance from the global SFMS relation. The black line and gray shaded area
represent the global SFMS by Speagle et al. (2014) calculated at the median redshift of the z ⇠ 1
sample (z = 1.217) and the 0.3 dex scatter around the global SFMS relation, respectively. The black
dashed line represents �0.8 dex from the global SFMS. Blue circles, green squares, and red diamonds
are galaxies that belong to the z1-�MS1, z1-�MS2, and z1-�MS3 sub-samples, respectively. This
figure is taken from Abdurro’uf and Akiyama (2018).

relations are hold in the three groups. The circles with errorbars overlaid on the contours are mode

values of the ⌃SFR distributions associated with each ⌃⇤ bin with 0.3 dex width. An interesting

feature shown by this figure is that the mode profile for the spatially resolved SFMS of the z1-

�MS1 is linear over the entire ⌃⇤ range, which is di↵erent compared to the spatially resolved SFMS

relations of the other groups in the z ⇠ 1 sample (z1-�MS2 and z1-�MS3) and also those of the

z ⇠ 0 sample (z0-�MS1, z0-�MS2, and z0-�MS3). The black line in the top left panel represents

the best-fitting linear function to the mode profile of the spatially resolved SFMS of the z1-�MS1

(with eight mode values, excluding the one with the lowest ⌃⇤, which is a↵ected by the ⌃⇤ limit),

which has slope of 1.01 and zero-point of �9.24. To get a perspective on the location of the spatially

resolved SFMS of each group on the spatially resolved SFMS plot with all pixels of the z ⇠ 1 sample

galaxies (Fig. 5.1), we also plot the black dashed line which is the same as the black solid line in

the Fig. 5.1. The linear spatially resolved SFMS relation across the entire ⌃⇤ range with the slope

of unity implies the similar star formation e�ciency across the entire regions in the star-forming

galaxies at z ⇠ 1 (z1-�MS1).

As the regions with high ⌃⇤ end are mostly residing in the central regions of the galaxies, we also

see an onset of quenching happen in the central regions of the z1-�MS2 galaxies as their spatially

resolved SFMS relation shows a slight flattening tendency at high ⌃⇤ end. The ’flattening’ at high

⌃⇤ is more pronounced in the spatially resolved SFMS of the z1-�MS3 galaxies. Comparison among

the spatially resolved SFMS relations of the three groups (which are represented with their mode
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Figure 5.3: Spatially resolved SFMS at z ⇠ 1 as a function distance from the global SFMS. Top left
panel: spatially resolved SFMS relation of the z1-�MS1 galaxies. Top right panel: spatially resolved
SFMS of the z1-�MS2. Bottom left panel: spatially resolved SFMS of the z1-�MS3. In each of
the three panels, contours connect regions in the plot which have similar number of pixels, while
circles with errorbars are mode values of the ⌃SFR distributions associated with ⌃⇤ bins with 0.3
dex width. The errorbars represent standard deviation around the mode values which are calculated
separately above and below the mode values. Bottom right panel: comparison between the spatially
resolved SFMS of the three groups. For clarity, blue circles are shifted by 0.05 dex to the left and
red triangles are shifted by 0.05 dex to the right. This figure is taken from Abdurro’uf and Akiyama
(2018).

profiles) is shown in the bottom right panel. It is clearly shown that the di↵erence between the

spatially resolved SFMS relations is larger at high ⌃⇤ than that at low ⌃⇤ region. It reflects a

larger sSFR di↵erence in the sub-galactic regions with high ⌃⇤ compared to that in the sub-galactic

regions with low ⌃⇤. Next, we will investigate this possible evolutionary trend of the star formation

activity in the sub-galactic regions by examining the ⌃SFR(r), ⌃⇤(r), and sSFR(r) radial profiles of

the galaxies in the z1-�MS1, z1-�MS2, and z1-�MS3 groups.

5.2 Radial profiles of ⌃⇤(r), ⌃SFR(r), and sSFR(r) of massive

disk galaxies at z ⇠ 1

In order to get insights on the structures of massive disk galaxies at z ⇠ 1, we investigate the

⌃SFR(r), ⌃⇤(r), and sSFR(r) radial profiles of the galaxies in the z ⇠ 1 sample. First, ⌃SFR(r)
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and ⌃⇤(r) radial profiles of each galaxy are derived. In order to derive the radial profiles for the

individual galaxy, we apply the same method as we used for deriving the radial profiles for the

galaxies in the z ⇠ 0 sample, which is explained in Section 4.4.1. Briefly, the procedures are as

follows. First, elliptical isophotes fitting is done to the F125W image using the ellipse command

in IRAF. Then average ellipticity and position angle are calculated based on the elliptical isophotes

outside of the half-mass radius. The half-mass radius is calculated based on the elliptical isophote

that is averaged over the elliptical isophotes in the entire galaxy region. After getting the average

ellipticity and position angle, the ⌃SFR(r) and ⌃⇤(r) radial profiles are derived by averaging the

⌃SFR and ⌃⇤ of pixels within each elliptical annulus. The radial profile is sampled with 2 kpc step

along the semi-major axis. Once ⌃SFR(r) and ⌃⇤(r) are obtained, the sSFR(r) is derived by dividing

the ⌃SFR(r) by the ⌃⇤(r).

5.2.1 Average surface density radial profiles over all the sample galaxies

In order to get a glance of the overall structures of the galaxies in the z ⇠ 1 sample, we plot the

⌃SFR(r), ⌃⇤(r), and sSFR(r) of all the sample galaxies. Fig. 5.4 shows the ⌃SFR(r), ⌃⇤(r), and

sSFR(r) of all the 152 galaxies in the z ⇠ 1 sample (shown in blue). The radial profiles are cut up

to a radius of 17 kpc considering low S/N of the majority of pixels outside of it. The black lines are

extrapolation part of the radial profiles which do not reach the radius of 17 kpc. The extrapolation

is based on fitting the outskirt part of the radial profile (r > 3 kpc) with an exponential function

(eq. 4.4.1). Average radial profiles are shown with the large circles with line in green color. The

figure shows that on average, ⌃SFR(r) and ⌃⇤(r) of the sample galaxies are centrally peaked, i.e.

increasing with decreasing radius. Interestingly, the average sSFR(r) is roughly flat over the entire

radial range. The flat average sSFR(r) suggests the similarity of star formation e�ciency across

the region within majority of the sample galaxies. The ’flattening’ tendency at high ⌃⇤ end of

the spatially resolved SFMS relation with all sub-galactic regions in the sample galaxies (Fig. 5.1)

suggests a suppression of sSFR in the sub-galactic regions with high ⌃⇤, which mostly located in

the central regions of the galaxies, while the linear trend at low ⌃⇤ suggests a constant sSFR across

the sub-galactic regions with low ⌃⇤, which mostly located in the disks. The suppression of sSFR in

the central region is not shown by the average sSFR(r). However, sSFR(r) of some galaxies in the

sample indeed show low sSFR (log(sSFR[yr�1])) in their central regions. Next, we will examine the

average ⌃SFR(r), ⌃⇤(r), and sSFR(r) of galaxies based on their distances from the global SFMS (i.e.

z1-�MS1, z1-�MS2, and z1-�MS3 groups) and global M⇤ to investigate the possible dependence

of the radial profiles on the galaxy global properties.

5.2.2 Surface density radial profiles as a function of the global stellar

mass

In order to investigate the e↵ect of global M⇤ on the radial variation of the ⌃SFR, ⌃⇤, and sSFR,

we examine the average ⌃SFR(r), ⌃⇤(r), and sSFR(r) radial profiles of high-mass (with integrated
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Figure 5.4: ⌃SFR(r) (left panel), ⌃⇤(r) (middle panel), and sSFR(r) (right panel) radial profiles of
the 152 galaxies in the z ⇠ 1 sample. The radial profile of each galaxy is shown in blue color. The
black lines represent extrapolation of the radial profiles which do not reach radius of 17 kpc. The
extrapolation is based on an exponential function fitting to the outskirt part (r > 3 kpc) of the
radial profile. The radial profiles shown in green represent the average radial profiles over all the
radial profiles of the sample galaxies. This figure is taken from Abdurro’uf and Akiyama (2018).

M⇤ higher than the median M⇤ of 7.8⇥ 1010M�) and low-mass (with integrated M⇤ lower than the

median M⇤) groups. Both high-mass and low-mass groups consists of 76 galaxies. On average, the

galaxies in high-mass group have higher ⌃SFR and ⌃⇤ over entire radii compared to the galaxies

in low-mass groups. On average, high-mass group have lower sSFR over entire radii than low-mass

group. This trend is also found in the local massive disk galaxies as discussed in Section 4.4.3 (see

Fig. 4.13). This observational trend suggests that the ’downsizing’ signal is spatially preserved in the

galaxies in such a way that more massive galaxies tend to quench their star formation activities earlier

over their entire regions than less massive galaxies. Indication of this spatially resolved ’downsizing’

is also observed in local galaxies across wide global M⇤ range (9.0 . log(M⇤/M�) . 11.5) by integral

field spectroscopy observations (e.g. Pérez et al. 2013; Ibarra-Medel et al. 2016) with integral field

spectroscopy observations. The authors tried to reconstruct the radially-resolved star formation

history which then used to infer the radially-resolved stellar mass assembly history. They found

that the stellar mass buildup in the entire region of more massive galaxies tend to be faster than

that in less mass galaxies.

The di↵erences of sSFR in the entire radii between the high-mass group and low-mass group are

roughly similar such that the global M⇤ only determines the normalization of the sSFR radial profile.

The lower sSFR(r) normalization of the more massive galaxies compared to the less massive galaxies

also observed at 0.7 < z < 1.5 by Nelson et al. (2016a) using grism spectroscopy observation with the

3D-HST survey. However, the authors found an additional e↵ect promoted by the global M⇤, which

is an increasing positive slope of the sSFR(r) from the galaxies with log(M⇤/M�) ⇠ 9.25 (which

shows roughly zero slope, i.e. flat radial profile) to the galaxies with log(M⇤/M�) ⇠ 10.75 (which

shows large positive slope, i.e. steeply increasing with radius). In this work, we only see similar

slight declining trend toward the central region in sSFR radial profiles of both of the low-mass and

high-mass groups. We tried to find an indication of the steeper decline toward the central region
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in the sSFR(r) by further dividing the sample galaxies into four groups using the quartile values of

the M⇤ distribution as the threshold. The lower right panel shows the average sSFR radial profiles

of the galaxies in the four groups; first quarter as the galaxies with M⇤ 6 M⇤,Q1; second quarter as

the galaxies with M⇤,Q1 < M⇤ 6 M⇤,Q2; third quarter as the galaxies with M⇤,Q2 < M⇤ 6 M⇤,Q3;

and fourth quarter as the galaxies with M⇤ > M⇤,Q3. The M⇤,Q1, M⇤,Q2, and M⇤,Q3 represent first,

second, and third quartiles in theM⇤ distribution, which correspond to 5.26⇥1010M�, 7.84⇥1010M�,

and 1.22⇥1011M�, respectively. Each group contain 38 galaxies. The figure shows that the average

sSFR(r) of the fourth quarter group has a slight steeper suppression toward the central region.

Since Nelson et al. (2016a) did not take into account the radial variation of the dust extinction,

the steep central suppression in the average sSFR radial profile of massive (log(M⇤/M�) > 10)

galaxies they observed is su↵ered from the dust extinction e↵ect, which is expected to be high in

the central region of massive galaxies (see e.g. Tacchella et al. 2018). In the companion paper,

Nelson et al. (2016b), they estimated the average radial profile of the dust extinction of the galaxies

at 1.35 < z < 1.5 from the Balmer decrement (within which they could get the spatially resolved

distributions of both H↵ and H�) and found that the dust extinction radial profile is steeply increasing

toward the central region for massive galaxies (9.8 < log(M⇤/M�) < 11.0). It implies that the true

sSFR(r) for massive galaxies must be less suppressed in the central region compared to the sSFR(r)

they derived with the assumption of a uniform dust extinction across the galaxy region.

5.2.3 Surface density radial profiles as a function of distance from the

global SFMS

The linear spatially resolved SFMS relation with a slope of nearly unity for the z1-�MS1 suggests

the flat sSFR radial profile over the entire radii or similar star formation e�ciency across the entire

regions in the galaxies, while the flattening tendency at high ⌃⇤ in the spatially resolved SFMS

relations for the z1-�MS2 and z1-�MS3 suggests a decline of the sSFR in sub-galactic regions

with high ⌃⇤, which are mostly located in the central regions of the galaxies. Here, we examine

the ⌃SFR(r), ⌃⇤(r), and sSFR(r) of galaxies in the z1-�MS1, z1-�MS2, and z1-�MS3 groups to

check those expected trends and furthermore investigate the e↵ect of global sSFR on the local star

formation activity and stellar mass.

Fig. 5.6 shows average ⌃SFR(r) (left panel), ⌃⇤(r) (middle panel), and sSFR(r) (right panel)

radial profiles of galaxies in the z1-�MS1 (shown in blue color), z1-�MS2 (shown in green color),

and z1-�MS3 (shown in red color) groups. The figure shows that the ⌃SFR(r) radial profiles of

galaxies in the three groups are increasing toward the central region. On average, the z1-�MS1

galaxies have higher ⌃SFR than the z1-�MS2 galaxies over their entire regions and the z1-�MS2

galaxies have higher ⌃SFR than the z1-�MS3 galaxies over their entire regions. The average ⌃⇤(r)

radial profiles of the z1-�MS2 and z1-�MS3 galaxies show steeper increase toward the central region

(within r 6 5 kpc) compared to that of the average ⌃⇤(r) of the z1-�MS1 galaxies.
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Figure 5.5: E↵ect of the global M⇤ on the ⌃SFR(r), ⌃⇤(r), and sSFR(r) radial profiles of the sample
galaxies at 0.8 < z < 1.8. In top left panel, top right panel, and bottom left panel, the average
⌃SFR(r), ⌃⇤(r), and sSFR(r) of galaxies in low-mass (shown in gray) and high-mass groups (shown
in black) are compared. The bottom right panel shows comparison among average sSFR radial
profiles of four galaxy groups which is defined with the quartile in the M⇤ distribution of the sample
galaxies.

Interesting feature is shown in the comparison of the sSFR(r) among the three groups. The

average sSFR(r) of the z1-�MS1 galaxies is flat over the entire radii, while the average sSFR(r) of

the z1-�MS2 and z1-�MS3 galaxies show declining trend toward the galactic center. The declining

trend toward the galactic center is steeper in the sSFR(r) of the z1-�MS3 galaxies than that of the

z1-�MS2 galaxies. Systematic di↵erence of sSFR among those three groups is not only observed

in the central region but also in the outskirt. However the sSFR di↵erence in the outskirt is much

smaller compared to that in the central region. The sSFR di↵erences between the z1-�MS1 and

z1-�MS2 at radii of 1 kpc and 17 kpc are 0.61 dex and 0.1 dex, respectively, while the sSFR

di↵erences between the z1-�MS1 and z1-�MS3 ar radii of 1 kpc and 17 kpc are 1.21 dex and 0.35

dex, respectively. In order to check if the declining trend toward the galactic center in the sSFR(r)

of the z1-�MS2 and z1-�MS3 is real and not biased toward the lower sSFR due to central quiescent

regions in an only few quiescent galaxies, we examine the sSFR distributions in the central (r 6 4

kpc), middle (4 < r 6 10 kpc), and outskirt (r > 10 kpc) regions of the galaxies in the three

groups. Histograms of the sSFR distributions in the central, middle, and outskirt regions of the
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Figure 5.6: Radial profiles of ⌃SFR(r) (left panel), ⌃⇤(r) (middle panel), and sSFR(r) (right panel)
of sample galaxies at 0.8 < z < 1.8 as a function of their distances from the global SFMS. In each
panel, radial profiles for the z1-�MS1, z1-�MS2, and z1-�MS3 galaxies are shown with blue, green,
and red colors, respectively. Histograms in the right panel show distributions of the sSFR in the
central (r 6 4 kpc), middle (4 < r 6 10 kpc), and outskirt (r > 10 kpc) of the z1-�MS1, z1-�MS2,
and z1-�MS3 that are shown with the same colors as those used for the corresponding group. This
figure is taken from Abdurro’uf and Akiyama (2018).

three groups are shown in the right panel of the Fig. 5.6 with the same colors as for the sSFR(r)

of the corresponding group. The histograms show the systematically lower sSFR in the central and

middle regions of the z1-�MS2 and z1-�MS3 compared to that of the z1-�MS1. The slightly lower

sSFR in the outskirt of the z1-�MS2 and z1-�MS3 compared to that of the z1-�MS1 also shown

by the histograms. The histograms for the sSFR in the central, middle, and outskirt of the z1-

�MS1 tend to peak at nearly the same sSFR, log(sSFR[yr�1]) ⇠ �9.2, agrees with the flat average

sSFR(r) of this group. Thus, the trend shown by the average sSFR(r) of the z1-�MS1, z1-�MS2,

and z1-�MS3 galaxies indeed represent the di↵erence of local sSFR among the three groups.

The trend shown by the average sSFR(r) of the z1-�MS1, z1-�MS2, and z1-�MS3 suggest that

the quenching process in the massive disk galaxies is started from the central region then propagate

toward the outskirt, agrees with the inside-out quenching scenario. Observational evidences for the

inside-out quenching also observed by other researchers, e.g. Tacchella et al. (2015, 2018) which

investigated sSFR(r) of massive galaxies at z ⇠ 2; González Delgado et al. (2016) and (Belfiore

et al. 2018) which investigated sSFR(r) of galaxies in the local universe. In order to check if the

central regions of the z1-�MS2 and z1-�MS3 are indeed quiescent system, as suggested by their

sSFR(r) radial profiles that show strong suppression in the central region, and not mistaken for

dusty star-forming system, we examined the U , V , and J magnitudes of the galaxy pixels located

in the central, middle, and outskirt to check their locations on the UV J diagram. We found that

pixels located in the central regions of the z1-�MS2 and z1-�MS3 have systematically older and

more passive SEDs compared to the pixels located in the outskirt of those galaxies. We discuss this

issue in appendix B.

The centrally more concentrated average ⌃⇤(r) of the z1-�MS2 and z1-�MS3 galaxies compared

to that of the z1-�MS1 galaxies suggests a possible morphological di↵erence, which is related to
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Figure 5.7: Histograms for the distributions of the Sérsic index (n; left panel) and R90/R50 con-
centration index (right panel) of the z1-�MS1 (shown with blue solid line), z1-�MS2 (shown with
green dashed line), and z1-�MS3 (shown with red dashed dotted line) galaxies. This figure is taken
from Abdurro’uf and Akiyama (2018).

the bulge to total mass fraction (B/T), among them. In order to investigate the morphological

di↵erence among the z1-�MS1, z1-�MS2, and z1-�MS3 galaxies, we examine the Sérsic index (n)

and concentration index (R90/R50) of the galaxies in those three groups. n is calculated by fitting the

⌃⇤(r) with Sérsic profile, ⌃⇤(r) = ⌃⇤(r0) exp
⇣
�
�
r
h

�1/n⌘
. First, the exponential function (n = 1)

fitting is done to get the initial guess for the radial scale length (h) and the zero point (⌃⇤(r0)).

Then the random set of n, h and ⌃⇤(r0) are generated according to the following parameter ranges:

n[0.5, 5], ⌃⇤(r0)[0.1⌃⇤(r0, n = 1), 10⌃⇤(r0, n = 1)] and h[1, 10hn=1]. The best-fitting Sérsic profile is

determine based on the lowest �2 value. The R50 and R90 in the concentration index are calculated

with the semi-major axis that enclose 50% and 90% of the total M⇤, respectively. Fig. 5.7 shows

distributions of the Sérsic index (left panel) and R90/R50 concentration index (right panel) of the

z1-�MS1 (blue solid line), z1-�MS2 (green dashed line), and z1-�MS3 (red dashed dotted line)

galaxies. It is shown by the figure that the Sérsic index and concentration index of the z1-�MS3

galaxies are systematically higher than those of the z1-�MS1 galaxies, while the Sérsic index and

concentration index of the z1-�MS2 are in the intermediate between those of the z1-�MS1 and

z1-�MS3. This trend suggests an increasing bulge to total mass ratio (B/T) from the star-forming

galaxies to the quiescent galaxies. This trend might indicate the formation of the bulge component

and increasing prominence of the bulge following the quenching of the star formation in the galaxies.

5.3 Investigating galaxies with high possibility being expe-

riencing gas compaction event (i.e. blue nugget phase)

which will lead to the onset of inside-out quenching

The trend shown by the average sSFR(r) radial profiles of the z1-�MS1, z1-�MS2, and z1-�MS3

galaxies (as discussed in Section 5.2.3) implies the inside-out quenching process in massive disk
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galaxies at z ⇠ 1. Moreover, the trend suggests an onset of the inside-out quenching in galaxies at

the intermediate between the z1-�MS1 and z1-�MS2. The trend shown by the Sérsic index and

concentration index (i.e. B/T) of the z1-�MS1, z1-�MS2, and z1-�MS3 galaxies (as also discussed

in the Section 5.2.3) suggests the connection between the inside-out quenching process and bulge

formation and growth, such that bulge might be under construction in the z1-�MS1 galaxies, while

it is already formed in the z1-�MS2 galaxies, and getting matured in the z1-�MS3 galaxies.

The physical mechanism responsible for the inside-out quenching and the bulge formation is still

unclear. Cosmological zoom-in hydrodynamical simulations run by Ceverino et al. (2014), Zolotov

et al. (2015), Tacchella et al. (2016b) and Tacchella et al. (2016a) suggest that the onset of the

inside-out quenching could be started by an event of gas compaction toward the galactic center.

The gas compaction event could be caused by a gas-rich merger or smoother gas stream, such as

counter rotating stream which frequently occur at high redshift for galaxies with log(M⇤) ⇠ 10.

The compaction of gas toward the galactic center could trigger nuclear starburst which rapidly

consumes gas in the central region and make a large accumulation of stellar mass in the galactic

center, which then become bulge component. Gas in the central region could run out if subsequent

gas inflow into the central region stopped due to e.g. AGN feedback or radiation feedback from the

nuclear starburst. The depletion of gas, suppression of SFR, and large stellar mass accumulation

in the central region could lead to the centrally-suppressed sSFR(r) (as that of the z1-�MS2, and

z1-�MS3 galaxies shown in Fig. 5.6).

The evolutionary scenario described above suggests an occurrence of three phases around the

onset of the inside-out quenching: gas compaction event which usually called blue nugget phase in

which nuclear starburst is ongoing; post compaction event or post blue nugget phase in which bulge

component formed and gas in the central region depleted; and centrally-quenched phase in which

bulge getting matured. Those evolutionary phases could be traced by using the sSFR(r). Galaxy in

the blue nugget phase is expected to have centrally-peaked sSFR(r) because of the ongoing nuclear

starburst, while galaxy in the centrally-quenched phase is expected to have centrally-suppressed

sSFR(r) because of the depletion of gas density and SFR in central region of the galaxy, and also

large accumulation of stellar mass in the central region. Given the diversity of the sSFR(r) among

the galaxies in our z ⇠ 1 sample, it is possible that our sample contains galaxies in the three phases:

blue nugget, post blue nugget, and centrally-suppressed phase.

By using information on sSFR(r), we look for galaxies (in the z ⇠ 1 sample) with high possibility

being in the blue nugget phase (hereafter called blue nugget candidates) indicated by centrally-

peaked sSFR(r), post blue nugget phase (hereafter called post blue nugget candidates) indicated

by roughly flat sSFR(r) or showing an indication of departure from being centrally-peaked in the

past, and centrally-quenched phase (hereafter called centrally-quenched candidates) indicated by

centrally-suppressed sSFR(r). Here we only highlight some candidates of those three phases. It is

outside the scope of this thesis to study in detailed on this issue by classifying all the sample galaxies

into the three phases and study the characteristics of the three phases (e.g. typical global M⇤, sSFR,

and age at which the three phases occur). Since we only limited our sample on massive disk galaxies
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Figure 5.8: Optical composite images (which are made from combination of F814W-F125W-F160W
images) of galaxies with high probability being in the blue nugget phase (first row), post blue nugget
phase (second row), and centrally-quenched nugget phase (third row).

in this research, discussion on the characteristics of those three phases might a↵ected by some bias.

That topic will be a focus of future research using larger sample.

Fig. 5.8 shows optical images (which are composite of F814W-F125W-F160W images or roughly

equal to the rest-frame gri images that is transformed into RGB format with F160W for red, F125W

for green, and F814W for blue) of four blue nugget candidates (first row), post blue nugget candidates

(second row), and centrally-quenched candidates (third row) selected from the z ⇠ 1 sample. Index

above each image represents id of the galaxy in the 3D-HST catalog for GOODS-S galaxies. Spatial

structures of those galaxies are shown in Fig. 5.9 (for blue nugget candidates), Fig. 5.10 (for post blue

nugget candidates), and 5.11 (for centrally-quenched candidates). In each figure, di↵erent column

represents di↵erent galaxy, and in each column from top to bottom shows F435W flux map, F160W

flux map, ⌃SFR map, ⌃⇤ map, ⌃SFR(r), ⌃⇤(r), and sSFR(r), respectively.
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Some structural properties that emerges from this analysis are as follow. The blue nugget candi-

dates have centrally-peaked ⌃SFR(r) and sSFR(r) radial profiles, and relatively low ⌃⇤ in the central

region (< 109M�kpc
�2 within a radius of ⇠ 1 kpc). Those galaxies mostly reside in the upper enve-

lope of the global SFMS. The post blue nugget candidates have centrally-peaked ⌃SFR(r), but the

sSFR(r) shows departure from being centrally-peaked. Their central regions have relatively high ⌃⇤

(> 109M�kpc
�2 within a radius of ⇠ 1 kpc). Those galaxies mostly reside around the mean global

SFMS relation and lower envelope of the scatter. The more massive central region in the post blue

nugget phase than that in the blue nugget phase might indicate accumulation of the stellar mass

produced during the nuclear starburst, when the galaxy was in the blue nugget phase. Majority of

the centrally-quenched candidates have centrally-suppressed ⌃SFR(r), steep declining sSFR(r) ra-

dial profile toward the central region, and relatively massive central region (> 109M�kpc
�2 within

a radius of ⇠ 1 kpc). All of those galaxies reside below the global SFMS. Integrated M⇤ of the blue

nugget candidates are 9.3⇥1010M� (GS 6609), 4.8⇥1010M� (GS 15328), 4.7⇥1010M� (GS 43501),

and 5.6⇥1010M� (GS 46869) with an average of 6.1⇥1010M�. IntegratedM⇤ of the post blue nugget

candidates are 9.2 ⇥ 1010M⇤ (GS 1565), 4.5 ⇥ 1010M� (GS 4812), 5.7 ⇥ 1010M� (GS 30432), and

1.3⇥1011M� (GS 37243) with an average of 8.1⇥1010M�. Integrated M⇤ of the centrally-quenched

candidates are 7.4 ⇥ 1010M� (GS 13920), 1.5 ⇥ 1011M� (GS 45775), 1.2 ⇥ 1011M� (GS 47742),

and 8.6 ⇥ 1010M� (GS 37812) with an average of 1.1 ⇥ 1011M�. Redshift of each galaxy is shown

along with the F435W map of the galaxy in the Fig. 5.9, Fig. 5.10, and 5.11. There seems to be an

increasing M⇤ trend from the blue nugget phase to the red nugget phase supporting the idea that

those three phases might represent phases in galaxy evolution.
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Figure 5.9: Four galaxies in the z ⇠ 1 sample with high probability being in the blue nugget phase,
i.e. experiencing gas compaction event. Di↵erent column show di↵erent galaxy. In each column,
from top to bottom show spatially resolved distributions of the F435W flux, F160W flux, ⌃SFR, ⌃⇤,
⌃SFR(r), ⌃⇤(r), and sSFR(r).
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Figure 5.10: Same as in Fig. 5.9 but now for galaxies with high probability being in the post blue
nugget phase.
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Figure 5.11: Same as in Fig. 5.9 but now for galaxies with high probability being in the centrally-
quenched phase.
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Chapter 6

Connecting local and high-z

samples: Empirical model for the

evolution of the surface density

radial profiles of massive disk

galaxies over the last 10 Gyrs

6.1 Observed evolutionary trend of the spatially resolved

SFMS at 0 . z . 1

In order to get insights on the evolutionary trend of the spatially resolved SFMS relation from

z ⇠ 1 to z ⇠ 0, we compare among the spatially resolved SFMS relations of the six galaxy groups

that are defined based on the distances of the sample galaxies from the global SFMS relation, i.e.

z0-�MS1, z0-�MS2, z0-�MS3, z1-�MS1, z1-�MS2, and z1-�MS3. The z0-�MS1, z0-�MS2, and

z0-�MS3 are sub-samples in the z ⇠ 0 sample which are defined based on the distances (on the

SFR-M⇤ plane) of the sample galaxies from the global SFMS relation by Speagle et al. (2014) that is

calculated at the median redshift of the sample, z = 0.0165 (see Section 4.2). Briefly, the z0-�MS1,

z0-�MS2, and z0-�MS3 groups are defined as galaxies in the z ⇠ 0 sample that reside above +0.3

dex, within ±0.3 dex, and below �0.3 dex from the global SFMS relation, respectively. The z1-

�MS1, z1-�MS2, and z1-�MS3 are sub-samples in the z ⇠ 1 sample that are defined based on the

distances (on the SFR-M⇤ plane) of the sample galaxies from the global SFMS relation by Speagle

et al. (2014) that is calculated at the median redshift of the sample, z = 1.217 (see Section 5.1.2).

Briefly, the z1-�MS1, z1-�MS2, and z1-�MS3 groups are defined as galaxies in the z ⇠ 1 sample
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that reside within ±0.3 dex, between �0.3 dex and �0.8 dex, and below �0.8 dex from the global

SFMS relation, respectively.

Fig. 6.1 shows the comparison among the spatially resolved SFMS relations (which are defined

as the mode values, i.e. mode profile) of the z0-�MS1 (dark blue open circles with dashed line),

z0-�MS2 (dark green open squares with dashed line), z0-�MS3 (dark red open triangles with

dashed line), z1-�MS1 (blue solid triangles with solid line), z1-�MS2 (green solid pentagons with

solid line), and z1-�MS3 (red solid diamonds with solid line). The evolutionary trend shows an

increasing prominence of the flattening at high ⌃⇤ end from z ⇠ 1 to z ⇠ 0. It suggests a larger

decrease of the sSFR (from z ⇠ 1 to z ⇠ 0) in the sub-galactic regions with high ⌃⇤ than in the

sub-galactic regions with low ⌃⇤. Quantitative comparison between the spatially resolved SFMS of

galaxies in the highest sSFR groups in the both redshifts, which are z1-�MS1 and z0-�MS1, shows

the sSFR di↵erence of 0.4 dex at log(⌃⇤[M�kpc
�2]) = 7.0 and the sSFR di↵erence of 1.5 dex at

log(⌃⇤[M�kpc
�2]) = 8.5. Recalling that the ⌃⇤(r) radial profile always has increasing trend with

decreasing radial distance from the galactic center, the sub-galactic regions with high ⌃⇤ should

mostly be residing in the central region, while those with low ⌃⇤ should mostly be residing in the

disk. Thus, the evolutionary trend of the spatially resolved SFMS suggests that as the galaxies

evolving from z ⇠ 1 to z ⇠ 0 the star formation activity in their disks are less suppressed compared

to the star formation activity in their central regions.

The shift toward higher ⌃⇤ of the spatially resolved SFMS of the galaxies in the z ⇠ 1 sample

compared to the spatially resolved SFMS of the galaxies in the z ⇠ 0 sample is caused by the fact

that the z ⇠ 1 sample contains galaxies that are systematically more massive than the galaxies in

the z ⇠ 0. As will be discussed later, large number of massive (log(M⇤/M�) 6 11.0) disk galaxies

in the z ⇠ 1 sample are thought to evolve into massive (with the same M⇤ range) elliptical galaxies

at z ⇠ 0. Because we only consider spiral galaxies for the z ⇠ 0 sample, such massive galaxies at

z ⇠ 0 are missed.

6.2 Connecting the z ⇠ 0 and z ⇠ 1 samples: looking for the

progenitors and descendants galaxies

In order to infer the structural evolution of the massive disk galaxies at 0 . z . 1 and construct

an empirical model for it, connecting the sample galaxies at z ⇠ 1 and z ⇠ 0 with high possibility

being in the same evolutionary path (i.e. progenitors and descendants pair) is needed. The selection

criteria used in this research (massive disk galaxies) does not guarantee that the galaxies in the

z ⇠ 0 are descendant of the galaxies in the z ⇠ 1 sample. However, it is possible that some galaxies

in the z ⇠ 1 and z ⇠ 0 samples are likely to be in the same evolutionary path, i.e. progenitors

and descendants. The z ⇠ 1 and z ⇠ 0 samples cover similar comoving volumes (4.5 ⇥ 105Mpc3

and 4.3 ⇥ 105Mpc3 for z ⇠ 1 and z ⇠ 0 samples, respectively). However, the median M⇤ of the

z ⇠ 1 sample (7.8⇥1010M�) is systematically higher than that of the z ⇠ 0 sample (3.5⇥1010M�).
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Figure 6.1: Evolutionary trend of the spatially resolved SFMS relation from z ⇠ 1 to z ⇠ 0 implied
by the comparison among the six spatially resolved SFMS relations (which are defined from the
mode values, i.e. mode profile) derived from the z ⇠ 1 sample (z1-�MS1 (blue solid tiangles with
solid line), z1-�MS2 (green solid pentagons with solid line), and z1-�MS3 (red solid diamonds with
solid line)) and z ⇠ 0 sample (z0-�MS1 (dark blue open circles with dashed line), z0-�MS2 (dark
green open squares with dashed line), and z0-�MS3 (dark red open triangles with dashed line)).
For clarity, blue solid triangles and dark blue open circles are shifted by 0.05 dex to the left, while
red solid diamonds and dark red open triangles are shifted by 0.05 dex to the right from their actual
positions.

It is due to the fact that there are many galaxies (50) more massive than log(M⇤/M�) = 11.0 in

the z ⇠ 1 sample, while only few (6) such massive galaxies in the z ⇠ 0 sample. Those massive

disk galaxies at z ⇠ 1 are thought to evolve into massive elliptical galaxies at z ⇠ 0. We do not

have many galaxies with log(M⇤/M�) > 11.0 in the z ⇠ 0 sample as the disk/spiral galaxies are

commonly have lower M⇤ than the elliptical galaxies in the local universe. We checked the comoving

number densities (N) and stellar mass densities (⇢) of disk galaxies with log(M⇤/M�) > 11.0 in the

z ⇠ 1 sample and elliptical galaxies with the same mass range at 0.01 < z < 0.02 (which is taken

from the MPA-JHU catalog) and found that their N and ⇢ are comparable. The comoving number

density and stellar mass density of the z ⇠ 1 massive disc galaxies are log(N [Mpc�3]) = �3.9 and

log(⇢[M�Mpc�3]) = 7.3, while those of the local elliptical galaxies are log(N [Mpc�3]) = �4.4 and

log(⇢[M�Mpc�3]) = 6.7, respectively.

We try to look for the progenitors and descendants pairs from the z ⇠ 1 and z ⇠ 0 samples using

a model evolutionary track drawn on the sSFR-M⇤ plane. The model evolutionary track is derived by

assuming a star formation history (SFH). The model evolutionary track is drawn using the following

procedure: (1) first, initial sSFR and M⇤ at z = 2 are assumed for the model evolutionary track.

The initial sSFR and M⇤ are assumed to lie within ±0.3 dex from the global SFMS relation at z = 2,

100



Figure 6.2: Connecting the z ⇠ 1 and z ⇠ 0 samples using a model evolutionary track assuming an
exponentially declining SFH with 9.7 6 log(M⇤(t0)/M�) 6 9.9, �8.6 6 log(sSFR(t0)/yr�1) 6 �8.4,
and 4.0Gyr 6 ⌧ 6 6.0Gyr (which is called model A) on the global sSFR versus M⇤ plane. The black
line represents the model evolutionary track if the middle value of each model parameter range is
used. The gray dashed-line show the range of sSFR(t) and M⇤(t) if the model parameter ranges
are considered. Three green boxes show the ranges of sSFR(t) and M⇤(t) given by the horizontal
and vertical ’errorbars’ of the model evolutionary track calculated at z = 1.8, 0.8, and 0. The
selected progenitors and descendants are shown by the purple open circles and cyan open squares,
respectively. This figure is taken from Abdurro’uf and Akiyama (2018).

which is based on Speagle et al. (2014). (2) The SFH is assumed to be in the exponentially declining

form, SFR(t) = SFR(t0)e��t/⌧ with t = t0 + �t and t0 as the age of the universe at z = 2. The

sSFR and M⇤ at time t can then be calculated using

M⇤(t) = M⇤(t0) + ⌧SFR(t0)
⇣
1� e��t/⌧

⌘
, (6.1)

sSFR(t) =
e��t/⌧

sSFR�1(t0) + ⌧
�
1� e��t/⌧

� . (6.2)

(3) A set of model parameters, which are M⇤(t0), sSFR(t0) and ⌧ , are chosen such that it could

connect as many as possible galaxies in the z ⇠ 1 and z ⇠ 0 samples, so that the model evolutionary

track could be thought as a possible evolutionary path connecting the two samples.

We consider three di↵erent evolutionary paths: two assume the exponentially declining SFH with

short and long ⌧ and the other one only assume a same M⇤ range. A certain range for each model

parameter is assumed so that the model evolutionary track has broad ranges of the sSFR(t) and

M⇤(t), instead of a single value for each model parameter which produces a model evolutionary track

with a single line. The two models with exponentially declining SFH are: (a) model with parameter
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Figure 6.3: Connecting the z ⇠ 1 and z ⇠ 0 samples using a model evolutionary track assuming
an exponentially declining SFH with 10.2 6 log(M⇤(t0)/M�) 6 10.3, �8.7 6 log(sSFR(t0)/yr�1) 6
�8.5, and 1.3Gyr 6 ⌧ 6 2.5Gyr (which is called model B) on the global sSFR versus M⇤ plane.
Usage of symbols is the same as in Fig. 6.2. This figure is taken from Abdurro’uf and Akiyama
(2018).

ranges of log(M⇤(t0)) = [9.7 : 9.9], log(sSFR(t0)) = [�8.6 : �8.4] and ⌧ = [4.0 : 6.0], hereafter

called model A; and (b) model with log(M⇤(t0)) = [10.2 : 10.3], log(sSFR(t0)) = [�8.7 : �8.5] and

⌧ = [1.3 : 2.5], hereafter called model B. The M⇤, sSFR and ⌧ are in unit of M�, yr�1 and Gyr,

respectively. The third model, which is called model C, only connects galaxies in the M⇤ range of

10.85 6 log(M⇤/M�) 6 11.2 and without assuming any assumption on the SFH.

Fig. 6.2, 6.3, and 6.4 show the model evolutionary tracks and selected progenitors and descendants

using model A, model B, and model C, respectively. In Fig. 6.2 and 6.3, black line represents model

evolutionary track if middle values of the model parameters are assumed. Vertical and horizontal

’errorbars’ shown with gray dashed lines represent the ranges of sSFR and M⇤ (at redshift step of

0.2) if the model parameter ranges are considered. The vertical ’errorbars’ are extended by 0.3 dex

above and below from the actual length to roughly mimic the scatter around the global SFMS, which

is expected to be able to account for the fluctuations of a real galaxy evolutionary path from the

simple exponentially decaying form, while the horizontal ’errorbars’ are kept in the original length.

The extension for the vertical ’errorbar’ also intended to take into account the higher estimated

uncertainty of SFR compared to the estimated uncertainty of M⇤ of the sample galaxies. Purple

open circles and cyan open squares represent progenitors and descendants galaxies, respectively.

The progenitors (descendants) galaxies are defined as galaxies in the z ⇠ 1 (z ⇠ 0) samples that are

fall within the sSFR(t) and M⇤(t) ranges (which form a ’box’) given by the vertical and horizontal

’errorbars’, evaluated at the redshifts of the galaxies, i.e. t is age of the universe at z = 2. Three
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Figure 6.4: Connecting the z ⇠ 1 and z ⇠ 0 samples without assuming an evolutionary tracks,
instead only M⇤ range is assumed, i.e. model C. The selected progenitors and descendants are
shown by the purple open circles and cyan open squares, respectively. This figure is taken from
Abdurro’uf and Akiyama (2018).

green boxes show examples of the sSFR(t) and M⇤(t) ranges calculated at z = 1.8, 0.8, and 0.

The purple dashed line and purple shaded region represent the global SFMS relation at z = 2 and

±0.3 dex scatter around it, respectively. The black dashed-lines represent the global SFMS relations

at z = 1.2 and z = 0.015. In Fig. 6.4, progenitor and descendant galaxies, which are defined by

assuming a M⇤ range, are shown by the purple open circles and cyan open squares, respectively.

Number of progenitors (descendants) selected using the model A, B and C are 20 (14), 57 (6) and

71 (14), respectively. As expected from the larger value of ⌧ , the sSFR of model A decline more

slowly compared to that of model B.

6.3 Empirical model for the evolution of the ⌃⇤(r), ⌃SFR(r),

and sSFR(r) radial profiles at 0 . z . 1

In order to quantitatively examine the structural evolution of the massive disk galaxies from z ⇠ 1 to

z ⇠ 0, we try to construct an empirical model for the evolution of the ⌃⇤(r), ⌃SFR(r), and sSFR(r)

radial profiles. First, average ⌃⇤(r), ⌃SFR(r), and sSFR(r) radial profiles of the progenitors and

descendants galaxies selected using each of the three model evolutionary paths (model A, B, and

C, see Section 6.2) are derived. Fig. 6.5 shows the average ⌃SFR(r) (left column), ⌃⇤(r) (middle

column), and sSFR(r) (right column) of the progenitors (shown by blue circles with solid line) and

descendants (shown by red open squares with dashed line) selected using the model evolutionary
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paths of the model A (first row), B (second row), and C (third row). The average ⌃SFR(r) and

sSFR(r) of the progenitors and descendants galaxies selected with all of the three models suggest

a declining star formation rate over the entire region of the galaxies from z ⇠ 1 to z ⇠ 0 with

larger decline of star formation rate in the central region compared to that in the outskirt. This

evolutionary trend shows a progression of quenching process in the galaxy that propagates from the

central region to the outskirt, agrees with the inside-out quenching scenario. The average ⌃⇤(r) of

the progenitors and descendants galaxies selected with the evolutionary path of the model A and

B show larger increase of the ⌃⇤ toward the outskirt from z ⇠ 1 to z ⇠ 0, which shows buildup of

stellar mass in the disks and indicates an inside-out growth trend. The ⌃⇤ increase is larger (over

entire radii) for the progenitors and descendants pair with model A compared to that with model B

as expected by the larger ⌧ of the SFH assumed for the model A than that assumed for the model

B. The average ⌃⇤(r) of the progenitors and descendants selected with model C, which does not

assume any SFH formalism and only assume M⇤ range, does not show stellar mass buildup over the

entire radii from z ⇠ 1 to z ⇠ 0.

Next, radial profile of the SFH is estimated in order to quantitatively infer the evolution of the

⌃SFR(r), ⌃⇤(r), and sSFR(r). Here, we assume exponentially declining SFH at each radius as follows

⌃SFR(r, t) = ⌃SFR(r, t0)e
��t/⌧(r) (6.3)

where t = t0 + �t with t0 is the age of the universe at the median redshift of the progenitors.

The median redshift of the selected progenitors (descendants) using the evolutionary paths of the

model A, B and C are 1.064± 0.026 (0.016± 0.001), 1.133± 0.043 (0.017± 0.002) and 1.216± 0.044

(0.017 ± 0.002), respectively. The uncertainty of the median redshift, which is calculated using

bootstrap resampling method, is used in later analysis for calculating the uncertainty of model

properties, such as radial profile of SFH, ⌃⇤(r) and sSFR(r).

Based on the average ⌃SFR(r) of the progenitors and descendants and using the SFH form

of Eq. 6.3 with �t as the time di↵erence between the median redshifts of the progenitors and

descendants (which are 7.74 ± 0.10, 7.97 ± 0.17 and 8.25 ± 0.12 Gyr for the model A, B and C,

respectively), we calculate the ⌧ at each radius, i.e. ⌧(r). The ⌧(r) of all of the three models are shown

in the left column of Fig. 6.6. The ⌧(r) of all of the three models are increasing with radius. The black

diamonds with errorbars represent the ⌧(r) calculated at all the radial points in the average ⌃SFR(r)

in Fig. 6.5. The errorbar at each radius represents the 1� uncertainty calculated using Monte-Carlo

method, which calculates ⌧(r) randomly by varying the average ⌃SFR(r) of the progenitors and

descendants and �t within their uncertainties assuming Gaussian distribution for both parameters.

The uncertainty of �t is calculated using Monte-Carlo method, which calculates �t randomly by

varying the median redshifts of the progenitors and descendants within their uncertainties assuming

Gaussian distribution for both of the median redshifts. We then fit the ⌧(r) of each model with an

exponential function. The red line shows the best-fitting exponential function to the ⌧(r), while the

104



Figure 6.5: Average ⌃SFR(r) (left column), ⌃⇤(r) (middle column) and sSFR(r) (right column)
radial profiles of the progenitors (shown by the blue circles with solid line) and descendants (shown
by the red open squares with dashed line) selected using the evolutionary paths of the model A (first
row), B (second row) and C (third row). This figure is taken from Abdurro’uf and Akiyama (2018).
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red shaded area around the best-fitting line represents 1� uncertainty of the best-fitting function.

The exponential function fitting is done with Bayesian statistics method.

The middle column in Fig. 6.6 shows the average ⌃⇤(r) of the progenitors (shown by blue circles

with solid line) and descendants (shown by red open squares with dashed line), and predicted ⌃⇤(r)

at the median redshift of the descendants (shown by black diamonds with solid line) for the model

A (first row), B (second row), and C (third row). The right column shows the average sSFR(r) of

the progenitors (shown by blue circles with solid line) and descendants (shown by red open squares

with dashed line), and predicted sSFR(r) at the median redshift of the descendants (shown by black

diamonds with solid line) for the model A (first row), B (second row), and C (third row). The

predicted ⌃⇤(r) and sSFR(r) by the model A and B are consistent with the average radial profiles

of the descendants, while those of model C show large discrepancy from the average radial profiles

of the descendants. Thus, the simple exponentially declining radial SFH model could explain the

stellar mass buildup by the star formation in the massive disk galaxies.

Next, we mathematically describe the empirical model for the evolution of the ⌃SFR(r), ⌃⇤(r)

and sSFR(r) radial profiles of massive disk galaxies from z ⇠ 1 to z ⇠ 0. We derive it based on

the model A. In order to construct the mathematical prescription, we first fit the average ⌃SFR(r)

and ⌃⇤(r) of the progenitors with an exponential function and Sérsic profile, respectively. The

best-fitting profiles are then used for the initial condition (i.e. initial radial profiles, ⌃SFR(r, t0) and

⌃⇤(r, t0)) from which the radial profiles at subsequent time is calculated. The best-fitting profiles

are as follow

⌃SFR(r, t0) = (0.21± 0.03)e�r/(4.18±0.24), (6.4)

⌃⇤(r, t0) = (8.43⇥ 109 ± 4.43⇥ 108)e�(
r

0.35±0.02 )
( 1

1.96±0.03 )
. (6.5)

The time scale of the decaying SFH at each radius is determined by an exponential function fitting

to the ⌧(r) (black diamonds with errorbars in the left panel of first row in the Fig. 6.6) as

⌧(r) = (1.66± 0.22)er/(9.32±2.21), (6.6)

The best-fitting exponential function is shown in the left panel of the first row in Fig. 6.6 with a red

line. The mathematical prescription for the radial profile evolutions are as follows

⌃SFR(r, t) = ⌃SFR(r, t0)e
�(t�t0)/⌧(r), (6.7)

⌃⇤(r, t) = ⌃⇤(r, t0) + ⌧(r)⌃SFR(r, t0)
⇣
1� e�(t�t0)/⌧(r)

⌘
, (6.8)

where t0 and t are the age of the universe at the median redshift of the progenitors and the cosmic

time within 0 . z . 1, respectively. Example of the implementation of the above empirical model

for the ⌃⇤(r, t) and sSFR(r, t) at z = 0.8, 0.6, 0.4 and 0.2 are shown with gray lines in the middle

and right panels in the first row of Fig. 6.6.
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Figure 6.6: Empirical model for the evolution of the ⌃SFR(r), ⌃⇤(r), and sSFR(r) at 0 . z . 1. In
each row from top to bottom, left, middle, and right panels show the radial profile of ⌧(r), observed
and predicted radial profiles of ⌃⇤(r) at z ⇠ 0, and observed and predicted radial profiles of sSFR(r)
at z ⇠ 0. Each row corresponds to di↵erent model; first, second, and middle rows show the resulted
calculations for model A, B, and C, respectively. The black diamonds with errorbars in the left panel
in each row show the ⌧(r) for each model, while the red line and red-shaded region around it show
the best-fitting exponential function of the ⌧(r) and its 1� uncertainty, respectively. In the middle
(right) column, the average ⌃⇤(r) (sSFR(r)) of the progenitors and descendants is shown by the
blue circles with solid line and red open squares with dashed line, respectively, while the predicted
⌃⇤(r) (sSFR(r)) at the median redshift of the descendants is shown by black diamonds with solid
line. This figure is taken from Abdurro’uf and Akiyama (2018).
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The evolution of the ⌃⇤(r) implied by the empirical model shows a buildup of stellar mass

gradually in ’inside-to-outside’ manner, such that the region located at smaller radius accumulate

their stellar mass earlier compared to the region located at larger radius. This trend agrees with

the inside-out growth scenario. Evidences for the inside-out stellar mass buildup in the galaxies also

observed by previous researchers e.g. van Dokkum et al. (2010); Nelson et al. (2016a); Morishita

et al. (2015); Tadaki et al. (2017). The evolution of the sSFR(r) implied by the empirical model

shows a gradual quenching process that propagate from the central region toward the outskirt. This

trend agrees with the inside-out quenching scenario. Evidences of the inside-out quenching also

observed by previous researchers e.g. Tacchella et al. (2015, 2017); González Delgado et al. (2016);

Belfiore et al. (2018). However, the discussion on the inside-out growth and inside-out quenching

have only been discussed separately as if they are independent phenomenons. Here, we show that the

two phenomenons are correlated, such that the inside-to-outside trend of the stellar mass buildup is

implication of the earlier quenching of the star formation in region located at smaller radius.

The empirical model implies a steady slow quenching in the disk regions (as will be quantitatively

discussed in Section 6.4) and steady stellar mass buildup in the disk with all best represented with

exponentially declining SFH over entire radii. This result agrees with the slow quenching scenario of

disk galaxies and furthermore gives insights on the spatially resolved process of the slow quenching.

As strangulated galaxy (which no longer receive gas accretion and could be regarded as ’closed-

box’ system) consumed its remaining gas in a rate that best represented by exponentially declining

function of time, it is possible that the sample galaxies considered in this research (especially those

defined as the progenitors sample) might have been experiencing strangulation during a fraction of

their life from z ⇠ 1. However, further investigation (using e.g. observation of spatially resolved gas

surface density and gas phase metallicity) is needed to prove it.

Inside-out stellar mass buildup in galaxies has been predicted by many simulations of galaxy

formation and evolution (e.g. Kau↵mann 1996; Cole et al. 2000; Firmani and Avila-Reese 2000; van

den Bosch 2002; Stringer and Benson 2007). Inside-out growth is thought to be a consequence of the

dark matter halo properties of the galaxies. Galaxies receive gas accretion from the cosmic web at a

rate that determined by the mass of their dark matter halo (e.g. White and Rees 1978; Dekel et al.

2013). The gas cools and fall onto the disk of the galaxy with radial distribution set by the angular

momentum distribution of the halo. At any time, the surface density of the accreted gas on the disk

is increasing with decreasing radius (Nuza et al. 2018), leading to the inside-out growth. Another

key aspect that lead to the inside-out growth is that the global gas accretion into the galaxy have

to be significantly stronger at early time but more steady at later time (Chiappini et al. 1997).

Unlike the understanding of the inside-out growth scenario that has been established, the physical

mechanism responsible for the inside-out quenching is unclear. Some e↵orts have been done to

address that question. Cosmological zoom-in hydrodynamical simulation by Zolotov et al. (2015)

and Tacchella et al. (2016a) suggests that compaction of gas toward the galactic center due to gas-

rich merger or smoother gas streams, such as counter-rotating stream, which frequently occur at

high redshift for galaxies with log(M⇤) ⇠ 10, could triggers central/nuclear starburst. The nuclear
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starburst then make large accumulation of stellar mass in the galactic center which then become

the central bulge component. The nuclear starburst consume gas rapidly so that the gas in the

central region could run out if subsequent gas inflow into the central region is stopped due to e.g.

AGN feedback, radiation feedback from the nuclear starburst. Once it happens, onset of the inside-

out quenching started which is indicated by central suppression in the radial profiles of gas surface

density and sSFR. The subsequent quenching over entire region of the galaxy could be reached by

several ways, e.g. due to the suppression of accretion into the galaxy once the host dark matter halo

reaches a critical mass (⇠ 1012M�) of the transition from the cold mode accretion to the hot mode

accretion (e.g. Birnboim and Dekel 2003; Dekel and Birnboim 2006), and morphological quenching,

which is a quenching in the disk region that caused by the stabilization of gas (against collapse) in

the disk by the gravitational potential of the bulge (e.g. Martig et al. 2009; Genzel et al. 2014).

6.4 Radial profile of the quenching timescale

In order to quantitatively examine the inside-out quenching process of the sample galaxies, we

estimate the quenching timescale at each radius, i.e. radial profile of quenching timescale (tquench(r)),

using the empirical model for the evolution of the ⌃SFR(r) and ⌃⇤(r) derived in the previous section.

The quenching timescale at a radius is assumed to be the time needed for the sSFR of the radius

(⌃SFR(r, t)/⌃⇤(r, t)) to reach a critical value of 10�10yr�1. The critical sSFR, which corresponds to

the mass doubling time of 10 Gyr (larger than the Hubble time at z & 0.5), is commonly used to

separate between star-forming and quiescent galaxies (e.g. Peng et al. 2010) and star-forming and

quiescent sub-galactic region (e.g. González Delgado et al. 2016). Fig. 6.7 (the black line) shows

tquench(r) from z = 1.1. The 1� uncertainty associated with the tquench(r) is shown with the gray

shaded area around the line. The 1� uncertainty is calculated using the Monte-Carlo method which

is done by randomly varying all the parameters involved in the calculation (⌃SFR(r, t0), ⌃⇤(r, t0)

and ⌧(r)) within their uncertainties by assuming Gaussian distribution, then calculate the standard

deviation of tquench at each radius.

The tquench(r) profile clearly shows the inside-out quenching trend. The tquench(r) shows that

the central regions (r ⇠ 1 kpc) will be quenched by ⇠ 200 Myr from z = 1.1, while the outskirt

(r ⇠ 15 kpc) will be quenched by ⇠ 5.2 Gyr from z = 1.1. We compare the tquench(r) from this work

with the radial quenching timescale of massive (10.8 6 log(M⇤/M�) < 11.7) star-forming galaxies at

z ⇠ 2 reported by Tacchella et al. (2015) (shown by the blue profile) which has been subtracted by

the cosmic time interval between z = 1.1 and z = 2.2. The model A from which the empirical model

is derived has an initial mass at z = 2 of 9.7 6 log(M⇤/M�) 6 9.9, while the progenitor galaxies

selected using this model have 10.5 < log(M⇤/M�) < 10.9 at z ⇠ 1.1. Thus, the tquench(r) from

this work could be thought as the radial profile of quenching timescale of galaxies with smaller M⇤

compared to those of the sample galaxies considered in Tacchella et al. (2015). The tquench(r) profile

of Tacchella et al. (2015) is derived based on the average ⌃⇤(r) and ⌃SFR(r) of massive galaxies at

z ⇠ 2 and the average ⌃⇤(r) of early-type galaxies with the similar mass at z ⇠ 0. By assuming
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Figure 6.7: Radial profile of the quenching timescale (tquench(r)) from the age of the universe at
z = 1.1 estimated using the empirical model. Negative time corresponds to the cosmic time at
z > 1.1. The black line represents tquench(r) obtained from this work for 10.5 < log(M⇤/M�) < 10.9
galaxies at z = 1.1, which corresponds to the low-mass galaxies (9.7 . log(M⇤/M�) . 9.9) at z = 2
(according to model A, see Section 6.2). The blue line represents tquench(r) profile reported by
Tacchella et al. (2015) for massive galaxies, with stellar mass range of 10.8 6 log(M⇤/M�) < 11.7
at z ⇠ 2. This figure is taken from Abdurro’uf and Akiyama (2018).

that the z ⇠ 2 galaxies keep forming stars with their observed ⌃SFR(r), they estimated the time

needed for each radius to stop their star formation in order not to overshoot the ⌃⇤(r) of the z ⇠ 0

galaxies. By the calculation, they shown that the integrated SFR at any given time follows that of

the typical main-sequence galaxies.

The blue profile shows the inside-out quenching trend of the z ⇠ 2 massive star-forming galaxies,

which tend to be quenched in their central region since z ⇠ 2, and are fully quenched in their entire

regions by z ⇠ 1. The figure shows that the tquench(r) of low mass (this work) is higher (i.e. later)

than that of the massive galaxies (Tacchella et al. 2015), while their slopes are similar. These trends

suggest that more massive galaxies tend to quench their entire regions earlier than less massive

galaxies. This result agrees with the ’downsizing’ scenario (e.g. Cowie et al. 1996; Juneau et al.

2005) and furthermore suggests that the ’downsizing’ phenomenon appear even in the spatial scale

within a galaxy. By using the integral field spectroscopy data for deriving the spatially resolved

stellar mass assembly history in local galaxies, Pérez et al. (2013) and Ibarra-Medel et al. (2016)

also found the indication that the ’downsizing’ phenomenon is spatially preserved within galaxies.

They found that the stellar mass assembly of massive galaxies is faster than that of low mass galaxies

in both inner and outer regions.
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6.5 Reproduction of the observed evolutionary trend of

spatially resolved SFMS by the evolutionary empirical

model

In order to check the consistency between the empirical model derived previously and the spatially

resolved SFMS at z ⇠ 0 and z ⇠ 1, and furthermore get insights on the evolution of the spatially

resolved SFMS, we construct spatially resolved SFMS relations from the empirical model of ⌃SFR(r, t)

and ⌃⇤(r, t). Fig. 6.8 (black circles) shows the spatially resolved SFMS relations at redshift interval

of 0.11 between 0 6 z 6 1.1 constructed from the empirical model. The spatially resolved SFMS

relations constructed from the empirical model are best-fitted with second order polynomial function.

The best-fitting second order polynomial functions are shown by the red lines. The spatially resolved

SFMS relations at z = 1.1 and z = 0 constructed from the empirical model are consistent with the

observed spatially resolved SFMS relation at z ⇠ 1 (that of the z1-�MS2; shown by the blue

triangles) and at z ⇠ 0 (that of the z0-�MS2; shown by the green squares), respectively. The

spatially resolved SFMS relations at z = 1.1 and z = 0 constructed with the empirical model

are compared with the observed spatially resolved SFMS relations of the z1-�MS2 and z0-�MS2

because majority of progenitors and descendant galaxies with which the empirical model is derived

are belong to those two groups.
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Figure 6.8: Evolution of the spatially resolved SFMS relation at 0 . z . 1 inferred by the empirical
model of the ⌃SFR(r, t) and ⌃⇤(r, t) radial profiles. The black circles show the spatially resolved
SFMS relations at 0.11 redshift steps between z = 0 and z = 1.1 constructed from the empirical
model. The best-fitting second order polynomial functions to the constructed spatially resolved
SFMS relations are shown by the red lines. The blue triangles with solid line and green squares with
dashed line represent observed spatially resolved SFMS of z1-�MS2 and z0-�MS2, respectively.
This figure is taken from Abdurro’uf and Akiyama (2018).
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Chapter 7

Summary and future prospects

7.1 Summary

In this thesis, we have studied the spatially resolved (at the ⇠ 1 kpc-scale) distributions of SFR and

M⇤ in massive (log(M⇤/M�) > 10.5) face-on disk galaxies at 0.01 < z < 0.02 and 0.8 < z < 1.8. We

derived the spatially resolved SFR and M⇤ in a galaxy by using the spatially resolved SED fitting

technique, namely pixel-to-pixel SED fitting, which fit the spatially resolved SED of the galaxy

with a set of model SEDs using Bayesian statistics approach. The spatially resolved SEDs (with

rest-frame FUV to NIR) of a galaxy at 0.01 < z < 0.02 are constructed using imaging data-sets

from GALEX and SDSS, while those for a galaxy at 0.8 < z < 1.8 are constructed using imaging

data-set from CANDELS and 3D-HST. For simplicity, we call the 0.01 < z < 0.02 as z ⇠ 0 and

0.8 < z < 1.8 as z ⇠ 1.

Our results can be summarized as follows:

1. Global star formation main sequence (SFMS) is preserved at the kpc-scale within galaxies.

It is evidenced from the existences of the ⌃SFR-⌃⇤ relation, which is called spatially resolved

star formation main sequence, in the galaxies at z ⇠ 0 and z ⇠ 1. This relation implies a

universality of the star formation process at various scales.

2. The running mode values of the spatially resolved SFMS show linear trend with slope nearly

unity at low ⌃⇤ and flattened at high ⌃⇤ end, except in the star-forming galaxies (which lie

within ±0.3 dex from the global SFMS) at z ⇠ 1, where the spatially resolved SFMS show

linear trend with slope of nearly unity over entire ⌃⇤ range.

3. Evolutionary trend of the spatially resolved SFMS show decreasing sSFR over entire ⌃⇤ range

with decreasing redshift. Larger sSFR decrease shown at high ⌃⇤ region than at low ⌃⇤ region.

The larger sSFR decrease at high ⌃⇤ region results in increasing prominence of the ’flattening’

at high ⌃⇤ end.
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4. Contributions toward the scatter in the spatially resolved SFMS are at least come from these

three factors: (a) global sSFR. Normalization of the spatially resolved SFMS is determined by

the global sSFR, in the sense that galaxies with lower global sSFR have spatially resolved SFMS

with systematically lower normalization compared to those of galaxies with higher global sSFR;

(b) local variation of sSFR. Sub-galactic regions with higher sSFR than the mean spatially

resolved SFMS relation (in individual galaxy) are located in the spiral arms or knots of star

formation; (c) global M⇤. Galaxies with higher global M⇤ have spatially resolved SFMS with

systematically lower normalization compared to those of galaxies with lower global M⇤.

5. On average, SFR surface density radial profiles (⌃SFR(r)) of massive disk galaxies at z ⇠ 0

are centrally peaked. However, a significant fraction of the galaxies have centrally suppressed

⌃SFR(r), despite increasing trend toward smaller radius still shown in their outskirts. Majority

of those galaxies with centrally suppressed ⌃SFR(r) are barred galaxies. On average, sSFR

radial profiles of massive disk galaxies at z ⇠ 0 are centrally suppressed with roughly flat in

the outskirt, agrees with the inside-out quenching scenario.

6. Normalized average ⌃SFR(r) is more extended compared to the normalized average ⌃⇤(r) and

e↵ective radius of the spatial distribution of ⌃SFR is larger than e↵ective radius of the spatial

distribution of ⌃⇤ for almost all the sample galaxies at z ⇠ 0. This trend implies the inside-out

growth trend.

7. Average sSFR radial profile (sSFR(r)) of more massive galaxies is lower over entire radii than

average sSFR(r) of less massive galaxies. This trend is found in both redshifts, z ⇠ 0 and

z ⇠ 1. This trend suggests that the ’downsizing’ signal is spatially preserved within galaxies,

i.e. spatially resolved downsizing.

8. On average, sSFR(r) of galaxies with lower global sSFR are lower over entire radii compared to

the sSFR(r) of galaxies with higher global sSFR. This trend is hold at both redshifts, z ⇠ 0 and

z ⇠ 1. While sSFR(r) of all galaxies in the z ⇠ 0 sample are centrally suppressed, the sSFR(r)

of galaxies in the z ⇠ 1 sample are varies. The average sSFR(r) of star-forming galaxies (which

reside within the scatter of the global SFMS) at z ⇠ 1 is flat over entire radii, while the average

sSFR(r) of green-valley galaxies (which reside within �0.8 to �0.3 dex from the global SFMS)

is centrally suppressed, and sharper central suppression is observed for the average sSFR(r) of

quiescent galaxies (which reside below �0.8 dex from the global SFMS). This trend indicates

an onset of the inside-out quenching as galaxies move from being star-forming to green-valley

phase.

9. By connecting the z ⇠ 1 and z ⇠ 0 samples through selecting pairs of possible progenitor and

descendant from the two samples, we derived empirical model for the evolution of the surface

density radial profiles, i.e. ⌃SFR(r), ⌃⇤(r), and sSFR(r). The empirical model is derived

based on the average ⌃SFR(r) of the progenitors and descendants by assuming exponentially

declining star formation history (SFH) at each radius. The empirical model could reproduce
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the observed ⌃⇤(r) and sSFR(r) at z ⇠ 0, and also consistent with the spatially resolved SFMS

at z ⇠ 1 and z ⇠ 0.

10. The evolution of the ⌃SFR(r) and sSFR(r) suggested by the empirical model show sharper

decrease in the central region compared to that in the outskirt, implying inside-out quenching

process. The evolution of the ⌃⇤(r) show gradual stellar mass buildup that propagates toward

the outskirt, i.e. inside-out stellar mass buildup. The sSFR decrease in the outskirt indicates

slow steady quenching in the disk region. Moreover, the goodness of the radial exponentially

declining SFH to fit the evolution of the surface density radial profiles implies a steady processes

of gas consumption through star formation. This result consistent with a picture of slow

quenching in disk galaxies and indicates that strangulation might work on the galaxy during

the slow quenching process.

11. Using the empirical model for the evolution of the sSFR(r), we quantitatively examine the

inside-out quenching process by estimating a time needed for the sub-galactic regions in each

radius in the galaxy to quench, i.e. radial quenching time-scale (tquench(r)). The tquench(r) is

estimated by assuming a critical sSFR= 10�10yr�1 below which sub-galactic region is regarded

as quenched. The tquench(r) is increasing with radius.

7.2 Future prospects

Here we highlight some possible future extensions from this research.

1. Tracing radially resolved gas accretion history into massive disk galaxies over the

last 10 Gyrs

The empirical model for the evolution of the surface density radial profiles (⌃SFR(r), ⌃⇤(r),

and sSFR(r)) derived in Section 6.3 suggests a steady stellar mass buildup by star formation

activity in the disk and gradual inside-out quenching process. The steady stellar mass buildup

in the disk requires a steady gas accretion from outside of the halo into the galaxy, while the

exponentially declining star formation history, which seems to work well in reproducing the

history of star formation activity in the entire region of the galaxies, implies a decreasing rate

of gas inflow into the galaxies. The empirical model provides a unique tool for probing the

history of gas accretion into the galaxies. By combining the empirical model with the metal

enrichment (including gas phase and stellar metallicities) model, the history of gas accretion

into the galaxies and metal enrichment in the interstellar medium could be traced. This

modeling could give insights on the understanding of the physical interplay among the gas

inflow, galaxy growth by star formation, and metal enrichment in the interstellar medium of

the galaxy.

Gas regulator modeling, such as done by Peng and Maiolino (2014) could be used. The gas

regulator modeling incorporates gas accretion rate into the dark matter halo based on the best-
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fitting function to the dark matter halo merger history which is obtained from the cosmological

simulation (e.g. Faucher-Giguère et al. 2011; Dekel and Mandelker 2014). In order to trace the

radially resolved gas accretion history into massive disk galaxies, the gas regulator modeling

which commonly applied at global galaxy scale should be brought into the radially-resolved

fashion. The evolution of the ⌃SFR(r) and ⌃⇤(r) inferred by the empirical model serve as the

observational constraint for the radially-resolved gas regulator modeling. Other observational

constraints associated with boundary conditions (initial and final states) also needed to assist

the semi-analytical modeling. Initial gas surface density radial profile at z ⇠ 1 could be

obtained from the spatially resolved distribution of CO emission observed with Atacama Large

Millimeter/submillimeter Array (ALMA). Initial gas phase metallicity radial profile at z ⇠ 1

could be adopted from the observed gas phase metallicity gradient at z ⇠ 1 reported in the

literature (e.g. Wang et al. 2017; Jones et al. 2010). Observed radial profiles of gas phase

metallicity at z ⇠ 0 from MaNGA data-set and gas density radial profiles at z ⇠ 0 obtained

from the The HERA CO Line Extragalactic Survey (HERACLES; Leroy et al. 2009) and The

HI Nearby Galaxy Survey (THINGS; Walter et al. 2008) data-sets could be used as additional

constraints.

Goals of this radially-resolved gas regulator modeling is to reproduce all of the observational

constraints (the radial profiles of gas phase metallicity at z ⇠ 0 and z ⇠ 1 and the empirical

model for the evolution of the ⌃SFR(r) and ⌃⇤(r)) by adjusting the time evolution of the

radially-resolved gas accretion rate into the galaxy. The obtained results will give insights

on the radially-resolved gas accretion history into the galaxy and the interplay among the

gas inflow, star formation activity and metal enrichment in the galaxies for the last 10 Gyrs.

Moreover, we could investigate the role of the strangulation on the galaxy quenching.

2. Investigation of the blue nugget phase in the high redshift galaxies to get insights

on the onset of the inside-out quenching and bulge formation

The trend shown by the average sSFR(r) of the z1-�MS1, z1-�MS2, and z1-�MS3 (as dis-

cussed in Section 5.2.3) suggests the onset of the inside-out quenching process in massive

disk galaxies at z ⇠ 1. In order to understand the physical mechanism that triggers the

start of the inside-out quenching and test whether the gas compaction scenario (as suggested

by (Zolotov et al. 2015; Tacchella et al. 2016a)) is really happen and responsible for it, in-

formation regarding the spatially resolved distributions of the molecular gas and FIR dust

continuum (tracer for dusty star formation activity) are needed. High spatial resolution imag-

ing of CO emission and FIR dust continuum could be obtained with ALMA. Information on

the dynamics of gas also important for this study. It could be obtained using integral field

spectroscopy (IFS) observation. Target galaxies could be selected from the galaxies with high

possibility being experiencing a gas compaction event (i.e. blue nugget phase), post blue

nugget phase, and centrally-quenched phase as some of them shown in Fig. 5.9, Fig. 5.10, and

Fig. 5.11. It is also important to enlarge the current sample by considering low-mass galaxies
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(log(M⇤/M�) 6 10.5) in order to further investigate characteristics of the gas compaction

event. If this blue nugget phase is happen in general population of galaxies, it must play an

important role in the evolution of galaxies. If so, it is important to investigate the characteristic

global properties in which galaxies experience blue nugget phase, e.g. characteristic M⇤, sSFR,

and age. In order to do that, similar analysis using the pixel-to-pixel SED fitting method could

be used to derive the spatially resolved distributions of the SFR and M⇤ of large number of

galaxies with log(M⇤/M�) > 9.5 at 0.8 < z < 2.0 which are located in the five fields, GOODS-

S, GOODS-N, UDS, COSMOS, and AEGIS. Then based on the sSFR(r), galaxies with high

probability being in the blue nugget, post blue nugget, and centrally-quenched phases could

be selected for further followup study.

3. Investigation of the physical mechanism of the ’mass quenching’ and ’environmen-

tal quenching’

In order to understand how the quenching process promoted by local galaxy environment and

global stellar mass, information on the spatially resolved SFR, M⇤, and sSFR of large number

of galaxies over wide area (such that various local galaxy number density, from low- to high

density, are covered) at the local universe and high redshift is needed. Similar analysis using

the pixel-to-pixel SED fitting as we do in the research for this thesis could be done to obtain

the spatially resolved SFR, M⇤, and sSFR of large number of galaxies over wide area and

redshift range. For the local galaxies, the five bands imaging data-set from SDSS could be

used. With wide area covered by the SDSS survey, purpose of this research could be achieved.

In order to study the e↵ect of local galaxy environment and stellar mass on the quenching

process, wide stellar mass range (such as 9.5 < log(M⇤/M�) < 11.5) should be considered

in selecting the sample galaxies, then galaxies in each bin of stellar mass and local galaxy

number density are analyzed for their ⌃SFR(r), ⌃⇤(r), and sSFR(r) radial profiles. In order

to trace back the progress made by the ’environmental quenching’ and ’mass quenching’ and

bring the analysis into cosmological context, similar analysis should be done for galaxies at

high redshift, such as 0.8 < z < 1.8. This analysis could be done using the upcoming data-sets

from large imaging and spectroscopic surveys, such as The Large Synoptic Survey Telescope

(LSST), Euclid, and Wide Field Infrared Survey Telescope (WFIRST). Having maps of the

spatially resolved stellar population properties of large number of galaxies across wide redshift

range (z < 1.8), we could statistically study the physical mechanisms of the ’mass quenching’

and ’environmental quenching’. The problems that will be addressed in this research are part

of the classical problems in the study of galaxy evolution, which is related to the e↵ects of

’Nature’ versus ’Nurture’ in galaxy evolution. Thus, by using this research, insights on this

classical problems could be obtained.

4. Study of the stellar mass buildup and quenching in galaxies from cosmic noon to

the present day
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The optical to NIR light of galaxies at z & 2 is redshifted beyond the HST limit (� ⇠ 1.6µm).

With the launch of the James Webb Space Telescope (JWST), similar analysis using the pixel-

to-pixel SED fitting as has been done in the research for this thesis could be done for galaxies

around the cosmic noon epoch (2 . z . 3). Multiband imaging data from the NIRCam/JWST

could be combined with the multiband imaging data from the HST to increase the wavelength

sampling in the spatially resolved SED of the galaxies thereby increasing constraint on the

SED fitting process. The combination of the imaging data from the HST and NIRCam/JWST

covers rest-frame FUV to NIR for galaxies at 1.8 < z < 3.8, which is similar as the rest-frame

wavelength coverage provided by the GALEX+SDSS for galaxies at 0.01 < z < 0.02 and

CANDELS+3D-HST for galaxies at 0.8 < z < 1.8 that is analyzed in this thesis. PSF size of

the combined HST+NIRCam imaging (0.1900) corresponds to the physical scale of ⇠ 0.6� 0.8

kpc at the 1.8 < z < 3.8, which is similar as the physical spatial resolution achieved in the

analysis of this thesis. The similar rest-frame wavelength coverage and spatial resolution that

could be achieved by this prospected research and those achieved in the analysis in this thesis

make this prospected research as important extension of this thesis. With this research, we

could study the stellar mass buildup and quenching in the galaxies around the epoch when the

cosmic star formation history shows turns around from increasing SFR to decreasing SFR. It

is expected that at this epoch we will see first quiescent galaxy and first bulge formation.

118



Appendix A

Reliability of the pixel-to-pixel

SED fitting method

A.1 Dust extinction vector of Calzetti et al. (2000) dust

extinction law

In order to check reliability of the Calzetti et al. (2000) dust extinction law, we compare the dust

extinction vector of the Calzetti et al. (2000) with distribution of the spatially resolved SEDs of the

galaxies in the z ⇠ 0 sample on the FUV-NUV versus FUV-u and FUV-NUV versus NUV-u color-

color planes. Fig. A.1 shows distribution of the spatially resolved SEDs (in bin space; consisting

4768 bins; shown with gray points) of galaxies in the z ⇠ 0 sample on the color-color planes and

the dust extinction vectors of the Calzetti et al. (2000) dust extinction law on the planes (shown

with red curves). As a comparison, we also calculate dust extinction vectors of the Milky Way dust

extinction law (Seaton 1979; Cardelli et al. 1989) which are shown with green curves. The dust

extinction vectors are calculated based on a model SED with Z = 0.02, ⌧ = 8.6 Gyr, and age= 13.75

Gyr. The model parameters are selected as they are the typical parameters of the best-fitting models

with zero dust extinction. It is shown by the figure that the dust extinction vectors by the Calzetti

et al. (2000) law could follow the distribution of the observed spatially resolved SEDs better than

the Milky Way dust extinction law. The systematically lower reddening e↵ect in the FUV-NUV

color of the Milky Way dust law is caused by the bump feature at around 2175Å (near the central

wavelength of the NUV band) in the Milky Way dust law. Because the Calzetti et al. (2000) dust law

could broadly reproduce the distribution of the observed spatially resolved SEDs on the color-color

diagrams, we use this dust extinction law in this research.
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Figure A.1: Comparison between the dust extinction vector of the Calzetti et al. (2000) (shown with
red curves) and Milky Way dust extinction law (shown with green curves) on the FUV-NUV vs.
FUV-u and FUV-NUV vs. NUV-u color-color planes. The gray points are spatially resolved SEDs
of the galaxies in the z ⇠ 0 sample. The contours are color coded by the number of points. This
figure is taken from Abdurro’uf and Akiyama (2017).

A.2 Fitting test with mock SEDs: verification of the

Bayesian SED fitting with the likelihood adopting the

Student’s t distribution

Our new method of the Bayesian SED fitting with the likelihood following the Student’s t distribution

form with ⌫ = 3 is verified using SED fitting tests with mock SEDs in addition to the verification with

other methods (as will be discussed in later sections). We construct mock SEDs with the following

procedures. First, SEDs with random parameters (Z, ⌧ , E(B � V ), and age) are selected from a

library of model SEDs generated following the procedures discussed in Section 3. The SEDs are

sampled with the 7 bands of GALEX and SDSS. A normalization that is randomly selected within

a range of 107 to 1013 is applied to each SED. A random S/N ratio is applied to each SED then

uncertainty of the multiband fluxes in the SED is calculated based on the S/N ratio. To simulate

the observational e↵ect, we apply random noise, which is obtained by randomly varying the flux

around the flux uncertainty following the Gaussian distribution.

We do the SED fitting tests by applying Bayesian SED fitting with 11 di↵erent likelihood forms

to the mock SEDs. The 11 assumed likelihood forms are: flat (no-weighting), Student’s t distribution

with ⌫ = 0.001, 1, 3, 5, 6, 8, 10, 15, 20, and Gaussian (P (✓|X) / exp(��2/2)). Each fitting is done

with two di↵erent set of model SEDs, one with ⌧ ranging from 0.1 to 10 Gyr and the other with

a range of 0.1 to 2 Gyr, to test the stability of the method against the choice of model parameter

ranges.
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Figure A.2: Example of the fitting test results with mock SEDs that uses Bayesian SED fitting
method with likelihood in the forms of Gaussian, i.e. P (✓|X) / exp(��2/2) (left panel) and
Student’s t distribution with ⌫ = 3 (right panel). This figure is taken from Abdurro’uf and Akiyama
(2017).

Fig. A.2 shows example of two fitting results (showing sSFRtrue versus sSFRfit), mock SEDs with

⌧ from 0.1 to 10 Gyr using Bayesian method with likelihood following Gaussian form (left panel)

and Student’s t distribution with ⌫ = 3 (right panel). Histogram in the inset shows distributions

of log(SFR � true/SFR � fit). The distributions indicate that Bayesian method with likelihood in

the form of the Student’s t distribution with ⌫ = 3 (which results the log(SFR � true/SFR � fit)

distribution with mean of �0.0466 and scatter of 0.5964) is better than that with Gaussian form

likelihood (which results the log(SFR� true/SFR�fit) distribution with mean of 0.1142 and scatter

of 1.0179). A compilation of the results of the fitting test in term of the means and scatters in the

resulted log(SFR � true/SFR � fit) distributions is shown in Fig. A.3. The means and scatters in

the resulted log(SFR � true/SFR � fit) distributions are shown in the left panel and right panel,

respectively. In each panel, x-axis show various Bayesian fitting method with ⌫ indicate the ⌫ value

of Student’s t distribution. The red triangles and yellow pentagons represent fitting results using

model SEDs with ⌧ = 0.1 � 2.0 Gyr and ⌧ = 0.1 � 10.0 Gyr, respectively. The Bayesian method

with the likelihood following the form of the Student’s t distribution with ⌫ = 3 gives the best result

compared to the other likelihood forms in the fitting tests.

A.3 Pixel-by-pixel comparison with SFR from 24µm image:

case example of the M51 galaxy

In order to check the reliability of the pixel-to-pixel SED fitting method in estimating the spatially

resolved SFR, we perform the pixel-to-pixel SED fitting to the M51 galaxy which has 24µm imaging
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Figure A.3: Compilation of the results of the SED fitting tests showing the means (left panel) and
scatters (right panel) of the resulted log(SFRtrue/SFRfit) distributions. x-axis in each panel shows
various Bayesian SED fiting procedures. Left most point in the x-axis shows the result with flat
likelihood, while the right most point shows the result using Gaussian form likelihood. The rest
points in the x-axis show results using Student’s t form likelihood with various values of ⌫ indicated
in the x-axis. This figure is taken from Abdurro’uf and Akiyama (2017).

from the Spitzer Infrared Nearby Galaxies Survey (SINGS) (Kennicutt et al. 2003). The fitting is

done only in the central region of the galaxy. Fig. A.4 shows the pixel-to-pixel SED fitting results

for this galaxy. Pixel binning result, ⌃⇤ map, and ⌃SFR map are shown in the top left panel, bottom

left panel, and bottom right panel, respectively. We also put spatially resolved distribution of the

24µm flux in the figure (top right panel) for an immediate comparison with the spatially resolved

distribution of the ⌃SFR. Spiral arms regions with high 24µm flux are roughly traced in the ⌃SFR

map, while the discrepancy in the most central region is possibly caused by an AGN activity (some

researchers have observed AGN activity in the nuclear region of M51 e.g. Makishima et al. (1990);

Querejeta et al. (2016); Brightman et al. (2018)) which could contaminates the SEDs of the central

region.

We further check the reliability of the spatially resolved SFR estimation from the pixel-to-pixel

SED fitting by comparing it with the spatially resolved SFR derived from the 24µm image. The

conversion from 24µm flux to the SFR is based on Rieke et al. (2009) prescription. The comparison

between the spatially resolved SFR (in bin space) from the pixel-to-pixel SED fitting method and that

converted from the 24µm flux is shown in the middle panel of Fig. A.5. In order to get senses on how

good is our Bayesian SED fitting method, we also do the comparison using SFR estimation from other

SED fitting methods, which are maximum likelihood method (�2 minimization; shown in left panel)

and Bayesian method with likelihood in the form of Gaussian distribution (P✓|X) / exp(��2/2);

shown in right panel). It is shown by the figure that the Bayesian method with the likelihood in

the form of the Student’s t distribution with ⌫ = 3 (which is adopted in the pixel-to-pixel SED

fitting) gives the best SFR estimation as evidenced by its smaller scatter from the proportionality
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Figure A.4: Pixel-to-pixel SED fitting result for the M51 galaxy. Top left, top right, bottom left, and
bottom right panels show pixel binning result, 24µm flux map, ⌃⇤ map, and ⌃SFR map, respectively.
This figure is taken from Abdurro’uf and Akiyama (2017).

line compared to the results from the other methods. The resulted log(SFRfit/SFR24µm) distribution

using our method has scatter (�) of 0.40 dex and mean value (µ) of �0.31 dex.

A.4 Comparison of the integrated SFR and M⇤ with the

MPA-JHU and 3D-HST catalogs

In order to check reliability of the SFR and M⇤ from our pixel-to-pixel SED fitting method, in

addition to the tests described in the previous sections, we also compare the integrated SFR and M⇤

from the pixel-to-pixel SED fitting with those taken from the MPA-JHU (for galaxies in the z ⇠ 0

sample) and the 3D-HST (for galaxies in the z ⇠ 1 sample) catalogs. Fig. A.6 shows comparison

between the integrated SFR (bottom left panel) andM⇤ (bottom right panel) derived using the pixel-

to-pixel SED fitting (SFRptpSEDfit) and those taken from the MPA-JHU catalog. The integrated

SFR and M⇤ of a galaxy are derived by summing up of the SFR and m⇤ of pixels that belong to the

galaxy. It is shown by the figure that there are discrepancies between the integrated SFR and M⇤

from our method with those taken from the MPA-JHU catalog. The integrated SFR from the MPA-

JHU catalog is estimated using the H↵ emission of the spectrum from central region of the galaxy

i.e. within the SDSS fiber diameter (300) and then extrapolated using resolved color information to
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Figure A.5: Comparison among the SFR24µm versus SFRfit from three SED fitting methods: maxi-
mum likelihood or �2 minimization (left panel), Bayesian SED fitting with likelihood in the form of
the Student’s t distribution with ⌫ = 3 (middle panel), and Bayesian SED fitting with likelihood in
the form of the Gaussian distribution (P✓|X) / exp(��2/2); right panel). This figure is taken from
Abdurro’uf and Akiyama (2017).

estimate the total SFR (Brinchmann et al. 2004). The integrated M⇤ from the MPA-JHU catalog is

derived by fitting the integrated (i.e. aperture) FUV-z photometric SED with a set of model SEDs

(Salim et al. 2007). Considering the di↵erence in methodology used in estimating the total SFR and

M⇤, it is possible that one of the cause of the discrepancy is the aperture bias. In order to escape

from the e↵ect of the aperture bias, we compare the total SFR and M⇤ within a diameter of 300

from the galactic center derived using our method with the total SFR and M⇤ within fiber aperture

taken from the MPA-JHU catalog. Those comparisons are shown in the top panel. By matching

the aperture size, the estimation of the SFR and M⇤ from our method and those from MPA-JHU

catalog are in broad agreement.

Fig. A.7 shows comparisons of the integrated SFR (left panel) andM⇤ (right panel) of the galaxies

in the z ⇠ 1 sample from those derived using the pixel-to-pixel SED fitting and those taken from the

3D-HST catalog. The integrated SFR from the 3D-HST catalog is derived using combination of the

UV and IR luminosities (Whitaker et al. 2014) and the integrated M⇤ from the catalog is derived

using 0.3� 8µm SED fitting with the FAST code (Kriek et al. 2009). The left panel shows that the

integrated SFR derived using our method (SFRptpSEDfit, which is the sum of the SFR of galaxy’s

pixels) is broadly consistent with the integrated SFR from the 3D-HST catalog (SFRUV+IR). The

histogram in the inset shows the distribution of the log(SFRUV+IR/SFRptpSEDfit), which has mean

(µ) and standard deviation (�) of 0.031 and 0.48 dex, respectively. In order to investigate the causes

of the scatter in the SFRUV+IR versus SFRptpSEDfit, we check the e↵ect of the dust extinction in the

sample galaxies using the ratio of log(SFRUV/SFRUV+IR) (SFRUV and SFRIR are taken from the

3D-HST catalog), which is expected to be inversely proportional to the amount of dust extinction.

The log(SFRUV/SFRUV+IR) ratio is represented by the color-coding. It is suggested by the figure

that there is a systematic dependence of the scatter on the amount of dust extinction, such that

the SFRptpSEDfit is systematically lower for galaxies with large dust extinction. The large o↵set is
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Figure A.6: Comparison of the integrated SFR and M⇤ of the galaxies in the z ⇠ 0 sample between
those derived using the pixel-to-pixel SED fitting and those taken from the MPA-JHU catalog. In
the top left and top right panels, total SFR and M⇤ within fiber diameter (300) are used for the
comparison, while in the bottom left and bottom right panels, total SFR and M⇤ over galaxy region
are used for the comparison.

only observed among a few galaxies in the sample and we expect their e↵ects on the analysis of the

statistical sample can be minor. Moreover, there seem to be no mixing among the galaxy groups

(z1-�MS1, z1-�MS2, and z1-�MS3 as represented by the di↵erent symbols), such that on average

SFRz1-�MS1 > SFRz1-�MS2 > SFRz1-�MS3 in both SFRptpSEDfit and SFRUV+IR.

Right panel in the Fig. A.7 shows comparison between the integrated M⇤ derived using the pixel-

to-pixel SED fitting method (M⇤,ptpSEDfit) and that from the 3D-HST catalog (M⇤,3D-HST). It is

shown by the figure that there is a discrepancy between the M⇤,ptpSEDfit and M⇤,3D-HST. Part of the

causes of the discrepancy in the integrated M⇤ and possibly also the discrepancy in the integrated

SFR (as mentioned above) is a di↵erence in photometry. Fig. A.8 shows comparisons between total

fluxes calculated by summing up fluxes of the galaxy’s pixels (this work) and the integrated fluxes
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Figure A.7: Comparison of the integrated SFR (left panel) and M⇤ (right panel) of the galaxies in
the z ⇠ 1 sample between those derived using the pixel-to-pixel SED fitting and those taken from
the 3D-HST catalog. This figure is adopted from Abdurro’uf and Akiyama (2018).

taken from the 3D-HST catalog. It is shown by the figure that there is a discrepancy in the total

flux especially for the bands in the shorter wavelength. The photometry of the 3D-HST is based on

0.7 arcsec aperture (calculated using SExtractor) which then extrapolated using surface brightness

profile in F160W band (see Skelton et al. 2014). Given the extended and clumpy feature of the

galaxy structure in the rest-frame UV bands, this extrapolation could lead to an underestimation

of the total fluxes in the shorter wavelength bands. The discrepancy of total fluxes in the shorter

wavelength bands make discrepancies in color and normalization of the SED and could lead to the

discrepancy in M⇤ and SFR.

Other possible contributor to the discrepancy in M⇤ is a potential underestimation of the M⇤

derived using the global SED fitting compared to that derived using the spatially resolved SED

fitting, even if there is no discrepancy in the photometric SED, as observed by previous researchers,

e.g. Sorba and Sawicki (2015) and Sorba and Sawicki (2018). Fig. A.9 shows comparison between

the integrated M⇤ derived using the pixel-to-pixel SED fitting (M⇤,ptpSEDfit(spatially-resolved), which

is obtained by summing up m⇤ of galaxy’s pixels) and that derived using the global SED fitting

(M⇤,spatially-unresolved). For the later, the same Bayesian SED fitting method, as one adopted in the

pixel-to-pixel SED fitting is applied to the integrated SEDs of the sample galaxies. As shown by the

figure, the M⇤,ptpSEDfit(spatially-resolved) is systematically higher than the M⇤,spatially-unresolved.

126



Figure A.8: Comparisons of integrated fluxes in the 8 bands of CANDELS+ 3D-HST between those
derived by summing up fluxes of galaxy’s pixels (this work; x axis in each panel) and those taken
from the 3D-HST catalog (which is derived through aperture photometry; y axis in each panel). Blue
circles, green squares, and red diamonds represent z1-�MS1, z1-�MS2, and z1-�MS3 sub-samples,
respectively. This figure is taken from Abdurro’uf and Akiyama (2018).

Figure A.9: Comparison between the integrated M⇤ derived using the pixel-to-pixel SED fitting
(M⇤,ptpSEDfit(spatially-resolved)) and that derived using the global SED fitting (M⇤,spatially-unresolved).
Blue circles, green squares, and red diamonds represent z1-�MS1, z1-�MS2, and z1-�MS3 galaxies,
respectively. This figure is taken from Abdurro’uf and Akiyama (2018).
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Appendix B

Integrated and spatially resolved

UV J diagram

B.1 Integrated and spatially resolved UV J diagram for galax-

ies in the z ⇠ 1 sample

In order to examine whether quiescent sub-sample galaxies in the z ⇠ 1 sample (i.e. z1-�MS3) are

indeed quiescent galaxies and not mistaken for red colors of possibly dusty star-forming galaxies,

we estimate the rest-frame U , V , and J magnitudes of the z ⇠ 1 sample galaxies to locate their

positions on the U � V versus V � J plane (i.e. UV J diagram). We estimate the rest-frame U , V ,

and J magnitudes of a galaxy based on the best-fitting model spectrum of the galaxy’s integrated

SED (sum of fluxes of galaxy’s pixels) which is obtained from the �2 minimization fitting. Top

panel of Fig. B.1 shows positions of the z1-�MS1, z1-�MS2, and z1-�MS3 galaxies on the UV J

diagram. Upper left ’box’ indicated by the solid line is a selection criteria for quiescent galaxies by

Williams et al. (2009). Dusty star-forming galaxies are expected to reside in the upper right region

in the UV J diagram. It is shown by the figure that majority of the z1-�MS3 galaxies fall within

the selection criteria thereby confirm that they are indeed quiescent galaxies which are dominated

by old stellar population.

In order to check the reliability of the centrally quiescent properties of the z1-�MS2 and z1-�MS3

galaxies as indicated in Fig. 5.6, we also check distribution of the pixels (i.e. sub-galactic regions)

that belong to the z ⇠ 1 sample galaxies on the UV J diagram. In order to estimate the U , V , and

J magnitudes of each galaxy’s pixel, first we perform SED fitting with �2 minimization method to

each SED of a galaxy’s bin (i.e. collection of pixels) to obtain best-fitting model spectrum of the

bin’s SED. Based on the best-fitting model spectrum of the bin’s SED, U , V , and J magnitudes of

the bin are estimated. The magnitudes of the bin are then shared by pixels that belong to the bin,

such that all pixels in the bin have the same magnitudes. Fig. B.2 shows the distribution of the
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Figure B.1: Integrated U � V versus V � J (i.e. UV J diagram) of the galaxies in the z ⇠ 1 sample.
Upper left ”box” represents selection criteria for quiescent galaxies by Williams et al. (2009). Blue
circles, green squares, and red diamonds represent z1-�MS1, z1-�MS2, and z1-�MS3 sub-samples,
respectively.

pixels on the UV J diagram, i.e. spatially resolved UV J diagram. In the figure, left panel, middle

panel, and right panel show the spatially resolved UV J diagram for the z1-�MS1, z1-�MS2, and

z1-�MS3 galaxies, respectively. In order to check a radial dependence of the spatially resolved UV J

diagram, we divide region in each galaxy into three: central (r 6 2 kpc), middle (2 < r 6 8 kpc),

and outskirt (r > 8 kpc). In each panel of the figure, blue circles, green squares, and red stars

represent central, middle, and outskirt regions, respectively.

It is shown in the Fig. B.2 that the central regions of the z1-�MS2 and z1-�MS3 galaxies are

less star-forming (i.e. quiescent systems that dominated by old stellar population) compared to their

middle and outskirt regions as majority of the central pixels in those galaxies are shifted toward

the selection criteria of the quiescent galaxies (a ”box” in upper left side). However, we notice that

some central pixels of the z1-�MS2 and z1-�MS3 galaxies fall into the dusty star-forming locus.

Majority of the central pixels of the z1-�MS1 are star-forming regions similar as their middle and

outskirt pixels, confirming their flat sSFR(r) radial profile.

B.2 Integrated and spatially resolved UV J diagram for galax-

ies in the z ⇠ 0 sample

In the similar way as we done for the z ⇠ 1 sample, we also estimate distribution of the z ⇠ 0 sample

galaxies on the UVJ diagram. The integrated U , V , and J magnitudes of a galaxy in the z ⇠ 0
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Figure B.2: Distributons of pixels associated with the z1-�MS1 (left panel), z1-�MS2 (middle
panel), and z1-�MS3 (right panel) on the UV J diagram. Red stars, green squares, and blue circles
in each panel represent pixels located in the central (r 6 2 kpc), middle (2 < r 6 8 kpc), and outskirt
(r > 8 kpc) regions. Upper left ”box” in each panel represents selection criteria for quiescent galaxies
by Williams et al. (2009).

sample are estimated using the same method as we used for the z ⇠ 1 sample galaxies (as described

in previous section). Fig. B.3 shows distribution of the z ⇠ 0 sample galaxies on the UV J diagram.

The z0-�MS1, z0-�MS2, and z0-�MS3 sub-samples are shown with blue circles, green squares, and

red diamonds, respectively. It is shown from this figure that the z0-�MS1 galaxies, which reside

above +0.3 dex from the global SFMS, are mostly located in the bottom left side where star-forming

galaxies are expected to reside on the UV J diagram, while majority of the z0-�MS3 galaxies are

located within the selection criteria for quiescent galaxies by Williams et al. (2009) which is drawn

as a ’box’ in the top left side. The z0-�MS2 galaxies are located in an intermediate between the

star-forming and quiescent locus. This figure suggests that the z0-�MS1 galaxies are star-forming

galaxies and the z0-�MS3 galaxies are quiescent galaxies.

In order to check the reliability of the centrally suppressed sSFR found for all the z ⇠ 0 sample

galaxies as suggested by Fig. 4.11, we estimate the U , V , and J magnitudes of all pixels associated

with the galaxies and locate their positions on the UV J diagram. The U , V , and J magnitudes

of a galaxy’s pixel are estimated using the same method as we used to estimate the U , V , and J

magnitudes of a pixel that belong to a galaxy in the z ⇠ 1 sample, which is described in the previous

section. Fig. B.4 shows distributions of pixels that belong to the z0-�MS1 (left panel), z0-�MS2

(middle panel), and z0-�MS3 (right panel) on the UV J diagram. In each panel, blue circles, green

squares, and red stars represent pixels located in the central (r 6 5 kpc), middle (5 < r 6 20 kpc),

and outskirt (r > 20 kpc) regions, respectively. It is shown from this figure that the central regions

are less star-forming than the middle and outskirt regions for all galaxies in the three sub-samples

as majority of the central pixels are shifted toward the selection criteria of quiescent galaxies (drawn

as a ’box’ in the top left side of each panel). It is also shown from this figure that for z0-�MS2

and z0-�MS3 galaxies, pixels in all the three regions are shifted toward the selection criteria for

quiescent galaxies indicating a growing central quiescent regions as we go to galaxies with lower

global sSFR.
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Figure B.3: Integrated U � V versus V � J diagram (i.e. UVJ diagram) of galaxies in the z ⇠ 0
sample. Upper left ”box” represents selection criteria for quiescent galaxies by Williams et al.
(2009). Blue circles, green squares, and red diamonds represent z0-�MS1, z0-�MS2, and z0-�MS3
sub-samples, respectively.

Figure B.4: Distributons of pixels associated with the z0-�MS1 (left panel), z0-�MS2 (middle
panel), and z0-�MS3 (right panel) on the UV J diagram. Red stars, green squares, and blue circles
in each panel represent pixels located in the central (r 6 5 kpc), middle (5 < r 6 20 kpc), and
outskirt (r > 20 kpc) regions. Upper left ”box” in each panel represents selection criteria for
quiescent galaxies by Williams et al. (2009).
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López-Sánchez, and J. M. Vilchez. Spatially Resolved Star Formation Main Sequence of Galaxies
in the CALIFA Survey. ApJ, 821:L26, April 2016. doi: 10.3847/2041-8205/821/2/L26.

133



M. Cappellari and Y. Copin. Adaptive spatial binning of integral-field spectroscopic data using
Voronoi tessellations. MNRAS, 342:345–354, June 2003. doi: 10.1046/j.1365-8711.2003.06541.x.

J. A. Cardelli, G. C. Clayton, and J. S. Mathis. The relationship between infrared, optical, and
ultraviolet extinction. ApJ, 345:245–256, October 1989. doi: 10.1086/167900.

D. Ceverino, A. Klypin, E. S. Klimek, S. Trujillo-Gomez, C. W. Churchill, J. Primack, and A. Dekel.
Radiative feedback and the low e�ciency of galaxy formation in low-mass haloes at high redshift.
MNRAS, 442:1545–1559, August 2014. doi: 10.1093/mnras/stu956.

G. Chabrier. Galactic Stellar and Substellar Initial Mass Function. PASP, 115:763–795, July 2003.
doi: 10.1086/376392.

E. Cheung, E. Athanassoula, K. L. Masters, R. C. Nichol, A. Bosma, E. F. Bell, S. M. Faber,
D. C. Koo, C. Lintott, T. Melvin, K. Schawinski, R. A. Skibba, and K. W. Willett. Galaxy
Zoo: Observing Secular Evolution through Bars. ApJ, 779:162, December 2013. doi: 10.1088/
0004-637X/779/2/162.

J. Chevallard and S. Charlot. Modelling and interpreting spectral energy distributions of galaxies
with BEAGLE. MNRAS, 462:1415–1443, October 2016. doi: 10.1093/mnras/stw1756.

C. Chiappini, F. Matteucci, and R. Gratton. The Chemical Evolution of the Galaxy: The Two-Infall
Model. ApJ, 477:765–780, March 1997. doi: 10.1086/303726.

S. Cole, C. G. Lacey, C. M. Baugh, and C. S. Frenk. Hierarchical galaxy formation. MNRAS, 319:
168–204, November 2000. doi: 10.1046/j.1365-8711.2000.03879.x.

G. Consolandi, G. Gavazzi, M. Fumagalli, M. Dotti, and M. Fossati. Robust automatic photometry
of local galaxies from SDSS. Dissecting the color magnitude relation with color profiles. A&A,
591:A38, June 2016. doi: 10.1051/0004-6361/201527618.

L. L. Cowie, A. Songaila, E. M. Hu, and J. G. Cohen. New Insight on Galaxy Formation and
Evolution From Keck Spectroscopy of the Hawaii Deep Fields. AJ, 112:839, September 1996. doi:
10.1086/118058.

E. da Cunha, S. Charlot, and D. Elbaz. A simple model to interpret the ultraviolet, optical and
infrared emission from galaxies. MNRAS, 388:1595–1617, August 2008. doi: 10.1111/j.1365-2966.
2008.13535.x.

G. de Vaucouleurs. Recherches sur les Nebuleuses Extragalactiques. Annales d’Astrophysique, 11:
247, January 1948.

A. Dekel and Y. Birnboim. Galaxy bimodality due to cold flows and shock heating. MNRAS, 368:
2–20, May 2006. doi: 10.1111/j.1365-2966.2006.10145.x.

A. Dekel and N. Mandelker. An analytic solution for the minimal bathtub toy model: challenges
in the star formation history of high-z galaxies. MNRAS, 444:2071–2084, November 2014. doi:
10.1093/mnras/stu1427.

A. Dekel, A. Zolotov, D. Tweed, M. Cacciato, D. Ceverino, and J. R. Primack. Toy models for galaxy
formation versus simulations. MNRAS, 435:999–1019, October 2013. doi: 10.1093/mnras/stt1338.

D. Elbaz, E. Daddi, D. Le Borgne, M. Dickinson, D. M. Alexander, R.-R. Chary, J.-L. Starck, W. N.
Brandt, M. Kitzbichler, E. MacDonald, M. Nonino, P. Popesso, D. Stern, and E. Vanzella. The
reversal of the star formation-density relation in the distant universe. A&A, 468:33–48, June 2007.
doi: 10.1051/0004-6361:20077525.

A. C. Fabian. Observational Evidence of Active Galactic Nuclei Feedback. ARA&A, 50:455–489,
September 2012. doi: 10.1146/annurev-astro-081811-125521.

134
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N. M. Förster Schreiber, R. Genzel, N. Bouché, G. Cresci, R. Davies, P. Buschkamp, K. Shapiro, L. J.
Tacconi, E. K. S. Hicks, S. Genel, A. E. Shapley, D. K. Erb, C. C. Steidel, D. Lutz, F. Eisenhauer,
S. Gillessen, A. Sternberg, A. Renzini, A. Cimatti, E. Daddi, J. Kurk, S. Lilly, X. Kong, M. D.
Lehnert, N. Nesvadba, A. Verma, H. McCracken, N. Arimoto, M. Mignoli, and M. Onodera. The
SINS Survey: SINFONI Integral Field Spectroscopy of z ˜ 2 Star-forming Galaxies. ApJ, 706:
1364–1428, December 2009. doi: 10.1088/0004-637X/706/2/1364.

G. Gavazzi, G. Consolandi, M. Dotti, R. Fanali, M. Fossati, M. Fumagalli, E. Viscardi, G. Savorgnan,
A. Boselli, L. Gutiérrez, H. Hernández Toledo, R. Giovanelli, and M. P. Haynes. H↵3: an H↵
imaging survey of HI selected galaxies from ALFALFA. VI. The role of bars in quenching star
formation from z = 3 to the present epoch. A&A, 580:A116, August 2015. doi: 10.1051/0004-6361/
201425351.

R. Genzel, N. M. Förster Schreiber, P. Lang, S. Tacchella, L. J. Tacconi, S. Wuyts, K. Bandara,
A. Burkert, P. Buschkamp, C. M. Carollo, G. Cresci, R. Davies, F. Eisenhauer, E. K. S. Hicks,
J. Kurk, S. J. Lilly, D. Lutz, C. Mancini, T. Naab, S. Newman, Y. Peng, A. Renzini, K. Shapiro
Gri�n, A. Sternberg, D. Vergani, E. Wisnioski, E. Wuyts, and G. Zamorani. The SINS/zC-SINF
Survey of z ˜ 2 Galaxy Kinematics: Evidence for Gravitational Quenching. ApJ, 785:75, April
2014. doi: 10.1088/0004-637X/785/1/75.
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I. Márquez, J. Masegosa, M. Mollá, P. Sánchez-Blázquez, and J. M. Vı́lchez. Star formation along
the Hubble sequence. Radial structure of the star formation of CALIFA galaxies. A&A, 590:A44,
May 2016. doi: 10.1051/0004-6361/201628174.

N. A. Grogin, D. D. Kocevski, S. M. Faber, H. C. Ferguson, A. M. Koekemoer, A. G. Riess,
V. Acquaviva, D. M. Alexander, O. Almaini, M. L. N. Ashby, M. Barden, E. F. Bell, F. Bournaud,
T. M. Brown, K. I. Caputi, S. Casertano, P. Cassata, M. Castellano, P. Challis, R.-R. Chary,
E. Cheung, M. Cirasuolo, C. J. Conselice, A. Roshan Cooray, D. J. Croton, E. Daddi, T. Dahlen,
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H.-W. Rix, L. J. Tacconi, A. van der Wel, F. C. van den Bosch, P. A. Oesch, C. Dickey, and J. Ulf
Lange. Where Stars Form: Inside-out Growth and Coherent Star Formation from HST H↵ Maps
of 3200 Galaxies across the Main Sequence at 0.7 < z < 1.5. ApJ, 828:27, September 2016a. doi:
10.3847/0004-637X/828/1/27.

E. J. Nelson, P. G. van Dokkum, I. G. Momcheva, G. B. Brammer, S. Wuyts, M. Franx, N. M.
Förster Schreiber, K. E. Whitaker, and R. E. Skelton. Spatially Resolved Dust Maps from Balmer
Decrements in Galaxies at z ˜ 1.4. ApJ, 817:L9, January 2016b. doi: 10.3847/2041-8205/817/1/L9.

K. G. Noeske, B. J. Weiner, S. M. Faber, C. Papovich, D. C. Koo, R. S. Somerville, K. Bundy, C. J.
Conselice, J. A. Newman, D. Schiminovich, E. Le Floc’h, A. L. Coil, G. H. Rieke, J. M. Lotz,
J. R. Primack, P. Barmby, M. C. Cooper, M. Davis, R. S. Ellis, G. G. Fazio, P. Guhathakurta,
J. Huang, S. A. Kassin, D. C. Martin, A. C. Phillips, R. M. Rich, T. A. Small, C. N. A. Willmer,
and G. Wilson. Star Formation in AEGIS Field Galaxies since z=1.1: The Dominance of Gradually
Declining Star Formation, and the Main Sequence of Star-forming Galaxies. ApJ, 660:L43–L46,
May 2007. doi: 10.1086/517926.

S. Noll, D. Burgarella, E. Giovannoli, V. Buat, D. Marcillac, and J. C. Muñoz-Mateos. Analysis of
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Ferrero, A. de Lorenzo-Cáceres, A. Del Olmo, R.-J. Dettmar, A. Dı́az, S. Ellis, J. Falcón-
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